WorldWideScience

Sample records for autochthonous eukaryotic diversity

  1. Soil eukaryotic functional diversity, a metatranscriptomic approach.

    Science.gov (United States)

    Bailly, Julie; Fraissinet-Tachet, Laurence; Verner, Marie-Christine; Debaud, Jean-Claude; Lemaire, Marc; Wésolowski-Louvel, Micheline; Marmeisse, Roland

    2007-11-01

    To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.

  2. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  3. Eukaryotic diversity in historical soil samples

    NARCIS (Netherlands)

    Moon-van der Staay, S.Y.; Tzeneva, V.A.; Staay, van der G.W.M.; Vos, de W.M.; Smidt, H.; Hackstein, J.H.P.

    2006-01-01

    The eukaryotic biodiversity in historical air-dried samples of Dutch agricultural soil has been assessed by random sequencing of an 18S rRNA gene library and by denaturing gradient gel electrophoresis. Representatives of nearly all taxa of eukaryotic soil microbes could be identified, demonstrating

  4. Eukaryotic plankton diversity in the sunlit ocean

    Czech Academy of Sciences Publication Activity Database

    de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; Carmichael, M.; Poulain, J.; Romac, S.; Colin, S.; Aury, J.-M.; Bittner, L.; Chaffron, S.; Dunthorn, M.; Engelen, S.; Flegontova, Olga; Guidi, L.; Horák, Aleš; Jaillon, O.; Lima-Mendez, G.; Lukeš, Julius

    2015-01-01

    Roč. 348, č. 6237 (2015), UNSP 1261605 ISSN 0036-8075 Institutional support: RVO:60077344 Keywords : ribosomal RNA gene * protistan diversity * extreme diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 34.661, year: 2015

  5. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment.

    Science.gov (United States)

    Edgcomb, Virginia P; Kysela, David T; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L

    2002-05-28

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.

  6. Genetic diversity and variability in two Italian autochthonous donkey genetic types assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Donato Matassino

    2014-01-01

    Full Text Available Since 13rd century, Italian domestic autochthonous donkey population has been characterised by Mediterranean grey mousy cruciate ancestral phenotype, currently typical of Amiata donkey (AD genetic type. This phenotype persisted up to the 16th century when a marked introduction of Hispanic and French big sized and dark bay or darkish coloured sires occurred. In the context of a safeguard programme of Latial Equide resources, the aim of this research was to evaluate the genetic diversity and similarity between the AD breed and an autochthonous donkey population native from Lazio, the Viterbese donkey (VD, using molecular markers. A total of 135 animals (50 AD and 85 VD were genetically characterised by using 16 short tandem repeat markers. A high genetic differentiation between populations (FST=0.158; P<0.01 and a low betweenbreeds genetic similarity (0.233±0.085 were observed. Correspondence analysis, the result of STRUCTURE software analysis and analysis of molecular variance would seem to indicate genetically different entities as well. It would be desirable to increase the number of comparison with other breeds to better understand the origin of VD. Moreover, results obtained in this study suggest that the loss of genetic variation observed in VD could mainly derive from unnoticed sub-population structuring (Wahlund effect, rather than to other factors such as inbreeding, null alleles or selection influence.

  7. Diversity and antibiotic susceptibility of autochthonous dairy enterococci isolates: Are they safe candidates for autochthonous starter cultures?

    Directory of Open Access Journals (Sweden)

    Amarela eTerzić-Vidojević

    2015-09-01

    Full Text Available Enterococci represent the most controversial group of dairy bacteria. They are found to be the main constituent of many traditional Mediterranean dairy products and contribute to their characteristic taste and flavor. On the other hand, during the last 50 years antibiotic-resistant enterococci have emerged as leading causes of nosocomial infections worldwide. The aim of this study was to determine the diversity, technological properties, antibiotic susceptibility and virulence traits of 636 enterococci previously isolated from 55 artisan dairy products from 12 locations in the Western Balkan countries of Serbia, Croatia and Bosnia and Herzegovina. All strains were identified both by microbiological and molecular methods. The predominant species was Enterococcus durans, followed by E. faecalis and E. faecium. Over 44% of the isolates were resistant to ciprofloxacin and erythromycin, while 26.2% of the isolates were multi-resistant to three or more antibiotics belonging to different families. 185 isolates (29.1% were susceptible to all 13 of the antibiotics tested. The antibiotic-susceptible isolates were further tested for possible virulence genes and the production of biogenic amines. Finally, five enterococci isolates were found to be antibiotic susceptible with good technological characteristics and without virulence traits or the ability to produce biogenic amines, making them possible candidates for biotechnological application as starter cultures in the dairy industry.

  8. MtDNA diversity among four Portuguese autochthonous dog breeds: a fine-scale characterisation

    Directory of Open Access Journals (Sweden)

    Santa-Rita Pedro

    2005-06-01

    Full Text Available Abstract Background The picture of dog mtDNA diversity, as obtained from geographically wide samplings but from a small number of individuals per region or breed, has revealed weak geographic correlation and high degree of haplotype sharing between very distant breeds. We aimed at a more detailed picture through extensive sampling (n = 143 of four Portuguese autochthonous breeds – Castro Laboreiro Dog, Serra da Estrela Mountain Dog, Portuguese Sheepdog and Azores Cattle Dog-and comparatively reanalysing published worldwide data. Results Fifteen haplotypes belonging to four major haplogroups were found in these breeds, of which five are newly reported. The Castro Laboreiro Dog presented a 95% frequency of a new A haplotype, while all other breeds contained a diverse pool of existing lineages. The Serra da Estrela Mountain Dog, the most heterogeneous of the four Portuguese breeds, shared haplotypes with the other mainland breeds, while Azores Cattle Dog shared no haplotypes with the other Portuguese breeds. A review of mtDNA haplotypes in dogs across the world revealed that: (a breeds tend to display haplotypes belonging to different haplogroups; (b haplogroup A is present in all breeds, and even uncommon haplogroups are highly dispersed among breeds and continental areas; (c haplotype sharing between breeds of the same region is lower than between breeds of different regions and (d genetic distances between breeds do not correlate with geography. Conclusion MtDNA haplotype sharing occurred between Serra da Estrela Mountain dogs (with putative origin in the centre of Portugal and two breeds in the north and south of the country-with the Castro Laboreiro Dog (which behaves, at the mtDNA level, as a sub-sample of the Serra da Estrela Mountain Dog and the southern Portuguese Sheepdog. In contrast, the Azores Cattle Dog did not share any haplotypes with the other Portuguese breeds, but with dogs sampled in Northern Europe. This suggested that the

  9. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives

    Directory of Open Access Journals (Sweden)

    Guillaume eMinard

    2015-09-01

    Full Text Available The Asian tiger mosquito Aedes albopictus is one of the most significant pathogen vectors of the 21st century. Originating from Asia, it has invaded a wide range of eco-climatic regions worldwide. The insect-associated microbiota is now recognized to play a significant role in host biology. While genetic diversity bottlenecks are known to result from biological invasions, the resulting shifts in host-associated microbiota diversity has not been thoroughly investigated. To address this subject, we compared four autochthonous Ae. albopictus populations in Vietnam, the native area of Ae. albopictus, and three populations recently introduced to Metropolitan France, with the aim of documenting whether these populations display differences in host genotype and bacterial microbiota. Population-level genetic diversity (microsatellite markers and COI haplotype and bacterial diversity (16S rDNA metabarcoding were compared between field-caught mosquitoes. Bacterial microbiota from the whole insect bodies were largely dominated by Wolbachia pipientis. Targeted analysis of the gut microbiota revealed a greater bacterial diversity in which a fraction was common between French and Vietnamese populations. The genus Dysgonomonas was the most prevalent and abundant across all studied populations. Overall genetic diversities of both hosts and bacterial microbiota were significantly reduced in recently established populations of France compared to the autochthonous populations of Vietnam. These results open up many important avenues of investigation in order to link the process of geographical invasion to shifts in commensal and symbiotic microbiome communities, as such shifts may have dramatic impacts on the biology and/or vector competence of invading hematophagous insects.

  10. Extreme Diversity of Diplonemid Eukaryotes in the Ocean

    Czech Academy of Sciences Publication Activity Database

    Flegontova, Olga; Flegontov, Pavel; Malviya, S.; Audic, S.; Wincker, P.; de Vargas, C.; Bowler, C.; Lukeš, Julius; Horák, Aleš

    2016-01-01

    Roč. 26, č. 22 (2016), s. 3060-3065 ISSN 0960-9822 R&D Projects: GA ČR GPP506/12/P931; GA ČR(CZ) GA14-23986S Institutional support: RVO:60077344 Keywords : virus-sized particles * microbial eukaryotes * sea-floor * phytoplankton * communities * euglenozoa * dispersal * ecosystem Subject RIV: EG - Zoology Impact factor: 8.851, year: 2016

  11. Revealing genetic diversity of eukaryotic microorganisms in aquatic environments by denaturing gradient gel electrophoresis

    NARCIS (Netherlands)

    Van Hannen, E.J.; Van Agterveld, M.P.; Gons, H.J.; Laanbroek, H.J.

    1998-01-01

    A new Eucarya-specific 18S rDNA primer set was constructed and tested using denaturing gradient gel electrophoresis to analyze the genetic diversity of eukaryotic microorganisms in aquatic environments. All eukaryal lines of descent exhibited four or fewer nucleotide mismatches in the forward primer

  12. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters.

    Directory of Open Access Journals (Sweden)

    Miri Matsubayashi

    Full Text Available Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR, 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH. Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2-8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester.

  13. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    Science.gov (United States)

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  14. Visualizing Patterns of Marine Eukaryotic Diversity from Metabarcoding Data Using QIIME.

    Science.gov (United States)

    Leray, Matthieu; Knowlton, Nancy

    2016-01-01

    PCR amplification followed by deep sequencing of homologous gene regions is increasingly used to characterize the diversity and taxonomic composition of marine eukaryotic communities. This approach may generate millions of sequences for hundreds of samples simultaneously. Therefore, tools that researchers can use to visualize complex patterns of diversity for these massive datasets are essential. Efforts by microbiologists to understand the Earth and human microbiomes using high-throughput sequencing of the 16S rRNA gene has led to the development of several user-friendly, open-source software packages that can be similarly used to analyze eukaryotic datasets. Quantitative Insights Into Microbial Ecology (QIIME) offers some of the most helpful data visualization tools. Here, we describe functionalities to import OTU tables generated with any molecular marker (e.g., 18S, COI, ITS) and associated metadata into QIIME. We then present a range of analytical tools implemented within QIIME that can be used to obtain insights about patterns of alpha and beta diversity for marine eukaryotes.

  15. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species.

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Jayaswal

    Full Text Available Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP-ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes.

  16. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems

    Science.gov (United States)

    Lallias, Delphine; Hiddink, Jan G; Fonseca, Vera G; Gaspar, John M; Sung, Way; Neill, Simon P; Barnes, Natalie; Ferrero, Tim; Hall, Neil; Lambshead, P John D; Packer, Margaret; Thomas, W Kelley; Creer, Simon

    2015-01-01

    Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a ‘melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype–environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both. PMID:25423027

  17. How and why DNA barcodes underestimate the diversity of microbial eukaryotes.

    Directory of Open Access Journals (Sweden)

    Gwenael Piganeau

    Full Text Available BACKGROUND: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. PRINCIPAL FINDINGS: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependent. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. CONCLUSIONS: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous "cryptic species" will become

  18. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  19. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2011-05-01

    eukaryotes that is open to comparative-genomic study probably was preceded by hundreds of millions years of evolution that might have included extinct diversity inaccessible to comparative approaches. Reviewers This article was reviewed by William Martin, Herve Philippe (nominated by I. King Jordan, and Romain Derelle.

  20. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota.

    Science.gov (United States)

    Scanlan, Pauline D; Stensvold, Christen R; Rajilić-Stojanović, Mirjana; Heilig, Hans G H J; De Vos, Willem M; O'Toole, Paul W; Cotter, Paul D

    2014-10-01

    To date, the majority of research into the human gut microbiota has focused on the bacterial fraction of the community. Inevitably, this has resulted in a poor understanding of the diversity and functionality of other intestinal microorganisms in the human gut. One such nonbacterial member is the microbial eukaryote Blastocystis, which has been implicated in the aetiology of a range of different intestinal and extra-intestinal diseases. However, prevalence data from different studies are conflicting, and crucially, there is limited information on its incidence and diversity in healthy individuals. Here, we survey the prevalence, genetic diversity and temporal stability of Blastocystis in a group of healthy adults (n = 105) using a sensitive PCR assay. Blastocystis was present in 56% of our sample set, which is much higher than previously reported from an industrialised county (Ireland). Moreover, a diversity of different subtypes (species) were detected, and Blastocystis was present in a subset of individuals sampled over a period of time between 6 and 10 years, indicating that it is capable of long-term host colonisation. These results show that Blastocystis is a common and diverse member of the healthy gut microbiota, thereby extending our knowledge of the microbial ecology of the healthy human intestine. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Victoria Mesa

    2017-09-01

    Full Text Available Acid mine drainages are characterized by their low pH and the presence of dissolved toxic metallic species. Microorganisms survive in different microhabitats within the ecosystem, namely water, sediments, and biofilms. In this report, we surveyed the microbial diversity within all domains of life in the different microhabitats at Los Rueldos abandoned mercury underground mine (NW Spain, and predicted bacterial function based on community composition. Sediment samples contained higher proportions of soil bacteria (AD3, Acidobacteria, as well as Crenarchaeota and Methanomassiliicoccaceae archaea. Oxic and hypoxic biofilm samples were enriched in bacterial iron oxidizers from the genus Leptospirillum, order Acidithiobacillales, class Betaproteobacteria, and archaea from the class Thermoplasmata. Water samples were enriched in Cyanobacteria and Thermoplasmata archaea at a 3–98% of the sunlight influence, whilst Betaproteobacteria, Thermoplasmata archaea, and Micrarchaea dominated in acid water collected in total darkness. Stalactites hanging from the Fe-rich mine ceiling were dominated by the neutrophilic iron oxidizer Gallionella and other lineages that were absent in the rest of the microhabitats (e.g., Chlorobi, Chloroflexi. Eukaryotes were detected in biofilms and open-air water samples, and belonged mainly to clades SAR (Alveolata and Stramenopiles, and Opisthokonta (Fungi. Oxic and hypoxic biofilms displayed higher proportions of ciliates (Gonostomum, Oxytricha, whereas water samples were enriched in fungi (Paramicrosporidium and unknown microbial Helotiales. Predicted function through bacterial community composition suggested adaptive evolutive convergence of function in heterogeneous communities. Our study showcases a broad description of the microbial diversity across different microhabitats in the same environment and expands the knowledge on the diversity of microbial eukaryotes in AMD habitats.

  2. Genetic diversity of planktonic eukaryotes in high mountain lakes (Central Pyrenees, Spain).

    Science.gov (United States)

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2012-09-01

    The genetic diversity of planktonic eukaryotic microorganisms (size range 3-40 µm) inhabiting 11 alpine lakes of the Central Pyrenees (Spain) was analysed by cloning and sequencing of the 18S rRNA gene. The selected lakes covered a wide range of environmental conditions representative of the regional landscape heterogeneity. Overall, we obtained 953 sequences (averaged length 750 bp) that were grouped in 343 representative OTUs (98% identity). The genetic richness was high, and the 18S rRNA gene sequences spread within nine high-rank taxonomic groups and grouped in 26 eukaryal classes. Most of the sequences affiliated with Stramenopiles (> 55% of total sequences, mostly Chrysophyceae), Cryptophyta and Alveolata (15% each). Three groups had relative abundance biodiversity. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Dynamic genetic features of eukaryotic plankton diversity in the Nakdong River estuary of Korea

    Science.gov (United States)

    Lee, Jee Eun; Chung, Ik Kyo; Lee, Sang-Rae

    2017-07-01

    Estuaries are environments where freshwater and seawater mix and they display various salinity profiles. The construction of river barrages and dams has rapidly changed these environments and has had a wide range of impacts on plankton communities. To understand the dynamics of such communities, researchers need accurate and rapid techniques for detecting plankton species. We evaluated the diversity of eukaryotic plankton over a salinity gradient by applying a metagenomics tool at the Nakdong River estuary in Korea. Environmental samples were collected on three dates during summer and autumn of 2011 at the Eulsukdo Bridge at the mouth of that river. Amplifying the 18S rDNA allowed us to analyze 456 clones and 122 phylotypes. Metagenomic sequences revealed various taxonomic groups and cryptic genetic variations at the intra- and inter-specific levels. By analyzing the same station at each sampling date, we observed that the phylotypes presented a salinity-related pattern of diversity in assemblages. The variety of species within freshwater samples reflected the rapid environmental changes caused by freshwater inputs. Dinophyceae phylotypes accounted for the highest proportion of overall diversity in the seawater samples. Euryhaline diatoms and dinoflagellates were observed in the freshwater, brackish and seawater samples. The biological data for species composition demonstrate the transitional state between freshwater and seawater. Therefore, this metagenomics information can serve as a biological indicator for tracking changes in aquatic environments.

  4. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  5. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes.

    Directory of Open Access Journals (Sweden)

    Anders Lanzén

    Full Text Available Soda lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. This makes them valuable model systems for studying the connection between community structure and abiotic parameters such as pH and salinity. For the first time, we apply high-throughput sequencing to accurately estimate phylogenetic richness and composition in five soda lakes, located in the Ethiopian Rift Valley. The lakes were selected for their contrasting pH, salinities and stratification and several depths or spatial positions were covered in each lake. DNA was extracted and analyzed from all lakes at various depths and RNA extracted from two of the lakes, analyzed using both amplicon- and shotgun sequencing. We reveal a surprisingly high biodiversity in all of the studied lakes, similar to that of freshwater lakes. Interestingly, diversity appeared uncorrelated or positively correlated to pH and salinity, with the most "extreme" lakes showing the highest richness. Together, pH, dissolved oxygen, sodium- and potassium concentration explained approximately 30% of the compositional variation between samples. A diversity of prokaryotic and eukaryotic taxa could be identified, including several putatively involved in carbon-, sulfur- or nitrogen cycling. Key processes like methane oxidation, ammonia oxidation and 'nitrifier denitrification' were also confirmed by mRNA transcript analyses.

  6. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.

    Science.gov (United States)

    Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; Deoliveira, Rosane B; Garrett, Wendy S; Lu, Xi; O'Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N; Kayatani, Alexander K K; Maira-Litràn, Tomas; Gening, Marina L; Tsvetkov, Yury E; Nifantiev, Nikolay E; Bakaletz, Lauren O; Pelton, Stephen I; Golenbock, Douglas T; Pier, Gerald B

    2013-06-11

    Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.

  7. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has......-carbamyl-beta -alanine, but not by uracil. This wrork establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta -alanine production in eukaryotes....

  8. Diversity of eukaryotic microorganisms: computer-based resources, "The Handbook of Protoctista" and its "Glossary"

    Science.gov (United States)

    Margulis, L.; Olendzenski, L.; Dolan, M.; MacIntyre, F.

    1996-01-01

    The kingdom Protoctista comprises some 30 phyla, including the eukaryotic anaerobes that permanently lack mitochondria, the Phylum Archaeprotista, with its three classes: (i) Archamoebae, e.g., Pelomyxa, Mastigina, (ii) Metamonada, e.g., Giardia, Pyrsonympha, and (iii) Parabasalia, e.g., Trichomonas, Calonympha, and the Phylum Microspora (Microsporidia), e.g., Vairimorpha. These and all algae, protozoa, labyrinthulids, "water molds" (oomycota, plasmodiophorans, hyphochytrids, chytrids, etc.) and other eukaryotes excluded from plants, animals and fungi are detailed in the Handbook of Protoctista. The Illustrated Glossary of Protoctista contains descriptions of the morphology and taxonomy of these microorganisms, including the many equivalent and homologous structures with different names. The Glossary has also been made into a Macintosh-compatible CD-ROM disk.

  9. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes.

    Science.gov (United States)

    Dhonukshe, Pankaj; Grigoriev, Ilya; Fischer, Rainer; Tominaga, Motoki; Robinson, David G; Hasek, Jirí; Paciorek, Tomasz; Petrásek, Jan; Seifertová, Daniela; Tejos, Ricardo; Meisel, Lee A; Zazímalová, Eva; Gadella, Theodorus W J; Stierhof, York-Dieter; Ueda, Takashi; Oiwa, Kazuhiro; Akhmanova, Anna; Brock, Roland; Spang, Anne; Friml, Jirí

    2008-03-18

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role.

  10. Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems

    Science.gov (United States)

    Cooper, Edwin L.; Overstreet, Nicola

    2014-03-01

    Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among the prokaryotes, not exclusively among eukaryotes. Mathematical models have been proposed which simulate the evolutionary patterns of CRISPR, however large gaps in our understanding of CRISPR-Cas function and evolution still exist. The CRISPR-Cas system is analogous to small RNAs involved in resistance mechanisms throughout the tree of life, and a deeper understanding of the evolution of small RNA pathways is necessary before the relationship between these convergent systems is to be determined. Presented in this review are novel RNAi therapies based on CRISPR-Cas analogs and the potential for future therapies based on CRISPR-Cas system components.

  11. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota

    NARCIS (Netherlands)

    Scanlan, P.D.; Stensvold, C.R.; Rajilic-Stojanovic, M.; Heilig, H.G.; Vos, de W.M.; O'Toole, P.W.; Cotter, P.D.

    2014-01-01

    To date, the majority of research into the human gut microbiota has focused on the bacterial fraction of the community. Inevitably, this has resulted in a poor understanding of the diversity and functionality of other intestinal microorganisms in the human gut. One such nonbacterial member is the

  12. Global distribution, diversity hot spots and niche transitions of an astaxanthin-producing eukaryotic microbe.

    Science.gov (United States)

    David-Palma, Márcia; Libkind, Diego; Sampaio, José Paulo

    2014-02-01

    Microbes establish very diverse but still poorly understood associations with other microscopic or macroscopic organisms that do not follow the more conventional modes of competition or mutualism. Phaffia rhodozyma, an orange-coloured yeast that produces the biotechnologically relevant carotenoid astaxanthin, exhibits a Holarctic association with birch trees in temperate forests that contrasts with the more recent finding of a South American population associated with Nothofagus (southern beech) and with stromata of its biotrophic fungal parasite Cyttaria spp. We investigated whether the association of Phaffia with Nothofagus-Cyttaria could be expanded to Australasia, the other region of the world where Nothofagus are endemic, studied the genetic structure of populations representing the known worldwide distribution of Phaffia and analysed the evolution of the association with tree hosts. The phylogenetic analysis revealed that Phaffia diversity in Australasia is much higher than in other regions of the globe and that two endemic and markedly divergent lineages seem to represent new species. The observed genetic diversity correlates with host tree genera rather than with geography, which suggests that adaptation to the different niches is driving population structure in this yeast. The high genetic diversity and endemism in Australasia indicate that the genus evolved in this region and that the association with Nothofagus is the ancestral tree association. Estimates of the divergence times of Phaffia lineages point to splits that are much more recent than the break-up of Gondwana, supporting that long-distance dispersal rather than vicariance is responsible for observed distribution of P. rhodozyma. © 2014 John Wiley & Sons Ltd.

  13. Genetic Diversity of Eukaryotic Picoplankton in the Arctic Ocean (Fram Strait)

    OpenAIRE

    Kilias, Estelle; Nöthig, Eva-Maria; Peeken, Ilka; Wolf, Christian; Metfies, Katja

    2011-01-01

    Climate change is expected to be particularly intense in the Arctic Ocean having as well extensive consequences on Arctic pelagic ecosystems. Thus, evaluations of the impact on the base of the food web, on local phytoplankton communities, are required. Prerequisite of such an evaluation is comprehensive information about the present phytoplankton diversity and distribution. Recent investigations indicate that rising temperatures as well as freshening of surface waters in the marine environmen...

  14. DNA extraction replicates improve diversity and compositional dissimilarity in metabarcoding of eukaryotes in marine sediments.

    Science.gov (United States)

    Lanzén, Anders; Lekang, Katrine; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2017-01-01

    Human impact on marine benthic communities has traditionally been assessed using visible morphological traits and has focused on the macrobenthos, whereas the ecologically important organisms of the meio- and microbenthos have received less attention. DNA metabarcoding offers an alternative to this approach and enables a larger fraction of the biodiversity in marine sediments to be monitored in a cost-efficient manner. Although this methodology remains poorly standardised and challenged by biases inherent to rRNA copy number variation, DNA extraction, PCR, and limitations related to taxonomic identification, it has been shown to be semi-quantitative and useful for comparing taxon abundances between samples. Here, we evaluate the effect of replicating genomic DNA extraction in order to counteract small scale spatial heterogeneity and improve diversity and community structure estimates in metabarcoding-based monitoring. For this purpose, we used ten technical replicates from three different marine sediment samples. The effect of sequence depth was also assessed, and in silico pooling of DNA extraction replicates carried out in order to maintain the number of reads constant. Our analyses demonstrated that both sequencing depth and DNA extraction replicates could improve diversity estimates as well as the ability to separate samples with different characteristics. We could not identify a "sufficient" replicate number or sequence depth, where further improvements had a less significant effect. Based on these results, we consider replication an attractive alternative to directly increasing the amount of sample used for DNA extraction and strongly recommend it for future metabarcoding studies and routine assessments of sediment biodiversity.

  15. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  16. Comparative genomic analysis reveals a diverse repertoire of genes involved in prokaryote-eukaryote interactions within the Pseudovibrio genus.

    Directory of Open Access Journals (Sweden)

    Stefano eRomano

    2016-03-01

    Full Text Available Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage.Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus.Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche

  17. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

    Science.gov (United States)

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F Jerry; Glöckner, Frank O; Crowley, Susan P; O'Sullivan, Orla; Cotter, Paul D; Adams, Claire; Dobson, Alan D W; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  18. Eukaryotic diversity in late Pleistocene marine sediments around a shallow methane hydrate deposit in the Japan Sea.

    Science.gov (United States)

    Kouduka, M; Tanabe, A S; Yamamoto, S; Yanagawa, K; Nakamura, Y; Akiba, F; Tomaru, H; Toju, H; Suzuki, Y

    2017-09-01

    Marine sediments contain eukaryotic DNA deposited from overlying water columns. However, a large proportion of deposited eukaryotic DNA is aerobically biodegraded in shallow marine sediments. Cold seep sediments are often anaerobic near the sediment-water interface, so eukaryotic DNA in such sediments is expected to be preserved. We investigated deeply buried marine sediments in the Japan Sea, where a methane hydrate deposit is associated with cold seeps. Quantitative PCR analysis revealed the reproducible recovery of eukaryotic DNA in marine sediments at depths up to 31.0 m in the vicinity of the methane hydrate deposit. In contrast, the reproducible recovery of eukaryotic DNA was limited to a shallow depth (8.3 m) in marine sediments not adjacent to the methane hydrate deposit in the same area. Pyrosequencing of an 18S rRNA gene variable region generated 1,276-3,307 reads per sample, which was sufficient to cover the biodiversity based on rarefaction curves. Phylogenetic analysis revealed that most of the eukaryotic DNA originated from radiolarian genera of the class Chaunacanthida, which have SrSO 4 skeletons, the sea grass genus Zostera, and the seaweed genus Sargassum. Eukaryotic DNA originating from other planktonic fauna and land plants was also detected. Diatom sequences closely related to Thalassiosira spp., indicative of cold climates, were obtained from sediments deposited during the last glacial period (MIS-2). Plant sequences of the genera Alnus, Micromonas, and Ulmus were found in sediments deposited during the warm interstadial period (MIS-3). These results suggest the long-term persistence of eukaryotic DNA from terrestrial and aquatic sources in marine sediments associated with cold seeps, and that the genetic information from eukaryotic DNA from deeply buried marine sediments associated with cold seeps can be used to reconstruct environments and ecosystems from the past. © 2017 John Wiley & Sons Ltd.

  19. Eukaryotic origins

    OpenAIRE

    Lake, James A.

    2015-01-01

    The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endo...

  20. Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network

    KAUST Repository

    Belila, Abdelaziz

    2016-12-01

    Eukaryotic microorganisms are naturally present in many water resources and can enter, grow and colonize water treatment and transport systems, including reservoirs, pipes and premise plumbing. In this study, we explored the eukaryotic microbial community structure in water during the (i) production of drinking water in a seawater desalination plant and (ii) transport of the drinking water in the distribution network. The desalination plant treatment involved pre-treatment (e.g. spruce filters), reverse osmosis (RO) membrane filtration and post-treatment steps (e.g. remineralization). 454 pyrosequencing analysis of the 18S rRNA gene revealed a highly diverse (35 phyla) and spatially variable eukaryotic community during water treatment and distribution. The desalination plant feed water contained a typical marine picoeukaryotic community dominated by Stramenopiles, Alveolates and Porifera. In the desalination plant Ascomycota was the most dominant phylum (15.5% relative abundance), followed by Alveolata (11.9%), unclassified fungi clade (10.9%) and Porifera (10.7%). In the drinking water distribution network, an uncultured fungi phylum was the major group (44.0%), followed by Chordata (17.0%), Ascomycota (11.0%) and Arthropoda (8.0%). Fungi constituted 40% of the total eukaryotic community in the treatment plant and the distribution network and their taxonomic composition was dominated by an uncultured fungi clade (55%). Comparing the plant effluent to the network samples, 84 OTUs (2.1%) formed the core eukaryotic community while 35 (8.4%) and 299 (71.5%) constituted unique OTUs in the produced water at the plant and combined tap water samples from the network, respectively. RO membrane filtration treatment significantly changed the water eukaryotic community composition and structure, highlighting the fact that (i) RO produced water is not sterile and (ii) the microbial community in the final tap water is influenced by the downstream distribution system. The study

  1. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea

    KAUST Repository

    Wang, Yong

    2014-02-04

    A hypoxic/suboxic brine pool at a depth of about 850 m was discovered near the Thuwal cold seeps in the Red Sea. Filled with high concentrations of hydrogen sulfide and ammonia, such a brine pool might limit the spread of eukaryotic organisms. Here, we compared the communities of the eukaryotic microbes in a microbial mat, sediments and water samples distributed in 7 sites within and adjacent to the brine pool. Taxonomic classification of the pyrosequenced 18S rRNA amplicon reads showed that fungi highly similar to the species identified along the Arabic coast were almost ubiquitous in the water and sediment samples, supporting their wide distribution in various environments. The microbial mat displayed the highest species diversity and contained grazers and a considerable percentage of unclassified species. Phylogeny-based methods revealed novel lineages representing a majority of the reads from the interface between the sea water and brine pool. Phylogenetic relationships with more reference sequences suggest that the lineages were affiliated with novel Alveolata and Euglenozoa inhabiting the interface where chemosynthetic prokaryotes are highly proliferative due to the strong chemocline and halocline. The brine sediments harbored abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system. 2014 Wang, Zhang, Cao, Shek, Tian, Wong, Batang, Al-suwailem and Qian.

  2. Eukaryotic Cell Panorama

    Science.gov (United States)

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  3. Advances in analyzing RNA diversity in eukaryotic transcriptomes: peering through the Omics lens [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Sushant Bangru

    2016-11-01

    Full Text Available Alternative splicing, polyadenylation, and chemical modifications of RNA generate astonishing complexity within eukaryotic transcriptomes. The last decade has brought numerous advances in sequencing technologies that allow biologists to investigate these phenomena with greater depth and accuracy while reducing time and cost. A commensurate development in biochemical techniques for the enrichment and analysis of different RNA variants has accompanied the advancement of global sequencing analysis platforms. Here, we present a detailed overview of the latest biochemical methods, along with bioinformatics pipelines that have aided in identifying different RNA variants. We also highlight the ongoing developments and challenges associated with RNA variant detection and quantification, including sample heterogeneity and isolation, as well as ‘Omics’ big data handling.

  4. [Autochthonous microbiota, probiotics and prebiotics].

    Science.gov (United States)

    Suárez, Juan Evaristo

    2015-02-07

    The autochthonous microbiota is the community of microorganisms that colonizes the skin and mucosal surfaces. The symbiosis is, generally, mutualistic but it can become parasitic due to immune response alterations. The skin microbiota includes bacteria (95%), lipophilic fungi and mites. In the digestive apparatus, each cavity presents its own microbiota, which reaches its target organ during the perinatal period, originating complex and stable communities (homeostasis). The vaginal microbiota varies with the endocrine activity, significantly increasing during the fertile and pregnancy periods, when lactobacilli are the most abundant organisms. Four are the main benefits of the autochthonous microbiota: i) delivery of essential nutrients, such as vitamins and some amino acids; ii) utilization of undigestible diet components, the colonic microbiota degrades complex glycans and fulfils almost 20% of the calories present in a normal diet; iii) development of the immune system: the continuous contact with the immune system maintains it alert and in good shape to repel pathogens efficaciously and iv) microbial antagonism, hinders colonization of our mucosal surfaces by alochthonous, potentially pathogenic, organisms. This works through three mechanisms: colonization interference, production of antimicrobials and co-aggregation with the potential pathogens. The microbiota can, sporadically, produce damages: opportunistic endogenous infections and generation of carcinogenic compounds. Probiotics are "live microorganisms that when administered in adequate amounts, confer a health benefit to the consumer". Prebiotics are undigestible glycans that enhance the growth or activity of the intestinal microbiota, thus generating a health benefit. Synbiotics are mixes of probiotics and prebiotics that exert a synergistic health effect. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Eukaryotic plankton species diversity in the Western Channel of the Korea Strait using 18S rDNA sequences and its implications for water masses

    Science.gov (United States)

    Lee, Sang-Rae; Song, Eun Hye; Lee, Tongsup

    2018-01-01

    Organisms entering the East Sea (Sea of Japan) through the Korea Strait, together with water, salt, and energy, affect the East Sea ecosystem. In this study, we report on the biodiversity of eukaryotic plankton found in the Western Channel of the Korea Strait for the first time using small subunit ribosomal RNA gene (18S rDNA) sequences. We also discuss the characteristics of water masses and their physicochemical factors. Diverse taxonomic groups were recovered from 18S rDNA clone libraries, including putative novel, higher taxonomic entities affiliated with Cercozoa, Raphidophyceae, Picozoa, and novel marine Stramenopiles. We also found that there was cryptic genetic variation at both the intraspecific and interspecific levels among arthropods, diatoms, and green algae. Specific plankton assemblages were identified at different sampling depths and they may provide useful information that could be used to interpret the origin and the subsequent mixing history of the water masses that contribute to the Tsushima Warm Current waters. Furthermore, the biological information highlighted in this study may help improve our understanding about the complex water mass interactions that were highlighted in the Korea Strait.

  6. Eukaryotic Plankton Species Diversity in the Western Channel of the Korea Strait using 18S rDNA Sequences and its Implications for Water Masses

    Science.gov (United States)

    Lee, Sang-Rae; Song, Eun Hye; Lee, Tongsup

    2018-03-01

    Organisms entering the East Sea (Sea of Japan) through the Korea Strait, together with water, salt, and energy, affect the East Sea ecosystem. In this study, we report on the biodiversity of eukaryotic plankton found in the Western Channel of the Korea Strait for the first time using small subunit ribosomal RNA gene (18S rDNA) sequences. We also discuss the characteristics of water masses and their physicochemical factors. Diverse taxonomic groups were recovered from 18S rDNA clone libraries, including putative novel, higher taxonomic entities affiliated with Cercozoa, Raphidophyceae, Picozoa, and novel marine Stramenopiles. We also found that there was cryptic genetic variation at both the intraspecific and interspecific levels among arthropods, diatoms, and green algae. Specific plankton assemblages were identified at different sampling depths and they may provide useful information that could be used to interpret the origin and the subsequent mixing history of the water masses that contribute to the Tsushima Warm Current waters. Furthermore, the biological information highlighted in this study may help improve our understanding about the complex water mass interactions that were highlighted in the Korea Strait.

  7. Autochthonous cheeses of Bosnia and Herzegovina

    OpenAIRE

    Zlatan Sarić; Sonja Bijeljac

    2003-01-01

    Despite the migration of people towards cities, autochthonous cheeses in Bosnia and Herzegovina survived. Technologies of these cheeses are simple and adapted to humble mountain limitations. Geographical occasions and rich mountain pastures created a certain participation of ewe's milk cheeses. Communicative isolation of hilly-mountain regions resulted in "closed" cheese production in small households. Autochthonous cheeses in Bosnia and Herzegovina have various origins. Different cheeses are...

  8. Molecular Epidemiology of Autochthonous Dengue Virus Strains Circulating in Mexico ▿

    OpenAIRE

    Rivera-Osorio, Pilar; Vaughan, Gilberto; Ramírez-González, Jose Ernesto; Fonseca-Coronado, Salvador; Ruíz-Tovar, Karina; Cruz-Rivera, Mayra Yolanda; Ruíz-Pacheco, Juan Alberto; Vázquez-Pichardo, Mauricio; Carpio-Pedroza, Juan Carlos; Cázares, Fernando; Escobar-Gutiérrez, Alejandro

    2011-01-01

    Dengue virus (DENV) is the most important arthropod-borne viral infection in humans. Here, the genetic relatedness among autochthonous DENV Mexican isolates was assessed. Phylogenetic and median-joining network analyses showed that viral strains recovered from different geographic locations are genetically related and relatively homogeneous, exhibiting limited nucleotide diversity.

  9. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  10. Broadly sampled multigene trees of eukaryotes

    Directory of Open Access Journals (Sweden)

    Logsdon John M

    2008-01-01

    Full Text Available Abstract Background Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1 to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2 to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches. Results The inferred trees reveal strong support for many clades that also have defining ultrastructural or molecular characters. In contrast, we find limited to no support for most of the putative supergroups as only the 'Opisthokonta' receive strong support in our analyses. The supergroup 'Amoebozoa' has only moderate support, whereas the 'Chromalveolata', 'Excavata', 'Plantae', and 'Rhizaria' receive very limited or no support. Conclusion Our analytical approach substantiates the power of increased taxon sampling in placing diverse eukaryotic lineages within well-supported clades. At the same time, this study indicates that the six supergroup hypothesis of higher-level eukaryotic classification is likely premature. The use of a taxon-rich data set with 105 lineages, which still includes only a small fraction of the diversity of microbial eukaryotes, fails to resolve deeper phylogenetic relationships and reveals no support for four of the six proposed supergroups. Our analyses provide a point of departure for future taxon- and gene-rich analyses of the

  11. O-sulfonation of serine and threonine: mass spectrometric detection and characterization of a new posttranslational modification in diverse proteins throughout the eukaryotes.

    Science.gov (United States)

    Medzihradszky, K F; Darula, Z; Perlson, E; Fainzilber, M; Chalkley, R J; Ball, H; Greenbaum, D; Bogyo, M; Tyson, D R; Bradshaw, R A; Burlingame, A L

    2004-05-01

    Protein sulfonation on serine and threonine residues is described for the first time. This post-translational modification is shown to occur in proteins isolated from organisms representing a broad span of eukaryote evolution, including the invertebrate mollusk Lymnaea stagnalis, the unicellular malaria parasite Plasmodium falciparum, and humans. Detection and structural characterization of this novel post-translational modification was carried out using liquid chromatography coupled to electrospray tandem mass spectrometry on proteins including a neuronal intermediate filament and a myosin light chain from the snail, a cathepsin-C-like enzyme from the parasite, and the cytoplasmic domain of the human orphan receptor tyrosine kinase Ror-2. These findings suggest that sulfonation of serine and threonine may be involved in multiple functions including protein assembly and signal transduction.

  12. The eukaryotic fossil record in deep time

    Science.gov (United States)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than

  13. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  14. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses.

    Science.gov (United States)

    Lima, Diane A; Cibulski, Samuel P; Finkler, Fabrine; Teixeira, Thais F; Varela, Ana Paula M; Cerva, Cristine; Loiko, Márcia R; Scheffer, Camila M; Dos Santos, Helton F; Mayer, Fabiana Q; Roehe, Paulo M

    2017-04-01

    This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.

  15. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  16. Probiotic attributes of autochthonous Lactobacillus rhamnosus strains of human origin.

    Science.gov (United States)

    Pithva, Sheetal; Shekh, Satyamitra; Dave, Jayantilal; Vyas, Bharatkumar Rajiv Manuel

    2014-05-01

    The study was aimed at evaluating the probiotic potential of indigenous autochthonous Lactobacillus rhamnosus strains isolated from infant feces and vaginal mucosa of healthy female. The survival of the selected strains and the two reference strains (L. rhamnosus GG and L. casei Actimel) was 67-81 % at pH 2 and 70-80 % after passage through the simulated gastrointestinal fluid. These strains are able to grow in the presence of 4 % bile salt, 10 % NaCl, and 0.6 % phenol. The cell surface of L. rhamnosus strains is hydrophilic in nature as revealed by bacterial adhesion to hydrocarbons (BATH) assay. Despite this, L. rhamnosus strains showed mucin adherence, autoaggregation and coaggregation properties that are strain-specific. In addition, they produce bile salt hydrolase (BSH) and β-galactosidase activities. L. rhamnosus strains exhibit antimicrobial activity against food spoilage organisms and gastrointestinal pathogens, as well as Candida and Aspergillus spp. L. rhamnosus strains have similar antibiotic susceptibility pattern, and resistance to certain antibiotics is intrinsic or innate. The strains are neither haemolytic nor producer of biogenic amines such as histamine, putrescine, cadaverine and tyramine. Lyophilized cells of L. rhamnosus Fb exhibited probiotic properties demonstrating potential of the strain for technological suitability and in the preparation of diverse probiotic food formulations.

  17. Genetic characterization of autochthonous grapevine cultivars from Eastern Turkey by simple sequence repeats (SSRs

    Directory of Open Access Journals (Sweden)

    Sadiye Peral Eyduran

    2016-01-01

    Full Text Available In this research, two well-recognized standard grape cultivars, Cabernet Sauvignon and Merlot, together with eight historical autochthonous grapevine cultivars from Eastern Anatolia in Turkey, were genetically characterized by using 12 pairs of simple sequence repeat (SSR primers in order to evaluate their genetic diversity and relatedness. All of the used SSR primers produced successful amplifications and revealed DNA polymorphisms, which were subsequently utilized to evaluate the genetic relatedness of the grapevine cultivars. Allele richness was implied by the identification of 69 alleles in 8 autochthonous cultivars with a mean value of 5.75 alleles per locus. The average expected heterozygosity and observed heterozygosity were found to be 0.749 and 0.739, respectively. Taking into account the generated alleles, the highest number was recorded in VVC2C3 and VVS2 loci (nine and eight alleles per locus, respectively, whereas the lowest number was recorded in VrZAG83 (three alleles per locus. Two main clusters were produced by using the unweighted pair-group method with arithmetic mean dendrogram constructed on the basis of the SSR data. Only Cabernet Sauvignon and Merlot cultivars were included in the first cluster. The second cluster involved the rest of the autochthonous cultivars. The results obtained during the study illustrated clearly that SSR markers have verified to be an effective tool for fingerprinting grapevine cultivars and carrying out grapevine biodiversity studies. The obtained data are also meaningful references for grapevine domestication.

  18. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  19. Precambrian Skeletonized Microbial Eukaryotes

    Science.gov (United States)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  20. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  1. Natural history of eukaryotic DNA methylation systems.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2011-01-01

    Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not

  2. Origins and evolution of viruses of eukaryotes: The ultimate modularity.

    Science.gov (United States)

    Koonin, Eugene V; Dolja, Valerian V; Krupovic, Mart

    2015-05-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along

  3. Eukaryotic algal phytochromes span the visible spectrum

    OpenAIRE

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Photosynthetic organisms exploit photosensory proteins to respond to changing light conditions. In land plants, phytochromes use the ratio of red to far-red light to detect shading by neighboring plants, leading to changes in growth and development. Light conditions can be more variable for algae because of the wavelength-dependent attenuation of light by water and because of ocean mixing. We studied phytochromes from taxonomically diverse eukaryotic algae from groups considered important for...

  4. Microbial diversity and metabolic networks in acid mine drainage habitats.

    Science.gov (United States)

    Méndez-García, Celia; Peláez, Ana I; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  5. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    International Nuclear Information System (INIS)

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  6. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  7. Endosymbiotic theories for eukaryote origin

    Science.gov (United States)

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  8. Endosymbiotic theories for eukaryote origin.

    Science.gov (United States)

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. © 2015 The Authors.

