WorldWideScience

Sample records for autochthonous eukaryotic diversity

  1. Diversity of the autochthonous colonic microbiota

    OpenAIRE

    Nava, Gerardo M.; Stappenbeck, Thaddeus S.

    2011-01-01

    A longstanding hypothesis in intestinal microbial ecology is that autochthonous microbes (resident) play a role that is distinct from allochthonous microbes (transient microbes in the fecal stream). A challenge has been to identify this pool of microbes. We used laser capture microdissection to collect microbes from the mouse ascending colon. This area contains transverse folds that mimic human intestinal folds and contains a distinct population of intestinal microbes that is associated with ...

  2. Eukaryotic diversity in historical soil samples

    NARCIS (Netherlands)

    Moon-van der Staay, S.Y.; Tzeneva, V.A.; Staay, van der G.W.M.; Vos, de W.M.; Smidt, H.; Hackstein, J.H.P.

    2006-01-01

    The eukaryotic biodiversity in historical air-dried samples of Dutch agricultural soil has been assessed by random sequencing of an 18S rRNA gene library and by denaturing gradient gel electrophoresis. Representatives of nearly all taxa of eukaryotic soil microbes could be identified, demonstrating

  3. Eukaryotic plankton diversity in the sunlit ocean

    Czech Academy of Sciences Publication Activity Database

    de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; Carmichael, M.; Poulain, J.; Romac, S.; Colin, S.; Aury, J.-M.; Bittner, L.; Chaffron, S.; Dunthorn, M.; Engelen, S.; Flegontova, Olga; Guidi, L.; Horák, Aleš; Jaillon, O.; Lima-Mendez, G.; Lukeš, Julius

    2015-01-01

    Roč. 348, č. 6237 (2015), UNSP 1261605. ISSN 0036-8075 Institutional support: RVO:60077344 Keywords : ribosomal RNA gene * protistan diversity * extreme diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014

  4. Genetic diversity and variability in two Italian autochthonous donkey genetic types assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Donato Matassino

    2014-01-01

    Full Text Available Since 13rd century, Italian domestic autochthonous donkey population has been characterised by Mediterranean grey mousy cruciate ancestral phenotype, currently typical of Amiata donkey (AD genetic type. This phenotype persisted up to the 16th century when a marked introduction of Hispanic and French big sized and dark bay or darkish coloured sires occurred. In the context of a safeguard programme of Latial Equide resources, the aim of this research was to evaluate the genetic diversity and similarity between the AD breed and an autochthonous donkey population native from Lazio, the Viterbese donkey (VD, using molecular markers. A total of 135 animals (50 AD and 85 VD were genetically characterised by using 16 short tandem repeat markers. A high genetic differentiation between populations (FST=0.158; P<0.01 and a low betweenbreeds genetic similarity (0.233±0.085 were observed. Correspondence analysis, the result of STRUCTURE software analysis and analysis of molecular variance would seem to indicate genetically different entities as well. It would be desirable to increase the number of comparison with other breeds to better understand the origin of VD. Moreover, results obtained in this study suggest that the loss of genetic variation observed in VD could mainly derive from unnoticed sub-population structuring (Wahlund effect, rather than to other factors such as inbreeding, null alleles or selection influence.

  5. Abundance and diversity of marine microbial eukaryotes

    OpenAIRE

    Pernice, Massimo Ciro

    2014-01-01

    [EN]Microeukaryotes are important ecological players in any kind of ecosystem, most notably in the ocean, and it is therefore essential to collect information about their abundance and diversity. To achieve this general goal this thesis was structured in two parts. The first part represents an effort to define our “diversity unit” from studies based on the well-known cloning and Sanger sequencing approach. Basically, we wanted to establish a solid baseline for the second part of the thesis. W...

  6. [Genetic diversity of eukaryotic picoplankton of eight lakes in Nanjing].

    Science.gov (United States)

    Zhao, Bi-ying; Chen, Mei-jun; Sun, Ying; Chen, Fei-zhou; Yang, Jia-xin

    2010-05-01

    The method of terminal restriction fragment length polymorphism (T-RFLP) was used to study the genetic diversity of eukaryotic picoplankton (0.2-5.0 microm) in the pelagic and littoral zones in 8 lakes with different trophic status in Nanjing. The objectives of this study were to confirm the difference of the genetic diversity of eukaryotic picoplankton among lakes and the main factors affecting this difference. T-RFLP indicated that there were various fingerprints among lakes and zones. The average terminal restriction fragments (T-RFs) in the littoral and pelagic zones were 16.4 and 15.9, respectively. The littoral zone in Lake Nan and the pelagic zone in Lake Mochou had 30 T-RFs and 27 T-RFs, respectively. The T-RFs were the least abundant (10) in the pelagic zone in Lake Baijia with relatively low trophic status. The genetic diversity of eukaryotic picoplankton was higher in the littoral zone than that in the pelagic zone except Lake Pipa and Mochou. The cluster analysis indicated that the similarities of the littoral zones and the pelagic zones were very high except Lake Baijia, Qian and Nan. The canonical correspondence analysis between the genetic diversity of eukaryotic picoplankton and environmental factors revealed the concentration of chlorophyll a had the most important impact on the eukaryotic picoplankton communities (p = 0.004). The results indicated that the genetic diversity of eukaryotic picoplankton is affected by the trophic status and has the difference in the pelagic and littoral zones. PMID:20623867

  7. Censusing marine eukaryotic diversity in the twenty-first century.

    Science.gov (United States)

    Leray, Matthieu; Knowlton, Nancy

    2016-09-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481783

  8. Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia

    Directory of Open Access Journals (Sweden)

    Karla B Heidelberg

    2013-05-01

    Full Text Available This study describes the community structure of the microbial eukaryotic community from hypersaline Lake Tyrrell, Australia, using near full length 18S rRNA sequences. Water samples were taken in both summer and winter over a four year period. The extent of eukaryotic diversity detected was low, with only 35 unique phylotypes using a 97% sequence similarity threshold. The water samples were dominated (91% by a novel cluster of the Alveolate, Apicomplexa Colpodella spp., most closely related to C. edax. The Chlorophyte, Dunaliella spp. accounted for less than 35% of water column samples. However, the eukaryotic community entrained in a salt crust sample was vastly different and was dominated (83% by the Dunaliella spp. The patterns described here represent the first observation of microbial eukaryotic dynamics in this system and provide a multiyear comparison of community composition by season. The lack of expected seasonal distribution in eukaryotic communities paired with abundant nanoflagellates suggests that grazing may significantly structure microbial eukaryotic communities in this system.

  9. Y-STR genetic diversity in autochthonous Andalusians from Huelva and Granada provinces (Spain).

    Science.gov (United States)

    Ambrosio, Beatriz; Novelletto, Andrea; Hernandez, Candela; Dugoujon, Jean Michel; Fortes-Lima, César; Rodriguez, Juan Nicolás; Calderon, Rosario

    2012-03-01

    Seventeen Y-chromosomal short tandem repeats (STRs) were analyzed in 347 healthy, unrelated, autochthonous males from the Andalusian provinces of Huelva (N=167) and Granada (N=180). AmpFlSTR Y-filer PCR Amplification kit (Applied Biosystems) was used to type the Y-STR markers. A total of 156 and 166 different haplotypes for the 17 Y-STR set were detected in Huelva, and Granada, respectively. The same haplotype diversity was found for both samples (0.998±0.001), and the overall discrimination capacity was 0.904. The most common minimal haplotype (DYS19, DYS389 I, DYS389 II, DYS390, DYS391, DYS392, DYS393) in both subpopulations was 14-13-16-24-11-13-13, which is also the most frequent haplotype among Atlantic European populations. Comparison analysis using pairwise R(ST) values and Analysis of Molecular Variance (AMOVA) revealed a significant genetic distance between our Andalusian samples and other ones from the northern Iberian fringe (including Basque and Pyrenean populations). However, results from the multi-dimensional scaling analysis (MDS) yielded a well-defined group of Iberian populations separated from the other Mediterranean clusters observed. PMID:21664894

  10. Diversity and antibiotic susceptibility of autochthonous dairy enterococci isolates: Are they safe candidates for autochthonous starter cultures?

    Directory of Open Access Journals (Sweden)

    Amarela eTerzić-Vidojević

    2015-09-01

    Full Text Available Enterococci represent the most controversial group of dairy bacteria. They are found to be the main constituent of many traditional Mediterranean dairy products and contribute to their characteristic taste and flavor. On the other hand, during the last 50 years antibiotic-resistant enterococci have emerged as leading causes of nosocomial infections worldwide. The aim of this study was to determine the diversity, technological properties, antibiotic susceptibility and virulence traits of 636 enterococci previously isolated from 55 artisan dairy products from 12 locations in the Western Balkan countries of Serbia, Croatia and Bosnia and Herzegovina. All strains were identified both by microbiological and molecular methods. The predominant species was Enterococcus durans, followed by E. faecalis and E. faecium. Over 44% of the isolates were resistant to ciprofloxacin and erythromycin, while 26.2% of the isolates were multi-resistant to three or more antibiotics belonging to different families. 185 isolates (29.1% were susceptible to all 13 of the antibiotics tested. The antibiotic-susceptible isolates were further tested for possible virulence genes and the production of biogenic amines. Finally, five enterococci isolates were found to be antibiotic susceptible with good technological characteristics and without virulence traits or the ability to produce biogenic amines, making them possible candidates for biotechnological application as starter cultures in the dairy industry.

  11. MtDNA diversity among four Portuguese autochthonous dog breeds: a fine-scale characterisation

    Directory of Open Access Journals (Sweden)

    Santa-Rita Pedro

    2005-06-01

    Full Text Available Abstract Background The picture of dog mtDNA diversity, as obtained from geographically wide samplings but from a small number of individuals per region or breed, has revealed weak geographic correlation and high degree of haplotype sharing between very distant breeds. We aimed at a more detailed picture through extensive sampling (n = 143 of four Portuguese autochthonous breeds – Castro Laboreiro Dog, Serra da Estrela Mountain Dog, Portuguese Sheepdog and Azores Cattle Dog-and comparatively reanalysing published worldwide data. Results Fifteen haplotypes belonging to four major haplogroups were found in these breeds, of which five are newly reported. The Castro Laboreiro Dog presented a 95% frequency of a new A haplotype, while all other breeds contained a diverse pool of existing lineages. The Serra da Estrela Mountain Dog, the most heterogeneous of the four Portuguese breeds, shared haplotypes with the other mainland breeds, while Azores Cattle Dog shared no haplotypes with the other Portuguese breeds. A review of mtDNA haplotypes in dogs across the world revealed that: (a breeds tend to display haplotypes belonging to different haplogroups; (b haplogroup A is present in all breeds, and even uncommon haplogroups are highly dispersed among breeds and continental areas; (c haplotype sharing between breeds of the same region is lower than between breeds of different regions and (d genetic distances between breeds do not correlate with geography. Conclusion MtDNA haplotype sharing occurred between Serra da Estrela Mountain dogs (with putative origin in the centre of Portugal and two breeds in the north and south of the country-with the Castro Laboreiro Dog (which behaves, at the mtDNA level, as a sub-sample of the Serra da Estrela Mountain Dog and the southern Portuguese Sheepdog. In contrast, the Azores Cattle Dog did not share any haplotypes with the other Portuguese breeds, but with dogs sampled in Northern Europe. This suggested that the

  12. What Entamoeba histolytica and Giardia lamblia tell us about the evolution of eukaryotic diversity

    Indian Academy of Sciences (India)

    J Samuelson

    2002-11-01

    Entamoeba histolytica and Giardia lamblia are microaerophilic protists, which have long been considered models of ancient pre-mitochondriate eukaryotes. As transitional eukaryotes, amoebae and giardia appeared to lack organelles of higher eukaryotes and to depend upon energy metabolism appropriate for anaerobic conditions, early in the history of the planet. However, our studies have shown that amoebae and giardia contain splicoeosomal introns, ras-family signal-transduction proteins, ATP-binding casettes (ABC)-family drug transporters, Golgi, and a mitochondrion-derived organelle (amoebae only). These results suggest that most of the organelles of higher eukaryotes were present in the common ancestor of all eukaryotes, and so dispute the notion of transitional eukaryotic forms. In addition, phylogenetic studies suggest many of the genes encoding the fermentation enzymes of amoebae and giardia derive from prokaryotes by lateral gene transfer (LGT). While LGT has recently been shown to be an important determinant of prokaryotic evolution, this is the first time that LGT has been shown to be an important determinant of eukaryotic evolution. Further, amoebae contain cyst wall-associated lectins, which resemble, but are distinct from lectins in the walls of insects (convergent evolution). Giardia have a novel microtubule-associated structure which tethers together pairs of nuclei during cell division. It appears then that amoebae and giardia tell us less about the origins of eukaryotes and more about the origins of eukaryotic diversity.

  13. Micro-Eukaryotic Diversity in Hypolithons from Miers Valley, Antarctica

    Directory of Open Access Journals (Sweden)

    Don A. Cowan

    2013-02-01

    Full Text Available The discovery of extensive and complex hypolithic communities in both cold and hot deserts has raised many questions regarding their ecology, biodiversity and relevance in terms of regional productivity. However, most hypolithic research has focused on the bacterial elements of the community. This study represents the first investigation of micro-eukaryotic communities in all three hypolith types. Here we show that Antarctic hypoliths support extensive populations of novel uncharacterized bryophyta, fungi and protists and suggest that well known producer-decomposer-predator interactions may create the necessary conditions for hypolithic productivity in Antarctic deserts.

  14. From lesions to viral clones: biological and molecular diversity amongst autochthonous Brazilian vaccinia virus.

    Science.gov (United States)

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Diomedes Neto, José; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-03-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  15. Genetic Diversity of Small Eukaryotes in Lakes Differing by Their Trophic Status

    OpenAIRE

    Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier

    2005-01-01

    Small eukaryotes, cells with a diameter of less than 5 μm, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational tax...

  16. Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation

    NARCIS (Netherlands)

    Piquet, Anouk M. -T.; Bolhuis, Henk; Davidson, Andrew T.; Thomson, Paul G.; Buma, Anita G. J.

    2008-01-01

    In the light of the predicted global climate change, it is essential that the status and diversity of polar microbial communities is described and understood. In the present study, molecular tools were used to investigate the marine eukaryotic communities of Prydz Bay, Eastern Antarctica, from Novem

  17. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life

    OpenAIRE

    Kim, Eunsoo; Harrison, James W.; Sudek, Sebastian; Jones, Meredith D.M.; Wilcox, Heather M.; Richards, Thomas A; Worden, Alexandra Z.; Archibald, John M.

    2011-01-01

    The use of molecular methods is altering our understanding of the microbial biosphere and the complexity of the tree of life. Here, we report a newly discovered uncultured plastid-bearing eukaryotic lineage named the rappemonads. Phylogenies using near-complete plastid ribosomal DNA (rDNA) operons demonstrate that this group represents an evolutionarily distinct lineage branching with haptophyte and cryptophyte algae. Environmental DNA sequencing revealed extensive diversity at North Atlantic...

  18. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    OpenAIRE

    WANG, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing

  19. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems.

    Science.gov (United States)

    Gong, Jun; Shi, Fei; Ma, Bin; Dong, Jun; Pachiadaki, Maria; Zhang, Xiaoli; Edgcomb, Virginia P

    2015-10-01

    Little is known about the relative influence of historic processes and environmental gradients on shaping the diversity of single-celled eukaryotes in marine benthos. By combining pyrosequencing of 18S ribosomal RNA genes with data on multiple environmental factors, we investigated the diversity of microeukaryotes in surficial sediments of three basins of the Yellow Sea Large Marine Ecosystem. A considerable proportion (about 20%) of reads was affiliated with known parasitoid protists. Dinophyta and Ciliophora appeared dominant in terms of relative proportion of reads and operational taxonomic unit (OTU) richness. Overall, OTU richness of benthic microeukaryotes decreased with increasing water depth and decreasing pH. While community composition was significantly different among basins, partial Mantel tests indicated a depth-decay pattern of community similarity, whereby water depth, rather than geographic distance or environment, shaped β-diversity of benthic microeukaryotes (including both the abundant and the rare biosphere) on a regional scale. Similar hydrographic and mineralogical factors contributed to the biogeography of both the abundant and the rare OTUs. The trace metal vanadium had a significant effect on the biogeography of the rare biosphere. Our study sheds new light on the composition, diversity patterns and underlying mechanisms of single-celled eukaryote distribution in surficial sediments of coastal oceans. PMID:25581721

  20. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems.

    Science.gov (United States)

    Lallias, Delphine; Hiddink, Jan G; Fonseca, Vera G; Gaspar, John M; Sung, Way; Neill, Simon P; Barnes, Natalie; Ferrero, Tim; Hall, Neil; Lambshead, P John D; Packer, Margaret; Thomas, W Kelley; Creer, Simon

    2015-05-01

    Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a 'melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype-environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both. PMID:25423027

  1. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  2. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea.

    Science.gov (United States)

    Pearman, John K; Irigoien, Xabier; Carvalho, Susana

    2016-04-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore-offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales. PMID:26525270

  3. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans.

    Science.gov (United States)

    Monier, Adam; Worden, Alexandra Z; Richards, Thomas A

    2016-08-01

    High-throughput diversity amplicon sequencing of marine microbial samples has revealed that members of the Mamiellophyceae lineage are successful phytoplankton in many oceanic habitats. Indeed, these eukaryotic green algae can dominate the picoplanktonic biomass, however, given the broad expanses of the oceans, their geographical distributions and the phylogenetic diversity of some groups remain poorly characterized. As these algae play a foundational role in marine food webs, it is crucial to assess their global distribution in order to better predict potential changes in abundance and community structure. To this end, we analyzed the V9-18S small subunit rDNA sequences deposited from the Tara Oceans expedition to evaluate the diversity and biogeography of these phytoplankton. Our results show that the phylogenetic composition of Mamiellophyceae communities is in part determined by geographical provenance, and do not appear to be influenced - in the samples recovered - by water depth, at least at the resolution possible with the V9-18S. Phylogenetic classification of Mamiellophyceae sequences revealed that the Dolichomastigales order encompasses more sequence diversity than other orders in this lineage. These results indicate that a large fraction of the Mamiellophyceae diversity has been hitherto overlooked, likely because of a combination of size fraction, sequencing and geographical limitations. PMID:26929141

  4. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2011-05-01

    eukaryotes that is open to comparative-genomic study probably was preceded by hundreds of millions years of evolution that might have included extinct diversity inaccessible to comparative approaches. Reviewers This article was reviewed by William Martin, Herve Philippe (nominated by I. King Jordan, and Romain Derelle.

  5. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. PMID:23520129

  6. Diversity and dynamics of active microbial eukaryotes in the anoxic zone of a freshwater meromictic lake (Pavin, France

    Directory of Open Access Journals (Sweden)

    CECILE eLEPERE

    2016-02-01

    Full Text Available Microbial eukaryotes play a crucial role in ecosystem functioning and oxygen is considered to be one of the strongest barriers against their local dispersal. However, diversity of microbial eukaryotes in freshwater habitats with oxygen gradients has previously received very little attention. We applied high-throughput sequencing (V4 region of the 18S rRNA gene in conjunction with quantitative PCR (DNA and RNA and fluorescent in situ hybridization analyses, to provide an unique spatio-temporal analysis of microbial eukaryotes diversity and potential activity in a meromictic freshwater lake (lake Pavin. This study revealed a high genetic diversity of unicellular eukaryotes in the permanent anoxic zone of lake Pavin and allowed the discrimination of active vs. inactive components. 42 % of the OTUs (Operational taxonomic Units are exclusively present in the monimolimnion, where Alveolata (Ciliophora and Dinophyceae and Fungi (Dikarya and Chytrids are the most active phyla and are probably represented by species capable of anaerobic metabolism. Pigmented eukaryotes (Haptophyceae and Chlorophyceae are also present and active in this zone, which opens up questions regarding their metabolism.

  7. Diversity and Dynamics of Active Small Microbial Eukaryotes in the Anoxic Zone of a Freshwater Meromictic Lake (Pavin, France)

    Science.gov (United States)

    Lepère, Cécile; Domaizon, Isabelle; Hugoni, Mylène; Vellet, Agnès; Debroas, Didier

    2016-01-01

    Microbial eukaryotes play a crucial role in ecosystem functioning and oxygen is considered to be one of the strongest barriers against their local dispersal. However, diversity of microbial eukaryotes in freshwater habitats with oxygen gradients has previously received very little attention. We applied high-throughput sequencing (V4 region of the 18S rRNA gene) in conjunction with quantitative PCR (DNA and RNA) and fluorescent in situ hybridization (FISH) analyses, to provide an unique spatio-temporal analysis of microbial eukaryotes diversity and potential activity in a meromictic freshwater lake (lake Pavin). This study revealed a high genetic diversity of unicellular eukaryotes in the permanent anoxic zone of lake Pavin and allowed the discrimination of active vs. inactive components. Forty-two percent of the OTUs (Operational Taxonomic Units) are exclusively present in the monimolimnion, where Alveolata (Ciliophora and Dinophyceae) and Fungi (Dikarya and Chytrids) are the most active phyla and are probably represented by species capable of anaerobic metabolism. Pigmented eukaryotes (Haptophyceae and Chlorophyceae) are also present and active in this zone, which opens up questions regarding their metabolism. PMID:26904006

  8. Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms

    OpenAIRE

    MEDINGER, RALPH; Nolte, Viola; Pandey, Ram Vinay; Jost, Steffen; OTTENWÄLDER, BIRGIT; Schlötterer, Christian; BOENIGK, JENS

    2010-01-01

    With the delivery of millions of sequence reads in a single experiment, next-generation sequencing (NGS) is currently revolutionizing surveys of microorganism diversity. In particular, when applied to Eukaryotes, we are still lacking a rigorous comparison of morphological and NGS-based diversity estimates. In this report, we studied the diversity and the seasonal community turnover of alveolates (Ciliophora and Dinophyceae) in an oligotrophic freshwater lake by SSU amplicon sequencing with NG...

  9. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic.

    Science.gov (United States)

    Cameron, Karen A; Hodson, Andrew J; Osborn, A Mark

    2012-11-01

    The cryosphere presents some of the most challenging conditions for life on earth. Nevertheless, (micro)biota survive in a range of niches in glacial systems, including water-filled depressions on glacial surfaces termed cryoconite holes (centimetre to metre in diameter and up to 0.5 m deep) that contain dark granular material (cryoconite). In this study, the structure of bacterial and eukaryotic cryoconite communities from ten different locations in the Arctic and Antarctica was compared using T-RFLP analysis of rRNA genes. Community structure varied with geography, with greatest differences seen between communities from the Arctic and the Antarctic. DNA sequencing of rRNA genes revealed considerable diversity, with individual cryoconite hole communities containing between six and eight bacterial phyla and five and eight eukaryotic 'first-rank' taxa and including both bacterial and eukaryotic photoautotrophs. Bacterial Firmicutes and Deltaproteobacteria and Epsilonproteobacteria, eukaryotic Rhizaria, Haptophyta, Choanomonada and Centroheliozoa, and archaea were identified for the first time in cryoconite ecosystems. Archaea were only found within Antarctic locations, with the majority of sequences (77%) related to members of the Thaumarchaeota. In conclusion, this research has revealed that Antarctic and Arctic cryoconite holes harbour geographically distinct highly diverse communities and has identified hitherto unknown bacterial, eukaryotic and archaeal taxa, therein. PMID:22168226

  10. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life.

    Science.gov (United States)

    Kim, Eunsoo; Harrison, James W; Sudek, Sebastian; Jones, Meredith D M; Wilcox, Heather M; Richards, Thomas A; Worden, Alexandra Z; Archibald, John M

    2011-01-25

    The use of molecular methods is altering our understanding of the microbial biosphere and the complexity of the tree of life. Here, we report a newly discovered uncultured plastid-bearing eukaryotic lineage named the rappemonads. Phylogenies using near-complete plastid ribosomal DNA (rDNA) operons demonstrate that this group represents an evolutionarily distinct lineage branching with haptophyte and cryptophyte algae. Environmental DNA sequencing revealed extensive diversity at North Atlantic, North Pacific, and European freshwater sites, suggesting a broad ecophysiology and wide habitat distribution. Quantitative PCR analyses demonstrate that the rappemonads are often rare but can form transient blooms in the Sargasso Sea, where high 16S rRNA gene copies mL(-1) were detected in late winter. This pattern is consistent with these microbes being a member of the rare biosphere, whose constituents have been proposed to play important roles under ecosystem change. Fluorescence in situ hybridization revealed that cells from this unique lineage were 6.6 ± 1.2 × 5.7 ± 1.0 μm, larger than numerically dominant open-ocean phytoplankton, and appear to contain two to four plastids. The rappemonads are unique, widespread, putatively photosynthetic algae that are absent from present-day ecosystem models and current versions of the tree of life. PMID:21205890

  11. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.

    Science.gov (United States)

    Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; Deoliveira, Rosane B; Garrett, Wendy S; Lu, Xi; O'Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N; Kayatani, Alexander K K; Maira-Litràn, Tomas; Gening, Marina L; Tsvetkov, Yury E; Nifantiev, Nikolay E; Bakaletz, Lauren O; Pelton, Stephen I; Golenbock, Douglas T; Pier, Gerald B

    2013-06-11

    Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology. PMID:23716675

  12. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils

    OpenAIRE

    Damon, Coralie; Lehembre, Frederic; OGER, Christine; Luis, Patricia; Ranger, Jacques; Fraissinet-Tachet, Laurence; Marmeisse, Roland

    2012-01-01

    Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic...

  13. An overview of the phylogeny and diversity of eukaryotes%真核生物系统发育和多样性概观

    Institute of Scientific and Technical Information of China (English)

    Sandra L. BALDAUF

    2008-01-01

    Our understanding of eukaryote biology is dominated by the study of land plants, animals and fungi. However, these are only three isolated fragments of the full diversity of extant eukaryotes. The majority of eukaryotes, in terms of major taxa and probably also sheer numbers of cells, consists of exclusively or predominantly unicellular lineages. A surprising number of these lineages are poorly characterized. Nonetheless, they are fundamental to our understanding of eukaryote biology and the underlying forces that shaped it. This article consists of an overview of the current state of our understanding of the eukaryote tree. This includes the identity of the major groups of eukaryotes, some of their important, defining or simply interesting features and the proposed relationships of these groups to each other.

  14. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has...

  15. Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean

    Science.gov (United States)

    Morgan-Smith, Danielle; Clouse, Melissa A.; Herndl, Gerhard J.; Bochdansky, Alexander B.

    2013-08-01

    Employing a combination of 4',6-diamidino-2-phenylindole and fluorescein isothiocyanate (DAPI-FITC) staining and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), we distinguished a variety of taxonomic and morphological types of eukaryotic microbes in the central and deep water masses of the tropical and subtropical North Atlantic Ocean. Samples were taken along a transect across the tropical Atlantic, along the equatorial upwelling and into the West-African upwelling region. Samples were collected as deep as 7000 m in the Romanche Fracture Zone within the Mid-Atlantic Ridge. Approximately 50-70% of FISH-identified eukaryotes in deep water masses belong to one of seven groups: kinetoplastids, labyrinthulomycetes, fungi, diplonemids, group II alveolates, MAST 4 (stramenopiles), and an unidentified organism with a peculiar nuclear morphology. A smaller percentage of total eukaryotes was identified in the Central Water, especially in the oxygen minimum zone, than in deep water masses. CARD-FISH probes designed to identify broad taxonomic groups revealed kinetoplastids and fungi were more abundant than noted in previous studies employing 18S rRNA gene clone libraries. Group II alveolates, in contrast, were much less prevalent than previously reported. On a second survey, eukaryotic microbes were enumerated in the deep-sea basins below the North Atlantic subtropical gyre including the Vema Fracture Zone, which is another prominent trench in the Mid-Atlantic Ridge. The abundance of eukaryotes and chlorophyll concentrations were significantly different between the two cruises, which covered very different hydrographic regimes with associated high and low levels of primary production, respectively.

  16. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase a......-carbamyl-beta -alanine, but not by uracil. This wrork establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta -alanine production in eukaryotes....

  17. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.

    Directory of Open Access Journals (Sweden)

    Coralie Damon

    Full Text Available Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica and spruce (Picea abies forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60% and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides, sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin and glycoside hydrolases represented 0.5% (beech soil-0.8% (spruce soil of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus

  18. Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems

    Science.gov (United States)

    Cooper, Edwin L.; Overstreet, Nicola

    2014-03-01

    Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among the prokaryotes, not exclusively among eukaryotes. Mathematical models have been proposed which simulate the evolutionary patterns of CRISPR, however large gaps in our understanding of CRISPR-Cas function and evolution still exist. The CRISPR-Cas system is analogous to small RNAs involved in resistance mechanisms throughout the tree of life, and a deeper understanding of the evolution of small RNA pathways is necessary before the relationship between these convergent systems is to be determined. Presented in this review are novel RNAi therapies based on CRISPR-Cas analogs and the potential for future therapies based on CRISPR-Cas system components.

  19. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems

    OpenAIRE

    Lallias, Delphine; Hiddink, Jan G.; Fonseca, Vera G.; Gaspar, John M; Sung, Way; Neill, Simon P.; Barnes, Natalie; Ferrero, Tim; Hall, Neil; Lambshead, P John D; Packer, Margaret; Thomas, W. Kelley; Creer, Simon

    2014-01-01

    Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a ‘melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model mic...

  20. In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity

    Science.gov (United States)

    Gimpel, Javier A.; Henríquez, Vitalia; Mayfield, Stephen P.

    2015-01-01

    The great phylogenetic diversity of microalgae is corresponded by a wide arrange of interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has been limited, since specific transformation tools must be developed for each species for either the nuclear or chloroplast genomes. Microalgae as production platforms for metabolites offer several advantages over plants and other microorganisms, like the ability of GMO containment and reduced costs in culture media, respectively. Currently, microalgae have proved particularly well suited for the commercial production of omega-3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have been developed for these metabolites. Microalgal biofuels have also drawn great attention recently, resulting in efforts for improving the production of hydrogen and photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have also been manipulated in order to improve photosynthetic growth under specific conditions and for achieving trophic conversion. Although these pathways are not strictly related to secondary metabolites, the synthetic biology approaches could potentially be translated to this field and will also be discussed. PMID:26696985

  1. In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.

    Science.gov (United States)

    Gimpel, Javier A; Henríquez, Vitalia; Mayfield, Stephen P

    2015-01-01

    The great phylogenetic diversity of microalgae is corresponded by a wide arrange of interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has been limited, since specific transformation tools must be developed for each species for either the nuclear or chloroplast genomes. Microalgae as production platforms for metabolites offer several advantages over plants and other microorganisms, like the ability of GMO containment and reduced costs in culture media, respectively. Currently, microalgae have proved particularly well suited for the commercial production of omega-3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have been developed for these metabolites. Microalgal biofuels have also drawn great attention recently, resulting in efforts for improving the production of hydrogen and photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have also been manipulated in order to improve photosynthetic growth under specific conditions and for achieving trophic conversion. Although these pathways are not strictly related to secondary metabolites, the synthetic biology approaches could potentially be translated to this field and will also be discussed. PMID:26696985

  2. Autochthonous "Bjelovars dried cheese"

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2006-12-01

    Full Text Available «Dried cheese» is in autochthonous group of Bjelovar region cheeses which is still produced in rural domestic scale. The name of cheese originates from production procedure - drying for longer or shorter period in airy place after which the cheese is smoked, or is smoked only without drying. This type of cheese is produced in whole central region of Croatia which includes Međimurje, Podravina, Bilogora; Moslavina, Posavina and region around the capital. The aim of this paper is to describe and determine sensory, chemical and microbiological composition to determine its characteristics and production standards. As standards for sensory properties following characteristics can be used: a Outer shape: dimensions: diameter: 140-145 mm, height: 58-61 mm, mass: 700-750 g, equal, rounded shape, smooth skin, equal colour; b Consistency: easily cut, elastic, soft; c Cut: nicely combined white body, few improper holes of equal size; d Odour: pleasant milky acid odour, fairly smoky; e Taste: Fairly milky acidic taste, medium salty, fairly smoky taste. Depending on fat in dry matter content and water content in non fat dry matter, analyzed samples can be characterized as quarter fat, soft and semidry cheese. Higher acidity and saltiness was determined in some samples, microbiological analyses has shown that the most common contaminants are yeasts and moulds.

  3. Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins

    Energy Technology Data Exchange (ETDEWEB)

    Ruvinsky, Anatoly M., E-mail: anatoly.ruvinsky@astrazeneca.com [Infection Innovative Medicine, AstraZeneca R and D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451 (United States); Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047 (United States); Vakser, Ilya A. [Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047 (United States); Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047 (United States); Rivera, Mario [Department of Chemistry, The University of Kansas, Lawrence, Kansas 66047 (United States)

    2014-03-21

    diversity in mechanisms of iron traffic suggested by experimental approaches.

  4. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  5. Comparative genomic analysis reveals a diverse repertoire of genes involved in prokaryote-eukaryote interactions within the Pseudovibrio genus.

    Directory of Open Access Journals (Sweden)

    Stefano eRomano

    2016-03-01

    Full Text Available Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage.Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus.Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche

  6. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus

    Science.gov (United States)

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F. Jerry; Glöckner, Frank O.; Crowley, Susan P.; O'Sullivan, Orla; Cotter, Paul D.; Adams, Claire; Dobson, Alan D. W.; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  7. MOLECULAR IDENTIFICATION AND GENOTYPING OF CIAUSCOLO AUTOCHTHONOUS MICROFLORA: PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    A. Petruzzelli

    2011-01-01

    Full Text Available The present study reports the results of a preliminary characterization of the bacterial population of Ciauscolo, a typical Italian fermented sausage, traditionally manufactured in Marche region. The bacterial community involved in Ciauscolo fermentation was investigated using both molecular and culturebased methods. The estimation of genotypic intra-species variation of the autochthonous bacteria isolated was also evaluated by using randomly amplified polymorphic DNA (RAPD analysis and unweighted pairgroup method with arithmetic averages (UPGMA cluster analysis. Our findings revealed an high diversity of the autochthonous bacterial population investigated, both at species and strain level.

  8. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes.

    Science.gov (United States)

    Schallenberg-Rüdinger, Mareike; Lenz, Henning; Polsakiewicz, Monika; Gott, Jonatha M; Knoop, Volker

    2013-01-01

    The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages. PMID:23899506

  9. Probiotic features of autochthonous lactobacilli

    OpenAIRE

    Mouannes, Emilio

    2015-01-01

    Probiotics are as defined “live microorganisms which when administered in adequate amounts confer a health benefit on the host” (FAO/WHO 2001). Probiotics regroup a wide variety of bacterial species and genera; lactobacilli and bifidobacteria are of the main studied bacteria for probiotic use. In this study, we investigated the probiotic characteristics of autochthonous lactobacilli strains isolated from traditional Sardinian cheese. Results showed that six Lactobacillus plantarum strains and...

  10. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea

    KAUST Repository

    Wang, Yong

    2014-02-04

    A hypoxic/suboxic brine pool at a depth of about 850 m was discovered near the Thuwal cold seeps in the Red Sea. Filled with high concentrations of hydrogen sulfide and ammonia, such a brine pool might limit the spread of eukaryotic organisms. Here, we compared the communities of the eukaryotic microbes in a microbial mat, sediments and water samples distributed in 7 sites within and adjacent to the brine pool. Taxonomic classification of the pyrosequenced 18S rRNA amplicon reads showed that fungi highly similar to the species identified along the Arabic coast were almost ubiquitous in the water and sediment samples, supporting their wide distribution in various environments. The microbial mat displayed the highest species diversity and contained grazers and a considerable percentage of unclassified species. Phylogeny-based methods revealed novel lineages representing a majority of the reads from the interface between the sea water and brine pool. Phylogenetic relationships with more reference sequences suggest that the lineages were affiliated with novel Alveolata and Euglenozoa inhabiting the interface where chemosynthetic prokaryotes are highly proliferative due to the strong chemocline and halocline. The brine sediments harbored abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system. 2014 Wang, Zhang, Cao, Shek, Tian, Wong, Batang, Al-suwailem and Qian.

  11. Autochthonous Hepatitis E Virus Infection in Europe: A Matter of Concern for Public Health?

    OpenAIRE

    Echevarría, José-Manuel

    2014-01-01

    Human hepatitis E virus (HHEV) is the proposed name for a diverse group of RNA viruses from the family Hepeviridae that cause acute hepatitis among humans. Waterborne strains are regularly imported into Europe by international travelers, and virus transmission of zoonotic strains via contaminated aliments is involved in autochthonous cases. Therefore, in Europe, hepatitis E displays a unique dual character, having features of both imported and autochthonous infections. Environmental involveme...

  12. Autochthonous cheeses of Bosnia and Herzegovina

    OpenAIRE

    Zlatan Sarić; Sonja Bijeljac

    2003-01-01

    Despite the migration of people towards cities, autochthonous cheeses in Bosnia and Herzegovina survived. Technologies of these cheeses are simple and adapted to humble mountain limitations. Geographical occasions and rich mountain pastures created a certain participation of ewe's milk cheeses. Communicative isolation of hilly-mountain regions resulted in "closed" cheese production in small households. Autochthonous cheeses in Bosnia and Herzegovina have various origins. Different cheeses are...

  13. Autochthonous Dengue Fever, Tokyo, Japan, 2014

    OpenAIRE

    Kutsuna, Satoshi; Kato, Yasuyuki; Moi, Meng Ling; Kotaki, Akira; Ota, Masayuki; Shinohara, Koh; Kobayashi, Tetsuro; Yamamoto, Kei; Fujiya, Yoshihiro; Mawatari, Momoko; Sato, Tastuya; Kunimatsu, Junwa; Takeshita, Nozomi; Hayakawa, Kayoko; Kanagawa, Shuzo

    2015-01-01

    After 70 years with no confirmed autochthonous cases of dengue fever in Japan, 19 cases were reported during August–September 2014. Dengue virus serotype 1 was detected in 18 patients. Phylogenetic analysis of the envelope protein genome sequence from 3 patients revealed 100% identity with the strain from the first patient (2014) in Japan.

  14. Autochthonous Linguistic Minorities in the Italian Alps:

    Directory of Open Access Journals (Sweden)

    Ernst Steinicke

    2011-08-01

    Full Text Available More than any other area in Western Europe, the Alps, especially the Italian Alps, are home to great ethno-cultural diversity: there, no less than seven autochthonous linguistic minorities coexist side by side with the respective official majority. Now being considered an important cultural heritage by the state as well as by the regions, new legislation offers protection to all ‘linguistic-historic minorities’ in Italy. Our study shows, however, that it is quite difficult to maintain such groups, since it is largely unknown where exactly the minority areas are situated. Based on that, local actor groups in various communities take advantage of this lack of knowledge and declare themselves minority territories although they show no linguistic varieties. An important objective of this project is therefore to present a cartographic representation of this linguistic diversity. Subsequently, the contribution discusses case studies of distinct ethno-linguistic self-awareness. Even though with Law No. 482 a first important step was taken to preserve the linguistic minorities, their progressive decline by territorial and numerical criteria cannot be denied. Today, besides unfavorable bio-demographic factors and “diffuse ethnicity,” other causes are current demographic processes. In this framework the amenity migrants, those new immigrants who have discovered the mountains as a new, desirable settlement space, play a decisive role by reinforcing the assimilation process.Les Alpes, plus précisément les Alpes italiennes, plus que toute autre région d'Europe Occidentale, sont un lieu de grande diversité ethnoculturelle : pas moins de sept minorités linguistiques autochtones y coexistent, côte à côte avec la majorité officielle correspondante. Maintenant considérées comme un héritage culturel important par les états ainsi que par les régions, une nouvelle législation offre une protection à toutes les « minorités linguistiques

  15. Autochthonous canine leishmaniasis in Romania: neglected or (re)emerging?

    OpenAIRE

    Mircean, Viorica; Dumitrache, Mirabela Oana; MIRCEAN, MIRCEA; Bolfa, Pompei; Györke, Adriana; Mihalca, Andrei Daniel

    2014-01-01

    Canine leishmaniasis is a vector-borne zoonotic disease caused by the protozoan parasite Leishmania infantum. In Romania between 1955 and 2013, no cases of human autochthonous visceral leishmaniasis were reported. Data regarding canine leishmaniasis is similarly scarce. Since the first report of clinical autochthonous canine leishmaniasis in 1935, there were only three sporadic reports of positive dogs all without any clinical signs. Our study reports the first clinical case of autochthonous ...

  16. Mutations Linked to Leukoencephalopathy with Vanishing White Matter Impair the Function of the Eukaryotic Initiation Factor 2B Complex in Diverse Ways

    OpenAIRE

    Li, Wei; Wang, Xuemin; Marjo S. van der Knaap; Proud, Christopher G.

    2004-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is a severe inherited human neurodegenerative disorder that is caused by mutations in the genes for the subunits of eukaryotic initiation factor 2B (eIF2B), a heteropentameric guanine nucleotide exchange factor that regulates both global and mRNA-specific translation. Marked variability is evident in the clinical severity and time course of VWM in patients. Here we have studied the effects of VWM mutations on the function of human eIF2B. A...

  17. Ectomycorrhizal fungal community associated with autochthonous white poplar from Serbia

    Directory of Open Access Journals (Sweden)

    Katanić M

    2016-04-01

    Full Text Available We analyzed the community of ectomycorrhizal fungi of an autochthonous white poplar (Populus alba L. stand in the Kovilj-Petrovaradin marshes (Serbia, and examined its seasonal dynamics. Ectomycorrhizal types were identified by combining morphological and anatomical descriptions with molecular methods (sequencing of ITS region of ribosomal DNA. In two seasons, 20 ectomycorrhizal types were recorded, from which 11 types were identified to the species level, six were determined to the genus level, two types were determined to the family level and one type remained unidentified. Number of ectomycorrhizal types, number of fine roots, percentage of vital mycorrhizal roots, diversity indexes and abundance of exploration types did not differ significantly between autumn and spring. During both seasons, the most abundant types were: Entoloma sp., Tuber maculatum, Cenococcum geophilum, Tuber rufum and Peziza sp. Due to the high variation of the ectomycorrhizal types-based Shannon-Weaver diversity index in poplar stands, and the fact that poplars form dual mycorrhizal association, this index is not recommended as a reliable index for bioindication in poplar.

  18. [Epidemiology of autochthonous leishmaniases in France].

    Science.gov (United States)

    Dedet, Jean-Pierre; Carme, Bernard; Desbois, Nicole; Bourdoiseau, Gilles; Lachaud, Laurence; Pratlong, Francine

    2013-11-01

    Leishmania infantum is the only species occurring in metropolitan France; located in the Mediterranean part of the country, it is responsible for a highly enzootic canine disease, while the human endemicity is low, with about 23 cases yearly reported to the National Reference Centre of Leishmaniases, mainly visceral forms. In French Guyana, five Leishmania species occur in the Amazonian forest, of which L. guyanensis is the predominant species, and L. braziliensis is responsible for the most critical forms. The most frequent clinical feature is cutaneous leishmaniasis, with a mean annual incidence reaching 2 p. 1000, with some inter-annual fluctuations. In Martinique Island, recent studies have confirmed the presence of an ancestral Leishmania species, responsible for small cutaneous lesions, of mild evolution; the life cycle of this species remains unknown. In Guadeloupe Island, a few autochthonous visceral leishmaniasis cases have been reported, needing a prospective study. PMID:23886932

  19. Mutations Linked to Leukoencephalopathy with Vanishing White Matter Impair the Function of the Eukaryotic Initiation Factor 2B Complex in Diverse Ways

    Science.gov (United States)

    Li, Wei; Wang, Xuemin; van der Knaap, Marjo S.; Proud, Christopher G.

