WorldWideScience

Sample records for austrian water supplies

  1. Natural radionuclides in Austrian bottled mineral waters

    International Nuclear Information System (INIS)

    All commercially available mineral waters of Austrian origin were investigated with regard to the natural radionuclides 228Ra, 226Ra, 210Pb, 210Po, 238U and 234U. From 1 to 1.5 L of sample the nuclides were extracted and measured sequentially: the radium isotopes as well as 210Pb were measured by liquid scintillation counting after separation on a membrane loaded with element-selective particles (Empore Radium Disks), 210Po was determined by α-particle spectroscopy after spontaneous deposition onto a copper planchette and uranium was determined also by α-particle spectroscopy after anion separation and microprecipitation with NdF3. The calculated committed effective doses for adults, teens and babies were compared to the total indicative dose of 0.1 mSv/year given in the EC Drinking Water Directive. The dominant portion of the committed effective dose was due to 228Ra. Highly mineralised waters showed also higher 226Ra and 228Ra levels. (author)

  2. Food and water supply

    Science.gov (United States)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  3. Water demand and supply

    International Nuclear Information System (INIS)

    Major international conferences have dealt with the growing concern over the ever increasing use of limited fresh water resources on the planet, including the United Nations Water Conference held in Mar del Plata (1977), the Dublin Conference (1992) and the UN Conference on Environment and Development held in Rio de Janeiro (1992). In April 1997, the UN Commission on Sustainable Development was presented with a report on a Comprehensive Assessment of the Freshwater Resources of the World, in which all UN agencies concerned with water participated. Matching the ever growing demands with the limited supply of a finite resource has led to tremendous stress on natural fresh water. This starts with low water stress, when about 10% of the available fresh water is being used. Use of more than 40% of the available water indicates serious scarcity, and usually increasing dependence on desalination and overexploitation of aquifers. On the basis of population increase projections for the year 2025, and extrapolating current trends, as much as two-thirds of the world's population may be living in moderate or high water stress situations. With increasing water stress and scarcity, drastic changes in the way water business is being done will have to be introduced, particularly in low income countries. Agricultural practices, in particular, have to be introduced that reduce losses. Improved strategies have to make use of rigorously enforced demand management, better resource management, waste water reuse to the extent possible, and finally desalination of sea water and brackish groundwaters. Some of the current water intensive patterns of development may even have to be abandoned. (author)

  4. Water demand for ski resort development in the Austrian Alps: an Overview

    Science.gov (United States)

    Breiling, M.; Sokratov, S.

    2012-04-01

    were the most important irrigated land, now high altitude mountain areas and winter are the largest irrigated areas. We assume the production of 6000 cubic metres of artificial snow per hectare per season. This results in around 100 million cubic metres of artificial snow to cover a slope area of 17,000 hectares that would be produced using 57 million cubic metres of water (incluing losses). In winter, Austrian skiing areas use almost as much water as the capital city of Vienna during the same period. The water demand could again be reduced up to 30% by snow making with help of the dendrite generator, a recent innovation that has not entered the market yet. Water savings also affect the energy requirements where savings of up to 40% are predicted and leads to improved resoure use, greater ecological compatibility and an increase in profitability.

  5. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  6. The Use of Social Media within the Austrian Supply Chain for Food and Beverages

    OpenAIRE

    Meixner, Oliver; Haas, Rainer; Moosbrugger, Helmut; Magdits, Philipp

    2013-01-01

    In addition to traditional marketing communication instruments, social media marketing has become a powerful tool of interaction with participants within supply chains. An increasing number of com-panies, especially in the US, are using social media platforms not only to market their products and manage their customer relationships, but also to initiate active interaction and communication with current and prospective customers. One core objective of this study was to evaluate certain content...

  7. Continuity in Drinking Water Supply

    OpenAIRE

    Ayse Ercumen; Benjamin F Arnold; Emily Kumpel; Zachary Burt; Isha Ray; Kara Nelson; Colford, John M

    2015-01-01

    Editors' Summary Background Access to a safe drinking water supply (a water source that is protected from contamination with microbes or chemicals) and to adequate sanitation facilities (improved latrines and other facilities that prevent people from coming into contact with human feces) is essential for good health. Unimproved water supplies and sanitation, together with poor hygiene, increase the transmission of waterborne diseases, many of which cause diarrhea (passing three or more loose ...