  9. Autochthonous leptospirosis in South-East Austria, 2004-2012.

    Science.gov (United States)

    Hoenigl, Martin; Wallner, Carina; Allerberger, Franz; Schmoll, Friedrich; Seeber, Katharina; Wagner, Jasmin; Valentin, Thomas; Zollner-Schwetz, Ines; Flick, Holger; Krause, Robert

    2014-01-01

    Leptospirosis is one of the world's mostly spread zoonoses causing acute fever. Over years, leptospirosis has been reported to occur rarely in Austria and Germany (annual incidence of 0.06/100,000 in Germany). Only imported cases have been on the increase. Objectives of this case-series study were to retrospectively assess epidemiologic and clinical characteristics of leptospirosis illnesses in South-East Austria, to describe risk exposures for autochthonous infections, and to compare patients with imported versus autochthonous infection. During the 9-year period between 2004 and 2012, 127 adult patients (49 females, 78 males) who tested positive by rapid point-of-care test for Leptospira-specific IgM (Leptocheck®) were identified through electronic hospital databases. Follow-up telephone interviews were conducted with 82 patients. A total of 114 (89.8%) of the 127 patients enrolled had acquired leptospirosis within Austria and 13 (10.2%) had potentially imported infections. Most autochthonous cases were diagnosed during the months of June and July, whereas fewest were diagnosed during the winter months. Exposure to rodents, recreational activities in woods or wet areas, gardening, cleaning of basements or huts were the most common risk exposures found in autochthonous infection. Serogroups Australis (n = 23), Sejroe (n = 22), and Icterohaemorrhagiae (n = 11) were identified most frequently by MAT testing in autochthonous infections. Patients with imported leptospirosis were significantly younger, less likely to be icteric and had significantly lower liver transaminase levels (p = 0.004) than those with autochthonous infections. Leptospirosis is endemic in South-East Austria. In contrast to reports from other countries we found a relatively high proportion of leptospirosis cases to be female (39% vs. ∼ 10%), likely the result of differing risk exposures for South-East Austria.

  10. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    KAUST Repository

    Holding, Johnna M.

    2017-03-27

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon (OC), however recent research suggests that melt water from sea ice and glaciers could introduce an allochthonous source of OC to the microbial food web with ramifications for the metabolic balance of plankton communities. In this study, we characterized autochthonous and allochthonous sources of OC to the Western Svalbard fjord system using stable isotopes of carbon. We quantified δ13C of eukaryotic and prokaryotic planktonic groups using polar lipid-derived fatty acids as biomarkers in addition to measuring δ13C of marine particulate OC and dissolved OC from glacial runoff. δ13C of bacteria (−22.5‰) was higher than that of glacial runoff OC (−28.5‰) and other phytoplankton groups (−24.7 to −29.1‰), which suggests that marine bacteria preferentially use a third source of OC. We present a Bayesian three-source δ13C mixing model whereby ∼ 60% of bacteria carbon is derived from OC in sea ice, and the remaining carbon is derived from autochthonous production and glacial-derived OC. These results suggest that subsidies of OC from melting glaciers will not likely influence microbial carbon cycling in Svalbard fjords in the future and that further research is needed to determine the effects of melting sea ice on microbial carbon cycling in fjord systems and elsewhere in the Arctic Ocean.

  11. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Teixeira, Catarina; Almeida, C. Marisa R.; Nunes da Silva, Marta; Bordalo, Adriano A.; Mucha, Ana P.

    2014-01-01

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed

  12. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  13. Role of live autochthonous fungi in removing toxic metals from ...

    African Journals Online (AJOL)

    Decontamination potential of two autochthonous fungi, Aspergillus niger and Fusarium oxysporum, was checked in tannery and textile effluents. The fungi grew well in both industrial effluents, A. niger showing a greater biomass than F. oxysporum in both effluents. A. niger showed less growth with increasing concentration ...

  14. Antimicrobial activity of autochthonous lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Twenty samples of traditional fermented milk “Raib” were collected in eastern Algeria from individual household. They were evaluated for the presence of autochthonous bacteriocin-producing lactic acid bacteria. From 13 of these samples 52 strains of lactic acid bacteria were isolated, and shown to exhibit inhibitory activity ...

  15. Authenticity and autochthonous traditions in archaic and Hellenistic poetry

    NARCIS (Netherlands)

    Klooster, Julia; Bakker, Egbert J.

    J.J.H. Klooster, ‘Authenticity and autochthonous traditions in archaic and Hellenistic poetry’. In E. Bakker (ed): Authorship, Authority and Authenticity in Archaic and Classical Greek Song. Proceedings of the Network for the Study of Archaic and Classical Greek Song, Vol. 2, Leiden: Brill

  16. Reemergence and Autochthonous Transmission of Dengue Virus, Eastern China, 2014.

    Science.gov (United States)

    Wang, Wen; Yu, Bin; Lin, Xian-Dan; Kong, De-Guang; Wang, Jian; Tian, Jun-Hua; Li, Ming-Hui; Holmes, Edward C; Zhang, Yong-Zhen

    2015-09-01

    In 2014, 20 dengue cases were reported in the cities of Wenzhou (5 cases) and Wuhan (15 cases), China, where dengue has rarely been reported. Dengue virus 1 was detected in 4 patients. Although most of these cases were likely imported, epidemiologic analysis provided evidence for autochthonous transmission.

  17. First autochthone case of sporotrichosis by Sporothrix globosa in Portugal.

    Science.gov (United States)

    de Oliveira, Manoel Marques Evangelista; Veríssimo, Cristina; Sabino, Raquel; Aranha, João; Zancopé-Oliveira, Rosely Maria; Sampaio, Paula; Pais, Célia

    2014-04-01

    In this study, we characterize the first autochthone case of human sporotrichosis reported in Lisbon, Portugal. Phenotypic and genotypic characterization revealed that the infection was caused by Sporothrix globosa. We conclude that sporotrichosis may be underdiagnosed particularly in Southern Europe and suggest Portugal as an emerging area for this fungal infection. © 2014 Elsevier Inc. All rights reserved.

  18. Autochthonous white rot fungi from the tropical forest: Potential of ...

    African Journals Online (AJOL)

    Autochthonous white rot fungi from the tropical forest: Potential of Cuban strains for dyes and textile industrial effluents decolourisation. MI Sánchez-López, SF Vanhulle, V Mertens, G Guerra, SH Figueroa, C Decock, A Corbisier, MJ Penninckx ...

  19. Expanding the eukaryotic genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  20. Expanding the eukaryotic genetic code

    Science.gov (United States)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Origins of eukaryotic sexual reproduction.

    Science.gov (United States)

    Goodenough, Ursula; Heitman, Joseph

    2014-03-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.

  2. Characterization and Technological Features of Autochthonous Coagulase-Negative Staphylococci as Potential Starters for Portuguese Dry Fermented Sausages.

    Science.gov (United States)

    Semedo-Lemsaddek, Teresa; Carvalho, Laura; Tempera, Carolina; Fernandes, Maria H; Fernandes, Maria J; Elias, Miguel; Barreto, António S; Fraqueza, Maria J

    2016-05-01

    The manufacture of dry fermented sausages is an important part of the meat industry in Southern European countries. These products are usually produced in small shops from a mixture of pork, fat, salt, and condiments and are stuffed into natural casings. Meat sausages are slowly cured through spontaneous fermentation by autochthonous microbiota present in the raw materials or introduced during manufacturing. The aim of this work was to evaluate the technological and safety features of coagulase-negative staphylococci (CNS) isolated from Portuguese dry fermented meat sausages in order to select autochthonous starters. Isolates (n = 104) obtained from 2 small manufacturers were identified as Staphylococcus xylosus, Staphylococcus equorum, Staphylococcus saprophyticus, and Staphylococcus carnosus. Genomically diverse isolates (n = 82) were selected for further analysis to determine the ability to produce enzymes (for example, nitrate-reductases, proteases, lipases) and antibiotic susceptibility. Autochthonous CNS producing a wide range of enzymes and showing low antibioresistance were selected as potential starters for future use in the production of dry fermented meat sausages. © 2016 Institute of Food Technologists®

  3. Molecular typing of fecal eukaryotic microbiota of human infants and ...

    Indian Academy of Sciences (India)

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to ...

  4. DNA mismatch repair and its many roles in eukaryotic cells.

    Science.gov (United States)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-07-01

    DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

    NARCIS (Netherlands)

    Speijer, Dave; Lukeš, Julius; Eliáš, Marek

    2015-01-01

    Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to

  6. Traditionally produced sauerkraut as source of autochthonous functional starter cultures.

    Science.gov (United States)

    Beganović, Jasna; Kos, Blaženka; Leboš Pavunc, Andreja; Uroić, Ksenija; Jokić, Mladen; Šušković, Jagoda

    2014-01-01

    Spontaneous sauerkraut fermentation was performed at industrial scale in "Prehrana Inc.", Varaždin, in order to select autochthonous lactic acid bacteria (LAB) which were evaluated according probiotic criteria and tested for their capacity as probiotic starter cultures. At the end of the spontaneous sauerkraut fermentation, total LAB counts reached 9.0×10(5) CFU/ml. This underlines that the need for addition of the well characterised probiotic cultures, in appropriate viable cell counts, would be valuable in probiotic sauerkraut production. Phenotypic characterisation through API 50 CHL and SDS-PAGE of cell protein patterns revealed that Lactobacillus plantarum is predominant LAB strain in homofermentative phase of fermentation. Autochthonous LAB isolates SF1, SF2, SF4, SF9 and SF15 were selected based on the survival in in vitro gastrointestinal tract conditions. RAPD fingerprints indicated that the selected autochthonous LAB were distinct from one another. All of the strains efficiently inhibited the growth of indicator strains and satisfied technological properties such as acidification rate, tolerance to NaCl and viability during freeze-drying. Strains Lb. paraplantarum SF9 and Lb. brevis SF15, identified by AFLP DNA fingerprints, have shown the best properties to be applied as probiotic starter cultures, because of their highest adhesion to Caco-2 cells and expression of specific, protective S-layer proteins of 45 kDa in size. With addition of these strains, probiotic attribute of the sauerkraut will be achieved, including health promoting, nutritional, technological and economic advantages in large scale industrial sauerkraut production. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. GENEALOGICAL DECOMPOSITION OF THE EFFECTIVE POPULATION SIZE: A CASE STUDY ON CROATIAN AUTOCHTHONOUS CATTLE BREEDS

    Directory of Open Access Journals (Sweden)

    Martin Reljanović

    2015-09-01

    Full Text Available Effective population size (Ne is one of the most important tools used to assess genetic diversity for conservation purposes. Using pedigree data of three Croatian autochthonous cattle breeds (Buša, Istrian and Slavonian Syrmian Podolian the effective maternal (NeF, paternal (NeM and combined maternal-paternal (NeFM population size was estimated. Additionally, we estimated the effective population size based on the census population sex ratio (Nes, the effective population size from the individual increase in inbreeding (NeFi and the effective population size from individual increase in coancestry (NeCi. We compared these sizes with the values obtained for 20 additional cattle populations, as well as with the newly calculated NeFM. The effective population sizes calculated for three autochthonous breeds were consistently the lowest in amongst all the considered cattle breeds. Utilisation of extremely small numbers of breeding males is the main reason for the observed reduction in the effective population size. The decomposition of effective population size into maternal and paternal components is shown to be an informative parameter in detecting the reduction of the effective population size as a consequence of unequal sex contribution. Still, the impact of the pedigree depth and completeness on the NeF, NeM and NeFM estimation remain to be analysed. A large deviation between Nes and all other methods of Ne estimation was observed and it is our recommendation that breeders and stakeholders should consider using alternative methods of Ne estimation when planning breeding programmes as well as in the determination of the endangered status of animal populations.

  8. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly...... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...... storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described...

  9. Intercultural Profiles and Adaptation Among Immigrant and Autochthonous Adolescents

    Science.gov (United States)

    Inguglia, Cristiano; Musso, Pasquale

    2015-01-01

    Few studies examine relationships between intercultural strategies and adaptation among adolescents using a person-oriented approach. Framed from an intercultural psychology perspective, this study used such an approach in order to examine the influence of intercultural profiles, patterns of relationships among variables related to intercultural strategies, on the adaptation of adolescents of both non-dominant and dominant groups. Two hundred and fifty-six adolescents living in Italy and aged from 14 to 18 participated to the study: 127 immigrants from Tunisia (males = 49.61%) and 129 autochthonous (males = 44.19%). Data were collected through self-report questionnaires. Using cluster analytic methods to identify profiles, the results showed that immigrant adolescents were divided in two acculturation profiles, ethnic and integrated-national, with adolescents belonging to the latter showing higher self-esteem, life satisfaction and sociocultural competence than the former. Also among autochthonous adolescents two acculturation expectation profiles were identified, not-multicultural and multicultural, with adolescents belonging to the latter showing higher self-esteem and life satisfaction than the former. Findings highlight the importance of using multiple indicators in order to gain a more comprehensive understanding of the acculturation process as well as suggesting implications for the social policies in this field. PMID:27247643

  10. Yeasts from autochthonal cheese starters: technological and functional properties.

    Science.gov (United States)

    Binetti, A; Carrasco, M; Reinheimer, J; Suárez, V

    2013-08-01

    The aim of this work was to identify 20 yeasts isolated from autochthonal cheese starters and evaluate their technological and functional properties. The capacities of the yeasts to grow at different temperatures, pH, NaCl and lactic acid concentrations as well as the proteolytic and lipolytic activities were studied. Moreover, survival to simulated gastrointestinal digestion, hydrophobicity, antimicrobial activity against pathogens and auto- and co-aggregation abilities were evaluated. The sequentiation of a fragment from the 26S rDNA gene indicated that Kluyveromyces marxianus was the predominant species, followed by Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces lactis and Galactomyces geotrichum. RAPD with primer M13 allowed a good differentiation among strains from the same species. All strains normally grew at pH 4.7-5.5 and temperatures between 15 and 35°C. Most of them tolerated 10% NaCl and 3% lactic acid. Some strains showed proteolytic (eight isolates) and/or lipolytic (four isolates) capacities. All strains evidenced high gastrointestinal resistance, moderate hydrophobicity, intermediate auto-aggregation and variable co-aggregation abilities. No strains inhibited the growth of the pathogens assayed. Some strains from dairy sources showed interesting functional and technological properties. This study has been the first contribution to the identification and characterization of yeasts isolated from autochthonal cheese starters in Argentina. Many strains could be proposed as potential candidates to be used as probiotics and/or as co-starters in cheese productions. © 2013 The Society for Applied Microbiology.

  11. Intercultural Profiles and Adaptation Among Immigrant and Autochthonous Adolescents

    Directory of Open Access Journals (Sweden)

    Cristiano Inguglia

    2015-02-01

    Full Text Available Few studies examine relationships between intercultural strategies and adaptation among adolescents using a person-oriented approach. Framed from an intercultural psychology perspective, this study used such an approach in order to examine the influence of intercultural profiles, patterns of relationships among variables related to intercultural strategies, on the adaptation of adolescents of both non-dominant and dominant groups. Two hundred and fifty-six adolescents living in Italy and aged from 14 to 18 participated to the study: 127 immigrants from Tunisia (males = 49.61% and 129 autochthonous (males = 44.19%. Data were collected through self-report questionnaires. Using cluster analytic methods to identify profiles, the results showed that immigrant adolescents were divided in two acculturation profiles, ethnic and integrated-national, with adolescents belonging to the latter showing higher self-esteem, life satisfaction and sociocultural competence than the former. Also among autochthonous adolescents two acculturation expectation profiles were identified, not-multicultural and multicultural, with adolescents belonging to the latter showing higher self-esteem and life satisfaction than the former. Findings highlight the importance of using multiple indicators in order to gain a more comprehensive understanding of the acculturation process as well as suggesting implications for the social policies in this field.

  12. From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar.

    Science.gov (United States)

    Garofalo, Carmela; Tristezza, Mariana; Grieco, Francesco; Spano, Giuseppe; Capozzi, Vittorio

    2016-04-01

    The aim of this work was to study the biodiversity of yeasts isolated from the autochthonous grape variety called "Uva di Troia", monitoring the natural diversity from the grape berries to wine during a vintage. Grapes were collected in vineyards from two different geographical areas and spontaneous alcoholic fermentations (AFs) were performed. Different restriction profiles of ITS-5.8S rDNA region, corresponding to Saccharomyces cerevisiae, Issatchenkia orientalis, Metschnikowia pulcherrima, Hanseniaspora uvarum, Candida zemplinina, Issatchenkia terricola, Kluyveromyces thermotolerans, Torulaspora delbrueckii, Metschnikowia chrysoperlae, Pichia fermentans, Hanseniaspora opuntiae and Hanseniaspora guilliermondii, were observed. The yeast occurrences varied significantly from both grape berries and grape juices, depending on the sampling location. Furthermore, samples collected at the end of AF revealed the great predominance of Saccharomyces cerevisiae, with a high intraspecific biodiversity. This is the first report on the population dynamics of 'cultivable' microbiota diversity of "Uva di Troia" cultivar from the grape to the corresponding wine ("Nero di Troia"), and more general for Southern Italian oenological productions, allowing us to provide the basis for an improved management of wine yeasts (with both non-Saccharomyces and Saccharomyces) for the production of typical wines with desired unique traits. A certain geographical-dependent variability has been reported, suggesting the need of local based formulation for autochthonous starter cultures, especially in the proportion of the different species/strains in the design of mixed microbial preparations.

  13. Gonococcal attachment to eukaryotic cells

    Energy Technology Data Exchange (ETDEWEB)

    James, J.F.; Lammel, C.J.; Draper, D.L.; Brown, D.A.; Sweet, R.L.; Brooks, G.F.

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants from transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.

  14. Eukaryotic vs. prokaryotic chemosensory systems.

    Science.gov (United States)

    Sbarbati, Andrea; Merigo, Flavia; Osculati, Francesco

    2010-04-01

    In the last decades, microbiologists demonstrated that microorganisms possess chemosensory capabilities and communicate with each other via chemical signals. In parallel, it was demonstrated that solitary eukaryotic chemosensory cells are diffusely located on the mucosae of digestive and respiratory apparatuses. It is now evident that on the mucosal surfaces of vertebrates, two chemoreceptorial systems (i.e. eukaryotic and prokaryotic) coexist in a common microenvironment. To date, it is not known if the two chemosensory systems reciprocally interact and compete for detection of chemical cues. This appears to be a fruitful field of study and future researches must consider that the mucosal epithelia possess more chemosensory capabilities than previously supposed. (c) 2009 Elsevier Masson SAS. All rights reserved.

  15. Eukaryotic microorganisms in cold environments. Examples from Pyrenean glaciers

    Directory of Open Access Journals (Sweden)

    Laura eGarcia-Descalzo

    2013-03-01

    Full Text Available Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the Little Ice Age although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and derreplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (> 1 % of all sequences were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema , Heteromita , Koliella and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers

  16. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers

    Science.gov (United States)

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of

  17. An inside-out origin for the eukaryotic cell.

    Science.gov (United States)

    Baum, David A; Baum, Buzz

    2014-10-28

    Although the origin of the eukaryotic cell has long been recognized as the single most profound change in cellular organization during the evolution of life on earth, this transition remains poorly understood. Models have always assumed that the nucleus and endomembrane system evolved within the cytoplasm of a prokaryotic cell. Drawing on diverse aspects of cell biology and phylogenetic data, we invert the traditional interpretation of eukaryotic cell evolution. We propose that an ancestral prokaryotic cell, homologous to the modern-day nucleus, extruded membrane-bound blebs beyond its cell wall. These blebs functioned to facilitate material exchange with ectosymbiotic proto-mitochondria. The cytoplasm was then formed through the expansion of blebs around proto-mitochondria, with continuous spaces between the blebs giving rise to the endoplasmic reticulum, which later evolved into the eukaryotic secretory system. Further bleb-fusion steps yielded a continuous plasma membrane, which served to isolate the endoplasmic reticulum from the environment. The inside-out theory is consistent with diverse kinds of data and provides an alternative framework by which to explore and understand the dynamic organization of modern eukaryotic cells. It also helps to explain a number of previously enigmatic features of cell biology, including the autonomy of nuclei in syncytia and the subcellular localization of protein N-glycosylation, and makes many predictions, including a novel mechanism of interphase nuclear pore insertion.

  18. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  19. Evidence of an autochthonous Toscana virus strain in Croatia.

    Science.gov (United States)

    Punda-Polić, Volga; Mohar, Bojana; Duh, Darja; Bradarić, Nikola; Korva, Miša; Fajs, Luka; Saksida, Ana; Avšič-Županc, Tatjana

    2012-09-01

    Phleboviruses are large and widespread group of viruses that are transmitted by arthropods and they have been reported to circulate in endemic regions of Mediterranean Basin, including Croatia. To investigate the role of Toscana virus, as a cause of the aseptic meningitis, in summer months in Croatia. Samples from 30 patients with aseptic meningitis were retrospectively tested by serology and RT-PCR for TOSV. TOSV RNA was detected in 2/30 and TOSV IgM antibodies were found in 4/30 of patients. Phylogenetic analysis of partial L and S segments suggests that TOSV from Croatia represents an autochthonous strain. The study has confirmed the role of TOSV as an agent that causes aseptic meningitis in Croatia, therefore it should be considered by physicians when encountering meningitis or febrile illness among indigenous population or travellers during the summer months. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Autochthonous Crimean-Congo Hemorrhagic Fever in Spain.

    Science.gov (United States)

    Negredo, Anabel; de la Calle-Prieto, Fernando; Palencia-Herrejón, Eduardo; Mora-Rillo, Marta; Astray-Mochales, Jenaro; Sánchez-Seco, María P; Bermejo Lopez, Esther; Menárguez, Javier; Fernández-Cruz, Ana; Sánchez-Artola, Beatriz; Keough-Delgado, Elena; Ramírez de Arellano, Eva; Lasala, Fátima; Milla, Jakob; Fraile, Jose L; Ordobás Gavín, Maria; Martinez de la Gándara, Amalia; López Perez, Lorenzo; Diaz-Diaz, Domingo; López-García, M Aurora; Delgado-Jimenez, Pilar; Martín-Quirós, Alejandro; Trigo, Elena; Figueira, Juan C; Manzanares, Jesús; Rodriguez-Baena, Elena; Garcia-Comas, Luis; Rodríguez-Fraga, Olaia; García-Arenzana, Nicolás; Fernández-Díaz, Maria V; Cornejo, Victor M; Emmerich, Petra; Schmidt-Chanasit, Jonas; Arribas, Jose R

    2017-07-13

    Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed, viral, tickborne disease. In Europe, cases have been reported only in the southeastern part of the continent. We report two autochthonous cases in Spain. The index patient acquired the disease through a tick bite in the province of Ávila - 300 km away from the province of Cáceres, where viral RNA from ticks was amplified in 2010. The second patient was a nurse who became infected while caring for the index patient. Both were infected with the African 3 lineage of this virus. (Funded by Red de Investigación Cooperativa en Enfermedades Tropicales [RICET] and Efficient Response to Highly Dangerous and Emerging Pathogens at EU [European Union] Level [EMERGE].).

  1. Development of an autochthonous starter culture for spreadable goat cheese

    Directory of Open Access Journals (Sweden)

    Florencia FRAU

    Full Text Available Abstract The aim of this work was to select strains of LAB autochthonous from Santiago del Estero to formulate a starter culture for making spreadable goat cheese. Four strains were selected: CRL1799 (Lactobacillus fermentum with high acidifying activity, CRL1803 (Lactobacillus fermentum with high proteolytic activity, CRL1808 (Lactobacillus rhamnosus with production of exopolysaccharide and CRL1785 (Enterococcus faecium with diacetyl-acetoin production. The selected strains showed qualities that make them useful as starter culture in the elaboration of spreadable cheese. This starter culture is an alternative that allows obtaining differentiated products. The inclusion of CRL1808 strains seems to improve the rheology and texture, excluding the use of additives.

  2. Autochthonous canine babesiosis caused by Babesia canis canis in Latvia.

    Science.gov (United States)

    Berzina, Inese; Capligina, Valentina; Baumanis, Viesturs; Ranka, Renate; Cirule, Dina; Matise, Ilze

    2013-09-23

    This is the first report of confirmed canine babesiosis in Latvia supporting the observed geographical expansion of this disease. Between 2009 and 2011 three dogs which have not traveled outside of Latvia were diagnosed with babesiosis. Hematological analysis and serological tests for granulocytic anaplasmosis, ehrlichiosis and borreliosis were negative (Idexx SNAP 4Dx test). Peripheral blood erythrocytes of the three dogs contained large Babesia that were identified as Babesia canis canis by PCR. Sequences of partial 18S rRNA gene were 98-100% similar to the sequences of B. canis canis isolated from dogs in other European countries. We conclude that these are the first autochthonous canine babesiosis cases reported from Latvia. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. AUTOCHTHONOUS APPROACHING IN THE MANAGEMENT OF THE SECURITY RISK

    Directory of Open Access Journals (Sweden)

    Burtescu Emil

    2008-05-01

    Full Text Available An optimal management for a corporation, no matter what size the corporation is, it must contain the management of the security risk. On the importance that is given to the risk management can depend the well functioning of the corporation. An important role in this process has the owner of the business and the way that this one understands the risk. A good understanding of the risk by the owner will have as effect the allocation of sufficient funds to implement controls meant to bring the risk level in order to be an acceptable one. The autochthonous corporations, in a great part even because of the inexistence of reglementations in this domain, have an empiric approach of the phenomena.

  4. Characterization of autochthonous Lactobacillus paracasei strains on potential probiotic ability

    Directory of Open Access Journals (Sweden)

    Zorica Radulović

    2010-06-01

    Full Text Available Lactic acid bacteria strains isolated from traditional made cheeses constitute a reservoir of unexplored potential in biotechnology. In this study four autochthonous lactobacilli strains, isolated from traditional white brined cheeses and identified as Lactobacillus paracasei (08, 564, 05 and 02, were investigated on potential probiotic ability. The investigation comprised sensitivity to simulated gastrointestinal tract conditions, antimicrobial activity against wide range of pathogens, antibiotic resistance as well as autoaggregation ability. Lactobacillus rhamnosus GG was used as referent strain. Three tested strains grew well in simulated gastrointestinal conditions, but their sensitivity was greater on bile acids and pancreatin compared with pepsin low pH 2.5. The examined strains had different sensitivity to antibiotics, but three strains showed very good antimicrobial activity to pathogens. All strains demonstrated very good autoaggregation ability. For three of four examined strains of Lb. paracasei probiotic potential was similar with referent strain Lb. rhamnosus GG, determined in vitro

  5. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.

    Directory of Open Access Journals (Sweden)

    David Roiz

    2015-06-01

    Full Text Available Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya.We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period.Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood.

  6. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.

    Science.gov (United States)

    Roiz, David; Boussès, Philippe; Simard, Frédéric; Paupy, Christophe; Fontenille, Didier

    2015-06-01

    Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya. We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period. Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood.

  7. Assessment of Caesium -137 accumulation from soil to autochthonous weeds

    International Nuclear Information System (INIS)

    Sreenivasa Chari, M.; Karuna Sagar, G.; Manjaiah, K.M.

    2017-01-01

    A study was conducted at Nuclear Research Laboratory (NRL), IARI, New Delhi to obtain radio cesium ( 137 Cs) Soil-to-plant transfer factors of autochthonous weeds at low level of contamination, where contamination is a legacy of experimental activities. Studied area is sporadically covered with autochthonous weeds mainly with Amaranthus viridis, Cynodon dactylon, Cassia auriculata, Brachiaria mutica, Parthenium hysterophorus, Bohervia diffusa and some taxonomically unidentified weeds. Extractability as well as bioavailability of 137 Cs was quantified by sequential extraction. In the representative plant and soil samples, 137 Cs activity was measured directly with the 2.5” × 2.5” NaI (TI) well type detector installed in 15 cm thick lead shield and single channel gamma analyzer. Transfer factors of grassy weeds were 0.143 to 0.310 (1.43 × 10 -2 to 3.1 × 10 -2 ), for broad leaved weeds 0.103 to 0.133 (1.03 × 10 -2 to 1.33 × 10 -2 ). Increase in the activity levels increased the transfer factors of weeds. Irrespective of activity levels higher transfer factors were observed in roots ranging from 0.13 to 0.28 (1. 3 × 10 -1 to 2.8 × 10 -1 ). At both the levels (40 and 80 µci) Cynodon dactylon recorded higher root and shoot transfer factor of 2.99 and 0.29 respectively, when compared to other weeds. Significantly lower transfer factors were observed in Parthenium hysterophorus. Geochemical partitioning shown that the reducible phase (56%) is the largest sink for 137 Cs in the studied soils

  8. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    Directory of Open Access Journals (Sweden)

    Turk Vito

    2009-11-01

    Full Text Available Abstract Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future

  9. Distribuição da diversidade isoenzimática e morfológica da mandioca na agricultura autóctone de Ubatuba Distribution of the isozyme and morphological diversity of cassava in the autochthonous agriculture of Ubatuba

    Directory of Open Access Journals (Sweden)

    Julianno Bergoch Monteiro Sambatti

    2000-03-01

    Full Text Available A diversidade fenotípica de quatro sistemas isoenzimáticos e doze caracteres morfológicos em mandioca (Manihot esculenta Crantz foi quantificada através do índice de Shannon-Weaver para quatro roças de mandioca pertencentes a dois agricultores autóctones no município de Ubatuba-SP. A diversidade total foi repartida entre diversidade dentro de roças e diversidade entre roças, mostrando que a maior parte da diversidade se concentra dentro de roças para a maioria dos caracteres. Entrevistas foram realizadas para verificar se os agricultores reconhecem a existência de plantas de mandioca originadas por semente e a existência de bancos de semente.Phenotypic diversity of four isozymes systems and twelve morphological traits of cassava (Manihot esculenta Crantz were quantified using the Shannon-Weaver diversity index for four cassava gardens of two traditional farmers of Ubatuba,SP, Brazil. The total diversity was partitioned within and among gardens, showing that most of the diversity is concentrated within gardens. Interviews were carried out in order to verify if farmers recognize the existance of cassava plants originated from seeds and seed banks with the surveyed farmers in order to identify, in the present case, mechanisms of genetic diversity amplification.

  10. Eukaryotic versus prokaryotic marine picoplankton ecology.

    Science.gov (United States)

    Massana, Ramon; Logares, Ramiro

    2013-05-01

    Marine microorganisms contribute markedly to global biomass and ecosystem function. They include a diverse collection of organisms differing in cell size and in evolutionary history. In particular, microbes within the picoplankton are similar in size but belong to two drastically different cellular plans, the prokaryotes and the eukaryotes. Compared with larger organisms, prokaryotes and picoeukaryotes share ecological features, such as high specific activity, large and constant abundances, and high dispersal potential. Still, there are some aspects where their different cell organization influences their ecological performance. First, prokaryotes have a huge metabolic versatility and are involved in all biogeochemical cycles, whereas picoeukaryotes are metabolically less flexible but can exploit diverse predatory life strategies due to their phagocytic capacity. Second, sexual reproduction is absent in prokaryotes but may be present in picoeukaryotes, thus determining different evolutionary diversification dynamics and making species limits clearer in picoeukaryotes. Finally, it is plausible that picoeukaryotes are less flexible to enter a reversible state of low metabolic activity, thus picoeukaryote assemblages may have fewer rare species and may be less resilient to environmental change. In summary, lumping together pico-sized microbes may be convenient for some ecological studies, but it is also important to keep in mind their differences. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells

    Directory of Open Access Journals (Sweden)

    Fenella Steyfkens

    2018-03-01

    the development of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.

  12. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells.

    Science.gov (United States)

    Steyfkens, Fenella; Zhang, Zhiqiang; Van Zeebroeck, Griet; Thevelein, Johan M

    2018-01-01

    of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.

  13. Cycling of modern autochthonous organic matter dominates carbon flow in lakes of north central Alaska

    Science.gov (United States)

    Bogard, M.; Striegl, R. G.; Holtgrieve, G. W.; Kuhn, C.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    Boreal and subarctic regions of the world are warming faster than anywhere else on earth, and undergoing rapid climatic and hydrologic changes. Much of this landscape is underlain by organic carbon (OC)-rich permafrost, and it is hypothesized that climate-induced environmental changes could positively reinforce climatic shifts via an increased delivery of terrestrial OC to aquatic networks. Increased OC terrestrial OC export could potentially result in greater aquatic OC mineralization and greenhouse gas production. Currently, a lack of ecosystem-level data precludes our understanding of aquatic OC processing for the vast majority of this remote northern area. To address this knowledge gap, we quantified whole-lake metabolism, limnological-, and hydrological characteristics across multiple seasons in a diverse set of lakes in the Yukon River Basin (YRB), Alaska. Intense gross primary production (GPP) and autotrophic net ecosystem production (NEP = GPP - respiration [R]) was common across lakes in spring, followed by a spatially synchronous shift toward heterotrophy (NEP origin, suggesting shifts in NEP were fueled by the recently fixed, lake OC. By scaling our metabolic estimates to the entire YRB, we found mineralization of terrestrial OC in lakes likely accounts for < 1% of terrestrial net primary production on an annual scale. We conclude that flows of autochthonous OC drive C cycling in most YRB lakes, that ancient permafrost-OC currently contributes little to heterotrophic processes in YRB lakes, and that the lakes play little role in remineralizing terrestrial organic material at the whole-catchment scale.

  14. Towards a palaeoecological model of the Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa: implications for early eukaryote evolution

    Science.gov (United States)

    Beghin, Jérémie; Guilbaud, Romain; Poulton, Simon W.; Gueneli, Nur; Brocks, Jochen J.; Storme, Jean-Yves; Blanpied, Christian; Javaux, Emmanuelle J.

    2016-04-01

    The mid-Proterozoic rock record preserves a relatively moderate diversity of early eukaryotes, despite the early evolution of fundamental features of the eukaryotic cell. Common hypotheses involve the redox state of stratified oceans with oxic shallow waters, euxinic mid-depth waters, and anoxic and ferruginous deep waters during this time period. Mid-Proterozoic eukaryotes would have found suitable ecological niches in estuarine, fluvio-deltaic and coastal shallow marine environments near nutrient sources, while N2-fixing photoautotrophs bacteria would have been better competitors than eukaryotic algae in nutrient-poor niches. Here, we present the first palaeoecological model of the late Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa. Previous palaeontological studies in the basin reported stromatolites, a low diversity of microfossils - including one species of presumed eukaryotes: verrucae-bearing acritarch - and biomarkers of anoxygenic phototrophic purple and green sulfur bacteria, cyanobacteria and microaerophilic methanotrophs. However, no biomarkers diagnostic for crown group eukaryotes were reported so far. In addition to exceptionally well preserved microbial mats showing chain-like aggregates of pyrite grains, we observed a total of sixty-two morphotaxa including nine presumed prokaryotes, thirty-five possible prokaryotes or eukaryotes, fifteen unambiguous species of eukaryotes - ornamented and process-bearing acritarchs, multicellular morphotaxon, putative VSMs, large budding vesicles, and vesicles with a sophisticated excystment structure: the pylome - and three remains of structured kerogen. Here, we combined the geological context (sedimentological features and lithofacies), iron speciation (n = 156) - with the aim of reconstructing palaeoredox environmental conditions -, and microfossils quantitative analysis (n = 61). Sediments were deposited under shallow waters in pericratonic (western basin) and epicratonic (eastern basin

  15. Do dietary betaine and the antibiotic florfenicol influence the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂)?

    Science.gov (United States)

    He, Suxu; Zhou, Zhigang; Liu, Yuchun; Cao, Yanan; Meng, Kun; Shi, Penjun; Yao, Bin; Ringø, Einar

    2012-03-01

    The attractant betaine and the antibiotic growth promoter florfenicol are commonly used together in Chinese fresh water aquaculture, but there is no information about the effect of these two feed additive on the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis nilotica ♀ × O. aureas ♂). Hybrid tilapia (240 fish in total; 20 fish per net cage; three cages per group) were divided into four dietary groups: control group, no betaine or florfenical addition (CK); betaine group, 0.1% betaine added (B); florfenicol group, 0.002% florfenicol added (F); and combination group, 0.1% betaine and 0.002% florfenicol added together (BF). After 8 weeks of feeding, six fish from each cage were chosen randomly, the guts were sampled and pooled, and their intestinal autochthonous bacterial communities were analyzed by 16S rDNA-denaturing gradient gel electrophoresis. Enumeration of total gut autochthonous bacteria was analyzed by quantitative PCR with rpoB as the endogenous control. The results showed that the fish intestinal bacteria of group B were more diverse than that of CK, and that of F and BF groups was reduced in the total numbers and limited to certain bacterial species or genera (P florfenicol play a depressor role. When combined together, florfenicol may overshadow the effect of betaine on the predominant intestinal bacteria of tilapia.

  16. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  17. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods.

    Science.gov (United States)

    Hamad, I; Raoult, D; Bittar, F

    2016-01-01

    Eukaryotes are an important component of the human gut, and their relationship with the human host varies from parasitic to commensal. Understanding the diversity of human intestinal eukaryotes has important significance for human health. In the past few decades, most of the multitudes of techniques that are involved in the diagnosis of the eukaryotic population in the human intestinal tract were confined to pathological and parasitological aspects that mainly rely on traditionally based methods. However, development of culture-independent molecular techniques comprised of direct DNA extraction from faeces followed by sequencing, offer new opportunities to estimate the occurrence of eukaryotes in the human gut by providing data on the entire eukaryotic community, particularly not-yet-cultured or fastidious organisms. Further broad surveys of the eukaryotic communities in the gut based on high throughput tools such as next generation sequencing might lead to uncovering the real diversity of these ubiquitous organisms in the human intestinal tract and discovering the unrecognized roles of these eukaryotes in modulating the host immune system and inducing changes in host gut physiology and ecosystem. © 2015 John Wiley & Sons Ltd.

  18. Autochthonous and Allochthonous Carbon Cycling in a Eutrophic Flow-Through Wetland

    Science.gov (United States)

    Wetland environments are important sites for the cycling and retention of terrestrially derived organic matter and nutrients, the influx of which subsidizes wetland C sequestration, as well as fueling autochthonous C productivity. Wetland treatment of agricultural runoff has been...

  19. Autochthonous human alveolar echinococcosis in a Hungarian patient.

    Science.gov (United States)

    Dezsényi, Balázs; Strausz, Tamás; Makrai, Zita; Csomor, Judit; Danka, József; Kern, Peter; Rezza, Giovanni; Barth, Thomas F E; Casulli, Adriano

    2017-02-01

    Alveolar echinococcosis is a zoonotic parasitic disease causing a severe clinical condition and is known as the most deadly of all helminth infections. Moreover, this disease is also an increasing concern in Northern and Eastern Europe due to its spread in the wildlife animal host. An asymptomatic 70-year-old woman from south-western Hungary was diagnosed with multiple liver lesions. Imaging techniques (ultrasound, computed tomography and magnetic resonance imaging), serology (ELISA, indirect hemagglutination and Western blot), and conventional staining methods (hematoxylin-eosin and periodic acid-Schiff) were used for the detection of the disease. A histopathological re-evaluation of formalin-fixed paraffin block by immunohistochemical staining with the monoclonal antibody Em2G11 definitively confirmed the diagnosis of alveolar echinococcosis. To our knowledge, this is the first confirmed autochthonous case of human alveolar echinococcosis in Hungary. To what extent diagnostic difficulties may contribute to underestimate this zoonosis in Eastern Europe is unknown. Differential diagnosis with alveolar echinococcosis should be considered for patients with multiple, tumor-like cystic lesions of the liver, in countries where this parasite is emerging.

  20. Autochthonous yeast populations from different brazilian geographic indications

    Directory of Open Access Journals (Sweden)

    Silva Gildo Almeida da

    2016-01-01

    Full Text Available Yeasts are versatile microorganisms which show heterogeneity in their abilities of aromatic molecules formation. The metabolic conversions may improve the production of a particular compound already formed by the microorganism or promote the production of a completely new biochemicals. These conversions depend on the environment. The microbiome of terroir is unique. If the term terroir is a set of physical properties of a vineyard that contribute to the specific characteristics of its wine, the microorganisms will undoubtedly form an integral part of this concept. There are yeasts, filamentous fungi and bacteria that can affect the quality of the wine. The aim of the present study was to identify the autochthonous yeast populations of grape berries collected from regions with Geographic Indications or under construction. The identification was carried out by an approach, combining Maldi-Tof-MS, PCR-RFLP of the internal transcribed spacer with 5.8S ribosomal DNA (rDNA (ITS1-5.8S-ITS2 and sequences of the D1/D2 domain of the 26S rRNA gene. Some species are common to different GIs and in some of them other species are completely absent, besides some places are contiguous areas. In some areas, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Pichia myanmarensis and Hanseniaspora uvarum were the predominant species.