    2004-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is a severe inherited human neurodegenerative disorder that is caused by mutations in the genes for the subunits of eukaryotic initiation factor 2B (eIF2B), a heteropentameric guanine nucleotide exchange factor that regulates both global and mRNA-specific translation. Marked variability is evident in the clinical severity and time course of VWM in patients. Here we have studied the effects of VWM mutations on the function of human eIF2B. All the mutations tested cause partial loss of activity. Frameshift mutations in genes for eIF2Bɛ or eIF2Bβ lead to truncated polypeptides that fail to form complexes with the other subunits and are effectively null mutations. Certain point mutations also impair the ability of eIF2Bβ or -ɛ to form eIF2B holocomplexes and also diminish the intrinsic nucleotide exchange activity of eIF2B. A point mutation in the catalytic domain of eIF2Bɛ impairs its ability to bind the substrate, while two mutations in eIF2Bβ actually enhance eIF2 binding. We provide evidence that expression of VWM mutant eIF2B may enhance the translation of specific mRNAs. The variability of the clinical phenotype in VWM may reflect the multiple ways in which VWM mutations affect eIF2B function. PMID:15060152

  20. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable. PMID:26501689

  1. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  2. Autochthonous borderline tuberculoid leprosy in a man from Florida.

    Science.gov (United States)

    Villada, Gabriel; Zarei, Mina; Romagosa, Ricardo; Forgione, Patrizia; Fabbrocini, Gabriella; Romanelli, Paolo

    2016-03-01

    Leprosy (Hansen's disease) is a chronic contagious granulomatous disease principally affecting the skin and peripheral nervous system, caused by Mycobacterium leprae. In this report, we present a case of autochthonous leprosy in a man from Florida as the first human case reported from this region. Authors believe dermatologists need to be aware of the possibility of autochthonous transmission of leprosy in the Eastern-Southern United States, and should consider leprosy in any patient with atypical skin lesions, even when a history of contact with armadillo is missing. PMID:27255063

  3. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed

  4. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  5. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  6. Autochthonous Nocardia cerradoensis Infection in Humans, Spain, 2011 and 2014.

    Science.gov (United States)

    Ercibengoa, Maria; Pérez-Trallero, Emilio; Marimón, José Maria

    2016-01-01

    Nocardia cerradoensis was first isolated in 2003 in the El Cerrado region of Brazil; since then, only 2 human infections, in France and Spain, have been reported. We describe 3 autochthonous cases in residents of Spain during 2011 and 2014. Together these cases support the idea of an emerging global pathogenic microorganism. PMID:26691545

  7. Reemergence and Autochthonous Transmission of Dengue Virus, Eastern China, 2014

    OpenAIRE

    Wang, Wen; Yu, Bin; Lin, Xian-Dan; Kong, De-Guang; Wang, Jian; Tian, Jun-Hua; Li, Ming-Hui; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    In 2014, 20 dengue cases were reported in the cities of Wenzhou (5 cases) and Wuhan (15 cases), China, where dengue has rarely been reported. Dengue virus 1 was detected in 4 patients. Although most of these cases were likely imported, epidemiologic analysis provided evidence for autochthonous transmission.

  8. Authenticity and autochthonous traditions in archaic and Hellenistic poetry

    NARCIS (Netherlands)

    Klooster, Julia

    2016-01-01

    J.J.H. Klooster, ‘Authenticity and autochthonous traditions in archaic and Hellenistic poetry’. In E. Bakker (ed): Authorship, Authority and Authenticity in Archaic and Classical Greek Song. Proceedings of the Network for the Study of Archaic and Classical Greek Song, Vol. 2, Leiden: Brill

  9. An Inordinate Fondness for Eukaryotic Diversity

    OpenAIRE

    Rabosky, Daniel L.; Slater, Graham J.; Alfaro, Michael E.

    2012-01-01

    Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things ...

  10. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  11. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  12. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    International Nuclear Information System (INIS)

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  13. Characterization and Technological Features of Autochthonous Coagulase-Negative Staphylococci as Potential Starters for Portuguese Dry Fermented Sausages.

    Science.gov (United States)

    Semedo-Lemsaddek, Teresa; Carvalho, Laura; Tempera, Carolina; Fernandes, Maria H; Fernandes, Maria J; Elias, Miguel; Barreto, António S; Fraqueza, Maria J

    2016-05-01

    The manufacture of dry fermented sausages is an important part of the meat industry in Southern European countries. These products are usually produced in small shops from a mixture of pork, fat, salt, and condiments and are stuffed into natural casings. Meat sausages are slowly cured through spontaneous fermentation by autochthonous microbiota present in the raw materials or introduced during manufacturing. The aim of this work was to evaluate the technological and safety features of coagulase-negative staphylococci (CNS) isolated from Portuguese dry fermented meat sausages in order to select autochthonous starters. Isolates (n = 104) obtained from 2 small manufacturers were identified as Staphylococcus xylosus, Staphylococcus equorum, Staphylococcus saprophyticus, and Staphylococcus carnosus. Genomically diverse isolates (n = 82) were selected for further analysis to determine the ability to produce enzymes (for example, nitrate-reductases, proteases, lipases) and antibiotic susceptibility. Autochthonous CNS producing a wide range of enzymes and showing low antibioresistance were selected as potential starters for future use in the production of dry fermented meat sausages. PMID:27095684

  14. Immunologically Silent Autochthonous Acute Hepatitis E Virus Infection in France

    OpenAIRE

    Mansuy, Jean Michel; Peron, Jean Marie; Bureau, Christophe; Alric, Laurent; Vinel, Jean Pierre; Izopet, Jacques

    2004-01-01

    Hepatitis E is an acute and self-limiting hepatitis, and the causative agent, hepatitis E virus, is excreted in feces and orally transmitted. The disease is common in Asia and Africa, causing outbreaks or sporadic cases. In Europe, the infection is generally observed after a history of travel in an area of endemicity. We report on an autochthonous case in southwestern France in which the diagnosis was based on molecular tools rather than serological testing.

  15. First report of acute autochthonous hepatitis E in Portugal

    OpenAIRE

    Duque, V; C. Ventura; Seixas, D.; Saraiva da Cunha, JG; Meliço-Silvestre, A.

    2012-01-01

    Hepatitis E infection is usually a self-limiting disease. In industrialized countries, sporadic cases of acute hepatitis E virus (HEV) infections have been described; their number seems to be increasing in European countries. We report the first human case of autochthonous acute hepatitis E confirmed in Portugal. Patients with acute non-A-C hepatitis should be tested for HEV in Portugal and hepatitis E infection should be considered in the differential diagnosis of unexplained hepatitis cases.

  16. Ectomycorrhizal fungal community associated with autochthonous white poplar from Serbia

    OpenAIRE

    Katanić M; Grebenc T; Orlović S.; Matavuly M; Kovačević B.; Bajc M; Kraigher H

    2016-01-01

    We analyzed the community of ectomycorrhizal fungi of an autochthonous white poplar (Populus alba L.) stand in the Kovilj-Petrovaradin marshes (Serbia), and examined its seasonal dynamics. Ectomycorrhizal types were identified by combining morphological and anatomical descriptions with molecular methods (sequencing of ITS region of ribosomal DNA). In two seasons, 20 ectomycorrhizal types were recorded, from which 11 types were identified to the species level, six were determined to the genus ...

  17. Sensory evaluation and microbiological characterization of autochthonous Sombor cheese

    OpenAIRE

    Mijačević Zora; Bulajić Snežana

    2008-01-01

    In this paper the results of organoleptic evaluation, chemical and microbiological analysis of Sombor cheese were presented. Sombor cheese is a type of autochthonous cheese whose traditional processing method is still in use in areas of northern part of Serbia. The sensory profile, chemical and microbiological analysis were performed on 19 samples of traditionally made cheese collected from two households. The sensory evaluation of cheese samples showed its variation in taste and consistency,...

  18. Endosymbiotic theories for eukaryote origin.

    Science.gov (United States)

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  19. Endosymbiotic theories for eukaryote origin

    OpenAIRE

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come ...

  20. Expanding the eukaryotic genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Origins of Eukaryotic Sexual Reproduction

    OpenAIRE

    Goodenough, Ursula; Heitman, Joseph

    2014-01-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.

  2. Expanding the eukaryotic genetic code

    Science.gov (United States)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Endosymbiosis and Eukaryotic Cell Evolution.

    Science.gov (United States)

    Archibald, John M

    2015-10-01

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics. PMID:26439354

  4. Traditionally produced sauerkraut as source of autochthonous functional starter cultures.

    Science.gov (United States)

    Beganović, Jasna; Kos, Blaženka; Leboš Pavunc, Andreja; Uroić, Ksenija; Jokić, Mladen; Šušković, Jagoda

    2014-01-01

    Spontaneous sauerkraut fermentation was performed at industrial scale in "Prehrana Inc.", Varaždin, in order to select autochthonous lactic acid bacteria (LAB) which were evaluated according probiotic criteria and tested for their capacity as probiotic starter cultures. At the end of the spontaneous sauerkraut fermentation, total LAB counts reached 9.0×10(5) CFU/ml. This underlines that the need for addition of the well characterised probiotic cultures, in appropriate viable cell counts, would be valuable in probiotic sauerkraut production. Phenotypic characterisation through API 50 CHL and SDS-PAGE of cell protein patterns revealed that Lactobacillus plantarum is predominant LAB strain in homofermentative phase of fermentation. Autochthonous LAB isolates SF1, SF2, SF4, SF9 and SF15 were selected based on the survival in in vitro gastrointestinal tract conditions. RAPD fingerprints indicated that the selected autochthonous LAB were distinct from one another. All of the strains efficiently inhibited the growth of indicator strains and satisfied technological properties such as acidification rate, tolerance to NaCl and viability during freeze-drying. Strains Lb. paraplantarum SF9 and Lb. brevis SF15, identified by AFLP DNA fingerprints, have shown the best properties to be applied as probiotic starter cultures, because of their highest adhesion to Caco-2 cells and expression of specific, protective S-layer proteins of 45 kDa in size. With addition of these strains, probiotic attribute of the sauerkraut will be achieved, including health promoting, nutritional, technological and economic advantages in large scale industrial sauerkraut production. PMID:24797236

  5. Mitochondrial genome evolution and the origin of eukaryotes.

    Science.gov (United States)

    Lang, B F; Gray, M W; Burger, G

    1999-01-01

    Recent results from ancestral (minimally derived) protists testify to the tremendous diversity of the mitochondrial genome in various eukaryotic lineages, but also reinforce the view that mitochondria, descendants of an endosymbiotic alpha-Proteobacterium, arose only once in evolution. The serial endosymbiosis theory, currently the most popular hypothesis to explain the origin of mitochondria, postulates the capture of an alpha-proteobacterial endosymbiont by a nucleus-containing eukaryotic host resembling extant amitochondriate protists. New sequence data have challenged this scenario, instead raising the possibility that the origin of the mitochondrion was coincident with, and contributed substantially to, the origin of the nuclear genome of the eukaryotic cell. Defining more precisely the alpha-proteobacterial ancestry of the mitochondrial genome, and the contribution of the endosymbiotic event to the nuclear genome, will be essential for a full understanding of the origin and evolution of the eukaryotic cell as a whole. PMID:10690412

  6. Synchronization of Eukaryotic Flagella

    Science.gov (United States)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  7. From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar.

    Science.gov (United States)

    Garofalo, Carmela; Tristezza, Mariana; Grieco, Francesco; Spano, Giuseppe; Capozzi, Vittorio

    2016-04-01

    The aim of this work was to study the biodiversity of yeasts isolated from the autochthonous grape variety called "Uva di Troia", monitoring the natural diversity from the grape berries to wine during a vintage. Grapes were collected in vineyards from two different geographical areas and spontaneous alcoholic fermentations (AFs) were performed. Different restriction profiles of ITS-5.8S rDNA region, corresponding to Saccharomyces cerevisiae, Issatchenkia orientalis, Metschnikowia pulcherrima, Hanseniaspora uvarum, Candida zemplinina, Issatchenkia terricola, Kluyveromyces thermotolerans, Torulaspora delbrueckii, Metschnikowia chrysoperlae, Pichia fermentans, Hanseniaspora opuntiae and Hanseniaspora guilliermondii, were observed. The yeast occurrences varied significantly from both grape berries and grape juices, depending on the sampling location. Furthermore, samples collected at the end of AF revealed the great predominance of Saccharomyces cerevisiae, with a high intraspecific biodiversity. This is the first report on the population dynamics of 'cultivable' microbiota diversity of "Uva di Troia" cultivar from the grape to the corresponding wine ("Nero di Troia"), and more general for Southern Italian oenological productions, allowing us to provide the basis for an improved management of wine yeasts (with both non-Saccharomyces and Saccharomyces) for the production of typical wines with desired unique traits. A certain geographical-dependent variability has been reported, suggesting the need of local based formulation for autochthonous starter cultures, especially in the proportion of the different species/strains in the design of mixed microbial preparations. PMID:26925621

  8. Intercultural Profiles and Adaptation Among Immigrant and Autochthonous Adolescents

    Directory of Open Access Journals (Sweden)

    Cristiano Inguglia

    2015-02-01

    Full Text Available Few studies examine relationships between intercultural strategies and adaptation among adolescents using a person-oriented approach. Framed from an intercultural psychology perspective, this study used such an approach in order to examine the influence of intercultural profiles, patterns of relationships among variables related to intercultural strategies, on the adaptation of adolescents of both non-dominant and dominant groups. Two hundred and fifty-six adolescents living in Italy and aged from 14 to 18 participated to the study: 127 immigrants from Tunisia (males = 49.61% and 129 autochthonous (males = 44.19%. Data were collected through self-report questionnaires. Using cluster analytic methods to identify profiles, the results showed that immigrant adolescents were divided in two acculturation profiles, ethnic and integrated-national, with adolescents belonging to the latter showing higher self-esteem, life satisfaction and sociocultural competence than the former. Also among autochthonous adolescents two acculturation expectation profiles were identified, not-multicultural and multicultural, with adolescents belonging to the latter showing higher self-esteem and life satisfaction than the former. Findings highlight the importance of using multiple indicators in order to gain a more comprehensive understanding of the acculturation process as well as suggesting implications for the social policies in this field.

  9. Intercultural Profiles and Adaptation Among Immigrant and Autochthonous Adolescents.

    Science.gov (United States)

    Inguglia, Cristiano; Musso, Pasquale

    2015-02-01

    Few studies examine relationships between intercultural strategies and adaptation among adolescents using a person-oriented approach. Framed from an intercultural psychology perspective, this study used such an approach in order to examine the influence of intercultural profiles, patterns of relationships among variables related to intercultural strategies, on the adaptation of adolescents of both non-dominant and dominant groups. Two hundred and fifty-six adolescents living in Italy and aged from 14 to 18 participated to the study: 127 immigrants from Tunisia (males = 49.61%) and 129 autochthonous (males = 44.19%). Data were collected through self-report questionnaires. Using cluster analytic methods to identify profiles, the results showed that immigrant adolescents were divided in two acculturation profiles, ethnic and integrated-national, with adolescents belonging to the latter showing higher self-esteem, life satisfaction and sociocultural competence than the former. Also among autochthonous adolescents two acculturation expectation profiles were identified, not-multicultural and multicultural, with adolescents belonging to the latter showing higher self-esteem and life satisfaction than the former. Findings highlight the importance of using multiple indicators in order to gain a more comprehensive understanding of the acculturation process as well as suggesting implications for the social policies in this field. PMID:27247643

  10. Cryopreservation of eukaryotic soil algae

    Czech Academy of Sciences Publication Activity Database

    Lukešová, Alena; Worland, M. R.; Hrouzek, Pavel

    Coimbra: Society for Cryobiology, 2003. s. 32. [Cryobiomol 2003 - Low Temperature Biology. 14.09.2003-18.09.2003, Coimbra] Institutional research plan: CEZ:AV0Z6066911 Keywords : cryopreservation * eukaryotic soil algae Subject RIV: EH - Ecology, Behaviour

  11. The Revised Classification of Eukaryotes

    OpenAIRE

    Adl, Sina M; Simpson, Alastair G.B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien; Dunthorn, Micah; Hampl, Vladimir; Heiss, Aaron; Hoppenrath, Mona; Lara, Enrique; Le Gall, Line; Lynn, Denis H.

    2013-01-01

    This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothes...

  12. Changing ideas about eukaryotic origins

    OpenAIRE

    Williams, Tom A.; Embley, T. Martin

    2015-01-01

    The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for samp...

  13. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A...

  14. Extremophilic Eukaryote Life in Hawaiian Fumaroles

    Science.gov (United States)

    Ackerman, C.; Anderson, S.; Anderson, C.

    2008-12-01

    Extremophilic microorganisms exist in all three domains of life (Eukarya, Archaea, Bacteria), but are less known in eukaryotes. Fumaroles provide heat and moisture characteristic of an environment suitable for these organisms. On the Island of Hawaii, fumaroles are scattered across the southeastern portion of the island as a result of the volcanic activity from Kilauea Crater and Pu'u' O'o vent with all forming within geochemically similar basalt substrates. We used metagenomics to detect 18S rDNA from eukaryotic extremophilic microorganisms indicating their presence in Hawaiian fumaroles. To determine the effects of environmental gradients (temperature and pH) on microbial diversity within and among fumaroles, 11 samples from 3 fumaroles were collected over a three-day period in February of 2007. Temperatures of the different fumaroles range from 31.0oC to 62.7oC, with pH values that vary from 2.55 to 6.93 allowing for 8 different microenvironments. Fifty sequences per sample were analyzed with eighteen different organisms identified, the majority belonging to the family Cercozoa. The most diverse fumarole consisted of 8 different genera residing in a temperature of 34.1oC and a pH of 3.0. Unclassified mosses were identified in the fumarole with the highest temperature and Phaeoceros (hornworts) were identified at the most acidic fumarole. Both of these groups have been previously identified in geothermal areas.

  15. Distribuição da diversidade isoenzimática e morfológica da mandioca na agricultura autóctone de Ubatuba Distribution of the isozyme and morphological diversity of cassava in the autochthonous agriculture of Ubatuba

    Directory of Open Access Journals (Sweden)

    Julianno Bergoch Monteiro Sambatti

    2000-03-01

    Full Text Available A diversidade fenotípica de quatro sistemas isoenzimáticos e doze caracteres morfológicos em mandioca (Manihot esculenta Crantz foi quantificada através do índice de Shannon-Weaver para quatro roças de mandioca pertencentes a dois agricultores autóctones no município de Ubatuba-SP. A diversidade total foi repartida entre diversidade dentro de roças e diversidade entre roças, mostrando que a maior parte da diversidade se concentra dentro de roças para a maioria dos caracteres. Entrevistas foram realizadas para verificar se os agricultores reconhecem a existência de plantas de mandioca originadas por semente e a existência de bancos de semente.Phenotypic diversity of four isozymes systems and twelve morphological traits of cassava (Manihot esculenta Crantz were quantified using the Shannon-Weaver diversity index for four cassava gardens of two traditional farmers of Ubatuba,SP, Brazil. The total diversity was partitioned within and among gardens, showing that most of the diversity is concentrated within gardens. Interviews were carried out in order to verify if farmers recognize the existance of cassava plants originated from seeds and seed banks with the surveyed farmers in order to identify, in the present case, mechanisms of genetic diversity amplification.

  16. Characterization of autochthonous Lactobacillus paracasei strains on potential probiotic ability

    Directory of Open Access Journals (Sweden)

    Zorica Radulović

    2010-06-01

    Full Text Available Lactic acid bacteria strains isolated from traditional made cheeses constitute a reservoir of unexplored potential in biotechnology. In this study four autochthonous lactobacilli strains, isolated from traditional white brined cheeses and identified as Lactobacillus paracasei (08, 564, 05 and 02, were investigated on potential probiotic ability. The investigation comprised sensitivity to simulated gastrointestinal tract conditions, antimicrobial activity against wide range of pathogens, antibiotic resistance as well as autoaggregation ability. Lactobacillus rhamnosus GG was used as referent strain. Three tested strains grew well in simulated gastrointestinal conditions, but their sensitivity was greater on bile acids and pancreatin compared with pepsin low pH 2.5. The examined strains had different sensitivity to antibiotics, but three strains showed very good antimicrobial activity to pathogens. All strains demonstrated very good autoaggregation ability. For three of four examined strains of Lb. paracasei probiotic potential was similar with referent strain Lb. rhamnosus GG, determined in vitro

  17. AUTOCHTHONOUS APPROACHING IN THE MANAGEMENT OF THE SECURITY RISK

    Directory of Open Access Journals (Sweden)

    Burtescu Emil

    2008-05-01

    Full Text Available An optimal management for a corporation, no matter what size the corporation is, it must contain the management of the security risk. On the importance that is given to the risk management can depend the well functioning of the corporation. An important role in this process has the owner of the business and the way that this one understands the risk. A good understanding of the risk by the owner will have as effect the allocation of sufficient funds to implement controls meant to bring the risk level in order to be an acceptable one. The autochthonous corporations, in a great part even because of the inexistence of reglementations in this domain, have an empiric approach of the phenomena.

  18. Earth's earliest non-marine eukaryotes.

    Science.gov (United States)

    Strother, Paul K; Battison, Leila; Brasier, Martin D; Wellman, Charles H

    2011-05-26

    The existence of a terrestrial Precambrian (more than 542 Myr ago) biota has been largely inferred from indirect chemical and geological evidence associated with palaeosols, the weathering of clay minerals and microbially induced sedimentary structures in siliciclastic sediments. Direct evidence of fossils within rocks of non-marine origin in the Precambrian is exceedingly rare. The most widely cited example comprises a single report of morphologically simple mineralized tubes and spheres interpreted as cyanobacteria, obtained from 1,200-Myr-old palaeokarst in Arizona. Organic-walled microfossils were first described from the non-marine Torridonian (1.2-1.0 Gyr ago) sequence of northwest Scotland in 1907. Subsequent studies found few distinctive taxa-a century later, the Torridonian microflora is still being characterized as primarily nondescript "leiospheres". We have comprehensively sampled grey shales and phosphatic nodules throughout the Torridonian sequence. Here we report the recovery of large populations of diverse organic-walled microfossils extracted by acid maceration, complemented by studies using thin sections of phosphatic nodules that yield exceptionally detailed three-dimensional preservation. These assemblages contain multicellular structures, complex-walled cysts, asymmetric organic structures, and dorsiventral, compressed organic thalli, some approaching one millimetre in diameter. They offer direct evidence of eukaryotes living in freshwater aquatic and subaerially exposed habitats during the Proterozoic era. The apparent dominance of eukaryotes in non-marine settings by 1 Gyr ago indicates that eukaryotic evolution on land may have commenced far earlier than previously thought. PMID:21490597

  19. Autochthonous and Allochthonous Carbon Cycling in a Eutrophic Flow-Through Wetland

    Science.gov (United States)

    Wetland environments are important sites for the cycling and retention of terrestrially derived organic matter and nutrients, the influx of which subsidizes wetland C sequestration, as well as fueling autochthonous C productivity. Wetland treatment of agricultural runoff has been...

  20. Clinical and Epidemiological Characterization of Laboratory-Confirmed Autochthonous Cases of Zika Virus Disease in Mexico

    OpenAIRE

    Jimenez Corona, Maria Eugenia; De la Garza Barroso, Ana Lucía; Rodriguez Martínez, Jose Cruz; Luna Guzmán, Norma Irene; Ruiz Matus, Cuitláhuac; Díaz Quiñonez, José Alberto; Lopez Martinez, Irma; Kuri Morales, Pablo A.

    2016-01-01

    Introduction: Since 2014, autochthonous circulation of Zika virus (ZIKV) in the Americas was detected (Easter Island, Chile). In May 2015, Brazil confirmed autochthonous ­­transmission and in October of that year Colombia reported their first  cases. Now more than 52 countries have reported cases, including Mexico. To deal with this contingency in Mexico, several surveillance systems, in addition to systems for vector-borne diseases were strengthened with the participation of all health insti...

  1. Metabolic and biological profile of autochthonous Vitis vinifera L. ecotypes.

    Science.gov (United States)

    Impei, Stefania; Gismondi, Angelo; Canuti, Lorena; Canini, Antonella

    2015-05-01

    Vitis vinifera L. is a plant species rich in phenolic compounds that are usually associated with the health benefits of wine and grape consumption in the diet. Anthocyanins, catechins, flavonol, phenolic acids and stilbenes are key molecular constituents of the Vitis berries, affecting the quality of grape products. The purpose of this work was to identify the metabolic profiles of 37 genetically certified V. vinifera Latial accessions. In particular, qualitative and quantitative analyses of specific secondary metabolites and total phenolic and tannin contents were performed by LC-MS and spectrophotometric analysis. In addition, since plant molecules are well-known for their free radical scavenging properties, the antioxidant effects of the sample extracts were evaluated through two different antiradical assays: DPPH and FRAP tests. Finally, a preliminary screening of the antiproliferative activity of each specimen on HCT-116 human colorectal cancer cells was conducted. All the results showed a great variety and amount of phenolic compounds in all accessions; moreover, we observed a significant correlation in the extracts between the metabolite concentration and bioactivity. Besides, some samples presented extraordinary biological effects, such as reduction of tumor cell growth not associated with cytotoxicity, supporting their use as possible future adjuvants for cancer therapy. In conclusion, the present research increased the scientific knowledge about Italian autochthonous vine ecotypes in order to valorize them and support their reintroduction in the local economic system. PMID:25820686

  2. Eukaryotic microorganisms in cold environments. Examples from Pyrenean glaciers

    Directory of Open Access Journals (Sweden)

    CristinaCid

    2013-03-01

    Full Text Available Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and derreplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (> 1 % of all sequences were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema , Heteromita , Koliella and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of

  3. Application of autochthonous mixed starter for controlled Kedong sufu fermentation in pilot plant tests.

    Science.gov (United States)

    Feng, Zhen; Xu, Miao; Zhai, Shuang; Chen, Hong; Li, Ai-li; Lv, Xin-tong; Deng, Hong-ling

    2015-01-01

    Traditional sufu is fermented by back-slopping and back-slopping has many defects. The objective of this study was to apply autochthonous mixed starter to control Kedong sufu fermentation. Sufu was manufactured using back-slopping (batch A) and autochthonous mixed starter (batch B) with Kocuria kristinae F7, Micrococcus luteus KDF1, and Staphylococcus carnosus KDFR1676. Considering physicochemical properties of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B met the standard requirements, respectively. Considering sensory characteristics of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B showed no significant differences (P > 0.05). The maturation period of sufu was shortened by 60 d. Profiles of free amino acids and peptides partly revealed the mechanism of typical sensory quality and shorter ripening time of sufu manufactured by autochthonous mixed starter. In final products, content of total biogenic amines was reduced by 48%. Autochthonous mixed starter performed better than back-slopping. Fermentation had a positive influence on the quality, safety, and sensory properties of sufu. The application of autochthonous mixed starter does not change the sensory characteristics of traditional fermented sufu. In addition, it reduces maturation period and improves their homogeneity and safety. It is possible to substitute autochthonous mixed starter for back-slopping in the manufacture of sufu. PMID:25533352

  4. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  5. Hijacking of eukaryotic functions by intracellular bacterial pathogens

    OpenAIRE

    Alonso, Ana; García del Portillo, Francisco

    2004-01-01

    Intracellular bacterial pathogens have evolved as a group of microorganisms endowed with weapons to hijack many biological processes of eukaryotic cells. This review discusses how these pathogens perturb diverse host cell functions, such as cytoskeleton dynamics and organelle vesicular trafficking. Alteration of the cytoskeleton is discussed in the context of the bacterial entry process (invasion), which occurs either by activation of membrane-located host receptors ("zipper" mechani...

  6. Microcosm evaluation of autochthonous bioaugmentation to combat marine oil spills.

    Science.gov (United States)

    Nikolopoulou, Maria; Eickenbusch, P; Pasadakis, Nikos; Venieri, Danae; Kalogerakis, Nicolas

    2013-09-25

    Oil spills can be disastrous to any ecosystem. Bioremediation through bioaugmentation (addition of oil-degrading bacteria) and biostimulation (addition of nutrients N&P) options can be a promising strategy for combating oil spills following first response actions. However, bioaugmentation is one of the most controversial issues of bioremediation since nutrient addition alone has a greater effect on oil biodegradation than the addition of microbial products that are highly dependent on environmental conditions. There is increasing evidence that the best way to overcome the above barriers is to use microorganisms from the polluted area, an approach proposed as autochthonous bioaugmentation (ABA) and defined as the bioaugmentation technology that uses exclusively microorganisms indigenous to the sites (soil, sand, and water) to be decontaminated. In this study, we examined the effectiveness of an ABA strategy for the successful remediation of polluted marine environments. A consortium was enriched from seawater samples taken from Elefsina Gulf near the Hellenic Petroleum Refinery, a site exposed to chronic crude oil pollution. Pre-adapted consortium was tested alone or in combination with inorganic nutrients in the presence (or not) of biosurfactants (rhamnolipids) in 30-day experiments. Treatment with fertilizers in the presence of biosurfactants exhibited the highest alkane and PAH degradation and showed highest growth over a period of almost 15 days. Considering the above, the use of biostimulation additives in combination with naturally pre-adapted hydrocarbon degrading consortia has proved to be a very effective treatment and it is a promising strategy in the future especially when combined with lipophilic fertilizers instead of inorganic nutrients. Such an approach becomes more pertinent when the oil spill approaches near the shoreline and immediate hydrocarbon degradation is needed. PMID:23835403

  7. Characterization of virgin olive oils produced with autochthonous Galician varieties.

    Science.gov (United States)

    Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Valli, Enrico; Bendini, Alessandra; Gallina Toschi, Tullia; Simal-Gandara, Jesus

    2016-12-01

    The interest of Galician oil producers (NW Spain) in recovering the ancient autochthonous olive varieties Brava and Mansa has increased substantially in recent years. Virgin olive oils produced by co-crushing both varieties in two different proportions, reflecting the usual and most common practice adopted in this region, have gradually emerged for the production of virgin olive oils. Herein, the sensory and chemical characteristics of such oils were characterized by quality and genuineness-related parameters. The results of chemical analysis are discussed in terms of their effective contribution to the sensory profile, which suggests useful recommendations for olive oil producers to improve the quality of oils. Antioxidant compounds, together with aromas and coloured pigments were determined, and their contribution in determining the functional value and the sensory properties of oils was investigated. In general, given the high levels of phenolic compounds (ranging between 254 and 375mg/kg oil), tocopherols (about 165mg/kg oil) and carotenoids (10-12mg/kg oil); these are oils with long stability, especially under dark storage conditions, because stability is reinforced with the contribution of chlorophylls (15-22mg/kg oil). A major content of phenolic compounds, as well as a predominance of trans-2-hexen-1-al within odor-active compounds (from 897 to 1645μg/kg oil), responsible for bitter sensory notes. This characterization allows to developing new antioxidant-rich and flavour-rich VOOs, when co-crushing with a higher proportion of Brava olives, satisfying the consumers' demand in having access to more healthy dishes and peculiar sensory attributes. PMID:27374520

  8. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    Directory of Open Access Journals (Sweden)

    Turk Vito

    2009-11-01

    Full Text Available Abstract Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future

  9. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium. Final report

    International Nuclear Information System (INIS)

    Within this research project the influence of autochthonous mirco-organisms on immobilization and remobilization of Technetium and Selenium was investigated. Both redoxsensitive radionuclides are part of the waste of nuclear fuel (Tc app. 6%). Former investigations have shown, that immobilization behaviour of both elements could be influenced by micro-organisms. It has not been known, if the autochthonous (or in situ) organisms from greater depth do also have an influence on radionuclide mobility. The autochthonous populations of micro-organisms in deep sediments and their influence on the migration of Tc and Se were investigated in this study. For this reason recirculation column experiments were carried out. Absolutely sterile and anaerobic handling was necessary for the sampling and the further treatment of the sediments and waters used in the experiments. Therefore special methods for sampling, storage and handling had been developed. The results of recirculation column test with autochthonous micro-organisms were compared with sterile parallel tests and were verified with the results of an elaborated version of the hydrogeochemical equilibration code PHREEQE. It was shown that the autochthonous micro-organisms had only very little influence on the migration behaviour. The reason is the very low population (less than 10 E+6 CFU). Nevertheless it has to be taken into consideration, that conventional laboratory experiments for the estimation of the retention capacities of sediments for hazardous waste lead to an overestimation, if the sediments are contaminated with allochthonous micro-organisms (CFU=colony forming units). (orig.)

  10. Towards a palaeoecological model of the Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa: implications for early eukaryote evolution

    Science.gov (United States)

    Beghin, Jérémie; Guilbaud, Romain; Poulton, Simon W.; Gueneli, Nur; Brocks, Jochen J.; Storme, Jean-Yves; Blanpied, Christian; Javaux, Emmanuelle J.

    2016-04-01

    The mid-Proterozoic rock record preserves a relatively moderate diversity of early eukaryotes, despite the early evolution of fundamental features of the eukaryotic cell. Common hypotheses involve the redox state of stratified oceans with oxic shallow waters, euxinic mid-depth waters, and anoxic and ferruginous deep waters during this time period. Mid-Proterozoic eukaryotes would have found suitable ecological niches in estuarine, fluvio-deltaic and coastal shallow marine environments near nutrient sources, while N2-fixing photoautotrophs bacteria would have been better competitors than eukaryotic algae in nutrient-poor niches. Here, we present the first palaeoecological model of the late Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa. Previous palaeontological studies in the basin reported stromatolites, a low diversity of microfossils - including one species of presumed eukaryotes: verrucae-bearing acritarch - and biomarkers of anoxygenic phototrophic purple and green sulfur bacteria, cyanobacteria and microaerophilic methanotrophs. However, no biomarkers diagnostic for crown group eukaryotes were reported so far. In addition to exceptionally well preserved microbial mats showing chain-like aggregates of pyrite grains, we observed a total of sixty-two morphotaxa including nine presumed prokaryotes, thirty-five possible prokaryotes or eukaryotes, fifteen unambiguous species of eukaryotes - ornamented and process-bearing acritarchs, multicellular morphotaxon, putative VSMs, large budding vesicles, and vesicles with a sophisticated excystment structure: the pylome - and three remains of structured kerogen. Here, we combined the geological context (sedimentological features and lithofacies), iron speciation (n = 156) - with the aim of reconstructing palaeoredox environmental conditions -, and microfossils quantitative analysis (n = 61). Sediments were deposited under shallow waters in pericratonic (western basin) and epicratonic (eastern basin

  11. Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers

    Indian Academy of Sciences (India)

    Prashant K Pandey; Jay Siddharth; Pankaj Verma; Ashish Bavdekar; Milind S Patole; Yogesh S Shouche

    2012-06-01

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any micro-eukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.

  12. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing

    OpenAIRE

    Li, Sanshu; Breaker, Ronald R.

    2013-01-01

    Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechan...

  13. Combined eukaryotic and bacterial community fingerprinting of natural freshwater biofilms using automated ribosomal intergenic spacer analysis

    OpenAIRE

    2010-01-01

    Biofilms are complex communities playing an important role in aquatic ecosystems. Automated ribosomal intergenic spacer analysis (ARISA) has been used successfully to explore biofilm bacterial diversity. However, a gap remains to be filled as regards its application to biofilm eukaryotic populations. The aim of this study is to use ARISA to detect eukaryotic population shifts in biofilm. We designed a new set of primers to focus specifically on the ITS1-5.8S-ITS2 region of diatoms and tested ...

  14. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data.

    Science.gov (United States)

    McInerney, James; Pisani, Davide; O'Connell, Mary J

    2015-09-26

    The literature is replete with manuscripts describing the origin of eukaryotic cells. Most of the models for eukaryogenesis are either autogenous (sometimes called slow-drip), or symbiogenic (sometimes called big-bang). In this article, we use large and diverse suites of 'Omics' and other data to make the inference that autogeneous hypotheses are a very poor fit to the data and the origin of eukaryotic cells occurred in a single symbiosis. PMID:26323755

  15. Autochthonous microbial community associated with pine needle forest litterfall influences its degradation under natural environmental conditions.

    Science.gov (United States)

    Mahajan, Rishi; Nikitina, Anna; Litti, Yury; Nozhevnikova, Alla; Goel, Gunjan

    2016-07-01

    The slow natural degradation of chir pine (Pinus roxburghii) needle litterfall and its accumulation on forest floors have been attributed to its lignocellulosic complexities of the biomass. The present study offers a microbiological insight into the role of autochthonous microflora associated with pine needle litterfall in its natural degradation. The denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated actinomycetes (Saccharomonospora sp., Glycomyces sp., Agrococcus sp., Leifsonia sp., Blastocatella sp., and Microbacterium sp.) as a dominant microbial community associated with pine needle litterfall with the absence of fungal decomposers. On exclusion of associated autochthonous microflora from pine litterfall resulted in colonization by decomposer fungi identified as Penicillium chrysogenum and Aspergillus sp., which otherwise failed to colonize the litterfall under natural conditions. The results, therefore, indicated that the autochthonous microbial community of pine needle litterfall (dominated by actinomycetes) obstructs the colonization of litter-degrading fungi and subsequently hinders the overall process of natural degradation of litterfall. PMID:27317052

  16. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?

    Science.gov (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia

    2016-02-01

    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pchange. PMID:26599140

  17. Imported dengue cases, weather variation and autochthonous dengue incidence in Cairns, Australia.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available BACKGROUND: Dengue fever (DF outbreaks often arise from imported DF cases in Cairns, Australia. Few studies have incorporated imported DF cases in the estimation of the relationship between weather variability and incidence of autochthonous DF. The study aimed to examine the impact of weather variability on autochthonous DF infection after accounting for imported DF cases and then to explore the possibility of developing an empirical forecast system. METHODOLOGY/PRINCIPAL FINDS: Data on weather variables, notified DF cases (including those acquired locally and overseas, and population size in Cairns were supplied by the Australian Bureau of Meteorology, Queensland Health, and Australian Bureau of Statistics. A time-series negative-binomial hurdle model was used to assess the effects of imported DF cases and weather variability on autochthonous DF incidence. Our results showed that monthly autochthonous DF incidences were significantly associated with monthly imported DF cases (Relative Risk (RR:1.52; 95% confidence interval (CI: 1.01-2.28, monthly minimum temperature ((oC (RR: 2.28; 95% CI: 1.77-2.93, monthly relative humidity (% (RR: 1.21; 95% CI: 1.06-1.37, monthly rainfall (mm (RR: 0.50; 95% CI: 0.31-0.81 and monthly standard deviation of daily relative humidity (% (RR: 1.27; 95% CI: 1.08-1.50. In the zero hurdle component, the occurrence of monthly autochthonous DF cases was significantly associated with monthly minimum temperature (Odds Ratio (OR: 1.64; 95% CI: 1.01-2.67. CONCLUSIONS/SIGNIFICANCE: Our research suggested that incidences of monthly autochthonous DF were strongly positively associated with monthly imported DF cases, local minimum temperature and inter-month relative humidity variability in Cairns. Moreover, DF outbreak in Cairns was driven by imported DF cases only under favourable seasons and weather conditions in the study.

  18. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    Science.gov (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  19. Immunotherapy of metastatic and autochthonous liver cancer with IL-15/IL-15Rα fusion protein

    OpenAIRE

    Cheng, Liang; Du, Xuexiang; Su, Lishan; Wang, Shengdian

    2014-01-01

    Liver cancer has a poor prognosis. Our recent study demonstrates that hyper-IL-15, composed of IL-15 and the sushi domain of IL-15 receptor α chain, provides an effective therapy against well-established metastatic and autochthonous liver cancers in mouse models by triggering activation and expansion of hepatic CD8+ T cells.

  20. Acute hepatitis associated with autochthonous hepatitis E virus infection--San Antonio, Texas, 2009.

    Science.gov (United States)

    Tohme, Rania A; Drobeniuc, Jan; Sanchez, Roger; Heseltine, Gary; Alsip, Bryan; Kamili, Saleem; Hu, Dale J; Guerra, Fernando; Teshale, Eyasu H

    2011-10-01

    Locally acquired hepatitis E infection is increasingly being observed in industrialized countries. We report 2 cases of autochthonous acute hepatitis E in the United States. Hepatitis E virus genotype 3a related to US-2 and swine hepatitis E virus strains was isolated from one of the patients, indicating potential food-borne or zoonotic transmission. PMID:21896699

  1. A strategy to potentiate Cd phytoremediation by saltmarsh plants - autochthonous bioaugmentation.

    Science.gov (United States)

    Nunes da Silva, Marta; Mucha, Ana P; Rocha, A Cristina; Teixeira, Catarina; Gomes, Carlos R; Almeida, C Marisa R

    2014-02-15

    The recovery of estuarine environments is in need. Phytoremediation could be a valid option to reduce pollution while preserving natural biodiversity. In this work, estuarine sediments colonized by Juncus maritimus or Phragmites australis were spiked with cadmium in the absence and in the presence of an autochthonous microbial consortium resistant to the metal. The aim of this study was to increase the potential for cadmium phytoremediation that these two halophyte plants have shown. Experiments were carried out in greenhouses with an automatic irrigation system that simulated estuarine tidal cycles. After 2 months, Cd concentration in P. australis stems increased up to 7 times when the rhizosphere was inoculated with the microbial consortium. So, P. australis phytoextraction potential was increased through autochthonous bioaugmentation. As for J. maritimus, up to 48% more Cd (total amount) was observed in its belowground tissues after being subjected to autochthonous bioaugmentation. Therefore, the phytostabilization potential of this plant was promoted. For both plants this increase in cadmium uptake did not cause significant signs of toxicity. Therefore, the addition of autochthonous microorganisms resistant to cadmium seems to be a valuable strategy to potentiate phytoremediation of this metal in saltmarshes, being useful for the recovery of moderately impacted estuaries. This will contribute for an effective management of these areas. Research on this topic regarding estuarine ecosystems, especially saltmarshes, is, to our knowledge, inexistent. PMID:24486467

  2. Biological Activity of Autochthonic Bacterial Community in Oil-Contaminated Soil

    OpenAIRE

    Wolińska, Agnieszka; Kuźniar, Agnieszka; Szafranek-Nakonieczna, Anna; Jastrzębska, Natalia; Roguska, Eliza; Stępniewska, Zofia

    2016-01-01

    Soil microbial communities play an important role in the biodegradation of different petroleum derivates, including hydrocarbons. Also other biological factors such as enzyme and respiration activities and microbial abundance are sensitive to contamination with petroleum derivates. The aim of this study was to evaluate the response of autochthonic microbial community and biological parameters (respiration, dehydrogenase and catalase activities, total microorganisms count) on contamination wit...

  3. CRYOPRESERVATION OF RAM SPERM FROM AUTOCHTHONOUS BREEDS DURING A NON-MATING SEASON

    Directory of Open Access Journals (Sweden)

    Milko SABEV

    2007-07-01

    Full Text Available It is possible to collect and successfully cryopreserve ejaculates in a non-mating season from rams of the autochthonous breeds Karakachan, Cooper-red Shumen and Karnobat-local, raised in Bulgaria. Studies are in progress aiming the elaboration of optimal cryoprotective extenders and freezing technology.

  4. Eu-Detect: An algorithm for detecting eukaryotic sequences in metagenomic data sets

    Indian Academy of Sciences (India)

    Monzoorul Haque Mohammed; Sudha Chadaram Dinakar; Dinakar Komanduri; Tarini Shankar Ghosh; Sharmila S Mande

    2011-09-01

    Physical partitioning techniques are routinely employed (during sample preparation stage) for segregating the prokaryotic and eukaryotic fractions of metagenomic samples. In spite of these efforts, several metagenomic studies focusing on bacterial and archaeal populations have reported the presence of contaminating eukaryotic sequences inmetagenomic data sets. Contaminating sequences originate not only from genomes of micro-eukaryotic species but also from genomes of (higher) eukaryotic host cells. The latter scenario usually occurs in the case of host-associatedmetagenomes. Identification and removal of contaminating sequences is important, since these sequences not only impact estimates of microbial diversity but also affect the accuracy of several downstream analyses. Currently, the computational techniques used for identifying contaminating eukaryotic sequences, being alignment based, are slow, inefficient, and require huge computing resources. In this article, we present Eu-Detect, an alignment-free algorithm that can rapidly identify eukaryotic sequences contaminating metagenomic data sets. Validation results indicate that on a desktop with modest hardware specifications, the Eu-Detect algorithm is able to rapidly segregate DNA sequence fragments of prokaryotic and eukaryotic origin, with high sensitivity. A Web server for the Eu-Detect algorithm is available at http://metagenomics.atc.tcs.com/Eu-Detect/.