  8. Potable water supply

    Science.gov (United States)

    Sauer, R. L.; Calley, D. J.

    1975-01-01

    The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.

  9. Natural radionuclides in Austrian mineral water and their sequential measurement by fast methods

    International Nuclear Information System (INIS)

    Ten samples of Austrian mineral water were investigated with regard to the natural radionuclides 228Ra, 226Ra, 210Pb, 210Po, 238U and 234U. The radium isotopes as well as 210Pb were measured by liquid scintillation counting (LSC) after separation on a membrane loaded with element-selective particles (EmporeTM Radium Disks) and 210Po was determined by α-spectroscopy after spontaneous deposition onto a copper planchette. Uranium was determined by ICP-MS as well as by α-spectroscopy after ion separation and microprecipitation with NdF3. From the measured activity concentrations the committed effective doses for adults and babies were calculated and compared to the total indicative dose of 0.1 mSv/a given in the EC Drinking Water Directive as a maximum dose. The dominant portion of the committed effective dose was due to the radium isotopes; the dose from 228Ra in most samples clearly exceeded the dose from 226Ra

  10. Natural radionuclides in Austrian mineral water and their sequential measurement by fast methods

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Gabriele [University of Vienna, Institut fuer Anorganische Chemie, Waehringerstrasse 42, A-1090 Vienna (Austria)], E-mail: gabriele.wallner@univie.ac.at; Wagner, Rosmarie [University of Vienna, Institut fuer Anorganische Chemie, Waehringerstrasse 42, A-1090 Vienna (Austria); Katzlberger, Christian [Austrian Agency for Health and Food Safety, CC Radiation Protection and Radiochemistry, Spargelfeldstrasse 191, A-1226 Vienna (Austria)

    2008-07-15

    Ten samples of Austrian mineral water were investigated with regard to the natural radionuclides {sup 228}Ra, {sup 226}Ra, {sup 210}Pb, {sup 210}Po, {sup 238}U and {sup 234}U. The radium isotopes as well as {sup 210}Pb were measured by liquid scintillation counting (LSC) after separation on a membrane loaded with element-selective particles (Empore{sup TM} Radium Disks) and {sup 210}Po was determined by {alpha}-spectroscopy after spontaneous deposition onto a copper planchette. Uranium was determined by ICP-MS as well as by {alpha}-spectroscopy after ion separation and microprecipitation with NdF{sub 3}. From the measured activity concentrations the committed effective doses for adults and babies were calculated and compared to the total indicative dose of 0.1 mSv/a given in the EC Drinking Water Directive as a maximum dose. The dominant portion of the committed effective dose was due to the radium isotopes; the dose from {sup 228}Ra in most samples clearly exceeded the dose from {sup 226}Ra.

  11. Mozambique - Rural Water Supply

    Data.gov (United States)

    Millenium Challenge Corporation — This report provides the results from (1) an impact evaluation of the MCA's Rural Water Point Implementation Program ('RWPIP') in Nampula and (2) an evaluation of...

  12. Water Supply Infrastructure System Surety

    Energy Technology Data Exchange (ETDEWEB)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  13. 46 CFR 108.467 - Water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water supply. 108.467 Section 108.467 Shipping COAST... Fire Extinguishing Systems Foam Extinguishing Systems § 108.467 Water supply. The water supply of a foam extinguishing system must not be the water supply of the fire main system on the unit unless...

  14. Interaction with customers: The Application of Social Media within the Austrian Supply Chain for Food and Beverages

    Directory of Open Access Journals (Sweden)

    Oliver Meixner

    2013-03-01

    Full Text Available Social media marketing has become a powerful tool of interaction with stakeholders. An increasing number of companies are using social media platforms to initiate active interaction and communication with current and prospective customers. Within this study, certain content and contact features, as well as social media activities of companies of the Austrian food and beverage industry were evaluated. Empirical findings concerning the threats, risks, and opportunities connected with the application of social media are presented. The results imply that social media applications are innovative alternatives for customer relationship management. However, more knowledge on how to properly use social media marketing seems to be necessary.

  15. 18 CFR 801.6 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply. 801.6... POLICIES § 801.6 Water supply. (a) The Susquehanna River Basin is rich in water resources. With proper... forth in the comprehensive plan. (c) The Commission shall study the basin's water supply needs,...