  1. Aminoglycoside interactions and impacts on the eukaryotic ribosome

    Science.gov (United States)

    Prokhorova, Irina; Altman, Roger B.; Djumagulov, Muminjon; Shrestha, Jaya P.; Urzhumtsev, Alexandre; Ferguson, Angelica; Chang, Cheng-Wei Tom; Yusupov, Marat; Blanchard, Scott C.; Yusupova, Gulnara

    2017-01-01

    Aminoglycosides are chemically diverse, broad-spectrum antibiotics that target functional centers within the bacterial ribosome to impact all four principle stages (initiation, elongation, termination, and recycling) of the translation mechanism. The propensity of aminoglycosides to induce miscoding errors that suppress the termination of protein synthesis supports their potential as therapeutic interventions in human diseases associated with premature termination codons (PTCs). However, the sites of interaction of aminoglycosides with the eukaryotic ribosome and their modes of action in eukaryotic translation remain largely unexplored. Here, we use the combination of X-ray crystallography and single-molecule FRET analysis to reveal the interactions of distinct classes of aminoglycosides with the 80S eukaryotic ribosome. Crystal structures of the 80S ribosome in complex with paromomycin, geneticin (G418), gentamicin, and TC007, solved at 3.3- to 3.7-Å resolution, reveal multiple aminoglycoside-binding sites within the large and small subunits, wherein the 6′-hydroxyl substituent in ring I serves as a key determinant of binding to the canonical eukaryotic ribosomal decoding center. Multivalent binding interactions with the human ribosome are also evidenced through their capacity to affect large-scale conformational dynamics within the pretranslocation complex that contribute to multiple aspects of the translation mechanism. The distinct impacts of the aminoglycosides examined suggest that their chemical composition and distinct modes of interaction with the ribosome influence PTC read-through efficiency. These findings provide structural and functional insights into aminoglycoside-induced impacts on the eukaryotic ribosome and implicate pleiotropic mechanisms of action beyond decoding. PMID:29208708

  2. An autochthonous geological model for the eastern Andes of Ecuador

    Science.gov (United States)

    Pratt, Warren T.; Duque, Pablo; Ponce, Miguel

    2005-04-01

    We describe a traverse across the Cordillera Real and sub-Andean Zone of Ecuador, poorly known areas with very little detailed mapping and very little age control. The spine of the Cordillera comprises deeply eroded Triassic and Jurassic plutons, the roots of a major arc, emplaced into probable Palaeozoic pelites and metamorphosed volcanic rocks. The W flank comprises a Jurassic (?) submarine basaltic-andesitic volcanic sequence, which grades up into mixed Jurassic/Cretaceous volcanic and sedimentary rocks of the Inter-Andean Valley. The sub-Andean Zone, on the E flank of the Cordillera, comprises a newly recognized Cretaceous basin of cleaved mudrocks, quartz arenites and limestones. East of the syndepositional Cosanga Fault, the Cretaceous basin thins into a condensed sequence that is indistinguishable from the rocks of the adjacent hydrocarbon-bearing Oriente Basin. The principal penetrative deformation of the Cordillera Real was probably latest Cretaceous/Palaeocene. It telescoped the magmatic belts, but shortening was largely partitioned into the pelites between plutons. The plutons suffered inhomogenous deformation; some portions completely escaped tectonism. The pelites conserve two foliations. The earliest comprises slaty cleavage formed under low- or sub-greenschist conditions. The later is a strong schistosity defined by new mica growth. It largely transposed and obliterated the first. Both foliations may have developed during a single progressive deformation. We find inappropriate recent terrane models for the Cordillera Real and sub-Andean Zone of Ecuador. Instead we find remarkable similarities from one side of the Cordillera to the other, including a common structural history. In place of sutures, we find mostly intrusive contacts between major plutons and pelites. Triassic to Cretaceous events occurred on the autochthonous western edge of the Archaean Guyana Shield. The latest Cretaceous-Paleocene deformation is interpreted as the progressive

  3. Microcosm evaluation of autochthonous bioaugmentation to combat marine oil spills.

    Science.gov (United States)

    Nikolopoulou, Maria; Eickenbusch, P; Pasadakis, Nikos; Venieri, Danae; Kalogerakis, Nicolas

    2013-09-25

    Oil spills can be disastrous to any ecosystem. Bioremediation through bioaugmentation (addition of oil-degrading bacteria) and biostimulation (addition of nutrients N&P) options can be a promising strategy for combating oil spills following first response actions. However, bioaugmentation is one of the most controversial issues of bioremediation since nutrient addition alone has a greater effect on oil biodegradation than the addition of microbial products that are highly dependent on environmental conditions. There is increasing evidence that the best way to overcome the above barriers is to use microorganisms from the polluted area, an approach proposed as autochthonous bioaugmentation (ABA) and defined as the bioaugmentation technology that uses exclusively microorganisms indigenous to the sites (soil, sand, and water) to be decontaminated. In this study, we examined the effectiveness of an ABA strategy for the successful remediation of polluted marine environments. A consortium was enriched from seawater samples taken from Elefsina Gulf near the Hellenic Petroleum Refinery, a site exposed to chronic crude oil pollution. Pre-adapted consortium was tested alone or in combination with inorganic nutrients in the presence (or not) of biosurfactants (rhamnolipids) in 30-day experiments. Treatment with fertilizers in the presence of biosurfactants exhibited the highest alkane and PAH degradation and showed highest growth over a period of almost 15 days. Considering the above, the use of biostimulation additives in combination with naturally pre-adapted hydrocarbon degrading consortia has proved to be a very effective treatment and it is a promising strategy in the future especially when combined with lipophilic fertilizers instead of inorganic nutrients. Such an approach becomes more pertinent when the oil spill approaches near the shoreline and immediate hydrocarbon degradation is needed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Genetic resources of autochthonous fruit species and varieties

    Directory of Open Access Journals (Sweden)

    Keserović Zoran

    2017-01-01

    Full Text Available The paper describes the plentitude of genetic resources of indigenous varieties of fruit species and their importance for further development of fruit growing, especially from the aspect of breeding new varieties resistant to pathogens and abiotic stress conditions (frost, drought, sunburns, etc.. Economic significance and importance in the human nutrition, as a raw or processed fruitage, were stated as well. Based on the unique biodiversity, the Balkan Peninsula can be considered as a secondary center of divergence for a large number of fruit species, such as Malus x domestica, Malus sylvestris, Pyrus communis, Prunus cerasifera, P. persica, P. armeniaca, P. fruticosa, P. amygdalus, P. nana, Juglans regia, Corilus colurna, Corilus avellana, Castanea sativa, Fragaria vesca, Cornus mas. The old indigenous and domesticated varieties and natural populations of fruit species on the Balkan Peninsula have never been the subject of comprehensive research work on their collecting and studying. Serbia has no national scientific institution that takes care of genetic resources. Nowadays, the issue of preserving genetic resources is of great importance because, due to the intensification and modernization of plant production, many local populations have disappeared or are reduced to a small number of biotypes. The varieties with huge genetic and breeding value have disappeared forever without any possibility of their return. By importing high quality fruit varieties, we imported many diseases and various pests as well. New varieties intended for intensive cultivation require the application of expensive growing technologies. The systematic scientific work on the study of wild fruit species and autochthonous varieties is of the great interest for fruit science and practice in the future. The establishment of in situ collections with the aim to preserve valuable genetic material is mandatory. In the following period, indigenous and domesticated varieties

  5. Characterization of virgin olive oils produced with autochthonous Galician varieties.

    Science.gov (United States)

    Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Valli, Enrico; Bendini, Alessandra; Gallina Toschi, Tullia; Simal-Gandara, Jesus

    2016-12-01

    The interest of Galician oil producers (NW Spain) in recovering the ancient autochthonous olive varieties Brava and Mansa has increased substantially in recent years. Virgin olive oils produced by co-crushing both varieties in two different proportions, reflecting the usual and most common practice adopted in this region, have gradually emerged for the production of virgin olive oils. Herein, the sensory and chemical characteristics of such oils were characterized by quality and genuineness-related parameters. The results of chemical analysis are discussed in terms of their effective contribution to the sensory profile, which suggests useful recommendations for olive oil producers to improve the quality of oils. Antioxidant compounds, together with aromas and coloured pigments were determined, and their contribution in determining the functional value and the sensory properties of oils was investigated. In general, given the high levels of phenolic compounds (ranging between 254 and 375mg/kg oil), tocopherols (about 165mg/kg oil) and carotenoids (10-12mg/kg oil); these are oils with long stability, especially under dark storage conditions, because stability is reinforced with the contribution of chlorophylls (15-22mg/kg oil). A major content of phenolic compounds, as well as a predominance of trans-2-hexen-1-al within odor-active compounds (from 897 to 1645μg/kg oil), responsible for bitter sensory notes. This characterization allows to developing new antioxidant-rich and flavour-rich VOOs, when co-crushing with a higher proportion of Brava olives, satisfying the consumers' demand in having access to more healthy dishes and peculiar sensory attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms

    Science.gov (United States)

    Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.

    2017-07-01

    Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.

  7. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium. Final report

    International Nuclear Information System (INIS)

    Maue, G.; Stroetmann, I.; Dott, W.; Taute, T.; Winkler, A.; Pekdeger, A.

    1996-01-01

    Within this research project the influence of autochthonous mirco-organisms on immobilization and remobilization of Technetium and Selenium was investigated. Both redoxsensitive radionuclides are part of the waste of nuclear fuel (Tc app. 6%). Former investigations have shown, that immobilization behaviour of both elements could be influenced by micro-organisms. It has not been known, if the autochthonous (or in situ) organisms from greater depth do also have an influence on radionuclide mobility. The autochthonous populations of micro-organisms in deep sediments and their influence on the migration of Tc and Se were investigated in this study. For this reason recirculation column experiments were carried out. Absolutely sterile and anaerobic handling was necessary for the sampling and the further treatment of the sediments and waters used in the experiments. Therefore special methods for sampling, storage and handling had been developed. The results of recirculation column test with autochthonous micro-organisms were compared with sterile parallel tests and were verified with the results of an elaborated version of the hydrogeochemical equilibration code PHREEQE. It was shown that the autochthonous micro-organisms had only very little influence on the migration behaviour. The reason is the very low population (less than 10 E+6 CFU). Nevertheless it has to be taken into consideration, that conventional laboratory experiments for the estimation of the retention capacities of sediments for hazardous waste lead to an overestimation, if the sediments are contaminated with allochthonous micro-organisms (CFU=colony forming units). (orig.) [de

  8. The Effect of Autochthonous Starter Culture, Sugars and Temperature on the Fermentation of Slavonian Kulen

    Directory of Open Access Journals (Sweden)

    Krešimir Mastanjević

    2017-01-01

    Full Text Available In this study, the effect of an isolated and well-characterised autochthonous starter culture, glucose and maltodextrin (w=0.8 % and temperatures of 12 and 20 °C on fermentation and quality of Slavonian kulen produced using the traditional technology and recipe were investigated. Physicochemical and microbiological analyses were carried out after 20 days of fermentation. Upon the completion of the production process (90 days, a sensory analysis was carried out. Furthermore, pH value was continuously measured throughout the twenty-day fermentation period. The addition of an autochthonous starter culture and sugars and diff erent fermentation temperatures significantly (p<0.05 affected the instrumental colour and texture parameters of the Slavonian kulen. The fermentation was most intense in the samples with added autochthonous starter culture and 0.8 % glucose, and fermented at 20 °C. Microbiological analysis showed that samples with added autochthonous starter culture and fermented at higher temperature contained a higher number of lactic acid bacteria and coagulase-negative staphylococci and were safe. Sensory evaluation confirmed the outcomes of physicochemical and microbiological analyses and showed differences among samples fermented at two different temperatures and with added glucose or maltodextrin and an autochthonous starter culture.

  9. Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms.

    Science.gov (United States)

    Iwamoto, Masaaki; Asakawa, Haruhiko; Hiraoka, Yasushi; Haraguchi, Tokuko

    2010-06-01

    The nucleoporin Nup98 is an essential component of the nuclear pore complex. This peripheral nucleoporin with its Gly-Leu-Phe-Gly (GLFG) repeat domain contributes to nuclear-cytoplasmic trafficking, including mRNA export. In addition, accumulating studies indicate that Nup98 plays roles in several important biological events such as gene expression, mitotic checkpoint, and pathogenesis. Nup98 is well conserved among organisms belonging to the fungi and animal kingdoms. These kingdoms belong to the eukaryotic supergroup Opisthokonta. However, there is considerable diversity in the Nup98 orthologs expressed in organisms belonging to other eukaryotic supergroups. Intriguingly, in ciliates, a unicellular organism having two functionally distinct nuclei, GLFG-Nup98 is present in one of the nuclei and a distinct Nup98 ortholog is present in the other nucleus, and these different Nup98s participate in a nucleus-selective transport mechanism. In this review, we focus on Nup98 function and discuss how this nucleoporin has evolved in eukaryotic kingdoms.

  10. Eukaryotic and prokaryotic promoter prediction using hybrid approach.

    Science.gov (United States)

    Lin, Hao; Li, Qian-Zhong

    2011-06-01

    Promoters are modular DNA structures containing complex regulatory elements required for gene transcription initiation. Hence, the identification of promoters using machine learning approach is very important for improving genome annotation and understanding transcriptional regulation. In recent years, many methods have been proposed for the prediction of eukaryotic and prokaryotic promoters. However, the performances of these methods are still far from being satisfactory. In this article, we develop a hybrid approach (called IPMD) that combines position correlation score function and increment of diversity with modified Mahalanobis Discriminant to predict eukaryotic and prokaryotic promoters. By applying the proposed method to Drosophila melanogaster, Homo sapiens, Caenorhabditis elegans, Escherichia coli, and Bacillus subtilis promoter sequences, we achieve the sensitivities and specificities of 90.6 and 97.4% for D. melanogaster, 88.1 and 94.1% for H. sapiens, 83.3 and 95.2% for C. elegans, 84.9 and 91.4% for E. coli, as well as 80.4 and 91.3% for B. subtilis. The high accuracies indicate that the IPMD is an efficient method for the identification of eukaryotic and prokaryotic promoters. This approach can also be extended to predict other species promoters.

  11. Use of Autochthonous Yeasts and Bacteria in Order to Control Brettanomyces bruxellensis in Wine

    Directory of Open Access Journals (Sweden)

    Carmen Berbegal

    2017-12-01

    Full Text Available Biocontrol strategies for the limitation of undesired microbial developments in foods and beverages represent a keystone toward the goal of more sustainable food systems. Brettanomyces bruxellensis is a wine spoilage microorganism that produces several compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols. To control the proliferation of this yeast, sulfur dioxide is commonly employed, but the efficiency of this compound depends on the B. bruxellensis strain; and it is subject to wine composition and may induce the entrance in a viable, but nonculturable state of yeasts. Moreover, it can also elicit allergic reactions in humans. In recent years, biological alternatives to sulfur dioxide such as the use of yeasts and lactic acid bacteria starter cultures as biocontrol agents are being investigated. The controlled inoculation of starter cultures allows secure, fast and complete alcoholic and malolactic fermentations, limiting the residual nutrients that B. bruxellensis utilizes to survive and grow in wine. The current study is focused on the assessment of the effect of autochthonous yeasts and bacterial strains from the Apulia Region on the development of B. bruxellensis in wine, in terms of both growth and volatile phenols’ production. The investigation evidences the positive role of indigenous mixed cultures in the control of this spoilage yeast, either co-inoculating different strains of Saccharomyces cerevisiae, S. cerevisiae/non-Saccharomyces or co-inoculating S. cerevisiae/Oenococcus oeni. Our findings expand the existing knowledge of the application of protechnological microbial diversity and of non-Saccharomyces as a biocontrol agent in oenology. We report a further demonstration of the interest in selecting indigenous strains as a strategic tool for winemakers interested in the improvement of regional wines.

  12. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell.

    Science.gov (United States)

    Martijn, Joran; Ettema, Thijs J G

    2013-02-01

    The evolutionary origin of the eukaryotic cell represents an enigmatic, yet largely incomplete, puzzle. Several mutually incompatible scenarios have been proposed to explain how the eukaryotic domain of life could have emerged. To date, convincing evidence for these scenarios in the form of intermediate stages of the proposed eukaryogenesis trajectories is lacking, presenting the emergence of the complex features of the eukaryotic cell as an evolutionary deus ex machina. However, recent advances in the field of phylogenomics have started to lend support for a model that places a cellular fusion event at the basis of the origin of eukaryotes (symbiogenesis), involving the merger of an as yet unknown archaeal lineage that most probably belongs to the recently proposed 'TACK superphylum' (comprising Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota) with an alphaproteobacterium (the protomitochondrion). Interestingly, an increasing number of so-called ESPs (eukaryotic signature proteins) is being discovered in recently sequenced archaeal genomes, indicating that the archaeal ancestor of the eukaryotic cell might have been more eukaryotic in nature than presumed previously, and might, for example, have comprised primitive phagocytotic capabilities. In the present paper, we review the evolutionary transition from archaeon to eukaryote, and propose a new model for the emergence of the eukaryotic cell, the 'PhAT (phagocytosing archaeon theory)', which explains the emergence of the cellular and genomic features of eukaryotes in the light of a transiently complex phagocytosing archaeon.

  13. Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era.

    Science.gov (United States)

    Kollmar, Martin; Mühlhausen, Stefanie

    2017-09-04

    The last eukaryotic common ancestor already had an amazingly complex cell possessing genomic and cellular features such as spliceosomal introns, mitochondria, cilia-dependent motility, and a cytoskeleton together with several intracellular transport systems. In contrast to the microtubule-based dyneins and kinesins, the actin-filament associated myosins are considerably divergent in extant eukaryotes and a unifying picture of their evolution has not yet emerged. Here, we manually assembled and annotated 7852 myosins from 929 eukaryotes providing an unprecedented dense sequence and taxonomic sampling. For classification we complemented phylogenetic analyses with gene structure comparisons resulting in 79 distinct myosin classes. The intron pattern analysis and the taxonomic distribution of the classes suggest two myosins in the last eukaryotic common ancestor, a class-1 prototype and another myosin, which is most likely the ancestor of all other myosin classes. The sparse distribution of class-2 and class-4 myosins outside their major lineages contradicts their presence in the last eukaryotic common ancestor but instead strongly suggests early eukaryote-eukaryote horizontal gene transfer. By correlating the evolution of myosin diversity with the history of Earth we found that myosin innovation occurred in independent major "burst" events in the major eukaryotic lineages. Most myosin inventions happened in the Mesoproterozoic era. In the late Neoproterozoic era, a process of extensive independent myosin loss began simultaneously with further eukaryotic diversification. Since the Cambrian explosion, myosin repertoire expansion is driven by lineage- and species-specific gene and genome duplications leading to subfunctionalization and fine-tuning of myosin functions.

  14. Imported dengue cases, weather variation and autochthonous dengue incidence in Cairns, Australia.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available BACKGROUND: Dengue fever (DF outbreaks often arise from imported DF cases in Cairns, Australia. Few studies have incorporated imported DF cases in the estimation of the relationship between weather variability and incidence of autochthonous DF. The study aimed to examine the impact of weather variability on autochthonous DF infection after accounting for imported DF cases and then to explore the possibility of developing an empirical forecast system. METHODOLOGY/PRINCIPAL FINDS: Data on weather variables, notified DF cases (including those acquired locally and overseas, and population size in Cairns were supplied by the Australian Bureau of Meteorology, Queensland Health, and Australian Bureau of Statistics. A time-series negative-binomial hurdle model was used to assess the effects of imported DF cases and weather variability on autochthonous DF incidence. Our results showed that monthly autochthonous DF incidences were significantly associated with monthly imported DF cases (Relative Risk (RR:1.52; 95% confidence interval (CI: 1.01-2.28, monthly minimum temperature ((oC (RR: 2.28; 95% CI: 1.77-2.93, monthly relative humidity (% (RR: 1.21; 95% CI: 1.06-1.37, monthly rainfall (mm (RR: 0.50; 95% CI: 0.31-0.81 and monthly standard deviation of daily relative humidity (% (RR: 1.27; 95% CI: 1.08-1.50. In the zero hurdle component, the occurrence of monthly autochthonous DF cases was significantly associated with monthly minimum temperature (Odds Ratio (OR: 1.64; 95% CI: 1.01-2.67. CONCLUSIONS/SIGNIFICANCE: Our research suggested that incidences of monthly autochthonous DF were strongly positively associated with monthly imported DF cases, local minimum temperature and inter-month relative humidity variability in Cairns. Moreover, DF outbreak in Cairns was driven by imported DF cases only under favourable seasons and weather conditions in the study.

  15. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  16. Comparison of Sensory Properties, Shelf-Life and Microbiological Safety of Industrial Sausages Produced with Autochthonous and Commercial Starter Cultures

    Directory of Open Access Journals (Sweden)

    Jadranka Frece

    2014-01-01

    Full Text Available The aim of this research is to use isolated and characterized autochthonous functional starter cultures from traditional Croatian dry sausages and to evaluate their capacity for industrial production of five sausages (Čajna sausage, Zimska sausage, Bečka sausage, Srijemska sausage and Slavonski kulen. These defined autochthonous functional starter cultures (combination of Lactobacillus and Staphylococcus strains were used to produce five different industrial sausages which were compared by a panel. The viability of introduced autochthonous Lactobacillus and Staphylococcus strains and their effect on the final product characteristics, namely microbiological, physicochemical and sensory properties were monitored. The obtained results indicate that autochthonous starter cultures survived industrial production of sausages and can be used for production of sausages under controlled conditions. Autochthonous starter cultures obtained better results in the organoleptic evaluation, microbial safety and prolonged shelf-life in comparison with commercial starter cultures.

  17. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton

    Directory of Open Access Journals (Sweden)

    Richards Thomas A

    2010-04-01

    Full Text Available Abstract Background The genesis of the eukaryotes was a pivotal event in evolution and was accompanied by the acquisition of numerous new cellular features including compartmentalization by cytoplasmic organelles, mitosis and meiosis, and ciliary motility. Essential for the development of these features was the tubulin cytoskeleton and associated motors. It is therefore possible to map ancient cell evolution by reconstructing the evolutionary history of motor proteins. Here, we have used the kinesin motor repertoire of 45 extant eukaryotes to infer the ancestral state of this superfamily in the last common eukaryotic ancestor (LCEA. Results We bioinformatically identified 1624 putative kinesin proteins, determined their protein domain architectures and calculated a comprehensive Bayesian phylogeny for the kinesin superfamily with statistical support. These data enabled us to define 51 anciently-derived kinesin paralogs (including three new kinesin families and 105 domain architectures. We then mapped these characters across eukaryotes, accounting for secondary loss within established eukaryotic groupings, and alternative tree topologies. Conclusions We show that a minimum of 11 kinesin families and 3 protein domain architectures were present in the LCEA. This demonstrates that the microtubule-based cytoskeleton of the LCEA was surprisingly highly developed in terms of kinesin motor types, but that domain architectures have been extensively modified during the diversification of the eukaryotes. Our analysis provides molecular evidence for the existence of several key cellular functions in the LCEA, and shows that a large proportion of motor family diversity and cellular complexity had already arisen in this ancient cell.

  18. Efficient method to optimize antibodies using avian leukosis virus display and eukaryotic cells.

    Science.gov (United States)

    Yu, Changming; Pike, Gennett M; Rinkoski, Tommy A; Correia, Cristina; Kaufmann, Scott H; Federspiel, Mark J

    2015-08-11

    Antibody-based therapeutics have now had success in the clinic. The affinity and specificity of the antibody for the target ligand determines the specificity of therapeutic delivery and off-target side effects. The discovery and optimization of high-affinity antibodies to important therapeutic targets could be significantly improved by the availability of a robust, eukaryotic display technology comparable to phage display that would overcome the protein translation limitations of microorganisms. The use of eukaryotic cells would improve the diversity of the displayed antibodies that can be screened and optimized as well as more seamlessly transition into a large-scale mammalian expression system for clinical production. In this study, we demonstrate that the replication and polypeptide display characteristics of a eukaryotic retrovirus, avian leukosis virus (ALV), offers a robust, eukaryotic version of bacteriophage display. The binding affinity of a model single-chain Fv antibody was optimized by using ALV display, improving affinity >2,000-fold, from micromolar to picomolar levels. We believe ALV display provides an extension to antibody display on microorganisms and offers virus and cell display platforms in a eukaryotic expression system. ALV display should enable an improvement in the diversity of properly processed and functional antibody variants that can be screened and affinity-optimized to improve promising antibody candidates.

  19. Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient

    Science.gov (United States)

    Elizabeth Hagen; Matthew McTammany; Jackson Webster; Ernest Benfield

    2010-01-01

    Relative contributions of allochthonous inputs and autochthonous production vary depending on terrestrial land use and biome. Terrestrially derived organic matter and in-stream primary production were measured in 12 headwater streams along an agricultural land-use gradient. Streams were examined to see how carbon (C) supply shifts from forested streams receiving...

  20. Autochthonous Heritage Languages and Social Media: Writing and Bilingual Practices in Low German on Facebook

    Science.gov (United States)

    Reershemius, Gertrud

    2017-01-01

    This article analyses how speakers of an autochthonous heritage language (AHL) make use of digital media, through the example of Low German, a regional language used by a decreasing number of speakers mainly in northern Germany. The focus of the analysis is on Web 2.0 and its interactive potential for individual speakers. The study therefore…

  1. Dirofilaria repens: emergence of autochthonous human infections in the Czech Republic (case reports)

    Czech Academy of Sciences Publication Activity Database

    Matějů, J.; Chanová, M.; Modrý, David; Mitková, B.; Hrazdilová, K.; Žampachová, V.; Kolářová, L.

    2016-01-01

    Roč. 16, APR 19 (2016), č. článku 171. ISSN 1471-2334 Institutional support: RVO:60077344 Keywords : Dirofilaria repens * Human dirofilariasis * Emerging disease * Autochthonous diseases in Czech Republic Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.768, year: 2016

  2. CRYOPRESERVATION OF RAM SPERM FROM AUTOCHTHONOUS BREEDS DURING A NON-MATING SEASON

    Directory of Open Access Journals (Sweden)

    Milko SABEV

    2007-07-01

    Full Text Available It is possible to collect and successfully cryopreserve ejaculates in a non-mating season from rams of the autochthonous breeds Karakachan, Cooper-red Shumen and Karnobat-local, raised in Bulgaria. Studies are in progress aiming the elaboration of optimal cryoprotective extenders and freezing technology.

  3. Autochthonous Hepatozoon infection in hunting dogs and foxes from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Mitková, B.; Hrazdilová, K.; Steinbauer, V.; D'Amico, G.; Mihalca, A. D.; Modrý, David

    2016-01-01

    Roč. 115, č. 11 (2016), s. 4167-4171 ISSN 0932-0113 Institutional support: RVO:60077344 Keywords : Hepatozoon canis * dogs * red foxes * Czech Republic * autochthonous infection Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.329, year: 2016

  4. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Science.gov (United States)

    Hamad, Ibrahim; Abou Abdallah, Rita; Ravaux, Isabelle; Mokhtari, Saadia; Tissot-Dupont, Hervé; Michelle, Caroline; Stein, Andreas; Lagier, Jean-Christophe; Raoult, Didier; Bittar, Fadi

    2018-01-01

    Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1) and 2 (ITS2) amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index) and alpha diversity (Shannon diversity) differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs) belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis and

  5. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1 and 2 (ITS2 amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index and alpha diversity (Shannon diversity differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis

  6. Characterization and Application of Autochthonous Starter Cultures for Fresh Cheese Production

    Directory of Open Access Journals (Sweden)

    Andreja Leboš Pavunc

    2012-01-01

    Full Text Available The use of commercial starter cultures in fresh cheese production from pasteurized milk results in the loss of typical characteristics of artisan fresh cheese due to the replacement of complex native microbiota with a defined starter culture. Hence, the aim of this research is to isolate and characterize dominant lactic acid bacteria (LAB in artisan fresh cheese and to evaluate their capacity as autochthonous starter cultures for fresh cheese production. Fifteen most prevalent Gram-positive, catalase-negative and asporogenous bacterial strains were selected for a more detailed characterization. Eleven lactic acid bacterial strains were determined to be homofermentative cocci and four heterofermentative lactobacilli. Further phenotypic and genotypic analyses revealed that those were two different LAB strains with high acidifying and proteolytic activity, identified as Lactobacillus fermentum A8 and Enterococcus faecium A7. These two autochthonous strains, alone or in combination with commercial starter, were used to produce different types of fresh cheese, which were evaluated by a panel. Conventional culturing, isolation, identification and PCR-denaturing gradient gel electrophoresis (PCR-DGGE procedures, applied to the total fresh cheese DNA extracts, were employed to define and monitor the viability of the introduced LAB strains and their effect on the final product characteristics. Production of fresh cheese using a combination of commercial starter culture and selected autochthonous strains resulted in improved sensorial properties, which were more similar to the ones of spontaneously fermented fresh cheese than to those of cheese produced with only starter culture or selected strains. After 10 days of storage, that cheese retained the best sensorial properties in comparison with all other types of cheese. The presence of inoculated autochthonous and starter cultures and their identification was demonstrated by DGGE analysis. The obtained

  7. Reproduction, symbiosis, and the eukaryotic cell

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  8. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    Full Text Available Abstract Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP and sedoheptulose-1, 7-bisphosphate (SBP are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase, while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase and sedoheptulose-1, 7-bisphosphatase (SBPase, respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II. Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins

  9. Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA.

    Science.gov (United States)

    Garcia, Melissa N; Burroughs, Hadley; Gorchakov, Rodion; Gunter, Sarah M; Dumonteil, Eric; Murray, Kristy O; Herrera, Claudia P

    2017-04-01

    The parasitic protozoan Trypanosoma cruzi, the causative agent of Chagas disease, is widely distributed throughout the Americas, from the southern United States (US) to northern Argentina, and infects at least 6 million people in endemic areas. Much remains unknown about the dynamics of T. cruzi transmission among mammals and triatomine vectors in sylvatic and peridomestic eco-epidemiological cycles, as well as of the risk of transmission to humans in the US. Identification of T. cruzi DTUs among locally-acquired cases is necessary for enhancing our diagnostic and clinical prognostic capacities, as well as to understand parasite transmission cycles. Blood samples from a cohort of 15 confirmed locally-acquired Chagas disease patients from Texas were used for genotyping T. cruzi. Conventional PCR using primers specific for the minicircle variable region of the kinetoplastid DNA (kDNA) and the highly repetitive genomic satellite DNA (satDNA) confirmed the presence of T. cruzi in 12/15 patients. Genotyping was based on the amplification of the intergenic region of the miniexon gene of T. cruzi and sequencing. Sequences were analyzed by BLAST and phylogenetic analysis by Maximum Likelihood method allowed the identification of non-TcI DTUs infection in six patients, which corresponded to DTUs TcII, TcV or TcVI, but not to TcIII or TcIV. Two of these six patients were also infected with a TcI DTU, indicating mixed infections in those individuals. Electrocardiographic abnormalities were seen among patients with single non-TcI and mixed infections of non-TcI and TcI DTUs. Our results indicate a greater diversity of T. cruzi DTUs circulating among autochthonous human Chagas disease cases in the southern US, including for the first time DTUs from the TcII-TcV-TcVI group. Furthermore, the DTUs infecting human patients in the US are capable of causing Chagasic cardiac disease, highlighting the importance of parasite detection in the population. Copyright © 2017 Elsevier B

  10. Eukaryotic acquisition of a bacterial operon

    Science.gov (United States)

    The yeast Saccharomyces cerevisiae is one of the champions of basic biomedical research due to its compact eukaryotic genome and ease of experimental manipulation. Despite these immense strengths, its impact on understanding the genetic basis of natural phenotypic variation has been limited by strai...

  11. The origin of the eukaryotic cell

    Science.gov (United States)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  12. Evidence for a Minimal Eukaryotic Phosphoproteome?

    NARCIS (Netherlands)

    Diks, Sander H.; Parikh, Kaushal; van der Sijde, Marijke; Joore, Jos; Ritsema, Tita; Peppelenbosch, Maikel P.

    2007-01-01

    Background. Reversible phosphorylation catalysed by kinases is probably the most important regulatory mechanism in eukaryotes. Methodology/Principal Findings. We studied the in vitro phosphorylation of peptide arrays exhibiting the majority of PhosphoBase-deposited protein sequences, by factors in

  13. Eukaryotic membrane protein overproduction in Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Chan, Ka Wai; Slotboom, Dirk Jan; Floyd, Suzanne; O’Connor, Rosemary; Monné, Magnus

    2005-01-01

    Eukaryotic membrane proteins play many vital roles in the cell and are important drug targets. Approximately 25% of all genes identified in the genome are known to encode membrane proteins, but the vast majority have no assigned function. Although the generation of structures of soluble proteins has

  14. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica mine, Mexico

    Directory of Open Access Journals (Sweden)

    Marie eRagon

    2013-03-01

    Full Text Available The Naica mine in Northern Mexico is famous for its giant gypsum crystals, which may reach up to 11 m long and contain fluid inclusions that might have captured microorganisms during their formation. These crystals formed under particularly stable geochemical conditions in cavities filled by low salinity hydrothermal water at 54-58°C. We have explored the microbial diversity associated to these deep, saline hydrothermal waters collected in the deepest (ca. 700-760 m mineshafts by amplifying, cloning and sequencing small-subunit ribosomal RNA genes using primers specific for archaea, bacteria and eukaryotes. Eukaryotes were not detectable in the samples and the prokaryotic diversity identified was very low. Two archaeal operational taxonomic units (OTUs were detected in one sample. They clustered with, respectively, basal Thaumarchaeota lineages and with a large clade of environmental sequences branching at the base of the Thermoplasmatales within the Euryarchaeota. Bacterial sequences belonged to the Candidate Division OP3, Firmicutes and the Alpha- and Beta-Proteobacteria. Most of the lineages detected appear autochthonous to the Naica system, since they had as closest representatives environmental sequences retrieved from deep sediments or the deep subsurface. In addition, the high GC content of 16S rRNA gene sequences belonging to the archaea and to some OP3 OTUs suggests that at least these lineages are thermophilic. Attempts to amplify diagnostic functional genes for methanogenesis (mcrA and sulfate reduction (dsrAB were unsuccessful, suggesting that those activities, if present, are not important in the aquifer. By contrast, genes encoding archaeal ammonium monooxygenase (AamoA were amplified, suggesting that Naica Thaumarchaeota are involved in nitrification. These organisms are likely thermophilic chemolithoautotrophs adapted to thrive in an extremely energy-limited environment.

  15. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico

    Science.gov (United States)

    Ragon, Marie; Van Driessche, Alexander E. S.; García-Ruíz, Juan M.; Moreira, David; López-García, Purificación

    2013-01-01

    The Naica Mine in northern Mexico is famous for its giant gypsum crystals, which may reach up to 11 m long and contain fluid inclusions that might have captured microorganisms during their formation. These crystals formed under particularly stable geochemical conditions in cavities filled by low salinity hydrothermal water at 54–58°C. We have explored the microbial diversity associated to these deep, saline hydrothermal waters collected in the deepest (ca. 700–760 m) mineshafts by amplifying, cloning and sequencing small-subunit ribosomal RNA genes using primers specific for archaea, bacteria, and eukaryotes. Eukaryotes were not detectable in the samples and the prokaryotic diversity identified was very low. Two archaeal operational taxonomic units (OTUs) were detected in one sample. They clustered with, respectively, basal Thaumarchaeota lineages and with a large clade of environmental sequences branching at the base of the Thermoplasmatales within the Euryarchaeota. Bacterial sequences belonged to the Candidate Division OP3, Firmicutes and the Alpha- and Beta-proteobacteria. Most of the lineages detected appear autochthonous to the Naica system, since they had as closest representatives environmental sequences retrieved from deep sediments or the deep subsurface. In addition, the high GC content of 16S rRNA gene sequences belonging to the archaea and to some OP3 OTUs suggests that at least these lineages are thermophilic. Attempts to amplify diagnostic functional genes for methanogenesis (mcrA) and sulfate reduction (dsrAB) were unsuccessful, suggesting that those activities, if present, are not important in the aquifer. By contrast, genes encoding archaeal ammonium monooxygenase (AamoA) were amplified, suggesting that Naica Thaumarchaeota are involved in nitrification. These organisms are likely thermophilic chemolithoautotrophs adapted to thrive in an extremely energy-limited environment. PMID:23508882

  16. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.

  17. The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell.

    Science.gov (United States)

    Rout, Michael P; Field, Mark C

    2017-06-20

    Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with β-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.

  18. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Reddy Anireddy SN

    2006-01-01

    Full Text Available Abstract Background Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. Results We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. Conclusion The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage

  19. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  20. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Review of the specific measures for support of the autochthonous breeds in Bulgaria

    Directory of Open Access Journals (Sweden)

    Vasil Nikolov

    2015-06-01

    Full Text Available The measures for support of 22 autochthonous breeds in Bulgaria are reviewed. It is concluded, that as a whole the support is more effective in the mountainous and semi-mountainous regions, where the opportunities for alternative agriculture are smaller. The numerous funding prerequisites and administrative formalities are some of the main obstacles to the inclusion of more farmers in the support programmes, and a hurdle to the change of the population trends in positive direction. A serious restriction is the requirement for pastures for herbivorous animals in the plane regions with intensive agriculture. In conclusion it is mentioned that the support for preservation of the local autochthonous breeds should be bound only with requirements for retaining the number of the animals and their rearing in traditional for the breed conditions.

  2. Eukaryotic and prokaryotic microbial communities during microalgal biomass production.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Hulatt, Chris J; Wakeman, Kathryn D; Thomas, David N; Puhakka, Jaakko A

    2012-11-01

    Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Clinical and Epidemiological Characterization of Laboratory-Confirmed Autochthonous Cases of Zika Virus Disease in Mexico.

    Science.gov (United States)

    Jimenez Corona, Maria Eugenia; De la Garza Barroso, Ana Lucía; Rodriguez Martínez, Jose Cruz; Luna Guzmán, Norma Irene; Ruiz Matus, Cuitláhuac; Díaz Quiñonez, José Alberto; Lopez Martinez, Irma; Kuri Morales, Pablo A

    2016-04-15

    Since 2014, autochthonous circulation of Zika virus (ZIKV) in the Americas was detected (Easter Island, Chile). In May 2015, Brazil confirmed autochthonous --transmission and in October of that year Colombia reported their first  cases. Now more than 52 countries have reported cases, including Mexico. To deal with this contingency in Mexico, several surveillance systems, in addition to systems for vector-borne diseases were strengthened with the participation of all health institutions. Also, the Ministry of Health defined an Action Plan against ZIKV for the whole country. We analyzed 93 autochthonous cases of ZIKV disease identified by Epidemiological Surveillance System for Zika Virus in Mexico. All autochthonous cases confirmed by laboratory since November 25, 2015 to February 19, 2016 were included. A description of clinical and epidemiological characteristics of 93 cases of ZIKV disease are presenting and, we describe the Action Plan against this public health emergency.  The distribution of cases by sex was 61 men and 32 women; mean age was 35 years old (S.D. 15, range 6-90). The main clinical features in the 93 cases were fever (96.6%), rash (93.3%), non-purulent conjunctivitis (88.8%), headache (85.4%), and myalgia (84.3%). No deaths were reported. The ZIKV epidemic poses new challenges to public health systems. The information provided for basic, clinical, and epidemiological research, in addition to the data derived from epidemiological surveillance is essential. However, there are still many unanswered questions regarding mechanisms of transmission, complications, and impact of this virus.

  4. CYP2C9 polymorphism in five autochthonous population of the same geographic area (Spanish Pyrenees).

    Science.gov (United States)

    Borobia, Alberto M; López-Parra, Ana María; Tabarés, Beatriz; Ramirez, Elena; Baeza, Carlos; Arroyo-Pardo, Eduardo; Carcas, Antonio J

    2009-02-01

    To evaluate the frequency of CYP2C9 polymorphisms in a cohort of Caucasians (Spanish Pyrenees), previously classified in autochthonous populations. Blood samples from 154 anonymous volunteer donors were collected. All the individuals were autochthonous to their respective populations (four grandparents born in the region): 23 from Valle de Arán (Lérida), 29 from Alto Urgel (Lérida), 32 from La Cerdaña (Gerona), 30 from Jacetania (Huesca) and 40 from Cinco Villas (Navarra). The analyses for allelic mutation, CYP2C9*2 and CYP2C9*3, were identified with Taqman Allelic Discrimination kits. No statistical differences were found when allelic frequencies in the five autochthonous populations were compared. Frequency distribution of genotypic classes (wt/wt, wt/mut and mut/mut) in Alto Urgel was different from that in La Cerdaña, Cinco Villas and Jacetania samples. Comparison of Pyrenean and other European populations through exact test revealed significant differences in the distribution of genotypic classes: Alto Urgel, Barcelona, and Croatia yielded the highest significant differences. According to the exact test these populations were pooled in four groups. This classification produced a statistically significant percentage of variation explained by differences among groups (1.94%, P= 0.036), but not by differences among populations within groups (P=0.914), although most of the percentage of variance is explained by differences within populations (97.46%, P<0.001). This study increases the evidence of intra-population genotypic variability and highlights the significant genotypic heterogeneity when different autochthonous populations are considered, despite no clear differences in allelic frequencies do exist.

  5. Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines.

    Science.gov (United States)

    Rodríguez-Palero, María Jesús; Fierro-Risco, Jesús; Codón, Antonio C; Benítez, Tahía; Valcárcel, Manuel J

    2013-06-01

    Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of "Fino". This base wine was selected for "Fino" Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called "flor" yeasts. The "flor" velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a

  6. Characterization and Application of Autochthonous Starter Cultures for Fresh Cheese Production

    OpenAIRE

    Andreja Leboš Pavunc; Blaženka Kos; Ksenija Uroić; Marijana Blažić; Jagoda Šušković; Jasna Beganović

    2012-01-01

    The use of commercial starter cultures in fresh cheese production from pasteurized milk results in the loss of typical characteristics of artisan fresh cheese due to the replacement of complex native microbiota with a defined starter culture. Hence, the aim of this research is to isolate and characterize dominant lactic acid bacteria (LAB) in artisan fresh cheese and to evaluate their capacity as autochthonous starter cultures for fresh cheese production. Fifteen most prevalent Gram-positive,...

  7. Low molecular weight peptides derived from sarcoplasmic proteins produced by an autochthonous starter culture in a beaker sausage model

    Directory of Open Access Journals (Sweden)

    Constanza M. López

    2015-06-01

    Significance: The selection of a specific autochthonous starter culture guarantees the hygiene and typicity of fermented sausages. The identification of new peptides as well as new target proteins by means of peptidomics represents a significant step toward the elucidation of the role of microorganisms in meat proteolysis. Moreover, these peptides may be further used as biomarkers capable to certify the use of the applied autochthonous starter culture described here.

  8. Selection of autochthonous sour cherry (Prunus cerasus L. genotypes in Feketić region

    Directory of Open Access Journals (Sweden)

    Radičević Sanja

    2012-01-01

    Full Text Available Autochthonous genotypes of fruit species are very important source of genetic variability and valuable material for breeding work. Fruit Research Institute-Čačak has a long tradition of studying autochthonous genotypes of temperate fruits sporadically spread and preserved in some localities in Serbia. Over 2005-2006, the following properties of nine autochthonous sour cherry genotypes grown in Feketic region were investigated: flowering and ripening time, pomological properties, biochemical composition of fruits and field resistance to causal agents of cherry diseases - cherry leaf spot (Blumeriella jaapii (Rehm. v. Arx., shot-hole (Clasterosporium carpophilum (Lév. Aderh. and brown rot (Monilinia laxa /Ader et Ruhl./ Honey ex Whetz.. The genotypes were tested for the presence of Prune dwarf virus and Prunus necrotic ring spot virus. In majority of genotypes fruits were large, with exceptional organoleptical properties, whereas ripening time was in the first ten or twenty days of June. The highest fruit weight was observed in F-1 genotype (8.1 g. The highest soluble solids and total sugars content were found in F- 4 genotype (17.60% and 14.25%, respectively. As for field resistance to causal agents of diseases and good pomo-technological properties, F-1, F-2, F-3, F-7 and F-8 genotypes were singled out. [Projekat Ministarstva nauke Republike Srbije, br. TR31064

  9. First autochthonous cases of canine thelaziosis in Slovakia: a new affected area in Central Europe.

    Science.gov (United States)

    Čabanová, Viktória; Kocák, Peter; Víchová, Bronislava; Miterpáková, Martina

    2017-04-13

    The spirurid nematode Thelazia callipaeda, also called the "Oriental eyeworm", is the causative agent of canine and human ocular thelaziosis. In the past few years it has started to spread across central Europe and new endemic areas have been established. The present study reports on the first four autochthonous cases of canine ocular thelaziosis in the territory of Slovakia, Central Europe. All cases were recorded in dogs living in eastern Slovakia, near the border with the Ukraine. All worms collected were investigated morphologically and their identification further confirmed at the molecular level by PCR amplification and direct sequencing. Nucleotide sequences of partial T. callipaeda cox1 and 28S rDNA gene fragments isolated from Slovak dogs were submitted to the GenBank database under accession numbers KY476400 and KY476401, respectively. Considering that all four cases were diagnosed in animals that had never travelled abroad, there is clear evidence of an autochthonous occurrence and thereby the further spread of T. callipaeda across Europe. Moreover, at latitude of 48°N, these cases might be considered as the northernmost recorded cases of autochthonous in western and Central Europe.

  10. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees.

    Science.gov (United States)

    Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés

    2009-11-02

    Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power

  11. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Bernad Lucia

    2009-11-01

    Full Text Available Abstract Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as

  12. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  13. Rolling-circle transposons in eukaryotes.

    Science.gov (United States)

    Kapitonov, V V; Jurka, J

    2001-07-17

    All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called "cut-and-paste" mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5'-to-3' DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5'-TC and CTRR-3' termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10--12 nucleotides from the 3'-end and transpose precisely between the 5'-A and T-3', with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute approximately 2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.

  14. Eukaryotes in the gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Alexandra H. Mandarano

    2018-01-01

    Full Text Available Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS often suffer from gastrointestinal symptoms and many are diagnosed with irritable bowel syndrome (IBS. Previous studies, including from our laboratory, have demonstrated that the ME/CFS gut bacterial composition is altered and less diverse when compared to healthy individuals. Patients have increased biomarkers of inflammation and leaky gut syndrome. To further investigate dysbiosis in the ME/CFS gut microbiome, we sought to characterize the eukaryotes present in the gut of 49 individuals with ME/CFS and 39 healthy controls. Using 18S rRNA sequencing, we have identified eukaryotes in stool samples of 17 healthy individuals and 17 ME/CFS patients. Our analysis demonstrates a small, nonsignificant decrease in eukaryotic diversity in ME/CFS patients compared to healthy individuals. In addition, ME/CFS patients show a nonsignificant increase in the ratio of fungal phyla Basidiomycota to Ascomycota, which is consistent with ongoing inflammation in ME/CFS. We did not identify specific eukaryotic taxa that are associated with ME/CFS disease status.

  15. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor.

    Science.gov (United States)

    Scheckenbach, Frank; Hausmann, Klaus; Wylezich, Claudia; Weitere, Markus; Arndt, Hartmut

    2010-01-05

    Eukaryotic microbial life at abyssal depths remains "uncharted territory" in eukaryotic microbiology. No phylogenetic surveys have focused on the largest benthic environment on this planet, the abyssal plains. Moreover, knowledge of the spatial patterns of deep-sea community structure is scanty, and what little is known originates primarily from morphology-based studies of foraminiferans. Here we report on the great phylogenetic diversity of microbial eukaryotic communities of all 3 abyssal plains of the southeastern Atlantic Ocean--the Angola, Cape, and Guinea Abyssal Plains--from depths of 5,000 m. A high percentage of retrieved clones had no close representatives in genetic databases. Many clones were affiliated with parasitic species. Furthermore, differences between the communities of the Cape Abyssal Plain and the other 2 abyssal plains point to environmental gradients apparently shaping community structure at the landscape level. On a regional scale, local species diversity showed much less variation. Our study provides insight into the community composition of microbial eukaryotes on larger scales from the wide abyssal sea floor realm and marks a direction for more detailed future studies aimed at improving our understanding of deep-sea microbes at the community and ecosystem levels, as well as the ecological principles at play.