  5. Autochthonous microbe-assisted phytoremediation of brown coal mine overburden soil

    Science.gov (United States)

    Hamidović, Saud; Teodorović, Smilja; Lalević, Blažo; Karličić, Vera; Jovanović, Ljubinko; Kiković, Dragan; Raičević, Vera

    2015-04-01

    One of the largest brown coal mines in Bosnia and Herzegovina (BiH), Kakanj, has been exploited for over a hundred years. As a consequence of decades of exploitation, severe biocenosis disturbance and degradation of the entire ecosystem have occurred, resulting in overburden soil formation. A significant challenge in remediation of degraded mining areas is difficulty in creating conditions favorable for vegetation growth. Thus, numerous remediation technologies have focused on increasing soil nutrient composition, as well as the number and activity of plant growth-promoting bacteria (PGPB), given that they stimulate host plant growth by increasing the availability of essential nutrients (phosphorus, nitrogen, manganese, iron), producing phytohormones, and providing protection from pathogens. The main objective of this research was to characterize autochthonous plant and microbial overburden communities and access their ability to restore these contaminated soils. Phytocenological analysis of vegetation and plant species was performed according to Flora Europaea (2001), from 2011 - 2013. Our results show that plant species were not detected at mine overburden soil in 2011. However, we detected presence of a single plant species, Amaranthus albus L., in 2012. Further, we recorded the presence of five families (Amaranthaceae, Chenopodiaceae, Convolvulaceae, Poaceae and Polygonaceae) in 2013. Microbial abundance and enzymatic activity were also examined during the same period. The diversity of microbial populations in the first year was rather small. Two Bacillus spp., B. simplex and a B. cereus group member, indigenous to mine overburden were isolated and identified using standard macroscopic and microscopic, as well as molecular techniques (Hamidovic et al., submitted). Phosphate solubilizing activity of bacteria was tested on National Botanical Research Institute's phosphate growth medium (1999). Production of ammonia was determined in peptone water with Nessler

  6. Ecological Diversity in South American Mammals: Their Geographical Distribution Shows Variable Associations with Phylogenetic Diversity and Does Not Follow the Latitudinal Richness Gradient

    OpenAIRE

    Paula Nilda Fergnani; Adriana Ruggiero

    2015-01-01

    The extent to which the latitudinal gradient in species richness may be paralleled by a similar gradient of increasing functional or phylogenetic diversity is a matter of controversy. We evaluated whether taxonomic richness (TR) is informative in terms of ecological diversity (ED, an approximation to functional diversity) and phylogenetic diversity (AvPD) using data on 531 mammal species representing South American old autochthonous (marsupials, xenarthrans), mid-Cenozoic immigrants (hystrico...

  7. Repetitive DNA in eukaryotic genomes.

    Science.gov (United States)

    Biscotti, Maria Assunta; Olmo, Ettore; Heslop-Harrison, J S Pat

    2015-09-01

    Repetitive DNA--sequence motifs repeated hundreds or thousands of times in the genome--makes up the major proportion of all the nuclear DNA in most eukaryotic genomes. However, the significance of repetitive DNA in the genome is not completely understood, and it has been considered to have both structural and functional roles, or perhaps even no essential role. High-throughput DNA sequencing reveals huge numbers of repetitive sequences. Most bioinformatic studies focus on low-copy DNA including genes, and hence, the analyses collapse repeats in assemblies presenting only one or a few copies, often masking out and ignoring them in both DNA and RNA read data. Chromosomal studies are proving vital to examine the distribution and evolution of sequences because of the challenges of analysis of sequence data. Many questions are open about the origin, evolutionary mode and functions that repetitive sequences might have in the genome. Some, the satellite DNAs, are present in long arrays of similar motifs at a small number of sites, while others, particularly the transposable elements (DNA transposons and retrotranposons), are dispersed over regions of the genome; in both cases, sequence motifs may be located at relatively specific chromosome domains such as centromeres or subtelomeric regions. Here, we overview a range of works involving detailed characterization of the nature of all types of repetitive sequences, in particular their organization, abundance, chromosome localization, variation in sequence within and between chromosomes, and, importantly, the investigation of their transcription or expression activity. Comparison of the nature and locations of sequences between more, and less, related species is providing extensive information about their evolution and amplification. Some repetitive sequences are extremely well conserved between species, while others are among the most variable, defining differences between even closely relative species. These data suggest

  8. The Center for Eukaryotic Structural Genomics

    OpenAIRE

    Markley, John L.; Aceti, David J.; Bingman, Craig A.; Fox, Brian G.; Frederick, Ronnie O.; Makino, Shin-ichi; Nichols, Karl W.; Phillips, George N.; Primm, John G.; Sahu, Sarata C.; Vojtik, Frank C.; Volkman, Brian F.; Wrobel, Russell L.; Zolnai, Zsolt

    2009-01-01

    The Center for Eukaryotic Structural Genomics (CESG) is a “specialized” or “technology development” center supported by the Protein Structure Initiative (PSI). CESG’s mission is to develop improved methods for the high-throughput solution of structures from eukaryotic proteins, with a very strong weighting toward human proteins of biomedical relevance. During the first three years of PSI-2, CESG selected targets representing 601 proteins from Homo sapiens, 33 from mouse, 10 from rat, 139 from...

  9. Eukaryotic DNA Ligases: Structural and Functional Insights

    OpenAIRE

    Ellenberger, Tom; Tomkinson, Alan E.

    2008-01-01

    DNA ligases are required for DNA replication, repair, and recombination. In eukaryotes, there are three families of ATP-dependent DNA ligases. Members of the DNA ligase I and IV families are found in all eukaryotes, whereas DNA ligase III family members are restricted to vertebrates. These enzymes share a common catalytic region comprising a DNA-binding domain, a nucleotidyltransferase (NTase) domain, and an oligonucleotide/oligosaccharide binding (OB)-fold domain. The catalytic region encirc...

  10. Reproduction, symbiosis, and the eukaryotic cell

    OpenAIRE

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of...

  11. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  12. Detection and identification of autochthonous microorganisms in deep clay rock formations under evaluation for disposal of high activity nuclear wastes: example of opalinus clay (Mont Terri, Switzerland)

    International Nuclear Information System (INIS)

    Feasibility of deep geological storage of high activity nuclear wastes mainly relies on physico-chemical properties of the targeted host rock, in particular its ability to limit radionuclide transfer through the geological barrier formation and within the biosphere for hundreds of thousands years. Several phenomena such as chemical form of radionuclides may be influenced or catalyzed by microorganisms living in the host rock, or brought by excavation and human activity. This work deals with detection of microbial DNA and identification of autochthonous microorganisms in the undisturbed potential host clay formation from Mont Terri URL (Switzerland). Our approach is based on molecular biology in order to obtain a broad view of diversity in this extreme environment. DNA extraction, 16s-rDNA PCR amplification with universal primers for Bacteria and Archaea, and sequencing methods were thus chosen for detection and identification of endogenous microbes. (authors)

  13. Recovery of quarries with autochthonous vegetal species at Arrábida Natural Park

    OpenAIRE

    Rodrigues, Fátima; Loureiro, David; Santos, I; Monteiro, C.; Madeira, G.

    2010-01-01

    To aid in the of environmental and landscape recovery quarries integrated in the Arrábida Natural Park (PNA) a contract involving official Portuguese entities was celebrated since 1998 to produce autochthonous plants. This contract was supported by the project “Valorisation of waste heat from Setúbal Power Plant in protected cultivation” that had the main goal to demonstrate the practical application of low temperature waste heat from power plant in greenhouses environmental conditionin...

  14. Seasonal variation of allochthonous and autochthonous energy inputs in an alpine stream

    OpenAIRE

    Stefano Fenoglio; Tiziano Bo; Massimo Cammarata; Manuel J. López-Rodríguez; José M. Tierno de Figueroa

    2015-01-01

    Despite the enormous importance of alpine streams, information about many aspects of their ecology is still insufficient. Alpine lotic systems differ in many environmental characteristics from those lower down, for example because above tree line streams drain catchments where terrestrial vegetation is scarce and allochthonous organic input is expected to be small. The main objectives of this study were to examine seasonal variation of autochthonous and allochthonous energetic inputs and thei...

  15. Elimination of Bisphenol A and Triclosan Using the Enzymatic System of Autochthonous Colombian Forest Fungi

    OpenAIRE

    Carolina Arboleda; Cabana, H.; E. De Pril; J. Peter Jones; G. A. Jiménez; A. I. Mejía; Agathos, S. N.; Penninckx, M. J.

    2013-01-01

    Bisphenol A (BPA) and triclosan (TCS) are known or suspected potential endocrine disrupting chemicals (EDCs) which may pose a risk to human health and have an environmental impact. Enzyme preparations containing mainly laccases, obtained from Ganoderma stipitatum and Lentinus swartzii, two autochthonous Colombian forest white rot fungi (WRF), previously identified as high enzyme producers, were used to remove BPA and TCS from aqueous solutions. A Box-Behnken factorial design showed that pH, t...

  16. Formation of biogenic amines and vitamin K contents in the Norwegian autochthonous cheese Gamalost during ripening

    OpenAIRE

    Qureshi, Tahir; Vermeer, Cees; Vegarud, Gerd; Abrahamsen, Roger; Skeie, Siv

    2013-01-01

    Gamalost, a Norwegian mould (Mucor mucedo) ripened autochthonous cheese, is a potential functional food due to a high content of peptides that might reduce hypertension, however it has a high content of free amino acids which may be precursors for biogenic amines. This study aimed to investigate if Gamalost might have further health benefits or risks by determination of the formation of vitamin K and biogenic amines. The development of biogenic amines and vitamin K was analysed during ripenin...

  17. Clinical and Epidemiological Characterization of Laboratory-Confirmed Autochthonous Cases of Zika Virus Disease in Mexico

    Science.gov (United States)

    Jimenez Corona, Maria Eugenia; De la Garza Barroso, Ana Lucía; Rodriguez Martínez, Jose Cruz; Luna Guzmán, Norma Irene; Ruiz Matus, Cuitláhuac; Díaz Quiñonez, José Alberto; Lopez Martinez, Irma; Kuri Morales, Pablo A.

    2016-01-01

    Introduction: Since 2014, autochthonous circulation of Zika virus (ZIKV) in the Americas was detected (Easter Island, Chile). In May 2015, Brazil confirmed autochthonous ­­transmission and in October of that year Colombia reported their first  cases. Now more than 52 countries have reported cases, including Mexico. To deal with this contingency in Mexico, several surveillance systems, in addition to systems for vector-borne diseases were strengthened with the participation of all health institutions. Also, the Ministry of Health defined an Action Plan against ZIKV for the whole country. Methods: We analyzed 93 autochthonous cases of ZIKV disease identified by Epidemiological Surveillance System for Zika Virus in Mexico. All autochthonous cases confirmed by laboratory since November 25, 2015 to February 19, 2016 were included. A description of clinical and epidemiological characteristics of 93 cases of ZIKV disease are presenting and, we describe the Action Plan against this public health emergency.  Results: The distribution of cases by sex was 61 men and 32 women; mean age was 35 years old (S.D. 15, range 6-90). The main clinical features in the 93 cases were fever (96.6%), rash (93.3%), non-purulent conjunctivitis (88.8%), headache (85.4%), and myalgia (84.3%). No deaths were reported. Conclusion: The ZIKV epidemic poses new challenges to public health systems. The information provided for basic, clinical, and epidemiological research, in addition to the data derived from epidemiological surveillance is essential. However, there are still many unanswered questions regarding mechanisms of transmission, complications, and impact of this virus. PMID:27158557

  18. Fruit Morphological Changes during Pit Hardening in Autochthonous Istrian Olive (Olea europaea L.) Cultivars

    OpenAIRE

    Marin Krapac; Barbara Sladonja; Đani Benčić

    2014-01-01

    Endocarp lignification is important fruit growth phenophase since after its completion fruit starts with oil accumulation. The information about duration of endocarp lignification is important for timing of management practices, irrigation and pest control in oil cultivars, and fruit thinning in table cultivars to obtain uniform fruit weight and size. In this study, fruit length, width and weight of four Istrian autochthonous olive cultivars (‘Buža’, ‘Puntoža’, &...

  19. Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue

    OpenAIRE

    Erden, Emre; Ucar, M. Cigdem; Gezer, Tekin; Pazarlioglu, Nurdan Kasikara

    2009-01-01

    This study presents new and alternative fungal strains for the production of ligninolytic enzymes which have great potential to use in industrial and biotechnological processes. Thirty autochthonous fungal strains were harvested from Bornova-Izmir in Turkiye. In the fresh fruitbody extracts laccase, manganese peroxidase and lignin peroxidase activities, which are the principal enzymes responsible for ligninocellulose degradation by Basidiomycetes, were screened. Spores of some of the basidiom...

  20. Influence of autochthonous yeasts on the quality of wines from Vranec and Cabernet Sauvignon varieties

    OpenAIRE

    Ilieva, Fidanka; Ivanova, Violeta; Dimovska, Violeta; Mitrev, Sasa; Karov, Ilija; Spasov, Hristo

    2014-01-01

    In this study 80 autochthonous yeast strains have been were isolated from Vranec and Cabernet Sauvignon grape varieties grown in Tikveš wine region in the Republic of Macedonia. After the yeasts insulation, 10 yeast strains were selected and then used for fermentation and production of Vranec and Cabernet Sauvignon wines in order to test their influence on the wine quality. For that purpose, some basic parameters, including alcohol content, total acids, volatile acids, reducing sugars and pH ...

  1. Low molecular weight peptides derived from sarcoplasmic proteins produced by an autochthonous starter culture in a beaker sausage model

    Directory of Open Access Journals (Sweden)

    Constanza M. López

    2015-06-01

    Significance: The selection of a specific autochthonous starter culture guarantees the hygiene and typicity of fermented sausages. The identification of new peptides as well as new target proteins by means of peptidomics represents a significant step toward the elucidation of the role of microorganisms in meat proteolysis. Moreover, these peptides may be further used as biomarkers capable to certify the use of the applied autochthonous starter culture described here.

  2. Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi

    OpenAIRE

    Cornell, Michael J.; Alam, Intikhab; Soanes, Darren M.; Wong, Han Min; Hedeler, Cornelia; Paton, Norman W; Rattray, Magnus; Hubbard, Simon J; Talbot, Nicholas J.; Oliver, Stephen G

    2007-01-01

    The recent proliferation of genome sequencing in diverse fungal species has provided the first opportunity for comparative genome analysis across a eukaryotic kingdom. Here, we report a comparative study of 34 complete fungal genome sequences, representing a broad diversity of Ascomycete, Basidiomycete, and Zygomycete species. We have clustered all predicted protein-encoding gene sequences from these species to provide a means of investigating gene innovations, gene family expansions, protein...

  3. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Domenico Cerri

    2011-04-01

    Full Text Available The aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  4. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Barbara Turchi

    2011-05-01

    Full Text Available he aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  5. Selection of autochthonous sour cherry (Prunus cerasus L. genotypes in Feketić region

    Directory of Open Access Journals (Sweden)

    Radičević Sanja

    2012-01-01

    Full Text Available Autochthonous genotypes of fruit species are very important source of genetic variability and valuable material for breeding work. Fruit Research Institute-Čačak has a long tradition of studying autochthonous genotypes of temperate fruits sporadically spread and preserved in some localities in Serbia. Over 2005-2006, the following properties of nine autochthonous sour cherry genotypes grown in Feketic region were investigated: flowering and ripening time, pomological properties, biochemical composition of fruits and field resistance to causal agents of cherry diseases - cherry leaf spot (Blumeriella jaapii (Rehm. v. Arx., shot-hole (Clasterosporium carpophilum (Lév. Aderh. and brown rot (Monilinia laxa /Ader et Ruhl./ Honey ex Whetz.. The genotypes were tested for the presence of Prune dwarf virus and Prunus necrotic ring spot virus. In majority of genotypes fruits were large, with exceptional organoleptical properties, whereas ripening time was in the first ten or twenty days of June. The highest fruit weight was observed in F-1 genotype (8.1 g. The highest soluble solids and total sugars content were found in F- 4 genotype (17.60% and 14.25%, respectively. As for field resistance to causal agents of diseases and good pomo-technological properties, F-1, F-2, F-3, F-7 and F-8 genotypes were singled out. [Projekat Ministarstva nauke Republike Srbije, br. TR31064

  6. Autochthonous dengue outbreak in Nîmes, South of France, July to September 2015.

    Science.gov (United States)

    Succo, Tiphanie; Leparc-Goffart, Isabelle; Ferré, Jean-Baptiste; Roiz, David; Broche, Béatrice; Maquart, Marianne; Noel, Harold; Catelinois, Olivier; Entezam, Farhad; Caire, Didier; Jourdain, Frédéric; Esteve-Moussion, Isabelle; Cochet, Amandine; Paupy, Christophe; Rousseau, Cyril; Paty, Marie-Claire; Golliot, Franck

    2016-05-26

    In August and September 2015, seven locally acquired cases of dengue virus type 1 (DENV-1) were detected in Nîmes, south of France, where Aedes albopictus has been established since 2011. Epidemiological and entomological investigations allowed to steer vector control measures to contain transmission. An imported case from French Polynesia with onset fever on 4 July was identified as primary case. This outbreak occurred from 8 August to 11 September in a 300 m radius area. Six sprayings to control mosquitos were performed in the affected area. We describe the first considerable dengue outbreak in mainland France where only sporadic cases of autochthonous dengue were recorded previously (2010, 2013 and 2014). The 69 day-period between the primary case and the last autochthonous case suggests multiple episodes of mosquito infections. The absence of notification of autochthonous cases during the month following the primary case's symptoms onset could be explained by the occurrence of inapparent illness. Recurrence of cases every year since 2013, the size of the 2015 outbreak and continuing expansion of areas with presence of Ae. albopictus highlight the threat of arboviral diseases in parts of Europe. Thus, European guidelines should be assessed and adjusted to the current context. PMID:27254729

  7. New process for production of fermented black table olives using selected autochthonous microbial resources

    Directory of Open Access Journals (Sweden)

    Maria eTufariello

    2015-09-01

    Full Text Available Table olives represent one important fermented product in Europe and, in the world, their demand is constantly increasing. At the present time, no systems are available to control black table olives spontaneous fermentation by the Greek method. During this study, a new protocol for the production of black table olives belonging to two Italian (Cellina di Nardò and Leccino and two Greek (Kalamàta and Conservolea cultivars has been developed: for each table olive cultivar, starter-driven fermentations were performed inoculating, firstly, one selected autochthonous yeast starter and, subsequently, one selected autochthonous LAB starter. All starters formulation were able to dominate fermentation process. The olive fermentation was monitored using specific chemical descriptors able to identify a first stage (30 days mainly characterized by aldehydes; a second period (60 days mainly characterized by higher alcohols, styrene and terpenes; a third fermentation stage represented by acetate esters, esters and acids. A significant decrease of fermentation time (from 8-12 months to a maximum of 3 months and an significant improvement in organoleptic characteristics of the final product were obtained. This study, for the first time, describes the employment of selected autochthonous microbial resources optimized to mimic the microbial evolution already recorded during spontaneous fermentations.

  8. New process for production of fermented black table olives using selected autochthonous microbial resources.

    Science.gov (United States)

    Tufariello, Maria; Durante, Miriana; Ramires, Francesca A; Grieco, Francesco; Tommasi, Luca; Perbellini, Ezio; Falco, Vittorio; Tasioula-Margari, Maria; Logrieco, Antonio F; Mita, Giovanni; Bleve, Gianluca

    2015-01-01

    Table olives represent one important fermented product in Europe and, in the world, their demand is constantly increasing. At the present time, no systems are available to control black table olives spontaneous fermentation by the Greek method. During this study, a new protocol for the production of black table olives belonging to two Italian (Cellina di Nardò and Leccino) and two Greek (Kalamàta and Conservolea) cultivars has been developed: for each table olive cultivar, starter-driven fermentations were performed inoculating, firstly, one selected autochthonous yeast starter and, subsequently, one selected autochthonous LAB starter. All starters formulation were able to dominate fermentation process. The olive fermentation was monitored using specific chemical descriptors able to identify a first stage (30 days) mainly characterized by aldehydes; a second period (60 days) mainly characterized by higher alcohols, styrene and terpenes; a third fermentation stage represented by acetate esters, esters and acids. A significant decrease of fermentation time (from 8 to 12 months to a maximum of 3 months) and an significant improvement in organoleptic characteristics of the final product were obtained. This study, for the first time, describes the employment of selected autochthonous microbial resources optimized to mimic the microbial evolution already recorded during spontaneous fermentations. PMID:26441932

  9. Efficient method to optimize antibodies using avian leukosis virus display and eukaryotic cells.

    Science.gov (United States)

    Yu, Changming; Pike, Gennett M; Rinkoski, Tommy A; Correia, Cristina; Kaufmann, Scott H; Federspiel, Mark J

    2015-08-11

    Antibody-based therapeutics have now had success in the clinic. The affinity and specificity of the antibody for the target ligand determines the specificity of therapeutic delivery and off-target side effects. The discovery and optimization of high-affinity antibodies to important therapeutic targets could be significantly improved by the availability of a robust, eukaryotic display technology comparable to phage display that would overcome the protein translation limitations of microorganisms. The use of eukaryotic cells would improve the diversity of the displayed antibodies that can be screened and optimized as well as more seamlessly transition into a large-scale mammalian expression system for clinical production. In this study, we demonstrate that the replication and polypeptide display characteristics of a eukaryotic retrovirus, avian leukosis virus (ALV), offers a robust, eukaryotic version of bacteriophage display. The binding affinity of a model single-chain Fv antibody was optimized by using ALV display, improving affinity >2,000-fold, from micromolar to picomolar levels. We believe ALV display provides an extension to antibody display on microorganisms and offers virus and cell display platforms in a eukaryotic expression system. ALV display should enable an improvement in the diversity of properly processed and functional antibody variants that can be screened and affinity-optimized to improve promising antibody candidates. PMID:26216971

  10. Abundance and Diversity of Viruses in Six Delaware Soils

    OpenAIRE

    Williamson, Kurt E.; Radosevich, Mark; Wommack, K. Eric

    2005-01-01

    The importance of viruses in marine microbial ecology has been established over the past decade. Specifically, viruses influence bacterial abundance and community composition through lysis and alter bacterial genetic diversity through transduction and lysogenic conversion. By contrast, the abundance and distribution of viruses in soils are almost completely unknown. This study describes the abundance and diversity of autochthonous viruses in six Delaware soils: two agricultural soils, two coa...

  11. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes

    Science.gov (United States)

    Orias, Eduardo; Cervantes, Marcella D.; Hamilton, Eileen P.

    2011-01-01

    Tetrahymena thermophila is a ciliate -- a unicellular eukaryote. Remarkably, every cell maintains differentiated germline and somatic genomes: one silent, the other expressed. Moreover, the two genomes undergo diverse processes, some as extreme as life and death, simultaneously in the same cytoplasm. Conserved eukaryotic mechanisms have been modified in ciliates to selectively deal with the two genomes. We describe research in several areas of Tetrahymena biology, including meiosis, amitosis, genetic assortment, selective nuclear pore transport, somatic RNAi-guided heterochromatin formation, DNA excision and programmed nuclear death by autophagy, which has enriched and broadened knowledge of those mechanisms. PMID:21624459

  12. Force generation in a regrowing eukaryotic flagellum

    Science.gov (United States)

    Polin, Marco; Bruneau, Bastien; Johnson, Thomas; Goldstein, Raymond

    2012-02-01

    Flagella are whip-like organelles with a complex internal structure, the axoneme, highly conserved across eukaryotic species. The highly regulated activity of motor proteins arranged along the axoneme moves the flagellum in the surrounding fluid, generating forces that can be used for swimming or fluid propulsion. Although our understanding of the general mechanism behind flagellar motion is well established, the details of its implementation in a real axoneme is still poorly understood. Here we explore the inner working of the eukaryotic flagellum using a uniflagellated mutant of the unicellular green alga Chlamydomonas reinhardtii to investigate in detail the force and power generated by a moving flagellum during axonemal regrowth after deflagellation. These experiments will contribute to our understanding of the inner working of the eukaryotic flagellum.

  13. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Science.gov (United States)

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. PMID:27029537

  14. Reproduction, symbiosis, and the eukaryotic cell.

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-08-18

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this "egalitarian" evolutionary transition is compared with those that apply in "fraternal" transitions, such as the evolution of multicellularity in animals. PMID:26286983

  15. Study of features of the biochemical composition of red vine leaves of autochthonous varieties in Russia

    Directory of Open Access Journals (Sweden)

    Oganesyants Lev

    2015-01-01

    Full Text Available One of the fields of processing industries’ activities is the use of secondary resources. The use the vegetative parts of grape plants may become an important component in solving this task. Such vegetative parts, first of all, include red grape leaves, which provide a large reserve of antioxidants and other biologically useful substances. The Russian Research Institute of Brewing and Wine Industry has carried out the detailed study of the features of the biochemical composition of red vine leaves of autochthonous varieties cultivated in the Rostov region of Russia. Cold winters are considered to be the major stress for the grape plants. Under these conditions, leaves accumulate large amount of biologically active substances, including trans-resveratrol, which provide significant advantage compared with the harvest from grapes cultivated in areas where the plants are not protected during winter. Comparative studies on the biochemical composition of red vine leaves of autochthonous and European varieties were conducted, including on the use of bioassay systems in vitro. It was found that extracts of red vine leaves of autochthonous varieties have a marked effect on the rate of glutathione reductase and pyruvate kinase reactions that are demonstrating their angioprotective and energizing properties. The increase in the rate of the catalase reaction indicates the manifestation of antioxidant properties. The technology of CO2 – and highly concentrated hydrophilic extracts production from red vine leaves that preserves biologically active compounds to the maximum extent possible. The extracts are used for the manufacture of soft drinks that have the venomotor action and may be applied in the process of the manufacture of fat products with extended shelf life, as well as the main raw material for the preparations with the pronounced angioprotective effect.

  16. Autochthonous dengue virus infection in Japan imported into Germany, September 2013.

    Science.gov (United States)

    Schmidt-Chanasit, J; Emmerich, P; Tappe, D; Gunther, S; Schmidt, S; Wolff, D; Hentschel, K; Sagebiel, D; Schoneberg, I; Stark, K; Frank, C

    2014-01-01

    In September 2013, dengue virus (DENV) infection was diagnosed in a German traveller returning from Japan. DENV-specific IgM and IgG and DENV NS1 antigen were detected in the patient’s blood, as were DENV serotype 2-specific antibodies. Public health authorities should be aware that autochthonous transmission of this emerging virus may occur in Japan. Our findings also highlight the importance of taking a full travel history, even from travellers not returning from tropical countries, to assess potential infection risks of patients. PMID:24480059

  17. Autochthonous dengue virus infection in Japan imported into Germany, September 2013

    OpenAIRE

    Schmidt-Chanasit, Jonas; Emmerich, Petra; Tappe, D; Günther, Stephan; Schmidt, S.; Wolff, D; Hentschel, K.; Sagebiel, Daniel; Schöneberg, Irene; Stark, Klaus; Frank, Christina

    2014-01-01

    In September 2013, dengue virus (DENV) infection was diagnosed in a German traveller returning from Japan. DENV-specific IgM and IgG and DENV NS1 antigen were detected in the patient’s blood, as were DENV serotype 2-specific antibodies. Public health authorities should be aware that autochthonous transmission of this emerging virus may occur in Japan. Our findings also highlight the importance of taking a full travel history, even from travellers not returning from tropical countries, to asse...

  18. Do consumers from Međimurje region recognize their autochthonous Turoš cheese?

    OpenAIRE

    Kristijan Valkaj; Marija Cerjak; Samir Kalit; Ante Rako; Wendorff, William L.

    2013-01-01

    The aim of this study was to determine whether consumers from the Međimurje region recognise and distinguish the autochthonous cheese called Turoš from similar cheeses like Prgica and Kvargl originating from regions neighbouring to Međimurje. Chemical, textural and microbiological properties of all three cheeses were given. Preference tests with 200 consumers using a face-to-face survey and a two-step procedure were performed. The blind taste test showed that 97 % of the respondents recognise...

  19. Impact of autochthonous music on the creation of tourist destination image

    Directory of Open Access Journals (Sweden)

    Željko Blagus

    2010-06-01

    Full Text Available This paper tries to determine to what extent autochthonous music may contribute to the creation of the image of a tourist destination. In other words, it aims at demostrating how the Croatian Međimurje County may become recognizable as a tourist destination on the basis of its ethnographic heritage, which exists even today in different ways. The first part of the paper deals with the role of image in the choice of destination and defines the term “destination image”. A particular emphasis is placed on the analysis of the impact of autochthonous music on the image of the Međimurje County. It proves the thesis that autochthonous music plays an important role in the presentation and dissemination of the recognizable image of Međimurje. As shown in this paper, the music of Međimurje is a resource characterized by dynamism, change and adaptability. It is also a source of inspiration of numerous musicians and, thanks to its uniqueness in terms of authenticity, representativeness or rarity, it becomes a quality symbol of the environment in which it came to be. In this sense, the paper offers an insight into the way in which the music of Međimurje might be used to improve the understanding and acceptance of certain communication content by making the message clearer and easier to understand. It is evident that the market evaluated the autochthonous music of Međimurje in the past and will continue to evaluate it to an increasing extent in the future, so claims about its incompatibility with commercialism and utilitarianism may only be accepted conditionally. The second part of the paper includes a description of the methodological frame of the field research that has been conducted as well as a report on its results. In this way, the analysis of the role which the music of Međimurje plays in the creation of image acquires its concrete meaning, since the results of the research can be interpreted with regard to their assumptions and their

  20. Hidden ribozymes in eukaryotic genome sequence

    OpenAIRE

    Sean P Ryder

    2010-01-01

    The small self-cleaving ribozymes fold into complex tertiary structures to promote autocatalytic cleavage or ligation at a precise position within their sequence. Until recently, relatively few examples had been identified. Two papers now reveal that self-cleaving ribozymes are prevalent in eukaryotic genomes and, in some cases, might play a role in regulating gene expression.

  1. RING FISSION OF ANTHRACENE BY A EUKARYOTE

    Science.gov (United States)

    Ligninolytic fungi are unique among eukaryotes in their ability to degrade polycyclic aromatic hydrocarbons (PAHs), but the mechanism for this process is unknown. lthough certain PAHs are oxidized in vitro by the fungal lignin peroxidases (LiPs) that catalyze ligninolysis, it has...

  2. Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Zhang, Dapeng; Aravind, L

    2016-01-01

    While N(6) -methyladenosine (m(6) A) is a well-known epigenetic modification in bacterial DNA, it remained largely unstudied in eukaryotes. Recent studies have brought to fore its potential epigenetic role across diverse eukaryotes with biological consequences, which are distinct and possibly even opposite to the well-studied 5-methylcytosine mark. Adenine methyltransferases appear to have been independently acquired by eukaryotes on at least 13 occasions from prokaryotic restriction-modification and counter-restriction systems. On at least four to five instances, these methyltransferases were recruited as RNA methylases. Thus, m(6) A marks in eukaryotic DNA and RNA might be more widespread and diversified than previously believed. Several m(6) A-binding protein domains from prokaryotes were also acquired by eukaryotes, facilitating prediction of potential readers for these marks. Further, multiple lineages of the AlkB family of dioxygenases have been recruited as m(6) A demethylases. Although members of the TET/JBP family of dioxygenases have also been suggested to be m(6) A demethylases, this proposal needs more careful evaluation. Also watch the Video Abstract. PMID:26660621

  3. Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Holly M Bik

    Full Text Available Benthic habitats harbour a significant (yet unexplored diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region.

  4. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Bernad Lucia

    2009-11-01

    Full Text Available Abstract Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as

  5. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model

    Science.gov (United States)

    Kazmierczak, Robert A.; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  6. Antibiotic susceptibility and antimicrobial activity of autochthonous starter cultures as safety parameters for fresh cheese production

    Directory of Open Access Journals (Sweden)

    Dora Bučan

    2013-11-01

    Full Text Available The antibiotic susceptibility and antimicrobial activity, as food safety parameters important for application of autochthonous lactic acid bacteria (LAB, that previously satisfied technological criteria for functional starter cultures in fresh cheese production were examined. Soluble whole cell protein patterns of autochthonous LAB strains from fresh cheese, obtained by SDS-PAGE, revealed the presence of two predominant strains, which were identified as Lactobacillus fermentum A8 and Enterococcus faecium A7. These strains were not resistant and shown susceptibility to antibiotics: ampicillin, bacitracin, penicillin G, azithromycin, chloramphenicol, clarithromycin, clindamycin, spiramycin, tetracycline, streptomycin, neomycin, gentamicin, erythromycin, rifampicin and novobiocin. Lb. fermentum A8 strain displayed phenotypic resistance to vancomycin, but this resistance is intrinsic, not transferable and it is acceptable from the safety aspect. The capacity of Lb. fermentum A8 and Ec. faecium A7 to inhibit growth of test-microorganisms Listeria monocytogenes ATCC 11911, Escherichia coli 3014, Salmonella enterica serovar Typhimurium FP1 and Staphylococcus aureus 3048, was also analysed. According to obtained results, Lb. fermentum A8 and Ec. faecium A7 are safe from the aspect of spreading antibiotic resistance and could be useful as bioprotective cultures that inhibit common bacterial food contaminants, including L. monocytogenes.

  7. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Satoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Harris, Timothy J.; Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yoshimura, Kiyoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C. [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); De Marzo, Angelo M. [Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.

  8. Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Roux, Simon; Enault, François; Bronner, Gisèle; Vaulot, Daniel; Forterre, Patrick; Krupovic, Mart

    2013-01-01

    Metagenomic studies have uncovered an astonishing diversity of ssDNA viruses encoding replication proteins (Reps) related to those of eukaryotic Circoviridae, Geminiviridae or Nanoviridae; however, exact evolutionary relationships among these viruses remain obscure. Recently, a unique chimeric virus (CHIV) genome, which has apparently emerged via recombination between ssRNA and ssDNA viruses, has been discovered. Here we report on the assembly of 13 new CHIV genomes recovered from various environments. Our results indicate a single event of capsid protein (CP) gene capture from an RNA virus in the history of this virus group. The domestication of the CP gene was followed by an unprecedented recurrent replacement of the Rep genes in CHIVs with distant counterparts from diverse ssDNA viruses. We suggest that parasitic and symbiotic interactions between unicellular eukaryotes were central for the emergence of CHIVs and that such turbulent evolution was primarily dictated by incongruence between the CP and Rep proteins. PMID:24193254

  9. Symbiosis and the origin of eukaryotic motility

    Science.gov (United States)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  10. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  11. Statistical characteristics of eukaryotic intron database

    Institute of Scientific and Technical Information of China (English)

    HE Miao; LI Jidong; ZHANG Shanghong

    2006-01-01

    A database called eukaryotic intron database (EID) was developed based on the data from GenBank.Studies on the statistical characteristics of EID show that there were 103,848 genes,478,484 introns,and 582,332 exons,with an average of 4.61 introns and 5.61 exons per gene.Introns of 40-120 nt in length were abundant in the database.Results of the statistical analysis on the data from nine model species showed that in eukaryotes,higher species do not necessarily have more introns or exons in a gene than lower species.Furthermore,characteristics of EID,such as intron phase,distribution of different splice sites,and the relationship between genome size and intron proportion or intron density,have been studied.

  12. Prokaryotes Versus Eukaryotes: Who is Hosting Whom?

    OpenAIRE

    Tellez, Guillermo

    2014-01-01

    Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a “forgotten organ,” functioning as an organ inside another that can execute many physiological responsibilities. The nature of...

  13. Evolution of the tetrapyrrole synthesis in eukaryotes

    OpenAIRE

    Kořený, Luděk

    2011-01-01

    This thesis focuses on the nature of heme metabolism in various eukaryotes. One of the aims was the elucidation of the origin of the unique heme biosynthesis pathway in apicomplexan parasites through a comparative study of their photosynthetic relative Chromera velia combining molecular biology, biochemistry and bioinformatics approach. Using similar strategy, I have also investigated the origin and spatial organization of tetrapyrrole biosynthesis in Euglena gracilis. Based on the phylogenet...

  14. Strong Eukaryotic IRESs Have Weak Secondary Structure

    OpenAIRE

    Xuhua Xia; Martin Holcik

    2009-01-01

    BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES) lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE) of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stabili...

  15. Endosymbiotic origin and differential loss of eukaryotic genes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Sousa, Filipa L; Lockhart, Peter J; Bryant, David; Hazkani-Covo, Einat; McInerney, James O; Landan, Giddy; Martin, William F

    2015-08-27

    Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. PMID:26287458

  16. Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses

    OpenAIRE

    Roux, Simon; Enault, Francois; Bronner, Gisèle; Vaulot, Daniel; Forterre, Patrick; Krupovic, Mart

    2013-01-01

    Metagenomic studies have uncovered an astonishing diversity of ssDNA viruses encoding replication proteins (Reps) related to those of eukaryotic Circoviridae, Geminiviridae or Nanoviridae; however, exact evolutionary relationships among these viruses remain obscure. Recently, a unique chimeric virus (CHIV) genome, which has apparently emerged via recombination between ssRNA and ssDNA viruses, has been discovered. Here we report on the assembly of 13 new CHIV genomes recovered f...

  17. Morphology of the Proterozoic eukaryotic microfossils as a reflection of their intracellular complexity

    OpenAIRE

    Agić, Heda; Moczydłowska, Małgorzata; Yin, Leiming

    2014-01-01

    Mesoproterozoic is a time of increasing diversity of microscopic life and appearance of intricate new cell morphologies. First eukaryotes may have evolved around 2.4 Ga, but the first microbiota with intricate sculpture and ornamentation are found in the younger, 1.8.-1.6 Ga successions worldwide. Such microfossils were uncovered from the Ruyang Formation in Shanxi, China and Roper Group, Northern Territories, Australia, dating back to 1.6-1.0 Ga ago. Some of these unicellular organic-walled ...

  18. In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice.

    Science.gov (United States)

    Uhlig, Christiane; Kilpert, Fabian; Frickenhaus, Stephan; Kegel, Jessica U; Krell, Andreas; Mock, Thomas; Valentin, Klaus; Beszteri, Bánk

    2015-11-01

    Ice-binding proteins (IBPs) have been isolated from various sea-ice organisms. Their characterisation points to a crucial role in protecting the organisms in sub-zero environments. However, their in situ abundance and diversity in natural sea-ice microbial communities is largely unknown. In this study, we analysed the expression and phylogenetic diversity of eukaryotic IBP transcripts from microbial communities of Arctic and Antarctic sea ice. IBP transcripts were found in abundances similar to those of proteins involved in core cellular processes such as photosynthesis. Eighty-nine percent of the IBP transcripts grouped with known IBP sequences from diatoms, haptophytes and crustaceans, but the majority represented novel sequences not previously characterized in cultured organisms. The observed high eukaryotic IBP expression in natural eukaryotic sea ice communities underlines the essential role of IBPs for survival of many microorganisms in communities living under the extreme conditions of polar sea ice. PMID:25885562

  19. Gene flow and biological conflict systems in the origin and evolution of eukaryotes.

    Science.gov (United States)

    Aravind, L; Anantharaman, Vivek; Zhang, Dapeng; de Souza, Robson F; Iyer, Lakshminarayan M

    2012-01-01

    The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary "nurseries" for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations. PMID:22919680

  20. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  1. Characterization of autochthonous wine yeasts isolated in vineyards of the State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Samarina Rodrigues Wlodarczyk

    2015-07-01

    Full Text Available The transformation of grape must into wine is a complex microbiological process and is the product of the combined action of several genera and species of yeasts, dominated in the intermediate and final stages of fermentation by an alcohol-tolerant Saccharomyces sp. Current assay characterizes 42 autochthonous yeasts, isolated from the state of Paraná, southern Brazil, according to the following oenological properties: H2S production, fermentation rate, flocculation capacity, and killer phenotype (killer, sensitive and neutral characteristics. Current analysis is the first to evaluate killer phenotype in yeasts isolated from the State of Paraná, Brazil. With regard to their oenological traits, the yeasts evaluated were not suitable for winemaking and suggested that, depending on the harvest, the winemakers may face problems during the spontaneous wine production process.

  2. Do consumers from Međimurje region recognize their autochthonous Turoš cheese?

    Directory of Open Access Journals (Sweden)

    Kristijan Valkaj

    2013-11-01

    Full Text Available The aim of this study was to determine whether consumers from the Međimurje region recognise and distinguish the autochthonous cheese called Turoš from similar cheeses like Prgica and Kvargl originating from regions neighbouring to Međimurje. Chemical, textural and microbiological properties of all three cheeses were given. Preference tests with 200 consumers using a face-to-face survey and a two-step procedure were performed. The blind taste test showed that 97 % of the respondents recognised differences between the tasted samples, and almost half of them preferred the Turoš cheese. Similarly, the informed test showed that a significantly higher number of the respondents preferred the Turoš cheese in comparison to Kvargl and Prgica. Statistical analyses showed no significant differences between respondents’ preferences in the blind and the informed tests.

  3. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    Science.gov (United States)

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. PMID:26874872

  4. INFLUENCE OF AUTOCHTHONOUS SACCHAROMYCES SPP. STRAINS ON THE SULFUR DIOXIDE CONCENTRATION IN WINE

    Directory of Open Access Journals (Sweden)

    Josip BELJAK

    2008-11-01

    Full Text Available The aim of this work was to study the infl uence of 8 autochthonous yeasts strains on the sulfur dioxide formation. For this purpose grape must from the Traminer, Muller Turgau and Chardonnay grapes was used. Yeast strains used were cultivated at the Department for Microbiology, Faculty of Agriculture, University of Zagreb. Five of them were H2S negative and three H2S positive. Tested yeast strains produced from 19 up to 45 mg/l of sulfur dioxide. The highest sulfur dioxide producer was one of the H2S positive yeast strains. The results indicated the initial sugar concentration to be very important for the ratio of sulfur dioxide production. Yeasts were more effi cient at higher sugar levels.

  5. Seasonal variation of allochthonous and autochthonous energy inputs in an alpine stream

    Directory of Open Access Journals (Sweden)

    Stefano Fenoglio

    2014-10-01

    Full Text Available Despite the enormous importance of alpine streams, information about many aspects of their ecology is still insufficient. Alpine lotic systems differ in many environmental characteristics from those lower down, for example because above tree line streams drain catchments where terrestrial vegetation is scarce and allochthonous organic input is expected to be small. The main objectives of this study were to examine seasonal variation of autochthonous and allochthonous energetic inputs and their relationship with macroinvertebrate communities in the Po river, an alpine non-glacial stream (NW Italy. For one year, samplings were monthly performed in a homogeneous 100 m stream reach for discharge, autochthonous energy input (benthic chlorophyll a, allochthonous energy input (coarse particulate organic matter, abundance and structure of benthic macroinvertebrate community. Chlorophyll a concentrations were in the range of what reported for other alpine streams, but presented a time-lag with respect to what has been reported for glacial-fed mountain rivers. CPOM amounts were lower than those in lowland, forested streams of the same area but exhibited an intriguing, different seasonal variability, probably reported for the first time, with a maximum in spring and a minimum in winter. We collected 29,950 macroinvertebrates belonging to 13 families and 10 orders. Benthic communities were essentially dominated by Ephemeroptera, Plecoptera and Diptera. Scrapers was the most important FFG, but also Shredders were well represented. Relationships between chlorophyll a concentrations, CPOM availability and macroinvertebrate community characteristics were analysed and discussed considering the existence of different top-down or bottom-up regulation mechanisms. This study confirms that benthic algae constitute an essential resource for macroinvertebrates in alpine streams above the tree line but also underlines the importance of terrestrial organic input, a

  6. Estimating drivers of autochthonous transmission of chikungunya virus in its invasion of the americas.

    Science.gov (United States)

    Perkins, T Alex; Metcalf, C Jessica E; Grenfell, Bryan T; Tatem, Andrew J

    2015-01-01

    Background Chikungunya is an emerging arbovirus that has caused explosive outbreaks in Africa and Asia for decades and invaded the Americas just over a year ago. During this ongoing invasion, it has spread to 45 countries where it has been transmitted autochthonously, infecting nearly 1.3 million people in total. Methods Here, we made use of weekly, country-level case reports to infer relationships between transmission and two putative climatic drivers: temperature and precipitation averaged across each country on a monthly basis. To do so, we used a TSIR model that enabled us to infer a parametric relationship between climatic drivers and transmission potential, and we applied a new method for incorporating a probabilistic description of the serial interval distribution into the TSIR framework. Results We found significant relationships between transmission and linear and quadratic terms for temperature and precipitation and a linear term for log incidence during the previous pathogen generation. The lattermost suggests that case numbers three to four weeks ago are largely predictive of current case numbers. This effect is quite nonlinear at the country level, however, due to an estimated mixing parameter of 0.74. Relationships between transmission and the climatic variables that we estimated were biologically plausible and in line with expectations. Conclusions Our analysis suggests that autochthonous transmission of Chikungunya in the Americas can be correlated successfully with putative climatic drivers, even at the coarse scale of countries and using long-term average climate data. Overall, this provides a preliminary suggestion that successfully forecasting the future trajectory of a Chikungunya outbreak and the receptivity of virgin areas may be possible. Our results also provide tentative estimates of timeframes and areas of greatest risk, and our extension of the TSIR model provides a novel tool for modeling vector-borne disease transmission. PMID:25737803

  7. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  8. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Blombach, Fabian; Schulz, Sarah; von Voithenberg, Lena Voith; Lamb, Don C; Werner, Finn; Tinnefeld, Philip; Grohmann, Dina

    2014-06-01

    During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP-DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly different conditions. Employing single-pair fluorescence resonance energy transfer, we monitored DNA bending by eukaryotic and archaeal TBPs in the absence and presence of TFB in real-time. We observed that the lifetime of the TBP-DNA interaction differs significantly between the archaeal and eukaryotic system. We show that the eukaryotic DNA-TBP interaction is characterized by a linear, stepwise bending mechanism with an intermediate state distinguished by a distinct bending angle. TF(II)B specifically stabilizes the fully bent TBP-promoter DNA complex and we identify this step as a regulatory checkpoint. In contrast, the archaeal TBP-DNA interaction is extremely dynamic and TBP from the archaeal organism Sulfolobus acidocaldarius strictly requires TFB for DNA bending. Thus, we demonstrate that transcription initiation follows diverse pathways on the way to the formation of the pre-initiation complex. PMID:24744242

  9. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment.