  16. 24 CFR 3285.603 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Water supply. 3285.603 Section 3285... § 3285.603 Water supply. (a) Crossover. Multi-section homes with plumbing in both sections require water... pressure and reduction. When the local water supply pressure exceeds 80 psi to the manufactured home,...

  17. 9 CFR 354.224 - Water supply.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at...

  18. [Hygienic aspects of the hot water supply].

    Science.gov (United States)

    Dergacheva, T S

    1991-08-01

    Hygienic significance of hot water-supply was demonstrated. In the case of the sanitary inspection deficiency it may be the complaints appearance. Hygiene of hot water-supply seems as an independent scientific branch of hygiene. PMID:1937089

  19. 25 CFR 137.1 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Water supply. 137.1 Section 137.1 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.1 Water supply. The engineering report dealt with in... capacity of the San Carlos reservoir created by the Coolidge Dam and the water supply therefor over...

  20. 20 CFR 654.405 - Water supply.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Water supply. 654.405 Section 654.405... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.405 Water supply. (a) An adequate and convenient supply of water that meets the standards of the State...

  1. African hydrogeology and rural water supply

    OpenAIRE

    Macdonald, Alan; Davies, Jeffrey; Callow, Roger C.

    2008-01-01

    The widespread development of groundwater is the only affordable and sustainable way of improving access to clean water and meeting the Millennium Development Goals for water supply by 2015. Current approaches to rural water supply, in particular demand driven approaches and decentralisation of service delivery have many benefits to the overall efficacy and sustainability of water supplies, however, problems arise when projects do not take into consideration the nature of the g...

  2. Water supply from wetlands in Tanzania

    OpenAIRE

    Mihayo, J.M.

    1993-01-01

    This paper gives a brief discussion on water supply from wetlands in Tanzania. The majordrainage basins in Tanzania are described and the status and role of the Division of WaterResearch in the monitoring of water resources and data collection from wetlands and watersources are highlighted. The role of wetlands in the hydrological cycle, and the utilisation ofwetlands as water supply sources are discussed. The need for conservation and protection ofwetlands and other water sources is outlined.

  3. Water supply at Los Alamos during 1991

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.; McLin, S.G.; Stoker, A.K.; Maes, M.N.

    1994-06-01

    This report summarizes production and aquifer conditions for water wells in the Los Alamos, Guaje, and Pajarito Well Fields . The wells supply all of the potable water used for municipal and some industrial purposes in Los Alamos County and the Los Alamos National Laboratory. The spring gallery in Water Canyon supplies nonpotable water for industrial use while the rest of the nonpotable water supply used for irrigation is surface water from the Guaje and Los Alamos Reservoirs. Included is a section on the chemical and radiochemical quality of water from the supply wells, gallery in Water Canyon and the reservoirs in Guaje and Los Alamos Canyons. A section on the quality of water with reference to compliance with state and federal regulations is included in the report.

  4. Rural water supply corruption in Ethiopia

    OpenAIRE

    Calow, Roger; Macdonald, Alan; Cross, Piers

    2012-01-01

    In Ethiopia, investment in rural water supply underpins the government’s poverty reduction efforts. The challenge is huge: roughly 50 percent of the (mainly rural) population still have no access to safe water, and the country has the highest number of people in Sub-Saharan Africa without access to improved water supply and sanitation. The consequences are dire: every year, roughly 250,000 children die from diseases related to poor water and sanitation, and many others face ...

  5. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  6. Water supply assessment 2003 : St. Johns River Water Management District

    OpenAIRE

    2006-01-01

    This report identifies future water supply needs, and areas where those needs cannot be met by the water supply plans of major water users without unacceptable impacts to water resources and related natural systems (which are priority water resource caution areas). (186pp.)

  7. Safety Problems of Small Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Tchórzewska-Cieślak Barbara

    2016-07-01

    Full Text Available The paper presents issues related to risks associated with the operation of small water supply systems on the background of water consumer safety assessment made on the basis of risk analysis. Definition of water consumer safety loss as a risk associated with the water consumption of poor quality or water lack was proposed. For this purpose, a three-parameter matrix is implemented with the parameters of the probability of a representative accident scenario, the losses of the water consumers and their protection. Risk management, together with the implementation of protective barriers of small water supply system against threats is a fundamental condition for the continued operation of the system.