  16. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans

    KAUST Repository

    Pernice, Massimo C.

    2015-10-09

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8–20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

    The ISME Journal advance online publication, 9 October 2015; doi:10.1038/ismej.2015.170

  17. Autochthonous resources are the main driver of consumer production in dystrophic boreal lakes.

    Science.gov (United States)

    Lau, Danny C P; Sundh, Ingvar; Vrede, Tobias; Pickova, Jana; Goedkoop, Willem

    2014-06-01

    Dystrophic lakes are widespread in temperate regions and intimately interact with surrounding terrestrial ecosystems in energy and nutrient dynamics, yet the relative importance of autochthonous and allochthonous resources to consumer production in dystrophic lakes remains controversial. We argue that allochthonous organic matter quantitatively dominates over photosynthetic autotrophs in dystrophic lakes, but that autotrophs are higher in diet quality and more important for consumers as they contain essential polyunsaturated fatty acids (PUFA). In a field study, we tested the hypotheses that (1) autochthonous primary production is the main driver for consumer production, despite being limited by light availability and low nutrient supplies, and greater supply of allochthonous carbon, (2) the relative contribution of autotrophs to consumers is directly related to their tissue PUFA concentrations, and (3) methane-oxidizing bacteria (MOB) provide an energy alternative for consumers. Pelagic and benthic consumer taxa representing different trophic levels were sampled from five dystrophic lakes: isopod Asellus aquaticus, megalopteran Sialis lutaria, dipteran Chaoborus flavicans, and perch Perca fluviatilis. Based on carbon and nitrogen stable isotopes, the relative contributions of autochthonous (biofilms and seston) and allochthonous (coarse particulate and dissolved organic matter) resources and MOB to these taxa were 47-79%, 9-44% and 7-12% respectively. Results from fatty acid (FA) analyses show that the relative omega3-FA and PUFA concentrations increased with trophic level (Asellus consumers, i.e., a 47-79% biofilm and/or seston diet resulted in tissue EPA of 4.2-18.4, omega3 FAs of 11.6-37.0 and PUFA of 21.6-61.0 mg/g dry mass. The results indicate that consumers in dystrophic lakes predominantly rely on energy from autotrophs and that their PUFA concentrations are dependent on the relative contribution of these autochthonous resources. The limited energy support

  18. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    OpenAIRE

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the a...

  19. Gene flow and biological conflict systems in the origin and evolution of eukaryotes

    Directory of Open Access Journals (Sweden)

    L eAravind

    2012-06-01

    Full Text Available The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin-systems to the origin of signaling enzymes (e.g. ADP-ribosylation and small-molecule messenger synthesis, mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g. restriction-modification, mobile elements and lysogenic phages in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary nurseries for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations

  20. Morphology of the Proterozoic eukaryotic microfossils as a reflection of their intracellular complexity

    OpenAIRE

    Agić, Heda; Moczydłowska, Małgorzata; Yin, Leiming

    2014-01-01

    Mesoproterozoic is a time of increasing diversity of microscopic life and appearance of intricate new cell morphologies. First eukaryotes may have evolved around 2.4 Ga, but the first microbiota with intricate sculpture and ornamentation are found in the younger, 1.8.-1.6 Ga successions worldwide. Such microfossils were uncovered from the Ruyang Formation in Shanxi, China and Roper Group, Northern Territories, Australia, dating back to 1.6-1.0 Ga ago. Some of these unicellular organic-walled ...

  1. In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice

    Science.gov (United States)

    Uhlig, Christiane; Kilpert, Fabian; Frickenhaus, Stephan; Kegel, Jessica U; Krell, Andreas; Mock, Thomas; Valentin, Klaus; Beszteri, Bánk

    2015-01-01

    Ice-binding proteins (IBPs) have been isolated from various sea-ice organisms. Their characterisation points to a crucial role in protecting the organisms in sub-zero environments. However, their in situ abundance and diversity in natural sea-ice microbial communities is largely unknown. In this study, we analysed the expression and phylogenetic diversity of eukaryotic IBP transcripts from microbial communities of Arctic and Antarctic sea ice. IBP transcripts were found in abundances similar to those of proteins involved in core cellular processes such as photosynthesis. Eighty-nine percent of the IBP transcripts grouped with known IBP sequences from diatoms, haptophytes and crustaceans, but the majority represented novel sequences not previously characterized in cultured organisms. The observed high eukaryotic IBP expression in natural eukaryotic sea ice communities underlines the essential role of IBPs for survival of many microorganisms in communities living under the extreme conditions of polar sea ice. PMID:25885562

  2. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  3. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  4. Probing eukaryotic cell mechanics via mesoscopic simulations

    Science.gov (United States)

    Pivkin, Igor V.; Lykov, Kirill; Nematbakhsh, Yasaman; Shang, Menglin; Lim, Chwee Teck

    2017-11-01

    We developed a new mesoscopic particle based eukaryotic cell model which takes into account cell membrane, cytoskeleton and nucleus. The breast epithelial cells were used in our studies. To estimate the viscoelastic properties of cells and to calibrate the computational model, we performed micropipette aspiration experiments. The model was then validated using data from microfluidic experiments. Using the validated model, we probed contributions of sub-cellular components to whole cell mechanics in micropipette aspiration and microfluidics experiments. We believe that the new model will allow to study in silico numerous problems in the context of cell biomechanics in flows in complex domains, such as capillary networks and microfluidic devices.

  5. Expression of eukaryotic polypeptides in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  6. Study of features of the biochemical composition of red vine leaves of autochthonous varieties in Russia

    Directory of Open Access Journals (Sweden)

    Oganesyants Lev

    2015-01-01

    Full Text Available One of the fields of processing industries’ activities is the use of secondary resources. The use the vegetative parts of grape plants may become an important component in solving this task. Such vegetative parts, first of all, include red grape leaves, which provide a large reserve of antioxidants and other biologically useful substances. The Russian Research Institute of Brewing and Wine Industry has carried out the detailed study of the features of the biochemical composition of red vine leaves of autochthonous varieties cultivated in the Rostov region of Russia. Cold winters are considered to be the major stress for the grape plants. Under these conditions, leaves accumulate large amount of biologically active substances, including trans-resveratrol, which provide significant advantage compared with the harvest from grapes cultivated in areas where the plants are not protected during winter. Comparative studies on the biochemical composition of red vine leaves of autochthonous and European varieties were conducted, including on the use of bioassay systems in vitro. It was found that extracts of red vine leaves of autochthonous varieties have a marked effect on the rate of glutathione reductase and pyruvate kinase reactions that are demonstrating their angioprotective and energizing properties. The increase in the rate of the catalase reaction indicates the manifestation of antioxidant properties. The technology of CO2 – and highly concentrated hydrophilic extracts production from red vine leaves that preserves biologically active compounds to the maximum extent possible. The extracts are used for the manufacture of soft drinks that have the venomotor action and may be applied in the process of the manufacture of fat products with extended shelf life, as well as the main raw material for the preparations with the pronounced angioprotective effect.

  7. Asgard archaea illuminate the origin of eukaryotic cellular complexity.

    Science.gov (United States)

    Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F; Saw, Jimmy H; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W; Anantharaman, Karthik; Starnawski, Piotr; Kjeldsen, Kasper U; Stott, Matthew B; Nunoura, Takuro; Banfield, Jillian F; Schramm, Andreas; Baker, Brett J; Spang, Anja; Ettema, Thijs J G

    2017-01-19

    The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.

  8. Impact of autochthonous music on the creation of tourist destination image

    Directory of Open Access Journals (Sweden)

    Željko Blagus

    2010-06-01

    Full Text Available This paper tries to determine to what extent autochthonous music may contribute to the creation of the image of a tourist destination. In other words, it aims at demostrating how the Croatian Međimurje County may become recognizable as a tourist destination on the basis of its ethnographic heritage, which exists even today in different ways. The first part of the paper deals with the role of image in the choice of destination and defines the term “destination image”. A particular emphasis is placed on the analysis of the impact of autochthonous music on the image of the Međimurje County. It proves the thesis that autochthonous music plays an important role in the presentation and dissemination of the recognizable image of Međimurje. As shown in this paper, the music of Međimurje is a resource characterized by dynamism, change and adaptability. It is also a source of inspiration of numerous musicians and, thanks to its uniqueness in terms of authenticity, representativeness or rarity, it becomes a quality symbol of the environment in which it came to be. In this sense, the paper offers an insight into the way in which the music of Međimurje might be used to improve the understanding and acceptance of certain communication content by making the message clearer and easier to understand. It is evident that the market evaluated the autochthonous music of Međimurje in the past and will continue to evaluate it to an increasing extent in the future, so claims about its incompatibility with commercialism and utilitarianism may only be accepted conditionally. The second part of the paper includes a description of the methodological frame of the field research that has been conducted as well as a report on its results. In this way, the analysis of the role which the music of Međimurje plays in the creation of image acquires its concrete meaning, since the results of the research can be interpreted with regard to their assumptions and their

  9. Phosphorylation Stoichiometries of Human Eukaryotic Initiation Factors

    Directory of Open Access Journals (Sweden)

    Armann Andaya

    2014-06-01

    Full Text Available Eukaryotic translation initiation factors are the principal molecular effectors regulating the process converting nucleic acid to functional protein. Commonly referred to as eIFs (eukaryotic initiation factors, this suite of proteins is comprised of at least 25 individual subunits that function in a coordinated, regulated, manner during mRNA translation. Multiple facets of eIF regulation have yet to be elucidated; however, many of the necessary protein factors are phosphorylated. Herein, we have isolated, identified and quantified phosphosites from eIF2, eIF3, and eIF4G generated from log phase grown HeLa cell lysates. Our investigation is the first study to globally quantify eIF phosphosites and illustrates differences in abundance of phosphorylation between the residues of each factor. Thus, identification of those phosphosites that exhibit either high or low levels of phosphorylation under log phase growing conditions may aid researchers to concentrate their investigative efforts to specific phosphosites that potentially harbor important regulatory mechanisms germane to mRNA translation.

  10. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  11. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    Science.gov (United States)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  12. Cell cycle control across the eukaryotic kingdom.

    Science.gov (United States)

    Harashima, Hirofumi; Dissmeyer, Nico; Schnittger, Arp

    2013-07-01

    Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  14. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...... are conserved among lineages, the genes making up those pathways can have very different origins in different eukaryotes. Thus, from the perspective of the effects of lateral gene transfer on individual gene ancestries in different lineages, eukaryotic metabolism appears to be chimeric....

  15. A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells

    Science.gov (United States)

    2014-08-01

    called cytokinesis. For eukaryotic cells , cell division is a much more complicated process than the division of prokaryotic cells . Despite of extensive...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells ...stage of the mitotic cycle of eukaryotic cells , cytokinesis ensues where a parent cell replicates its nucleus with the necessary genetical substances

  16. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Satoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Harris, Timothy J.; Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yoshimura, Kiyoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C. [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); De Marzo, Angelo M. [Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.

  17. Autochthonous visceral leishmaniasis in Brasília, Federal District, Brazil.

    Science.gov (United States)

    Carranza-Tamayo, César Omar; Carvalho, Maria do Socorro Laurentino de; Bredt, Angelika; Bofil, Maria Isabel Rao; Rodrigues, Rodrigo Menna Barreto; Silva, Ailton Domício da; Cortez, Sandra Maria Felipe Coelho; Romero, Gustavo Adolfo Sierra

    2010-01-01

    Visceral leishmaniasis is a public health threat in Brazil considering the high lethality rates and increasing geographical dispersion to large urban conglomerates over the past 25 years. This study aimed to confirm suspected autochthonous cases of visceral leishmaniasis reported from 2005 to 2009 among individuals living in Brasilia, Federal District. A retrospective review of the surveillance data obtained on a regular basis and clinical records of the reported cases were performed in 2009. Data from entomological and canine surveys revealed the presence of both Lutzomyia longipalpis and positive serology for Leishmania in dogs within 19 of the 21 neighborhoods where human cases occurred since 2005. The review of surveillance data and medical records, together with the entomological and canine survey data, permitted confirmation of 21 autochthonous human cases in the Federal District. The disease predominantly affected children (12/21) and those from the Sobradinho region (16/21); the typical presentation of fever, hepatosplenomegaly and pancytopenia was observed in 67% of cases. Three deaths occurred during the study period. Leishmania (Leishmania) chagasi was successfully isolated from one human case and twelve canine cases. Visceral leishmaniasis should be considered endemic in Brasilia based on the documented epidemiological behavior herein described and the confirmed autochthony of human cases.

  18. Combined treatment effects of radiation and immunotherapy: studies in an autochthonous prostate cancer model.

    Science.gov (United States)

    Wada, Satoshi; Harris, Timothy J; Tryggestad, Erik; Yoshimura, Kiyoshi; Zeng, Jing; Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F; Bruno, Tullia C; De Marzo, Angelo M; Netto, George J; Pardoll, Drew M; DeWeese, Theodore L; Wong, John; Drake, Charles G

    2013-11-15

    To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The application of autochthonous lactic acid bacteria in white brined cheese production

    Directory of Open Access Journals (Sweden)

    Zorica Radulović

    2011-03-01

    Full Text Available The effects of autochthonous strains of lactic acid bacteria on the characteristics of white brined cheeses were studied throughout 90 days of ripening. Cheese A was produced with strains: Lactococcus lactis ssp. lactis 653, Lactococcus lactis ssp. cremoris 656, Lactococcus lactis ssp. lactis biovar. diacetylactis 07 and Lactobacillus paracasei ssp. paracasei 08 (8:5:5:2 and cheese B with strains: Lactococcus lactis ssp. lactis 195, Lactococcus lactis ssp. cremoris 656 and Lactococcus lactis ssp. lactis biovar. diacetylactis 07 (10:5:5. The lactococci counts in both cheeses and lactobacilli count in cheese A remained at a high level, while lactobacilli count in cheese B increased through the ripening. No significant differences (P<0.05 were found in the gross composition of the experimental cheeses, although the pH values were lower in cheese A. Proteolysis was assessed by the water-soluble nitrogen fractions, 5 %-phosphotungstic-acid-soluble nitrogen fractions and SDSPAGE- electrophoresis. Both experimental cheeses were characterized by a high rate of proteolysis. According to sensory evaluation, experimental cheeses received high total scores. The results show that autochthonous strains of lactic acid bacteria can be successfully applied in white brined cheeses production.

  20. Arabinogalactan proteins have deep roots in eukaryotes

    DEFF Research Database (Denmark)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle

    2016-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which...... is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we...... investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP...

  1. DNA Mismatch Repair in Eukaryotes and Bacteria

    Directory of Open Access Journals (Sweden)

    Kenji Fukui

    2010-01-01

    Full Text Available DNA mismatch repair (MMR corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.

  2. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  3. Bacterial proteins pinpoint a single eukaryotic root

    Czech Academy of Sciences Publication Activity Database

    Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Čestmír; Lang, B.F.; Eliáš, M.

    2015-01-01

    Roč. 112, č. 7 (2015), E693-E699 ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S Grant - others:GA MŠk(CZ) ED2.1.00/03.0100; Howard Hughes Medical Institute International Early Career Scientist Program(US) 55007424; Spanish Ministry of Economy and Competitiveness, European Molecular Biology Organization Young Investigator Program(ES) BFU2012-31329; Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa" - European Regional Development Fund(ES) Sev-2012-0208, BES-2013-064004 Institutional support: RVO:68378050 Keywords : eukaryote phylogeny * phylogenomics * Opimoda * Diphoda * LECA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  4. Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency

    Science.gov (United States)

    Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi

    2012-01-01

    Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199

  5. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    Science.gov (United States)

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  6. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  7. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.

    Science.gov (United States)

    Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V

    2008-12-01

    The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.

  8. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    Science.gov (United States)

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2017-10-01

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues ( P ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that eukaryotic initiation factor 5A2 might function in carcinogenesis of cervical carcinoma through an RhoA/ROCK-dependent manner.

  9. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    checkpoints' which are known to regulate the eukaryotic cell cycle may be absent or altered in. E. histolytica. [Banerjee S, Das S and Lohia A 2002 Eukaryotic checkpoints are absent in the cell division cycle of Entamoeba histolytica; J. Biosci. (Suppl.

  10. Energetics and genetics across the prokaryote-eukaryote divide

    Science.gov (United States)

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  11. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    Science.gov (United States)

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. INFLUENCE OF AUTOCHTHONOUS SACCHAROMYCES SPP. STRAINS ON THE SULFUR DIOXIDE CONCENTRATION IN WINE

    Directory of Open Access Journals (Sweden)

    Josip BELJAK

    2008-11-01

    Full Text Available The aim of this work was to study the infl uence of 8 autochthonous yeasts strains on the sulfur dioxide formation. For this purpose grape must from the Traminer, Muller Turgau and Chardonnay grapes was used. Yeast strains used were cultivated at the Department for Microbiology, Faculty of Agriculture, University of Zagreb. Five of them were H2S negative and three H2S positive. Tested yeast strains produced from 19 up to 45 mg/l of sulfur dioxide. The highest sulfur dioxide producer was one of the H2S positive yeast strains. The results indicated the initial sugar concentration to be very important for the ratio of sulfur dioxide production. Yeasts were more effi cient at higher sugar levels.

  13. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence.

    Science.gov (United States)

    Koonin, Eugene V

    2017-02-10

    Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems. This article was reviewed by Mikhail Gelfand and Bojan Zagrovic.

  14. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm.

    Science.gov (United States)

    Wang, Hong; Masters, Sheldon; Edwards, Marc A; Falkinham, Joseph O; Pruden, Amy

    2014-01-01

    Availability of safe, pathogen-free drinking water is vital to public health; however, it is impossible to deliver sterile drinking water to consumers. Recent microbiome research is bringing new understanding to the true extent and diversity of microbes that inhabit water distribution systems. The purpose of this study was to determine how water chemistry in main distribution lines shape the microbiome in drinking water biofilms and to explore potential associations between opportunistic pathogens and indigenous drinking water microbes. Effects of disinfectant (chloramines, chlorine), water age (2.3 days, 5.7 days), and pipe material (cement, iron, PVC) were compared in parallel triplicate simulated water distribution systems. Pyrosequencing was employed to characterize bacteria and terminal restriction fragment polymorphism was used to profile both bacteria and eukaryotes inhabiting pipe biofilms. Disinfectant and water age were both observed to be strong factors in shaping bacterial and eukaryotic community structures. Pipe material only influenced the bacterial community structure (ANOSIM test, P pipe material, and water age on both bacteria and eukaryotes were noted. Disinfectant concentration had the strongest effect on bacteria, while dissolved oxygen appeared to be a major driver for eukaryotes (BEST test). Several correlations of similarity metrics among populations of bacteria, eukaryotes, and opportunistic pathogens, as well as one significant association between mycobacterial and proteobacterial operational taxonomic units, provides insight into means by which manipulating the microbiome may lead to new avenues for limiting the growth of opportunistic pathogens (e.g., Legionella) or other nuisance organisms (e.g., nitrifiers).

  15. Selection and characterization of coal mine autochthonous rhizobia for the inoculation of herbaceous legumes.

    Science.gov (United States)

    Hernández, Anabel González; de Moura, Ginaini Doin; Binati, Renato Leal; Nascimento, Francisco Xavier Inês; Londoño, Diana Morales; Mamede, Ana Carolina Peixoto; da Silva, Emanuela Pille; de Armas, Rafael Dutra; Giachini, Admir José; Rossi, Márcio José; Soares, Cláudio Roberto Fonsêca Sousa

    2017-09-01

    Coal open pit mining in the South of Santa Catarina state (Brazil) was inappropriately developed, affecting approximately 6.700 ha. Re-vegetation is an alternative for the recovery of these areas. Furthermore, the use of herbaceous legumes inoculated with nitrogen fixing bacteria is motivated due to the difficulty implementing a vegetation cover in these areas, mainly due to low nutrient availability. Therefore, the aim of this work was to evaluate, among 16 autochthonous rhizobia isolated from the coal mining areas, those with the greatest potential to increase growth of the herbaceous legumes Vicia sativa and Calopogonium mucunoides. Tests were conducted in greenhouse containing 17 inoculation treatments (16 autochthonous rhizobia + Brazilian recommended strain for each plant species), plus two treatments without inoculation (with and without mineral nitrogen). After 60 days, nodulation, growth, N uptake, and symbiotic efficiency were evaluated. Isolates characterization was assessed by the production of indole acetic acid, ACC deaminase, siderophores, and inorganic phosphate solubilization. The classification of the isolates was performed by 16 S rDNA gene sequencing. Only isolates UFSC-M4 and UFSC-M8 were able to nodulate C. mucunoides. Among rhizobia capable of nodulating V. sativa, only UFSC-M8 was considered efficient. It was found the presence of more than one growth-promoting attributes in the same organism, and isolate UFSC-M8 presented all of them. Isolates were classified as belonging to Rhizobium, Burkholderia and Curtobacterium. The results suggest the inoculation of Vicia sativa with strain UFSC-M8, classified as Rhizobium sp., as a promising alternative for the revegetation of coal mining degraded areas.

  16. Seasonal variation of allochthonous and autochthonous energy inputs in an alpine stream

    Directory of Open Access Journals (Sweden)

    Stefano Fenoglio

    2014-10-01

    Full Text Available Despite the enormous importance of alpine streams, information about many aspects of their ecology is still insufficient. Alpine lotic systems differ in many environmental characteristics from those lower down, for example because above tree line streams drain catchments where terrestrial vegetation is scarce and allochthonous organic input is expected to be small. The main objectives of this study were to examine seasonal variation of autochthonous and allochthonous energetic inputs and their relationship with macroinvertebrate communities in the Po river, an alpine non-glacial stream (NW Italy. For one year, samplings were monthly performed in a homogeneous 100 m stream reach for discharge, autochthonous energy input (benthic chlorophyll a, allochthonous energy input (coarse particulate organic matter, abundance and structure of benthic macroinvertebrate community. Chlorophyll a concentrations were in the range of what reported for other alpine streams, but presented a time-lag with respect to what has been reported for glacial-fed mountain rivers. CPOM amounts were lower than those in lowland, forested streams of the same area but exhibited an intriguing, different seasonal variability, probably reported for the first time, with a maximum in spring and a minimum in winter. We collected 29,950 macroinvertebrates belonging to 13 families and 10 orders. Benthic communities were essentially dominated by Ephemeroptera, Plecoptera and Diptera. Scrapers was the most important FFG, but also Shredders were well represented. Relationships between chlorophyll a concentrations, CPOM availability and macroinvertebrate community characteristics were analysed and discussed considering the existence of different top-down or bottom-up regulation mechanisms. This study confirms that benthic algae constitute an essential resource for macroinvertebrates in alpine streams above the tree line but also underlines the importance of terrestrial organic input, a

  17. Estimating drivers of autochthonous transmission of chikungunya virus in its invasion of the americas.

    Science.gov (United States)

    Perkins, T Alex; Metcalf, C Jessica E; Grenfell, Bryan T; Tatem, Andrew J

    2015-02-10

    Background Chikungunya is an emerging arbovirus that has caused explosive outbreaks in Africa and Asia for decades and invaded the Americas just over a year ago. During this ongoing invasion, it has spread to 45 countries where it has been transmitted autochthonously, infecting nearly 1.3 million people in total. Methods Here, we made use of weekly, country-level case reports to infer relationships between transmission and two putative climatic drivers: temperature and precipitation averaged across each country on a monthly basis. To do so, we used a TSIR model that enabled us to infer a parametric relationship between climatic drivers and transmission potential, and we applied a new method for incorporating a probabilistic description of the serial interval distribution into the TSIR framework. Results We found significant relationships between transmission and linear and quadratic terms for temperature and precipitation and a linear term for log incidence during the previous pathogen generation. The lattermost suggests that case numbers three to four weeks ago are largely predictive of current case numbers. This effect is quite nonlinear at the country level, however, due to an estimated mixing parameter of 0.74. Relationships between transmission and the climatic variables that we estimated were biologically plausible and in line with expectations. Conclusions Our analysis suggests that autochthonous transmission of Chikungunya in the Americas can be correlated successfully with putative climatic drivers, even at the coarse scale of countries and using long-term average climate data. Overall, this provides a preliminary suggestion that successfully forecasting the future trajectory of a Chikungunya outbreak and the receptivity of virgin areas may be possible. Our results also provide tentative estimates of timeframes and areas of greatest risk, and our extension of the TSIR model provides a novel tool for modeling vector-borne disease transmission.

  18. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Autochthonous transmission of Chagas disease in Rio de Janeiro State, Brazil: a clinical and eco-epidemiological study.

    Science.gov (United States)

    Sangenis, Luiz Henrique Conde; Saraiva, Roberto Magalhães; Georg, Ingebourg; de Castro, Liane; dos Santos Lima, Valdirene; Roque, André Luiz R; Xavier, Samanta Cristina das Chagas; Santos, Laura Cristina; Fernandes, Fabiano A; Sarquis, Otília; Lima, Marli Maria; Carvalho-Costa, Filipe Aníbal; Bóia, Márcio Neves

    2015-01-08

    After the control of the main modes of Chagas disease (CD) transmission in most endemic countries, it is important to identify the participation of native sylvatic vectors in CD transmission. Although CD is not considered endemic in Rio de Janeiro State (RJ), Brazil, we identified patients with CD born in RJ and investigated the possible autochthonous transmission in the state. Patients born in RJ and followed in our institution between 1986 and 2011 were retrospectively analyzed. The cases identified as autochthonous transmission were submitted to epidemiological, clinical, serological, parasitological and molecular studies. Sectional field study with serological survey, research of sylvatic reservoirs and vectors was conducted in rural areas where patients were born. Among 1963 patients, 69 (3.5%) were born in RJ. From these, 15 (21.7%) were considered to have acquired the infection by autochthonous transmission. Cardiac form was the commonest form of presentation (60%). In rural areas in RJ northern region, sylvatic cycles of Trypanosoma cruzi and domestic invasion by Triatoma vitticeps were identified, and CD prevalence among inhabitants was 0.74%.TcI genotype was identified in sylvatic reservoirs and vectors. The genotype (mixed infection TcI/TcVI) could be identified in one of the autochthonous cases. The autochthonous vectorial transmission of CD occurs in RJ, probably due to wild cycles of T. cruzi and sylvatic vectors, such as T. vitticeps. Therefore, the health authorities should evaluate if RJ should be included in the original endemic area of CD and CD should be included in the diagnostic work out of cardiomyopathy of patients born in RJ. Moreover, control and educational measures should be put into place in the risk areas.

  20. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    Science.gov (United States)

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed. Copyright © 2013. Published by Elsevier Ltd.

  1. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes.

    Science.gov (United States)

    Nillegoda, Nadinath B; Stank, Antonia; Malinverni, Duccio; Alberts, Niels; Szlachcic, Anna; Barducci, Alessandro; De Los Rios, Paolo; Wade, Rebecca C; Bukau, Bernd

    2017-05-15

    Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

  2. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi

    2014-05-14

    Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes

    Science.gov (United States)

    Saw, Jimmy H.; Spang, Anja; Zaremba-Niedzwiedzka, Katarzyna; Juzokaite, Lina; Dodsworth, Jeremy A.; Murugapiran, Senthil K.; Colman, Dan R.; Takacs-Vesbach, Cristina; Hedlund, Brian P.; Guy, Lionel; Ettema, Thijs J. G.

    2015-01-01

    The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal ‘dark matter’, is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell. PMID:26323759

  4. Are Human Intestinal Eukaryotes Beneficial or Commensals?

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Stensvold, C.R.; Jirků-Pomajbíková, Kateřina; Parfrey, L.W.

    2015-01-01

    Roč. 11, č. 8 (2015), e1005039 E-ISSN 1553-7374 R&D Projects: GA ČR GAP305/12/2261 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : human gut microbiota * Blastocystis * infection * diversity * parasites * impact Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.003, year: 2015

  5. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  6. Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells.

    Science.gov (United States)

    Zhang, Dan; Wang, Yijia; Zhang, Shiwu

    2014-01-01

    Asymmetric cell division is critical for generating cell diversity in low eukaryotic organisms. We previously have reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride demonstrate the ability to use an evolutionarily conserved process for renewal and fast reproduction, which is normally confined to simpler organisms. The budding yeast, Saccharomyces cerevisiae, which reproduces by asymmetric cell division, has long been a model for asymmetric cell division studies. PGCCs produce daughter cells asymmetrically in a manner similar to yeast, in that both use budding for cell polarization and cytokinesis. Here, we review the results of recent studies and discuss the similarities in the budding process between yeast and PGCCs.

  7. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding...... yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells....

  8. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  9. IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems

    Science.gov (United States)

    Brödel, Andreas K.; Sonnabend, Andrei; Roberts, Lisa O.; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  10. Evolution and function of eukaryotic-like proteins from sponge symbionts.

    Science.gov (United States)

    Reynolds, David; Thomas, Torsten

    2016-10-01

    Sponges (Porifera) are ancient metazoans that harbour diverse microorganisms, whose symbiotic interactions are essential for the host's health and function. Although symbiosis between bacteria and sponges are ubiquitous, the molecular mechanisms that control these associations are largely unknown. Recent (meta-) genomic analyses discovered an abundance of genes encoding for eukaryotic-like proteins (ELPs) in bacterial symbionts from different sponge species. ELPs belonging to the ankyrin repeat (AR) class from a bacterial symbiont of the sponge Cymbastela concentrica were subsequently found to modulate amoebal phagocytosis. This might be a molecular mechanism, by which symbionts can control their interaction with the sponge. In this study, we investigated the evolution and function of ELPs from other classes and from symbionts found in other sponges to better understand the importance of ELPs for bacteria-eukaryote interactions. Phylogenetic analyses showed that all of the nine ELPs investigated were most closely related to proteins found either in eukaryotes or in bacteria that can live in association with eukaryotes. ELPs were then recombinantly expressed in Escherichia coli and exposed to the amoeba Acanthamoeba castellanii, which is functionally analogous to phagocytic cells in sponges. Phagocytosis assays with E. coli containing three ELP classes (AR, TPR-SEL1 and NHL) showed a significantly higher percentage of amoeba containing bacteria and average number of intracellular bacteria per amoeba when compared to negative controls. The result that various classes of ELPs found in symbionts of different sponges can modulate phagocytosis indicates that they have a broader function in mediating bacteria-sponge interactions. © 2016 John Wiley & Sons Ltd.

  11. A comparison of autogenous theories for the origin of eukaryotic cells.

    Science.gov (United States)

    Baum, David A

    2015-12-01

    Eukaryotic cells have many unique features that all evolved on the stem lineage of living eukaryotes, making it difficult to reconstruct the order in which they accumulated. Nuclear endosymbiotic theories hold that three prokaryotes (nucleus, cytoplasm, and mitochondrion) came together to form a eukaryotic cell, whereas autogenous models hold that the nucleus and cytoplasm formed through evolutionary changes in a single prokaryotic lineage. Given several problems with nuclear endosymbiotic theories, this review focuses on autogenous models. Until recently all autogenous models assumed an outside-in (OI) topology, proposing that the nuclear envelope was formed from membrane-bound vesicles within the original cell body. Buzz Baum and I recently proposed an inside-out (IO) alternative, suggesting that the nucleus corresponds to the original cell body, with the cytoplasmic compartment deriving from extracellular protrusions. In this review, I show that OI and IO models are compatible with both mitochondria early (ME) or mitochondria late (ML) formulations. Whereas ME models allow that the relationship between mitochondria and host was mutualistic from the outset, ML models imply that the association began with predation or parasitism, becoming mutualistic later. In either case, the mutualistic interaction that eventually formed was probably syntrophic. Diverse features of eukaryotic cell biology align well with the IOME model, but it would be premature to rule out the OIME model. ML models require that phagocytosis, a complex and energy expensive process, evolved before mitochondria, which seems unlikely. Nonetheless, further research is needed, especially resolution of the phylogenetic affinities of mitochondria. © 2015 Botanical Society of America.

  12. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Science.gov (United States)

    Brödel, Andreas K; Sonnabend, Andrei; Roberts, Lisa O; Stech, Marlitt; Wüstenhagen, Doreen A; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.

  13. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  14. Repair of DNA DSB in higher eukaryotes

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Takeda, Y.; Iliakis, G.

    2003-01-01

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a NHEJ apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4, and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK- dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. We studied the role of Ku and DNA-PKcs in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient error-free endjoining observed in such in-vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite that fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA endjoining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing endjoining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts sugggesting the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku suppresses joining of blunt ends and homologous ends with 3' overhangs. We propose that the

  15. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2008-07-01

    Full Text Available Abstract Background Chlamydiae are obligate intracellular bacteria of protists, invertebrates and vertebrates, but have not been found to date in photosynthetic eukaryotes (algae and embryophytes. Genes of putative chlamydial origin, however, are present in significant numbers in sequenced genomes of photosynthetic eukaryotes. It has been suggested that such genes were acquired by an ancient horizontal gene transfer from Chlamydiae to the ancestor of photosynthetic eukaryotes. To further test this hypothesis, an extensive search for proteins of chlamydial origin was performed using several recently sequenced algal genomes and EST databases, and the proteins subjected to phylogenetic analyses. Results A total of 39 proteins of chlamydial origin were retrieved from the photosynthetic eukaryotes analyzed and their identity verified through phylogenetic analyses. The distribution of the chlamydial proteins among four groups of photosynthetic eukaryotes (Viridiplantae, Rhodoplantae, Glaucoplantae, Bacillariophyta was complex suggesting multiple acquisitions and losses. Evidence is presented that all except one of the chlamydial genes originated from an ancient endosymbiosis of a chlamydial bacterium into the ancestor of the Plantae before their divergence into Viridiplantae, Rhodoplantae and Glaucoplantae, i.e. more than 1.1 BYA. The chlamydial proteins subsequently spread through secondary plastid endosymbioses to other eukaryotes. Of 20 chlamydial proteins recovered from the genomes of two Bacillariophyta, 10 were of rhodoplant, and 10 of viridiplant origin suggesting that they were acquired by two different secondary endosymbioses. Phylogenetic analyses of concatenated sequences demonstrated that the viridiplant secondary endosymbiosis likely occurred before the divergence of Chlorophyta and Streptophyta. Conclusion We identified 39 proteins of chlamydial origin in photosynthetic eukaryotes signaling an ancient invasion of the ancestor of the

  16. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  17. Stress response assessment of Lactobacillus sakei strains selected as potential autochthonous starter cultures by flow cytometry and nucleic acid double-staining analyses.

    Science.gov (United States)

    Bonomo, M G; Milella, L; Martelli, G; Salzano, G

    2013-09-01

    The aim of this study was to apply the flow cytometry to Lactobacillus sakei strains, selected as potential autochthonous starters, to investigate dynamics and physiological heterogeneity of microbial behaviour under different stress conditions. A simultaneous nucleic acid double-staining assay was applied to discriminate cell populations in different physiological states after exposure to heat (50 and 55°C) and acid (pH 2·5 and 3·0) stresses. Alive cells with intact membranes, damaged cells still alive but with injured membranes, so with even a recovery ability, and dead cells with a permanent membrane damage were differentiated with a significant increase in damaged cells after stronger stress treatments. The existence and characteristics of subpopulations displaying heterogeneity in particular conditions are highly relevant, because specific subpopulations may show improved survival, changes and dynamics under stress conditions. This assay has potential for physiological research on lactic acid bacteria and for application in the food industry. The assessment of intermediate physiological states in Lb. sakei strains with recovery possibility could be an important criterion for application of potential starter cultures. Application of flow cytometry and characterization of sorted subpopulations may contribute to further understanding of diversity and heterogeneity in physiology of bacterial populations. © 2013 The Society for Applied Microbiology.

  18. [An autochthonous outbreak of dengue type 1 in Tokyo, Japan 2014].

    Science.gov (United States)

    Seki, Naomi; Iwashita, Yuko; Moto, Ryoko; Kamiya, Nobuyuki; Kurita, Masayuki; Tahara, Narumi; Hasegawa, Michiya; Shinkai, Takayuki; Hayashi, Yukinao; Sadamasu, Kenji; Kai, Akemi; Nakajima, Yukiko; Watase, Hirotoshi; Ueda, Takashi; Maeda, Hideo; Kobayashi, Kazushi; Ishizaki, Yasue; Hiromatsu, Kyoko

    2015-01-01

    An outbreak of autochthonous dengue fever was reported in August 2014, with cases suspected mainly from Yoyogi Park in Tokyo. This is the first epidemic of dengue fever in Japan since 1945. From August to October 2014, the following measures were taken to control the outbreak: 1) risk communication and information sharing; 2) active case finding; 3) vector surveillance in affected sites; and 4) laboratory testing. We also reviewed the surveillance data as reported to the National Epidemiological Surveillance of Infectious Diseases during the 44 epidemiological weeks. results: An official dengue fever call center was set up temporarily for the general public and 3,005 calls were received. The Tokyo Metropolitan Government issued 39 press releases regarding patients and nine related to dengue virus (DENV) detection and vector control activities for the media. Confirmed autochthonous dengue fever cases were reported between the 35th and 44th epidemiological weeks. Out of 160 cases of outbreak, 108 (67.5%) confirmed cases were reported in Tokyo. The estimated illness onset dates were between August 9 and October 7, and estimated dates of infections were between August 3 and October 3, 2014. The data suggest that the infective mosquitoes had already been present in Yoyogi Park at the end of July 2014. During the weekly vector surveillance at Yoyogi Park, a total of 1,152 adult mosquitoes, of which 856 (73.3%) were Aedes mosquitoes, were collected over 11 weeks by a light trap with dry ice. DENV was detected from adult Aedes mosquito samples collected on the 2nd, 9th, and 16th of September, 2014. Serum samples from 240 suspected cases were examined at the Tokyo Metropolitan Institute of Public Health, and 78 were positive for the DENV NS1 antigen, DENV-specific IgM antibody, or DENV nucleic acid with reverse transcriptase polymerase chain reaction (RT-PCR) (NS1: 66 cases; IgM: 50 cases; PCR: 57 cases). Genetic analysis of DENV-positive serum and mosquito samples found

  19. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Kalogerakis, N

    2013-07-15

    Oil spills are treated as a widespread problem that poses a great threat to any ecosystem. Following first response actions, bioremediation has emerged as the best strategy for combating oil spills and can be enhanced by the following two complementary approaches: bioaugmentation and biostimulation. Bioaugmentation is one of the most controversial issues of bioremediation. Studies that compare the relative performance of bioaugmentation and biostimulation suggest that nutrient addition alone has a greater effect on oil biodegradation than the addition of microbial products because the survival and degradation ability of microbes introduced to a contaminated site are highly dependent on environmental conditions. Microbial populations grown in rich media under laboratory conditions become stressed when exposed to field conditions in which nutrient concentrations are substantially lower. There is increasing evidence that the best approach to overcoming these barriers is the use of microorganisms from the polluted area, an approach proposed as autochthonous bioaugmentation (ABA) and defined as a bioaugmentation technology that exclusively uses microorganisms indigenous to the sites (soil, sand, and water) slated for decontamination. In this work, we examined the effectiveness of strategies combining autochthonous bioaugmentation with biostimulation for successful remediation of polluted marine environments. Seawater was collected from a pristine area (Agios Onoufrios Beach, Chania) and was placed in a bioreactor with 1% v/v crude oil to facilitate the adaptation of the indigenous microorganism population. The pre-adapted consortium and the indigenous population were tested in combination with inorganic or lipophilic nutrients in the presence (or absence) of biosurfactants (rhamnolipids) during 90-day long experiments. Chemical analysis (gas chromatography-mass spectrometry) of petroleum hydrocarbons confirmed the results of previous work demonstrating that the

  20. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  1. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    Science.gov (United States)

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  2. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  3. Journalistic activity on mobile platforms: a study on autochthonous products and changes to the journalist’s professional profile

    Directory of Open Access Journals (Sweden)

    Suzana Barbosa

    2013-12-01

    Full Text Available This article is centred on a study of the empirical and theoretical-conceptual nature of autochthonous (original products for tablets, with a horizontal multiplatform logic, integrating the web, tablets, smartphones and PDF and page flip versions of printed editions in a dynamic, multimedia continuum launched as part of journalistic organizations’ strategies in compliance with journalistic convergence processes. The methodology includes a qualitative, empirical analysis of actual products (O Globo a Mais, Estadão Noite and Folha10 conducted in an ad hoc exploratory manner, associated to semi-structured interviews with editors and reporters. The results indicate changes to the profile of the professionals involved with production strategies for tablets, inserting new elements in autochthonous product narratives. A 3.0 transposition was simultaneously identified, as the exclusive content for tablet products is transferred to other platforms at a later date.

  4. JOURNALISTIC ACTIVITY ON MOBILE PLATFORMS: A STUDY ON AUTOCHTHONOUS PRODUCTS AND CHANGES TO THE JOURNALIST’S PROFESSIONAL PROFILE

    Directory of Open Access Journals (Sweden)

    Suzana Barbosa

    2013-12-01

    Full Text Available This article is centred on a study of the empirical and theoretical-conceptual nature of autochthonous (original products for tablets, with a horizontal multiplatform logic, integrating the web, tablets, smartphones and PDF and page flip versions of printed editions in a dynamic, multimedia continuum launched as part of journalistic organizations’ strategies in compliance with journalistic convergence processes. The methodology includes a qualitative, empirical analysis of actual products (O Globo a Mais, Estadão Noite and Folha10 conducted in an ad hoc exploratory manner, associated to semi-structured interviews with editors and reporters. The results indicate changes to the profile of the professionals involved with production strategies for tablets, inserting new elements in autochthonous product narratives. A 3.0 transposition was simultaneously identified, as the exclusive content for tablet products is transferred to other platforms at a later date.

  5. Assessment of the Probability of Autochthonous Transmission of Chikungunya Virus in Canada under Recent and Projected Climate Change.

    Science.gov (United States)

    Ng, Victoria; Fazil, Aamir; Gachon, Philippe; Deuymes, Guillaume; Radojević, Milka; Mascarenhas, Mariola; Garasia, Sophiya; Johansson, Michael A; Ogden, Nicholas H

    2017-06-05

    Chikungunya virus (CHIKV) is a reemerging pathogen transmitted by Aedes aegypti and Aedes albopictus mosquitoes. The ongoing Caribbean outbreak is of concern due to the potential for infected travelers to spread the virus to countries where vectors are present and the population is susceptible. Although there has been no autochthonous transmission of CHIKV in Canada, there is concern that both Ae. albopictus and CHIKV will become established, particularly under projected climate change. We developed risk maps for autochthonous CHIKV transmission in Canada under recent (1981–2010) and projected climate (2011–2040 and 2041–2070). The risk for CHIKV transmission was the combination of the climatic suitability for CHIKV transmission potential and the climatic suitability for the presence of Ae. albopictus ; the former was assessed using a stochastic model to calculate R0 and the latter was assessed by deriving a suitability indicator (SIG) that captures a set of climatic conditions known to influence the ecology of Ae. albopictus . R 0 and SIG were calculated for each grid cell in Canada south of 60°N, for each time period and for two emission scenarios, and combined to produce overall risk categories that were mapped to identify areas suitable for transmission and the duration of transmissibility. The risk for autochthonous CHIKV transmission under recent climate is very low with all of Canada classified as unsuitable or rather unsuitable for transmission. Small parts of southern coastal British Columbia become progressively suitable with short-term and long-term projected climate; the duration of potential transmission is limited to 1–2 months of the year. Although the current risk for autochthonous CHIKV transmission in Canada is very low, our study could be further supported by the routine surveillance of Ae. albopictus in areas identified as potentially suitable for transmission given our uncertainty on the current distribution of this species in Canada

  6. Clinical presentation and laboratory findings for the first autochthonous cases of dengue fever in Madeira island, Portugal, October 2012.

    Science.gov (United States)

    Alves, M J; Fernandes, P L; Amaro, F; Osório, H; Luz, T; Parreira, P; Andrade, G; Zé-Zé, L; Zeller, H

    2013-02-07

    An outbreak of dengue fever in Madeira island was reported in 2012. Clinical and laboratory findings of the first two laboratory-confirmed autochthonous cases are reported. Both cases had fever (≥38 °C) and petechial rash. Symptoms also included myalgia, asthenia, nausea, vomiting, anorexia, diffuse abdominal pain, and diarrhoea. The two cases were confirmed by serology and one tested positive for a dengue viral sequence. Dengue virus serotype DEN-1 was identified with probable Central or South American origin.