    Science.gov (United States)

    Bahram, Mohammad; Kohout, Petr; Anslan, Sten; Harend, Helery; Abarenkov, Kessy; Tedersoo, Leho

    2016-04-01

    A central challenge in ecology is to understand the relative importance of processes that shape diversity patterns. Compared with aboveground biota, little is known about spatial patterns and processes in soil organisms. Here we examine the spatial structure of communities of small soil eukaryotes to elucidate the underlying stochastic and deterministic processes in the absence of environmental gradients at a local scale. Specifically, we focus on the fine-scale spatial autocorrelation of prominent taxonomic and functional groups of eukaryotic microbes. We collected 123 soil samples in a nested design at distances ranging from 0.01 to 64 m from three boreal forest sites and used 454 pyrosequencing analysis of Internal Transcribed Spacer for detecting Operational Taxonomic Units of major eukaryotic groups simultaneously. Among the main taxonomic groups, we found significant but weak spatial variability only in the communities of Fungi and Rhizaria. Within Fungi, ectomycorrhizas and pathogens exhibited stronger spatial structure compared with saprotrophs and corresponded to vegetation. For the groups with significant spatial structure, autocorrelation occurred at a very fine scale (soil eukaryotes with respect to space and environment in the absence of environmental gradients at the local scale, reflecting the dominant role of drift and homogenizing dispersal. PMID:26394006

  10. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides.

    Science.gov (United States)

    Liapounova, Natalia A; Hampl, Vladimir; Gordon, Paul M K; Sensen, Christoph W; Gedamu, Lashitew; Dacks, Joel B

    2006-12-01

    All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment. PMID:17071828

  11. Phosphorylation Stoichiometries of Human Eukaryotic Initiation Factors

    Directory of Open Access Journals (Sweden)

    Armann Andaya

    2014-06-01

    Full Text Available Eukaryotic translation initiation factors are the principal molecular effectors regulating the process converting nucleic acid to functional protein. Commonly referred to as eIFs (eukaryotic initiation factors, this suite of proteins is comprised of at least 25 individual subunits that function in a coordinated, regulated, manner during mRNA translation. Multiple facets of eIF regulation have yet to be elucidated; however, many of the necessary protein factors are phosphorylated. Herein, we have isolated, identified and quantified phosphosites from eIF2, eIF3, and eIF4G generated from log phase grown HeLa cell lysates. Our investigation is the first study to globally quantify eIF phosphosites and illustrates differences in abundance of phosphorylation between the residues of each factor. Thus, identification of those phosphosites that exhibit either high or low levels of phosphorylation under log phase growing conditions may aid researchers to concentrate their investigative efforts to specific phosphosites that potentially harbor important regulatory mechanisms germane to mRNA translation.

  12. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  13. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  14. Protein Acetylation in Archaea, Bacteria, and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Jörg Soppa

    2010-01-01

    Full Text Available Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which—Alba—was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  15. The scanning mechanism of eukaryotic translation initiation.

    Science.gov (United States)

    Hinnebusch, Alan G

    2014-01-01

    In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation. PMID:24499181

  16. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    OpenAIRE

    Giovanna De Palo; Robert G Endres

    2013-01-01

    Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resemb...

  17. Widespread 3′-end uridylation in eukaryotic RNA viruses

    OpenAIRE

    Huo, Yayun; Shen, Jianguo; Wu, Huanian; Zhang, Chao; Guo, Lihua; Yang, Jinguang; Weimin LI

    2016-01-01

    RNA 3′ uridylation occurs pervasively in eukaryotes, but is poorly characterized in viruses. In this study, we demonstrate that a broad array of RNA viruses, including mycoviruses, plant viruses and animal viruses, possess a novel population of RNA species bearing nontemplated oligo(U) or (U)-rich tails, suggesting widespread 3′ uridylation in eukaryotic viruses. Given the biological relevance of 3′ uridylation to eukaryotic RNA degradation, we propose a conserved but as-yet-unknown mechanism...

  18. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    OpenAIRE

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic ...

  19. Molecular detection of eukaryotes in a single human stool sample from Senegal.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available BACKGROUND: Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective. METHODOLOGY/PRINCIPAL FINDING: In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%, corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2% corresponded to 9 different species of plants; 59 sequences (6% belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5% were related to human 18S rRNA sequences. CONCLUSION: Our results revealed a complex eukaryotic community in the volunteer's gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease.

  20. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Kalogerakis, N

    2013-07-15

    Oil spills are treated as a widespread problem that poses a great threat to any ecosystem. Following first response actions, bioremediation has emerged as the best strategy for combating oil spills and can be enhanced by the following two complementary approaches: bioaugmentation and biostimulation. Bioaugmentation is one of the most controversial issues of bioremediation. Studies that compare the relative performance of bioaugmentation and biostimulation suggest that nutrient addition alone has a greater effect on oil biodegradation than the addition of microbial products because the survival and degradation ability of microbes introduced to a contaminated site are highly dependent on environmental conditions. Microbial populations grown in rich media under laboratory conditions become stressed when exposed to field conditions in which nutrient concentrations are substantially lower. There is increasing evidence that the best approach to overcoming these barriers is the use of microorganisms from the polluted area, an approach proposed as autochthonous bioaugmentation (ABA) and defined as a bioaugmentation technology that exclusively uses microorganisms indigenous to the sites (soil, sand, and water) slated for decontamination. In this work, we examined the effectiveness of strategies combining autochthonous bioaugmentation with biostimulation for successful remediation of polluted marine environments. Seawater was collected from a pristine area (Agios Onoufrios Beach, Chania) and was placed in a bioreactor with 1% v/v crude oil to facilitate the adaptation of the indigenous microorganism population. The pre-adapted consortium and the indigenous population were tested in combination with inorganic or lipophilic nutrients in the presence (or absence) of biosurfactants (rhamnolipids) during 90-day long experiments. Chemical analysis (gas chromatography-mass spectrometry) of petroleum hydrocarbons confirmed the results of previous work demonstrating that the

  1. 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification.

    Science.gov (United States)

    Sharma, Sunny; Lafontaine, Denis L J

    2015-10-01

    Eukaryotic rRNA are modified frequently, although the diversity of modifications is low: in yeast rRNA, there are only 12 different types out of a possible natural repertoire exceeding 112. All nine rRNA base methyltransferases (MTases) and one acetyltransferase have recently been identified in budding yeast, and several instances of crosstalk between rRNA, tRNA, and mRNA modifications are emerging. Although the machinery has largely been identified, the functions of most rRNA modifications remain to be established. Remarkably, a eukaryote-specific bridge, comprising a single ribosomal protein (RP) from the large subunit (LSU), contacts four rRNA base modifications across the ribosomal subunit interface, potentially probing for their presence. We hypothesize in this article that long-range allosteric communication involving rRNA modifications is taking place between the two subunits during translation or, perhaps, the late stages of ribosome assembly. PMID:26410597

  2. Eukaryotic Ribosome Assembly and Nuclear Export.

    Science.gov (United States)

    Nerurkar, Purnima; Altvater, Martin; Gerhardy, Stefan; Schütz, Sabina; Fischer, Ute; Weirich, Christine; Panse, Vikram Govind

    2015-01-01

    Accurate translation of the genetic code into functional polypeptides is key to cellular growth and proliferation. This essential process is carried out by the ribosome, a ribonucleoprotein complex of remarkable size and intricacy. Although the structure of the mature ribosome has provided insight into the mechanism of translation, our knowledge regarding the assembly, quality control, and intracellular targeting of this molecular machine is still emerging. Assembly of the eukaryotic ribosome begins in the nucleolus and requires more than 350 conserved assembly factors, which transiently associate with the preribosome at specific maturation stages. After accomplishing their tasks, early-acting assembly factors are released, preparing preribosomes for nuclear export. Export competent preribosomal subunits are transported through nuclear pore complexes into the cytoplasm, where they undergo final maturation steps, which are closely connected to quality control, before engaging in translation. In this chapter, we focus on the final events that commit correctly assembled ribosomal subunits for translation. PMID:26404467

  3. New Insights into Polycistronic Transcripts in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Haiwei Pi

    2009-10-01

    Full Text Available In bacteria and archaea, many functionally related genes are organized into operons inorder to be transcribed and translated simultaneously. Operons are rarely seen in eukaryotesexcept for the Trypanosome and nematode, in which they are first transcribed into polycistronictranscripts but then processed into individual mature mRNAs. Recently, severalresearchers described the findings of polycistronic transcripts also in insects, which revisedthe previous thoughts that polycistronic genes were absent or few in eukaryotes. Similar toprokaryotic operons, the encoded peptides or proteins are translated simultaneously from asingle polycistronic mRNA, providing new insights into the evolution of polycistronicgenes. More interestingly, one type of the newly identified polycistronic genes encodes biologicallyimportant peptides composed of as few as 11 amino acids. These new findings willspur scientists to identify more small peptides in genome-solved organisms, and change thedefinition of coding sequences in genomic annotation.

  4. Bacterial proteins pinpoint a single eukaryotic root

    Czech Academy of Sciences Publication Activity Database

    Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Čestmír; Lang, B.F.; Eliáš, M.

    2015-01-01

    Roč. 112, č. 7 (2015), E693-E699. ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S Grant ostatní: GA MŠk(CZ) ED2.1.00/03.0100; Howard Hughes Medical Institute International Early Career Scientist Program(US) 55007424; Spanish Ministry of Economy and Competitiveness, European Molecular Biology Organization Young Investigator Program(ES) BFU2012-31329; Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa" - European Regional Development Fund(ES) Sev-2012-0208, BES-2013-064004 Institutional support: RVO:68378050 Keywords : eukaryote phylogeny * phylogenomics * Opimoda * Diphoda * LECA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.674, year: 2014

  5. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... restricting the cytosolic glutathione redox potential to a relatively narrow interval. Several mutations in genes involved in cellular redox regulation cause ROS accumulation but only moderate decreases in the cytosolic glutathione reducing power. The redox regulation in the cytosol depends not only on...

  6. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  7. Influence of autochthonous lactic acid bacteria on the proteolysis, microstructure and sensory properties of low fat UF cheeses during ripening

    Directory of Open Access Journals (Sweden)

    Dragana Pesic Mikulec

    2012-06-01

    Full Text Available The influence of commercial bacteria Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris (cheese A and combinations of autochthonous lactic acid bacteria (LAB strains Lactobacillus paracasei ssp. paracasei 08, Lactococcus lactis ssp. cremoris 656, Lactococcus lactis ssp. lactis 653 (cheese B and C on composition, proteolysis, microstructure and sensory properties of low fat cheeses during ripening was investigated. Low fat cast ultra-filtered (UF cheeses were produced according to the defined production procedure by mixing UF milk protein powder, skim milk and cream. Significant influence of different LAB strains on composition, primary proteolysis and microstructure was not found. Cheeses made with autochthonous LAB showed a higher rate of secondary proteolysis, as well as higher flavour scores, and were more acceptable than control cheese.

  8. FIRST CASE OF AUTOCHTHONOUS HUMAN VISCERAL LEISHMANIASIS IN THE URBAN CENTER OF RIO DE JANEIRO: CASE REPORT

    Directory of Open Access Journals (Sweden)

    Guilherme Almeida Rosa da Silva

    2014-01-01

    Full Text Available Visceral leishmaniasis is an anthropozoonosis that is caused by protozoa of the genus Leishmania, especially Leishmania (Leishmania infantum, and is transmitted to humans by the bite of sandflies of the genus Lutzomyia, such as Lutzomyia longipalpis. There are many reservoirs, including Canis familiaris. It is a chronic infectious disease with systemic involvement that is characterized by three phases: the initial period, the state period and the final period. The main symptoms are fever, malnutrition, hepatosplenomegaly, and pancytopenia. This article reports a case of a patient diagnosed with visceral leishmaniasis in the final period following autochthonous transmission in the urban area of Rio de Janeiro. The case reported here is considered by the Municipal Civil Defense and Health Surveillance of Rio de Janeiro to be the first instance of autochthonous visceral leishmaniasis in humans in the urban area of this city. The patient was discharged and is undergoing a follow-up at the outpatient clinic, demonstrating clinical improvement.

  9. Eukaryotic protein production in designed storage organelles

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-01-01

    Full Text Available Abstract Background Protein bodies (PBs are natural endoplasmic reticulum (ER or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein γ zein (Zera is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Results Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. Conclusion The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  10. Multiple, non-allelic, intein-coding sequences in eukaryotic RNA polymerase genes

    Directory of Open Access Journals (Sweden)

    Butler Margaret I

    2006-10-01

    Full Text Available Abstract Background Inteins are self-splicing protein elements. They are translated as inserts within host proteins that excise themselves and ligate the flanking portions of the host protein (exteins with a peptide bond. They are encoded as in-frame insertions within the genes for the host proteins. Inteins are found in all three domains of life and in viruses, but have a very sporadic distribution. Only a small number of intein coding sequences have been identified in eukaryotic nuclear genes, and all of these are from ascomycete or basidiomycete fungi. Results We identified seven intein coding sequences within nuclear genes coding for the second largest subunits of RNA polymerase. These sequences were found in diverse eukaryotes: one is in the second largest subunit of RNA polymerase I (RPA2 from the ascomycete fungus Phaeosphaeria nodorum, one is in the RNA polymerase III (RPC2 of the slime mould Dictyostelium discoideum and four intein coding sequences are in RNA polymerase II genes (RPB2, one each from the green alga Chlamydomonas reinhardtii, the zygomycete fungus Spiromyces aspiralis and the chytrid fungi Batrachochytrium dendrobatidis and Coelomomyces stegomyiae. The remaining intein coding sequence is in a viral relic embedded within the genome of the oomycete Phytophthora ramorum. The Chlamydomonas and Dictyostelium inteins are the first nuclear-encoded inteins found outside of the fungi. These new inteins represent a unique dataset: they are found in homologous proteins that form a paralogous group. Although these paralogues diverged early in eukaryotic evolution, their sequences can be aligned over most of their length. The inteins are inserted at multiple distinct sites, each of which corresponds to a highly conserved region of RNA polymerase. This dataset supports earlier work suggesting that inteins preferentially occur in highly conserved regions of their host proteins. Conclusion The identification of these new inteins

  11. Evolutionary history of the poly(ADP-ribose polymerase gene family in eukaryotes

    Directory of Open Access Journals (Sweden)

    Teotia Sachin

    2010-10-01

    possessed poly(ADP-ribosylation activity. Third, the diversity of the PARP superfamily is larger than previously documented, suggesting as more eukaryotic genomes become available, this gene family will grow in both number and type.

  12. Gene Ontology annotation quality analysis in model eukaryotes

    Science.gov (United States)

    Buza, Teresia J.; McCarthy, Fiona M.; Wang, Nan; Bridges, Susan M.; Burgess, Shane C.

    2008-01-01

    Functional analysis using the Gene Ontology (GO) is crucial for array analysis, but it is often difficult for researchers to assess the amount and quality of GO annotations associated with different sets of gene products. In many cases the source of the GO annotations and the date the GO annotations were last updated is not apparent, further complicating a researchers’ ability to assess the quality of the GO data provided. Moreover, GO biocurators need to ensure that the GO quality is maintained and optimal for the functional processes that are most relevant for their research community. We report the GO Annotation Quality (GAQ) score, a quantitative measure of GO quality that includes breadth of GO annotation, the level of detail of annotation and the type of evidence used to make the annotation. As a case study, we apply the GAQ scoring method to a set of diverse eukaryotes and demonstrate how the GAQ score can be used to track changes in GO annotations over time and to assess the quality of GO annotations available for specific biological processes. The GAQ score also allows researchers to quantitatively assess the functional data available for their experimental systems (arrays or databases). PMID:18187504

  13. Geochemistry of autochthonous and hypautochthonous siderite-dolomite coal-balls (Foord Seam, Bolsovian, Upper Carboniferous), Nova Scotia, Canada

    Science.gov (United States)

    Zodrow, E.L.; Lyons, P.C.; Millay, M.A.

    1996-01-01

    The 11-13 m thick Foord Seam in the fault-bounded Stellarton Basin, Nova Scotia, is the thickest seam from the Euramerican floral province known to contain coal-balls. In addition to the first discovery of autochthonous coal-balls in the Foord Seam, Nova Scotia, its shale parting also contains hypautochthonous coal-balls with histologically preserved plant structures. The coal-ball discovery helps fill a stratigraphic gap in coal-ball occurrences in the upper Carboniferous (Bolsovian) of Euramerica. The autochthonous and hypautochthonous coal-balls have a similar mineralogical composition and are composed of siderite (81-100%), dolomite-ankerite (0-19%), minor quartz and illite, and trace amounts of 'calcite'. Similar is also their permineralizing mineralogy, which consists of dolomite-ankerite and siderite. Their low pyrite content and carbonate mineralogy, and nonmarine origin, differentiates the Foord Seam coal-balls from other Euramerican coal-ball occurrences. A preliminary geochemical model, which is based on oxygen and carbon isotopic data, indicates that siderite in both the autochthonous and hypautochthonous coal-balls is of very early diagenetic (nonmarine) origin from 13C-enriched bicarbonate derived from bacterial methanogenesis of organic matter.

  14. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  15. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation.

    Science.gov (United States)

    Aponte, Maria; Blaiotta, Giuseppe; Croce, Francesco La; Mazzaglia, Agata; Farina, Vittorio; Settanni, Luca; Moschetti, Giancarlo

    2012-05-01

    The present work presents a successful attempt to achieve an enhanced and more predictable fermentation process in Spanish-style green olive technology by selection and use of autochthonous starter cultures. During the first phase of this work, two Spanish-like fermentations of green table olives of cultivar (cv) "Nocellara del Belice", coming from irrigated and not irrigated fields, were monitored, in order to highlight the best agricultural conditions for drupe production and to isolate lactic acid bacteria strains with relevant technological properties. Among 88 identified isolates, one Lactobacillus pentosus strain showed remarkable biochemical features and high acidification rate in synthetic brine. In the second phase, the selected strain was used as starter culture in three different trials to establish the best conditions for its use. Microbial counting, as well as starter tracking by M13 RAPD-PCR, reflected the optimal adaptation of the strain to the environment. Spontaneous fermentation needed a 14-day long lag phase to reach the same population as the inoculated trials. Moreover, sensory traits of table olives obtained with adjunct culture showed better characteristics compared to those processed in the other trials, in particular concerning the presence of off-odours. PMID:22265277

  16. Determinants of the intention to purchase an autochthonous local lamb breed: Spanish case study.

    Science.gov (United States)

    Gracia, Azucena; Maza, María Teresa

    2015-12-01

    The aim of the paper is to study consumers' acceptability for a lamb meat from a local autochthonous breed. An intention to purchase model was developed based on the Theory of Planned Behavior (TPB) and estimated using data from a survey conducted in Spain. Results indicated that consumers were willing to buy this lamb meat because 86% of respondents said that they probably/definitely would buy it, although only 23% would if the meat is not available in their usual meat store. Then, the lack of availability in the market is an aspect limiting its consumption. The most important factors explaining the intention to purchase for consumers who would purchase this meat if it were not available in their usual store are the importance attached to the animal breed and their social embeddedness with the local area. An appropriate food policy would be to inform consumers about the importance of the animal breed in the quality of the meat and the local origin. PMID:26253837

  17. Study on the reproductive capacity of bulls of the autochthonous Rhodope Shorthorn cattle breed

    Directory of Open Access Journals (Sweden)

    Radka Malinova

    2015-06-01

    Full Text Available The sperm production of bulls from the autochthonous Rhodope Shorthorn cattle breed was studied. The breed is among the smallest in Europe, the average weight of the cows ranging from 200 to 250 kg, and of the bulls from 330 to 370 kg. It was found that during the first 6 months from the start of exploitation, at the age of the bulls from 18 to 24 months, AI bulls had high reproductive capacity. The ejaculate volume was 1,74±0,09 ml in average (LS, the percentage of motile spermatozoa was 74,3±3,48% and the concentration 1268±13,1 x 106/ml. It was established that the bull had a significant impact on the reproductive performance, but the individual differences in the main characteristics were not high – motility 71,8-77,0%, concentration – 1222-1324 х 106/ml. The season also had a significant effect on the percentage of motile spermatozoa. Within the period from January to June, the highest reproductive capacity of the bulls was observed from February to May and the lowest in June.

  18. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles.

    Science.gov (United States)

    Ramanathan, Thulasya; Ting, Yen-Peng

    2016-10-01

    The increasing demand for energy and the generation of solid waste have caused an alarming rise in fly ash production globally. Since heavy metals continue to be in demand for the production of materials, resource recovery from the recycling of these wastes has the potential to delay the depletion of natural ores. The use of microorganisms for the leaching of metals, in a process called bioleaching, is an eco-friendly and economical way to treat the metal-laden wastes. Bioleaching of fly ash is challenging due largely to the alkaline nature and toxic levels of heavy metals which are detrimental to microbial growth and bioleaching activity. The present work reports the isolation of indigenous bacteria from a local fly ash landfill site and their bioleaching performance. 38 autochthonous strains of bacteria were isolated from eight samples collected and plated on five different media. 18 of the isolates showed bioleaching potential, with significant alkaline pH or fly ash tolerance. Genetic characterization of the strains revealed a dominance of Firmicutes, with Alkalibacterium sp. TRTYP6 showing highest fly ash tolerance of up to 20% w/v fly ash, and growth over a pH range 8-12.5. The organism selectively recovered about 52% Cu from the waste. To the best of our knowledge, this is the first time a study on bioleaching with extreme alkaliphiles is reported. PMID:27362528

  19. Silvopastoralism and autochthonous equine livestock: analysis of the infection by endoparasites.

    Science.gov (United States)

    Francisco, I; Arias, M; Cortiñas, F J; Francisco, R; Mochales, E; Sánchez, J A; Uriarte, J; Suárez, J L; Morrondo, P; Sánchez-Andrade, R; Díez-Baños, P; Paz-Silva, A

    2009-10-14

    Two groups of autochthonous Pura Raza Galega (PRG) horses, one comprising 483 animals under a silvopasturing regime, and the other comprising 72 PRG horses managed in farms, were used to analyse the effect of silvopasture on infection by endoparasites. Results were considered according to the age and the sex of the horses. Faecal samples were individually collected from each animal and analysed by the coprological flotation, sedimentation and migration techniques. Coprocultures were also done to identify the main strongylid genera affecting the horses. Eggs from the gastrointestinal nematoda Parascaris equorum, strongyles and Oxyuris equi were the only endoparasites observed in the faeces of the horses. Larvae of Trichonema and Cyalocephalus spp. (small strongyles) and Strongylus and Triodontophorus (large strongyles) were identified in the coprocultures. The silvopasturing horses had the highest prevalence of the helminth parasites. The percentage of horses passing ascarid eggs was significantly higher in pasturing horses younger than 3 years. The prevalence of strongyles was statistically greater in the oldest grazing equines. Mares reached the highest prevalence of helminth egg output. Our results showed that native horses kept under silvopasture had the highest prevalence of the ascarids, strongyles and oxyurids, possibly due to their exposure to contaminated grazing areas, lack of appropriate feeding and control of their health status. We conclude that silvopasture increases the presence of infection by gastrointestinal nematoda in wild horses, especially by strongyles. Suitable measures to control parasitic diseases affecting horses in silvopasture should be considered in those systems. PMID:19632049

  20. Improvement of Ayran quality by the selection of autochthonous microbial cultures.

    Science.gov (United States)

    Baruzzi, Federico; Quintieri, Laura; Caputo, Leonardo; Cocconcelli, PierSandro; Borcakli, Mehlika; Owczarek, Lubomiła; Jasińska, Urszula T; Skąpska, Sylwia; Morea, Maria

    2016-12-01

    Ayran is a traditional Turkish milk drink which is fermented and salted. Inadequate production and storage conditions contribute to its variable organoleptic quality and stability during shelf-life. A thorough physico-chemical, nutritional and microbial characterization of artisanal Ayran was carried out in order to standardize its overall quality without altering its original traits. Ayran microbial ecosystem was largely dominated by Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LDB). High counts of other lactic acid bacteria species, including Lactobacillus helveticus (LH), Lactobacillus fermentum (LF), and Lactobacillus paracasei (LP), were also found. Selected LDB, LP and LH strains grew well in milk displaying fast acidification and high proteolysis, differently from ST and LF strains that did not cause noticeable changes. A selected autochthonous three-strain culture (TSC), composed of one strain of LDB, LP and ST, was applied for the pilot-scale production of traditional Ayran. The Ayran produced with this TSC resulted in the most extensive shelf-life (one month) and in the best terms of its nutritional and sensory quality nevertheless altering its typical pleasant yogurt and cottage cheese notes. This TSC is at disposal of SMEs who need to standardize the overall quality of this traditional fermented milk, preserving its typical traits. PMID:27554150

  1. Evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts

    OpenAIRE

    Marsit, Souhir; Mena, Adriana; Bigey, Frederic; Sauvage, Francois Xavier; Couloux, Arnaud; Guy, Julie; Legras, Jean Luc; Barrio, Eladio; Dequin, Sylvie

    2015-01-01

    Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone several rearrangements in S. cerevisiae strains, including gene loss and gene conversion between two tandemly duplicated FOT genes encoding ol...

  2. Evolution of the multifaceted eukaryotic akirin gene family

    Directory of Open Access Journals (Sweden)

    Johnston Ian A

    2009-02-01

    Full Text Available Abstract Background Akirins are nuclear proteins that form part of an innate immune response pathway conserved in Drosophila and mice. This studies aim was to characterise the evolution of akirin gene structure and protein function in the eukaryotes. Results akirin genes are present throughout the metazoa and arose before the separation of animal, plant and fungi lineages. Using comprehensive phylogenetic analysis, coupled with comparisons of conserved synteny and genomic organisation, we show that the intron-exon structure of metazoan akirin genes was established prior to the bilateria and that a single proto-orthologue duplicated in the vertebrates, before the gnathostome-agnathan separation, producing akirin1 and akirin2. Phylogenetic analyses of seven vertebrate gene families with members in chromosomal proximity to both akirin1 and akirin2 were compatible with a common duplication event affecting the genomic neighbourhood of the akirin proto-orthologue. A further duplication of akirins occurred in the teleost lineage and was followed by lineage-specific patterns of paralogue loss. Remarkably, akirins have been independently characterised by five research groups under different aliases and a comparison of the available literature revealed diverse functions, generally in regulating gene expression. For example, akirin was characterised in arthropods as subolesin, an important growth factor and in Drosophila as bhringi, which has an essential myogenic role. In vertebrates, akirin1 was named mighty in mice and was shown to regulate myogenesis, whereas akirin2 was characterised as FBI1 in rats and promoted carcinogenesis, acting as a transcriptional repressor when bound to a 14-3-3 protein. Both vertebrate Akirins have evolved under comparably strict constraints of purifying selection, although a likelihood ratio test predicted that functional divergence has occurred between paralogues. Bayesian and maximum likelihood tests identified amino

  3. Energetics and genetics across the prokaryote-eukaryote divide

    Directory of Open Access Journals (Sweden)

    Lane Nick

    2011-06-01

    Full Text Available Abstract Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by

  4. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    Directory of Open Access Journals (Sweden)

    Penny David

    2007-10-01

    Full Text Available Abstract Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.

  5. [Primary structure of mRNA and translation strategy of eukaryotes].

    Science.gov (United States)

    Ugarova, T Iu

    1987-01-01

    The diversity of primary structures of cellular and virus mRNAs was considered from the standpoint of their functioning at the initial stops of translation. The number and reciprocal localization of the open translational frames along the mRNAs, and also the number, localization and nucleotides surroundings the initiation codons were analysed. The structural organizations of the polycistronic and other non-canonical forms of native mRNAs, translated in eukaryotic cells, were considered and classified. The possible mechanisms of translation initiation by different forms of mRNAs are discussed. PMID:3309622

  6. Differential utilization of allochthonous and autochthonous carbon by aquatic insects of two shrub-steppe desert spring-streams: A stable carbon isotope analysis and critique of the method

    Energy Technology Data Exchange (ETDEWEB)

    Mize, A.L. [Old Dominion Univ., Norfolk, VA (United States)

    1993-06-01

    The purpose of this study is to assess whether the carbon supporting stream food webs comes principally from terrestrial sources or is produced within the stream. Lacking data to resolve the allochthonous/autochthonous issue with any finality, stream ecologists have alternately postulated that stream carbon was principally autochthonous or principally allochthonous. Others argued that autochthonous and allochthonous carbon resources cannot be separated and that the allochthonous/autochthonous dependence issue is unresolvable. Many investigators have seized upon stable carbon isotopes technology as the tool to resolve the controversy. Unfortunately most investigators have conceded that the results are rarely quantitative and that the qualitative relationships are ambiguous. This study points out the fallacies of trying to conjure single isotopic values for either allochthonous or autochthonous carbon. It suggests that stable carbon isotope technology is not reliable in establishing specific consumer/food source relations and that it is not suitable for assessing allochthonous/autochthonous carbon dependence in freshwater streams.

  7. Snapshot of the eukaryotic gene expression in muskoxen rumen--a metatranscriptomic approach.

    Directory of Open Access Journals (Sweden)

    Meng Qi

    Full Text Available BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus, with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6, GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes.

  8. Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities.

    Science.gov (United States)

    Matturro, Bruna; Ubaldi, Carla; Grenni, Paola; Caracciolo, Anna Barra; Rossetti, Simona

    2016-07-01

    Polychlorobiphenyl (PCB) biodegradation was followed for 1 year in microcosms containing marine sediments collected from Mar Piccolo (Taranto, Italy) chronically contaminated by this class of hazardous compounds. The microcosms were performed under strictly anaerobic conditions with or without the addition of Dehalococcoides mccartyi, the main microorganism known to degrade PCBs through the anaerobic reductive dechlorination process. Thirty PCB congeners were monitored during the experiments revealing that the biodegradation occurred in all microcosms with a decrease in hepta-, hexa-, and penta-chlorobiphenyls (CBs) and a parallel increase in low chlorinated PCBs (tri-CBs and tetra-CBs). The concentrations of the most representative congeners detected in the original sediment, such as 245-245-CB and 2345-245-CB, and of the mixture 2356-34-CB+234-245-CB, decreased by 32.5, 23.8, and 46.7 %, respectively, after only 70 days of anaerobic incubation without any bioaugmentation treatment. Additionally, the structure and population dynamics of the microbial key players involved in the biodegradative process and of the entire mixed microbial community were accurately defined by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in both the original sediment and during the operation of the microcosm. The reductive dehalogenase genes of D. mccartyi, specifically involved in PCB dechlorination, were also quantified using real-time PCR (qPCR). Our results demonstrated that the autochthonous microbial community living in the marine sediment, including D. mccartyi (6.32E+06 16S rRNA gene copy numbers g(-1) sediment), was able to efficiently sustain the biodegradation of PCBs when controlled anaerobic conditions were imposed. PMID:26162439

  9. Autochthonous versus allochthonous Upper Triassic evaporites in the Sbiba graben, central Tunisia

    Science.gov (United States)

    Zouaghi, Taher; Bédir, Mourad; Ayed-Khaled, Amira; Lazzez, Marzouk; Soua, Mohamed; Amri, Abdelhak; Inoubli, Mohamed Hédi

    2013-07-01

    Two-dimensional seismic data and well data from the Sbiba graben in central Tunisia (North Africa) reveal its asymmetrical structural geometry affected by E-W, N-S, NW-SE, and NE-SW master strike-slip faults. These faults have been intruded by Upper Triassic evaporites, which can be classified into the following three types: (1) sealed evaporite anticlines and domes along folded structures; (2) extrusional wrinkles of “salt walls” at the borders of the graben related to along-strike displacement of the master fault zone; and (3) evaporite outpouring at the center of the graben interpreted as the result of fault and diapir movement. Detailed seismic-stratigraphic analysis highlights a complex interplay between fault growth and evaporite movement, which strongly controlled the evolution of the graben. During the Mesozoic, tectonic stresses induced multidirectional faulting along inherited faults. The vertical rising of the Upper Triassic evaporites was initiated locally at the intersection of master faults during regional extensional and transtensional events in the sub-evaporite basement. The interaction of normal faulting and evaporite diapirism caused lateral outpouring of surface-piercing evaporites. This phenomenon is well expressed in Upper Cretaceous (upper Cenomanian to lower Turonian) strata. The master faults, which cut the diapir at the border and the crest, have caused the extrusion of evaporites. The downward, gravity-driven flow of these evaporites across the slope surface and subsequent accumulation and preservation in Mesozoic sediments is related to the fault escarpment and the adjacent fault-induced depression. There is an apparent relation between tectonic inheritance and inversions of the graben, where interconnected deep faults and diapirs have been reactivated during extensional and contractional tectonic episodes, causing evolution of the structures with the associated sedimentary lapouts. Several autochthonous Triassic evaporites and

  10. Fruit Morphological Changes during Pit Hardening in Autochthonous Istrian Olive (Olea europaea L. Cultivars

    Directory of Open Access Journals (Sweden)

    Marin Krapac

    2014-02-01

    Full Text Available Endocarp lignification is important fruit growth phenophase since after its completion fruit starts with oil accumulation. The information about duration of endocarp lignification is important for timing of management practices, irrigation and pest control in oil cultivars, and fruit thinning in table cultivars to obtain uniform fruit weight and size. In this study, fruit length, width and weight of four Istrian autochthonous olive cultivars (‘Buža’, ‘Puntoža’, ‘Rošinjola’ and ‘Istarska bjelica’ were measured. Samples were taken from olive collection orchard of the Institute of Agriculture and Tourism in Poreč in equal growing conditions. The aim of the research was to define an olive fruit growth dynamics during pit hardening. Fruit weight in all cultivars was increasing during endocarp lignification (from 7th to 28th July. The highest percentage in the weight growth in the first week had cultivars ‘Buža’ (48.5% and ‘Rošinjola’ (44.6% while in the second week maximum was reached by cultivars ‘Puntoža’ (44.2% and ‘Istarska bjelica’ (42%. The highest increase in total fruit mass was detected in ‘Puntoža’ (1.30 g and the least at ‘Rošinjola’ (0.56 g. Maximum increase in length (L and width (W had ‘Puntoža’ (L: 7.13 mm; W: 4.23 mm and the least ‘Istarska bjelica’ (L: 2.48 mm; W: 2.70 mm.

  11. CHARACTERISTICS OF FEMUR AND HUMERUS IN TUROPOLJE PIG – AN AUTOCHTHONOUS CROATIAN BREED

    Directory of Open Access Journals (Sweden)

    Marija Đikić

    2007-06-01

    Full Text Available Since 1996, Turopolje pig breed–autochthonous Croatian breed has been in the state of renewal and protection. The size of breeding population was 137 sows and 13 boars in 2006. The aim of this study was to present some bones characteristics of femur and humerus (weight, length, circumference, diameters of diaphysis and epiphysis proximalis and distalis of the hogs of Turopolje pig breed (T in comparison to selected pigs, Swedish Landrace breed (SL and Hypor (Hy pigs. The hogs T (n=19, live weight 100.3±4.9 kg were produced by traditional Croatian technologies of low feed input in outdoor system. The selected hogs (SL and Hy, n=62 and 53, live weight 103.3±5.3 and 104±5.8 kg were produced by conventional technologies of fattening in large farm. Characteristics of femur and humerus at hogs T were as follows: weights 271.4 and 256.6 g, length 202.0 and 194.9 mm, diameters of epiphysis proximalis 58.3 and 67.9 mm, and epiphysis distalis 49.0 and 42.0 mm, the minimum and maximum diameters of diaphysis 19.0 and 18.9 mm and 23.0 and 25.8 mm and circumference of diaphysis 78.1 and 77.0 mm. Significantly higher values for all traits of femur and humerus except for length and circumference of diaphysis were found in hogs SL and Hy. The length of both femur and humerus were significantly higher in T than in SL and Hy pigs. The results should be the contribution to explanation of carcass composition and distribution of tissues in the carcass of Turopolje pig breed.

  12. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria.

    Science.gov (United States)

    Fazeli, Mohammad R; Hajimohammadali, M; Moshkani, Azamossadat; Samadi, Nasrin; Jamalifar, Hossein; Khoshayand, Mohammad R; Vaghari, Elham; Pouragahi, Samieh

    2009-01-01

    Some foods are prone to contamination with aflatoxins, with detrimental effect on human health. Lactic acid bacteria have been reported to bind aflatoxins and remove them from foods and feeds. Reduction of aflatoxin B1 (AFB1) from the liquid media by the autochthonous lactic acid bacteria (Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus fermentum) isolated from traditional Iranian sourdough and dairy products is reported in the current study. The effect of incubation time on the binding capacity of the strains to AFB1 was also investigated. Duplicates of individual bacteria with population equivalent to 2 X 10(10) CFU/ml were incubated in the presence of AFB1 at 37 degrees C for a period of 72 h, and the amounts of unbound AFB1 were quantitated by reverse-phase high-performance liquid chromatography. All the strains were capable of removal of AFB1, and the reduction of AFB1 ranged from 25 to 61% throughout the incubation period. Removal of AFB1 was a rapid process, with approximately 61 and 56% of the toxin taken instantly by L. fermentum and L. plantarum, respectively. Binding was of a reversible nature, and some of the bound AFB1 was released into the media by the repeated centrifugation and resuspension of the cell pellets. The stability of the bacteria-toxin complex was strain dependent, and L. casei was a stronger binder of AFB1 compared with the other bacteria. No toxin release was observed after 24 h. These findings tend to suggest that certain novel probiotic bacteria with high aflatoxin binding capacity could be selected for detoxification of foods. PMID:19205485

  13. The application of autochthonous potential of probiotic lactobacillus plantarum 564 in fish oil fortified yoghurt production

    Directory of Open Access Journals (Sweden)

    Radulović Zorica

    2014-01-01

    Full Text Available The objective of this work was to investigate the survival of autochthonous, potentially probiotic bacteria Lactobacillus plantarum 564, and the influence of long-chain polyunsaturated fatty acid omega-3 (omega-3 PUFA fish oil fortification on the sensory quality of yoghurt. Three variants of yoghurt were produced using starter cultures of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus (Chr. Hansen, Denmark, and the potentially probiotic Lactobacillus plantarum 564 (Culture Collection of the Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade as follows: (1 without omega-3 PUFA; (2 with 100 mg/l omega-3 PUFA; and (3 with 200mg/l omega-3 PUFA. The survival of potential probiotic Lb. plantarum 564, the changes of starter bacteria counts, changes of pH values, as well as sensory evaluation, were examined during 3 weeks of yoghurt storage. Cells of Lb. plantarum 564 were maintained at >108 cfug−1. Starter bacteria counts were >107 cfug−1 for streptococci and >106 cfug−1 for lactobacilli. The changes of pH were within normal pH of fermented milks. Sensory evaluation showed that all variants of yoghurt produced with Lb. plantarum 564 and 2 concentrations of omega-3 polyunsaturated fatty acids had a high sensory quality (above 90% of maximal quality, and which did not change significantly throughout the examined storage period. Although the sensory quality of the control sample was evaluated as better, the experimental samples fortified with fish oil were also characterized with very acceptable sensory properties. Results of high viability of potential probiotic Lb. plantarum 564, as well as very acceptable yoghurt sensory properties, indicate that this strain can be successfully used in the production of yoghurt fortified with PUFA omega-3 fish oil as a new functional dairy product. [Projekat Ministarstva nauke Republike Srbije, br. III 046010 i br. 046009

  14. Are Human Intestinal Eukaryotes Beneficial or Commensals?

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Stensvold, C.R.; Jirků-Pomajbíková, Kateřina; Parfrey, L.W.

    2015-01-01

    Roč. 11, č. 8 (2015), e1005039. E-ISSN 1553-7374 R&D Projects: GA ČR GAP305/12/2261 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : human gut microbiota * Blastocystis * infection * diversity * parasites * impact Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.057, year: 2013

  15. Nitrile hydratase genes are present in multiple eukaryotic supergroups.

    Directory of Open Access Journals (Sweden)

    Alan O Marron

    Full Text Available BACKGROUND: Nitrile hydratases are enzymes involved in the conversion of nitrile-containing compounds into ammonia and organic acids. Although they are widespread in prokaryotes, nitrile hydratases have only been reported in two eukaryotes: the choanoflagellate Monosiga brevicollis and the stramenopile Aureococcus anophagefferens. The nitrile hydratase gene in M. brevicollis was believed to have arisen by lateral gene transfer from a prokaryote, and is a fusion of beta and alpha nitrile hydratase subunits. Only the alpha subunit has been reported in A. anophagefferens. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the detection of nitrile hydratase genes in five eukaryotic supergroups: opisthokonts, amoebozoa, archaeplastids, CCTH and SAR. Beta-alpha subunit fusion genes are found in the choanoflagellates, ichthyosporeans, apusozoans, haptophytes, rhizarians and stramenopiles, and potentially also in the amoebozoans. An individual alpha subunit is found in a dinoflagellate and an individual beta subunit is found in a haptophyte. Phylogenetic analyses recover a clade of eukaryotic-type nitrile hydratases in the Opisthokonta, Amoebozoa, SAR and CCTH; this is supported by analyses of introns and gene architecture. Two nitrile hydratase sequences from an animal and a plant resolve in the prokaryotic nitrile hydratase clade. CONCLUSIONS/SIGNIFICANCE: The evidence presented here demonstrates that nitrile hydratase genes are present in multiple eukaryotic supergroups, suggesting that a subunit fusion gene was present in the last common ancestor of all eukaryotes. The absence of nitrile hydratase from several sequenced species indicates that subunits were lost in multiple eukaryotic taxa. The presence of nitrile hydratases in many other eukaryotic groups is unresolved due to insufficient data and taxon sampling. The retention and expression of the gene in distantly related eukaryotic species suggests that it plays an important metabolic role. The novel

  16. Gene invasion in distant eukaryotic lineages: discovery of mutually exclusive genetic elements reveals marine biodiversity.

    Science.gov (United States)

    Monier, Adam; Sudek, Sebastian; Fast, Naomi M; Worden, Alexandra Z

    2013-09-01

    Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes. PMID:23635865

  17. Functions and structures of eukaryotic recombination proteins

    International Nuclear Information System (INIS)

    We have found that Rad51 and RecA Proteins form strikingly similar structures together with dsDNA and ATP. Their right handed helical nucleoprotein filaments extend the B-form DNA double helixes to 1.5 times in length and wind the helix. The similarity and uniqueness of their structures must reflect functional homologies between these proteins. Therefore, it is highly probable that similar recombination proteins are present in various organisms of different evolutional states. We have succeeded to clone RAD51 genes from human, mouse, chicken and fission yeast genes, and found that the homologues are widely distributed in eukaryotes. The HsRad51 and MmRad51 or ChRad51 proteins consist of 339 amino acids differing only by 4 or 12 amino acids, respectively, and highly homologous to both yeast proteins, but less so to Dmcl. All of these proteins are homologous to the region from residues 33 to 240 of RecA which was named ''homologous core. The homologous core is likely to be responsible for functions common for all of them, such as the formation of helical nucleoprotein filament that is considered to be involved in homologous pairing in the recombination reaction. The mouse gene is transcribed at a high level in thymus, spleen, testis, and ovary, at lower level in brain and at a further lower level in some other tissues. It is transcribed efficiently in recombination active tissues. A clear functional difference of Rad51 homologues from RecA was suggested by the failure of heterologous genes to complement the deficiency of Scrad51 mutants. This failure seems to reflect the absence of a compatible partner, such as ScRad52 protein in the case of ScRad51 protein, between different species. Thus, these discoveries play a role of the starting point to understand the fundamental gene targeting in mammalian cells and in gene therapy. (J.P.N.)

  18. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  19. HIV-1 replication and the cellular eukaryotic translation apparatus.

    Science.gov (United States)

    Guerrero, Santiago; Batisse, Julien; Libre, Camille; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe

    2015-01-01

    Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication. PMID:25606970

  20. Ancient diversification of eukaryotic MCM DNA replication proteins

    Directory of Open Access Journals (Sweden)

    Aves Stephen J

    2009-03-01

    Full Text Available Abstract Background Yeast and animal cells require six mini-chromosome maintenance proteins (Mcm2-7 for pre-replication complex formation, DNA replication initiation and DNA synthesis. These six individual MCM proteins form distinct heterogeneous subunits within a hexamer which is believed to form the replicative helicase and which associates with the essential but non-homologous Mcm10 protein during DNA replication. In contrast Archaea generally only possess one MCM homologue which forms a homohexameric MCM helicase. In some eukaryotes Mcm8 and Mcm9 paralogues also appear to be involved in DNA replication although their exact roles are unclear. Results We used comparative genomics and phylogenetics to reconstruct the diversification of the eukaryotic Mcm2-9 gene family, demonstrating that Mcm2-9 were formed by seven gene duplication events before the last common ancestor of the eukaryotes. Mcm2-7 protein paralogues were present in all eukaryote genomes studied suggesting that no gene loss or functional replacements have been tolerated during the evolutionary diversification of eukaryotes. Mcm8 and 9 are widely distributed in eukaryotes and group together on the MCM phylogenetic tree to the exclusion of all other MCM paralogues suggesting co-ancestry. Mcm8 and Mcm9 are absent in some taxa, including Trichomonas and Giardia, and appear to have been secondarily lost in some fungi and some animals. The presence and absence of Mcm8 and 9 is concordant in all taxa sampled with the exception of Drosophila species. Mcm10 is present in most eukaryotes sampled but shows no concordant pattern of presence or absence with Mcm8 or 9. Conclusion A multifaceted and heterogeneous Mcm2-7 hexamer evolved during the early evolution of the eukaryote cell in parallel with numerous other acquisitions in cell complexity and prior to the diversification of extant eukaryotes. The conservation of all six paralogues throughout the eukaryotes suggests that each Mcm2

  1. Widespread 3'-end uridylation in eukaryotic RNA viruses.

    Science.gov (United States)

    Huo, Yayun; Shen, Jianguo; Wu, Huanian; Zhang, Chao; Guo, Lihua; Yang, Jinguang; Li, Weimin

    2016-01-01

    RNA 3' uridylation occurs pervasively in eukaryotes, but is poorly characterized in viruses. In this study, we demonstrate that a broad array of RNA viruses, including mycoviruses, plant viruses and animal viruses, possess a novel population of RNA species bearing nontemplated oligo(U) or (U)-rich tails, suggesting widespread 3' uridylation in eukaryotic viruses. Given the biological relevance of 3' uridylation to eukaryotic RNA degradation, we propose a conserved but as-yet-unknown mechanism in virus-host interaction. PMID:27151171

  2. Diversity-productivity relationships in estuarine microphytobenthos

    OpenAIRE

    Vyverman, W.; Stal, L.J.; G. Muyzer; Sabbe, K.; Vanelslander, B.; Créach, V.; Forster, R.M.; Kromkamp, J.C.

    2011-01-01

    Field studies at three intertidal mudflat stations within the Scheldt Estuary indicated an inverse relationship between microphytobenthos biomass and species diversity, while the relationship between diversity measures and primary productivity appeared to be site specific, with either a significant positive or a unimodal relationship between both parameters. Species counts and molecular fingerprinting using DGGE were largely congruent and revealed that taxonomic turnover among eukaryotic micr...

  3. Extraction of Transcript Diversity from Scientific Literature

    OpenAIRE

    Parantu K Shah; Jensen, Lars J.; Stéphanie Boué; Peer Bork

    2005-01-01

    Synopsis Given the functional complexity of higher eukaryotes, the relatively small number of genes in the human and other mammalian genomes came as a surprise to the scientific community. Later it was discovered that the majority of genes are subject to alternative splicing (“cutting and pasting”) or associated mechanisms that ultimately increase the diversity of transcripts that code for proteins. Studies exploring transcript diversity are currently dominated by high-throughput experiments ...

  4. Selection of autochthonous Saccharomyces cerevisiae strains as wine starters using a polyphasic approach and ochratoxin A removal.

    Science.gov (United States)

    Petruzzi, Leonardo; Bevilacqua, Antonio; Corbo, Maria Rosaria; Garofalo, Carmela; Baiano, Antonietta; Sinigaglia, Milena

    2014-07-01

    Over the last few years, the selection of autochthonous strains of Saccharomyces cerevisiae as wine starters has been studied; however, researchers have not focused on the ability to remove ochratoxin A (OTA) as a possible trait to use in oenological characterization. In this article, a polyphasic approach, including yeast genotyping, evaluation of phenotypic traits, and fermentative performance in a model system (temperature, 25 and 30°C; sugar level, 200 and 250 g liter(-1)), was proposed as a suitable approach to select wine starters of S. cerevisiae from 30 autochthonous isolates from Uva di Troia cv., a red wine grape variety grown in the Apulian region (Southern Italy). The ability to remove OTA, a desirable trait to improve the safety of wine, was also assessed using enzyme-linked immunosorbent assay. The isolates, identified by PCR-restriction fragment length polymorphism analysis of the internal transcribed spacer region and DNA sequencing, were differentiated at strain level through the amplification of the interdelta region; 11 biotypes (I to XI) were identified and further studied. Four biotypes (II, III, V, VIII) were able to reduce OTA, with the rate of toxin removal from the medium (0.6 to 42.8%, wt/vol) dependent upon the strain and the temperature, and biotypes II and VIII were promising in terms of ethanol, glycerol, and volatile acidity production, as well as for their enzymatic and stress resistance characteristics. For the first time, the ability of S. cerevisiae to remove OTA during alcoholic fermentation was used as an additional trait in the yeast-selection program; the results could have application for evaluating the potential of autochthonous S. cerevisiae strains as starter cultures for the production of typical wines with improved quality and safety. PMID:24988024

  5. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation." PMID:26801925

  6. Early onset and enhanced growth of autochthonous mammary carcinomas in C3-deficient Her2/neu transgenic mice

    OpenAIRE

    Bandini, Silvio; Curcio, Claudia; Macagno, Marco; Quaglino, Elena; Arigoni, Maddalena; Lanzardo, Stefania; Hysi, Albana; Barutello, Giuseppina; Consolino, Lorena; Longo, Dario Livio; Musiani, Piero; Forni, Guido; Iezzi, Manuela; Cavallo, Federica

    2013-01-01

    Aside from its classical role in fighting infections, complement is an important, although poorly understood, component of the tumor microenvironment. In particular, the tumor growth-regulatory activities of complement remain under debate. To assess the role of the complement system in the progression of autochthonous mammary carcinomas, we have crossed complement component 3 (C3)-deficient (C3−/− ) BALB/c male mice with BALB/c females expressing the activated rat Her2/neu oncogene (neuT). Al...

  7. AMPELOGRAPHIC CHARACTERIZATION OF THE AUTOCHTHONOUS GRAPE CULTIVAR “KALLMET” IN MAL��SIA E MADHE, ALBANIA

    OpenAIRE

    Bardhosh Ferraj; Elisabeta Susaj; Lush Susaj; Irena Kallco

    2012-01-01

    “Kallmet” is one of the most sprout autochthonous wine grape cultivar in the North-western and Central part of Albania. Study was conducted in three consecutive years, 2009-2011, in Malësia e Madhe, 250 m above the sea level, in the North-western part of Albania, in a 10 years old vineyard. For evaluation of the main characteristics the IPGRI Descriptors of Grapevine was used. Form of the new shoot tip of “Kallmet” is half-open, with no anthocianic coloration, and densely prostrate hairs. The...

  8. Evolution of prokaryote and eukaryote lines inferred from sequence evidence

    Science.gov (United States)

    Hunt, L. T.; George, D. G.; Yeh, L.-S.; Dayhoff, M. O.

    1984-01-01

    This paper describes the evolution of prokaryotes and early eukaryotes, including their symbiotic relationships, as inferred from phylogenetic trees of bacterial ferredoxin, 5S ribosomal RNA, ribulose-1,5-biphosphate carboxylase large chain, and mitochondrial cytochrome oxidase polypeptide II.

  9. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    R.H. Wijffels; O. Kruse; K.J. Hellingwerf

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms fo

  10. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas;

    2013-01-01

    approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers......, dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment for...... bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. CONCLUSIONS: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism are...

  11. Elimination of bisphenol a and triclosan using the enzymatic system of autochthonous colombian forest fungi.

    Science.gov (United States)

    Arboleda, Carolina; Cabana, H; De Pril, E; Jones, J Peter; Jiménez, G A; Mejía, A I; Agathos, S N; Penninckx, M J

    2013-01-01

    Bisphenol A (BPA) and triclosan (TCS) are known or suspected potential endocrine disrupting chemicals (EDCs) which may pose a risk to human health and have an environmental impact. Enzyme preparations containing mainly laccases, obtained from Ganoderma stipitatum and Lentinus swartzii, two autochthonous Colombian forest white rot fungi (WRF), previously identified as high enzyme producers, were used to remove BPA and TCS from aqueous solutions. A Box-Behnken factorial design showed that pH, temperature, and duration of treatment were significant model terms for the elimination of BPA and TCS. Our results demonstrated that these EDCs were extensively removed from 5 mg L(-1) solutions after a contact time of 6 hours. Ninety-four percent of TCS and 97.8% of BPA were removed with the enzyme solution from G. stipitatum; 83.2% of TCS and 88.2% of BPA were removed with the L. swartzii enzyme solution. After a 6-hour treatment with enzymes from G. stipitatum and L. swartzii, up to 90% of the estrogenic activity of BPA was lost, as shown by the yeast estrogen screen assay. 2,2-Azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) was used as a mediator (laccase/mediator system) and significantly improved the laccase catalyzed elimination of BPA and TCS. The elimination of BPA in the absence of a mediator resulted in production of oligomers of molecular weights of 454, 680, and 906 amu as determined by mass spectra analysis. The elimination of TCS in the same conditions produced dimers, trimers, and tetramers of molecular weights of 574, 859, and 1146 amu. Ecotoxicological studies using Daphnia pulex to determine lethal concentration (LC50) showed an important reduction of the toxicity of BPA and TCS solutions after enzymatic treatments. Use of laccases emerges thus as a key alternative in the development of innovative wastewater treatment technologies. Moreover, the exploitation of local biodiversity appears as a potentially promising approach for identifying new efficient

  12. Expression of bacterial luciferase in eukaryotic cells

    International Nuclear Information System (INIS)

    Expression of Bacterial luciferase enzyme (lux) in mammalian cells would be a powerful bioreporter protein system for in vivo imaging because eukaryotic luciferases need expensive substrates. However, only a few efforts have been made to express bacterial luciferase enzyme in mammalian cells. As the result of this, we attempted to construct bicistronic vector including two bacterial luciferase genes (LuxA and LuxB) for assessing the potential to be visualized in vitro or in vivo by optical imaging system after transfection to mammalian cells. We designed and synthesized luxA and luxB genes from Photorhabdus Luminescens. To co-express both luxA and luxB genes from a single promoter, we cloned as a bicistronic transcript fused with an internal ribosomal entry site (IRES). This bicistronic transcript was transfected by Superfect to HEK 293T cell line. We also transfected lux A and lux B vector to HEK 293T cells separately. To evaluate gene expression, n-decanal and FMNH2 were supplemented to transfected HEK 293T cell lines which were measured by In Vivo Imaging System. The luxA gene was cloned into the MCS(A) of pIRESGFP via the 5' SalI and 3' EcoRI restriction sites to generate pIRESluxA. The luxB gene was cleaved via a 5' NcoI and 3' NotI site from luxB and cloned into the MCS(B) of pIRESluxA to generate pIRESluxAB. LuxA and B genes was cleaved by 5' EcoRI and 3' SpeI and cloned into the pcDNA3.1 mammalian expression vector to create pcDNALuxA and pcDNALuxB. We constructed bicistronic vector system which is composed of bacterial luciferase genes (lux A and B) on the single reading frame. These results hold a promise of an available development of an autonomous light generating lux reporter system in mammalian cells

  13. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  14. A statistical anomaly indicates symbiotic origins of eukaryotic membranes

    OpenAIRE

    Bansal, Suneyna; Mittal, Aditya

    2015-01-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was fou...

  15. Repbase Update, a database of repetitive elements in eukaryotic genomes

    OpenAIRE

    Bao, Weidong; Kojima, Kenji K.; Kohany, Oleksiy

    2015-01-01

    Repbase Update (RU) is a database of representative repeat sequences in eukaryotic genomes. Since its first development as a database of human repetitive sequences in 1992, RU has been serving as a well-curated reference database fundamental for almost all eukaryotic genome sequence analyses. Here, we introduce recent updates of RU, focusing on technical issues concerning the submission and updating of Repbase entries and will give short examples of using RU data. RU sincerely invites a broad...

  16. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    OpenAIRE

    Santiago Guerrero; Julien Batisse; Camille Libre; Serena Bernacchi; Roland Marquet; Jean-Christophe Paillart

    2015-01-01

    Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by ta...

  17. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation. PMID:25733873

  18. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-04-01

    Full Text Available Polarization, a primary step in the response of an individual eukaryotic cell to a spatial stimulus, has attracted numerous theoretical treatments complementing experimental studies in a variety of cell types. While the phenomenon itself is universal, details differ across cell types, and across classes of models that have been proposed. Most models address how symmetry breaking leads to polarization, some in abstract settings, others based on specific biochemistry. Here, we compare polarization in response to a stimulus (e.g., a chemoattractant in cells typically used in experiments (yeast, amoebae, leukocytes, keratocytes, fibroblasts, and neurons, and, in parallel, responses of several prototypical models to typical stimulation protocols. We find that the diversity of cell behaviors is reflected by a diversity of models, and that some, but not all models, can account for amplification of stimulus, maintenance of polarity, adaptation, sensitivity to new signals, and robustness.

  19. Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Anne Dell

    2010-01-01

    Full Text Available Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i oligosaccharyltransferase (OST-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.

  20. Mussel biofiltration effects on attached bacteria and unicellular eukaryotes in fish-rearing seawater

    Science.gov (United States)

    Voudanta, Eleni; Monchy, Sebastién; Delegrange, Alice; Vincent, Dorothée; Genitsaris, Savvas; Christaki, Urania

    2016-01-01

    Mussel biofiltration is a widely used approach for the mitigation of aquaculture water. In this study, we investigated the effect of mussel biofiltration on the communities of particle-associated bacteria and unicellular eukaryotes in a sea bass aquaculture in southern North Sea. We assessed the planktonic community changes before and after biofiltration based on the diversity of the 16S and 18S rRNA genes by using next generation sequencing technologies. Although there was no overall reduction in the operational taxonomic units (OTU) numbers between the control (no mussels) and the test (with mussels) tanks, a clear reduction in the relative abundance of the top three most dominant OTUs in every sampling time was observed, ranging between 2–28% and 16–82% for Bacteria and Eukarya, respectively. The bacterial community was dominated by OTUs related to phytoplankton blooms and/or high concentrations of detritus. Among the eukaryotes, several fungal and parasitic groups were found. Their relative abundance in most cases was also reduced from the control to the test tanks; a similar decreasing pattern was also observed for both major higher taxa and functional (trophic) groups. Overall, this study showed the effectiveness of mussel biofiltration on the decrease of microbiota abundance and diversity in seawater fueling fish farms. PMID:27069786

  1. Living at the Limits: Evidence for Microbial Eukaryotes Thriving under Pressure in Deep Anoxic, Hypersaline Habitats

    Directory of Open Access Journals (Sweden)

    Thorsten Stoeck

    2014-01-01

    Full Text Available The advent of molecular tools in microbial ecology paved the way to exploit the diversity of microbes in extreme environments. Here, we review these tools as applied in one of the most polyextreme habitats known on our planet, namely, deep hypersaline anoxic basins (DHABs, located at ca. 3000–3500 m depth in the Eastern Mediterranean Sea. Molecular gene signatures amplified from environmental DHAB samples identified a high degree of genetic novelty, as well as distinct communities in the DHABs. Canonical correspondence analyses provided strong evidence that salinity, ion composition, and anoxia were the strongest selection factors shaping protistan community structures, largely preventing cross-colonization among the individual basins. Thus, each investigated basin represents a unique habitat (“isolated islands of evolution”, making DHABs ideal model sites to test evolutionary hypotheses. Fluorescence in situ hybridization assays using specifically designed probes revealed that the obtained genetic signatures indeed originated from indigenous polyextremophiles. Electron microscopy imaging revealed unknown ciliates densely covered with prokaryote ectosymbionts, which may enable adaptations of eukaryotes to DHAB conditions. The research reviewed here significantly advanced our knowledge on polyextremophile eukaryotes, which are excellent models for a number of biological research areas, including ecology, diversity, biotechnology, evolutionary research, physiology, and astrobiology.

  2. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    Science.gov (United States)

    Blackstone, Neil W

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  3. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  4. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  5. The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont coronympha.

    Directory of Open Access Journals (Sweden)

    James T Harper

    Full Text Available BACKGROUND: For the majority of microbial eukaryotes (protists, algae, there is no clearly superior species concept that is consistently applied. In the absence of a practical biological species concept, most species and genus level delineations have historically been based on morphology, which may lead to an underestimate of the diversity of microbial eukaryotes. Indeed, a growing body of molecular evidence, such as barcoding surveys, is beginning to support the conclusion that significant cryptic species diversity exists. This underestimate of diversity appears to be due to a combination of using morphology as the sole basis for assessing diversity and our inability to culture the vast majority of microbial life. Here we have used molecular markers to assess the species delineations in two related but morphologically distinct genera of uncultivated symbionts found in the hindgut of termites. METHODOLOGY/PRINCIPAL FINDINGS: Using single-cell isolation and environmental PCR, we have used a barcoding approach to characterize the diversity of Coronympha and Metacoronympha symbionts in four species of Incisitermes termites, which were also examined using scanning electron microscopy and light microcopy. Despite the fact that these genera are significantly different in morphological complexity and structural organisation, we find they are two life history stages of the same species. At the same time, we show that the symbionts from different termite hosts show an equal or greater level of sequence diversity than do the hosts, despite the fact that the symbionts are all classified as one species. CONCLUSIONS/SIGNIFICANCE: The morphological information used to describe the diversity of these microbial symbionts is misleading at both the genus and species levels, and led to an underestimate of species level diversity as well as an overestimate of genus level diversity. The genus 'Metacoronympha' is invalid and appears to be a life history stage of

  6. Behavior of Staphylococcus aureus and autochthone microbiota in fresh sausages added of sodium nitrite and stored under refrigeration

    Directory of Open Access Journals (Sweden)

    Lucyanne Maria Moraes Correia

    2014-10-01

    Full Text Available Fresh sausages are cured meat products that may be contaminated with Staphylococcus aureus during the manufacturing procedure, which is frequently related with inadequate handling practices. The use of nitrite in meat products has proven efficacy against Clostridium botulinum, and studies indicate that bactericidal action against S. aureus depends on factors that are intrinsic and extrinsic to the product. The objective of the present study was to evaluate the effect of nitrite concentration, and pH on S. aureus and psychrotrophic autochthone microbiota in fresh sausages stored at different times and temperatures. Fresh sausage were produced at nitrite concentrations 50, 150 and 200ppm and contaminated with S. aureus. The sausages were storage at refrigeration (7 and 12°C and the quantification of S. aureus and psychrotrophic microorganisms was carried out on days 0, 2, 4, 7, and 10. Results showed that nitrite concentrations and the temperatures used had minimal effect on the multiplication of S. aureus and psychrotrophic autochthone microbiota. Final counts depended only on the length of storage: at the end of 10 days, counts were statistically similar in the different groups, showing that temperature and nitrite concentrations used did not control microbial growth effectively. It is suggested that the product should be stored below 7°C or at freezing temperatures for greater microbiological stability

  7. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  8. Increasing addition of autochthonous to allochthonous carbon in nutrient-rich aquatic systems stimulates carbon consumption but does not alter bacterial community composition

    Directory of Open Access Journals (Sweden)

    K. Attermeyer

    2013-08-01

    Full Text Available Dissolved organic carbon (DOC concentrations – mainly of terrestrial origin – are increasing worldwide in inland waters. The biodegradability of the DOC varies depending on quantity and chemical quality. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. It is therefore crucial to understand the processes controlling the bacterial turnover of additional allochthonous and autochthonous DOC in aquatic systems. Our aim was to study bacterial carbon (C turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate and increased concentrations and pulses (intermittent occurrence of organic matter input of autochthonous C (algae lysate. We then determined bacterial carbon consumption, activities, and community composition together with the carbon flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and fractions of low and high molecular weight substances (LMWS and HMWS, respectively between allochthonous and autochthonous C sources. In parallel to these differences in chemical composition, we observed a higher availability of allochthonous C as evidenced by increased DOC consumption and bacterial growth efficiencies (BGE when solely allochthonous C was provided. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption from 52 to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substances (HS fraction and an increase in bacterial biomass. Stable C isotope analyses of phospholipid fatty acids (PLFA and respired dissolved inorganic carbon (DIC supported a preferential assimilation of autochthonous C and respiration

  9. Sterol synthesis in diverse bacteria

    Directory of Open Access Journals (Sweden)

    Jeremy H Wei

    2016-06-01

    Full Text Available Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc, which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from 5 phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria and Verrucomicrobia and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult

  10. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  11. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Science.gov (United States)

    De Palo, Giovanna; Endres, Robert G

    2013-10-01

    Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems. PMID:24204235

  12. Construction of a eukaryotic expression plasmid of Humanin

    Institute of Scientific and Technical Information of China (English)

    LUO Ben-yan; CHEN Xiang-ming; TANG Min; CHEN Feng; CHEN Zhi

    2005-01-01

    Objective: To construct a eukaryotic expression plasmid pcDNA3.1 (-)-Humanin. Methods: The recombinant plasm pGEMEX- 1-Humanin was digested with restriction endonucleases BamH I and Hind Ⅲ and the Humanin gene fragments, abo 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1 (-) and the recombinant plasmids pcDNA3. l(-)-Humanin were identified by sequencing. Results: Recombinant plasmid DNA succesfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence. Conclusions: A eukaryotic expression plasmid of Humanin was successfully constructed.

  13. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  14. Horizontal gene transfer in the evolution of photosynthetic eukaryotes

    Institute of Scientific and Technical Information of China (English)

    Jinling HUANG; Jipei YUE

    2013-01-01

    Horizontal gene transfer (HGT) may not only create genome mosaicism,but also introduce evolutionary novelties to recipient organisms.HGT in plastid genomes,though relatively rare,still exists.HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants.In particular,ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent.There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments.Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes,reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

  15. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Directory of Open Access Journals (Sweden)

    Giovanna De Palo

    2013-10-01

    Full Text Available Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems.

  16. Managing diversity.

    Science.gov (United States)

    Epting, L A; Glover, S H; Boyd, S D

    1994-06-01

    The U.S. work force is becoming increasingly diverse as the 20th century approaches. Statistics prove that most organizations are experiencing gender, culture, and age diversity within their labor forces. All managers and leaders must accept this diversity and work to handle it effectively. This article examines the current literature concerning management of diversity and its implications for the health care profession. Gender, culture, and age diversity and the potential problems that may arise with each are also addressed. Reasons to manage diversity are offered, as well as methods of managing diversity for both the manager and the chief executive officer. PMID:10134144

  17. Language Contact and Language Conflict in Autochthonous Language Minority Settings in the EU: A Preliminary Round-Up of Guiding Principles and Research Desiderata

    Science.gov (United States)

    Darquennes, Jeroen

    2010-01-01

    This contribution deals with language contact and language conflict in autochthonous language minority settings in the European Union. It rounds up a number of concepts that guide macro-socio-linguistic and macrocontact-linguistic research on language minorities. The description of these concepts results in a list of research desiderata.

  18. Eukaryotic ribosomes that lack a 5.8S RNA

    Science.gov (United States)

    Vossbrinck, C. R.; Woese, C. R.

    1986-01-01

    The 5.8S ribosomal RNA is believed to be a universal eukaryotic characteristic. It has no (size) counterpart among the prokaryotes, although its sequence is homologous with the first 150 or so nucleotides of the prokaryotic large subunit (23S) ribosomal RNA. An exception to this rule is reported here. The microsporidian Vairimorpha necatrix is a eukaryote that has no 5.8S rRNA. As in the prokaryotes, it has a single large subunit rRNA, whose 5-prime region corresponds to the 5.8S rRNA.

  19. Construction of a eukaryotic expression plasmid of Humanin*

    OpenAIRE

    Luo, Ben-yan; Chen, Xiang-ming; Tang, Min; Chen, Feng; Chen, Zhi

    2004-01-01

    Objective: To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. Methods: The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. Results: Recombinant plasmid DNA successfully produced a band whic...

  20. Regulation of eukaryotic DNA replication and nuclear structure

    Institute of Scientific and Technical Information of China (English)

    WUJIARUI

    1999-01-01

    In eukaryote,nuclear structure is a key component for the functions of eukaryotic cells.More and more evidences show that the nuclear structure plays important role in regulating DNA replication.The nuclear structure provides a physical barrier for the replication licensing,participates in the decision where DNA replication initiates,and organizes replication proteins as replication factory for DNA replication.Through these works,new concepts on the regulation of DNA replication have emerged,which will be discussed in this minireview.

  1. Bacterial diversity and bioaugmentation in floodwater of a paddy field in the presence of the herbicide molinate

    OpenAIRE

    Barreiros, Luisa; Manaia, Célia M; Nunes, Olga C.

    2011-01-01

    This work aimed at studying variations on the diversity and composition of the bacterial community of a rice paddy field floodwater, subjected to conventional management, namely by using the herbicide molinate. The promotion of the herbicide biodegradation either by the autochthonous microbiota or by a bioaugmentation process was also assessed. This study comprehended four sampling campaigns at key dates of the farming procedures (seeding, immediately and 6 days aft...

  2. Resilience of freshwater communities of small microbial eukaryotes undergoing severe drought events

    Directory of Open Access Journals (Sweden)

    Marianne eSimon

    2016-05-01

    Full Text Available Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range 0.2-5 µm in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for two years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems.

  3. Resilience of Freshwater Communities of Small Microbial Eukaryotes Undergoing Severe Drought Events.

    Science.gov (United States)

    Simon, Marianne; López-García, Purificación; Deschamps, Philippe; Restoux, Gwendal; Bertolino, Paola; Moreira, David; Jardillier, Ludwig

    2016-01-01

    Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range: 0.2-5 μm) in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for 2 years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems. PMID:27303393

  4. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    Directory of Open Access Journals (Sweden)

    Angeles Aguilera

    2013-07-01

    Full Text Available A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain.

  5. Resilience of Freshwater Communities of Small Microbial Eukaryotes Undergoing Severe Drought Events

    Science.gov (United States)

    Simon, Marianne; López-García, Purificación; Deschamps, Philippe; Restoux, Gwendal; Bertolino, Paola; Moreira, David; Jardillier, Ludwig

    2016-01-01

    Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range: 0.2–5 μm) in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for 2 years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems. PMID:27303393

  6. MutL homologs in restriction-modification systems and the origin of eukaryotic MORC ATPases

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-03-01

    Full Text Available Abstract The provenance and biochemical roles of eukaryotic MORC proteins have remained poorly understood since the discovery of their prototype MORC1, which is required for meiotic nuclear division in animals. The MORC family contains a combination of a gyrase, histidine kinase, and MutL (GHKL and S5 domains that together constitute a catalytically active ATPase module. We identify the prokaryotic MORCs and establish that the MORC family belongs to a larger radiation of several families of GHKL proteins (paraMORCs in prokaryotes. Using contextual information from conserved gene neighborhoods we show that these proteins primarily function in restriction-modification systems, in conjunction with diverse superfamily II DNA helicases and endonucleases. The common ancestor of these GHKL proteins, MutL and topoisomerase ATPase modules appears to have catalyzed structural reorganization of protein complexes and concomitant DNA-superstructure manipulations along with fused or standalone nuclease domains. Furthermore, contextual associations of the prokaryotic MORCs and their relatives suggest that their eukaryotic counterparts are likely to carry out chromatin remodeling by DNA superstructure manipulation in response to epigenetic signals such as histone and DNA methylation. Reviewers This article was reviewed by Arcady Mushegian and Gaspar Jekely.

  7. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.; Brunak, Søren

    that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model...

  8. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren;

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...

  9. Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes

    OpenAIRE

    Stillman, Bruce

    2015-01-01

    The distribution of DNA polymerase activities at the eukaryotic DNA replication fork was “established,” but recent genetic studies in this issue of Molecular Cell raise questions about which polymerases are copying the leading and lagging strand templates (Johnson et al, 2015).

  10. Abundance of eukaryotic microbes in the deep subtropical North Atlantic

    NARCIS (Netherlands)

    Morgan-Smith, D.; Herndl, G.J.; van Aken, H.M.; Bochdansky, A.B.

    2011-01-01

    The meso- and bathypelagic ocean comprises the largest habitat on earth, yet we know very little about the distribution and activity of protists in this environment. These small eukaryotes are responsible for controlling bacterial abundance in the surface ocean and are major players in the material

  11. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  12. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.;

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...

  13. Magnetic Decoration and Labeling of Prokaryotic and Eukaryotic Cells

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Maděrová, Zdeňka; Pospišková, K.; Horská, Kateřina; Šafaříková, Miroslava

    Cambridge: Royal society of chemistry, 2014 - (Fakhrullin, R.; Choi, I.; Lvov, Y.), s. 185-215 ISBN 978-1-84973-902-3 R&D Projects: GA MŠk(CZ) LD13023; GA ČR(CZ) GAP503/11/2263 Institutional support: RVO:67179843 Keywords : eukaryotic cells * nanoparticles * microparticles * organic and inorganic xenobiotics Subject RIV: DJ - Water Pollution ; Quality

  14. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  15. Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes.

    Science.gov (United States)

    Lehembre, Frédéric; Doillon, Didier; David, Elise; Perrotto, Sandrine; Baude, Jessica; Foulon, Julie; Harfouche, Lamia; Vallon, Laurent; Poulain, Julie; Da Silva, Corinne; Wincker, Patrick; Oger-Desfeux, Christine; Richaud, Pierre; Colpaert, Jan V; Chalot, Michel; Fraissinet-Tachet, Laurence; Blaudez, Damien; Marmeisse, Roland

    2013-10-01

    Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms. PMID:23663419

  16. Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae

    OpenAIRE

    Ferreira-Camargo, Livia S; Tran, Miller; Beld, Joris; Burkart, Michael D.; Mayfield, Stephen P

    2015-01-01

    Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly,...

  17. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes. So

  18. The biology of eukaryotic promoter prediction - a review

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves;

    1999-01-01

    Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance...

  19. The biology of eukaryotic promoter prediction - a review

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves; Brunak, Søren

    Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance...

  20. Patterns of intron gain and conservation in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-10-01

    Full Text Available Abstract Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed

  1. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies...... have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding...... yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells....

  2. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes.

    Science.gov (United States)

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-04-01

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance. PMID:25915714

  3. Diversity management

    OpenAIRE

    Horázná, Eliška

    2011-01-01

    The thesis is focused on diversity management in the Czech Republic. The author deals with diversity of economically active population in the Czech Republic and also, based on the screening of websites of selected companies, analyses the extent to which companies in the Czech Republic deal with diversity management in the context of personal marketing. Emphasis is placed on how the studied companies present their approaches to diversity and whether it is also used in individual job offers. Th...

  4. Embracing Diversity

    NARCIS (Netherlands)

    S. Puntoni (Stefano)

    2015-01-01

    markdownabstract__Abstract__ Societies are vastly more diverse today than they used to be and, in many industries, developing theories and approaches that recognize and capitalize on this greater consumer diversity is crucial. In business schools, diversity tends to be discussed only in relation to

  5. Eukaryotes dominate new production in the Sargasso Sea

    Science.gov (United States)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Casey, J. R.; Sigman, D. M.

    2010-12-01

    The vast subtropical ocean gyres are considered unproductive “deserts” due to the extremely low concentrations of essential nutrients in their sunlit surface waters. Because of intense upper ocean stratification, phytoplankton growth in the subtropical gyres is limited by the slow supply of nitrate from below, and is assumed to be supported predominantly by “regenerated” nitrogen (N): ammonium and other reduced N sources recycled in surface waters. The phytoplankton assemblage of the subtropical Sargasso Sea is dominated by the prokaryotic cyanobacteria, Prochlorococcus and Synechococcus, which occur in very high cell numbers compared to the rarer, and usually larger, eukaryotic algae. Coupling flow cytometry and a new high-sensitivity method for N isotope analysis, we measure the 15N/14N of major phytoplankton taxa and other biologically distinct particle populations collected from the surface waters of the Sargasso Sea during the stratified summer period. We find that the cyanobacteria and eukaryotic phytoplankton show distinct N isotope signatures, indicating that they utilize different sources of N for growth. Prochlorococcus and Synechococcus have a uniformly low 15N/14N, consistent with the expectation that these phytoplankton rely on regenerated N. However, the 15N/14N of eukaryotic phytoplankton is higher and more variable, with a mean 15N/14N comparable to the new nitrate supply from below, indicating that eukaryotes dominate the consumption of this nitrate and rely on it for more than half of their N requirement. Using our measured 15N/14N values for the various sorted autotrophic populations, we calculate eukaryote-specific summer f-ratios of 0.6-0.67 and total community summer f-ratios of 0.15-0.23. These values are higher than those based on comparison of primary production and sediment-trap derived organic carbon (C) export, and agree well with annual f-ratio estimates implied by geochemical tracers. The high 15N/14N of eukaryotic biomass can

  6. A Broad Phylogenetic Survey Unveils the Diversity and Evolution of Telomeres in Eukaryotes

    Czech Academy of Sciences Publication Activity Database

    Fulnečková, Jana; Ševčíková, Tereza; Fajkus, Jiří; Lukešová, Alena; Lukeš, Martin; Vlček, Čestmír; Lang, B.F.; Kim, E.; Eliáš, M.; Sýkorová, Eva

    2013-01-01

    Roč. 5, č. 3 (2013), s. 468-483. ISSN 1759-6653 R&D Projects: GA ČR(CZ) GA521/09/1912 Grant ostatní: GA ČR(CZ) GAP506/10/0705; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z50040702; CEZ:AV0Z60660521 Institutional support: RVO:68081707 ; RVO:60077344 ; RVO:61388971 ; RVO:68378050 Keywords : MOLECULAR PHYLOGENY * SEQUENCE DATA * GENOME Subject RIV: BO - Biophysics; EE - Microbiology, Virology (MBU-M); EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 4.532, year: 2013

  7. Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems

    OpenAIRE

    Cooper, EL; Overstreet, N

    2014-01-01

    Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among ...

  8. Micro-Eukaryote Diversity in Freshwater Ponds That Harbor the Amphibian Pathogen "Batrachochytrium Dendrobatidis" ("Bd")

    Science.gov (United States)

    Lauer, Antje; McConnel, Lonnie; Singh, Navdeep

    2012-01-01

    We designed a microbiology project that fully engaged undergraduate biology students, high school students, and their teachers in a summer research program as part of the Research Education Vitalizing Science University Program conducted at California State University Bakersfield. Modern molecular biological methods and microscopy were used to…

  9. Identity, Diversity and Diversity Management

    DEFF Research Database (Denmark)

    Holck, Lotte; Muhr, Sara Louise; Villeseche, Florence

    2016-01-01

    The purpose of this paper is to examine the relationship between the identity and diversity literatures and discuss how a better understanding of the theoretical connections between the two informs both diversity research and diversity management practices. Design/methodology/approach – Literatur...

  10. Spatial and seasonal variation in microbial diversity in marine subtidal sediments in relation to sediment geochemistry and heavy metal pollution

    OpenAIRE

    Pede, A.; Gillan, D.; Gao, Y.; Billon, G.; Lesven, L.; Leermakers, M; Baeyens, W.; Vyverman, W.; Sabbe, K

    2009-01-01

    Very little information is available on the diversity and structure of microbial communities in marine subtidal sediments, especially for micro-eukaryotes. In the framework of the Belgian MICROMET project, we investigated spatial and seasonal (February vs July) variation patterns in the molecular diversity of archaeal, bacterial and eukaryotic communities in 9 subtidal stations in the Belgian Continental Plate (BCP) in relation to sediment granulometry, geochemistry and metal contamination. M...

  11. The rise and fall of the autochthonous self: from Italian Renaissance art and Shakespeare to Heidegger, Lacan, and intersubjectivism.

    Science.gov (United States)

    Chessick, Richard D

    2010-01-01

    This article addresses the unresolved question of the existence of a private core autochthonous self, as it has been described by Winnicott, Modell, and others. The postmodern version of the self has eliminated this concept entirely, relegating the self to a changing and unstable display, or regarding it as totally chaotic, or even an illusion. The question is raised whether by returning to the origins of this notion of a private self and then tracing its apparent dissolution it might be possible to discover some evidence that it still exists. The methodology used is that of obtaining knowledge directly through the arts and the claim is made that because empirical science has clamored to be the only source of knowledge, we have lost what could be obtained by direct intuitive seeing and experiencing the works of creative geniuses. To explore the rise of the autochthonous self this article provides an examination of the shift from Gothic art to Italian Renaissance art, a time which engendered the origin of "man" with his or her elusive private individual self that then became expressed in changing works of art. As this spread north, Shakespeare appeared and similarly invented and illustrated in his characters the private individual self, a concept not appreciated or recognized before the renaissance. But as science arose and Western civilization began to decline, a corresponding disillusionment with "man" took place. The self began to be viewed as solely a social construction with no core except perhaps a genetic endowment. This was accompanied by a reduction in the concept of the human as a valuable and precious living being and was replaced by regarding the human as an object of control and exploitation. After the Second World War a movement in contemporary United States psychoanalysis gradually replaced the ideas of Freud and his emphasis on the "I" in the psychoanalytic process, with forms of relational therapy, assuming that the self was ab initio

  12. Inferring Ancestry : Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life

    OpenAIRE

    He, Ding

    2014-01-01

    There are ~12 supergroups of complex-celled organisms (eukaryotes), but relationships among them (including the root) remain elusive. For Paper I, I developed a dataset of 37 eukaryotic proteins of bacterial origin (euBac), representing the conservative protein core of the proto-mitochondrion. This gives a relatively short distance between ingroup (eukaryotes) and outgroup (mitochondrial progenitor), which is important for accurate rooting. The resulting phylogeny reconstructs three eukaryote...

  13. Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes

    OpenAIRE

    Tekle, Yonas I.; Parfrey, Laura Wegener; Katz, Laura A

    2009-01-01

    The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and later electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene an...

  14. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry

    OpenAIRE

    Mentel, Marek; Martin, William

    2008-01-01

    Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much atte...

  15. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  16. Cas9-mediated targeting of viral RNA in eukaryotic cells

    OpenAIRE

    Price, Aryn A.; Sampson, Timothy R.; Ratner, Hannah K.; Grakoui, Arash; Weiss, David S

    2015-01-01

    The clustered, regularly interspaced, short palindromic repeats associated endonuclease, Cas9, has quickly become a revolutionary tool in genome engineering. Utilizing small guiding RNAs, Cas9 can be targeted to specific DNA sequences of interest, where it catalyzes DNA cleavage. We now demonstrate that Cas9 from the Gram-negative bacterium Francisella novicida (FnCas9) can be reprogrammed to target a specific RNA substrate, the genome of the +ssRNA virus, hepatitis C virus, in eukaryotic cel...

  17. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    OpenAIRE

    Heike Angerer

    2015-01-01

    In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have bee...

  18. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes

    OpenAIRE

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana...

  19. Eukaryotic Systems Broaden the Scope of Synthetic Biology

    OpenAIRE

    Haynes, Karmella A.; Silver, Pamela A.

    2009-01-01

    Synthetic biology aims to engineer novel cellular functions by assembling well-characterized molecular parts (i.e., nucleic acids and proteins) into biological “devices” that exhibit predictable behavior. Recently, efforts in eukaryotic synthetic biology have sprung from foundational work in bacteria. Designing synthetic circuits to operate reliably in the context of differentiating and morphologically complex cells presents unique challenges and opportunities for progress in the field. This ...

  20. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    Directory of Open Access Journals (Sweden)

    Olivier Lesouhaitier

    2009-09-01

    Full Text Available Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction

  1. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  2. Intracellular sterol transport in eukaryotes, a connection to mitochondrial function ?

    OpenAIRE

    Schneiter, Roger

    2007-01-01

    Eukaryotic cells synthesize sterols in the endoplasmatic reticulum (ER) from where it needs to be efficiently transported to the plasma membrane, which harbors not, vert, similar90% of the free sterol pool of the cell. Sterols that are being taken up from the environment, on the other hand, are transported back from the plasma membrane to the ER, where the free sterols are esterified to steryl esters. The molecular mechanisms that govern this bidirectional movement of sterols between the ER a...

  3. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    Science.gov (United States)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  4. An overview of pre-ribosomal RNA processing in eukaryotes

    OpenAIRE

    Henras, Anthony K.; Plisson-Chastang, Célia; O'Donohue, Marie-Françoise; Chakraborty, Anirban; Gleizes, Pierre-Emmanuel

    2014-01-01

    Ribosomal RNAs are the most abundant and universal noncoding RNAs in living organisms. In eukaryotes, three of the four ribosomal RNAs forming the 40S and 60S subunits are borne by a long polycistronic pre-ribosomal RNA. A complex sequence of processing steps is required to gradually release the mature RNAs from this precursor, concomitant with the assembly of the 79 ribosomal proteins. A large set of trans-acting factors chaperone this process, including small nucleolar ribonucleoparticles. ...

  5. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii

    OpenAIRE

    Lemaire, Stéphane D.; Guillon, Blanche; Le Maréchal, Pierre; Keryer, Eliane; Miginiac-Maslow, Myroslawa; Decottignies, Paulette

    2004-01-01

    Proteomics were used to identify the proteins from the eukaryotic unicellular green alga Chlamydomonas reinhardtii that can be reduced by thioredoxin. These proteins were retained specifically on a thioredoxin affinity column made of a monocysteinic thioredoxin mutant able to form mixed disulfides with its targets. Of a total of 55 identified targets, 29 had been found previously in higher plants or Synechocystis, but 26 were new targets. Biochemical tests were performed on three of them, sho...

  6. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells

    OpenAIRE

    Wu M; Kalyanasundaram A; Zhu J

    2013-01-01

    Min Wu,1 Aruna Kalyanasundaram,2 Jie Zhu1 1Laboratory of Biomechanics and Engineering, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; 2College of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA Abstract: Mitochondria serve as energy-producing organelles in eukaryotic cells. In addition to providing the energy supply for cells, the mitochondria are also involved in other processes, such as...