  7. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  8. Determinants of the intention to purchase an autochthonous local lamb breed: Spanish case study.

    Science.gov (United States)

    Gracia, Azucena; Maza, María Teresa

    2015-12-01

    The aim of the paper is to study consumers' acceptability for a lamb meat from a local autochthonous breed. An intention to purchase model was developed based on the Theory of Planned Behavior (TPB) and estimated using data from a survey conducted in Spain. Results indicated that consumers were willing to buy this lamb meat because 86% of respondents said that they probably/definitely would buy it, although only 23% would if the meat is not available in their usual meat store. Then, the lack of availability in the market is an aspect limiting its consumption. The most important factors explaining the intention to purchase for consumers who would purchase this meat if it were not available in their usual store are the importance attached to the animal breed and their social embeddedness with the local area. An appropriate food policy would be to inform consumers about the importance of the animal breed in the quality of the meat and the local origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Use of autochthonous lactic acid bacteria starters to ferment mango juice for promoting its probiotic roles.

    Science.gov (United States)

    Liao, Xue-Yi; Guo, Li-Qiong; Ye, Zhi-Wei; Qiu, Ling-Yan; Gu, Feng-Wei; Lin, Jun-Fang

    2016-05-18

    Strains of Leuconostoc mesenteroides, Pediococcus pentosaceus, and Lactobacillus brevis were identified from mango fruits by partial 16S rDNA gene sequence. Based on the ability of producing mannitol and diacetyl, Leuconostoc mesenteroides MPL18 and MPL39 were selected within the lactic acid bacteria isolates, and used as mixed starters to ferment mango juice (MJ). Both the autochthonous strains grew well in fermented mango juice (FMJ) and remained viable at 9.81 log cfu mL(-1) during 30 days of storage at 4°C. The content of total sugar of FMJ was lower than that of MJ, while the concentration of mannitol was higher than that of MJ, and the concentration of diacetyl was 3.29 ± 0.12 mg L(-1). Among detected organic acids including citric acid, gallic acid, lactic acid, and acetic acid, only citric acid and gallic acid were found in MJ, while all detected organic acids were found in FMJ. The concentration of lactic acid of FMJ was the highest (78.62 ± 13.66 mM) among all detected organic acids. The DPPH radical scavenging capacity of FMJ was higher than that of MJ. Total phenolic compounds were better preserved in FMJ. The acidity and sweetness had a noticeable impact on the overall acceptance of the treated sample.

  10. Improvement of Ayran quality by the selection of autochthonous microbial cultures.

    Science.gov (United States)

    Baruzzi, Federico; Quintieri, Laura; Caputo, Leonardo; Cocconcelli, PierSandro; Borcakli, Mehlika; Owczarek, Lubomiła; Jasińska, Urszula T; Skąpska, Sylwia; Morea, Maria

    2016-12-01

    Ayran is a traditional Turkish milk drink which is fermented and salted. Inadequate production and storage conditions contribute to its variable organoleptic quality and stability during shelf-life. A thorough physico-chemical, nutritional and microbial characterization of artisanal Ayran was carried out in order to standardize its overall quality without altering its original traits. Ayran microbial ecosystem was largely dominated by Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LDB). High counts of other lactic acid bacteria species, including Lactobacillus helveticus (LH), Lactobacillus fermentum (LF), and Lactobacillus paracasei (LP), were also found. Selected LDB, LP and LH strains grew well in milk displaying fast acidification and high proteolysis, differently from ST and LF strains that did not cause noticeable changes. A selected autochthonous three-strain culture (TSC), composed of one strain of LDB, LP and ST, was applied for the pilot-scale production of traditional Ayran. The Ayran produced with this TSC resulted in the most extensive shelf-life (one month) and in the best terms of its nutritional and sensory quality nevertheless altering its typical pleasant yogurt and cottage cheese notes. This TSC is at disposal of SMEs who need to standardize the overall quality of this traditional fermented milk, preserving its typical traits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The potential of autochthonous microbial culture encapsulation in a confined environment for phenol biodegradation.

    Science.gov (United States)

    Azaizeh, Hassan; Kurzbaum, Eyal; Said, Ons; Jaradat, Husain; Menashe, Ofir

    2015-10-01

    Olive mill wastewater (OMWW) is claimed to be one of the most polluting effluents produced by agro-food industries, providing high contaminants load that encase cytotoxic agents such as phenolic and polyphenolic compounds. Therefore, a significant and continuous stress episode is induced once the mixed liquor of the wastewater treatment plants (WWTP's) is being exposed to OMWW. The use of bio-augmentation treatment procedures can be useful to eliminate or reduce such stress episodes. In this study, we have estimated the use of autochthonous biomass implementation within small bioreactor platform (SBP) particles as a bio-augmentation method to challenge against WWTPs stress episodes. Our results showed that SBP particles significantly reduced the presence of various phenolics: tannic, gallic and caffeic acid in a synthetic medium and in crude OMWW matrix. Moreover, the SBP particles succeeded to biodegrade a very high concentration of phenol blend (3000 mg L(-1)). Our findings indicated that the presence of the SBP microfiltration membrane has reduced the phenol biodegradation rate by 50 % compared to the same suspended culture. Despite the observed reduction in biodegradation rate, encapsulation in a confined environment can offer significant values such as overcoming the grazing forcers and dilution, thus achieving a long-term sufficient biomass. The potential for reducing stress episodes caused by cytotoxic agents through bio-augmentation treatment procedure using the SBP technology is discussed.

  12. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia)

    Science.gov (United States)

    Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.

    2017-12-01

    A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.

  14. Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Anne Dell

    2010-01-01

    Full Text Available Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i oligosaccharyltransferase (OST-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.

  15. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    Science.gov (United States)

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  16. Crystal structure of eukaryotic ribosome and its complexes with inhibitors

    Science.gov (United States)

    Yusupova, Gulnara; Yusupov, Marat

    2017-01-01

    A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome—the high-eukaryote–specific long ribosomal RNA segments (about 1MDa)—remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved. This article is part of the themed issue ‘Perspectives on the ribosome’. PMID:28138070

  17. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  18. Energide-cell body as smallest unit of eukaryotic life.

    Science.gov (United States)

    Baluška, František; Lyons, Sherrie

    2018-02-21

    The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus. The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary eukaryotic unit known also as the Energide-cell body. As for all other endosymbiotic organelles, new Energides are generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus to generate de novo the cell periphery apparatus. We suggest that Virchow's tenet Omnis cellula e cellula should be updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.

  19. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  20. Dengue Virus Infection inAedes albopictusduring the 2014 Autochthonous Dengue Outbreak in Tokyo Metropolis, Japan.

    Science.gov (United States)

    Kobayashi, Daisuke; Murota, Katsunori; Fujita, Ryosuke; Itokawa, Kentaro; Kotaki, Akira; Moi, Meng Ling; Ejiri, Hiroko; Maekawa, Yoshihide; Ogawa, Kohei; Tsuda, Yoshio; Sasaki, Toshinori; Kobayashi, Mutsuo; Takasaki, Tomohiko; Isawa, Haruhiko; Sawabe, Kyoko

    2018-03-19

    In 2014 in Japan, 162 autochthonous dengue cases were reported for the first time in nearly 70 years. Here, we report the results of the detection and isolation of dengue virus (DENV) from mosquitoes collected in Tokyo Metropolis in 2014 and 2015. The phylogenetic relationship among DENV isolates from mosquitoes and from patients based on both the entire envelope gene and whole coding sequences was evaluated. Herein, 2,298 female and 956 male Aedes albopictus mosquitoes were collected at six suspected locations of DENV infection in Tokyo Metropolis from August to October in 2014 and grouped into 124 and 35 pools, respectively, for viral genome detection and DENV isolation. Dengue virus RNA was detected using reverse transcription polymerase chain reaction and TaqMan assays from 49 female pools; 16 isolates were obtained using C6/36 and Vero cells. High minimum infection rates (11.2-66.7) persisted until mid-September. All DENV isolates belonged to the genotype I in serotype 1 (DENV-1), and its sequences demonstrated > 99% homology to the sequence of the DENV isolated from a patient in the vicinity of Tokyo Metropolis in 2014. Therefore, Ae. albopictus was a major DENV vector, and a single DENV-1 strain circulated in Tokyo Metropolis in 2014. Dengue virus was not detected from male mosquitoes in 2014 and wild larvae in April 2015. Thus, the possibility of both vertical transmission and overwintering of DENV was extremely low, even in dengue-epidemic areas. This study reports the first entomological information on a dengue outbreak in a temperate region, where no Aedes aegypti mosquitoes are distributed.

  1. The application of autochthonous potential of probiotic lactobacillus plantarum 564 in fish oil fortified yoghurt production

    Directory of Open Access Journals (Sweden)

    Radulović Zorica

    2014-01-01

    Full Text Available The objective of this work was to investigate the survival of autochthonous, potentially probiotic bacteria Lactobacillus plantarum 564, and the influence of long-chain polyunsaturated fatty acid omega-3 (omega-3 PUFA fish oil fortification on the sensory quality of yoghurt. Three variants of yoghurt were produced using starter cultures of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus (Chr. Hansen, Denmark, and the potentially probiotic Lactobacillus plantarum 564 (Culture Collection of the Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade as follows: (1 without omega-3 PUFA; (2 with 100 mg/l omega-3 PUFA; and (3 with 200mg/l omega-3 PUFA. The survival of potential probiotic Lb. plantarum 564, the changes of starter bacteria counts, changes of pH values, as well as sensory evaluation, were examined during 3 weeks of yoghurt storage. Cells of Lb. plantarum 564 were maintained at >108 cfug−1. Starter bacteria counts were >107 cfug−1 for streptococci and >106 cfug−1 for lactobacilli. The changes of pH were within normal pH of fermented milks. Sensory evaluation showed that all variants of yoghurt produced with Lb. plantarum 564 and 2 concentrations of omega-3 polyunsaturated fatty acids had a high sensory quality (above 90% of maximal quality, and which did not change significantly throughout the examined storage period. Although the sensory quality of the control sample was evaluated as better, the experimental samples fortified with fish oil were also characterized with very acceptable sensory properties. Results of high viability of potential probiotic Lb. plantarum 564, as well as very acceptable yoghurt sensory properties, indicate that this strain can be successfully used in the production of yoghurt fortified with PUFA omega-3 fish oil as a new functional dairy product. [Projekat Ministarstva nauke Republike Srbije, br. III 046010 i br. 046009

  2. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  3. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Directory of Open Access Journals (Sweden)

    Giovanna De Palo

    2013-10-01

    Full Text Available Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems.

  4. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays......DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore...

  5. Construction of a eukaryotic expression plasmid of Humanin.

    Science.gov (United States)

    Luo, Ben-yan; Chen, Xiang-ming; Tang, Min; Chen, Feng; Chen, Zhi

    2005-01-01

    To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. Recombinant plasmid DNA successfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence. A eukaryotic expression plasmid of Humanin was successfully constructed.

  6. Construction of a eukaryotic expression plasmid of Humanin*

    Science.gov (United States)

    Luo, Ben-yan; Chen, Xiang-ming; Tang, Min; Chen, Feng; Chen, Zhi

    2005-01-01

    Objective: To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. Methods: The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. Results: Recombinant plasmid DNA successfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence. Conclusions: A eukaryotic expression plasmid of Humanin was successfully constructed. PMID:15593385

  7. The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont coronympha.

    Science.gov (United States)

    Harper, James T; Gile, Gillian H; James, Erick R; Carpenter, Kevin J; Keeling, Patrick J

    2009-08-11

    For the majority of microbial eukaryotes (protists, algae), there is no clearly superior species concept that is consistently applied. In the absence of a practical biological species concept, most species and genus level delineations have historically been based on morphology, which may lead to an underestimate of the diversity of microbial eukaryotes. Indeed, a growing body of molecular evidence, such as barcoding surveys, is beginning to support the conclusion that significant cryptic species diversity exists. This underestimate of diversity appears to be due to a combination of using morphology as the sole basis for assessing diversity and our inability to culture the vast majority of microbial life. Here we have used molecular markers to assess the species delineations in two related but morphologically distinct genera of uncultivated symbionts found in the hindgut of termites. Using single-cell isolation and environmental PCR, we have used a barcoding approach to characterize the diversity of Coronympha and Metacoronympha symbionts in four species of Incisitermes termites, which were also examined using scanning electron microscopy and light microcopy. Despite the fact that these genera are significantly different in morphological complexity and structural organisation, we find they are two life history stages of the same species. At the same time, we show that the symbionts from different termite hosts show an equal or greater level of sequence diversity than do the hosts, despite the fact that the symbionts are all classified as one species. The morphological information used to describe the diversity of these microbial symbionts is misleading at both the genus and species levels, and led to an underestimate of species level diversity as well as an overestimate of genus level diversity. The genus 'Metacoronympha' is invalid and appears to be a life history stage of Coronympha, while the single recognized species of Coronympha octonaria inhabiting these four

  8. The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont coronympha.

    Directory of Open Access Journals (Sweden)

    James T Harper

    Full Text Available BACKGROUND: For the majority of microbial eukaryotes (protists, algae, there is no clearly superior species concept that is consistently applied. In the absence of a practical biological species concept, most species and genus level delineations have historically been based on morphology, which may lead to an underestimate of the diversity of microbial eukaryotes. Indeed, a growing body of molecular evidence, such as barcoding surveys, is beginning to support the conclusion that significant cryptic species diversity exists. This underestimate of diversity appears to be due to a combination of using morphology as the sole basis for assessing diversity and our inability to culture the vast majority of microbial life. Here we have used molecular markers to assess the species delineations in two related but morphologically distinct genera of uncultivated symbionts found in the hindgut of termites. METHODOLOGY/PRINCIPAL FINDINGS: Using single-cell isolation and environmental PCR, we have used a barcoding approach to characterize the diversity of Coronympha and Metacoronympha symbionts in four species of Incisitermes termites, which were also examined using scanning electron microscopy and light microcopy. Despite the fact that these genera are significantly different in morphological complexity and structural organisation, we find they are two life history stages of the same species. At the same time, we show that the symbionts from different termite hosts show an equal or greater level of sequence diversity than do the hosts, despite the fact that the symbionts are all classified as one species. CONCLUSIONS/SIGNIFICANCE: The morphological information used to describe the diversity of these microbial symbionts is misleading at both the genus and species levels, and led to an underestimate of species level diversity as well as an overestimate of genus level diversity. The genus 'Metacoronympha' is invalid and appears to be a life history stage of

  9. Construction of a eukaryotic expression plasmid of Humanin*

    OpenAIRE

    Luo, Ben-yan; Chen, Xiang-ming; Tang, Min; Chen, Feng; Chen, Zhi

    2004-01-01

    Objective: To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. Methods: The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. Results: Recombinant plasmid DNA successfully produced a band whic...

  10. Differential utilization of allochthonous and autochthonous carbon by aquatic insects of two shrub-steppe desert spring-streams: A stable carbon isotope analysis and critique of the method

    Energy Technology Data Exchange (ETDEWEB)

    Mize, A. L. [Old Dominion Univ., Norfolk, VA (United States)

    1993-06-01

    The purpose of this study is to assess whether the carbon supporting stream food webs comes principally from terrestrial sources or is produced within the stream. Lacking data to resolve the allochthonous/autochthonous issue with any finality, stream ecologists have alternately postulated that stream carbon was principally autochthonous or principally allochthonous. Others argued that autochthonous and allochthonous carbon resources cannot be separated and that the allochthonous/autochthonous dependence issue is unresolvable. Many investigators have seized upon stable carbon isotopes technology as the tool to resolve the controversy. Unfortunately most investigators have conceded that the results are rarely quantitative and that the qualitative relationships are ambiguous. This study points out the fallacies of trying to conjure single isotopic values for either allochthonous or autochthonous carbon. It suggests that stable carbon isotope technology is not reliable in establishing specific consumer/food source relations and that it is not suitable for assessing allochthonous/autochthonous carbon dependence in freshwater streams.

  11. Eukaryotic Community Distribution and Its Relationship to Water Physicochemical Parameters in an Extreme Acidic Environment, Río Tinto (Southwestern Spain)†

    Science.gov (United States)

    Aguilera, Angeles; Manrubia, Susanna C.; Gómez, Felipe; Rodríguez, Nuria; Amils, Ricardo

    2006-01-01

    The correlation between water physicochemical parameters and eukaryotic benthic composition was examined in Río Tinto. Principal component analysis showed a high inverse relationship between pH and most of the heavy metals analyzed as well as Dunaliella sp., while Chlamydomonas sp. abundance was positively related. Zn, Cu, and Ni clustered together and showed a strong inverse correlation with the diversity coefficient and most of the species analyzed. These eukaryotic communities seem to be more influenced by the presence of heavy metals than by the pH. PMID:16885283

  12. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.

    Science.gov (United States)

    Abrahamian, Melania; Kagda, Meenakshi; Ah-Fong, Audrey M V; Judelson, Howard S

    2017-12-04

    , along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.

  13. Evaluation of reactions of commercial and autochthonous apple cultivars to common diseases in Serbia under natural infection

    Directory of Open Access Journals (Sweden)

    Balaž Jelica

    2017-01-01

    Full Text Available This study presents the results of a multiple-year evaluation (1991-1996; 2005-2007 of susceptibility of more than 100 apple cultivars to Venturia inaequalis, Podosphaera leucotricha and Erwinia amylovora under agroecological conditions existing in Serbia. Some of the most popular cultivars were found highly susceptible to V. inaequalis (Cripps Pink, Mutsu, Gloster 69, Wellspur; while Golden Delicious, Richared, Gala, Čačanska pozna, Čadel and Jonagold were susceptible; Idared, Granny Smith and Jonathan moderately susceptible; Lord Lamburne and London Pepping, as well as several autochthonous cultivars were moderately resistant; and a group of resistant cultivars included Prima, Priscilla, Williams Pride, Dayton, Enterprise, Gold Rush, Golden Orange, many of the Re-cultivars (Germany, as well as Baujade, Selena, Dukát, Produkta, Topaz, some older cvs. (Worcester Pearmain, Merton Worcester, James Grieve, Akane, Astilish, Astrachan Red and Discovery, some Co-op selections (USA and NS hybrids (Serbia. Regarding powdery mildew, Idared and Jonathan were highly susceptible; Gala, Akane, Jonagold, Priscilla, Mutsu, Čačanska pozna, Golden Delicious, Granny Smith, Čadel and GoldRush were susceptible; Wellspur, Astrachan Red, Richared, Jonadel, Dayton and several autochthonous cultivars were moderately susceptible; Lord Lamburne, Astlisch, Prima, Champagne Reinette, Discovery and many autochthonous cultivars were moderately resistant; while most Re-cvs. (Germany, several cultivars from the Czech Republic, some selections from the USA and UK and most NS hybrids (Serbia were resistant. Also, some cultivars showed variable susceptibility depending on location (Williams Pride, Gloster 69, Baujade and Produkta. E. amylovora was observed only in 2007 and at relatively low intensity (up to 12% infection. The highest disease severity was observed on cv. Elstar, then Granny Smith, Idared and Jonagored; while the lowest was found on Red Chief and Hapke apple

  14. Hyper-IL-15 suppresses metastatic and autochthonous liver cancer by promoting tumour-specific CD8+ T cell responses.

    Science.gov (United States)

    Cheng, Liang; Du, Xuexiang; Wang, Zheng; Ju, Jianqi; Jia, Mingming; Huang, Qibin; Xing, Qiao; Xu, Meng; Tan, Yi; Liu, Mingyue; Du, Peishuang; Su, Lishan; Wang, Shengdian

    2014-12-01

    Liver cancer has a very dismal prognosis due to lack of effective therapy. Here, we studied the therapeutic effects of hyper-interleukin15 (hyper-IL-15), which is composed of IL-15 and the sushi domain of the IL-15 receptor α chain, on metastatic and autochthonous liver cancers. Liver metastatic tumour models were established by intraportally injecting syngeneic mice with murine CT26 colon carcinoma cells or B16-OVA melanoma cells. Primary hepatocellular carcinoma (HCC) was induced by diethylnitrosamine (DEN). A hydrodynamics-based gene delivery method was used to achieve sustained hyper-IL-15 expression in the liver. Liver gene delivery of hyper-IL-15 robustly expanded CD8(+) T and NK cells, leading to a long-term (more than 40 days) accumulation of CD8(+) T cells in vivo, especially in the liver. Hyper-IL-15 treatment exerted remarkable therapeutic effects on well-established liver metastatic tumours and even on DEN-induced autochthonous HCC, and these effects were abolished by depletion of CD8(+) T cells but not NK cells. Hyper-IL-15 triggered IL-12 and interferon-γ production and reduced the expression of co-inhibitory molecules on dendritic cells in the liver. Adoptive transfer of T cell receptor (TCR) transgenic OT-1 cells showed that hyper-IL-15 preferentially expanded tumour-specific CD8(+) T cells and promoted their interferon-γ synthesis and cytotoxicity. Liver delivery of hyper-IL-15 provides an effective therapy against well-established metastatic and autochthonous liver cancers in mouse models by preferentially expanding tumour-specific CD8(+) T cells and promoting their anti-tumour effects. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  16. The biology of eukaryotic promoter prediction - a review

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1999-01-01

    Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance...

  17. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    a BLAST search of all these sequences against a database containing sequences of a host genome (e.g. human genome) will take enormous amount of time and computing resources. In this article, we present a novel alignment-free algorithm, called Eu-Detect, that can detect eukaryotic sequences in metagenomic data ...

  18. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    species but also from accidental contamination from the genome of eukaryotic host cells. The latter scenario generally occurs in the case of host-associated metagenomes, e.g. microbes living in human gut. In such cases, one needs to identify and remove contaminating host DNA sequences, since the latter sequences will ...

  19. Recognition of extremophilic archaeal viruses by eukaryotic cells

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur

    2016-01-01

    Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration...

  20. Tracking Eukaryotic Production and Burial Through Time with Zinc Isotopes

    Science.gov (United States)

    Tang, T. Y. S.; Planavsky, N.; Owens, J. D.; Love, G. D.; Lyons, T.; Peterson, L. C.; Knoll, A. H.; Dupont, C. L.; Reinhard, C.; Zumberge, A.

    2015-12-01

    Zinc is an important, often co-limiting nutrient for eukaryotes in the oceans today. Given the importance of Zn in the modern oceans, we developed a Zn isotope approach to track the extent of Zn limitation and eukaryotic production through Earth's history. Specifically, we use the isotopic systematics of the pyrite (δ66Znpyr), rock extracts (bitumen) and kerogen pyrolysate (δ66Znorg) within euxinic black shales. We show that δ66Znpyr of euxinic core-top muds from the Cariaco basin capture the global deep seawater signature, validating its use as a seawater proxy. Additionally, we propose that Δ66Znpyr-org can be used to track surface water zinc bioavailability. Detailed studies of short-lived oceanic anoxic events such as Cretaceous OAE2, which punctuate an otherwise dominantly oxic Phanerozoic world, exhibit dramatic shifts in seawater δ66Zn and organic bound zinc. Such perturbations are consistent with the demise of eukaryotes under a nitrogen stressed regime, in which cyanobacteria carry the competitive advantage. Contradictory to previous models, however, our data suggest that zinc remained largely bioavailable throughout these anoxic intervals despite significant drawdown of the global reservoir. The framework developed from studies of the modern, Cenozoic, and Mesozoic can be used to track the Precambrian evolution of the marine Zn cycle and the rise of eukaryotic algae to ecological dominance.

  1. The emerging roles of inositol pyrophosphates in eukaryotic cell ...

    Indian Academy of Sciences (India)

    These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome ...

  2. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic data sets, red bars represent.

  3. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    It has also been shown that although this organism contains sequence homologs of genes which are known to control the cell cycle of most eukaryotes, these genes may be structurally altered and their equivalent function yet to be demonstrated in amoeba. The available information suggests that surveillance mechanisms ...

  4. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  5. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  6. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    are known to control the cell cycle of most eukaryotes, these genes may be structurally altered and their equiva- lent function yet to be ... points controlling the cell division of these organisms? Is the cell division cycle of these organisms ..... mitotic-phase inhibitor and may become a useful tool for studies on the relationship ...

  7. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green...

  8. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  9. Exploring the behavior of small eukaryotic gene networks

    NARCIS (Netherlands)

    Bruggeman, F.J.; Oancea, I.; van Driel, R.

    2008-01-01

    Analysis of the genome organization of higher eukaryotes indicates that it contains many clusters of functionally related genes. In these clusters, the activity of a single gene is regulated hierarchically at a local gene-level and a global cluster-level. Whether a single gene can be activated by a

  10. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic ...

  11. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes

    NARCIS (Netherlands)

    Rujano, Maria A.; Bosveld, Floris; Salomons, Florian A.; Dijk, Freark; van Waarde, Maria A. W. H.; van der Want, Johannes J. L.; de Vos, Rob A. I.; Brunt, Ewout R.; Sibon, Ody C. M.; Kampinga, Harm H.

    2006-01-01

    Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in

  12. Diversity and biotechnological potential of microorganisms associated with marine sponges.

    Science.gov (United States)

    Fuerst, John A

    2014-09-01

    Marine sponges harbor diverse microbial communities, encompassing not only three domains of life including Bacteria, Archaea and eukaryotes, but also many different phyla within Bacteria. This diversity implies a rich source for biodiscovery of new natural products. Here, we review recent progress in our understanding of this genetic diversity, its retrieval via culture and genomic approaches, and its implications for chemical diversity and other biotechnology applications of sponge microorganisms and their genes.

  13. Patterns of intron gain and conservation in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-10-01

    Full Text Available Abstract Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed

  14. Occurrence of two autochthonous cases of American cutaneous leishmaniasis in the neighborhood of Caju, city of Rio de Janeiro, Brazil.

    Science.gov (United States)

    Bernardes Filho, Fred; Bonatto, Danielle Cristine; Martins, Gustavo; Maier, Leonardo de Medeiros; Nery, José Augusto da Costa; Azulay-Abulafia, Luna

    2014-01-01

    American cutaneous leishmaniasis is in full geographic expansion in Brazil and it is considered among the infectious and parasitic diseases of utmost importance worldwide, not only by its frequency, but mainly by therapeutic difficulties, deformities and sequelae that may result. In the state of Rio de Janeiro, the first autochthonous case of American cutaneous leishmaniasis was registered by Rabello in 1913. The authors report two cases of the disease in the region around the Cemetery São Francisco Xavier, in the Caju neighborhood, Rio de Janeiro city, and emphasize the need for actions that aim to early diagnosis and treatment of American cutaneous leishmaniasis cases.

  15. Occurrence of two autochthonous cases of American cutaneous leishmaniasis in the neighborhood of Caju, city of Rio de Janeiro, Brazil*

    Science.gov (United States)

    Bernardes Filho, Fred; Bonatto, Danielle Cristine; Martins, Gustavo; Maier, Leonardo de Medeiros; Nery, José Augusto da Costa; Azulay-Abulafia, Luna

    2014-01-01

    American cutaneous leishmaniasis is in full geographic expansion in Brazil and it is considered among the infectious and parasitic diseases of utmost importance worldwide, not only by its frequency, but mainly by therapeutic difficulties, deformities and sequelae that may result. In the state of Rio de Janeiro, the first autochthonous case of American cutaneous leishmaniasis was registered by Rabello in 1913. The authors report two cases of the disease in the region around the Cemetery São Francisco Xavier, in the Caju neighborhood, Rio de Janeiro city, and emphasize the need for actions that aim to early diagnosis and treatment of American cutaneous leishmaniasis cases. PMID:25184938

  16. Rheology of spreadable goat cheese made with autochthonous lactic cultures differing in their ability to produce exopolysaccharides

    Directory of Open Access Journals (Sweden)

    Frau Silvia Florencia

    2013-06-01

    Full Text Available The aim of this study was to compare the rheology of spreadable cheeses elaborated with autochthonous lactic starter cultures without the addition of exopolysaccharide-producing strain in the same starter with exopolysaccharide-producing strain. From a rheological standpoint, both samples were characterized as weak viscoelastic gels and pseudoplastic products. It was concluded that cheese made with exopolysaccharide-producing strain showed smaller G', G", and η* values over the range of frequencies studied and smaller critic stress values than the cheese without exopolysaccharide-producing strain. The results obtained indicate that cheeses without exopolysaccharide-producing strain need to be added with any texture enhancer product.

  17. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    Directory of Open Access Journals (Sweden)

    Angeles Aguilera

    2013-07-01

    Full Text Available A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain.

  18. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    Science.gov (United States)

    Angeles Aguilera, Angeles

    2013-07-01

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

  19. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing.

    Science.gov (United States)

    Li, Sanshu; Breaker, Ronald R

    2013-03-01

    Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (∼530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (α) located near a 5' splice site, which greatly increases use of this 5' splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches.

  20. Eukaryotic organisms in extreme acidic environments, the río tinto case.

    Science.gov (United States)

    Aguilera, Angeles

    2013-07-04

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

  1. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes.

    Science.gov (United States)

    Wolf, Thomas; Shelest, Vladimir; Nath, Neetika; Shelest, Ekaterina

    2016-04-15

    Secondary metabolites (SM) are structurally diverse natural products of high pharmaceutical importance. Genes involved in their biosynthesis are often organized in clusters, i.e., are co-localized and co-expressed. In silico cluster prediction in eukaryotic genomes remains problematic mainly due to the high variability of the clusters' content and lack of other distinguishing sequence features. We present Cluster Assignment by Islands of Sites (CASSIS), a method for SM cluster prediction in eukaryotic genomes, and Secondary Metabolites by InterProScan (SMIPS), a tool for genome-wide detection of SM key enzymes ('anchor' genes): polyketide synthases, non-ribosomal peptide synthetases and dimethylallyl tryptophan synthases. Unlike other tools based on protein similarity, CASSIS exploits the idea of co-regulation of the cluster genes, which assumes the existence of common regulatory patterns in the cluster promoters. The method searches for 'islands' of enriched cluster-specific motifs in the vicinity of anchor genes. It was validated in a series of cross-validation experiments and showed high sensitivity and specificity. CASSIS and SMIPS are freely available at https://sbi.hki-jena.de/cassis thomas.wolf@leibniz-hki.de or ekaterina.shelest@leibniz-hki.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  2. Resilience of freshwater communities of small microbial eukaryotes undergoing severe drought events

    Directory of Open Access Journals (Sweden)

    Marianne eSimon

    2016-05-01

    Full Text Available Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range 0.2-5 µm in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for two years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems.

  3. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    Science.gov (United States)

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  4. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria*

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. PMID:26269598

  5. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria.

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-09-25

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    2010-08-01

    Full Text Available Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs of Burkholderia thailandensis (B. thai in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.

  7. Eukaryotes dominate new production in the Sargasso Sea

    Science.gov (United States)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Casey, J. R.; Sigman, D. M.

    2010-12-01

    The vast subtropical ocean gyres are considered unproductive “deserts” due to the extremely low concentrations of essential nutrients in their sunlit surface waters. Because of intense upper ocean stratification, phytoplankton growth in the subtropical gyres is limited by the slow supply of nitrate from below, and is assumed to be supported predominantly by “regenerated” nitrogen (N): ammonium and other reduced N sources recycled in surface waters. The phytoplankton assemblage of the subtropical Sargasso Sea is dominated by the prokaryotic cyanobacteria, Prochlorococcus and Synechococcus, which occur in very high cell numbers compared to the rarer, and usually larger, eukaryotic algae. Coupling flow cytometry and a new high-sensitivity method for N isotope analysis, we measure the 15N/14N of major phytoplankton taxa and other biologically distinct particle populations collected from the surface waters of the Sargasso Sea during the stratified summer period. We find that the cyanobacteria and eukaryotic phytoplankton show distinct N isotope signatures, indicating that they utilize different sources of N for growth. Prochlorococcus and Synechococcus have a uniformly low 15N/14N, consistent with the expectation that these phytoplankton rely on regenerated N. However, the 15N/14N of eukaryotic phytoplankton is higher and more variable, with a mean 15N/14N comparable to the new nitrate supply from below, indicating that eukaryotes dominate the consumption of this nitrate and rely on it for more than half of their N requirement. Using our measured 15N/14N values for the various sorted autotrophic populations, we calculate eukaryote-specific summer f-ratios of 0.6-0.67 and total community summer f-ratios of 0.15-0.23. These values are higher than those based on comparison of primary production and sediment-trap derived organic carbon (C) export, and agree well with annual f-ratio estimates implied by geochemical tracers. The high 15N/14N of eukaryotic biomass can

  8. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa.

    Science.gov (United States)

    Borgonie, G; Linage-Alvarez, B; Ojo, A O; Mundle, S O C; Freese, L B; Van Rooyen, C; Kuloyo, O; Albertyn, J; Pohl, C; Cason, E D; Vermeulen, J; Pienaar, C; Litthauer, D; Van Niekerk, H; Van Eeden, J; Sherwood Lollar, B; Onstott, T C; Van Heerden, E

    2015-11-24

    Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in palaeometeoric fissure water up to 12,300 yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system.

  9. Evolutionary Pattern of N-Glycosylation Sequon Numbers in Eukaryotic ABC Protein Superfamilies

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Buus, Ole Thomsen; Wollenweber, Bernd

    2010-01-01

    and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average......, but the sequon density was significantly lower owing to the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher sequon density, and both serine and threonine containing sequons (NXS and NXT) have been positively selected...... higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord- ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and the results are discussed in an evolutionary perspective...

  10. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.

  11. Behavior of Staphylococcus aureus and autochthone microbiota in fresh sausages added of sodium nitrite and stored under refrigeration

    Directory of Open Access Journals (Sweden)

    Lucyanne Maria Moraes Correia

    2014-10-01

    Full Text Available Fresh sausages are cured meat products that may be contaminated with Staphylococcus aureus during the manufacturing procedure, which is frequently related with inadequate handling practices. The use of nitrite in meat products has proven efficacy against Clostridium botulinum, and studies indicate that bactericidal action against S. aureus depends on factors that are intrinsic and extrinsic to the product. The objective of the present study was to evaluate the effect of nitrite concentration, and pH on S. aureus and psychrotrophic autochthone microbiota in fresh sausages stored at different times and temperatures. Fresh sausage were produced at nitrite concentrations 50, 150 and 200ppm and contaminated with S. aureus. The sausages were storage at refrigeration (7 and 12°C and the quantification of S. aureus and psychrotrophic microorganisms was carried out on days 0, 2, 4, 7, and 10. Results showed that nitrite concentrations and the temperatures used had minimal effect on the multiplication of S. aureus and psychrotrophic autochthone microbiota. Final counts depended only on the length of storage: at the end of 10 days, counts were statistically similar in the different groups, showing that temperature and nitrite concentrations used did not control microbial growth effectively. It is suggested that the product should be stored below 7°C or at freezing temperatures for greater microbiological stability

  12. Characterization of autochthonous sweet cherry cultivars (Prunus avium L.) of southern Italy for fruit quality, bioactive compounds and antioxidant activity.

    Science.gov (United States)

    Di Matteo, Antonio; Russo, Rosa; Graziani, Giulia; Ritieni, Alberto; Di Vaio, Claudio

    2017-07-01

    Characterizing germplasm collections of autochthonous cultivars for fruit quality traits could be a successful approach for selection, improvement of organoleptic quality and levels of antioxidants of crop produce, and development of new market opportunities and coherent strategies for conservation and valorization. The aim of the study was the evaluation of fruit physicochemical traits as well as the content of bioactive compounds and the antioxidant capacity in 25 sweet cherry autochthonous cultivars. Cultivars were a source of statistically significant variation for all evaluated traits. Notably, average fruit ascorbate levels ranged from 34.45 to 244.68 µg g -1 fresh weight (FW) , total flavonoids from 1396.40 to 4694.75 µg quercetin equiv. g -1 FW, monomeric anthocyanins from 4.80 to 360.90 µg g -1 FW, and total antioxidant capacity from 1.53 to 2.58 nmol Trolox equiv. mg -1 FW. Fruit profiling of eight cultivars by high-resolution mass spectrometry identified a total of eight different anthocyanins and twenty-five non-anthocyanin polyphenolic compounds - mostly coumaroylquinic acid and neochlorogenic acid. Among the better-performing cultivars for fruit quality traits, Mulegnana Nera and Pagliarella shared high fruit levels of phenolics, flavonoids and antioxidant capacity. This is a forerunner work on the characterization of genetic resources, which is critical to researchers and breeders for exploitation of the genetic potential of cultivars and for their conservation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi.

    Science.gov (United States)

    Cornell, Michael J; Alam, Intikhab; Soanes, Darren M; Wong, Han Min; Hedeler, Cornelia; Paton, Norman W; Rattray, Magnus; Hubbard, Simon J; Talbot, Nicholas J; Oliver, Stephen G

    2007-12-01

    The recent proliferation of genome sequencing in diverse fungal species has provided the first opportunity for comparative genome analysis across a eukaryotic kingdom. Here, we report a comparative study of 34 complete fungal genome sequences, representing a broad diversity of Ascomycete, Basidiomycete, and Zygomycete species. We have clustered all predicted protein-encoding gene sequences from these species to provide a means of investigating gene innovations, gene family expansions, protein family diversification, and the conservation of essential gene functions-empirically determined in Saccharomyces cerevisiae-among the fungi. The results are presented with reference to a phylogeny of the 34 fungal species, based on 29 universally conserved protein-encoding gene sequences. We contrast this phylogeny with one based on gene presence and absence and show that, while the two phylogenies are largely in agreement, there are differences in the positioning of some species. We have investigated levels of gene duplication and demonstrate that this varies greatly between fungal species, although there are instances of coduplication in distantly related fungi. We have also investigated the extent of orthology for protein families and demonstrate unexpectedly high levels of diversity among genes involved in lipid metabolism. These analyses have been collated in the e-Fungi data warehouse, providing an online resource for comparative genomic analysis of the fungi.

  14. Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae.

    Science.gov (United States)

    Eide, D J

    2000-01-01

    Metal ions such as iron, copper, manganese, and zinc are essential nutrients for all eukaryotic microorganisms. Therefore, these organisms possess efficient uptake mechanisms to obtain these nutrients from their extracellular environment. Metal ions must also be transported into intracellular organelles where they function as catalytic and structural cofactors for compartmentalized enzymes. Thus, intracellular transport mechanisms are also present. When present in high levels, metal ions can also be toxic, so their uptake and intracellular transport is tightly regulated at both transcriptional and post-transcriptional levels to limit metal ion overaccumulation and facilitate storage and sequestration. Remarkable molecular insight into these processes has come from recent studies of the yeast Saccharomyces cerevisiae. This organism, which is the primary subject of this chapter, serves as a useful paradigm to understand metal ion metabolism in other eukaryotic microbes.

  15. [Advance of heterologous expression study of eukaryote-origin laccases].

    Science.gov (United States)

    Ning, Na; Tan, Huijun; Sun, Xinxin; Ni, Jinfeng

    2017-04-25

    Laccases are enzymes belonging to the group of multi-copper oxidases. These enzymes are widely distributed in insects, plants, fungi and bacteria. In general, laccases can oxidize an exceptionally high number of substrates, so they have broad applications in textile, pulp, food and the degradation of lignin. However, low yield, low activity and thermo-instability of laccase in nature limit the application of laccase. High efficient heterologous expression of the protein is an effective way for solving this problem. Here, we summarize the research advances of heterologous expression of eukaryote-origin laccases. We focus on the overexpression of eukaryote-origin laccases using different expression system and the method for improving the production yield and enzyme activity in yeast cells. Information provided in this review would be helpful for researchers in the field.

  16. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  17. Starting the protein synthesis machine: eukaryotic translation initiation.

    Science.gov (United States)

    Preiss, Thomas; W Hentze, Matthias

    2003-12-01

    The final assembly of the protein synthesis machinery occurs during translation initiation. This delicate process involves both ends of eukaryotic messenger RNAs as well as multiple sequential protein-RNA and protein-protein interactions. As is expected from its critical position in the gene expression pathway between the transcriptome and the proteome, translation initiation is a selective and highly regulated process. This synopsis summarises the current status of the field and identifies intriguing open questions. Copyright 2003 Wiley Periodicals, Inc.

  18. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  19. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected.

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping.

  20. Structural studies demonstrating a bacteriophage-like replication cycle of the eukaryote-infecting Paramecium bursaria chlorella virus-1

    Science.gov (United States)

    Shimoni, Eyal; Dadosh, Tali; Rechav, Katya; Unger, Tamar

    2017-01-01

    A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1). Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle. PMID:28850602

  1. Structural studies demonstrating a bacteriophage-like replication cycle of the eukaryote-infecting Paramecium bursaria chlorella virus-1.

    Directory of Open Access Journals (Sweden)

    Elad Milrot

    2017-08-01

    Full Text Available A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1. Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle.

  2. Eukaryotic transcriptomics in silico: Optimizing cDNA-AFLP efficiency

    Directory of Open Access Journals (Sweden)

    Wüst Christian

    2009-11-01

    Full Text Available Abstract Background Complementary-DNA based amplified fragment length polymorphism (cDNA-AFLP is a commonly used tool for assessing the genetic regulation of traits through the correlation of trait expression with cDNA expression profiles. In spite of the frequent application of this method, studies on the optimization of the cDNA-AFLP assay design are rare and have typically been taxonomically restricted. Here, we model cDNA-AFLPs on all 92 eukaryotic species for which cDNA pools are currently available, using all combinations of eight restriction enzymes standard in cDNA-AFLP screens. Results In silco simulations reveal that cDNA pool coverage is largely determined by the choice of individual restriction enzymes and that, through the choice of optimal enzyme combinations, coverage can be increased from Conclusion The insights gained from in silico screening of cDNA-AFLPs from a broad sampling of eukaryotes provide a set of guidelines that should help to substantially increase the efficiency of future cDNA-AFLP experiments in eukaryotes. In silico simulations also suggest a novel use of cDNA-AFLP screens to determine the number of transcripts expressed in a target tissue, an application that should be invaluable as next-generation sequencing technologies are adapted for differential display.

  3. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  4. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...

  5. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  6. Molecular epidemiology of Panton-Valentine leukocidin-positive Staphylococcus aureus in Spain: emergence of the USA300 clone in an autochthonous population.

    Science.gov (United States)

    Blanco, Raquel; Tristan, Anne; Ezpeleta, Guillermo; Larsen, Anders Rhod; Bes, Michèle; Etienne, Jérôme; Cisterna, Ramon; Laurent, Frédéric

    2011-01-01

    We characterized all of the Panton-Valentine leukocidin (PVL)-positive Staphylococcus aureus isolates collected between 2005 and 2008 in the Bilbao, Spain, area. For the first time, the USA300 clone is reported as predominant among PVL-positive clones in a European autochthonous population, requiring active monitoring of the incidence of USA300 in Spain and throughout Europe.

  7. Fatty acid composition of lamb meat from the autochthonous Jezersko-Solčava breed reared in different production systems.

    Science.gov (United States)

    Cividini, Angela; Levart, Alenka; Žgur, Silvester; Kompan, Drago

    2014-08-01

    Thirty two autochthonous Jezersko-Solčava lambs were used to investigate the effect of production (pasture vs. stable) and weaning system (suckling vs. weaned) on fatty acid composition of Longissimus dorsi intramuscular fat in a 2 × 2 factorial design. Pasture lambs had lower intramuscular fat concentration (Pproduction system and weaning system was significant mainly for trans C18:1 and trans C18:2 fatty acids. Finally, lamb meat from all four treatments which are traditionally used in rearing of Jezersko-Solčava lambs are favourable from the nutritive point of view, due to their low n-6/n-3 ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Artisanal Vlasina Raw Goat's Milk Cheese: Evaluation and Selection of Autochthonous Lactic Acid Bacteria as Starter Cultures

    Directory of Open Access Journals (Sweden)

    Maja Tolinacki

    2013-01-01

    Full Text Available The aim of this study is the isolation, characterization and identification of autochthonous lactic acid bacteria (LAB from artisanal Vlasina raw goat's milk cheese for the selection of potential starter cultures. Soft white Vlasina cheese was manufactured at a household on the Stara Planina Mountain using traditional techniques without starter cultures. One hundred and forty nine LAB isolates were collected from two samples of Vlasina cheese, designated as BGVL2 (5 days old and BGVL2a (15 days old. The population of LAB in the cheese samples was characterized by phenotype-based assays and presumptively identified using repetitive element palindromic polymerase chain reaction (rep-PCR with the primer (GTG5. Results were confirmed by 16S rDNA sequencing. Among the BGVL2 isolates (56, the most numerous LAB species were Leuconostoc pseudomesenteroides (27 and Lactococcus lactis (26. In 15-day-old BGVL2a (93 isolates, Lactobacillus plantarum (33, Enterococcus durans (26 and Pediococcus pentosaceus (14 were predominant. Lc. lactis ssp. lactis BGVL2-8 showed good acidification ability and the ability to produce antimicrobial compounds, Lb. plantarum BGVL2a-18 had good proteolytic ability and produced exopolysaccharides, while BGVL2-29 and BGVL2-63, which belonged to the species Ln. pseudomesenteroides, utilized citrate and produced diacetyl and acetoin. They appeared to be suitable candidates for inclusion in the starter culture. This study contributed to the understanding of the role of autochthonous LAB in the quality of artisanal cheese and the possibility of using the selected LAB as potential starter cultures for cheese making under controlled conditions.