  7. Unraveling adaptation in eukaryotic pathways: lessons from protocells

    OpenAIRE

    De Palo, Giovanna; Robert G Endres

    2013-01-01

    Author Summary Adaptation is a common feature in sensory systems, well familiar to us from light and dark adaptation of our visual system. Biological cells, ranging from bacteria to complex eukaryotes, including single-cell organisms and human sensory receptors, adopt different strategies to fulfill this property. However, all of them require substantial amounts of energy to adapt. Here, we compare the different biological strategies and design two minimal models which allow adaptation withou...

  8. Contributions to the Proterozoic and Cambrian Evolution of Eukaryotes

    OpenAIRE

    Dong, Lin

    2007-01-01

    This thesis makes several contributions to improve our understanding of Proterozoic-Cambrian evolution of eukaryote life. Chapter 1 provides, for the first time, a quantitative characterization of the evolutionary trends of Proterozoic macroalgae. The analysis reveals that morphological disparity of Paleoproterozoic macroalgae was low but increased in the Mesoproterozoic and Ediacaran, with a plateau in between. There was also a significant increase in thallus surface/volume ratio and maxi...

  9. Microfossils' diversity from the Proterozoic Taoudeni Basin, Mauritania

    Science.gov (United States)

    Beghin, Jérémie; Houzay, Jean-Pierre; Blanpied, Christian; Javaux, Emmanuelle

    2014-05-01

    Prokaryotes and microscopic eukaryotes are known to have appeared well before the Cambrian's adaptative radiation which flourished perceptibly as a generalized macroscopic world. What do we know about the trigger events which stimulated eukaryotic diversification during the Proterozoic? Biological innovations or environmental changes, and indeed probably both (Knoll et al., 2006), played a fundamental role controlling this important step of life's evolution on Earth. Javaux (2011), proposed a diversification pattern of early eukaryotes divided into three steps and focusing on different taxonomic levels, from stem group to within crown group, of the domain Eukarya. Here, we present a new, exquisitely preserved and morphologically diverse assemblage of organic-walled microfossils from the 1.1 Ga El Mreiti Group of the Taoudeni Basin (Mauritania). The assemblage includes beautifully preserved microbial mats comprising pyritized filaments, prokaryotic filamentous sheaths and filaments, microfossils of uncertain biological affinity including smooth isolated and colonial sphaeromorphs (eukaryotes and/or prokaryotes), diverse protists (ornamented and process-bearing acritarchs), as well multicellular microfossils interpreted in the literature as possible xanthophyte algae. Several taxa are reported for the first time in Africa, but are known worldwide. This study improves microfossil diversity previously reported by Amard (1986) and shows purported xanthophyte algae contrary to a previous biomarker study suggesting the absence of eukaryotic algae, other than acritarchs, in the basin (Blumenberg et al., 2012). This new microfossil assemblage and others provide, all together, evidences of early and worldwide diversification of eukaryotes. Thereby, those first qualitative results also provide a basis for further and larger quantitative studies on the Taoudeni Basin. To better understand the palaeobiology (stem or crown group, aerobic or anaerobic metabolism) and

  10. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes.

    Science.gov (United States)

    Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A

    2016-08-01

    Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357

  11. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Takashi eMoriyama

    2014-09-01

    Full Text Available Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  12. DNA polymerase zeta (polζ) in higher eukaryotes

    Institute of Scientific and Technical Information of China (English)

    Gregory N Gan; John P Wittschieben; Birgitte φ Wittschieben; Richard D Wood

    2008-01-01

    Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where polζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already appar-ent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genuine instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair ofinterstrand DNA erosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent devel-opments in these areas.

  13. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).

    OpenAIRE

    Cavalier-Smith, T.

    2003-01-01

    Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all no...

  14. Arthropod Diversity in a Tropical Forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Guilhaumon, François; Missa, Olivier; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Schmidl, Jürgen; Tishechkin, Alexey K.; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jon R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Miller, Scott E.; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Leponce, Maurice

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic......,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of...

  15. First report of autochthonous non-vectorial canine leishmaniasis in New Caledonia, south-western Pacific: implications for new control measures and recommendations on importation of dogs

    OpenAIRE

    Daval, Nathalie; Marchal, Céline; Guillaumot, Laurent; Hüe, Thomas; Ravel, Christophe; Keck, Nicolas; Kasbari, Mohamed

    2016-01-01

    Background Canine leishmaniasis (CanL), a parasitic zoonotic disease caused by Leishmania infantum and usually transmitted by phlebotomine sandflies, has rarely been reported in Pacific islands, which have been regarded until now as leishmaniasis-free territory. Here, we report the first autochthonous CanL case in New Caledonia (south-western Pacific) and the investigations carried out 1) to determine how infection was introduced into and transmitted among these dogs and 2) to assess the risk...

  16. Inactivation efficiency of Escherichia coli and autochthonous bacteria during ozonation of municipal wastewater effluents quantified with flow cytometry and adenosine tri-phosphate analyses.

    Science.gov (United States)

    Lee, Yunho; Imminger, Stefanie; Czekalski, Nadine; von Gunten, Urs; Hammes, Frederik

    2016-09-15

    Inactivation kinetics of autochthonous bacteria during ozonation of wastewater effluents were investigated using cultivation-independent flow cytometry (FCM) with total cell count (TCC) and intact cell count (ICC) and intracellular adenosine triphosphate (ATP) analysis. The principles of the methods including ozone inactivation kinetics were demonstrated with laboratory-cultured Escherichia coli spiked into filtered and sterilized wastewater effluent. Both intracellular ATP and ICC decreased with increasing ozone doses, with ICC being the more conservative parameter. The log-inactivation levels (-log(N/N0) of E. coli reached the method detection limits for FCM (∼3) and ATP (∼1.7) at specific ozone doses of ≥0.5 gO3/gDOC. During ozonation of four real wastewater effluents, the log-inactivation of autochthonous bacteria with FCM ICC was 0.3-1.0 for 0.25 gO3/gDOC and increased to 1.1-2.1 for 0.5 gO3/gDOC, but remained at a similar level of 1.5-2.8 for a further increase of the specific ozone doses to 1.0 and 1.5 gO3/gDOC. The FCM data also showed that autochthonous bacteria were composed of communities with high and low ozone reactivity. The inactivation levels measured with intracellular ATP were reasonably correlated to ICC (r(2) = 0.8). Overall, FCM and ATP measurements were demonstrated to be useful tools to monitor the inactivation of autochthonous bacteria during ozonation of municipal wastewater effluents. PMID:27322566

  17. AUTOCHTHONOUS BIOFACIES IN THE PLIOCENE LORETO BASIN, BAJA CALIFORNIA SUR, MEXICO

    Directory of Open Access Journals (Sweden)

    MICHELE PIAZZA

    1998-07-01

    Full Text Available The present paper examines the molluscan and/or echinoid assemblages recovered from two lithostratigraphic units (Piedras Rodadas Sandstone and Arroyo de Arce Norte Sandstone outcropping in the Pliocene Loreto Basin, Baja California Sur, Mexico. Ten biofacies have been identified, i.e. Trachycardium procerum-Trachycardium senticosum Biofacies, Chione compta-Transennella modesta Biofacies, Laevicardium elenense-Chione kelletii Biofacies, Xenophora sp. 1-Strombus subgracilior Biofacies, Crassostrea californica osunai Biofacies, Myrakeena angelica Biofacies, Vermetid-Nodipecten Biofacies, Argopecten abietis abietis Biofacies, Aequipecten dallasi Biofacies and Encope Biofacies. The first four biofacies have been defined on the basis of statistical analyses (cluster analysis, MDS. The other six, which are monospecific or definitely low-diversity, were already identified during field work. The deduced paleoecological bearing of biofacies, largely relying upon the comparison to their closest modern counterparts, provides the basis for the paleoenvironmental reconstruction. The latter also considers sedimentological evidence and is framed within the tectonic and sedimentary context recently proposed by American workers. Biofacies point toward environments differing in terms of substrate texture, presence/absence of vegetal cover, energy level, variously distributed within the low tide mark-40 m bathymetric range. 

  18. Cultural diversity

    OpenAIRE

    Raghavan, Raghu

    2011-01-01

    The concept of cultural diversity has emerged as an influential one having impact on multiple policy and legal instruments especially following the adoption of the UNESCO Convention on the Protection and Promotion of the Diversity of Cultural Expressions in 2005. The discussions on its appropriate implementation are however profoundly fragmented and often laden with political considerations. The present brief paper offers some thoughts on the meaning of cultural diversity and its implementati...

  19. Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil.

    Science.gov (United States)

    Naranjo, Leopoldo; Urbina, Hector; De Sisto, Angela; Leon, Vladimir

    2007-03-01

    The increasing world demand for fuels makes it necessary to exploit the largest reserve of extra-heavy crude oil (EHCO) of the Orinoco Oil Belt from Venezuela. We propose the use of extracellular oxidative enzymes, in particular, lignin-degrading enzyme systems (LDS) of fungi, for enzymatic improvement of EHCO. Autochthonous non-white rot fungal strains able to use EHCO, and several polycyclic aromatic hydrocarbons (PAHs) as sole carbon source and energy, were isolated from EHCO-polluted soils and identified as belonging to the genera Fusarium, Penicillium , Trichoderma , Aspergillus , Neosartorya, Pseudallescheria, Cladosporium, Pestalotiopsis , Phoma and Paecillomyces. Phenotypic and biochemical assays revealed the ability of these filamentous fungi to synthesize extracellular oxidative enzymes, and suggested a relationship between the LDS and EHCO bioconversion. This work reports, for the first time, the use of o-phenylenediamine dihydrochloride (OPD) as substrate to measure extracellular ligninolytic peroxidases (ELP) in culture broths of filamentous fungi (Fusarium solani HP-1), and constitutes the first formal study of the fungal community associated with the EHCO of the Orinoco Oil Belt. PMID:18833334

  20. Potential antimicrobial and antiproliferative activities of autochthonous starter cultures and protease EPg222 in dry-fermented sausages.

    Science.gov (United States)

    Fernández, Margarita; Ruiz-Moyano, Santiago; Benito, María José; Martín, Alberto; Hernández, Alejandro; Córdoba, María de Guía

    2016-05-18

    This work studied the presence of nitrogen compounds with bioactive properties in Iberian pork sausages that were manufactured using different autochthonous starter cultures (Pediococcus acidilactici MS200 and Staphylococcus vitulus RS34) and protease EPg222. Nitrogen compounds were extracted and evaluated for their antimicrobial effect against spoilage and pathogenic bacteria, such as Bacillus cereus, Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus and Listeria monocytogenes, and antiproliferative activity on the HT-29 colon adenocarcinoma cell line. Dry-fermented sausages elaborated with starter cultures P200S34 and protease EPg222 generate extracts that cause inhibition of the growth of pathogens reaching 25% inhibition of Bacillus cereus, making this a promising tool for biocontrol in the meat industry. On the other hand, the inoculation of well-adapted starter cultures with high proteolytic activity also increased the antiproliferative activity of these extracts, around 45% inhibition at 72 h, mainly due to an increase in free amino acids, such as Lys and Pro, but also small peptides. PMID:27112426

  1. The Genetic History of Peruvian Quechua-Lamistas and Chankas: Uniparental DNA Patterns among Autochthonous Amazonian and Andean Populations.

    Science.gov (United States)

    Sandoval, José R; Lacerda, Daniela R; Acosta, Oscar; Jota, Marilza S; Robles-Ruiz, Paulo; Salazar-Granara, Alberto; Vieira, Pedro Paulo R; Paz-Y-Miño, César; Fujita, Ricardo; Santos, Fabricio R

    2016-03-01

    This study focuses on the genetic history of the Quechua-Lamistas, inhabitants of the Lamas Province in the San Martin Department, Peru, who speak their own distinct variety of the Quechua family of languages. It has been suggested that different pre-Columbian ethnic groups from the Peruvian Amazonia, like the Motilones or "shaven heads", assimilated the Quechua language and then formed the current native population of Lamas. However, many Quechua-Lamistas claim to be direct descendants of the Chankas, a famous pre-Columbian indigenous group that escaped from Inca rule in the Andes. To investigate the Quechua-Lamistas and Chankas' ancestries, we compared uniparental genetic profiles (17 STRs of Q-M3 Y-chromosome and mtDNA complete control region haplotypes) among autochthonous Amazonian and Andean populations from Peru, Bolivia and Ecuador. The phylogeographic and population genetic analyses indicate a fairly heterogeneous ancestry for the Quechua-Lamistas, while they are closely related to their neighbours who speak Amazonian languages, presenting no direct relationships with populations from the region where the ancient Chankas lived. On the other hand, the genetic profiles of self-identified Chanka descendants living in Andahuaylas (located in the Apurimac Department, Peru, in the Central Andes) were closely related to those living in Huancavelica and the assumed Chanka Confederation area before the Inca expansion. PMID:26879156

  2. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  3. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    Science.gov (United States)

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing. PMID:25740460

  4. Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers.

    Science.gov (United States)

    Suzuki, Katsunori; Moriguchi, Kazuki; Yamamoto, Shinji

    2015-12-01

    Horizontal gene transfer (HGT) is widespread among bacteria and plays a key role in genome dynamics. HGT is much less common in eukaryotes, but is being reported with increasing frequency in eukaryotes. The mechanism as to how eukaryotes acquired genes from distantly related organisms remains obscure yet. This paper cites examples of bacteria-derived genes found in eukaryotic organisms, and then describes experimental DNA transports to eukaryotes by bacterial type 4 secretion systems in optimized conditions. The mechanisms of the latter are efficient, quite reproducible in vitro and predictable, and thereby would provide insight into natural HGT and to the development of new research tools. PMID:26291765

  5. Assessment of fungal diversity in deep-sea sediments by multiple primer approach

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Raghukumar, C.; Verma, P.; Shouche, Y.

    Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian...

  6. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes.

    Directory of Open Access Journals (Sweden)

    Estienne C Swart

    Full Text Available The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5% of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes, have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size that vary from 469 bp to 66 kb long (mean ∼3.2 kb and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%, suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing

  7. Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens.

    Science.gov (United States)

    Greshake, Bastian; Zehr, Simonida; Dal Grande, Francesco; Meiser, Anjuli; Schmitt, Imke; Ebersberger, Ingo

    2016-03-01

    Whole-genome shotgun sequencing of multispecies communities using only a single library layout is commonly used to assess taxonomic and functional diversity of microbial assemblages. Here, we investigate to what extent such metagenome skimming approaches are applicable for in-depth genomic characterizations of eukaryotic communities, for example lichens. We address how to best assemble a particular eukaryotic metagenome skimming data, what pitfalls can occur, and what genome quality can be expected from these data. To facilitate a project-specific benchmarking, we introduce the concept of twin sets, simulated data resembling the outcome of a particular metagenome sequencing study. We show that the quality of genome reconstructions depends essentially on assembler choice. Individual tools, including the metagenome assemblers Omega and MetaVelvet, are surprisingly sensitive to low and uneven coverages. In combination with the routine of assembly parameter choice to optimize the assembly N50 size, these tools can preclude an entire genome from the assembly. In contrast, MIRA, an all-purpose overlap assembler, and SPAdes, a multisized de Bruijn graph assembler, facilitate a comprehensive view on the individual genomes across a wide range of coverage ratios. Testing assemblers on a real-world metagenome skimming data from the lichen Lasallia pustulata demonstrates the applicability of twin sets for guiding method selection. Furthermore, it reveals that the assembly outcome for the photobiont Trebouxia sp. falls behind the a priori expectation given the simulations. Although the underlying reasons remain still unclear, this highlights that further studies on this organism require special attention during sequence data generation and downstream analysis. PMID:26345272

  8. P Transposable Elements in Drosophila and other Eukaryotic Organisms.

    Science.gov (United States)

    Majumdar, Sharmistha; Rio, Donald C

    2015-04-01

    P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins. PMID:26104714

  9. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  10. Everyday Diversity

    Directory of Open Access Journals (Sweden)

    Christina Ho

    2015-03-01

    Full Text Available The Cosmopolitan Civil Societies Journal has been an important forum for discussing issues around cultural diversity. Articles on cultural diversity have been present in virtually every issue of the journal. These have ranged from conceptual pieces on cosmopolitanism, identity, dialogue, prejudice, pluralism, cultural and social capital and social inclusion, to articles embedded in empirical research on ethnic precincts and segregation in cities, experiences of religious minorities, immigrant entrepreneurs, and more. Over its five year history, the journal has also had themed editions on cultural diversity issues, including one on embracing diversity in sport, and another on the Chinese in Australian politics. The scope of this work has been wide, and authors have brought a range of disciplinary and methodological approaches to the journal.   The purpose of this paper is to draw together some of the work that has been published around cultural diversity, particularly relating to everyday experiences of cosmopolitanism and racism. Focusing on everyday social relations has been an important part of recent scholarship on cultural diversity in Australia (e.g. Wise and Velayutham 2009. In contrast to research framed around multicultural policy or mediated representations of diversity, the scholarship of the ‘everyday’ aims to explore people’s lived experiences and daily interactions with others.

  11. DNA-based molecular fingerprinting of eukaryotic protists and cyanobacteria contributing to sinking particle flux at the Bermuda Atlantic time-series study

    Science.gov (United States)

    Amacher, Jessica; Neuer, Susanne; Lomas, Michael

    2013-09-01

    We used denaturing gradient gel electrophoresis (DGGE) to examine the protist and cyanobacterial communities in the euphotic zone (0-120 m) and in corresponding 150 m particle interceptor traps at the Bermuda Atlantic Time-series Study (BATS) in a two-year monthly time-series from May 2008 to April 2010. Dinoflagellates were the most commonly detected taxa in both water column and trap samples throughout the time series. Diatom sequences were found only eight times in the water column, and only four times in trap material. Small-sized eukaryotic taxa, including the prasinophyte genera Ostreococcus, Micromonas, and Bathycoccus, were present in trap samples, as were the cyanobacteria Prochlorococcus and Synechococcus. Synechococcus was usually overrepresented in trap material, whereas Prochlorococcus was underrepresented compared to the water column. Both seasonal and temporal variability affected patterns of ribosomal DNA found in sediment traps. The two years of this study were quite different hydrographically, with higher storm activity and the passing of a cyclonic eddy causing unusually deep mixing in winter 2010. This was reflected in the DGGE fingerprints of the water column, which showed greater phylotype richness of eukaryotes and a lesser richness of cyanobacteria in winter of 2010 compared with the winter of 2009. Increases in eukaryotic richness could be traced to increased diversity of prasinophytes and prymnesiophytes. The decrease in cyanobacterial richness was in turn reflected in the trap composition, but the increase in eukaryotes was not, indicating a disproportionate contribution of certain taxa to sinking particle flux.

  12. Comparative analysis of eukaryotic cell-free expression systems.

    Science.gov (United States)

    Hartsough, Emily M; Shah, Pankti; Larsen, Andrew C; Chaput, John C

    2015-09-01

    Cell-free protein synthesis (CFPS) allows researchers to rapidly generate functional proteins independent of cell culture. Although advances in eukaryotic lysates have increased the amount of protein that can be produced, the nuances of different translation systems lead to variability in protein production. To help overcome this problem, we have compared the relative yield and template requirements for three commonly used commercial cell-free translation systems: wheat germ extract (WGE), rabbit reticulocyte lysate (RRL), and HeLa cell lysate (HCL). Our results provide a general guide for researchers interested in using cell-free translation to generate recombinant protein for biomedical applications. PMID:26345507

  13. Fuel Properties’ Comparison of Allochthonous Miscanthus x giganteus and Autochthonous Arundo donax L.: a Study Case in Croatia

    Directory of Open Access Journals (Sweden)

    Vanja Jurišić

    2014-05-01

    Full Text Available Increased energy demands, EU intentions for energy independence, together with decreasing fossil fuel reserves, have initiated the interest for new technology development. This would enable more intensive use of new renewable energy sources and contribute to increase among appliances based on biomass and energy crops. Miscanthus x giganteus is a perennial crop which has been received particular attention during the last decade as an energy crop. In the Republic of Croatia, it has been under investigation for the last two years, and the yields obtained by far are very promising. However, due to its potential and autochthonicity, there is a need for investigating the potential of another perennial, Arundo donax L. as energy crop. Among numerous tested energy crops, both species seem to be especially promising feedstocks due to their high production potential. Cultivation of these plants may be a sufficient alternative to wood from short-rotation forestry. Therefore, the objective of this study was to determine fuel properties of the two-abovementioned species, relevant for combustion of biomass to be used as solid fuel, and to compare them. Since biomass is characterized by a series of parameters that determine their most suitable process of conversion, properties such as biomass type, particles size, chemical and physical composition, way of fixation of the moisture, ash content, and higher heating value (HHV. Accordingly, proximate, and ultimate analyses, together with fuel properties determination were conducted on both, M. giganteus and A. donax Results indicated that both species could be proposed as biomass energy crops in the Republic of Croatia, with a significant and environmentally compatible contribution to energy needs.

  14. Fuel Properties’ Comparison of Allochthonous Miscanthus x giganteus and Autochthonous Arundo donax L.: a Study Case in Croatia

    Directory of Open Access Journals (Sweden)

    Vanja Jurišić

    2014-03-01

    Full Text Available Increased energy demands, EU intentions for energy independence, together with decreasing fossil fuel reserves, have initiated the interest for new technology development. This would enable more intensive use of new renewable energy sources and contribute to increase among appliances based on biomass and energy crops. Miscanthus x giganteus is a perennial crop which has been received particular attention during the last decade as an energy crop. In the Republic of Croatia, it has been under investigation for the last two years, and the yields obtained by far are very promising. However, due to its potential and autochthonicity, there is a need for investigating the potential of another perennial, Arundo donax L. as energy crop. Among numerous tested energy crops, both species seem to be especially promising feedstocks due to their high production potential. Cultivation of these plants may be a sufficient alternative to wood from short-rotation forestry. Therefore, the objective of this study was to determine fuel properties of the two-abovementioned species, relevant for combustion of biomass to be used as solid fuel, and to compare them. Since biomass is characterized by a series of parameters that determine their most suitable process of conversion, properties such as biomass type, particles size, chemical and physical composition, way of fixation of the moisture, ash content, and higher heating value (HHV. Accordingly, proximate, and ultimate analyses, together with fuel properties determination were conducted on both, M. giganteus and A. donax Results indicated that both species could be proposed as biomass energy crops in the Republic of Croatia, with a significant and environmentally compatible contribution to energy needs.

  15. First Proliferative Kidney Disease outbreak in Austria, linking to the aetiology of Black Trout Syndrome threatening autochthonous trout populations.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Kotob, Mohamed H; Unfer, Günter; El-Matbouli, Mansour

    2016-05-01

    Proliferative Kidney Disease (PKD) was diagnosed in juvenile autochthonous brown trout Salmo trutta for the first time in Austria during summer 2014. Cytology showed Tetracapsuloides bryosalmonae sporoblasts, and histology revealed sporogonic (coelozoic) and extrasporogonic (histozoic) stages. Analysis of malacosporean ribosomal small subunit revealed that this strain is closely related to European isolates, although its source is unknown. Infection and high pathogenicity were reproduced upon a pre-restocking test with specific pathogen free (SPF) juvenile trout, resulting in 100% mortality between 28 and 46 d post exposure (dpe), with high ectoparasitosis. Fish showed grade 2 of the Kidney Swelling Index and grade 3 of the PKD histological assessment. T. bryosalmonae enzootic waters were demonstrated in further locations along the River Kamp, with infected bryozoans retrieved up to 6 km upstream of the farm with the PKD outbreak. Fredericella sultana colonies collected from these locations were cultivated in laboratory conditions. Released malacospores successfully induced PKD, and contextually Black Trout Syndrome (BTS), in SPF brown trout. In the absence of co-infections mortality occurred between 59 and 98 dpe, with kidneys enlarged up to 6.74% of total body weight (normal 1.23%). This study confirms the first isolation of a pathogenic myxozoan from an Austrian river tributary of the Danube, where its 2-host life cycle is fully occurring. Its immunosuppressant action could link PKD as a key factor in the multifactorial aetiology of BTS. This T. bryosalmonae isolation provides an impetus to undertake further multi-disciplinary research, aiming to assess the impact of PKD and BTS spreading to central European regions. PMID:27137070

  16. AMPELOGRAPHIC CHARACTERIZATION OF THE AUTOCHTHONOUS GRAPE CULTIVAR “KALLMET” IN MAL��SIA E MADHE, ALBANIA

    Directory of Open Access Journals (Sweden)

    Bardhosh Ferraj

    2012-06-01

    Full Text Available “Kallmet” is one of the most sprout autochthonous wine grape cultivar in the North-western and Central part of Albania. Study was conducted in three consecutive years, 2009-2011, in Malësia e Madhe, 250 m above the sea level, in the North-western part of Albania, in a 10 years old vineyard. For evaluation of the main characteristics the IPGRI Descriptors of Grapevine was used. Form of the new shoot tip of “Kallmet” is half-open, with no anthocianic coloration, and densely prostrate hairs. The upper surface colour of new leaf is green with bronze spots. Flower type is functional female, and the first florescence appears at the 4-5th nodes. Mature leaf size is medium, leaf shape is pentangular, shape of the lateral teeth is convex in both sides, shape of the base sinus is half-open, shape of the upper lateral sinus is closed, and the depth of the upper lateral sinus is 63 mm. Bunch weight is small and bunch density is medium. “Kallmet” has medium-sized spherical deep red to violet berry with soft colourless pulp. Berries are not uniform and there occur a high rate of millerandage because of the lack of pollination during flowering time. Grape yield is 155 kv ha-1, grape must content is 67 ml/100 g fresh grape, sugar content is 21%, total acidity 5.7 g/l. The time of bud break is medium, while the number of inflorescences for fruit-bearing offshoot is 1.7. The annual vegetative growth is 180 cm. “Kallmet” leaves are susceptible to Plasmopara viticola, while the berries appear a relatively high resistance to Plasmopara viticola, and high resistance to Uncinula necator and Botrytis cynerea.

  17. Understanding Diversity

    NARCIS (Netherlands)

    D.L. van Knippenberg (Daan)

    2007-01-01

    textabstractDaan van Knippenberg is Professor of Organizational Behavior at RSM Erasmus University, Erasmus University Rotterdam, The Netherlands. His research interests include work group performance, especially work group diversity and group decision making, leadership, in particular the roles of

  18. Gender Diversities

    DEFF Research Database (Denmark)

    Agustin, Lise Rolandsen; Siim, Birte

    2014-01-01

    The article analyses the European Year for Combating Poverty and Social Exclusion (2010) (EY 2010) with the aim of identifying the nature of gender diversities in EU policies. We argue that the EU handles issues related to gender and diversity in particular ways; this approach is characterized by...... non-citizen/citizen and redistribution/recognition divisions. Employing intersectionality as the methodological approach to gender diversities, the article shows how gender and ethnicity are articulated in the policy-making process which led to the adoption of EY 201, the activities undertaken during...... the EY 2010, and the evaluation of EY 2010. The case study is suitable for developing a dynamic multi-level model for analysing gendered diversities at the transnationmal level: It illustrates how the EU policy frame interacts with particular national contexts in promoting or hundering the advancement...

  19. Everyday Diversity

    OpenAIRE

    Christina Ho

    2015-01-01

    The Cosmopolitan Civil Societies Journal has been an important forum for discussing issues around cultural diversity. Articles on cultural diversity have been present in virtually every issue of the journal. These have ranged from conceptual pieces on cosmopolitanism, identity, dialogue, prejudice, pluralism, cultural and social capital and social inclusion, to articles embedded in empirical research on ethnic precincts and segregation in cities, experiences of religious minorities, immigrant...

  20. Diversity management

    OpenAIRE

    Kupková, Barbora

    2014-01-01

    The Bachelor's Thesis analyses the extent of integration of Diversity Management in selected companies from the Czech Republic as well as application of its methods during a recruitment process. The thesis aims to map out the role of particular HR departments in this field of management and also to find out whether those companies analyse or evaluate the results and benefits of this modern approach. The attitudes to managing diversity of selected companies and the tools they uses for that wer...

  1. Doing Diversity

    DEFF Research Database (Denmark)

    Just, Sine Nørholm; Christiansen, Tanja Juul

    2012-01-01

    invite audiences to take up subject positions, understood as combinations of identity and agency. Danish diversity management rhetoric functions as an illustrative example; in analyzing this type of rhetoric we show how subjects are called into restrained positions of similarity/difference and thereby...... demonstrate the explanatory potential of the performative framework. Subsequently, we discuss how the concept of personae may provide a basis for alternatives to the restrictive positioning that currently dominates diversity management rhetoric....

  2. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    Science.gov (United States)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  3. In silico ionomics segregates parasitic from free-living eukaryotes.

    Science.gov (United States)

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals. PMID:24048281

  4. Construction and identification of eukaryotic eukaryotic expression plasmid pcdna3.1-bace and its transient expression in cells

    Institute of Scientific and Technical Information of China (English)

    Huilin Gong; Guanjun Zhang; Weijiang Dong

    2006-01-01

    Objective: To generate eukaryotic expression vector of pcDNA3.1-BACE and obtain its transient expression in COS-7 cells and high expression in the neuroblastoma SK-N-SH cells. Methods: A 1503 bp cDNA fragment was amplified from the total RNA of human neuroblastoma by RT-PCR method and cloned into plasmid pcDNA3.1. The vector was identified by digestion with restriction enzymes BamHI and XhoI and sequenced by Sanger-dideoxy-mediated chain termination. The expression of BACE gene was detected by immunocytochemistry method. Results: The results showed that the cDNAfragment included 1503 bp total coding region. The recombinant eukaryotic cell expression vector of pcDNA3.1-BACE was constructed successfully,and the sequence of insert was identical to the published sequence. The COS-7 cells and the neuroblastoma SK-N-SH cells transfected with the pcDNA3.1-BACE plasmid expressed high level of BACE protein in cytoplasm. Conclusion: The recombinant plasmid pcDNA3.1-BACE can provide very useful tool for researching the reason of Alzheimer's disease and lays the important foundation for preventing the AD laterly.

  5. Gene shuttling: moving of cloned DNA into and out of eukaryotic cells.

    OpenAIRE

    Lindenmaier, W; Hauser, H.; de Wilke, I G; Schütz, G

    1982-01-01

    Successful shuttling of cloned DNA in eukaryotic cells should allow isolation of expressed genes. We tested the utility of cosmids for moving DNA into and out of eukaryotic cells. The unique cleavage of DNA at the cos site by the terminase function of lambda was exploited to maintain the linkage between the vector and inserted gene sequences, a prerequisite for successful rescue of the transforming DNA from high molecular weight DNA of the eukaryotic transformant. A cosmid recombinant contain...

  6. DNA2 Encodes a DNA Helicase Essential for Replication of Eukaryotic Chromosomes

    OpenAIRE

    Budd, Martin E.; Choe, Won-chae; Campbell, Judith L.

    1995-01-01

    Although a number of eukaryotic DNA helicases have been identified biochemically and still more have been inferred from the amino acid sequences of the products of cloned genes, none of the cellular helicases or putative helicases has to date been implicated in eukaryotic chromosomal DNA replication. By the same token, numerous eukaryotic replication proteins have been identified, but none of these is a helicase. We have recently identified and characterized a temperature-sensitive yeast muta...

  7. Pathogenic Eukaryotes in Gut Microbiota of Western Lowland Gorillas as Revealed by Molecular Survey

    OpenAIRE

    Ibrahim Hamad; Mamadou B. Keita; Martine Peeters; Eric Delaporte; Didier Raoult; Fadi Bittar

    2014-01-01

    Although gorillas regarded as the largest extant species of primates and have a close phylogenetic relationship with humans, eukaryotic communities have not been previously studied in these populations. Herein, 35 eukaryotic primer sets targeting the 18S rRNA gene, internal transcribed spacer gene and other specific genes were used firstly to explore the eukaryotes in a fecal sample from a wild western lowland gorilla (Gorilla gorilla gorilla). Then specific real-time PCRs were achieved in ad...

  8. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  9. Synchronization of eukaryotic flagella in vivo: from two to thousands

    Science.gov (United States)

    Goldstein, Raymond E.

    2012-02-01

    From unicellular organisms as small as a few microns to the largest vertebrates on Earth, we find groups of beating flagella or cilia that exhibit striking spatiotemporal organization. This may take the form of precise frequency and phase locking, as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates such as Paramecium and in our own respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. This talk will summarize recent work using the unicellular alga Chlamydomonas reinhardtii and its multicellular cousin Volvox carteri to study in detail the nature of flagellar synchronization and its possible hydrodynamic origins.

  10. Emergence of Synchronized Beating during the Regrowth of Eukaryotic Flagella

    Science.gov (United States)

    Goldstein, Raymond E.; Polin, Marco; Tuval, Idan

    2011-09-01

    A fundamental issue in the biology of eukaryotic flagella is the origin of synchronized beating observed in tissues and organisms containing multiple flagella. Recent studies of the biflagellate unicellular alga Chlamydomonas reinhardtii provided the first evidence that the interflagellar coupling responsible for synchronization is of hydrodynamic origin. To investigate this mechanism in detail, we study here synchronization in Chlamydomonas as its flagella slowly regrow after mechanically induced self-scission. The duration of synchronized intervals is found to be strongly dependent on flagellar length. Analysis within a stochastic model of coupled phase oscillators is used to extract the length dependence of the interflagellar coupling and the intrinsic beat frequencies of the two flagella. Physical and biological considerations that may explain these results are proposed.

  11. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  12. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-03-01

    Full Text Available Biologic influence of deuterium (D on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О. The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of D2О (from 0 up to 98 % D2O and the subsequent selection of stable to D2O cells. In the result of that technique were obtained adapted to maximum concentration of D2O cells, biological material of which instead of hydrogen contained deuterium with levels of enrichment 92–97,5 at.% D.

  13. Prevention of DNA re-replication in eukaryotic cells

    Institute of Scientific and Technical Information of China (English)

    Lan N. Truong; Xiaohua Wu

    2011-01-01

    DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints.Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.

  14. Kinetic model of DNA replication in eukaryotic organisms

    CERN Document Server

    Herrick, J; Bensimon, A; Herrick, John; Bechhoefer, John; Bensimon, Aaron

    2001-01-01

    We formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. The model describes well a large amount of different data within a simple theoretical framework. This allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.

  15. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green...... fluorescent protein-based redox probe termed redox sensitive YFP (rxYFP). Using yeast with genetically manipulated GSSG levels, we find that rxYFP equilibrates with the cytosolic glutathione redox buffer. Furthermore, in vivo and in vitro data show the equilibration to be catalyzed by glutaredoxins and that...... conditions of high intracellular GSSG confer to these a new role as dithiol oxidases. For the first time a genetically encoded probe is used to determine the redox potential specifically of cytosolic glutathione. We find it to be -289 mV, indicating that the glutathione redox status is highly reducing and...

  16. The origin of branched GDGTs in lake environments: Tracing allochthonous and autochthonous sources using compound-specific carbon isotope analysis

    Science.gov (United States)

    Weber, Yuki; De Jonge, Cindy; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.; Gilli, Adrian; Lehmann, Moritz F.; Niemann, Helge

    2015-04-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are ubiquitous in soils and peat, as well as in sediments and suspended particulate matter (SPM) of lakes, rivers and coastal marine environments. It has been found that the relative distribution of brGDGTs changes systematically with ambient temperature and pH, making them promising proxy indicators for paleoclimatic reconstructions in sedimentary archives. In lacustrine deposits, it was initially assumed that brGDGTs mainly originate from allochthonous soil organic matter, thus reflecting the integrated mean annual air temperature (MAAT) within the watershed. Most recent research, however, strongly suggest that the brGDGTs used for paleo-thermometry can also be produced in situ within the lake system, offsetting the temperature-brGDGT relationships commonly known from soils. Until now, disentangling the relative contribution of allochthonous versus autochthonous brGDGT sources in lacustrine sediments was impossible, complicating the use of brGDGTs for quantitative paleotemperature reconstructions. We recently discovered a novel brGDGT isomer with a strongly 13C-depleted carbon isotope composition of about 46.6 o in sediments of a small eutrophic Alpine lake (Lake Hinterburg, Switzerland), which was not present in soils collected from the catchment. Furthermore, all other major brGDGTs in the sediment uniformly displayed δ13C values of about 43 o strongly contrasting the C-isotopic composition of brGDGTs from catchment soils (ca. 27 ). These findings raise two prime questions: (1) Are lake-derived brGDGTs generally more depleted in 13C with respect to their allochthonous counterparts? (2) Does the δ13C of sedimentary brGDGTs serve as a reliable indicator for lacustrine in situ production of brGDGTs? To address these questions, we determined the 13C content of brGDGTs in surface sediments from various lakes across the Swiss Alps by CG-IRMS analysis of their alkyl chains

  17. A large factory-scale application of selected autochthonous lactic acid bacteria for PDO Pecorino Siciliano cheese production.

    Science.gov (United States)

    Guarcello, Rosa; Carpino, Stefania; Gaglio, Raimondo; Pino, Alessandra; Rapisarda, Teresa; Caggia, Cinzia; Marino, Giovanni; Randazzo, Cinzia L; Settanni, Luca; Todaro, Massimo

    2016-10-01

    The main hypothesis of this study was that the autochthonous lactic acid bacteria (LAB) selected for their dairy traits are able to stabilize the production of PDO (Protected Denomination of Origin) Pecorino Siciliano cheese, preserving its typicality. The experimental plan included the application of a multi-strain lactic acid bacteria (LAB) culture, composed of starter (Lactococcus lactis subsp. lactis CAG4 and CAG37) and non starter (Enterococcus faecalis PSL71, Lactococcus garviae PSL67 and Streptococcus macedonicus PSL72) strains, during the traditional production of cheese at large scale level in six factories located in different areas of Sicily. The cheese making processes were followed from milk to ripened cheeses and the effects of the added LAB were evaluated on the microbiological, chemico-physical and sensorial characteristics of the final products. Results highlighted a high variability for all investigated parameters and the dominance of LAB cocci in bulk milk samples. The experimental curds showed a faster pH drop than control curds and the levels of LAB estimated in 5-month ripened experimental cheeses (7.59 and 7.27 Log CFU/g for rods and cocci, respectively) were higher than those of control cheeses (7.02 and 6.61 Log CFU/g for rods and cocci, respectively). The comparison of the bacterial isolates by randomly amplified polymorphic DNA (RAPD)-PCR evidenced the dominance of the added starter lactococci over native milk and vat LAB, while the added non starter LAB were found at almost the same levels of the indigenous strains. The sensory evaluation showed that the mixed LAB culture did not influence the majority of the sensory attributes of the cheeses and that each factory produced cheeses with unique characteristics. Finally, the multivariate statistical analysis based on all parameters evaluated on the ripened cheeses showed the dissimilarities and the relationships among cheeses. Thus, the main hypothesis of the work was accepted since the

  18. Assessing performance of orthology detection strategies applied to eukaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Feng Chen

    Full Text Available Orthology detection is critically important for accurate functional annotation, and has been widely used to facilitate studies on comparative and evolutionary genomics. Although various methods are now available, there has been no comprehensive analysis of performance, due to the lack of a genomic-scale 'gold standard' orthology dataset. Even in the absence of such datasets, the comparison of results from alternative methodologies contains useful information, as agreement enhances confidence and disagreement indicates possible errors. Latent Class Analysis (LCA is a statistical technique that can exploit this information to reasonably infer sensitivities and specificities, and is applied here to evaluate the performance of various orthology detection methods on a eukaryotic dataset. Overall, we observe a trade-off between sensitivity and specificity in orthology detection, with BLAST-based methods characterized by high sensitivity, and tree-based methods by high specificity. Two algorithms exhibit the best overall balance, with both sensitivity and specificity>80%: INPARANOID identifies orthologs across two species while OrthoMCL clusters orthologs from multiple species. Among methods that permit clustering of ortholog groups spanning multiple genomes, the (automated OrthoMCL algorithm exhibits better within-group consistency with respect to protein function and domain architecture than the (manually curated KOG database, and the homolog clustering algorithm TribeMCL as well. By way of using LCA, we are also able to comprehensively assess similarities and statistical dependence between various strategies, and evaluate the effects of parameter settings on performance. In summary, we present a comprehensive evaluation of orthology detection on a divergent set of eukaryotic genomes, thus providing insights and guides for method selection, tuning and development for different applications. Many biological questions have been addressed by multiple

  19. Group II intron-based gene targeting reactions in eukaryotes.

    Directory of Open Access Journals (Sweden)

    Marta Mastroianni

    Full Text Available Mobile group II introns insert site-specifically into DNA target sites by a mechanism termed retrohoming in which the excised intron RNA reverse splices into a DNA strand and is reverse transcribed by the intron-encoded protein. Retrohoming is mediated by a ribonucleoprotein particle that contains the intron-encoded protein and excised intron RNA, with target specificity determined largely by base pairing of the intron RNA to the DNA target sequence. This feature enabled the development of mobile group II introns into bacterial gene targeting vectors ("targetrons" with programmable target specificity. Thus far, however, efficient group II intron-based gene targeting reactions have not been demonstrated in eukaryotes.By using a plasmid-based Xenopus laevis oocyte microinjection assay, we show that group II intron RNPs can integrate efficiently into target DNAs in a eukaryotic nucleus, but the reaction is limited by low Mg(2+ concentrations. By supplying additional Mg(2+, site-specific integration occurs in up to 38% of plasmid target sites. The integration products isolated from X. laevis nuclei are sensitive to restriction enzymes specific for double-stranded DNA, indicating second-strand synthesis via host enzymes. We also show that group II intron RNPs containing either lariat or linear intron RNA can introduce a double-strand break into a plasmid target site, thereby stimulating homologous recombination with a co-transformed DNA fragment at frequencies up to 4.8% of target sites. Chromatinization of the target DNA inhibits both types of targeting reactions, presumably by impeding RNP access. However, by using similar RNP microinjection methods, we show efficient Mg(2+-dependent group II intron integration into plasmid target sites in zebrafish (Danio rerio embryos and into plasmid and chromosomal target sites in Drosophila melanogster embryos, indicating that DNA replication can mitigate effects of chromatinization.Our results provide an

  20. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes.

    Science.gov (United States)

    Zhang, Dapeng; Aravind, L

    2010-12-01

    Eukaryotes contain an elaborate membrane system, which bounds the cell itself, nuclei, organelles and transient intracellular structures, such as vesicles. The emergence of this system was marked by an expansion of a number of structurally distinct classes of lipid-binding domains that could throw light on the early evolution of eukaryotic membranes. The C2 domain is a useful model to understand these events because it is one of the most prevalent eukaryotic lipid-binding domains deployed in diverse functional contexts. Most studies have concentrated on C2 domains prototyped by those in protein kinase C (PKC-C2) isoforms that bind lipid in a calcium-dependent manner. While two other distinct families of C2 domains, namely those in PI3K-C2 and PTEN-C2 are also recognized, a complete picture of evolutionary relationships within the C2 domain superfamily is lacking. We systematically studied this superfamily using sequence profile searches, phylogenetic and phyletic-pattern analysis and structure-prediction. Consequently, we identified several distinct families of C2 domains including those respectively typified by C2 domains in the Aida (axin interactor, dorsalization associated) proteins, B9 proteins (e.g. Mks1 (Xbx-7), Stumpy (Tza-1) and Tza-2) involved in centrosome migration and ciliogenesis, Dock180/Zizimin proteins which are Rac/CDC42 GDP exchange factors, the EEIG1/Sym-3, EHBP1 and plant RPG/PMI1 proteins involved in endocytotic recycling and organellar positioning and an apicomplexan family. We present evidence that the last eukaryotic common ancestor (LECA) contained at least 10 C2 domains belonging to 6 well-defined families. Further, we suggest that this pre-LECA diversification was linked to the emergence of several quintessentially eukaryotic structures, such as membrane repair and vesicular trafficking system, anchoring of the actin and tubulin cytoskeleton to the plasma and vesicular membranes, localization of small GTPases to membranes and lipid

  1. Evolutionary Pattern of N-Glycosylation Sequon Numbers  in Eukaryotic ABC Protein Superfamilies

    Directory of Open Access Journals (Sweden)

    R. Shyama Prasad Rao

    2010-02-01

    Full Text Available Many proteins contain a large number of NXS/T sequences (where X is any amino acid except proline which are the potential sites of asparagine (N linked glycosylation. However, the patterns of occurrence of these N-glycosylation sequons in related proteins or groups of proteins and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average, but the sequon density was significantly lower owing to the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher sequon density, and both serine and threonine containing sequons (NXS and NXT have been positively selected—against the recent findings of only threonine specific Darwinian selection of sequons in proteins. The occurrence of sequons was positively correlated with the frequency of sequon specific amino acids and negatively correlated with proline and the NPS/T sequences. Further, the NPS/T sequences were significantly higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord- ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and the results are discussed in an evolutionary perspective.