  10. Exploitation of sweet cherry (Prunus avium L.) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Di Cagno, Raffaella; Surico, Rosalinda Fortunata; Minervini, Giovanna; Rizzello, Carlo Giuseppe; Lovino, Raffaella; Servili, Maurizio; Taticchi, Agnese; Urbani, Sefania; Gobbetti, Marco

    2011-08-01

    Strains of Lactobacillus plantarum, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides subsp. mesenteroides were identified from 8 cultivars of sweet cherry by partial 16S rRNA gene sequence and subjected to typing by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis. Representative isolates from each species and each cultivar were screened based on the kinetics of growth on cherry puree added of (10%, v/v) stem infusion (CP-SI). A protocol for processing and storage of CP-SI, which included fermentation by selected autochthonous P. pentosaceus SWE5 and L. plantarum FP3 (started CP-SI) or spontaneous fermentation (unstarted CP-SI), was set up. Starters grew and remained viable at elevated cell numbers (ca. 9.0 log cfu g(-1)) during 60 days of storage at 4 °C. The number of presumptive lactic acid bacteria of the unstarted CP-SI did not exceed the value of ca. 3.0 log cfu g(-1). Consumption of carbohydrates (e.g., glucose and fructose) by starter lactic acid bacteria was limited as well as it was the lactic acid fermentation. Consumption of organic acids (e.g., malic acid) and free amino acids was evident, especially, throughout storage. Compared to CP-SI before processing, the concentrations of total phenolic compounds and anthocyanins did not vary in the started CP-SI. The concentration of anthocyanins slightly decreased in the unstarted CP-SI. The antioxidant activity, expressed as the scavenging activity toward DPPH radical, was found at highest level in the started CP-SI which approached that found in CP-SI before processing. During storage, viscosity and, especially, color indexes of started CP-SI were higher than those found in the unstarted CP-SI. Fermentation by autochthonous lactic acid bacteria seemed to also positively interfere with the sensory attributes of CP-SI. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    NARCIS (Netherlands)

    Dhonukshe, P.; Grigoriev, I.; Fischer, R.; Tominaga, M.; Robinson, D.G.; Hašek, J.; Paciorek, T.; Petrášek, J.; Seifertová, D.; Tejos, R.; Meisel, L.A.; Zažímalová, E.; Gadella (jr.), T.W.J.; Stierhof, Y.-D.; Ueda, T.; Oiwa, K.; Akhmanova, A.; Brock, R.; Spang, A.; Friml, J.

    2008-01-01

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this

  12. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    Czech Academy of Sciences Publication Activity Database

    Dhonukshe, P.; Grigoriev, I.; Fischer, R.; Tominaga, M.; Robinson, D.G.; Hašek, Jiří; Paciorek, T.; Petrášek, Jan; Seifertová, Daniela; Tejos, R.; Meisel, L.A.; Zažímalová, Eva; Gadella, T.W.J.; Stierhof, Y. D.; Ueda, T.; Oiwa, K.; Akhmanova, A.; Brock, R.; Spang, A.; Friml, J.

    2008-01-01

    Roč. 105, č. 11 (2008), s. 4489-4494 ISSN 0027-8424 R&D Projects: GA ČR GA204/05/0838; GA AV ČR(CZ) IAA601630703; GA MŠk(CZ) LC06034; GA AV ČR KJB600380604 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50380511 Keywords : pin proteins * plant development * vesicle traffic Subject RIV: EE - Microbiology, Virology Impact factor: 9.380, year: 2008

  13. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    NARCIS (Netherlands)

    P. Dhonukshe (Pankaj); I. Grigoriev (Ilya); R. Fischer (Rainer); M. Tominaga (Motoki); D.G. Robinson (David); J. Hašek (Jiří); T. Paciorek (Tomasz); J. Petrášek (Jan); D. Seifertová (Daniela); R. Tejos (Ricardo); L.A. Meisel (Lee); E. Zažímalová (Eva); T.W.J. Gadella (Theodorus); Y.D. Stierhof; T. Ueda (Takashi); K. Oiwa (Kazuhiro); A.S. Akhmanova (Anna); R. Brock (Roland); A. Spang (Anne); J. Friml (Jiří)

    2008-01-01

    textabstractMany aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating

  14. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes.

    NARCIS (Netherlands)

    Dhonukshe, P.; Grigoriev, I.; Fischer, R.; Tominaga, M.; Robinson, D.G.; Hasek, J.; Paciorek, T.; Petrasek, J.; Seifertova, D.; Tejos, R.; Meisel, L.A.; Zazimalova, E.; Gadella, T.W.; Stierhof, Y.D.; Ueda, T.; Oiwa, K.; Akhmanova, A.; Brock, R.E.; Spang, A.; Friml, J.

    2008-01-01

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this

  15. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  16. A Broad Phylogenetic Survey Unveils the Diversity and Evolution of Telomeres in Eukaryotes

    Czech Academy of Sciences Publication Activity Database

    Fulnečková, Jana; Ševčíková, Tereza; Fajkus, Jiří; Lukešová, Alena; Lukeš, Martin; Vlček, Čestmír; Lang, B.F.; Kim, E.; Eliáš, M.; Sýkorová, Eva

    2013-01-01

    Roč. 5, č. 3 (2013), s. 468-483 ISSN 1759-6653 R&D Projects: GA ČR(CZ) GA521/09/1912 Grant - others:GA ČR(CZ) GAP506/10/0705; GA MŠk(CZ) ED1.1.00/02.0068 Program:GA; ED Institutional research plan: CEZ:AV0Z50040702; CEZ:AV0Z60660521 Institutional support: RVO:68081707 ; RVO:60077344 ; RVO:61388971 ; RVO:68378050 Keywords : MOLECULAR PHYLOGENY * SEQUENCE DATA * GENOME Subject RIV: BO - Biophysics; EE - Microbiology, Virology (MBU-M); EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 4.532, year: 2013

  17. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains.

    Science.gov (United States)

    Ortiz, N; Armada, E; Duque, E; Roldán, A; Azcón, R

    2015-02-01

    Autochthonous microorganisms [a consortium of arbuscular-mycorrhizal (AM) fungi and Bacillus thuringiensis (Bt)] were assayed and compared to Rhizophagus intraradices (Ri), Bacillus megaterium (Bm) or Pseudomonas putida (Psp) and non-inoculation on Trifolium repens in a natural arid soil under drought conditions. The autochthonous bacteria Bt and the allochthonous bacteria Psp increased nutrients and the relative water content and decreased stomatal conductance, electrolyte leakage, proline and APX activity, indicating their abilities to alleviate the drought stress. Mycorrhizal inoculation significantly enhanced plant growth, nutrient uptake and the relative water content, particularly when associated with specific bacteria minimizing drought stress-imposed effects. Specific combinations of autochthonous or allochthonous inoculants also contributed to plant drought tolerance by changing proline and antioxidative activities. However, non-inoculated plants had low relative water and nutrients contents, shoot proline accumulation and glutathione reductase activity, but the highest superoxide dismutase activity, stomatal conductance and electrolyte leakage. Microbial activities irrespective of the microbial origin seem to be coordinately functioning in the plant as an adaptive response to modulated water stress tolerance and minimizing the stress damage. The autochthonous AM fungi with Bt or Psp and those allochthonous Ri with Bm or Psp inoculants increased water stress alleviation. The autochthonous Bt showed the greatest ability to survive under high osmotic stress compared to the allochthonous strains, but when single inoculated or associated with Ri or AM fungi were similarly efficient in terms of physiological and nutritional status and in increasing plant drought tolerance, attenuating and compensating for the detrimental effect of water limitation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  19. Interaction of Low Temperature Plasmas with Prokaryotic and Eukaryotic Cells

    Science.gov (United States)

    Laroussi, Mounir

    2008-10-01

    Due to promising possibilities for their use in medical applications such as wound healing, surface modification of biocompatible materials, and the sterilization of reusable heat-sensitive medical instruments, low temperature plasmas and plasma jets are making big strides as a technology that can potentially be used in medicine^1-2. At this stage of research, fundamental questions about the effects of plasma on prokaryotic and eukaryotic cells are still not completely answered. An in-depth understanding of the pathway whereby cold plasma interact with biological cells is necessary before real applications can emerge. In this paper, first an overview of non-equilibrium plasma sources (both low and high pressures) will be presented. Secondly, the effects of plasma on bacterial cells will be discussed. Here, the roles of the various plasma agents in the inactivation process will be outlined. In particular, the effects of UV and that of various reactive species (O3, O, OH) are highlighted. Thirdly, preliminary findings on the effects of plasma on few types of eukaryotic cells will be presented. How plasma affects eukaryotic cells, such as mammalian cells, is very important in applications where the viability/preservation of the cells could be an issue (such as in wound treatment). Another interesting aspect is the triggering of apoptosis (programmed cell death). Some investigators have claimed that plasma is able to induce apoptosis in some types of cancer cells. If successfully replicated, this can open up a novel method of cancer treatment. In this talk however, I will briefly focus more on the wound healing potential of cold plasmas. ^1E. A. Blakely, K. A. Bjornstad, J. E. Galvin, O. R. Monteiro, and I. G. Brown, ``Selective Neuron Growth on Ion Implanted and Plasma Deposited Surfaces'', In Proc. IEEE Int. Conf. Plasma Sci., (2002), p. 253. ^2M. Laroussi, ``Non-thermal Decontamination of Biological Media by Atmospheric Pressure Plasmas: Review, Analysis, and

  20. Evolution of peptidase diversity.

    Science.gov (United States)

    Page, Michael J; Di Cera, Enrico

    2008-10-31

    A wide variety of peptidases associate with vital biological pathways, but the origin and evolution of their tremendous diversity are poorly defined. Application of the MEROPS classification to a comprehensive set of genomes yields a simple pattern of peptidase distribution and provides insight into the organization of proteolysis in all forms of life. Unexpectedly, a near ubiquitous core set of peptidases is shown to contain more types than those unique to higher multicellular organisms. From this core group, an array of eukaryote-specific peptidases evolved to yield well known intracellular and extracellular processes. The paucity of peptidase families unique to higher metazoa suggests gains in proteolytic network complexity required a limited number of biochemical inventions. These findings provide a framework for deeper investigation into the evolutionary forces that shaped each peptidase family and a roadmap to develop a timeline for their expansion as an interconnected system.

  1. Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens.

    Science.gov (United States)

    Greshake, Bastian; Zehr, Simonida; Dal Grande, Francesco; Meiser, Anjuli; Schmitt, Imke; Ebersberger, Ingo

    2016-03-01

    Whole-genome shotgun sequencing of multispecies communities using only a single library layout is commonly used to assess taxonomic and functional diversity of microbial assemblages. Here, we investigate to what extent such metagenome skimming approaches are applicable for in-depth genomic characterizations of eukaryotic communities, for example lichens. We address how to best assemble a particular eukaryotic metagenome skimming data, what pitfalls can occur, and what genome quality can be expected from these data. To facilitate a project-specific benchmarking, we introduce the concept of twin sets, simulated data resembling the outcome of a particular metagenome sequencing study. We show that the quality of genome reconstructions depends essentially on assembler choice. Individual tools, including the metagenome assemblers Omega and MetaVelvet, are surprisingly sensitive to low and uneven coverages. In combination with the routine of assembly parameter choice to optimize the assembly N50 size, these tools can preclude an entire genome from the assembly. In contrast, MIRA, an all-purpose overlap assembler, and SPAdes, a multisized de Bruijn graph assembler, facilitate a comprehensive view on the individual genomes across a wide range of coverage ratios. Testing assemblers on a real-world metagenome skimming data from the lichen Lasallia pustulata demonstrates the applicability of twin sets for guiding method selection. Furthermore, it reveals that the assembly outcome for the photobiont Trebouxia sp. falls behind the a priori expectation given the simulations. Although the underlying reasons remain still unclear, this highlights that further studies on this organism require special attention during sequence data generation and downstream analysis. © 2015 John Wiley & Sons Ltd.

  2. Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice.

    Science.gov (United States)

    Eddie, Brian; Juhl, Andrew; Krembs, Christopher; Baysinger, Charles; Neuer, Susanne

    2010-03-01

    Sea ice microbial community structure affects carbon and nutrient cycling in polar seas, but its susceptibility to changing environmental conditions is not well understood. We studied the eukaryotic microbial community in sea ice cores recovered near Point Barrow, AK in May 2006 by documenting the composition of the community in relation to vertical depth within the cores, as well as light availability (mainly as variable snow cover) and nutrient concentrations. We applied a combination of epifluorescence microscopy, denaturing gradient gel electrophoresis and clone libraries of a section of the 18S rRNA gene in order to compare the community structure of the major eukaryotic microbial phylotypes in the ice. We find that the community composition of the sea ice is more affected by the depth horizon in the ice than by light availability, although there are significant differences in the abundance of some groups between light regimes. Epifluorescence microscopy shows a shift from predominantly heterotrophic life styles in the upper ice to autotrophy prevailing in the bottom ice. This is supported by the statistical analysis of the similarity between the samples based on the denaturing gradient gel electrophoresis banding patterns, which shows a clear difference between upper and lower ice sections with respect to phylotypes and their proportional abundance. Clone libraries constructed using diatom-specific primers confirm the high diversity of diatoms in the sea ice, and support the microscopic counts. Evidence of protistan grazing upon diatoms was also found in lower sections of the core, with implications for carbon and nutrient recycling in the ice.

  3. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes.

    Directory of Open Access Journals (Sweden)

    Estienne C Swart

    Full Text Available The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5% of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes, have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size that vary from 469 bp to 66 kb long (mean ∼3.2 kb and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%, suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing

  4. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...... length distributions. The performance of each individual gene predictor on each individual genome is comparable to the best of the manually optimised species-specific gene finders. It is shown that species-specific gene finders are superior to gene finders trained on other species....

  5. Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae

    Directory of Open Access Journals (Sweden)

    Daniel Veyel

    2014-04-01

    Full Text Available The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn.

  6. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...... complex (preRC) formation are based on studies from yeast and Xenopus, while much less is known for mammalian cells. Here we discuss our recent data demonstrating that Geminin is required for preventing rereplication in human normal and cancer cells....

  7. Localization of checkpoint and repair proteins in eukaryotes

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2005-01-01

    In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets...... of proteins, which are reorganized into a focal assembly at the lesion. Moreover, the composition of these foci is coordinated with cell cycle progression, reflecting the favoring of end-joining in the G1 phase and homologous recombination in S and G2. The assembly of proteins at sites of DNA damage...... focusing on budding yeast and mammalian cells....

  8. DNA resection in eukaryotes: deciding how to fix the break.

    Science.gov (United States)

    Huertas, Pablo

    2010-01-01

    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation.

  9. Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples.

    Science.gov (United States)

    Thannesberger, Jakob; Hellinger, Hans-Joerg; Klymiuk, Ingeborg; Kastner, Marie-Theres; Rieder, Franz J J; Schneider, Martina; Fister, Susanne; Lion, Thomas; Kosulin, Karin; Laengle, Johannes; Bergmann, Michael; Rattei, Thomas; Steininger, Christoph

    2017-05-01

    Viruses shape a diversity of ecosystems by modulating their microbial, eukaryotic, or plant host metabolism. The complexity of virus-host interaction networks is progressively fathomed by novel metagenomic approaches. By using a novel metagenomic method, we explored the virome in mammalian cell cultures and clinical samples to identify an extensive pool of mobile genetic elements in all of these ecosystems. Despite aseptic treatment, cell cultures harbored extensive and diverse phage populations with a high abundance of as yet unknown and uncharacterized viruses (viral dark matter). Unknown phages also predominated in the oropharynx and urine of healthy individuals and patients infected with cytomegalovirus despite demonstration of active cytomegalovirus replication. The novelty of viral sequences correlated primarily with the individual evaluated, whereas relative abundance of encoded protein functions was associated with the ecologic niches probed. Together, these observations demonstrate the extensive presence of viral dark matter in human and artificial ecosystems.-Thannesberger, J., Hellinger, H.-J., Klymiuk, I., Kastner, M.-T., Rieder, F. J. J., Schneider, M., Fister, S., Lion, T., Kosulin, K., Laengle, J., Bergmann, M., Rattei, T., Steininger, C. Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples. © FASEB.

  10. Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes.

    Science.gov (United States)

    Feschotte, Cédric; Keswani, Umeshkumar; Ranganathan, Nirmal; Guibotsy, Marcel L; Levine, David

    2009-07-23

    Eukaryotic genomes contain large amount of repetitive DNA, most of which is derived from transposable elements (TEs). Progress has been made to develop computational tools for ab initio identification of repeat families, but there is an urgent need to develop tools to automate the annotation of TEs in genome sequences. Here we introduce REPCLASS, a tool that automates the classification of TE sequences. Using control repeat libraries, we show that the program can classify accurately virtually any known TE types. Combining REPCLASS to ab initio repeat finding in the genomes of Caenorhabditis elegans and Drosophila melanogaster allowed us to recover the contrasting TE landscape characteristic of these species. Unexpectedly, REPCLASS also uncovered several novel TE families in both genomes, augmenting the TE repertoire of these model species. When applied to the genomes of distant Caenorhabditis and Drosophila species, the approach revealed a remarkable conservation of TE composition profile within each genus, despite substantial interspecific covariations in genome size and in the number of TEs and TE families. Lastly, we applied REPCLASS to analyze 10 fungal genomes from a wide taxonomic range, most of which have not been analyzed for TE content previously. The results showed that TE diversity varies widely across the fungi "kingdom" and appears to positively correlate with genome size, in particular for DNA transposons. Together, these data validate REPCLASS as a powerful tool to explore the repetitive DNA landscapes of eukaryotes and to shed light onto the evolutionary forces shaping TE diversity and genome architecture.

  11. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair

    Science.gov (United States)

    Kadyrov, Farid A.; Genschel, Jochen; Fang, Yanan; Penland, Elisabeth; Edelmann, Winfried; Modrich, Paul

    2009-01-01

    Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5′ to 3′ hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutLα-dependent and requires functional integrity of the MutLα endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutSα, MutLα, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase δ that supports Exo1-independent repair in vitro. Repair in this system depends on MutLα incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells. PMID:19420220

  12. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  13. Generic eukaryotic core promoter prediction using structural features of DNA.

    Science.gov (United States)

    Abeel, Thomas; Saeys, Yvan; Bonnet, Eric; Rouzé, Pierre; Van de Peer, Yves

    2008-02-01

    Despite many recent efforts, in silico identification of promoter regions is still in its infancy. However, the accurate identification and delineation of promoter regions is important for several reasons, such as improving genome annotation and devising experiments to study and understand transcriptional regulation. Current methods to identify the core region of promoters require large amounts of high-quality training data and often behave like black box models that output predictions that are difficult to interpret. Here, we present a novel approach for predicting promoters in whole-genome sequences by using large-scale structural properties of DNA. Our technique requires no training, is applicable to many eukaryotic genomes, and performs extremely well in comparison with the best available promoter prediction programs. Moreover, it is fast, simple in design, and has no size constraints, and the results are easily interpretable. We compared our approach with 14 current state-of-the-art implementations using human gene and transcription start site data and analyzed the ENCODE region in more detail. We also validated our method on 12 additional eukaryotic genomes, including vertebrates, invertebrates, plants, fungi, and protists.

  14. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.

    Science.gov (United States)

    Bracchi-Ricard, V; Nguyen, K T; Zhou, Y; Rajagopalan, P T; Chakrabarti, D; Pei, D

    2001-12-15

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture. (c)2001 Elsevier Science.

  15. Eukaryotic Replisome Components Cooperate to Process Histones During Chromosome Replication

    Directory of Open Access Journals (Sweden)

    Magdalena Foltman

    2013-03-01

    Full Text Available DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.

  16. In silico ionomics segregates parasitic from free-living eukaryotes.

    Science.gov (United States)

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.

  17. DNA-based molecular fingerprinting of eukaryotic protists and cyanobacteria contributing to sinking particle flux at the Bermuda Atlantic time-series study

    Science.gov (United States)

    Amacher, Jessica; Neuer, Susanne; Lomas, Michael

    2013-09-01

    We used denaturing gradient gel electrophoresis (DGGE) to examine the protist and cyanobacterial communities in the euphotic zone (0-120 m) and in corresponding 150 m particle interceptor traps at the Bermuda Atlantic Time-series Study (BATS) in a two-year monthly time-series from May 2008 to April 2010. Dinoflagellates were the most commonly detected taxa in both water column and trap samples throughout the time series. Diatom sequences were found only eight times in the water column, and only four times in trap material. Small-sized eukaryotic taxa, including the prasinophyte genera Ostreococcus, Micromonas, and Bathycoccus, were present in trap samples, as were the cyanobacteria Prochlorococcus and Synechococcus. Synechococcus was usually overrepresented in trap material, whereas Prochlorococcus was underrepresented compared to the water column. Both seasonal and temporal variability affected patterns of ribosomal DNA found in sediment traps. The two years of this study were quite different hydrographically, with higher storm activity and the passing of a cyclonic eddy causing unusually deep mixing in winter 2010. This was reflected in the DGGE fingerprints of the water column, which showed greater phylotype richness of eukaryotes and a lesser richness of cyanobacteria in winter of 2010 compared with the winter of 2009. Increases in eukaryotic richness could be traced to increased diversity of prasinophytes and prymnesiophytes. The decrease in cyanobacterial richness was in turn reflected in the trap composition, but the increase in eukaryotes was not, indicating a disproportionate contribution of certain taxa to sinking particle flux.

  18. Biological processing of dinuclear ruthenium complexes in eukaryotic cells.

    Science.gov (United States)

    Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant

    2016-10-20

    The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that

  19. The rise and fall of the autochthonous self: from Italian Renaissance art and Shakespeare to Heidegger, Lacan, and intersubjectivism.

    Science.gov (United States)

    Chessick, Richard D

    2010-01-01

    This article addresses the unresolved question of the existence of a private core autochthonous self, as it has been described by Winnicott, Modell, and others. The postmodern version of the self has eliminated this concept entirely, relegating the self to a changing and unstable display, or regarding it as totally chaotic, or even an illusion. The question is raised whether by returning to the origins of this notion of a private self and then tracing its apparent dissolution it might be possible to discover some evidence that it still exists. The methodology used is that of obtaining knowledge directly through the arts and the claim is made that because empirical science has clamored to be the only source of knowledge, we have lost what could be obtained by direct intuitive seeing and experiencing the works of creative geniuses. To explore the rise of the autochthonous self this article provides an examination of the shift from Gothic art to Italian Renaissance art, a time which engendered the origin of "man" with his or her elusive private individual self that then became expressed in changing works of art. As this spread north, Shakespeare appeared and similarly invented and illustrated in his characters the private individual self, a concept not appreciated or recognized before the renaissance. But as science arose and Western civilization began to decline, a corresponding disillusionment with "man" took place. The self began to be viewed as solely a social construction with no core except perhaps a genetic endowment. This was accompanied by a reduction in the concept of the human as a valuable and precious living being and was replaced by regarding the human as an object of control and exploitation. After the Second World War a movement in contemporary United States psychoanalysis gradually replaced the ideas of Freud and his emphasis on the "I" in the psychoanalytic process, with forms of relational therapy, assuming that the self was ab initio

  20. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica

    Science.gov (United States)

    Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R.; Sánchez, Jesús; Peláez, Ana Isabel

    2017-01-01

    ABSTRACT The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica. The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonadales, especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica, whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  1. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  2. An Interactive Exercise To Learn Eukaryotic Cell Structure and Organelle Function.

    Science.gov (United States)

    Klionsky, Daniel J.; Tomashek, John J.

    1999-01-01

    Describes a cooperative, interactive problem-solving exercise for studying eukaryotic cell structure and function. Highlights the dynamic aspects of movement through the cell. Contains 15 references. (WRM)

  3. Microfossils' diversity from the Proterozoic Taoudeni Basin, Mauritania

    Science.gov (United States)

    Beghin, Jérémie; Houzay, Jean-Pierre; Blanpied, Christian; Javaux, Emmanuelle

    2014-05-01

    Prokaryotes and microscopic eukaryotes are known to have appeared well before the Cambrian's adaptative radiation which flourished perceptibly as a generalized macroscopic world. What do we know about the trigger events which stimulated eukaryotic diversification during the Proterozoic? Biological innovations or environmental changes, and indeed probably both (Knoll et al., 2006), played a fundamental role controlling this important step of life's evolution on Earth. Javaux (2011), proposed a diversification pattern of early eukaryotes divided into three steps and focusing on different taxonomic levels, from stem group to within crown group, of the domain Eukarya. Here, we present a new, exquisitely preserved and morphologically diverse assemblage of organic-walled microfossils from the 1.1 Ga El Mreiti Group of the Taoudeni Basin (Mauritania). The assemblage includes beautifully preserved microbial mats comprising pyritized filaments, prokaryotic filamentous sheaths and filaments, microfossils of uncertain biological affinity including smooth isolated and colonial sphaeromorphs (eukaryotes and/or prokaryotes), diverse protists (ornamented and process-bearing acritarchs), as well multicellular microfossils interpreted in the literature as possible xanthophyte algae. Several taxa are reported for the first time in Africa, but are known worldwide. This study improves microfossil diversity previously reported by Amard (1986) and shows purported xanthophyte algae contrary to a previous biomarker study suggesting the absence of eukaryotic algae, other than acritarchs, in the basin (Blumenberg et al., 2012). This new microfossil assemblage and others provide, all together, evidences of early and worldwide diversification of eukaryotes. Thereby, those first qualitative results also provide a basis for further and larger quantitative studies on the Taoudeni Basin. To better understand the palaeobiology (stem or crown group, aerobic or anaerobic metabolism) and

  4. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  5. Eukaryotic Mismatch Repair in Relation to DNA Replication

    Science.gov (United States)

    Erie, Dorothy A.

    2017-01-01

    Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome. PMID:26436461

  6. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    Science.gov (United States)

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  7. Eukaryotic promoter prediction based on relative entropy and positional information.

    Science.gov (United States)

    Wu, Shuanhu; Xie, Xudong; Liew, Alan Wee-Chung; Yan, Hong

    2007-04-01

    The eukaryotic promoter prediction is one of the most important problems in DNA sequence analysis, but also a very difficult one. Although a number of algorithms have been proposed, their performances are still limited by low sensitivities and high false positives. We present a method for improving the performance of promoter regions prediction. We focus on the selection of most effective features for different functional regions in DNA sequences. Our feature selection algorithm is based on relative entropy or Kullback-Leibler divergence, and a system combined with position-specific information for promoter regions prediction is developed. The results of testing on large genomic sequences and comparisons with the PromoterInspector and Dragon Promoter Finder show that our algorithm is efficient with higher sensitivity and specificity in predicting promoter regions.

  8. Substrate protein recognition mechanism of archaeal and eukaryotic chaperonins.

    Science.gov (United States)

    Shrestha, Pooja; Jayasinghe, Manori; Stan, George

    2009-03-01

    Chaperonins are double ring-shaped biological nanomachines that assist protein folding. Spectacular conformational changes take place within each chaperonin ring using energy derived from ATP hydrolysis. These changes result in transitions from the open to the closed ring. Substrate proteins bind to the open ring and are encapsulated within the closed ring cavity. We focus on the substrate protein recognition mechanism of archaeal and eukaryotic chaperonins. We predict substrate protein binding sites using structural and bioinformatic analyses of functional states during the chaperonin cycle. Based on large changes in solvent accessible surface area and contact maps we glean the functional role of chaperonin amino acids. During the transition between open to closed chaperonin ring, the largest change in accessible surface area of amino acids is found in helical protrusion and two helices located at the cavity opening. Our calculations suggest that the helical protrusion and two helices constitute the substrate protein binding site.

  9. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  10. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...... form the 3'-end of mRNA, is normally the first and also rate-limiting step in cellular mRNA degradation and therefore a key process in the control of eukaryotic mRNA turnover. Since Ccr4p is believed to be the main deadenylase the precise role of Pop2p in the complex is less clear. Nevertheless, Pop2p...

  11. Saccharomyces cerevisiae: a versatile eukaryotic system in virology

    Directory of Open Access Journals (Sweden)

    Breinig Tanja

    2007-10-01

    Full Text Available Abstract The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.

  12. Mechanisms of heat-shock gene activation in higher eukaryotes

    International Nuclear Information System (INIS)

    Bienz, M.; Pelham, H.R.B.

    1987-01-01

    Heat-shock genes are activated under conditions of heat shock or other environmental stresses. This gene activation is rapid and reversible, resulting in a transition from hardly detectable levels of transcription to extremely high transcription rates causing heat-shock proteins (HSP) to accumulate to high levels. In this review, the components of the heat-shock gene activation systems, including the cis-acting elements and the trans-acting factors, are considered. Data on how these components act together to result in transcription activation and how multiple controls are achieved are summarized. Finally, the questions of how the cell detects the environmental stimulus and translates it into gene activation and how the functions of the gene products relate to this process are addressed. The article focuses on heat-shock gene activation in higher eukaryotes. Only those aspects of heat-shock genes and proteins which are relevant to the question of gene activation are included

  13. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes.

    Directory of Open Access Journals (Sweden)

    María A Rujano

    2006-12-01

    Full Text Available Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in aggresomes at the microtubule organizing center. The fate of cells that contain aggresomes is currently unknown. Here we report that cells that have formed aggresomes can undergo normal mitosis. As a result, the aggregated proteins are asymmetrically distributed to one of the daughter cells, leaving the other daughter free of accumulated protein damage. Using both epithelial crypts of the small intestine of patients with a protein folding disease and Drosophila melanogaster neural precursor cells as models, we found that the inheritance of protein aggregates during mitosis occurs with a fixed polarity indicative of a mechanism to preserve the long-lived progeny.

  14. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis.

    Science.gov (United States)

    Flannigan, Kyle L; McCoy, Kathy D; Wallace, John L

    2011-07-01

    Hydrogen sulfide (H(2)S) is an important modulator of many aspects of digestive function, both in health and disease. Colonic tissue H(2)S synthesis increases markedly during injury and inflammation and appears to contribute to resolution. Some of the bacteria residing in the colon can also produce H(2)S. The extent to which bacterial H(2)S synthesis contributes to what is measured as colonic H(2)S synthesis is not clear. Using conventional and germ-free mice, we have delineated the eukaryotic vs. prokaryotic contributions to colonic H(2)S synthesis, both in healthy and colitic mice. Colonic tissue H(2)S production is entirely dependent on the presence of the cofactor pyridoxal 5'-phosphate (vitamin B(6)), while bacterial H(2)S synthesis appears to occur independent of this cofactor. As expected, approximately one-half of the H(2)S produced by feces is derived from eukaryotic cells. While colonic H(2)S synthesis is markedly increased when the tissue is inflamed, and, in proportion to the extent of inflammation, fecal H(2)S synthesis does not change and tissue granulocytes do not appear to be the source of the elevated H(2)S production. Rats fed a B vitamin-deficient diet for 6 wk exhibited significantly diminished colonic H(2)S synthesis, but fecal H(2)S synthesis was not different from that of rats on the control diet. Our results demonstrate that H(2)S production by colonic bacteria does not contribute significantly to what is measured as colonic tissue H(2)S production, using the acetate trapping assay system employed in this study.

  15. Synthesis of eukaryotic lipid biomarkers in the bacterial domain

    Science.gov (United States)

    Welander, P. V.; Banta, A. B.; Lee, A. K.; Wei, J. H.

    2017-12-01

    Lipid biomarkers are organic molecules preserved in sediments and sedimentary rocks that can function as geological proxies for certain microbial taxa or for specific environmental conditions. These molecular fossils provide a link between organisms and their environments in both modern and ancient settings and have afforded significant insight into ancient climatic events, mass extinctions, and various evolutionary transitions throughout Earth's history. However, the proper interpretation of lipid biomarkers is dependent on a broad understanding of their diagenetic precursors in modern systems. This includes understanding the taphonomic transformations that these molecules undergo, their biosynthetic pathways, and the ecological conditions that affect their cellular production. In this study, we focus on one group of lipid biomarkers - the sterols. These are polycyclic isoprenoidal lipids that have a high preservation potential and play a critical role in the physiology of most eukaryotes. However, the synthesis and function of these lipids in the bacterial domain has not been fully explored. Here we utilize a combination of bioinformatics, microbial genetics, and biochemistry to demonstrate that bacterial sterol producers are more prevalent in environmental metagenomic samples than in the genomic databases of cultured organisms and to identify novel proteins required to synthesize and modify sterols in bacteria. These proteins represent a distinct pathway for sterol synthesis exclusive to bacteria and indicate that sterol synthesis in bacteria may have evolved independently of eukaryotic sterol biosynthesis. Taken together, these results demonstrate how studies in extant bacteria can provide insight into the biological sources and the biosynthetic pathways of specific lipid biomarkers and in turn may allow for more robust interpretation of biomarker signatures.

  16. AUTOCHTHONOUS BIOFACIES IN THE PLIOCENE LORETO BASIN, BAJA CALIFORNIA SUR, MEXICO

    Directory of Open Access Journals (Sweden)

    MICHELE PIAZZA

    1998-07-01

    Full Text Available The present paper examines the molluscan and/or echinoid assemblages recovered from two lithostratigraphic units (Piedras Rodadas Sandstone and Arroyo de Arce Norte Sandstone outcropping in the Pliocene Loreto Basin, Baja California Sur, Mexico. Ten biofacies have been identified, i.e. Trachycardium procerum-Trachycardium senticosum Biofacies, Chione compta-Transennella modesta Biofacies, Laevicardium elenense-Chione kelletii Biofacies, Xenophora sp. 1-Strombus subgracilior Biofacies, Crassostrea californica osunai Biofacies, Myrakeena angelica Biofacies, Vermetid-Nodipecten Biofacies, Argopecten abietis abietis Biofacies, Aequipecten dallasi Biofacies and Encope Biofacies. The first four biofacies have been defined on the basis of statistical analyses (cluster analysis, MDS. The other six, which are monospecific or definitely low-diversity, were already identified during field work. The deduced paleoecological bearing of biofacies, largely relying upon the comparison to their closest modern counterparts, provides the basis for the paleoenvironmental reconstruction. The latter also considers sedimentological evidence and is framed within the tectonic and sedimentary context recently proposed by American workers. Biofacies point toward environments differing in terms of substrate texture, presence/absence of vegetal cover, energy level, variously distributed within the low tide mark-40 m bathymetric range. 

  17. Assessing the value of a portable near infrared spectroscopy sensor for predicting pork meat quality traits of "asturcelta autochthonous swine breed

    OpenAIRE

    Roza-Delgado, Begoña de la; Solnado, Ana; Oliveira, António Filipe Gomes de Faria; Martínez-Fernández, Adela; Argamentería, Alejandro

    2014-01-01

    Sixty-one intact meat samples from Asturcelta autochthonous swine breed were scanned in the slaughterhouse in reflectance mode. A handheld microelectromechanical system digital transform (Phazir1624, Polychromix Inc.), with a window sampling area of 0.8 × 1 cm and wavelengths ranging from 1,600 to 2,400 nm, was used. With the spectra database recorded were developed different chemometrical models assaying first and second derivatives as math treatment and standard normal variate (SNV) and mul...

  18. What determines plant species diversity in Central Africa?

    NARCIS (Netherlands)

    Proosdij, van Andreas S.J.

    2017-01-01

    Planet Earth hosts an incredible biological diversity. Estimated numbers of species occurring on Earth range from 5 to 11 million eukaryotic species including 400,000-450,000 species of plants. Much of this biodiversity remains poorly known and many species have not yet been named or even been

  19. Selection of autochthonous strains as promising starter cultures for Fior di Latte, a traditional cheese of southern Italy.

    Science.gov (United States)

    Speranza, Barbara; Bevilacqua, Antonio; Corbo, Maria Rosaria; Altieri, Clelia; Sinigaglia, Milena

    2015-01-01

    This paper describes the selection of promising strains intended as starter cultures from the autochthonous lactic acid bacteria of Fior di Latte cheese (Apulia region, southern Italy). Ninety-five isolates were randomly selected from whey and Fior di Latte. After preliminary characterization based upon Gram staining, deamination of arginine, hydrolysis of esculine and production of CO2 from glucose and citrate, the isolates were studied for their growth at different temperatures (10, 15 and 45 °C), with salt addition (20, 40 and 65 g L(-1) ) and at pH 4.4 and their acidification score in MRS broth after 6 and 24 h. Data were modeled through the growth index and used as input to run a preliminary cluster analysis and a principal component analysis. In this way, nine promising strains were selected and used for validation at laboratory level, to study the acidification score in milk and propose some possible microbial mixtures. This paper reports the first research focusing on the design of a lactic starter for the production of Fior di Latte cheese, using a quantitative approach based on the evaluation of growth index and acidification score as well as on the use of a multivariate approach to select the most promising nine strains. © 2014 Society of Chemical Industry.

  20. Paracoccidioides brasiliensis PS2: First Autochthonous Paracoccidioidomycosis Case Report in Rio de Janeiro, Brazil, and Literature Review.

    Science.gov (United States)

    de Macedo, Priscila Marques; Almeida-Paes, Rodrigo; de Medeiros Muniz, Mauro; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria; Costa, Regina Lana Braga; do Valle, Antonio Carlos Francesconi

    2016-10-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by pathogenic dimorphic fungi of the Paracoccidioides brasiliensis complex. It is the most important systemic mycosis in Latin America, mainly in Brazil. Despite its severity and high mortality rates, it is considered a neglected disease. Species within the genus Paracoccidioides present genetics and morphological variations with probable clinical, diagnostic and therapeutic consequences. In fact, there are a very small number of detailed case reports with molecular identification of these fungal agents. Here, it is reported a case of PCM due to Paracoccidioides brasiliensis PS2. Molecular identification of the isolate was performed by amplification and sequencing of the arf and gp43 genes. Clinical cases and strain reports with molecular identification in the literature are also reviewed. The case herein presented is the first autochthonous report of PCM due to Paracoccidioides brasiliensis PS2 species in the state of Rio de Janeiro, Brazil, an important endemic area. The patient presented a chronic pulmonary form of PCM and had a satisfactory response to sulfamethoxazole/trimethoprim although sequelae such as adrenal insufficiency and dysphonia were observed. This study may contribute to improve the knowledge about this severe disease, its causative cryptic species and their consequences to patients.

  1. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem.

    Science.gov (United States)

    Rishad, K S; Rebello, Sharrel; Shabanamol, P S; Jisha, M S

    2017-04-01

    The multifaceted role of chitinase in medicine, agriculture, environmental remediation and various other industries greatly demands the isolation of high yielding chitinase producing microorganisms with improved properties. The current study aimed to investigate the isolation, characterization and biocontrol prospective of chitinase producing bacterial strains autochthonous to the extreme conditions of mangrove ecosystems. Among the 51 bacterial isolates screened, Bacillus pumilus MCB-7 with highest chitinase production potential was identified and confirmed by 16S rDNA typing. Chitinase enzyme of MCB-7 was purified; the chitin degradation was evaluated by SEM and LC-MS. Unlike previously reported B.pumilus isolates, MCB-7 exhibited highest chitinase activity of 3.36U/mL, active even at high salt concentrations and temperature up to 60°C. The crude as well as purified enzyme showed significant antimycotic activity against agricultural pathogens such as Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Ceratorhiza hydrophila and Fusarium oxysporum. The enzyme also exhibited biopesticidal role against larvae of Scirpophaga incertulas (Walker). [Lep.: Pyralidae], a serious agricultural pest of rice. The high chitinolytic and antimycotic potential of MCB-7 increases the prospects of the isolate as an excellent biocontrol agent. To the best of our knowledge, this is the first report of high chitinase yielding Bacillus pumilus strain from mangrove ecosystem with a biocontrol role against phytopathogenic fungi and insect larval pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. AUTOCHTHONOUS PHYTASE-PRODUCING BACTERIA ISOLATED FROM THE GASTROINTESTINAL TRACTS OF FOUR INDIAN FRESHWATER TELEOSTS: CHARACTERIZATION AND IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Suhas Kumar Dan

    2015-02-01

    Full Text Available Phytase producing autochthonous bacteria have been isolated from the proximal intestine (PI and distal intestine (DI of three Indian major carps, rohu (Labeo rohita, catla (Catla catla and mrigal (Cirrhinus mrigala and one minor carp, bata (Labeo bata. In modified phytase screening medium (MPSM, phytase-producing strains were recorded at higher densities in the PI of rohu and minimum in the PI of bata. Out of 45 isolates, 4 bacterial strains were selected as potent phytase producers according to quantitative enzyme assay. Maximum phytase activity was detected in LRF5 isolated from the PI of L. rohita followed by CCF2 isolated from the PI of C. catla. Among the selected isolates, three (LRF5, LRH2 and CMH1 were Gram positive rods, whereas CCF2 was Gram positive coccus. All the four isolates could tolerate a wide range of temperature (25–42 °C and pH (6.0-9.0. The isolate LRH2 was most thermostable as it was able to survive up to 55 oC. On the basis of 16SrDNA partial sequence analysis, isolates LRF5 and CCF2 were identified as Bacillus cereus (GenBank Accession no. KC894957.1 and Staphylococcus caprae (Accession no. KC894956.1, respectively. Whereas, the isolates LRH2 and CMH1 were most closely related to Bacillus licheniformis (Accession no. KF011267.1 and Lysinibacillus fusiformis (Accession No. KF011266.1, respectively.

  3. [Salinity effect on germination, growth, and grain production of some autochthonous pear millet ecotypes (Pennisetum glaucum (L.) R. Br.)].

    Science.gov (United States)

    Radhouane, Leila

    2008-04-01

    This study compared the behaviour of six autochthonous pear millet ecotypes collected through the Tunisian territory under salt stress from germination to maturity. It showed that salt has little effect on germination rate and coleoptile emergence. However, this effect is more significant for radicular growth and between ecotypes. Salinity did not influence plant height, which seems to be a varietal characteristic, but revealed a positive effect on the foliar expansion. On the productivity level, salinity did not exert a prejudicial effect over the length of the principal candle, but improved the yield component. This adaptation to salinity is mainly due to its root system. This effect varied according to stress intensity and ecotype. Vegetative growth and yield of high-straw ecotypes was decreased by severe salinity, while ecotypes with low or medium height appear very stable on the productivity level. Such ecotypes can play an important role in the conservation and development of fragile grounds, and also be useful as a source of desirable genes for genetic improvement in salinity conditions.

  4. Characterisation of extra virgin olive oils from Galician autochthonous varieties and their co-crushings with Arbequina and Picual cv.

    Science.gov (United States)

    Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Fregapane, G; Salvador, M D; Simal-Gándara, J

    2015-06-01

    The current trend of the olive oil market is the production of high quality extra from traditional minor olive varieties with peculiar and differentiated characteristics (especially with respect to the aromatic and phenolic composition). In this way, the interest of Galician oil producers (NW Spain) in recovering old autochthonous Local olive fruits has increased substantially in recent years. In order to investigate the potential of the Local olives by either producing high quality monovarietal oils or mixing with the most widespread olives in Galicia (Arbequina and Picual cv.), quality indices, and fatty acid composition as well as volatile and phenolic profiles were determined and compared. All EVOOs studied in this work can be considered as "extra virgin olive oil" due to quality indices fell within the ranges established in legislation. Picual and Local olive oils as well as those resulting from their co-crushing reach values which are required by EU legislation to add the specific health claim on the oil label. Co-crushing Picual:Local (80:20) provided a significant enhancement of grass and apple nuances and a decrease of banana notes with respect to Picual oils. The co-crushing process improved sensory and health properties of Picual extra virgin olive oils. The effect of co-crushing on phenolics, ester volatiles and banana nuances cannot be easily modulated, contrary to quality indices and fatty acid composition, both changing linearly in strict correlation with the fruit mass ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  6. An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts.

    Directory of Open Access Journals (Sweden)

    Ilan Smoly

    2017-01-01

    Full Text Available Protein phosphorylation underlies cellular response pathways across eukaryotes and is governed by the opposing actions of phosphorylating kinases and de-phosphorylating phosphatases. While kinases and phosphatases have been extensively studied, their organization and the mechanisms by which they balance each other are not well understood. To address these questions we performed quantitative analyses of large-scale 'omics' datasets from yeast, fly, plant, mouse and human. We uncovered an asymmetric balance of a previously-hidden scale: Each organism contained many different kinase genes, and these were balanced by a small set of highly abundant phosphatase proteins. Kinases were much more responsive to perturbations at the gene and protein levels. In addition, kinases had diverse scales of phenotypic impact when manipulated. Phosphatases, in contrast, were stable, highly robust and flatly organized, with rather uniform impact downstream. We validated aspects of this organization experimentally in nematode, and supported additional aspects by theoretic analysis of the dynamics of protein phosphorylation. Our analyses explain the empirical bias in the protein phosphorylation field toward characterization and therapeutic targeting of kinases at the expense of phosphatases. We show quantitatively and broadly that this is not only a historical bias, but stems from wide-ranging differences in their organization and impact. The asymmetric balance between these opposing regulators of protein phosphorylation is also common to opposing regulators of two other post-translational modification systems, suggesting its fundamental value.

  7. GAS41, a highly conserved protein in eukaryotic nuclei, binds to NuMA.

    Science.gov (United States)

    Harborth, J; Weber, K; Osborn, M

    2000-10-13

    The yeast two-hybrid system was used to identify binding partners of NuMA, a component of the nuclear matrix in interphase cells. By using the C-terminal half of NuMA as bait, a human cDNA sequence coding for a 223-amino acid protein with a non-helical N-terminal domain and a C-terminal alpha-helical portion was identified and fully sequenced. It was identical to GAS41, a sequence amplified in human gliomas. The sequence of the homologous Drosophila protein was established, and the alignment for GAS41 from nine different species showed that GAS41 is a general eukaryotic protein found in species as diverse as Arabidopsis, Drosophila, Caenorhabditis elegans, yeast, and man. Northern blot analysis showed a single transcript in eight human tissues. A polyclonal antibody to GAS41 showed a dotted staining pattern in interphase nuclei and a uniform distribution in mitotic cells. A GFP-GAS41 fusion protein displayed equivalent patterns. In vitro GAS41 bound to the C-terminal part of the rod region of NuMA, as shown by dot overlay and by surface plasmon resonance measurements. The K(d) of the complex was 2 x 10(-)(7) m. GAS41 is related to the AF-9 and ENL proteins, which are putative transcription factors found as fusion proteins in some acute leukemias. The NuMA/GAS41 interaction may provide a link between nuclear structure and gene expression.

  8. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes.

    Science.gov (United States)

    Barbieri, Edward M; Muir, Paul; Akhuetie-Oni, Benjamin O; Yellman, Christopher M; Isaacs, Farren J

    2017-11-30

    We describe a multiplex genome engineering technology in Saccharomyces cerevisiae based on annealing synthetic oligonucleotides at the lagging strand of DNA replication. The mechanism is independent of Rad51-directed homologous recombination and avoids the creation of double-strand DNA breaks, enabling precise chromosome modifications at single base-pair resolution with an efficiency of >40%, without unintended mutagenic changes at the targeted genetic loci. We observed the simultaneous incorporation of up to 12 oligonucleotides with as many as 60 targeted mutations in one transformation. Iterative transformations of a complex pool of oligonucleotides rapidly produced large combinatorial genomic diversity >10 5 . This method was used to diversify a heterologous β-carotene biosynthetic pathway that produced genetic variants with precise mutations in promoters, genes, and terminators, leading to altered carotenoid levels. Our approach of engineering the conserved processes of DNA replication, repair, and recombination could be automated and establishes a general strategy for multiplex combinatorial genome engineering in eukaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Evolutionary Pattern of N-Glycosylation Sequon Numbers  in Eukaryotic ABC Protein Superfamilies

    Directory of Open Access Journals (Sweden)

    R. Shyama Prasad Rao

    2010-02-01

    Full Text Available Many proteins contain a large number of NXS/T sequences (where X is any amino acid except proline which are the potential sites of asparagine (N linked glycosylation. However, the patterns of occurrence of these N-glycosylation sequons in related proteins or groups of proteins and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average, but the sequon density was significantly lower owing to the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher sequon density, and both serine and threonine containing sequons (NXS and NXT have been positively selected—against the recent findings of only threonine specific Darwinian selection of sequons in proteins. The occurrence of sequons was positively correlated with the frequency of sequon specific amino acids and negatively correlated with proline and the NPS/T sequences. Further, the NPS/T sequences were significantly higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord- ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and the results are discussed in an evolutionary perspective.

  10. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic......,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates...

  11. Diversity Index

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — This map service summarizes racial and ethnic diversity in the United States in 2012.The Diversity Index shows the likelihood that two persons chosen at random from...

  12. Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family.

    Science.gov (United States)

    Rowan, R; Whitney, S M; Fowler, A; Yellowlees, D

    1996-03-01

    Genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is approximately 65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are approximately 25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family.

  13. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents.

    Science.gov (United States)

    Narayanan, Kannan Badri; Sakthivel, Natarajan

    2011-12-12

    The size, shape and controlled dispersity of nanoparticles play a vital role in determining the physical, chemical, optical and electronic properties attributing its applications in environmental, biotechnological and biomedical fields. Various physical and chemical processes have been exploited in the synthesis of several inorganic metal nanoparticles by wet and dry approaches viz., ultraviolet irradiation, aerosol technologies, lithography, laser ablation, ultrasonic fields, and photochemical reduction techniques. However, these methodologies remain expensive and involve the use of hazardous chemicals. Therefore, there is a growing concern for the development of alternative environment friendly and sustainable methods. Increasing awareness towards green chemistry and biological processes has led to a necessity to develop simple, cost-effective and eco-friendly procedures. Phototrophic eukaryotes such as plants, algae, and diatoms and heterotrophic human cell lines and some biocompatible agents have been reported to synthesize greener nanoparticles like cobalt, copper, silver, gold, bimetallic alloys, silica, palladium, platinum, iridium, magnetite and quantum dots. Owing to the diversity and sustainability, the use of phototrophic and heterotrophic eukaryotes and biocompatible agents for the synthesis of nanomaterials is yet to be fully explored. This review describes the recent advancements in the green synthesis and applications of metal nanoparticles by plants, aquatic autotrophs, human cell lines, biocompatible agents and biomolecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Embracing Diversity

    NARCIS (Netherlands)

    S. Puntoni (Stefano)

    2015-01-01

    markdownabstract__Abstract__ Societies are vastly more diverse today than they used to be and, in many industries, developing theories and approaches that recognize and capitalize on this greater consumer diversity is crucial. In business schools, diversity tends to be discussed only in relation

  15. Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review.

    Directory of Open Access Journals (Sweden)

    Juan-Carlos eGutierrez

    2015-02-01

    Full Text Available This review analyzes the advantages and disadvantages of using eukaryotic microorganisms to design whole-cell biosensors (WCBs for monitoring environmental heavy metal pollution in soil or aquatic habitats. Basic considerations for designing an eukaryotic WCB are also shown. A comparative analysis of the promoter genes used to design whole-cell biosensors is carried out, and the sensitivity and reproducibility of the main reporter genes used is also reviewed. Three main eukaryotic taxonomic groups are considered: yeasts, microalgae and ciliated protozoa. Models that have been widely analyzed as potential WCBs are the Saccharomyces cerevisiae model among yeasts, the Tetrahymena thermophila model for ciliates and Chlamydomonas model for microalgae. The advantages and disadvantages of each microbial group are discussed, and a ranking of sensitivity to the same type of metal pollutant from reported eukaryotic WCBs is also shown. General conclusions and possible future developments of eukaryotic WCBs are reported.

  16. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype.

    Science.gov (United States)

    Dey, Gautam; Thattai, Mukund; Baum, Buzz

    2016-07-01

    If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although 'Loki' cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks.

    Science.gov (United States)

    Eme, Laura; Sharpe, Susan C; Brown, Matthew W; Roger, Andrew J

    2014-08-01

    Our understanding of the phylogenetic relationships among eukaryotic lineages has improved dramatically over the few past decades thanks to the development of sophisticated phylogenetic methods and models of evolution, in combination with the increasing availability of sequence data for a variety of eukaryotic lineages. Concurrently, efforts have been made to infer the age of major evolutionary events along the tree of eukaryotes using fossil-calibrated molecular clock-based methods. Here, we review the progress and pitfalls in estimating the age of the last eukaryotic common ancestor (LECA) and major lineages. After reviewing previous attempts to date deep eukaryote divergences, we present the results of a Bayesian relaxed-molecular clock analysis of a large dataset (159 proteins, 85 taxa) using 19 fossil calibrations. We show that for major eukaryote groups estimated dates of divergence, as well as their credible intervals, are heavily influenced by the relaxed molecular clock models and methods used, and by the nature and treatment of fossil calibrations. Whereas the estimated age of LECA varied widely, ranging from 1007 (943-1102) Ma to 1898 (1655-2094) Ma, all analyses suggested that the eukaryotic supergroups subsequently diverged rapidly (i.e., within 300 Ma of LECA). The extreme variability of these and previously published analyses preclude definitive conclusions regarding the age of major eukaryote clades at this time. As more reliable fossil data on eukaryotes from the Proterozoic become available and improvements are made in relaxed molecular clock modeling, we may be able to date the age of extant eukaryotes more precisely. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. The current state of eukaryotic DNA base damage and repair.

    Science.gov (United States)

    Bauer, Nicholas C; Corbett, Anita H; Doetsch, Paul W

    2015-12-02

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity

    Directory of Open Access Journals (Sweden)

    Mitali Das

    2014-01-01

    Full Text Available As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  20. The prokaryote-eukaryote dichotomy: meanings and mythology.

    Science.gov (United States)

    Sapp, Jan

    2005-06-01

    Drawing on documents both published and archival, this paper explains how the prokaryote-eukaryote dichotomy of the 1960s was constructed, the purposes it served, and what it implied in terms of classification and phylogeny. In doing so, I first show how the concept was attributed to Edouard Chatton and the context in which he introduced the terms. Following, I examine the context in which the terms were reintroduced into biology in 1962 by Roger Stanier and C. B. van Niel. I study the discourse over the subsequent decade to understand how the organizational dichotomy took on the form of a natural classification as the kingdom Monera or superkingdom Procaryotae. Stanier and van Niel admitted that, in regard to constructing a natural classification of bacteria, structural characteristics were no more useful than physiological properties. They repeatedly denied that bacterial phylogenetics was possible. I thus examine the great historical irony that the "prokaryote," in both its organizational and phylogenetic senses, was defined (negatively) on the basis of structure. Finally, we see how phylogenetic research based on 16S rRNA led by Carl Woese and his collaborators confronted the prokaryote concept while moving microbiology to the center of evolutionary biology.

  1. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  2. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    International Nuclear Information System (INIS)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-01-01

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O 2 # sm b ullet# - ) not through its dismutation, but via reduction to hydrogen peroxide (H 2 O 2 ) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR Gi ) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T final ) with Fe 3+ ligated to glutamate or hydroxide depending on pH (apparent pK a = 8.7). Although showing negligible SOD activity, reduced SOR Gi reacts with O 2 # sm b ullet# - with a pH-independent second-order rate constant k 1 = 1.0 x 10 9 M -1 s -1 and yields the ferric-(hydro)peroxo intermediate T 1 ; this in turn rapidly decays to the T final state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR Gi is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  3. Break induced replication in eukaryotes: mechanisms, functions, and consequences.

    Science.gov (United States)

    Sakofsky, Cynthia J; Malkova, Anna

    2017-08-01

    Break-induced replication (BIR) is an important pathway specializing in repair of one-ended double-strand DNA breaks (DSBs). This type of DSB break typically arises at collapsed replication forks or at eroded telomeres. BIR initiates by invasion of a broken DNA end into a homologous template followed by initiation of DNA synthesis that can proceed for hundreds of kilobases. This synthesis is drastically different from S-phase replication in that instead of a replication fork, BIR proceeds via a migrating bubble and is associated with conservative inheritance of newly synthesized DNA. This unusual mode of DNA replication is responsible for frequent genetic instabilities associated with BIR, including hyper-mutagenesis, which can lead to the formation of mutation clusters, extensive loss of heterozygosity, chromosomal translocations, copy-number variations and complex genomic rearrangements. In addition to budding yeast experimental systems that were initially employed to investigate eukaryotic BIR, recent studies in different organisms including humans, have provided multiple examples of BIR initiated within different cellular contexts, including collapsed replication fork and telomere maintenance in the absence of telomerase. In addition, significant progress has been made towards understanding microhomology-mediated BIR (MMBIR) that can promote complex chromosomal rearrangements, including those associated with cancer and those leading to a number of neurological disorders in humans.

  4. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  5. Leishmaniasis in Turkey: first clinical isolation of Leishmania major from 18 autochthonous cases of cutaneous leishmaniasis in four geographical regions.

    Science.gov (United States)

    Özbilgin, Ahmet; Çulha, Gülnaz; Uzun, Soner; Harman, Mehmet; Topal, Suhan Günaştı; Okudan, Fulya; Zeyrek, Fadile; Gündüz, Cumhur; Östan, İpek; Karakuş, Mehmet; Töz, Seray; Kurt, Özgür; Akyar, Işın; Erat, Ayşegül; Güngör, Dilek; Kayabaşı, Çağla; Çavuş, İbrahim; Bastien, Patrick; Pratlong, Francine; Kocagöz, Tanıl; Özbel, Yusuf

    2016-06-01

    To report isolation of Leishmania major strains obtained from 18 Turkish autochthonous cutaneous leishmaniasis (CL) patients infected with L. major between 2011 and 2014. Initial diagnosis relied on microscopy and culture in enriched medium, prepared by adding specific amounts of liver extract, protein and lipid sources to NNN medium. Promastigotes were then transferred to RPMI medium including 10% of foetal calf serum for mass culture. Species-specific real-time PCR targeting ITS1 region of Leishmania spp. was performed using both lesion aspiration samples and cultured promastigotes. Two of 18 isolates were identified by isoenzyme analysis in the Leishmaniasis Reference Center in Montpellier, France. Each isolate was inoculated into the footpads of six mice to observe the pathogenicity of L. major. Developing lesions were observed, and the thickening of footpads was measured weekly. Melting curve analyses of 18 isolates showed a peak concordant with L. major, and two of them were confirmed by isoenzyme analyses as L. major zymodeme MON103. In the mouse model, acute lesions seen on day 21 were accepted as an indication of heavy infection. Severe impairments were observed on all mouse footpads over 3 weeks, which even progressed to extremity amputation. Cutaneous leishmaniasis-causing L. major was recently identified in Adana province in southern Turkey, with PCR. Our study shows that such CL cases are not limited to Adana but currently present from western to Southeastern Anatolia, and along the Mediterranean coast. The role of small mammals, the main reservoirs of L. major in Anatolia, needs to be elucidated, as do the underlying factors that cause severe clinical manifestations in L. major infections in Turkey, contrary to the infections in neighbouring countries. © 2016 John Wiley & Sons Ltd.

  6. HLA-DQA1 polymorphism in autochthonous Basques from Navarre (Spain): genetic position within European and Mediterranean scopes.

    Science.gov (United States)

    Pérez-Miranda, A M; Alfonso-Sánchez, M A; Peña, J A; Calderón, R

    2003-06-01

    In this work, a sample of 112 individuals from an autochthonous Basque population (Northern Navarre, Spain) were typed at the DNA level for the HLA-DQA1 locus, with the aim of characterizing its polymorphism and analyzing the genetic relationships of Basque Navarrese with other Caucasian populations. Northern Navarre is a neighboring area with Guipúzcoa, a province located in the core of the Basque territory having the highest proportion of Basque-speakers. In Navarrese population, the most frequent alleles were DQA1*01 (0.375) and DQA1*02 (0.259). Frequency clines for both DQA1*0103 allele and DQA1*04* allele cluster (including DQA1*0401, DQA1*0501 and DQA1*0601) among the European and Mediterranean populations considered are reported for the first time. Furthermore, a spatial structuring previously described for DQA1*02 allele is corroborated. The information provided by the highly polymorphic HLA-DQA1 locus was stressed by using genetic distances and non-metrical multidimensional scaling (MDS). The analysis of genetic relationships among populations showed a high genetic affinity between the Basque subpopulations of Northern Navarre and Guipúzcoa, which in turn tended to plot separately from the remaining European and Mediterranean populations. In the same way, the Basques showed no clear relationship to North African populations, as postulated in several previous HLA studies. The observed genetic heterogeneity seems to be conditioned by the high frequencies of the DQA1*02 allele in Basques from Guipúzcoa and North Navarre. These two subpopulations seem to show low levels of admixture with other non-Basque neighboring populations, probably because of their deeply rooted ethnicity and the existence of a linguistic barrier to random mating.

  7. The Indian origin of paternal haplogroup R1a1* substantiates the autochthonous origin of Brahmins and the caste system.

    Science.gov (United States)

    Sharma, Swarkar; Rai, Ekta; Sharma, Prithviraj; Jena, Mamata; Singh, Shweta; Darvishi, Katayoon; Bhat, Audesh K; Bhanwer, A J S; Tiwari, Pramod Kumar; Bamezai, Rameshwar N K

    2009-01-01

    Many major rival models of the origin of the Hindu caste system co-exist despite extensive studies, each with associated genetic evidences. One of the major factors that has still kept the origin of the Indian caste system obscure is the unresolved question of the origin of Y-haplogroup R1a1*, at times associated with a male-mediated major genetic influx from Central Asia or Eurasia, which has contributed to the higher castes in India. Y-haplogroup R1a1* has a widespread distribution and high frequency across Eurasia, Central Asia and the Indian subcontinent, with scanty reports of its ancestral (R*, R1* and R1a*) and derived lineages (R1a1a, R1a1b and R1a1c). To resolve these issues, we screened 621 Y-chromosomes (of Brahmins occupying the upper-most caste position and schedule castes/tribals occupying the lower-most positions) with 55 Y-chromosomal binary markers and seven Y-microsatellite markers and compiled an extensive dataset of 2809 Y-chromosomes (681 Brahmins, and 2128 tribals and schedule castes) for conclusions. A peculiar observation of the highest frequency (up to 72.22%) of Y-haplogroup R1a1* in Brahmins hinted at its presence as a founder lineage for this caste group. Further, observation of R1a1* in different tribal population groups, existence of Y-haplogroup R1a* in ancestors and extended phylogenetic analyses of the pooled dataset of 530 Indians, 224 Pakistanis and 276 Central Asians and Eurasians bearing the R1a1* haplogroup supported the autochthonous origin of R1a1 lineage in India and a tribal link to Indian Brahmins. However, it is important to discover novel Y-chromosomal binary marker(s) for a higher resolution of R1a1* and confirm the present conclusions.

  8. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.

    Science.gov (United States)

    Whitehead, Michael P; Hooley, Paul; W Brown, Michael R

    2013-06-05

    Studies of online database(s) showed that convincing examples of eukaryote PPKs derived from bacteria type PPK1 and PPK2 enzymes are rare and currently confined to a few simple eukaryotes. These enzymes probably represent several separate horizontal transfer events. Retention of such sequences may be an advantage for tolerance to stresses such as desiccation or nutrient depletion for simple eukaryotes that lack more sophisticated adaptations available to multicellular organisms. We propose that the acquisition of encoding sequences for these enzymes by horizontal transfer enhanced the ability of early plants to colonise the land. The improved ability to sequester and release inorganic phosphate for carbon fixation by photosynthetic algae in the ocean may have accelerated or even triggered global glaciation events. There is some evidence for DNA sequences encoding PPKs in a wider range of eukaryotes, notably some invertebrates, though it is unclear that these represent functional genes.Polyphosphate (poly P) is found in all cells, carrying out a wide range of essential roles. Studied mainly in prokaryotes, the enzymes responsible for synthesis of poly P in eukaryotes (polyphosphate kinases PPKs) are not well understood. The best characterised enzyme from bacteria known to catalyse the formation of high molecular weight polyphosphate from ATP is PPK1 which shows some structural similarity to phospholipase D. A second bacterial PPK (PPK2) resembles thymidylate kinase. Recent reports have suggested a widespread distribution of these bacteria type enzymes in eukaryotes. On - line databases show evidence for the presence of genes encoding PPK1 in only a limited number of eukaryotes. These include the photosynthetic eukaryotes Ostreococcus tauri, O. lucimarinus, Porphyra yezoensis, Cyanidioschyzon merolae and the moss Physcomitrella patens, as well as the amoeboid symbiont Capsaspora owczarzaki and the non-photosynthetic eukaryotes Dictyostelium (3 species

  9. Quality of broilers infected with autochthonous MGA strain, alone or in combination with Infectious Bronchitis Virus (IBV vaccine

    Directory of Open Access Journals (Sweden)

    Cátia Cardoso da Silva

    2016-12-01

    Full Text Available ABSTRACT. da Silva C.C., dos Santos F.F., Faria T.S., José D.S., Tortelly R., Abreu D.L. da C., do Nascimento E.R., Machado L. dos S., Soares M.V. & Pereira V.L.A. [Quality of broilers infected with autochthonous MGA strain, alone or in combination with Infectious Bronchitis Virus (IBV vaccine.] Qualidade de frangos de corte infectados com Mycoplasma gallinarum isoladamente ou em combinação com o vírus vacinal da Bronquite Infecciosa das Galinhas. Revista Brasileira de Medicina Veterinária, 38(4:420-430, 2016. Departamento de Saúde Coletiva, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói, RJ 24230-340, Brasil. E-mail: catinha_cardoso@hotmail.com Brazil is the world’s largest exporter and third largest producer of poultry meat. Advances in management, biosecurity and genetics have contributed to the increase in productivity of the poultry industry, at the same time the pronounced production increased the risk of spreading respiratory diseases, such as avian mycoplasmosis and Infectious Bronchitis. Mycoplasma gallisepticum (MG, Mycoplasma synoviae (MS and Mycoplasma meleagridis (MM are recognized as indisputable pathogens for the poultry industry, however Mycoplasma gallinarum (MGA has been considered commensal. The aim of this study was to evaluate the quality of broilers infected with autochthonous MGA strain, alone or in combination with Infectious Bronchitis Virus (IBV vaccine. There were raised 96 broiler chicks since one-day-old, Cobb line, mycoplasma free. They were separated in four groups of 24 birds kept in isolation units: Group 1 (G1, uninfected and unvaccinated; Group 2 (G2, infected with autochthonous MGA strain; Group 3 (G3, vaccinated with commercial IBV strain H120 (Bio-bronk-vet ®, Biovet, SP; Group 4 (G4, infected with MGA and vaccinated with commercial IBV. The infection was monitored by MGA PCR and IBV vaccination was confirmed by RT-PCR. The feed intake record was

  10. Identity, Diversity and Diversity Management

    DEFF Research Database (Denmark)

    Holck, Lotte; Muhr, Sara Louise; Villeseche, Florence

    2016-01-01

    The purpose of this paper is to examine the relationship between the identity and diversity literatures and discuss how a better understanding of the theoretical connections between the two informs both diversity research and diversity management practices. Design/methodology/approach – Literature...... review followed by a discussion of the theoretical and practical consequences of connecting the identity and diversity literatures. Findings – The authors inform future research in three ways. First, by showing how definitions of identity influence diversity theorizing in specific ways. Second......, the authors explore how such definitions entail distinct foci regarding how diversity should be analyzed and interventions actioned. Third, the authors discuss how theoretical coherence between definitions of identity and diversity perspectives – as well as knowledge about a perspective’s advantages...

  11. The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase and Other Eukaryotic BAM/GIDE Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Jeremy G Wideman

    Full Text Available MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1 is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings

  12. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota.

    Science.gov (United States)

    Xiong, Jinbo; Yu, Weina; Dai, Wenfang; Zhang, Jinjie; Qiu, Qiongfen; Ou, Changrong

    2018-04-01

    One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.

  13. MetWAMer: eukaryotic translation initiation site prediction

    Directory of Open Access Journals (Sweden)

    Brendel Volker

    2008-09-01

    Full Text Available Abstract Background Translation initiation site (TIS identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. Results MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. Conclusion We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.

  14. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Wu M

    2013-10-01

    Full Text Available Min Wu,1 Aruna Kalyanasundaram,2 Jie Zhu1 1Laboratory of Biomechanics and Engineering, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; 2College of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA Abstract: Mitochondria serve as energy-producing organelles in eukaryotic cells. In addition to providing the energy supply for cells, the mitochondria are also involved in other processes, such as proliferation, differentiation, information transfer, and apoptosis, and play an important role in regulation of cell growth and the cell cycle. In order to achieve these functions, the mitochondria need to move to the corresponding location. Therefore, mitochondrial movement has a crucial role in normal physiologic activity, and any mitochondrial movement disorder will cause irreparable damage to the organism. For example, recent studies have shown that abnormal movement of the mitochondria is likely to be the reason for Charcot–Marie–Tooth disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and schizophrenia. So, in the cell, especially in the particular polarized cell, the appropriate distribution of mitochondria is crucial to the function and survival of the cell. Mitochondrial movement is mainly associated with the cytoskeleton and related proteins. However, those components play different roles according to cell type. In this paper, we summarize the structural basis of mitochondrial movement, including microtubules, actin filaments, motor proteins, and adaptin, and review studies of the biomechanical mechanisms of mitochondrial movement in different types of cells. Keywords: mitochondrial movement, microtubules, actin filaments, motor proteins, adaptin

  15. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  16. Symbiosis as the way of eukaryotic life: The dependent co ...

    Indian Academy of Sciences (India)

    This new individuality is seen on anatomical and physiological levels, where a diversity of symbionts form a new `organ system' within the zoological organism and become integrated into its metabolism and development. Moreover, as in ... We develop, grow and evolve as multi-genomic consortia/teams/ecosystems.

  17. A large factory-scale application of selected autochthonous lactic acid bacteria for PDO Pecorino Siciliano cheese production.

    Science.gov (United States)

    Guarcello, Rosa; Carpino, Stefania; Gaglio, Raimondo; Pino, Alessandra; Rapisarda, Teresa; Caggia, Cinzia; Marino, Giovanni; Randazzo, Cinzia L; Settanni, Luca; Todaro, Massimo

    2016-10-01

    The main hypothesis of this study was that the autochthonous lactic acid bacteria (LAB) selected for their dairy traits are able to stabilize the production of PDO (Protected Denomination of Origin) Pecorino Siciliano cheese, preserving its typicality. The experimental plan included the application of a multi-strain lactic acid bacteria (LAB) culture, composed of starter (Lactococcus lactis subsp. lactis CAG4 and CAG37) and non starter (Enterococcus faecalis PSL71, Lactococcus garviae PSL67 and Streptococcus macedonicus PSL72) strains, during the traditional production of cheese at large scale level in six factories located in different areas of Sicily. The cheese making processes were followed from milk to ripened cheeses and the effects of the added LAB were evaluated on the microbiological, chemico-physical and sensorial characteristics of the final products. Results highlighted a high variability for all investigated parameters and the dominance of LAB cocci in bulk milk samples. The experimental curds showed a faster pH drop than control curds and the levels of LAB estimated in 5-month ripened experimental cheeses (7.59 and 7.27 Log CFU/g for rods and cocci, respectively) were higher than those of control cheeses (7.02 and 6.61 Log CFU/g for rods and cocci, respectively). The comparison of the bacterial isolates by randomly amplified polymorphic DNA (RAPD)-PCR evidenced the dominance of the added starter lactococci over native milk and vat LAB, while the added non starter LAB were found at almost the same levels of the indigenous strains. The sensory evaluation showed that the mixed LAB culture did not influence the majority of the sensory attributes of the cheeses and that each factory produced cheeses with unique characteristics. Finally, the multivariate statistical analysis based on all parameters evaluated on the ripened cheeses showed the dissimilarities and the relationships among cheeses. Thus, the main hypothesis of the work was accepted since the

  18. Branched GDGTs in Lacustrine Environments: Tracing Allochthonous and Autochthonous Sources Using Compound-Specific Stable Carbon Isotope Analysis

    Science.gov (United States)

    Weber, Y.; S Sinninghe Damsté, J.; Lehmann, M. F.; Niemann, H.; Schubert, C. J.

    2015-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are ubiquitous in soils and peat, as well as in sediments of lakes, rivers and coastal marine environments. It has been found that the distribution of brGDGTs changes systematically with ambient temperature and pH, attesting to their potential as proxy indicators for paleoclimatic reconstruction. In lacustrine sedimentary archives, brGDGTs can originate from two sources: (1) allochthonous soil organic matter and (2) autochthonous brGDGTs produced within the lake system, both of which display fairly distinct temperature-brGDGT relationships. Until now, disentangling the relative contribution of these sources was impossible, complicating the use of brGDGTs for quantitative paleotemperature reconstructions. BrGDGTs in soils display a narrow range with respect to their stable carbon isotope composition (δ13C), generally between -27 and -30 ‰, whereas we recently found contrasting δ13C values as low as -43 ‰ to -46 ‰ for brGDGTs in sediments of a small Alpine lake. To trace the origin of this distinct isotope signal, we determined the 13C content of brGDGTs in suspended particulate matter (SPM) from the water column of Lake Lugano (Switzerland). The δ13C of SPM-derived brGDGTs decreased systematically from -34 ‰ in the mixolimnion to -41 ‰ in the anoxic monimolimnion of Lake Lugano, providing evidence for aquatic in situ production of 13C-depleted brGDGT. In order to study whether the negative δ13C offset of water column- vs. soil-derived brGDGTs may serve as an indicator for lacustrine brGDGT production, we also analyzed surface sediments from 36 lakes across the Alpine Region. In most (~85 %) of the studied lake sediments, the δ13C of brGDGTs ranged between -34 ‰ and -45 ‰, indicating predominance or a substantial contribution of aquatically produced brGDGTs. However, in some lakes (~15 %) δ13C values between -27 ‰ and -30 ‰ suggest a mainly

  19. Diversity Management

    DEFF Research Database (Denmark)

    Ravazzani, Silvia

    2018-01-01

    discourse and practice, and possible overarching approaches guiding organizations. It goes on to elucidate elements linked to the implementation of diversity management: positive and negative outcomes, most spread practices including communication, and contingency factors shaping the understanding......This entry provides an overview of diversity management which, in the context of organizations, consists in the strategic process of harnessing the potential of all employees to create an inclusive environment and, at the same time, contribute to meeting organizational goals. The entry first...... describes the complex construct of diversity that has been variously conceptualized in the literature, embracing multiple social and informational diversity dimensions such as gender, age, culture, values, and workstyle. This is followed by illustration of the historical development of diversity-management...

  20. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Timothy P. Driscoll

    2017-09-01

    Full Text Available Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae. While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes; similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell.

  1. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    DEFF Research Database (Denmark)

    Møller, Annette; Asp, Torben; Holm, Preben Bach

    2008-01-01

    Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any...... far, while P5B ATPases appear to be lost in three eukaryotic lineages; excavates, entamoebas and land plants. A lineage-specific gene expansion of up to four different P5B ATPases is seen in animals....

  2. Bacterial and eukaryotic systems collide in the three Rs of Methanococcus.

    Science.gov (United States)

    Parker, Richard P; Walters, Alison D; Chong, James P J

    2011-01-01

    Methanococcus maripaludis S2 is a methanogenic archaeon with a well-developed genetic system. Its mesophilic nature offers a simple system in which to perform complementation using bacterial and eukaryotic genes. Although information-processing systems in archaea are generally more similar to those in eukaryotes than those in bacteria, the order Methanococcales has a unique complement of DNA replication proteins, with multiple MCM (minichromosome maintenance) proteins and no obvious originbinding protein. A search for homologues of recombination and repair proteins in M. maripaludis has revealed a mixture of bacterial, eukaryotic and some archaeal-specific homologues. Some repair pathways appear to be completely absent, but it is possible that archaeal-specific proteins could carry out these functions. The replication, recombination and repair systems in M. maripaludis are an interesting mixture of eukaryotic and bacterial homologues and could provide a system for uncovering novel interactions between proteins from different domains of life.

  3. Meeting Report: Minutes from EMBO: Ten Years of Comparative Genomics of Eukaryotic Microorganisms

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; López-García, P.; Louis, E.; Boekhout, T.

    2016-01-01

    Roč. 167, č. 3 (2016), s. 217-221 ISSN 1434-4610 Institutional support: RVO:60077344 Keywords : protist * eukaryotic microorganisms * genomics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.794, year: 2016

  4. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells

    NARCIS (Netherlands)

    Ortega, Alvaro D.; Quereda, Juan J; Pucciarelli, M Graciela; García-del Portillo, Francisco

    2014-01-01

    Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles

  5. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells.

    Science.gov (United States)

    Lehti, Timo A; Pajunen, Maria I; Skog, Maria S; Finne, Jukka

    2017-12-04

    Eukaryotic organisms are continuously exposed to bacteriophages, which are efficient gene transfer agents in bacteria. However, bacteriophages are considered not to pass the eukaryotic cell membrane and enter nonphagocytic cells. Here we report the binding and penetration of Escherichia coli PK1A2 bacteriophage into live eukaryotic neuroblastoma cells in vitro. The phage interacts with cell surface polysialic acid, which shares structural similarity with the bacterial phage receptor. Using fluorescence and electron microscopy, we show that phages are internalized via the endolysosomal route and persist inside the human cells up to one day without affecting cell viability. Phage capsid integrity is lost in lysosomes, and the phage DNA is eventually degraded. We did not detect the entry of phage DNA into the nucleus; however, we speculate that this might occur as a rare event, and propose that this potential mechanism could explain prokaryote-eukaryote gene flow.

  6. Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages

    OpenAIRE

    McRose, Darcy; Guo, Jian; Monier, Adam; Sudek, Sebastian; Wilken, Susanne; Yan, Shuangchun; Mock, Thomas; Archibald, John M; Begley, Tadhg P; Reyes-Prieto, Adrian; Worden, Alexandra Z

    2014-01-01

    Vitamin B1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytopla...

  7. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  8. Construction of sized eukaryotic cDNA libraries using low input of total environmental metatranscriptomic RNA.

    Science.gov (United States)

    Yadav, Rajiv Kumar; Barbi, Florian; Ziller, Antoine; Luis, Patricia; Marmeisse, Roland; Reddy, M Sudhakara; Fraissinet-Tachet, Laurence

    2014-09-03

    Construction of high quality cDNA libraries from the usually low amounts of eukaryotic mRNA extracted from environmental samples is essential in functional metatranscriptomics for the selection of functional, full-length genes encoding proteins of interest. Many of the inserts in libraries constructed by standard methods are represented by truncated cDNAs due to premature stoppage of reverse transcriptase activity and preferential cloning of short cDNAs. We report here a simple and cost effective technique for preparation of sized eukaryotic cDNA libraries from as low as three microgram of total soil RNA dominated by ribosomal and bacterial RNA. cDNAs synthesized by a template switching approach were size-fractionated by two dimensional agarose gel electrophoresis prior to PCR amplification and cloning. Effective size selection was demonstrated by PCR amplification of conserved gene families specific of each size class. Libraries of more than one million independent inserts whose sizes ranged between one and four kb were thus produced. Up to 80% of the insert sequences were homologous to eukaryotic gene sequences present in public databases. A simple and cost effective technique has been developed to construct sized eukaryotic cDNA libraries from environmental samples. This technique will facilitate expression cloning of environmental eukaryotic genes and contribute to a better understanding of basic biological and/or ecological processes carried out by eukaryotic microbial communities.

  9. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes.

    Science.gov (United States)

    Liu, Huiquan; Fu, Yanping; Jiang, Daohong; Li, Guoqing; Xie, Jiatao; Cheng, Jiasen; Peng, Youliang; Ghabrial, Said A; Yi, Xianhong

    2010-11-01

    Horizontal gene transfer commonly occurs from cells to viruses but rarely occurs from viruses to their host cells, with the exception of retroviruses and some DNA viruses. However, extensive sequence similarity searches in public genome databases for various organisms showed that the capsid protein and RNA-dependent RNA polymerase genes from totiviruses and partitiviruses have widespread homologs in the nuclear genomes of eukaryotic organisms, including plants, arthropods, fungi, nematodes, and protozoa. PCR amplification and sequencing as well as comparative evidence of junction coverage between virus and host sequences support the conclusion that these viral homologs are real and occur in eukaryotic genomes. Sequence comparison and phylogenetic analysis suggest that these genes were likely transferred horizontally from viruses to eukaryotic genomes. Furthermore, we present evidence showing that some of the transferred genes are conserved and expressed in eukaryotic organisms and suggesting that these viral genes are also functional in the recipient genomes. Our findings imply that horizontal transfer of double-stranded RNA viral genes is widespread among eukaryotes and may give rise to functionally important new genes, thus entailing that RNA viruses may play significant roles in the evolution of eukaryotes.

  10. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation.

    Science.gov (United States)

    Blackstone, Neil W

    2013-07-19

    According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly.

  11. Checklist of earthworms (Oligochaeta: Lumbricidae) from Montenegro: Diversity and biogeographical review.

    Science.gov (United States)

    Stojanović, Mirjana; Milutinović, Tanja

    2013-01-01

    A checklist of the lumbricid earthworms in Montenegro is presented. Comprehensive information on the distribution and habitats of all earthworms is given in order to establish the definitive list of known taxa from Montenegro. The complete list of earthworm taxa of Montenegro comprises 40 species and subspecies, belonging to 12 genera of the family Lumbricidae. The list underlines the diversity of earthworms and provides a general overview of their distribution and zoogeographical type. Our study shows that the degree of endemism is comparatively high, exceeding 20%. Summing up the endemics and the Balkanic species, 42.5% of the total lumbricid fauna shows an autochthonous character.

  12. Detection of Androgenic-Mutagenic Compounds and Potential Autochthonous Bacterial Communities during In Situ Bioremediation of Post-methanated Distillery Sludge

    Directory of Open Access Journals (Sweden)

    Ram Chandra

    2017-05-01

    Full Text Available Sugarcane-molasses-based post-methanated distillery waste is well known for its toxicity, causing adverse effects on aquatic flora and fauna. Here, it has been demonstrated that there is an abundant mixture of androgenic and mutagenic compounds both in distillery sludge and leachate. Gas chromatography-mass spectrometry (GC-MS analysis showed dodecanoic acid, octadecanoic acid, n-pentadecanoic acid, hexadecanoic acid, β-sitosterol, stigmasterol, β-sitosterol trimethyl ether, heptacosane, dotriacontane, lanosta-8, 24-dien-3-one, 1-methylene-3-methyl butanol, 1-phenyl-1-propanol, 5-methyl-2-(1-methylethyl cyclohexanol, and 2-ethylthio-10-hydroxy-9-methoxy-1,4 anthraquinone as major organic pollutants along with heavy metals (all mg kg-1: Fe (2403, Zn (210.15, Mn (126.30, Cu (73.62, Cr (21.825, Pb (16.33 and Ni (13.425. In a simultaneous analysis of bacterial communities using the restriction fragment length polymorphism (RFLP method the dominance of Bacillus sp. followed by Enterococcus sp. as autochthonous bacterial communities growing in this extremely toxic environment was shown, indicating a primary community for bioremediation. A toxicity evaluation showed a reduction of toxicity in degraded samples of sludge and leachate, confirming the role of autochthonous bacterial communities in the bioremediation of distillery waste in situ.

  13. Effects of resource availability and hydrological regime on autochthonous and allochthonous carbon in the food web of a large cross-border river (China).

    Science.gov (United States)

    Zheng, Yuanyuan; Niu, Jiangong; Zhou, Qiong; Xie, Congxin; Ke, Zhixin; Li, Dapeng; Gao, Yongwen

    2018-01-15

    Resource availability and flooding disturbance restrict the amount of energy available to the upper trophic level consumers and thus determine the trophic structure and energy mobilization in river food webs. In this study, we evaluated the availability of primary and secondary food resources, food web structure (determined by δ 13 C and δ 15 N) and relative contributions of autochthonous and allochthonous particulate carbon to aquatic consumers in the Irtysh River, which spans from northwest China to Kazakhstan and suffers from a long frozen period. Despite higher density and biomass, epilithic algae did not make large contributions to aquatic consumers due to the restriction of flow velocity, water depth and turbidity. Aquatic invertebrates specialized in utilization of terrestrial carbon sources, whereas fish varied from aquatic to riparian plants. Different resource use of aquatic consumers across the three reaches in the Irtysh River was ascribed to the spatial distribution of species and resource availability determined by flooding, flood scouring and dam construction. The trophic positions and food chain length at the upper reach were higher than those at the middle and lower reaches. These findings suggest that allochthonous carbon had an advantage over autochthonous carbon in supporting aquatic food webs of the Irtysh River. Higher availability of allochthonous particulate carbon might be relevant to intensive forest cover and high energy flood events in the Irtysh River. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil.

    Science.gov (United States)

    Carrasco, L; Azcón, R; Kohler, J; Roldán, A; Caravaca, F

    2011-02-15

    The aim of this study was to assess the effectiveness of inoculation with a native arbuscular mycorrhizal (AM) fungus, Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, or a filamentous fungus, Penicillium aurantiogriseum Dierckx 1901, on the establishment of Coronilla juncea L. seedlings grown in a polluted, semiarid soil. For that, root and shoot biomass, nutrient uptake, mycorrhizal colonisation and nitrate reductase (NR) and phosphatase activities were analysed. Six months after planting, the shoot biomass of C. juncea was increased only by the inoculation with G. mosseae (by about 62% compared with non-mycorrhizal plants). The shoot NR and root acid phosphatase activities were increased more by inoculation with G. mosseae than with P. aurantiogriseum inoculation. The root NR activity and foliar nutrient contents were increased only by the inoculation with the AM fungus. The root Zn and Cu decreased with the AM fungus. In conclusion, the autochthonous AM fungus was an effective inoculant with regard to stimulating growth and alleviating heavy metal toxicity for plants growing on a soil contaminated by multiple heavy metals. Inoculation with an autochthonous, filamentous fungus does not seem to be a good strategy for phytoremediation of such problematic sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Troubling Diversity?

    DEFF Research Database (Denmark)

    Jæger, Kirsten; Jensen, Annie Aarup

    2009-01-01

    are related to recent contributions to diversity management theory and intercultural communication theory, calling for a strengthened focus on the historical, political, and social dimensions of intercultural contact. In continuation of these trends, an alternative, theoretical framework...

  16. Understanding Diversity

    NARCIS (Netherlands)

    D.L. van Knippenberg (Daan)

    2007-01-01

    textabstractDaan van Knippenberg is Professor of Organizational Behavior at RSM Erasmus University, Erasmus University Rotterdam, The Netherlands. His research interests include work group performance, especially work group diversity and group decision making, leadership, in particular the roles of

  17. Gender Diversities

    DEFF Research Database (Denmark)

    Agustin, Lise Rolandsen; Siim, Birte

    2014-01-01

    The article analyses the European Year for Combating Poverty and Social Exclusion (2010) (EY 2010) with the aim of identifying the nature of gender diversities in EU policies. We argue that the EU handles issues related to gender and diversity in particular ways; this approach is characterized...... by non-citizen/citizen and redistribution/recognition divisions. Employing intersectionality as the methodological approach to gender diversities, the article shows how gender and ethnicity are articulated in the policy-making process which led to the adoption of EY 201, the activities undertaken during...... the EY 2010, and the evaluation of EY 2010. The case study is suitable for developing a dynamic multi-level model for analysing gendered diversities at the transnationmal level: It illustrates how the EU policy frame interacts with particular national contexts in promoting or hundering the advancement...

  18. The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification.

    Science.gov (United States)

    Aiewsakun, Pakorn; Simmonds, Peter

    2018-02-20

    eukaryotic virus families in the ICTV taxonomy. A rapid and objective means to explore metagenomic viral diversity and make informed recommendations for their assignments at each taxonomic layer is essential. GRAViTy provides one means to make rule-based assignments at family and order levels in a manner that preserves the integrity and underlying organisational principles of the current ICTV taxonomy framework. Such methods are increasingly required as the vast virosphere is explored.