  2. Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12.

    Science.gov (United States)

    Helliwell, Katherine Emma; Lawrence, Andrew David; Holzer, Andre; Kudahl, Ulrich Johan; Sasso, Severin; Kräutler, Bernhard; Scanlan, David John; Warren, Martin James; Smith, Alison Gail

    2016-04-25

    Eukaryotic microalgae and prokaryotic cyanobacteria are the major components of the phytoplankton. Determining factors that govern growth of these primary producers, and how they interact, is therefore essential to understanding aquatic ecosystem productivity. Over half of microalgal species representing marine and freshwater habitats require for growth the corrinoid cofactor B12, which is synthesized de novo only by certain prokaryotes, including the majority of cyanobacteria. There are several chemical variants of B12, which are not necessarily functionally interchangeable. Cobalamin, the form bioavailable to humans, has as its lower axial ligand 5,6-dimethylbenzimidazole (DMB). Here, we show that the abundant marine cyanobacterium Synechococcus synthesizes only pseudocobalamin, in which the lower axial ligand is adenine. Moreover, bioinformatic searches of over 100 sequenced cyanobacterial genomes for B12 biosynthesis genes, including those involved in nucleotide loop assembly, suggest this is the form synthesized by cyanobacteria more broadly. We further demonstrate that pseudocobalamin is several orders of magnitude less bioavailable than cobalamin to several B12-dependent microalgae representing diverse lineages. This indicates that the two major phytoplankton groups use a different B12 currency. However, in an intriguing twist, some microalgal species can use pseudocobalamin if DMB is provided, suggesting that they are able to remodel the cofactor, whereas Synechococcus cannot. This species-specific attribute implicates algal remodelers as novel and keystone players of the B12 cycle, transforming our perception of the dynamics and complexity of the flux of this nutrient in aquatic ecosystems. PMID:27040778

  3. Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12

    Science.gov (United States)

    Helliwell, Katherine Emma; Lawrence, Andrew David; Holzer, Andre; Kudahl, Ulrich Johan; Sasso, Severin; Kräutler, Bernhard; Scanlan, David John; Warren, Martin James; Smith, Alison Gail

    2016-01-01

    Summary Eukaryotic microalgae and prokaryotic cyanobacteria are the major components of the phytoplankton. Determining factors that govern growth of these primary producers, and how they interact, is therefore essential to understanding aquatic ecosystem productivity. Over half of microalgal species representing marine and freshwater habitats require for growth the corrinoid cofactor B12, which is synthesized de novo only by certain prokaryotes, including the majority of cyanobacteria. There are several chemical variants of B12, which are not necessarily functionally interchangeable. Cobalamin, the form bioavailable to humans, has as its lower axial ligand 5,6-dimethylbenzimidazole (DMB). Here, we show that the abundant marine cyanobacterium Synechococcus synthesizes only pseudocobalamin, in which the lower axial ligand is adenine. Moreover, bioinformatic searches of over 100 sequenced cyanobacterial genomes for B12 biosynthesis genes, including those involved in nucleotide loop assembly, suggest this is the form synthesized by cyanobacteria more broadly. We further demonstrate that pseudocobalamin is several orders of magnitude less bioavailable than cobalamin to several B12-dependent microalgae representing diverse lineages. This indicates that the two major phytoplankton groups use a different B12 currency. However, in an intriguing twist, some microalgal species can use pseudocobalamin if DMB is provided, suggesting that they are able to remodel the cofactor, whereas Synechococcus cannot. This species-specific attribute implicates algal remodelers as novel and keystone players of the B12 cycle, transforming our perception of the dynamics and complexity of the flux of this nutrient in aquatic ecosystems. PMID:27040778

  4. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes.

    Science.gov (United States)

    Gladieux, Pierre; Ropars, Jeanne; Badouin, Hélène; Branca, Antoine; Aguileta, Gabriela; de Vienne, Damien M; Rodríguez de la Vega, Ricardo C; Branco, Sara; Giraud, Tatiana

    2014-02-01

    Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well-identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens. PMID:24341913

  5. FAM46 proteins are novel eukaryotic non-canonical poly(A) polymerases.

    Science.gov (United States)

    Kuchta, Krzysztof; Muszewska, Anna; Knizewski, Lukasz; Steczkiewicz, Kamil; Wyrwicz, Lucjan S; Pawlowski, Krzysztof; Rychlewski, Leszek; Ginalski, Krzysztof

    2016-05-01

    FAM46 proteins, encoded in all known animal genomes, belong to the nucleotidyltransferase (NTase) fold superfamily. All four human FAM46 paralogs (FAM46A, FAM46B, FAM46C, FAM46D) are thought to be involved in several diseases, with FAM46C reported as a causal driver of multiple myeloma; however, their exact functions remain unknown. By using a combination of various bioinformatics analyses (e.g. domain architecture, cellular localization) and exhaustive literature and database searches (e.g. expression profiles, protein interactors), we classified FAM46 proteins as active non-canonical poly(A) polymerases, which modify cytosolic and/or nuclear RNA 3' ends. These proteins may thus regulate gene expression and probably play a critical role during cell differentiation. A detailed analysis of sequence and structure diversity of known NTases possessing PAP/OAS1 SBD domain, combined with state-of-the-art comparative modelling, allowed us to identify potential active site residues responsible for catalysis and substrate binding. We also explored the role of single point mutations found in human cancers and propose that FAM46 genes may be involved in the development of other major malignancies including lung, colorectal, hepatocellular, head and neck, urothelial, endometrial and renal papillary carcinomas and melanoma. Identification of these novel enzymes taking part in RNA metabolism in eukaryotes may guide their further functional studies. PMID:27060136

  6. Peroxicretion : a novel secretion pathway in the eukaryotic cell

    NARCIS (Netherlands)

    Sagt, Cees M.J.; Haaft, Peter J. ten; Minneboo, Ingeborg M.; Hartog, Miranda P.; Damveld, Robbert A.; Laan, Jan Metske van der; Akeroyd, Michiel; Wenzel, Thibaut J.; Luesken, Francisca A.; Veenhuis, Marten; Klei, Ida van der; Winde, Johannes H. de

    2009-01-01

    Background: Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzyme

  7. Peroxicretion: a novel secretion pathway in the eukaryotic cell

    NARCIS (Netherlands)

    Sagt, C.M.J.; Ten Haaft, P.J.T; Minneboo, I.M.; Hartog, M.P.; Damveld, R.A.; Van der Laan, J.M.; Akeroyd, M; Wenzel, T.J.; Luesken, F.A.; Veenhuis, M.; Van der Klei, I.; De Winde, J.H.

    2009-01-01

    Background: Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzyme

  8. Generational diversity.

    Science.gov (United States)

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions. PMID:20395729

  9. Biostimulation of the autochthonous bacterial community and bioaugmentation of selected bacterial strains for the depletion of Polycyclic Aromatic Hydrocarbons in a historically contaminated soil

    Science.gov (United States)

    DiGregorio, Simona; Ruffini Castglione, Monica; Gentini, Alessandro; Lorenzi, Roberto

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic contaminants causing hazards to organisms including humans. The objective of the study was (1) to validate the biostimulation of the autochthonous bacterial population by the amendment of lignocellulosic matrices inoculated with white rot fungi, to be exploited for the depletion of PAHs (5687 ppm) in a historical contaminated soil. (2) to validate the isolation of autochthonous bacterial strains capable to use PAHs as sole carbon source and their massive bioaugmentation for PAH depletion in a historical contaminated soil. The validation has been performed at mesocosm and pilot scale (7 tons of soil in a biopile). The two approaches end up with the complete depletion of the PAHs. A genotoxicological assessment of the process and of the soil at the end of the process of decontamination has been performed. The process of soil decontamination showed an increase in the genotoxicity of either the soil and the deriving elutriates. The bioaugmetation of selected bacterial strains determined the complete detoxification of the decontaminated soil after 21 weeks. The microbial ecology of the system during the process of decontamination has been monitored.

  10. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David;

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...... expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general...

  11. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia;

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...... of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date....

  12. Developing genetic tools to exploit Chaetomium thermophilum for biochemical analyses of eukaryotic macromolecular assemblies

    OpenAIRE

    Nikola Kellner; Johannes Schwarz; Miriam Sturm; Javier Fernandez-Martinez; Sabine Griesel; Wenzhu Zhang; Chait, Brian T.; Rout, Michael P.; Ulrich Kück; Ed Hurt

    2016-01-01

    We describe a method to genetically manipulate Chaetomium thermophilum, a eukaryotic thermophile, along with various biochemical applications. The transformation method depends on a thermostable endogenous selection marker operating at high temperatures combined with chromosomal integration of target genes. Our technique allows exploiting eukaryotic thermophiles as source for purifying thermostable native macromolecular complexes with an emphasis on the nuclear pore complex, holding great pot...

  13. Troubling Diversity?

    DEFF Research Database (Denmark)

    Jæger, Kirsten; Jensen, Annie Aarup

    2009-01-01

    Focussing on the cultural encounter between nurses and ethnic minority patients in Danish hospitals, this paper presents the results of a comprehensive analysis of nursing discourses on cultural difference and intercultural contact. Articles from the Danish professional journal ‘The Nurse......', published in the period from 2000 to 2008, pertaining to cultural contact and intercultural understanding have been analyzed in order to uncover nurses' experience of ethnic and cultural diversity and the ways, in which these experiences challenge their cultural and professional expertise. Results...... are related to recent contributions to diversity management theory and intercultural communication theory, calling for a strengthened focus on the historical, political, and social dimensions of intercultural contact. In continuation of these trends, an alternative, theoretical framework...

  14. Synchronization of Eukaryotic Flagella and the Evolution of Multicellularity

    Science.gov (United States)

    Goldstein, Raymond

    2009-03-01

    Flagella, among the most highly conserved structures in eukaryotes, are responsible for such tasks as fluid transport, motility and phototaxis, establishment of embryonic left-right asymmetry, and intercellular communication, and are thought to have played a key role in the development of multicellularity. These tasks are usually performed by the coordinated action of groups of flagella (from pairs to thousands), which display various types of spatio-temporal organization. The origin and quantitative characterization of flagellar synchronization has remained an important open problem, involving interplay between intracellular biochemistry and interflagellar mechanical/hydrodynamic coupling. The Volvocine green algae serve as useful model organisms for the study of these phenomena, as they form a lineage spanning from unicellular Chlamydomonas to germ-soma differentiated Volvox, having as many as 50,000 biflagellated surface somatic cells. In this talk I will describe extensive studies [1], using micromanipulation and high-speed imaging, of the flagellar synchronization of two key species - Chlamydomonas reinhardtii and Volvox carteri - over tens of thousands of cycles. With Chlamydomonas we find that the flagellar dynamics moves back and forth between a stochastic synchronized state consistent with a simple model of hydrodynamically coupled noisy oscillators, and a deterministic one driven by a large interflagellar frequency difference. These results reconcile previously contradictory studies, based on short observations, showing only one or the other of these two states, and, more importantly, show that the flagellar beat frequencies themselves are regulated by the cell. Moreover, high-resolution three-dimensional tracking of swimming cells provides strong evidence that these dynamical states are related to reorientation events in the trajectories, yielding a eukaryotic equivalent of the ``run and tumble'' motion of peritrichously flagellated bacteria. The degree

  15. The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase and Other Eukaryotic BAM/GIDE Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Jeremy G Wideman

    Full Text Available MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1 is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings

  16. Phosphoglycerylethanolamine posttranslational modification of plant eukaryotic elongation factor 1 alpha

    International Nuclear Information System (INIS)

    Eukaryotic elongation factor 1alpha (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P][Pi,[14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell

  17. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes.

    Science.gov (United States)

    Angerer, Heike

    2015-01-01

    In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria. PMID:25686363

  18. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  19. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  20. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis.

    Science.gov (United States)

    Cheffings, Thomas H; Burroughs, Nigel J; Balasubramanian, Mohan K

    2016-08-01

    Cell division facilitated by a contractile ring is an almost universal feature across all branches of cellular life, with the notable exception of higher plants. In all organisms that use a contractile ring for cell division, the process of cytokinesis can be divided into four distinct stages. Firstly, the cell needs to specify a location at which to place the cell division ring to ensure proper separation of the cell contents into two daughter cells. Secondly, the cell needs to be able to transport all the necessary components to this region, and construct the cell division ring reliably and efficiently. Thirdly, the cell division ring needs to generate contractile stress in a regulated manner, to physically cleave the mother cell into two daughter cells. Finally, the ring must be disassembled to allow for the final abscission and separation of the daughter cells. In this review, we will discuss some of the proposed mechanisms by which eukaryotic cells are able to complete the first three of these stages. While there is a good understanding of the mechanisms of division site specification in most organisms, and the mechanisms of actomyosin ring formation are well studied in fission and budding yeast, there is relatively poor understanding of how actomyosin interactions are able to generate contractile stresses during ring constriction, although a number of models have been proposed. We also discuss a number of myosin motor-independent mechanisms that have been proposed to generate contractile stress in various organisms. PMID:27505246

  1. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  2. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    International Nuclear Information System (INIS)

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O2#smbullet#-) not through its dismutation, but via reduction to hydrogen peroxide (H2O2) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SORGi) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (Tfinal) with Fe3+ ligated to glutamate or hydroxide depending on pH (apparent pKa = 8.7). Although showing negligible SOD activity, reduced SORGi reacts with O2#smbullet#- with a pH-independent second-order rate constant k1 = 1.0 x 109 M-1 s-1 and yields the ferric-(hydro)peroxo intermediate T1; this in turn rapidly decays to the Tfinal state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SORGi is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  3. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity

    Directory of Open Access Journals (Sweden)

    Mitali Das

    2014-01-01

    Full Text Available As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  4. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    Science.gov (United States)

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed. PMID:24531239

  5. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography.

    Science.gov (United States)

    Rigort, Alexander; Bäuerlein, Felix J B; Villa, Elizabeth; Eibauer, Matthias; Laugks, Tim; Baumeister, Wolfgang; Plitzko, Jürgen M

    2012-03-20

    Cryoelectron tomography provides unprecedented insights into the macromolecular and supramolecular organization of cells in a close-to-living state. However because of the limited thickness range (< 0.5-1 μm) that is accessible with today's intermediate voltage electron microscopes only small prokaryotic cells or peripheral regions of eukaryotic cells can be examined directly. Key to overcoming this limitation is the ability to prepare sufficiently thin samples. Cryosectioning can be used to prepare thin enough sections but suffers from severe artefacts, such as substantial compression. Here we describe a procedure, based upon focused ion beam (FIB) milling for the preparation of thin (200-500 nm) lamellae from vitrified cells grown on electron microscopy (EM) grids. The self-supporting lamellae are apparently free of distortions or other artefacts and open up large windows into the cell's interior allowing tomographic studies to be performed on any chosen part of the cell. We illustrate the quality of sample preservation with a structure of the nuclear pore complex obtained from a single tomogram. PMID:22392984

  6. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology

    Indian Academy of Sciences (India)

    Swarna Gowri Thota; Rashna Bhandari

    2015-09-01

    Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.

  7. Ecological Diversity in South American Mammals: Their Geographical Distribution Shows Variable Associations with Phylogenetic Diversity and Does Not Follow the Latitudinal Richness Gradient.

    Directory of Open Access Journals (Sweden)

    Paula Nilda Fergnani

    Full Text Available The extent to which the latitudinal gradient in species richness may be paralleled by a similar gradient of increasing functional or phylogenetic diversity is a matter of controversy. We evaluated whether taxonomic richness (TR is informative in terms of ecological diversity (ED, an approximation to functional diversity and phylogenetic diversity (AvPD using data on 531 mammal species representing South American old autochthonous (marsupials, xenarthrans, mid-Cenozoic immigrants (hystricognaths, primates and newcomers (carnivorans, artiodactyls. If closely related species are ecologically more similar than distantly related species, AvPD will be a strong predictor of ED; however, lower ED than predicted from AvPD may be due to species retaining most of their ancestral characters, suggesting niche conservatism. This pattern could occur in tropical rainforests for taxa of tropical affinity (old autochthonous and mid-Cenozoic immigrants and in open and arid habitats for newcomers. In contrast, higher ED than expected from AvPD could occur, possibly in association with niche evolution, in arid and open habitats for taxa of tropical affinity and in forested habitats for newcomers. We found that TR was a poor predictor of ED and AvPD. After controlling for TR, there was considerable variability in the extent to which AvPD accounted for ED. Taxa of tropical affinity did not support the prediction of ED deficit within tropical rainforests, rather, they showed a mosaic of regions with an excess of ED interspersed with zones of ED deficit within the tropics; newcomers showed ED deficit in arid and open regions. Some taxa of tropical affinity showed excess of ED in tropical desert areas (hystricognaths or temperate semideserts (xenarthrans; newcomers showed excess of ED at cold-temperate latitudes in the Northern Hemisphere. This result suggests that extreme climatic conditions at both temperate and tropical latitudes may have promoted niche evolution in

  8. Progress of microbial species diversity research in China

    Directory of Open Access Journals (Sweden)

    Liangdong Guo

    2012-09-01

    Full Text Available Microbes with rich species and genetic diversity are widely distributed throughout various habitats in the world. China possesses a variety of climate zones, geographic environments, and complex ecosystems, which play a large role shaping the complex biodiversity of this country. Microbial diversity has been widely studied and well documented by Chinese scientists. For example, a total of ca. 14,700 eukaryotic microbe species have been recorded, including ca. 14,060 fungi, ca. 300 oomycetes, and ca. 340 slime molds. Within the Fungi, there have been 473 medicinal fungal species and 966 edible fungal taxa recorded. However, recent studies have documented much high species diversity of prokaryotic microbes using molecular techniques,which have greatly promoted the study level of microbial diversity in China. This review paper summarizes recent research progress of microbial (i.e., archaea, bacteria, fungi, oomycetes, and slime molds diversity in China based on traditional and molecular techniques.

  9. Exposing diversity

    DEFF Research Database (Denmark)

    Nørtoft, Kamilla; Nordentoft, Helle Merete

    the homes of older people and in pedagogical institutions targeting older people. In the paper we look at the potentials and challenges in working with ethnographic video narratives as a pedagogical tool. Our findings indicate that the use of video narratives has the potential to expose the diversity...... a narrow focus on their own professional discipline and its tasks 2) stimulates collaborative learning when they discuss their different interpretations of the ethnographic video narratives and achieve a deeper understanding of each other’s work and their clients’ lifeworlds, which might lead to a...

  10. Diverse Multilateralism

    DEFF Research Database (Denmark)

    Wuthnow, Joel; Li, Xin; Qi, Lingling

    2012-01-01

    This article addresses Chinas multilateral diplomacy by identifying four distinct strategies: watching, engaging, circumventing, and shaping. The typology builds on two literatures: power transition theory, and the more recent “assertiveness” discourse in the West. Drawing from a range of cases in...... both the economic and security domains, the article argues that China’s multilateralism is diverse, and that it cannot be un-problematically characterized as either status-quo or revisionist in nature. However, the general trend appears to be towards engagement, but with an assertive tact as China...

  11. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry.

    Science.gov (United States)

    Mentel, Marek; Martin, William

    2008-08-27

    Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages. PMID:18468979

  12. Comparative analysis of serine/arginine-rich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing.

    Directory of Open Access Journals (Sweden)

    Dale N Richardson

    Full Text Available Alternative splicing (AS of pre-mRNA is a fundamental molecular process that generates diversity in the transcriptome and proteome of eukaryotic organisms. SR proteins, a family of splicing regulators with one or two RNA recognition motifs (RRMs at the N-terminus and an arg/ser-rich domain at the C-terminus, function in both constitutive and alternative splicing. We identified SR proteins in 27 eukaryotic species, which include plants, animals, fungi and "basal" eukaryotes that lie outside of these lineages. Using RNA recognition motifs (RRMs as a phylogenetic marker, we classified 272 SR genes into robust sub-families. The SR gene family can be split into five major groupings, which can be further separated into 11 distinct sub-families. Most flowering plants have double or nearly double the number of SR genes found in vertebrates. The majority of plant SR genes are under purifying selection. Moreover, in all paralogous SR genes in Arabidopsis, rice, soybean and maize, one of the two paralogs is preferentially expressed throughout plant development. We also assessed the extent of AS in SR genes based on a splice graph approach (http://combi.cs.colostate.edu/as/gmap_SRgenes. AS of SR genes is a widespread phenomenon throughout multiple lineages, with alternative 3' or 5' splicing events being the most prominent type of event. However, plant-enriched sub-families have 57%-88% of their SR genes experiencing some type of AS compared to the 40%-54% seen in other sub-families. The SR gene family is pervasive throughout multiple eukaryotic lineages, conserved in sequence and domain organization, but differs in gene number across lineages with an abundance of SR genes in flowering plants. The higher number of alternatively spliced SR genes in plants emphasizes the importance of AS in generating splice variants in these organisms.

  13. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  14. Positive selection for unpreferred codon usage in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Galagan James E

    2007-07-01

    Full Text Available Abstract Background Natural selection has traditionally been understood as a force responsible for pushing genes to states of higher translational efficiency, whereas lower translational efficiency has been explained by neutral mutation and genetic drift. We looked for evidence of directional selection resulting in increased unpreferred codon usage (and presumably reduced translational efficiency in three divergent clusters of eukaryotic genomes using a simple optimal-codon-based metric (Kp/Ku. Results Here we show that for some genes natural selection is indeed responsible for causing accelerated unpreferred codon substitution, and document the scope of this selection. In Cryptococcus and to a lesser extent Drosophila, we find many genes showing a statistically significant signal of selection for unpreferred codon usage in one or more lineages. We did not find evidence for this type of selection in Saccharomyces. The signal of positive selection observed from unpreferred synonymous codon substitutions is coincident in Cryptococcus and Drosophila with the distribution of upstream open reading frames (uORFs, another genic feature known to reduce translational efficiency. Functional enrichment analysis of genes exhibiting low Kp/Ku ratios reveals that genes in regulatory roles are particularly subject to this type of selection. Conclusion Through genome-wide scans, we find recent selection for unpreferred codon usage at approximately 1% of genetic loci in a Cryptococcus and several genes in Drosophila. Unpreferred codons can impede translation efficiency, and we find that genes with translation-impeding uORFs are enriched for this selection signal. We find that regulatory genes are particularly likely to be subject to selection for unpreferred codon usage. Given that expression noise can propagate through regulatory cascades, and that low translational efficiency can reduce expression noise, this finding supports the hypothesis that translational

  15. MetWAMer: eukaryotic translation initiation site prediction

    Directory of Open Access Journals (Sweden)

    Brendel Volker

    2008-09-01

    Full Text Available Abstract Background Translation initiation site (TIS identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. Results MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. Conclusion We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.

  16. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci.

    Science.gov (United States)

    Bonifer, C; Hecht, A; Saueressig, H; Winter, D M; Sippel, A E

    1991-10-01

    It is hypothesized that nuclear DNA is organized in topologically constrained loop domains defining basic units of higher order chromatin structure. Our studies are performed in order to investigate the functional relevance of this structural subdivision of eukaryotic chromatin for the control of gene expression. We used the chicken lysozyme gene locus as a model to examine the relation between chromatin structure and gene function. Several structural features of the lysozyme locus are known: the extension of the region of general DNAasel sensitivity of the active gene, the location of DNA-sequences with high affinity for the nuclear matrix in vitro, and the position of DNAasel hypersensitive chromatin sites (DHSs). The pattern of DHSs changes depending on the transcriptional status of the gene. Functional studies demonstrated that DHSs mark the position of cis-acting regulatory elements. Additionally, we discovered a novel cis-activity of the border regions of the DNAasel sensitive domain (A-elements). By eliminating the position effect on gene expression usually observed when genes are randomly integrated into the genome after transfection, A-elements possibly serve as punctuation marks for a regulatory chromatin domain. Experiments using transgenic mice confirmed that the complete structurally defined lysozyme gene domain behaves as an independent regulatory unit, expressing the gene in a tissue specific and position independent manner. These expression features were lost in transgenic mice carrying a construct, in which the A-elements as well as an upstream enhancer region were deleted, indicating the lack of a locus activation function on this construct. Experiments are designed in order to uncover possible hierarchical relationships between the different cis-acting regulatory elements for stepwise gene activation during cell differentiation. We are aiming at the definition of the basic structural and functional requirements for position independent and high

  17. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium. Final report; Einfluss der autochthonen Mikroflora auf die Sorption und Remobilisierung des Technetiums und des Selens. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Maue, G.; Stroetmann, I.; Dott, W. [Technische Univ. Berlin (Germany). Fachgebiet Umwelthygiene; Taute, T.; Winkler, A.; Pekdeger, A. [Freie Univ. Berlin (Germany). Fachrichtung Rohstoff- und Umweltgeologie

    1996-10-31

    Within this research project the influence of autochthonous mirco-organisms on immobilization and remobilization of Technetium and Selenium was investigated. Both redoxsensitive radionuclides are part of the waste of nuclear fuel (Tc app. 6%). Former investigations have shown, that immobilization behaviour of both elements could be influenced by micro-organisms. It has not been known, if the autochthonous (or in situ) organisms from greater depth do also have an influence on radionuclide mobility. The autochthonous populations of micro-organisms in deep sediments and their influence on the migration of Tc and Se were investigated in this study. For this reason recirculation column experiments were carried out. Absolutely sterile and anaerobic handling was necessary for the sampling and the further treatment of the sediments and waters used in the experiments. Therefor special methods for sampling, storage and handling had been developed. The results of recirculation column test with autochthonous micro-organisms were compared with sterile parallel tests and were verified with the results of an elaborated version of the hydrogeochemical equilibration code PHREEQE. It was shown that the autochthonous micro-organisms had only very little influence on the migration behaviour. The reason is the very low population (less than 10 E+6 CFU). Nevertheless it has to be taken into consideration, that conventional laboratory experiments for the estimation of the retention capacities of sediments for hazardous waste lead to an overestimation, if the sediments are contaminated with allochthonous micro-organisms (CFU=colony forming units). (orig.) [Deutsch] In dem Forschungsvorhaben wurde der Einfluss der autochthonen Mikroorgansimen auf die Mobilitaet von Technetium und Selen untersucht. Beide redoxsensitiven Radionuklide sind im Abfall von Kernbrennelementen enthalten (Tc ca. 6%). Aus vorangegangenen Forschungsarbeiten ist bekannt, dass die Mobilitaet der beiden Elemente durch

  18. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.;

    2010-01-01

    Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic...... in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality...... demonstrated using a complex insertion mutant library of TNF-alpha, from which different folding competent mutant proteins were uncovered....

  19. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    International Nuclear Information System (INIS)

    13C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets

  20. Detection and molecular characterization of a Grapevine Roditis leaf discoloration-associated virus (GRLDaV) variant in an autochthonous grape from Apulia (Italy).

    Science.gov (United States)

    Chiumenti, Michela; Giampetruzzi, Annalisa; Morelli, Massimiliano; Savino, Vito Nicola; Martelli, Giovanni Paolo; La Notte, Pierfederico; Palmisano, Francesco; Saldarelli, Pasquale

    2016-06-01

    The complete nucleotide sequence and genome organization of a new Badnavirus isolated from the autochthonous grapevine variety "Bombino nero" from Apulia (Italy) was determined. The genome of this virus consists of 7097 nt and has four open reading frames (ORFs). Analysis of putative proteins encoded by each ORF revealed greatest sequence similarity to Grapevine Roditis leaf discoloration-associated virus w4 (GRLDaV; NC_027131). In a pairwise alignment with GLRDaV w4 genome sequence, the "Bombino Nero" sequence was 109 nt longer with a major 57 nt insertion between positions 2405 and 2413. Furthermore, its putative ORF4 is located after the ORF3, while in the GLRDaV w4 sequence, the putative ORF4 completely overlapped ORF3. Nucleotide analysis classifies this new Badnavirus as a GLRDaV strain, which was named GRLDaV-BN. Multi-year field observations showed that the GLRDaV-BN-infected vine was symptomless. PMID:26924587

  1. Evolutionary Constraints of Phosphorylation in Eukaryotes, Prokaryotes, and Mitochondria*

    OpenAIRE

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F.; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-01-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organ...

  2. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP

    Institute of Scientific and Technical Information of China (English)

    Qin Yu; Liyan Hu; Qing Yao; Yongqun Zhu; Na Dong; Da-Cheng Wang; Feng Shao

    2013-01-01

    Rab GTPases are emerging targets of diverse bacterial pathogens.Here,we perform biochemical and structural analyses of LepB,a Rab GTPase-activating protein (GAP) effector from Legionellapneumophila.We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors.Exhaustive mutation analyses identify Arg444 as the arginine finger,but no catalytically essential glutamine residues.Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AIF3 support the catalytic role of Arg444,and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs.Glu449,structurally equivalent to TBC RabGAP glutamine finger in apo-LepB,undergoes a drastic movement upon Rab1 binding,which induces Rab1 Gin70 side-chain flipping towards GDP-AIF3 through a strong ionic interaction.This conformationally rearranged Gln70 acts as the catalytic cis-glutamine,therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB.Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs,particularly those from bacterial pathogens.

  3. Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits

    OpenAIRE

    Marchisio, Mario Andrea; Colaiacovo, Moreno; Whitehead, Ellis; Stelling, Jörg

    2013-01-01

    Background The modular design of synthetic gene circuits via composable parts (DNA segments) and pools of signal carriers (molecules such as RNA polymerases and ribosomes) has been successfully applied to bacterial systems. However, eukaryotic cells are becoming a preferential host for new synthetic biology applications. Therefore, an accurate description of the intricate network of reactions that take place inside eukaryotic parts and pools is necessary. Rule-based modeling approaches are in...

  4. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light.

    OpenAIRE

    Yajima, H; Takao, M; Yasuhira, S; Zhao, J. H.; Ishii, C.; Inoue, H; Yasui, A

    1995-01-01

    Many eukaryotic organisms, including humans, remove ultraviolet (UV) damage from their genomes by the nucleotide excision repair pathway, which requires more than 10 separate protein factors. However, no nucleotide excision repair pathway has been found in the filamentous fungus Neurospora crassa. We have isolated a new eukaryotic DNA repair gene from N.crassa by its ability to complement UV-sensitive Escherichia coli cells. The gene is altered in a N.crassa mus-18 mutant and responsible for ...

  5. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi

    OpenAIRE

    Taylor, John W; Turner, Elizabeth; Townsend, Jeffrey P.; Dettman, Jeremy R; JACOBSON, DAVID

    2006-01-01

    The claim that eukaryotic micro-organisms have global geographic ranges, constituting a significant departure from the situation with macro-organisms, has been supported by studies of morphological species from protistan kingdoms. Here, we examine this claim by reviewing examples from another kingdom of eukaryotic microbes, the Fungi. We show that inferred geographic range of a fungal species depends upon the method of species recognition. While some fungal species defined by morphology show ...

  6. Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera.

    OpenAIRE

    Schütze, J; Krasko, A.; Custodio, M R; Efremova, S M; Müller, I M; Müller, W E

    1999-01-01

    Recent molecular data provide strong support for the view that all metazoan phyla, including Porifera, are of monophyletic origin. The relationship of Metazoa, including the Porifera, to Plantae, Fungi and unicellular eukaryotes has only rarely been studied by using cDNAs coding for proteins. Sequence data from rDNA suggested a relationship of Porifera to unicellular eukaryotes (choanoflagellates). However, ultrastructural studies of choanocytes did not support these findings. In the present ...

  7. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions

    OpenAIRE

    Laura eWegener Parfrey; William Anton Walters; Rob eKnight

    2011-01-01

    High throughput sequencing technology has opened a window into the vast communities of bacteria that live on and in humans, demonstrating tremendous variability and that they play a large role in health and disease. The eukaryotic component of the human gut microbiome remains relatively unexplored with these methods, but turning these tools toward microbial eukaryotes in the gut will likely yield myriad insights into disease states as well as the ecological and evolutionary principles that g...

  8. Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria

    OpenAIRE

    Hobbie, S N; Kalapala, S K; Akshay, S.; Bruell, C M; S. Schmidt; Dabow, S; Vasella, A; Sander, P; Böttger, E C

    2007-01-01

    Structural and genetic studies on prokaryotic ribosomes have provided important insights into fundamental aspects of protein synthesis and translational control and its interaction with ribosomal drugs. Comparable mechanistic studies in eukaryotes are mainly hampered by the absence of both high-resolution crystal structures and efficient genetic models. To study the interaction of aminoglycoside antibiotics with selected eukaryotic ribosomes, we replaced the bacterial drug binding site in 16S...

  9. Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    OpenAIRE

    Michał Arabski; Aneta Węgierek-Ciuk; Grzegorz Czerwonka; Anna Lankoff; Wiesław Kaca

    2012-01-01

    Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of sap...

  10. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  11. Are maternal mitochondria the selfish entities that are masters of the cells of eukaryotic multicellular organisms?

    OpenAIRE

    Agnati, Luigi F.; Barlow, Peter W; Baldelli, E.; Baluška, Frantisek

    2009-01-01

    The Energide concept, as well as the endosymbiotic theory of eukaryotic cell organization and evolution, proposes that present-day cells of eukaryotic organisms are mosaics of specialized and cooperating units, or organelles. Some of these units were originally free-living prokaryotes, which were engulfed during evolutionary time. Mitochondria represent one of these types of previously independent organisms, the Energide, is another type. This new perspective on the organization of the cell h...

  12. Pathogenic eukaryotes in gut microbiota of western lowland gorillas as revealed by molecular survey.

    Science.gov (United States)

    Hamad, Ibrahim; Keita, Mamadou B; Peeters, Martine; Delaporte, Eric; Raoult, Didier; Bittar, Fadi

    2014-01-01

    Although gorillas regarded as the largest extant species of primates and have a close phylogenetic relationship with humans, eukaryotic communities have not been previously studied in these populations. Herein, 35 eukaryotic primer sets targeting the 18S rRNA gene, internal transcribed spacer gene and other specific genes were used firstly to explore the eukaryotes in a fecal sample from a wild western lowland gorilla (Gorilla gorilla gorilla). Then specific real-time PCRs were achieved in additional 48 fecal samples from 21 individual gorillas to investigate the presence of human eukaryotic pathogens. In total, 1,572 clones were obtained and sequenced from the 15 cloning libraries, resulting in the retrieval of 87 eukaryotic species, including 52 fungi, 10 protozoa, 4 nematodes and 21 plant species, of which 52, 5, 2 and 21 species, respectively, have never before been described in gorillas. We also reported the occurrence of pathogenic fungi and parasites (i.e. Oesophagostomum bifurcum (86%), Necator americanus (43%), Candida tropicalis (81%) and other pathogenic fungi were identified). In conclusion, molecular techniques using multiple primer sets may offer an effective tool to study complex eukaryotic communities and to identify potential pathogens in the gastrointestinal tracts of primates. PMID:25231746

  13. Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models.

    Science.gov (United States)

    Speijer, Dave

    2015-12-01

    Of two contending models for eukaryotic evolution the "archezoan" has an amitochondriate eukaryote take up an endosymbiont, while "symbiogenesis" states that an Archaeon became a eukaryote as the result of this uptake. If so, organelle formation resulting from new engulfments is simplified by the primordial symbiogenesis, and less informative regarding the bacterium-to-mitochondrion conversion. Gradualist archezoan visions still permeate evolutionary thinking, but are much less likely than symbiogenesis. Genuine amitochondriate eukaryotes have never been found and rapid, explosive adaptive periods characteristic of symbiogenetic models explain this. Mitochondrial proteomes, encoded by genes of "eukaryotic origin" not easily linked to host or endosymbiont, can be understood in light of rapid adjustments to new evolutionary pressures. Symbiogenesis allows "expensive" eukaryotic inventions via efficient ATP generation by nascent mitochondria. However, efficient ATP production equals enhanced toxic internal ROS formation. The synergistic combination of these two driving forces gave rise to the rapid evolution of eukaryotes. Also watch the Video Abstract. PMID:26577075

  14. Genetic diversity and relationships of Vietnamese and European pig breeds

    International Nuclear Information System (INIS)

    Indigenous resources of the Asian pig population are less defined and only rarely compared with European breeds. In this study, five indigenous pig breeds from Viet Nam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Viet Nam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar were chosen for evaluation and comparison of genetic diversity. Samples and data from 317 animals were collected and ten polymorphic microsatellite loci were selected according to the recommendations of the FAO Domestic Animal Diversity Information System (DAD-IS; http://www.fao.org/dad-is/). Effective number of alleles, Polymorphism Information Content (PIC), within-breed diversity, estimated heterozygosities and tests for Hardy-Weinberg equilibrium were determined. Breed differentiation was evaluated using the fixation indices of Wright (1951). Genetic distances between breeds were estimated according to Nei (1972) and used for the construction of UPGMA dendrograms which were evaluated by bootstrapping. Heterozygosity was higher in indigenous Vietnamese breeds than in the other breeds. The Vietnamese indigenous breeds also showed higher genetic diversity than the European breeds and all genetic distances had a strong bootstrap support. The European commercial breeds, in contrast, were closely related and bootstrapping values for genetic distances among them were below 60%. European Wild Boar displayed closer relation with commercial breeds of European origin than with the native breeds from Viet Nam. This study is one of the first to contribute to a genetic characterization of autochthonous Vietnamese pig breeds and it clearly demonstrates that these breeds harbour a rich reservoir of genetic diversity. (author)

  15. Searching for eukaryotic life preserved in Antarctic permafrost

    Science.gov (United States)

    Onofri, Silvano; Zucconi, Laura; Selbmann, Laura; Ripa, Caterina; Frisvad, Jens Christian; Guglielmin, Mauro; Turchetti, Benedetta; Buzzini, Pietro

    Permafrost is defined as a soil remaining at 0 C or below throughout two or more consecutive years. Mainly present in polar areas, it occurs in all ice-free areas of Continental Antarc-tica. With the evidences of the possible presence of water ice below the surface of Mars and Moon, permafrost is now considered a possible reservoir of prokaryotic and eukaryotic spores outside the Earth. Cultivable fungi and yeasts have been isolated from Antarctic permafrost collected at different depths (233, 316 and 335 cm) in the McMurdo Dry Valleys, the largest ice-free area in Antarctica, and identified with cultural, physiological and molecular methods. Filamentous fungi belonged to the genera Penicillium, Eurotium, Cladosporium, Alternaria, Engyodonthium, Cordiceps, Rhizopus, Aureobasidium, whereas yeasts belonged to the genera Cryptococcus and Sporidiobolus. Penicillia were the most represented, and the most frequently recorded species were Penicillium palitans and P. chrysogenum. Most of the species found have been already recorded in Antarctic ecosystems as well as in other cold habitats (Onofri et al., 2007); for Eurotium amstelodami and Cryptococcus stepposus these are the first isolations in Antarctica. All the filamentous fungal isolates can be defined as mesophilic having optimal growth temperatures at 20-25 C and poor growth at 0 C after prolonged incubation. All the yeast isolates grew within a wide range of temperature (from 4 to 25 C). The molecular anal-yses based on the ITS rDNA sequences, for filamentous fungi, and on D1/D2 domain of LSU rRNA gene and ITS sequences for yeasts, revealed that these genotypes do not deviate from the global gene pool of microorganisms commonly spreading worldwide at present. Annual mean permafrost temperature (MAPT) in the sampling area was -18.8 C in 2008, with daily fluctuations lower than 1 C/day at 1 m of depth, but less 0.5 C/year at the depth of 17 m (Guglielmin pers. com.), and maximum thaw depth not exceeding 1 m

  16. Chronic Polyaromatic Hydrocarbon (PAH) Contamination Is a Marginal Driver for Community Diversity and Prokaryotic Predicted Functioning in Coastal Sediments.

    Science.gov (United States)

    Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Ghiglione, Jean-François; Agogué, Hélène; Saïd, Olfa Ben; Taïb, Najwa; Debroas, Didier; Garnier, Cédric; Auguet, Jean-Christophe

    2016-01-01

    Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales. PMID:27594854

  17. Chronic Polyaromatic Hydrocarbon (PAH) Contamination Is a Marginal Driver for Community Diversity and Prokaryotic Predicted Functioning in Coastal Sediments

    Science.gov (United States)

    Jeanbille, Mathilde; Gury, Jérôme; Duran, Robert; Tronczynski, Jacek; Ghiglione, Jean-François; Agogué, Hélène; Saïd, Olfa Ben; Taïb, Najwa; Debroas, Didier; Garnier, Cédric; Auguet, Jean-Christophe

    2016-01-01

    Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  18. Does staff diversity imply openness to diversity?

    DEFF Research Database (Denmark)

    Lauring, Jakob; Selmer, Jan

    2013-01-01

    Purpose – Post-secondary educational organizations are currently some of the most diverse settings to be found. However, few educational studies have dealt with staff diversity and hardly any has looked outside the USA. The purpose of this paper is to present a study of members of international...... university departments in Denmark. The authors set out to investigate the relationship between different types of staff diversity and openness to diversity in terms of linguistic, visible, value, and informational heterogeneity. Design/methodology/approach – This study uses responses from 489 staff members......, was unrelated or negatively associated with positive diversity attitudes. Originality/value – Few studies deal with the role of staff diversity and no prior studies the authors know of have examined the link between diversity types and openness to diversity....

  19. Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks.

    Science.gov (United States)

    Klinger, Christen M; Spang, Anja; Dacks, Joel B; Ettema, Thijs J G

    2016-06-01

    In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system. PMID:26893300

  20. Diversity of Pico- to Mesoplankton along the 2000 km Salinity Gradient of the Baltic Sea

    Science.gov (United States)

    Hu, Yue O. O.; Karlson, Bengt; Charvet, Sophie; Andersson, Anders F.

    2016-01-01

    Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 105 sequences/sample) of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea. PMID:27242706

  1. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Yue O.O. Hu

    2016-05-01

    Full Text Available Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 105 sequences/sample of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea.

  2. Molecular recognition and organizational and polyvalent effects in vesicles induce the formation of artificial multicompartment cells as model systems of eukaryotes.

    Science.gov (United States)

    Paleos, Constantinos M; Pantos, A

    2014-05-20

    Researchers have become increasingly interested in the preparation and characterization of artificial cells based on amphiphilic molecules. In particular, artificial cells with multiple compartments are primitive mimics of the structure of eukaryotic cells. Endosymbiotic theory, widely accepted among biologists, states that eukaryotic cells arose from the assembly of prokaryotic cells inside other cells. Therefore, replicating this process in a synthetic system could allow researchers to model molecular and supramolecular processes that occur in living cells, shed light on mass and energy transport through cell membranes, and provide a unique, isolated space for conducting chemical reactions. In addition, such structures can serve as drug delivery systems that encapsulate both bioactive and nonbiocompatible compounds. In this Account, we present various coating, incubation, and electrofusion strategies for forming multicompartment vesicle systems, and we are focusing on strategies that rely on involving molecular recognition of complementary vesicles. All these methods afforded multicompartment systems with similar structures, and these nanoparticles have potential applications as drug delivery systems or nanoreactors for conducting diverse reactions. The complementarity of interacting vesicles allows these artificial cells to form, and the organization and polyvalency of these interacting vesicles further promote their formation. The incorporation of cholesterol in the bilayer membrane and the introduction of PEG chains at the surface of the interacting vesicles also support the structure of these multicompartment systems. PEG chains appear to destabilize the bilayers, which facilitates the fusion and transport of the small vesicles to the larger ones. Potential applications of these well-structured and reproducibly produced multicompartment systems include drug delivery, where researchers could load a cocktail of drugs within the encapsulated vesicles, a process

  3. Diversity: A Philosophical Perspective

    OpenAIRE

    Sahotra Sarkar

    2010-01-01

    In recent years, diversity, whether it be ecological, biological, cultural, or linguistic diversity, has emerged as a major cultural value. This paper analyzes whether a single concept of diversity can underwrite discussions of diversity in different disciplines. More importantly, it analyzes the normative justification for the endorsement of diversity as a goal in all contexts. It concludes that no more than a relatively trivial concept of diversity as richness is common to all contexts. Mor...

  4. Training In Diversity Management

    Directory of Open Access Journals (Sweden)

    Sonja Treven

    2011-07-01

    Full Text Available The labor force all around the world is becoming increasingly diverse. Thus, organizations that can manage employee diversity effectively gain a competitive advantage. In such organizations diversity training is a necessity. Diversity training helps managers understand and value individual differences and develop strong diagnostic skills. The paper explores various approaches to training, like awareness-based and skill-based diversity training. A special attention to potential problems that may occur in the process of diversity training is given.

  5. A Resurgence in Field Research is Essential to Better Understand the Diversity, Ecology, and Evolution of Microbial Eukaryotes

    Czech Academy of Sciences Publication Activity Database

    Heger, T.J.; Edgcomb, V.P.; Kim, E.; Lukeš, Julius; Leander, B. S.; Yubuki, N.

    2014-01-01

    Roč. 61, č. 2 (2014), s. 214-223. ISSN 1066-5234 Institutional support: RVO:60077344 Keywords : Algae * culture * food webs * microscopy * molecular phylogenetics * next-generation sequencing * protist Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.217, year: 2014

  6. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes

    OpenAIRE

    Schallenberg-Rüdinger, Mareike; Lenz, Henning; Polsakiewicz, Monika; Gott, Jonatha M.; Knoop, Volker

    2013-01-01

    The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among th...

  7. Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera.

    Science.gov (United States)

    Schütze, J; Krasko, A; Custodio, M R; Efremova, S M; Müller, I M; Müller, W E

    1999-01-01

    Recent molecular data provide strong support for the view that all metazoan phyla, including Porifera, are of monophyletic origin. The relationship of Metazoa, including the Porifera, to Plantae, Fungi and unicellular eukaryotes has only rarely been studied by using cDNAs coding for proteins. Sequence data from rDNA suggested a relationship of Porifera to unicellular eukaryotes (choanoflagellates). However, ultrastructural studies of choanocytes did not support these findings. In the present study, we compared amino acid sequences that are found in a variety of metazoans (including sponges) with those of Plantae, Fungi and unicellular eukaryotes, to obtain an answer to this question. We used the four sequences from 70 kDa heat-shock proteins, the serine-threonine kinase domain found in protein kinases, beta-tubulin and calmodulin. The latter two sequences were deduced from cDNAs, isolated from the sponge Geodia cydonium for the phylogenetic analyses presented. These revealed that the sponge molecules were grouped into the same branch as the Metazoa, which is statistically (significantly) separated from those branches that comprise the sequences from Fungi, Plantae and unicellular eukaryotes. From our molecular data it seems evident that the unicellular eukaryotes existed at an earlier stage of evolution, and the Plantae and especially the Fungi and the Metazoa only appeared later. PMID:10081159

  8. Antioxidative and antihypertensive activities of pig meat before and after cooking and in vitro gastrointestinal digestion: Comparison between Italian autochthonous pig Suino Nero Lucano and a modern crossbred pig.

    Science.gov (United States)

    Simonetti, Amalia; Gambacorta, Emilio; Perna, Annamaria

    2016-12-01

    The aim of this study was to evaluate and compare antioxidative and antihypertensive activities of Longissimus dorsi muscle from Suino Nero Lucano (SNL) and a modern crossbred (CG) pigs, before and after cooking and in vitro gastrointestinal digestion. Pig meat showed antioxidative and antihypertensive activities, heat treatment decreased the thiols content but at the same time increased angiotensin I-converting enzyme (ACE) inhibitory activity, and in vitro gastrointestinal digestion enhanced the biological activity of meat. Autochthonous SNL meat showed a higher nutraceutical quality compared to CG meat, highlighting a greater potential beneficial physiological effect on human health. The results of this study indicate that the pig meat, in particular autochthonous pig meat, may be considered a functional food since it is a good source of antioxidative and antihypertensive peptides. PMID:27374572

  9. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens

    OpenAIRE

    Askarian, Fatemeh; Zhou, Zhigang; Olsen, Rolf Erik; Sperstad, Sigmund; Ringø, Einar

    2011-01-01

    The present investigation evaluated the effect of chitin (5% supplementation) on the adherent aerobic intestinal microbiota of Atlantic salmon (Salmo salar L.). One hundred and seventy three isolates were isolated but 34 isolates died prior to positive identification. Sixty four out of 139 autochthonous gut bacteria were further identified by 16S rRNA gene sequencing and further tested for protease, amylase, cellulase, phytase, lipase and chitinase activities. Moreover, the most promising enz...

  10. Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of Remazole Marine Blue Triagem de enzimas ligninolíticas de fungos autóctones e aplicações para descoloramento de Remazole Marine Blue

    OpenAIRE

    Emre Erden; M. Cigdem Ucar; Tekin Gezer; Nurdan Kasikara Pazarlioglu

    2009-01-01

    This study presents new and alternative fungal strains for the production of ligninolytic enzymes which have great potential to use in industrial and biotechnological processes. Thirty autochthonous fungal strains were harvested from Bornova-Izmir in Turkiye. In the fresh fruitbody extracts laccase, manganese peroxidase and lignin peroxidase activities, which are the principal enzymes responsible for ligninocellulose degradation by Basidiomycetes, were screened. Spores of some of the basidiom...

  11. Unravelling the diversity of grapevine microbiome.

    Directory of Open Access Journals (Sweden)

    Cátia Pinto

    Full Text Available Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines.

  12. Unravelling the diversity of grapevine microbiome.

    Science.gov (United States)

    Pinto, Cátia; Pinho, Diogo; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; Gomes, Ana C

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines. PMID:24454903

  13. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?

    OpenAIRE

    Karlin, S.; Doerfler, W; Cardon, L R

    1994-01-01

    Dinucleotide over- and underrepresentation is evaluated in all available completely sequenced DNA or RNA viral genomes, ranging in size from 3 to 250 kb (available RNA viruses fall into the small-virus category). The dinucleotide CpG is statistically underrepresented (suppressed) in all but four of the small viruses (more than 75 with lengths of or = 30 kb). Most retrotransposons in eukaryotic species also show low CpG relat...

  14. Understanding the Photoreactivity of Dissolved Organic Carbon in Natural Waters: The Role of the Triplet Excited-State of Allochthonous and Autochthonous DOC

    Science.gov (United States)

    Cottrell, B. A.; Timko, S. A.; Robinson, A. K.; Weiden, L. M.; Cooper, W.

    2012-12-01

    The photochemical reactivity of DOC in sunlit waters is a major factor for the in situ processing of DOC itself and trace contaminants in streams, lakes and the ocean. There is an increasing interest in the use of wetlands to mitigate contaminant removal. Laser flash photolysis is used to determine the reaction rate constants of dissolved organic carbon (DOC) with emerging contaminants in natural waters. DOC, produced by the decomposition of plant and microbial material, is one of the most complex naturally occurring mixtures. DOC plays a major role in the global carbon cycle, the sequestration and transport of trace chemicals and contaminants, and the biogeochemistry of natural waters. Hydrolysis, direct photolysis and reactions with singlet oxygen and the hydroxyl radical account for up to 25% of the photo reactivity of natural organic matter. The remaining 75% is attributed to reactions with the triplet-excited state of DOC (3DOC*). In this study, 1H NMR is used to characterize DOC from the Black River (NC), the San Joaquin Wetlands (Irvine, CA), and coastal seawater (Crystal Cove, CA). These sites encompass both allochthonous and autochthonous organic matter from catchment, wetlands, and marine waters. We then determine the reaction rate constants of known triplet state reactants and pharmaceuticals with the 3DOC* in the natural waters and with the DOC isolated by solid phase extraction. Studies of 3DOC* could provide a measure of DOC reactivity, essential in the design of constructed wetlands for contaminant removal.

  15. Application and validation of autochthonous Lactobacillus plantarum starter cultures for controlled malolactic fermentation and its influence on the aromatic profile of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Liu, Wen Li; Jin, Cheng Wu

    2016-05-01

    Lactic acid bacteria (LAB) used for malolactic fermentation (MLF) has a great effect on the production and quality of cherry wines. The present study used an autochthonous Lb. plantarum strain of SGJ-24 which was isolated from spontaneous MLF cherry wines and selected by its best MLF performance and tolerance, to investigate its effect on the kinetic of vinification and on chemical and volatile characteristics of Rainer and May Duck cherry wines, in comparison with a commercial Oenococcus oeni strain of 31 MBR. Monitoring of MLF was carried out by measuring cell viability and malic acid metabolism, and results showed that for both cherry varieties, SGJ-24 can significantly minimize MLF duration. After fermentation, wine samples were chemically characterized and analyzed for volatile profiles. Results demonstrated that no negative impact on the analytical parameters has been found, and a general increase of volatile esters and terpenes was observed when SGJ-24 was involved. Sensory analysis revealed that the global aromatic intensity was enhanced by the introduction of SGJ-24. All these data suggested that the application of Lb. plantarum strain of SGJ-24 as a worthwhile alternative LAB species for Rainer and May Duck cherry winemaking. PMID:26742612

  16. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil.

    Science.gov (United States)

    Ławniczak, Ł; Syguda, A; Borkowski, A; Cyplik, P; Marcinkowska, K; Wolko, Ł; Praczyk, T; Chrzanowski, Ł; Pernak, J

    2016-09-01

    The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing (1)H and (13)C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3. PMID:27135587

  17. Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads.

    Science.gov (United States)

    Pontonio, Erica; Nionelli, Luana; Curiel, José Antonio; Sadeghi, Alireza; Di Cagno, Raffaella; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2015-05-01

    This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions. PMID:25583343

  18. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    Many recent high throughput technologies have enabled large-scale discoveries of new phosphorylation sites and phosphoproteins. Although they have provided a number of insights into protein phosphorylation and the related processes, an inclusive analysis on the nature of phosphorylated sites in...... maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins....... proteins is currently lacking. We have therefore analyzed the occurrence and occupancy of phosphorylated sites (~ 100,281) in a large set of eukaryotic proteins (~ 22,995). Phosphorylation probability was found to be much higher in both the  termini of protein sequences and this is much pronounced in...

  19. Use of eukaryotic expression technology in the functional analysis of cloned genes

    International Nuclear Information System (INIS)

    The purpose of this chapter is to describe ways in which eukaryotic expression technology can be used to identify and to analyze the function of cloned eukaryotic genes. The assumption is made that the clone of interest has been sequenced and an open reading frame has been identified. Although expression of genomic sequences will be briefly discussed, in general it is assumed that the sequence of interest is a cDNA. This chapter is divided into three sections. The first section describes several possible strategies for maximizing heterologous gene expression in the cells of higher eukaryotes. The second section deals with potential assays for gene expression based on function, and the third section describes some immunological approaches. Overall, the focus is on the use of techniques which yield information not obtainable from heterologous gene expression in bacteria or yeast

  20. Construction and transfection of sense/antisense eukaryotic expression vectors for human cathepsin L gene

    Institute of Scientific and Technical Information of China (English)

    Maolin He; Anmin Chen

    2005-01-01

    Objective: To obtain sense/antisense eukaryotic expression vectors for human cathepsin L gene, and study the biological effects on human osteosarcoma cell line MG-63 after transfection. Methods: Cathepsin L gene sense/antisense eukaryotic expression vectors were constructed with recombinant technology and transfected into the human osteosarcoma cell line MG-63. The expression of cathepsin L gene mRNA was examined with RT-PCR and the expression of cathepsin L was examined with Western blot. Results: The sense/antisense recombinant eukaryotic expression vectors for cathepsin L were successfully constructed and transfected into MG-63 cell.Conclusion: Antisense cathepsin L gene can significantly inhibit the expression of cathepsin L mRNA and protein.

  1. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam [University of Texas Southwestern Medical Center, Department of Biophysics (United States); Kukula, Maciej; Bian, Liangqiao [University of Texas at Arlington, Shimadzu Center for Advanced Analytical Chemistry (United States); Patrie, Steven M. [University of Texas Southwestern Medical Center, Department of Pathology (United States); Gardner, Kevin H. [CUNY Advanced Science Research Center, Structural Biology Initiative (United States); Rosen, Michael K.; Rosenbaum, Daniel M., E-mail: dan.rosenbaum@utsouthwestern.edu [University of Texas Southwestern Medical Center, Department of Biophysics (United States)

    2015-07-15

    {sup 13}C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific {sup 13}C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient {sup 13}C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets.

  2. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris;

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for...... detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA......, removal of remaining linear chromosomal DNA, rolling-circle amplification of eccDNA, deep sequencing, and mapping. Extensive exonuclease treatment was required for sufficient linear chromosomal DNA degradation. The rolling-circle amplification step by φ29 polymerase enriched for circular DNA over linear...

  3. A High Load of Non-neutral Amino-Acid Polymorphisms Explains High Protein Diversity Despite Moderate Effective Population Size in a Marine Bivalve With Sweepstakes Reproduction

    OpenAIRE

    Harrang, Estelle; Lapègue, Sylvie; Morga, Benjamin; Bierne, Nicolas

    2013-01-01

    Marine bivalves show among the greatest allozyme diversity ever reported in Eukaryotes, putting them historically at the heart of the neutralist-selectionist controversy on the maintenance of genetic variation. Although it is now acknowledged that this high diversity is most probably a simple consequence of a large population size, convincing support for this explanation would require a rigorous assessment of the silent nucleotide diversity in natural populations of marine bivalves, which has...

  4. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber

    Directory of Open Access Journals (Sweden)

    Alonso Jesús

    2009-02-01

    Full Text Available Abstract Background Microfossils are not only useful for elucidating biological macro- and microevolution but also the biogeochemical history of our planet. Pyritization is the most important and extensive mode of preservation of animals and especially of plants. Entrapping in amber, a fossilized resin, is considered an alternative mode of biological preservation. For the first time, the internal organization of 114-million-year-old microfossils entrapped in Lower Cretaceous amber is described and analyzed, using adapted scanning electron microscopy in backscattered electron mode in association with energy dispersive X-ray spectroscopy microanalysis. Double fossilization of several protists included in diverse taxonomical groups and some vegetal debris is described and analyzed. Results In protists without an exoskeleton or shell (ciliates, naked amoebae, flagellates, determinate structures, including the nuclei, surface envelopes (cortex or cytoplasmic membrane and hyaloplasm are the main sites of pyritization. In protists with a biomineralized skeleton (diatoms, silicon was replaced by pyrite. Permineralization was the main mode of pyritization. Framboidal, subhedral and microcrystalline are the predominant pyrite textures detected in the cells. Abundant pyritized vegetal debris have also been found inside the amber nuggets and the surrounding sediments. This vegetal debris usually contained numerous pyrite framboids and very densely packed polycrystalline pyrite formations infilled with different elements of the secondary xylem. Conclusion Embedding in amber and pyritization are not always alternative modes of biological preservation during geological times, but double fossilization is possible under certain environmental conditions. Pyritization in protists shows a quite different pattern with regard to plants, due to the different composition and cellular architecture in these microorganisms and organisms. Anaerobic sulphate

  5. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    Science.gov (United States)

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-01

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. PMID:25652826

  6. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Huan eQiu

    2013-09-01

    Full Text Available Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin to secondary or tertiary (eukaryote engulfs eukaryote endosymbiosis. The hypothesis of Plantae monophyly has only recently been substantiated, however the extent and role of endosymbiotic and horizontal gene transfer (EGT and HGT in algal genome evolution still remain to be fully understood. What is becoming clear from analysis of complete genome data is that algal gene complements can no longer be considered essentially eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial genes derived from EGT and a similar number derived from the mitochondrial ancestor. For example, we now know that foreign cells such as Chlamydiae and other prokaryotes have made significant contributions to plastid functions in Plantae. Perhaps more surprising is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the unicellular red alga Porphyridium purpureum that does not relate to plastid functions. These non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but also were propagated via secondary endosymbiosis to a multitude of other phytoplankton. Here we discuss the idea that Plantae (in particular red algae are one of the major players in eukaryote genome evolution by virtue of their ability to act as sinks and sources of foreign genes through HGT and endosymbiosis, respectively. This hypothesis recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty among photosynthetic eukaryotes.

  7. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  8. Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed

    Science.gov (United States)

    Byappanahalli, M.N.; Whitman, R.L.; Shively, D.A.; Sadowsky, M.J.; Ishii, S.

    2006-01-01

    The common occurrence of Escherichia coli in temperate soils has previously been reported, however, there are few studies to date to characterize its source, distribution, persistent capability and genetic diversity. In this study, undisturbed, forest soils within six randomly selected 0.5 m2 exclosure plots (covered by netting of 2.3 mm2 mesh size) were monitored from March to October 2003 for E. coli in order to describe its numerical and population characteristics. Culturable E. coli occurred in 88% of the samples collected, with overall mean counts of 16 MPN g-1, ranging from soil temperatures, suggesting that seasonality were not a strong factor in population density control. Mean E. coli counts in soil samples (n = 60) were significantly higher inside than immediately outside the exclosures; E. coli distribution within the exclosures was patchy. Repetitive extragenic palindromic polymerase chain reaction (Rep-PCR) demonstrated genetic heterogeneity of E. coli within and among exclosure sites, and the soil strains were genetically distinct from animal (E. coli) strains tested (i.e. gulls, terns, deer and most geese). These results suggest that E. coli can occur and persist for extended periods in undisturbed temperate forest soils independent of recent allochthonous input and season, and that the soil E. coli populations formed a cohesive phylogenetic group in comparison to the set of fecal strains with which they were compared. Thus, in assessing E. coli sources within a stream, it is important to differentiate background soil loadings from inputs derived from animal and human fecal contamination. ?? 2005 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells

    DEFF Research Database (Denmark)

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-01-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells...... both prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control...

  10. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms

    Directory of Open Access Journals (Sweden)

    Postberg Jan

    2010-08-01

    Full Text Available Abstract Background The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins. Results In the light of recent progress in understanding the tree of eukaryotic life we discovered the origin of histone H3 by phylogenetic analyses of variants from all supergroups, which allowed the reconstruction of ancestral states. We found that H3 variants evolved frequently but independently within related species of almost all eukaryotic supergroups. Interestingly, we found all core histone types encoded in the genome of a basal dinoflagellate and H3 variants in two other species, although is was reported that dinoflagellate chromatin is not organized into nucleosomes. Most probably one or more animal/nuclearid H3.3-like variants gave rise to H3 variants of all opisthokonts (animals, choanozoa, fungi, nuclearids, Amoebozoa. H3.2 and H3.1 as well as H3.1t are derivatives of H3.3, whereas H3.2 evolved already in early branching animals, such as Trichoplax. H3.1 and H3.1t are probably restricted to mammals. We deduced a model for protoH3 of the last eukaryotic common ancestor (LECA confirming a remarkable degree of sequence conservation in comparison to canonical human H3.1. We found evidence that multiple PTMs are

  11. Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit.

    OpenAIRE

    Erickson, F L; Hannig, E M

    1996-01-01

    Eukaryotic translation initiation factor 2 (eIF-2) comprises three non-identical subunits alpha, beta and gamma. In vitro, eIF-2 binds the initiator methionyl-tRNA in a GTP-dependent fashion. Based on similarities between eukaryotic eIF-2gamma proteins and eubacterial EF-Tu proteins, we previously proposed a major role for the gamma-subunit in binding guanine nucleotide and tRNA. We have tested this hypothesis by examining the biochemical activities of yeast eIF-2 purified from wild-type stra...

  12. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes

    OpenAIRE

    Schwartz, Schraga; Silva, João(CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049, Lisboa, Portugal); Burstein, David; Pupko, Tal; Eyras, Eduardo; Ast, Gil

    2008-01-01

    Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5′ splice site (5′ss), the branch site (BS), and the polypyrimdine tract/3′splice site (PPT-3′ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analyses suggest that all these signals have dramatically evolved: The PPT is weak among most fungi, inter...

  13. Intersectionality, Diversity and Gender

    DEFF Research Database (Denmark)

    Siim, Birte; Agustin, Lise Rolandsen

    2016-01-01

    In the discourses of Danish politicians on ethno-national diversity and integration, the notion of diversity is gendered, especially the articulation of the ‘working woman’ and her labor market participation. Equality, diversity and gender are, thus, intertwined in political, discursive......’ debates about gender and diversity within the national and transnational European Polity....

  14. 10 Diversity Champions II

    Science.gov (United States)

    Nealy, Michelle J.; Pluviose, David; Roach, Ronald

    2008-01-01

    Introducing the "Champions of Diversity" in the Academic Kickoff issue proved a timely reminder of the mission of Diverse during the lead up to the 25th anniversary of Cox, Matthews and Associates, the founder of the former Black Issues in Higher Education and publisher of Diverse. In this edition, the editors at Diverse unveil its second slate of…

  15. Diversity in Organizations

    OpenAIRE

    Antonio S. Mello; Ruckes, Martin

    2001-01-01

    This Paper develops a theory of diversity in work groups within organizations. Diversity is determined by the group members' dfferences in backgrounds. Diverse teams possess more information than homogeneous ones. If beliefs and preferences are expressed openly, diverse teams can reach better decisions. However, due to their members' heterogeneous backgrounds diverse teams are more prone to conflict. The Paper shows that the relative performance of heterogeneous and homogeneous groups depends...

  16. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren;

    1997-01-01

    We have developed a new method for the identification of signal peptides and their cleavage based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome...

  17. EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotes

    Directory of Open Access Journals (Sweden)

    Grover Atul

    2007-07-01

    Full Text Available Abstract Background Microsatellites have immense utility as molecular markers in different fields like genome characterization and mapping, phylogeny and evolutionary biology. Existing microsatellite databases are of limited utility for experimental and computational biologists with regard to their content and information output. EuMicroSatdb (Eukaryotic MicroSatellite database http://ipu.ac.in/usbt/EuMicroSatdb.htm is a web based relational database for easy and efficient positional mining of microsatellites from sequenced eukaryotic genomes. Description A user friendly web interface has been developed for microsatellite data retrieval using Active Server Pages (ASP. The backend database codes for data extraction and assembly have been written using Perl based scripts and C++. Precise need based microsatellites data retrieval is possible using different input parameters like microsatellite type (simple perfect or compound perfect, repeat unit length (mono- to hexa-nucleotide, repeat number, microsatellite length and chromosomal location in the genome. Furthermore, information about clustering of different microsatellites in the genome can also be retrieved. Finally, to facilitate primer designing for PCR amplification of any desired microsatellite locus, 200 bp upstream and downstream sequences are provided. Conclusion The database allows easy systematic retrieval of comprehensive information about simple and compound microsatellites, microsatellite clusters and their locus coordinates in 31 sequenced eukaryotic genomes. The information content of the database is useful in different areas of research like gene tagging, genome mapping, population genetics, germplasm characterization and in understanding microsatellite dynamics in eukaryotic genomes.

  18. Are maternal mitochondria the selfish entities that are masters of the cells of eukaryotic multicellular organisms?

    Science.gov (United States)

    Agnati, Luigi F; Barlow, Peter W; Baldelli, E; Baluska, Frantisek

    2009-01-01

    The Energide concept, as well as the endosymbiotic theory of eukaryotic cell organization and evolution, proposes that present-day cells of eukaryotic organisms are mosaics of specialized and cooperating units, or organelles. Some of these units were originally free-living prokaryotes, which were engulfed during evolutionary time. Mitochondria represent one of these types of previously independent organisms, the Energide, is another type. This new perspective on the organization of the cell has been further expanded to reveal the concept of a public milieu, the cytosol, in which Energides and mitochondria live, each with their own private internal milieu. The present paper discusses how the endosymbiotic theory implicates a new hypothesis about the hierarchical and communicational organization of the integrated prokaryotic components of the eukaryotic cell and provides a new angle from which to consider the theory of evolution and its bearing upon cellular complexity. Thus, it is proposed that the "selfish gene" hypothesis of Dawkins1 is not the only possible perspective for comprehending genomic and cellular evolution. Our proposal is that maternal mitochondria are the selfish "master" entities of the eukaryotic cell with respect not only to their propagation from cell-to-cell and from generation-to-generation but also to their regulation of all other cellular functions. However, it should be recognized that the concept of "master" and "servant" cell components is a metaphor; in present-day living organisms their organellar components are considered to be interdependent and inseparable. PMID:19513277

  19. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus.

    Science.gov (United States)

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-08-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton-virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  20. Mutant bacterial sodium channels as models for local anesthetic block of eukaryotic proteins.

    Science.gov (United States)

    Smith, Natalie E; Corry, Ben

    2016-05-01

    Voltage gated sodium channels are the target of a range of local anesthetic, anti-epileptic and anti-arrhythmic compounds. But, gaining a molecular level understanding of their mode of action is difficult as we only have atomic resolution structures of bacterial sodium channels not their eukaryotic counterparts. In this study we used molecular dynamics simulations to demonstrate that the binding sites of both the local anesthetic benzocaine and the anti-epileptic phenytoin to the bacterial sodium channel NavAb can be altered significantly by the introduction of point mutations. Free energy techniques were applied to show that increased aromaticity in the pore of the channel, used to emulate the aromatic residues observed in eukaryotic Nav1.2, led to changes in the location of binding and dissociation constants of each drug relative to wild type NavAb. Further, binding locations and dissociation constants obtained for both benzocaine (660 μM) and phenytoin (1 μ M) in the mutant channels were within the range expected from experimental values obtained from drug binding to eukaryotic sodium channels, indicating that these mutant NavAb may be a better model for drug binding to eukaryotic channels than the wild type. PMID:26852716

  1. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea

    Science.gov (United States)

    Fawcett, Sarah E.; Lomas, Michael W.; Casey, John R.; Ward, Bess B.; Sigman, Daniel M.

    2011-10-01

    Phytoplankton growth is potentially limited by the scarcity of biologically available forms of nitrogen such as nitrate and ammonium. In the subtropical ocean gyres, water column stratification impedes the upward flux of nitrate to surface waters. Phytoplankton in these waters are assumed to rely largely on ammonium and other forms of nitrogen recycled during the breakdown of organic matter. Here, we use flow cytometry to separate prokaryotic and eukaryotic phytoplankton collected from Sargasso Sea surface waters in the summers of 2008 and 2009, and to analyse their respective nitrogen isotope ratios. We show that prokaryotes have a uniformly low ratio of 15N to 14N, δ15N, consistent with their reliance on recycled nitrogen. In contrast, small eukaryotic phytoplankton, less than 30μm in size, have a higher and more variable δ15N, with a mean value similar to that of nitrate in underlying Subtropical Mode Water. For the summertime Sargasso Sea, we estimate that small eukaryotes obtain more than half of their nitrogen from upwelled nitrate. In addition, our data support the view that sinking material derives largely from eukaryotic, not prokaryotic, phytoplankton biomass.

  2. Guiding Student Inquiry into Eukaryotic Organismal Biology Using the Plasmodial Slime Mold "Physarum Polycephalum"

    Science.gov (United States)

    Weeks, Andrea; Bachman, Beverly; Josway, Sarah; Laemmerzahl, Arndt F.; North, Brittany

    2014-01-01

    In order to challenge our undergraduate students' enduring misconception that plants, animals, and fungi must be "advanced" and that other eukaryotes traditionally called protists must be "primitive," we have developed a 24-hour take-home guided inquiry and investigation of live Physarum cultures. The experiment replicates…

  3. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

    Czech Academy of Sciences Publication Activity Database

    Speijer, D.; Lukeš, Julius; Eliáš, M.

    2015-01-01

    Roč. 112, č. 29 (2015), s. 8827-8834. ISSN 0027-8424 R&D Projects: GA MŠk LH12104; GA ČR GA15-21974S Institutional support: RVO:60077344 Keywords : reactive oxygen species * evolution * protists * eukaryotes * sex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.674, year: 2014

  4. Selective Bypass of a Lagging Strand Roadblock by the Eukaryotic Replicative DNA Helicase

    NARCIS (Netherlands)

    Fu, Yu V.; Yardimci, Hasan; Long, David T.; Ho, The Vinh; Guainazzi, Angelo; Bermudez, Vladimir P.; Hurwitz, Jerard; Oijen, Antoine van; Schärer, Orlando D.; Walter, Johannes C.

    2011-01-01

    The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were

  5. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  6. AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B

    NARCIS (Netherlands)

    van Gorp, A. G. M.; van der Vos, K. E.; Brenkman, A. B.; Bremer, A.; van den Broek, N.; Zwartkruis, F.; Hershey, J. W.; Burgering, B. M. T.; Calkhoven, C. F.; Coffer, P. J.

    2009-01-01

    Eukaryotic translation initiation factor 4B (eIF4B) plays a critical role during the initiation of protein synthesis and its activity can be regulated by multiple phosphorylation events. In a search for novel protein kinase B (PKB/c-akt) substrates, we identified eIF4B as a potential target. Using a

  7. In silico resurrection of the major vault protein suggests it is ancestral in modern eukaryotes.

    Science.gov (United States)

    Daly, Toni K; Sutherland-Smith, Andrew J; Penny, David

    2013-01-01

    Vaults are very large oligomeric ribonucleoproteins conserved among a variety of species. The rat vault 3D structure shows an ovoid oligomeric particle, consisting of 78 major vault protein monomers, each of approximately 861 amino acids. Vaults are probably the largest ribonucleoprotein structures in eukaryote cells, being approximately 70 nm in length with a diameter of 40 nm--the size of three ribosomes and with a lumen capacity of 50 million Å(3). We use both protein sequences and inferred ancestral sequences for in silico virtual resurrection of tertiary and quaternary structures to search for vaults in a wide variety of eukaryotes. We find that the vault's phylogenetic distribution is widespread in eukaryotes, but is apparently absent in some notable model organisms. Our conclusion from the distribution of vaults is that they were present in the last eukaryote common ancestor but they have apparently been lost from a number of groups including fungi, insects, and probably plants. Our approach of inferring ancestral 3D and quaternary structures is expected to be useful generally. PMID:23887922

  8. Counterintuitive effect of fall mixed layer deepening on eukaryotic new production in the Sargasso Sea

    Science.gov (United States)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Sigman, D. M.

    2012-12-01

    The Sargasso Sea is characterized by a short period of deep vertical mixing in the late winter and early spring, followed by strong thermal stratification during the summer. Stratification persists into the fall, impeding the upward flux of nitrate from depth so that recycled forms of nitrogen (N) such as ammonium are thought to support most primary production. We collected particles from surface waters during March, July, October, and December, used flow cytometry to separate the prokaryotic and eukaryotic phytoplankton, and analyzed their respective 15N/14N. In all months, the 15N/14N of the prokaryotic genera, Prochlorococcus and Synechococcus, was low, indicative of reliance on recycled N throughout the year. In July, the 15N/14N of eukaryotic phytoplankton was variable but consistently higher than that of the prokaryotes, reflecting eukaryotic consumption of subsurface nitrate. Two eukaryotic profiles from October and December were similar to those from July. In three other fall profiles, the eukaryotes had a 15N/14N similar to that of the prokaryotes, suggesting a switch toward greater reliance on recycled N. This change in the dominant N source supporting eukaryotic production appears to be driven by the density structure of the upper water column. The very shallow low-density surface "mixed layer" (≤20 m) that develops in early-to-mid summer does not contribute to stratification at the base of the euphotic zone, and subsurface nitrate can mix up into the lower euphotic zone, facilitating continued production. The deepening of the mixed layer into the fall, typically taken as an indication of weaker overall stratification, actually strengthens the isolation of the euphotic zone as a whole, reducing the upward supply of nitrate to the photosynthetically active layer. The same counterintuitive dynamic explains the latitudinal patterns in a set of three October depth profiles. Two northern stations (32°N and 27°N) were characterized by a thick, low

  9. CERN Diversity Newsletter - March 2016

    CERN Document Server

    Kaltenhauser, Kristin; CERN. Geneva. HR Department

    2016-01-01

    Quarterly CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  10. CERN Diversity Newsletter - November 2015

    CERN Document Server

    Kaltenhauser, Kristin; CERN. Geneva. HR Department

    2015-01-01

    Quarterly CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  11. Diversity Statements: How Faculty Applicants Address Diversity

    Science.gov (United States)

    Schmaling, Karen B.; Trevino, Amira Y.; Lind, Justin R.; Blume, Arthur W.; Baker, Dana L.

    2015-01-01

    The purpose of the present study was to examine application materials for assistant professor positions in 3 academic disciplines. Applicants were asked to write a diversity statement describing how they would advance diversity through their research, teaching, and service. The sample included application materials submitted by 191 candidates for…

  12. Does Staff Diversity Imply Openness to Diversity?

    Science.gov (United States)

    Lauring, Jakob; Selmer, Jan

    2013-01-01

    Purpose: Post-secondary educational organizations are currently some of the most diverse settings to be found. However, few educational studies have dealt with staff diversity and hardly any has looked outside the USA. The purpose of this paper is to present a study of members of international university departments in Denmark. The authors set out…

  13. Selection of autochthonous lactic acid bacteria from goat dairies and their addition to evaluate the inhibition of Salmonella typhi in artisanal cheese.

    Science.gov (United States)

    Ferrari, Iris da Silva; de Souza, Jane Viana; Ramos, Cintia Lacerda; da Costa, Mateus Matiuzzi; Schwan, Rosane Freitas; Dias, Francesca Silva

    2016-12-01

    This study aimed to select autochthonous lactic acid bacteria (LAB) with probiotic and functional properties from goat dairies and test their addition to artisanal cheese for the inhibition of Salmonella typhi. In vitro tests, including survival in the gastrointestinal tract (GIT), auto- and co-aggregation, the hemolytic test, DNase activity, antimicrobial susceptibility, antibacterial activity, tolerance to NaCl and exopolysaccharide (EPS), gas and diacetyl production were conducted for sixty isolates. Based on these tests, four LAB isolates (UNIVASF CAP 16, 45, 84 and 279) were selected and identified. Additional tests, such as production of lactic and citric acids by UNIVASF CAP isolates were performed in addition to assays of bile salt hydrolase (BSH), β-galactosidase and decarboxylase activity. The four selected LAB produced high lactic acid (>17 g/L) and low citric acid (0.2 g/L) concentrations. All selected strains showed BSH and β-galactosidase activity and none showed decarboxylase activity. Three goat cheeses (1, 2 and control) were produced and evaluated for the inhibitory action of selected LAB against Salmonella typhi. The cheese inoculated with LAB (cheese 2) decreased 0.38 log10 CFU/g of S. Typhy population while in the cheese without LAB inoculation (cheese 1) the pathogen population increased by 0.29 log units. Further, the pH value increased linearly over time, by 0.004 units per day in cheese 1. In the cheese 2, the pH value decreased linearly over time, by 0.066 units per day. The cocktail containing selected Lactobacillus strains with potential probiotic and technological properties showed antibacterial activity against S. typhi in vitro and in artisanal goat cheese. Thus, goat milk is important source of potential probiotic LAB which may be used to inhibit the growth of Salmonella population in cheese goat, contributing to safety and functional value of the product. PMID:27554143

  14. Volatile Profile, Phytochemicals and Antioxidant Activity of Virgin Olive Oils from Croatian Autochthonous Varieties Mašnjača and Krvavica in Comparison with Italian Variety Leccino

    Directory of Open Access Journals (Sweden)

    Mladenka Šarolić

    2014-01-01

    Full Text Available Virgin olive oils (VOOs obtained from the fruits of Croatian autochthonous varieties Mašnjača and Krvavica were extensively characterized for the first time. Investigated oils were compared with the oil obtained from Italian variety Leccino, grown and processed under the same conditions. Headspace volatile profile, tocopherols, chlorophylls, carotenoids and total phenolic content, peroxide value, % acidity, K232, K270 as well as antioxidant activity (DPPH of the oils’ hydrophilic fractions (HFs including their phenolic composition were assessed by means of HS-SPME/GC-MS, HPLC-FL, HPLC-DAD and spectrophotometric methods, respectively. Most of the studied quality parameters varied between the cultivars. The main volatile compounds detected in all tested olive oils were the C6 compounds derived from polyunsaturated fatty acids through the lipoxygenase pathway. Krvavica oil was characterized by hexanal (8.8%–9.4%. Leccino oil contained the highest percentage of (E-hex-2-enal (73.4%–74.0%, whereas (Z-hex-3-enal (21.9%–25.0% and (E-hex-2-enal (27.6%–28.9% dominated in Mašnjača oil. Leccino oil contained the highest amount of tocopherols (312.4 mg/kg, chlorophylls (7.3 mg/kg, carotenoids (4.2 mg/kg and total phenols (246.6 mg/kg. The HF of Leccino oil showed the highest antioxidant capacity (1.3 mmol TEAC/kg, while the HFs of Mašnjača and Krvavica oils exhibited the activity of 0.5 mmol TEAC/kg.

  15. Effect of autochthonous starter cultures isolated from Siahmazgi cheese on physicochemical, microbiological and volatile compound profiles and sensorial attributes of sucuk, a Turkish dry-fermented sausage.

    Science.gov (United States)

    Kargozari, Mina; Moini, Sohrab; Akhondzadeh Basti, Afshin; Emam-Djomeh, Zahra; Gandomi, Hassan; Revilla Martin, Isabel; Ghasemlou, Mehran; Carbonell-Barrachina, Angel A

    2014-05-01

    The effect of adding autochthonous starter cultures isolated from Siahmazgi cheese, on the physicochemical parameters and microbial counts of sucuk was investigated during the ripening period. SPME-GC/MS was used in volatile compound analysis and a trained group of panelists carried out sensory analysis of the final product. After preliminary screening, three strains of Lactobacillus plantarum, which possess desirable technological properties, were used to prepare three starter cultures: LBP7, LBP10 and LBP14. The addition of LBP7 and LBP14 starter cultures had a significant effect (Plactic acid bacteria, lower growth of Enterobacteriaceae and Gram-positive catalase-positive cocci and greatly lowered the pH value compared to control sausages throughout the ripening process. At the end of the ripening process, lactic acid bacteria counts were affected (P<0.05) by the addition of starter culture since higher counts were observed in sausages prepared with LBP7 (9.14logCFU/g) and LBP14 (8.96logCFU/g) batches. The decrease of water activity during the ripening of sausages was not affected by the various starters. The texture profiles of all sausages were similar except for LBP10, which showed lower hardness and gumminess during ripening. Under the conditions of the study, volatile compounds were mainly from spices, and no marked differences were found among inoculated sausages. However, sensory evaluation revealed that most of the sensory attributes were scored higher for inoculated sausages than for the control ones. Therefore, LBP7 and LBP14 could be promising candidates for inclusion as starter cultures for the manufacture of sucuk. PMID:24553492

  16. Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition

    International Nuclear Information System (INIS)

    Throughout 90-day biodegradation under microaerobic conditions, invasive to Lithuania species boxelder maple (Acer negundo) leaves lost 1.5-fold more biomass than that of autochthonous black alder (Alnus glutinosa), releasing higher contents of Ntot, ammonium and generating higher BOD7. Boxelder maple leaf leachates were characterized by higher total bacterial numbers and colony numbers of heterotrophic and cellulose-decomposing bacteria than those of black alder. The higher toxicity of A. negundo aqueous extracts and leachates to charophyte cell (Nitellopsis obtusa), the inhabitant of clean lakes, were manifested at mortality and membrane depolarization levels, while the effect on H+-ATPase activity in membrane preparations from the same algae was stronger in case of A. glutinosa. Duckweed (Lemna minor), a bioindicator of eutrophic waters, was more sensitive to leaf leachates of A. glutinosa. Fallen leaves and leaf litter leachates from invasive and native species of trees, which enter water body, affect differently microbial biodestruction and aquatic vegetation in freshwater systems. - Highlights: ► We examined Acer negundo and Alnus glutinosa leaf extract effects on hydrophytes. ► Nitellopsis obtusa and Lemna minor responded differently to leaf litter leachates. ► 90-day biodegraded A. negundo leaves lost twofold more biomass than that of A. glutinosa. ► A. negundo leachates evoked higher mortality and cell depolarization of N. obtusa. ► Leachates affected H+-ATPase activity in algae membrane preparations. - Fallen leaves and leaf litter leachates from invasive and native species of trees, which enter waterbody can be environmental factor affecting differently microbial biodestruction and aquatic vegetation in freshwater systems, thus influencing ecological scenarios.

  17. Growth control of the eukaryote cell: a systems biology study in yeast

    Directory of Open Access Journals (Sweden)

    Castrillo Juan I

    2007-04-01

    Full Text Available Abstract Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for

  18. Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes?

    Directory of Open Access Journals (Sweden)

    Poole Anthony M

    2006-12-01

    Full Text Available Abstract Martin & Koonin recently proposed that the eukaryote nucleus evolved as a quality control mechanism to prevent ribosome readthrough into introns. In their scenario, the bacterial ancestor of mitochondria was resident in an archaeal cell, and group II introns (carried by the fledgling mitochondrion inserted into coding regions in the archaeal host genome. They suggest that if transcription and translation were coupled, and because splicing is expected to have been slower than translation, the effect of insertion would have been ribosome readthrough into introns, resulting in production of aberrant proteins. The emergence of the nuclear compartment would thus have served to separate transcription and splicing from translation, thereby alleviating this problem. In this article, I argue that Martin & Koonin's model is not compatible with current knowledge. The model requires that group II introns would spread aggressively through an archaeal genome. It is well known that selfish elements can spread through an outbreeding sexual population despite a substantial fitness cost to the host. The same is not true for asexual lineages however, where both theory and observation argue that such elements will be under pressure to reduce proliferation, and may be lost completely. The recent introduction of group II introns into archaea by horizontal transfer provides a natural test case with which to evaluate Martin & Koonin's model. The distribution and behaviour of these introns fits prior theoretical expectations, not the scenario of aggressive proliferation advocated by Martin & Koonin. I therefore conclude that the mitochondrial seed hypothesis for the origin of eukaryote introns, on which their model is based, better explains the early expansion of introns in eukaryotes. The mitochondrial seed hypothesis has the capacity to separate the origin of eukaryotes from the origin of introns, leaving open the possibility that the cell that engulfed the

  19. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.

    Science.gov (United States)

    He, Ding; Fu, Cheng-Jie; Baldauf, Sandra L

    2016-01-01

    The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis. PMID:26412445

  20. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2009-01-01

    I discuss eukaryote megaphylogeny and the timing of major innovations in the light of multigene trees and the rarity of marine/freshwater evolutionary transitions. The first eukaryotes were aerobic phagotrophs, probably substratum-associated heterotrophic amoeboflagellates. The primary eukaryote bifurcation generated unikonts (ancestrally probably unicentriolar, with a conical microtubular [MT] cytoskeleton) and bikonts (ciliary transformation from anterior cilium to ancestrally gliding posterior cilium; cytoskeleton of ventral MT bands). Unikonts diverged into Amoebozoa with anterior cilia, lost when lobosan broad pseudopods evolved for locomotion, and Choanozoa with posterior cilium and filose pseudopods that became unbranched tentacles/microvilli in holozoa and eventually the choanoflagellate/choanocyte collar. Of choanozoan ancestry, animals evolved epithelia, fibroblasts, eggs, and sperm. Fungi and Ichthyosporea evolved walls. Bikonts, ancestrally with ventral grooves, include three adaptively divergent megagroups: Rhizaria (Retaria and Cercozoa, ancestrally reticulofilose soft-surfaced gliding amoeboflagellates), and the originally planktonic Excavata, and the corticates (Plantae and chromalveolates) that suppressed pseudopodia. Excavata evolved cilia-generated feeding currents for grooval ingestion; corticates evolved cortical alveoli and ciliary hairs. Symbiogenetic origin and transfers of chloroplasts stimulated an explosive radiation of corticates--hard to resolve on multigene trees--and opisthokonts, and ensuing Cambrian explosions of animals and protists. Plantae lost phagotrophy and multiply evolved walls and macroalgae. Apusozoa, with dorsal pellicle and ventral pseudopods, are probably the most divergent bikonts or related to opisthokonts. Eukaryotes probably originated 800-850 My ago. Amoebozoa, Apusozoa, Loukozoa, and Metamonada may be the only extant eukaryote phyla pre-dating Neoproterozoic snowball earth. New subphyla are established for