  19. Doing Diversity

    DEFF Research Database (Denmark)

    Just, Sine Nørholm; Christiansen, Tanja Juul

    2012-01-01

    invite audiences to take up subject positions, understood as combinations of identity and agency. Danish diversity management rhetoric functions as an illustrative example; in analyzing this type of rhetoric we show how subjects are called into restrained positions of similarity/difference and thereby...... demonstrate the explanatory potential of the performative framework. Subsequently, we discuss how the concept of personae may provide a basis for alternatives to the restrictive positioning that currently dominates diversity management rhetoric....

  20. Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses.

    Science.gov (United States)

    Schoonvaere, Karel; De Smet, Lina; Smagghe, Guy; Vierstraete, Andy; Braeckman, Bart P; de Graaf, Dirk C

    2016-01-01

    The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-)organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia cornuta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombi and Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee O. cornuta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV) and Ganda bee virus (GABV) based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in O. cornuta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects.

  1. Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes.

    Science.gov (United States)

    Wisecaver, Jennifer H; Alexander, William G; King, Sean B; Hittinger, Chris Todd; Rokas, Antonis

    2016-08-01

    Due to their functional independence, proteins that comprise standalone metabolic units, which we name single-protein metabolic modules, may be particularly prone to gene duplication (GD) and horizontal gene transfer (HGT). Flavohemoglobins (flavoHbs) are prime examples of single-protein metabolic modules, detoxifying nitric oxide (NO), a ubiquitous toxin whose antimicrobial properties many life forms exploit, to nitrate, a common source of nitrogen for organisms. FlavoHbs appear widespread in bacteria and have been identified in a handful of microbial eukaryotes, but how the distribution of this ecologically and biomedically important protein family evolved remains unknown. Reconstruction of the evolutionary history of 3,318 flavoHb protein sequences covering the family's known diversity showed evidence of recurrent HGT at multiple evolutionary scales including intrabacterial HGT, as well as HGT from bacteria to eukaryotes. One of the most striking examples of HGT is the acquisition of a flavoHb by the dandruff- and eczema-causing fungus Malassezia from Corynebacterium Actinobacteria, a transfer that growth experiments show is capable of mediating NO resistance in fungi. Other flavoHbs arose via GD; for example, many filamentous fungi possess two flavoHbs that are differentially targeted to the cytosol and mitochondria, likely conferring protection against external and internal sources of NO, respectively. Because single-protein metabolic modules such as flavoHb function independently, readily undergo GD and HGT, and are frequently involved in organismal defense and competition, we suggest that they represent "plug-and-play" proteins for ecological arms races. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses.

    Directory of Open Access Journals (Sweden)

    Karel Schoonvaere

    Full Text Available The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia cornuta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombi and Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee O. cornuta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV and Ganda bee virus (GABV based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in O. cornuta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects.

  3. Peroxicretion: a novel secretion pathway in the eukaryotic cell

    Directory of Open Access Journals (Sweden)

    Luesken Francisca A

    2009-05-01

    Full Text Available Abstract Background Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzymes could be secreted by the cell the potential of industrial applications of enzymes would be enlarged. Therefore a novel secretion pathway for intracellular proteins was developed, using peroxisomes as secretion vesicles. Results Peroxisomes were decorated with a Golgi derived v-SNARE using a peroxisomal membrane protein as an anchor. This allowed the peroxisomes to fuse with the plasma membrane. Intracellular proteins were transported into the peroxisomes by adding a peroxisomal import signal (SKL tag. The proteins which were imported in the peroxisomes, were released into the extra-cellular space through this artificial secretion pathway which was designated peroxicretion. This concept was supported by electron microscopy studies. Conclusion Our results demonstrate that it is possible to reroute the intracellular trafficking of vesicles by changing the localisation of SNARE molecules, this approach can be used in in vivo biological studies to clarify the different control mechanisms regulating intracellular membrane trafficking. In addition we demonstrate peroxicretion of a diverse set of intracellular proteins. Therefore, we anticipate that the concept of peroxicretion may revolutionize the production of intracellular proteins from fungi and other microbial cells, as well as from mammalian cells.

  4. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants.

    Science.gov (United States)

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2014-09-23

    We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive

  5. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    Science.gov (United States)

    Garg, Sriram G; Martin, William F

    2016-07-02

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  6. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  7. Functional capacity of Shiga-toxin promoter sequences in eukaryotic cells.

    Science.gov (United States)

    Bentancor, Leticia V; Bilen, Marcos F; Mejías, María P; Fernández-Brando, Romina J; Panek, Cecilia A; Ramos, Maria V; Fernández, Gabriela C; Isturiz, Martín; Ghiringhelli, Pablo D; Palermo, Marina S

    2013-01-01

    Shiga toxins (Stx) are the main virulence factors in enterohemorrhagic Escherichia coli (EHEC) infections, causing diarrhea and hemolytic uremic syndrome (HUS). The genes encoding for Shiga toxin-2 (Stx2) are located in a bacteriophage. The toxin is formed by a single A subunit and five B subunits, each of which has its own promoter sequence. We have previously reported the expression of the B subunit within the eukaryotic environment, probably driven by their own promoter. The aim of this work was to evaluate the ability of the eukaryotic machinery to recognize stx2 sequences as eukaryotic-like promoters. Vero cells were transfected with a plasmid encoding Stx2 under its own promoter. The cytotoxic effect on these cells was similar to that observed upon incubation with purified Stx2. In addition, we showed that Stx2 expression in Stx2-insensitive BHK eukaryotic cells induced drastic morphological and cytoskeletal changes. In order to directly evaluate the capacity of the wild promoter sequences of the A and B subunits to drive protein expression in mammalian cells, GFP was cloned under eukaryotic-like putative promoter sequences. GFP expression was observed in 293T cells transfected with these constructions. These results show a novel and alternative way to synthesize Stx2 that could contribute to the global understanding of EHEC infections with immediate impact on the development of treatments or vaccines against HUS.

  8. Production of the R2 subunit of ribonucleotide reductase from herpes simplex virus with prokaryotic and eukaryotic expression systems: higher activity of R2 produced by eukaryotic cells related to higher iron-binding capacity.

    OpenAIRE

    Lamarche, N; Matton, G; Massie, B; Fontecave, M; Atta, M; Dumas, F; Gaudreau, P; Langelier, Y

    1996-01-01

    The R2 subunit of ribonucleotide reductase from herpes simplex virus type 2 was overproduced with prokaryotic and eukaryotic expression systems. The recombinant R2 purified by a two-step procedure exhibited a 3-fold higher activity when produced in eukaryotic cells. Precise quantification of the R2 concentration at each step of the purification indicated that the activity was not altered during the purification procedure. Moreover, we have observed that the level of R2 expression, in eukaryot...

  9. Outbreak of autochthonous canine visceral leishmaniasis in Santa Catarina, Brazil Surto autóctone de leishmaniose visceral canina no Estado de Santa Catarina

    Directory of Open Access Journals (Sweden)

    Mário Steindel

    2013-04-01

    Full Text Available The present study reports the first outbreak of autochthonous canine visceral leishmaniasis in Florianópolis, Santa Catarina, southern Brazil. Following the report of two cases of CVL, the Control Center of Zoonotic Diseases conducted a serological survey by ELISA and IFAT assays in seven districts of the Santa Catarina Island. Eleven seropositive dogs of autochthonous transmission were used in the present study. Infection by Leishmania sp. was confirmed by parasitological examination of bone marrow, liver, spleen and lymph nodes, culture in Schneider's medium and PCR. Leishmania sp. isolates were characterized by PCR-RFLP and hybridization with specific probes, allowing for the identification of Leishmania infantum. Autochthonous transmission of this disease in an area with high tourist traffic presents a major public health concern and signifies the emergence of an important zoonosis in southern Brazil. Therefore, the implementation of surveillance and control measures is imperative to prevent the spread of the disease among the canine population as well as transmission to the human population.O presente estudo relata o primeiro surto autóctone de leishmaniose visceral canina (LCV em Florianópolis, Santa Catarina, Brasil. Durante levantamento soro-epidemiológico realizado pelo Centro de Controle de Doenças Zoonóticas (CCZ envolvendo 2.124 cães, 29 (1,37% foram soropositivos para VL (ELISA + RIFI. Onze cães positivos por transmissão autóctone foram utilizados no presente estudo. A confirmação da infecção por Leishmania sp. foi realizada pelo exame parasitológico da medula óssea, fígado, baço e linfonodos, cultura em meio Schneider e PCR. Os isolados de Leishmania sp. foram caracterizados por PCR-RFLP e hibridação com sondas específicas, permitindo a identificação de Leishmania infantum. A transmissão autóctone da LCV em uma área com grande fluxo turístico como Florianópolis representa um preocupante risco à saúde p

  10. FUNCTIONAL DIVERSITY AND OPTOGENETIC POTENTIALS OF MICROBIAL RHODOPSINS

    Directory of Open Access Journals (Sweden)

    Mayanka Awasthi

    2011-12-01

    Full Text Available Microbial or type-1 rhodopsins are light sensitive proteins that utilize all-trans retinal as chromophore. Microbial rhodopsins are present in archaea, eubacteria and eukaryotes. Their broad and patchy distribution among the three domains of life is attributed to the lateral gene transfer mechanism of evolution. Microbial rhodopsins function as sensory rhodopsins, light-gated ion pumps and light-activated ion channels in nature. In this review, we present functional diversity and optogenetics applications of microbial rhodopsins.

  11. The evolution of eukaryotic cells from the perspective of peroxisomes: phylogenetic analyses of peroxisomal beta-oxidation enzymes support mitochondria-first models of eukaryotic cell evolution.

    Science.gov (United States)

    Bolte, Kathrin; Rensing, Stefan A; Maier, Uwe-G

    2015-02-01

    Beta-oxidation of fatty acids and detoxification of reactive oxygen species are generally accepted as being fundamental functions of peroxisomes. Additionally, these pathways might have been the driving force favoring the selection of this compartment during eukaryotic evolution. Here we performed phylogenetic analyses of enzymes involved in beta-oxidation of fatty acids in Bacteria, Eukaryota, and Archaea. These imply an alpha-proteobacterial origin for three out of four enzymes. By integrating the enzymes' history into the contrasting models on the origin of eukaryotic cells, we conclude that peroxisomes most likely evolved non-symbiotically and subsequent to the acquisition of mitochondria in an archaeal host cell. © 2015 WILEY Periodicals, Inc.

  12. Generational diversity.

    Science.gov (United States)

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions.

  13. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases.

    Science.gov (United States)

    Makarova, K S; Aravind, L; Koonin, E V

    1999-08-01

    Computer analysis using profiles generated by the PSI-BLAST program identified a superfamily of proteins homologous to eukaryotic transglutaminases. The members of the new protein superfamily are found in all archaea, show a sporadic distribution among bacteria, and were detected also in eukaryotes, such as two yeast species and the nematode Caenorhabditis elegans. Sequence conservation in this superfamily primarily involves three motifs that center around conserved cysteine, histidine, and aspartate residues that form the catalytic triad in the structurally characterized transglutaminase, the human blood clotting factor XIIIa'. On the basis of the experimentally demonstrated activity of the Methanobacterium phage pseudomurein endoisopeptidase, it is proposed that many, if not all, microbial homologs of the transglutaminases are proteases and that the eukaryotic transglutaminases have evolved from an ancestral protease.

  14. Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors.

    Science.gov (United States)

    Tosi, Tommaso; Pflug, Alexander; Discola, Karen F; Neves, David; Dessen, Andréa

    2013-01-01

    Type III secretion systems (T3SS) are macromolecular complexes that translocate a wide number of effector proteins into eukaryotic host cells. Once within the cytoplasm, many T3SS effectors mimic the structure and/or function of eukaryotic proteins in order to manipulate signaling cascades, and thus play pivotal roles in colonization, invasion, survival and virulence. Structural biology techniques have played key roles in the unraveling of bacterial strategies employed for mimicry and targeting. This review provides an overall view of our current understanding of structure and function of T3SS effectors, as well as of the different classes of eukaryotic proteins that are targeted and the consequences for the infected cell. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Faster growth of the major prokaryotic versus eukaryotic CO2 fixers in the oligotrophic ocean.

    Science.gov (United States)

    Zubkov, Mikhail V

    2014-04-29

    Because maintenance of non-scalable cellular components--membranes and chromosomes--requires an increasing fraction of energy as cell size decreases, miniaturization comes at a considerable energetic cost for a phytoplanktonic cell. Consequently, if eukaryotes can use their superior energetic resources to acquire nutrients with more or even similar efficiency compared with prokaryotes, larger unicellular eukaryotes should be able to achieve higher growth rates than smaller cyanobacteria. Here, to test this hypothesis, we directly compare the intrinsic growth rates of phototrophic prokaryotes and eukaryotes from the equatorial to temperate South Atlantic using an original flow cytometric (14)CO2-tracer approach. At the ocean basin scale, cyanobacteria double their biomass twice as frequently as the picoeukaryotes indicating that the prokaryotes are faster growing CO2 fixers, better adapted to phototrophic living in the oligotrophic open ocean-the most extensive biome on Earth.

  16. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods...... for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA...... DNA. Validation of the Circle-Seq method on three S. cerevisiae CEN.PK populations of 10(10) cells detected hundreds of eccDNA profiles in sizes larger than 1 kilobase. Repeated findings of ASP3-1, COS111, CUP1, RSC30, HXT6, HXT7 genes on circular DNA in both S288c and CEN.PK suggests that DNA...

  17. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    in proteins is currently lacking. We have therefore analyzed the occurrence and occupancy of phosphorylated sites (~ 100,281) in a large set of eukaryotic proteins (~ 22,995). Phosphorylation probability was found to be much higher in both the  termini of protein sequences and this is much pronounced...... maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins.......Many recent high throughput technologies have enabled large-scale discoveries of new phosphorylation sites and phosphoproteins. Although they have provided a number of insights into protein phosphorylation and the related processes, an inclusive analysis on the nature of phosphorylated sites...

  18. Eukaryotic viruses in wastewater samples from the United States

    Science.gov (United States)

    Symonds, E.M.; Griffin, Dale W.; Breitbart, M.

    2009-01-01

    Human fecal matter contains a large number of viruses, and current bacterial indicators used for monitoring water quality do not correlate with the presence of pathogenic viruses. Adenoviruses and enteroviruses have often been used to identify fecal pollution in the environment; however, other viruses shed in fecal matter may more accurately detect fecal pollution. The purpose of this study was to develop a baseline understanding of the types of viruses found in raw sewage. PCR was used to detect adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses in raw sewage collected throughout the United States. Adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples and 25% and 33% of final effluent samples, respectively. Enteroviruses and noroviruses were detected in 75% and 58% of raw sewage samples, respectively, and both viral groups were found in 8% of final effluent samples. This study showed that adenoviruses, enteroviruses, noroviruses, and picobirnaviruses are widespread in raw sewage. Since adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples, they are potential markers of fecal contamination. Additionally, this research uncovered previously unknown sequence diversity in human picobirnaviruses. This baseline understanding of viruses in raw sewage will enable educated decisions to be made regarding the use of different viruses in water quality assessments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  19. New Insights into the Diversity of Marine Picoeukaryotes

    Science.gov (United States)

    Not, Fabrice; del Campo, Javier; Balagué, Vanessa; de Vargas, Colomban; Massana, Ramon

    2009-01-01

    Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however, displayed a distinct picture. High protistan diversity in the Marine Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine protists. PMID:19787059

  20. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  1. Disseminated Autochthonous Dermal Leishmaniasis Caused byLeishmania siamensis(PCM2 Trang) in a Patient from Central Thailand Infected with Human Immunodeficiency Virus.

    Science.gov (United States)

    Supsrisunjai, Chavalit; Kootiratrakarn, Tanawatt; Puangpet, Pailin; Bunnag, Thareena; Chaowalit, Prapaipit; Wessagowit, Vesarat

    2017-05-01

    AbstractSeveral case reports of autochthonous leishmaniasis in Thailand have been published since 1996. Most of the previous cases presented with visceral leishmaniasis (VL) and were mostly reported in southern part of Thailand. Recently, it has been evident that Leishmania martiniquensis is the main cause of Leishmania infection in Thailand. However, Leishmania siamensis (PCM2 Trang isolate) was found to be of a separate lineage with restricted distribution in southern Thailand and also a cause of disseminated dermal and visceral leishmaniasis in one published case. Here we report the first patient from central Thailand with human immunodeficiency virus infection presenting with disseminated dermal leishmaniasis. Polymerase chain reaction and DNA sequencing analysis (large subunit of RNA polymerase II and 18S ribosomal RNA internal transcribed spacer 1) from the tissue biopsy sample revealed the pathogen sequences to be highly homologous to PCM2 Trang strain previously reported from southern Thailand.

  2. Engineering of ribosomal shunt-modulating eukaryotic ON riboswitches by using a cell-free translation system.

    Science.gov (United States)

    Ogawa, Atsushi

    2015-01-01

    A number of natural and artificial bacterial riboswitches have been reported thus far. However, they generally function only in bacteria, not in eukaryotes. This is because of the differences of expression mechanisms (transcription, translation, and so on) between these two main types of organisms. For example, the mechanism of translation initiation is quite different between bacteria and eukaryotes, especially in ribosome loading on mRNA. While the bacterial ribosome binds to a well-conserved, internal sequence some bases before the start codon to initiate translation, the eukaryotic one is loaded on the 5' terminus with the help of certain eukaryotic initiation factors. This means not only that bacterial riboswitches regulating translation initiation are not available in eukaryotic translation systems, but also that it is physically difficult to construct eukaryotic ON riboswitches that regulate the eukaryotic canonical translation initiation, because an aptamer cannot be inserted upstream of the ribosome loading site. However, the mechanism of noncanonical translation initiation via "ribosomal shunt" enables us to design translation initiation-modulating (specifically, ribosomal shunt-modulating) eukaryotic ON riboswitches. This chapter describes a facile method for engineering these ribosomal shunt-modulating eukaryotic ON riboswitches by using a cell-free translation system. Because these riboswitches do not require hybridization switching thanks to a unique shunting mechanism, they have the major advantages of a low energy requirement for upregulation and relatively straightforward design over common hybridization switch-based ON riboswitches. © 2015 Elsevier Inc. All rights reserved.

  3. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium. Final report; Einfluss der autochthonen Mikroflora auf die Sorption und Remobilisierung des Technetiums und des Selens. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Maue, G.; Stroetmann, I.; Dott, W. [Technische Univ. Berlin (Germany). Fachgebiet Umwelthygiene; Taute, T.; Winkler, A.; Pekdeger, A. [Freie Univ. Berlin (Germany). Fachrichtung Rohstoff- und Umweltgeologie

    1996-10-31

    Within this research project the influence of autochthonous mirco-organisms on immobilization and remobilization of Technetium and Selenium was investigated. Both redoxsensitive radionuclides are part of the waste of nuclear fuel (Tc app. 6%). Former investigations have shown, that immobilization behaviour of both elements could be influenced by micro-organisms. It has not been known, if the autochthonous (or in situ) organisms from greater depth do also have an influence on radionuclide mobility. The autochthonous populations of micro-organisms in deep sediments and their influence on the migration of Tc and Se were investigated in this study. For this reason recirculation column experiments were carried out. Absolutely sterile and anaerobic handling was necessary for the sampling and the further treatment of the sediments and waters used in the experiments. Therefor special methods for sampling, storage and handling had been developed. The results of recirculation column test with autochthonous micro-organisms were compared with sterile parallel tests and were verified with the results of an elaborated version of the hydrogeochemical equilibration code PHREEQE. It was shown that the autochthonous micro-organisms had only very little influence on the migration behaviour. The reason is the very low population (less than 10 E+6 CFU). Nevertheless it has to be taken into consideration, that conventional laboratory experiments for the estimation of the retention capacities of sediments for hazardous waste lead to an overestimation, if the sediments are contaminated with allochthonous micro-organisms (CFU=colony forming units). (orig.) [Deutsch] In dem Forschungsvorhaben wurde der Einfluss der autochthonen Mikroorgansimen auf die Mobilitaet von Technetium und Selen untersucht. Beide redoxsensitiven Radionuklide sind im Abfall von Kernbrennelementen enthalten (Tc ca. 6%). Aus vorangegangenen Forschungsarbeiten ist bekannt, dass die Mobilitaet der beiden Elemente durch

  4. Comparative radiobiology of genetic loci of eukaryots as the basis of the general theory of mutations

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.

    1983-01-01

    One of the fundamental problems of modern molecular cellular radiobiology is to reveal general and peculiar processes of the formation of gene mutations and chromosome aberrations in each stage of their formation in the irradiated genome of the higher eukaryots. The solution of the problems depends on the development of research within the framework of comparative radiobiology of genetic loci of the higher eukaryots that makes it possible to study quantitative regularities in the formation of gene (point) mutations and chromosome aberrations in one object and in the same experiment

  5. Dynamic instability--a common denominator in prokaryotic and eukaryotic DNA segregation and cell division.

    Science.gov (United States)

    Fuesler, John A; Li, Hsin-Jung Sophia

    2012-12-01

    Dynamic instability is an essential phenomenon in eukaryotic nuclear division and prokaryotic plasmid R1 segregation. Although the molecular machines used in both systems differ greatly in composition, strong similarities and requisite nuances in dynamics and segregation mechanisms are observed. This brief examination of the current literature provides a functional comparison between prokaryotic and eukaryotic dynamically unstable filaments, specifically ParM and microtubules. Additionally, this mini-review should support the notion that any dynamically unstable filament could serve as the molecular machine driving DNA segregation, but these machines possess auxiliary features to adapt to temporal and spatial disparities in either system.

  6. Use of prokaryotic transcriptional activators as metabolite biosensors in eukaryotic cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to the use of transcriptional activators from prokaryotic organisms for use in eukaryotic cells, such as yeast as sensors of intracellular and extracellular accumulation of a ligand or metabolite specifically activating this transcriptional activator in a eukaryot......, such as yeast cell, such as a cell engineered to produce this ligand. The transcriptional activator controls a promoter upstream of one or more gene, which may include e.g. a reporter gene that may be a fluorescence marker, such as luciferase, green fluorescent protein or a gnee encoding antibiotic resistance....

  7. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells

    DEFF Research Database (Denmark)

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-01-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells...... prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control mechanism...

  8. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John; Cedhagen, Tomas

    2009-01-01

    morphological features. To examine their taxonomic position at the molecular level, we analysed the SSU rDNA sequences of two species, Normanina conferta and Septuma ocotillo, obtained either with specific foraminiferal or universal eukaryotic primers. Many different sequences resulted from this investigation...... but none of them could clearly be attributed to komokiaceans. Although our study failed to confirm univocally that Komokiacea are foraminiferans, it revealed a huge eukaryotic richness associated with these organisms, comparable with the richness in the overall surrounding sediment. These observations...

  9. Importance of allochthonous and autochthonous dissolved organic matter in Fe(II) oxidation: A case study in Shizugawa Bay watershed, Japan.

    Science.gov (United States)

    Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Natsuike, Masafumi; Ito, Hiroaki; Watanabe, Toru; Yoshimura, Chihiro

    2017-08-01

    Ferrous iron (Fe[II]) oxidation by dissolved oxygen was investigated in the Shizugawa Bay watershed with particular attention given to the effect of dissolved organic matter (DOM) properties on Fe(II) oxidation. To cover a wide spectrum of DOM composition, water samples were collected from various water sources including freshwater (e.g., river water and wastewater effluent) and coastal seawater. Measurement of nanomolar Fe(II) oxidation by using luminol chemiluminescence under dark, air-saturated conditions at 25 °C indicated that spatio-temporal variation of the second-order rate constant (6.7-74.5 M -1  s -1 ) was partially explained by the variation of the sample pH (7.5-8.6). However, at comparable pH values, the oxidation rates for freshwater were generally greater than those for coastal seawater. The substantial decline in oxidation rate constant after the removal of humic-type (allochthonous) DOM suggested that this hydrophobic DOM is a key factor that accelerates the Fe(II) oxidation in the freshwater samples. Observed lower oxidation rates for coastal seawater compared with freshwater and organic ligand-free seawater were likely associated with microbially derived autochthonous DOM, and the variation of Fe(II) oxidation at a fixed pH was best described by fluorescence index that represents the proportion of autochthonous and allochthonous DOM in natural waters. Consistently, Fe(II) oxidation was found to be slower in the presence of cellular exudates from phytoplankton. The present study highlighted the significant effect of DOM composition on the Fe(II) oxidation in inland and coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparative studies on the fermentation performance of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor during solid-state or submerged fermentation.

    Science.gov (United States)

    Kong, Y; Wu, Q; Xu, Y

    2017-04-01

    To explore the metabolic characteristic of autochthonous Saccharomyces cerevisiae strains in Chinese light-fragrant liquor fermentation. Inter-delta amplification analysis was used to differentiate the S. cerevisiae strains at strain level. Twelve biotypes (I-XII) were identified among the 72 S. cerevisiae strains preselected. A comparison was conducted between solid-state fermentation (SSF) and submerged fermentation (SmF) with S. cerevisiae strains had different genotype, with a focus on the production of ethanol and the volatile compounds. The degree of ethanol ranged from 28·0 to 45·2 g l -1 in SmF and from 14·8 to 25·6 g kg -1 in SSF, and SSF was found to be more suitable for the production of ethanol with higher yield coefficient of all the S. cerevisiae strains. The metabolite profiles of each yeast strain showed obvious distinction in the two fermentations. The highest amounts of ethyl acetate in SmF and SSF were found in genotype VII (328·2 μg l -1 ) and genotype V (672 μg kg -1 ), respectively. In addition, the generation of some volatile compounds could be strictly related to the strain used. Compound β-damascenone was only detected in genotypes I, II, X and XII in the two fermentation processes. Furthermore, laboratory scale fermentations were clearly divided into SSF and SmF in hierarchical cluster analysis regardless of the inoculated yeast strains, indicating that the mode of fermentation was more important than the yeast strains inoculated. The autochthonous S. cerevisiae strains in Chinese light-fragrant liquor vary considerably in terms of their volatiles profiles during SSF and SmF. This work facilitates a better understanding of the fermentative mechanism in the SSF process for light-fragrant liquor production. © 2016 The Society for Applied Microbiology.

  11. Impact of pre-selected autochthonous starter cultures on the flavor quality of Iberian dry-fermented "salchichón" sausage with different ripening processes.

    Science.gov (United States)

    Casquete, Rocío; Martín, Alberto; Benito, María José; Ruiz-Moyano, Santiago; Nevado, Francisco Pérez; Córdoba, María de Guía

    2011-01-01

    The purpose of this study was to investigate the impact on flavor quality of 2 autochthonous starter cultures in the manufacture of Iberian dry-fermented "sálchichón." A total of 2 strains of Pediococcus acidilactici (MS200 and MS198) were combined individually with a strain of Staphylococcus vitulus (RS34) to obtain 2 starter cultures: P200S34 and P198S34. The ability of both starter cultures to implant during 2 different manufacturing procedures of "salchichón" was evaluated by 16S rRNA gene sequence analysis. Changes due to starter culture inoculations on volatile compounds were determined by gas chromatography/mass spectrometry, and the impact on flavor quality evaluated by sensorial analysis. The implantation of starter cultures was adequate and did not significantly modify the flavor of the traditional Iberian dry-fermented "salchichón," while modulating the volatile compound profile with respect to that found in sausages with wild microbial populations. The influence of the starter cultures studied was more evident in the shorter sausage processing time. P198S34 was related with the increase in some volatile compounds deriving from lipid degradation. P200S34 contributed to the formation of several volatile compounds arising from lipid degradation, amino acid catabolism, and microbial esterase activity. P200S34 and P198S34 are autochthonous starter cultures for specific use in the processing of Iberian dry-fermented sausages. The application of these starters allows obtaining Iberian dry-fermented sausages with sensorial characteristics standardized. It is greatly interesting for processing and marketing industry of these high-quality meat products. © 2011 Institute of Food Technologists®

  12. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Ławniczak, Ł., E-mail: lukasz.k.lawniczak@wp.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Syguda, A., E-mail: Anna.Syguda@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Borkowski, A., E-mail: a.borkowski@uw.edu.pl [Faculty of Geology, University of Warsaw, 02-089 Warsaw (Poland); Cyplik, P., E-mail: pcyplik@wp.pl [Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznan, 60-627 Poznan (Poland); Marcinkowska, K., E-mail: k.marcinkowska@iorpib.poznan.pl [Institute of Plant Protection - National Research Institute, Poznan 60-318 (Poland); Wolko, Ł., E-mail: wolko@o2.pl [Department of Biochemistry and Biotechnology, Poznań University of Life Sciences in Poznan, 60-632 Poznan (Poland); Praczyk, T., E-mail: t.praczyk@iorpib.poznan.pl [Institute of Plant Protection - National Research Institute, Poznan 60-318 (Poland); Chrzanowski, Ł., E-mail: Lukasz.Chrzanowski@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Pernak, J., E-mail: Juliusz.Pernak@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland)

    2016-09-01

    The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing {sup 1}H and {sup 13}C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3. - Highlights: • Impact of herbicidal ionic liquids on bacterial community structure was studied. • Oligomeric herbicidal ionic liquids were effective but not readily biodegradable. • Next generation sequencing was used to evaluate shifts in bacterial abundance. • Treatment during field trials resulted in changes at class and species level. • Use of herbicidal ionic liquids affects the structure of autochthonic soil bacteria.

  13. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber.

    Science.gov (United States)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan-Carlos; Alonso, Jesús; Ascaso, Carmen

    2009-02-20

    Microfossils are not only useful for elucidating biological macro- and microevolution but also the biogeochemical history of our planet. Pyritization is the most important and extensive mode of preservation of animals and especially of plants. Entrapping in amber, a fossilized resin, is considered an alternative mode of biological preservation. For the first time, the internal organization of 114-million-year-old microfossils entrapped in Lower Cretaceous amber is described and analyzed, using adapted scanning electron microscopy in backscattered electron mode in association with energy dispersive X-ray spectroscopy microanalysis. Double fossilization of several protists included in diverse taxonomical groups and some vegetal debris is described and analyzed. In protists without an exoskeleton or shell (ciliates, naked amoebae, flagellates), determinate structures, including the nuclei, surface envelopes (cortex or cytoplasmic membrane) and hyaloplasm are the main sites of pyritization. In protists with a biomineralized skeleton (diatoms), silicon was replaced by pyrite. Permineralization was the main mode of pyritization. Framboidal, subhedral and microcrystalline are the predominant pyrite textures detected in the cells. Abundant pyritized vegetal debris have also been found inside the amber nuggets and the surrounding sediments. This vegetal debris usually contained numerous pyrite framboids and very densely packed polycrystalline pyrite formations infilled with different elements of the secondary xylem. Embedding in amber and pyritization are not always alternative modes of biological preservation during geological times, but double fossilization is possible under certain environmental conditions. Pyritization in protists shows a quite different pattern with regard to plants, due to the different composition and cellular architecture in these microorganisms and organisms. Anaerobic sulphate-reducing bacteria could play a crucial role in this microbial

  14. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber

    Directory of Open Access Journals (Sweden)

    Alonso Jesús

    2009-02-01

    Full Text Available Abstract Background Microfossils are not only useful for elucidating biological macro- and microevolution but also the biogeochemical history of our planet. Pyritization is the most important and extensive mode of preservation of animals and especially of plants. Entrapping in amber, a fossilized resin, is considered an alternative mode of biological preservation. For the first time, the internal organization of 114-million-year-old microfossils entrapped in Lower Cretaceous amber is described and analyzed, using adapted scanning electron microscopy in backscattered electron mode in association with energy dispersive X-ray spectroscopy microanalysis. Double fossilization of several protists included in diverse taxonomical groups and some vegetal debris is described and analyzed. Results In protists without an exoskeleton or shell (ciliates, naked amoebae, flagellates, determinate structures, including the nuclei, surface envelopes (cortex or cytoplasmic membrane and hyaloplasm are the main sites of pyritization. In protists with a biomineralized skeleton (diatoms, silicon was replaced by pyrite. Permineralization was the main mode of pyritization. Framboidal, subhedral and microcrystalline are the predominant pyrite textures detected in the cells. Abundant pyritized vegetal debris have also been found inside the amber nuggets and the surrounding sediments. This vegetal debris usually contained numerous pyrite framboids and very densely packed polycrystalline pyrite formations infilled with different elements of the secondary xylem. Conclusion Embedding in amber and pyritization are not always alternative modes of biological preservation during geological times, but double fossilization is possible under certain environmental conditions. Pyritization in protists shows a quite different pattern with regard to plants, due to the different composition and cellular architecture in these microorganisms and organisms. Anaerobic sulphate

  15. Composition of Micro-eukaryotes on the Skin of the Cascades Frog (Rana cascadae and Patterns of Correlation between Skin Microbes and Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Jordan G. Kueneman

    2017-12-01

    Full Text Available Global amphibian decline linked to fungal pathogens has galvanized research on applied amphibian conservation. Skin-associated bacterial communities of amphibians have been shown to mediate fungal skin infections and the development of probiotic treatments with antifungal bacteria has become an emergent area of research. While exploring the role of protective bacteria has been a primary focus for amphibian conservation, we aim to expand and study the other microbes present in amphibian skin communities including fungi and other micro-eukaryotes. Here, we characterize skin-associated bacteria and micro-eukaryotic diversity found across life stages of Cascades frog (Rana cascadae and their associated aquatic environments using culture independent 16S and 18S rRNA marker-gene sequencing. Individuals of various life stages of Cascades frogs were sampled from a population located in the Trinity Alps in Northern California during an epidemic of the chytrid fungus, Batrachochytrium dendrobatidis. We filtered the bacterial sequences against a published database of bacteria known to inhibit B. dendrobatidis in co-culture to estimate the proportion of the skin bacterial community that is likely to provide defense against B. dendrobatidis. Tadpoles had a significantly higher proportion of B. dendrobatidis-inhibitory bacterial sequence matches relative to subadult and adult Cascades frogs. We applied a network analysis to examine patterns of correlation between bacterial taxa and B. dendrobatidis, as well as micro-eukaryotic taxa and B. dendrobatidis. Combined with the published database of bacteria known to inhibit B. dendrobatidis, we used the network analysis to identify bacteria that negatively correlated with B. dendrobatidis and thus could be good probiotic candidates in the Cascades frog system.

  16. Pyrosequencing and genetic diversity of microeukaryotes

    DEFF Research Database (Denmark)

    Harder, Christoffer Bugge

    a well-studied country is an illustration of the limited knowledge of the microbial diversity. Finally, Article I separates a group of closely related fungi that could not be determined by morphology by using a phylogenetic analysis combining three marker genes. Using multiple markers makes it possible...... pathogens themselves. Protozoa is a morphological group which occurs in many different eukaryotic phyla, and many apparently morphologically similar types are very different from each others genetically. This complicates the development of good primers for analysis of their diversity with modern DNA based...... methods. Compared to other microorganisms such as fungi, algae and bacteria, much less is known about protozoa. It has been an essential element of this thesis to to advance our knowledge of protozoa by developing new primers for DNA-based studies of protozoa impact on ecosystems or as indicators...

  17. Ecological Diversity in South American Mammals: Their Geographical Distribution Shows Variable Associations with Phylogenetic Diversity and Does Not Follow the Latitudinal Richness Gradient.

    Directory of Open Access Journals (Sweden)

    Paula Nilda Fergnani

    Full Text Available The extent to which the latitudinal gradient in species richness may be paralleled by a similar gradient of increasing functional or phylogenetic diversity is a matter of controversy. We evaluated whether taxonomic richness (TR is informative in terms of ecological diversity (ED, an approximation to functional diversity and phylogenetic diversity (AvPD using data on 531 mammal species representing South American old autochthonous (marsupials, xenarthrans, mid-Cenozoic immigrants (hystricognaths, primates and newcomers (carnivorans, artiodactyls. If closely related species are ecologically more similar than distantly related species, AvPD will be a strong predictor of ED; however, lower ED than predicted from AvPD may be due to species retaining most of their ancestral characters, suggesting niche conservatism. This pattern could occur in tropical rainforests for taxa of tropical affinity (old autochthonous and mid-Cenozoic immigrants and in open and arid habitats for newcomers. In contrast, higher ED than expected from AvPD could occur, possibly in association with niche evolution, in arid and open habitats for taxa of tropical affinity and in forested habitats for newcomers. We found that TR was a poor predictor of ED and AvPD. After controlling for TR, there was considerable variability in the extent to which AvPD accounted for ED. Taxa of tropical affinity did not support the prediction of ED deficit within tropical rainforests, rather, they showed a mosaic of regions with an excess of ED interspersed with zones of ED deficit within the tropics; newcomers showed ED deficit in arid and open regions. Some taxa of tropical affinity showed excess of ED in tropical desert areas (hystricognaths or temperate semideserts (xenarthrans; newcomers showed excess of ED at cold-temperate latitudes in the Northern Hemisphere. This result suggests that extreme climatic conditions at both temperate and tropical latitudes may have promoted niche evolution in

  18. A Resurgence in Field Research is Essential to Better Understand the Diversity, Ecology, and Evolution of Microbial Eukaryotes

    Czech Academy of Sciences Publication Activity Database

    Heger, T.J.; Edgcomb, V.P.; Kim, E.; Lukeš, Julius; Leander, B. S.; Yubuki, N.

    2014-01-01

    Roč. 61, č. 2 (2014), s. 214-223 ISSN 1066-5234 Institutional support: RVO:60077344 Keywords : Algae * culture * food webs * microscopy * molecular phylogenetics * next-generation sequencing * protist Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.217, year: 2014

  19. The Cell Walls of Green Algae: A Journey through Evolution and Diversity

    OpenAIRE

    Domozych, David S.; Ciancia, Marina; Fangel, Jonatan U.; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G. T.

    2012-01-01

    The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean Green Algae possess cell walls containing assemblag...

  20. The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists

    Science.gov (United States)

    SINA M. ADL; ALASTAIR G. B. SIMPSON; MARK A. FARMER; ROBERT A. ANDERSEN; O. ROGER ANDERSON; JOHN R. BARTA; SAMUEL S. BOWSER; GUY BRUGEROLLE; ROBERT A. FENSOME; SUZANNE FREDERICQ; TIMOTHY Y. JAMES; SERGEI KARPOV; PAUL KUGRENS; JOHN KRUG; CHRISTOPHER E. LANE; LOUISE A. LEWIS; JEAN LODGE; DENIS H. LYNN; DAVID G. MANN; RICHARD M. MCCOURT; LEONEL MENDOZA; ØJVIND MOESTRUP; SHARON E. MOZLEY-STANDRIDGE; THOMAS A. NERAD; CAROL A. SHEARER; ALEXEY V. SMIRNOV; FREDERICK W. SPIEGEL; MAX F.J.R. TAYLOR

    2005-01-01

    This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic...

  1. Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture.

    NARCIS (Netherlands)

    Egorova-Zachernyuk, T.A.; Bosman, G.J.C.G.M.; Pistorius, A.M.A.; Grip, W.J. de

    2009-01-01

    Preparation of stable isotope-labelled yeastolates opens up ways to establish more cost-effective stable isotope labelling of biomolecules in insect and mammalian cell lines and hence to employ higher eukaryotic cell lines for stable isotope labelling of complex recombinant proteins. Therefore, we

  2. The Ancient Gamete Fusogen HAP2 Is a Eukaryotic Class II Fusion Protein.

    Science.gov (United States)

    Fédry, Juliette; Liu, Yanjie; Péhau-Arnaudet, Gérard; Pei, Jimin; Li, Wenhao; Tortorici, M Alejandra; Traincard, François; Meola, Annalisa; Bricogne, Gérard; Grishin, Nick V; Snell, William J; Rey, Félix A; Krey, Thomas

    2017-02-23

    Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems.

    Science.gov (United States)

    Panavas, Tadas; Sanders, Carsten; Butt, Tauseef R

    2009-01-01

    In eukaryotic cells, the reversible attachment of small ubiquitin-like modifier (SUMO) protein is a post-translational modification that has been demonstrated to play an important role in various cellular processes. Moreover, it has been found that SUMO as an N-terminal fusion partner enhances functional protein production in prokaryotic and eukaryotic expression systems, based upon significantly improved protein stability and solubility. Following the expression and purification of the fusion protein, the SUMO-tag can be cleaved by specific (SUMO) proteases via their endopeptidase activity in vitro to generate the desired N-terminus of the released protein partner. In addition to its physiological relevance in eukaryotes, SUMO can, thus, be used as a powerful biotechnological tool for protein expression in prokaryotic and eukaryotic cell systems.In this chapter, we will describe the construction of a fusion protein with the SUMO-tag, its expression in Escherichia coli, and its purification followed by the removal of the SUMO-tag by a SUMO-specific protease in vitro.

  4. Eukaryotic Ribonucleases P/MRP: the Crystal Structure of the P3 Domain

    Energy Technology Data Exchange (ETDEWEB)

    Perederina, A.; Esakova, O; Quan, C; Khanova, E; Krasilnikov, A

    2010-01-01

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 {angstrom}. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  5. Studying NK cell lectin receptors and their interactions using HEK293T eukaryotic expression system

    Czech Academy of Sciences Publication Activity Database

    Vaněk, O.; Celadová, P.; Kolenko, Petr; Dohnálek, Jan; Bezouška, Karel

    2009-01-01

    Roč. 276, Suppl. 1 (2009), s. 170 ISSN 1742-464X. [FEBS Congress "Life´s Molecular Interactions /34./. 04.07.2009-09.07.2009, Praha] Institutional research plan: CEZ:AV0Z40500505 Keywords : NK cell lectin receptors * HEK293T * eukaryotic expression system Subject RIV: CD - Macromolecular Chemistry

  6. A complex cell division machinery was present in the last common ancestor of eukaryotes.

    Directory of Open Access Journals (Sweden)

    Laura Eme

    Full Text Available BACKGROUND: The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure or analogous (have distinct evolutionary origins. Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. METHODOLOGY/PRINCIPAL FINDINGS: Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95% are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins were already present in the last common ancestor of all eukaryotes (LECA and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a complex ancestor for all contemporary eukaryotes.

  7. Are maternal mitochondria the selfish entities that are masters of the cells of eukaryotic multicellular organisms?

    Science.gov (United States)

    Barlow, Peter W; Baldelli, E; Baluška, Frantisek

    2009-01-01

    The Energide concept, as well as the endosymbiotic theory of eukaryotic cell organization and evolution, proposes that present-day cells of eukaryotic organisms are mosaics of specialized and cooperating units, or organelles. Some of these units were originally free-living prokaryotes, which were engulfed during evolutionary time. Mitochondria represent one of these types of previously independent organisms, the Energide, is another type. This new perspective on the organization of the cell has been further expanded to reveal the concept of a public milieu, the cytosol, in which Energides and mitochondria live, each with their own private internal milieu. The present paper discusses how the endosymbiotic theory implicates a new hypothesis about the hierarchical and communicational organization of the integrated prokaryotic components of the eukaryotic cell and provides a new angle from which to consider the theory of evolution and its bearing upon cellular complexity. Thus, it is proposed that the “selfish gene” hypothesis of Dawkins1 is not the only possible perspective for comprehending genomic and cellular evolution. Our proposal is that maternal mitochondria are the selfish “master” entities of the eukaryotic cell with respect not only to their propagation from cell-to-cell and from generation-to-generation but also to their regulation of all other cellular functions. However, it should be recognized that the concept of “master” and “servant” cell components is a metaphor; in present-day living organisms their organellar components are considered to be interdependent and inseparable. PMID:19513277

  8. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.

    Science.gov (United States)

    Gutierrez, Jahir M; Lewis, Nathan E

    2015-07-01

    Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable hosts for the production of many recombinant proteins. With the advent of genomic resources, one can now leverage genome-scale computational modeling of cellular pathways to rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemical reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engineering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins

    Science.gov (United States)

    Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.

    2013-01-01

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, 18F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions. PMID:24173035

  10. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    Science.gov (United States)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  11. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

    Czech Academy of Sciences Publication Activity Database

    Speijer, D.; Lukeš, Julius; Eliáš, M.

    2015-01-01

    Roč. 112, č. 29 (2015), s. 8827-8834 ISSN 0027-8424 R&D Projects: GA MŠk LH12104; GA ČR GA15-21974S Institutional support: RVO:60077344 Keywords : reactive oxygen species * evolution * protists * eukaryotes * sex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  12. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  13. Diverse Multilateralism

    DEFF Research Database (Denmark)

    Wuthnow, Joel; Li, Xin; Qi, Lingling

    2012-01-01