  8. Ways to ecological water supply

    International Nuclear Information System (INIS)

    The protection and efficient utilization of our drinking water resources gain more and more in importance. The book shows practical ways how water for the consumer, e.g. in the house, can be used more efficiently for example through water saving fittings and toilet flushing systems, through double water networks, use of rain water or gray water recycling. With this, the authors not only provide practical fundamentals and design instructions of the single technologies but they also give a report on operating experiences and new formulations for solution, on results of current investigations as well as on municipal and national strategies for action. (orig./BBR)

  9. Institutional and socioeconomic aspects of water supply

    Science.gov (United States)

    Rauchenschwandtner, H.; Pachel, M.

    2012-04-01

    Institutional and socioeconomic aspects of water supply Within the project CC-WaterS the participating researchers of the Vienna University of Economics and B.A. have been responsible for the analysis of the socioeconomic aspects related to water supply and climate change, the assessment of future water demands in the City of Vienna, as well as an estimation of economic consequences of possible water shortages and possible scope for the introduction of new legal guidelines. The institutional and socioeconomic dimensions of drinking water and sanitation systems are being examined by utilisation of different prognostic scenarios in order to assess future costs of water provisioning and future demands of main water users, thus providing an information basis and recommendations for policy and decision makers in the water sector. These dimensions, for example, include EU legislation - especially the Water Framework Directive -, national legislations and strategies targeted at achieving sustainability in water usage, best practices and different forms of regulating water markets, and an analysis of the implications of demographic change. As a basis this task encompasses research of given institutional, social, and legal-political structures in the area of water supply. In this course we provide an analysis of the structural characteristics of water markets, the role of water prices, the increasing perception of water as an economic good as well as implications thereof, the public awareness in regard to climate change and water resources, as well as related legal aspects and involved actors from regional to international level; and show how water resources and the different systems of water provisioning are affected by (ideological) conflicts on various levels. Furthermore, and in order to provide a solid basis for management recommendations related to climate change and water supply, an analytical risk-assessment framework based on the concepts of new institutional

  10. Sustainable Water Supply in Ireland

    OpenAIRE

    McCarton, Liam; O'Hogain, Sean

    2004-01-01

    Sustainable water technology is concerned with the complete range of technologies, techniques, products and processes that will enable humankind to reduce the impact of water production and water consumption on the environment and to establish a more sustainable mode of development. The concept of sustainable development has gained wide usage over the past 15 years in an attempt to balance development needs and environmental protection. The Brundtland Report of the World Commission on Environ...

  11. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  12. Water supply at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.; McLin, S.G.; Stoker, A.K.; Maes, M.N.

    1995-09-01

    Municipal potable water supply during 1992 was 1,516 {times} 10{sup 6} gallons from wells in the Guaje and Pajarito well fields. About 13 {times} 10{sup 6} gallons were pumped from the Los Alamos Well Field and used in the construction of State Road 501 adjacent to the Field. The last year the Las Alamos Field was used for municipal supply was 1991. The nonpotable water supply used for steam plant support was about 0.12 {times} 10{sup 6} gallons from the spring gallery in Water Canyon. No nonpotable water was used for irrigation from Guaje and Los Alamos Reservoirs. Thus, the total water usage in 1992 was about 1,529 {times} 10{sup 6} gallons. Neither of the two new wells in the Otowi Well Field were operational in 1992.

  13. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle...... compared to the groundwater based cases. This shows the importance of integrating impacts of freshwater withdrawal in the environmental evaluation. A decision support system is needed which takes all identified criteria of relevance into account when choosing between several technologies for drinking water...

  14. Water supply and needs for West Texas

    Science.gov (United States)

    This presentation focused on the water supplies and needs of West Texas, Texas High Plains. Groundwater is the most commonly used water resources on the Texas High Plains, with withdrawals from the Ogallala Aquifer dominating. The saturation thickness of the Ogallala Aquifer in Texas is such that t...

  15. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.

    2014-07-01

    Many large population centres are currently facing considerable difficulties with planning issues to secure future water supplies, as a result of water allocation and environmental issues, litigation, and political dogma. A classic case occurs in the metropolitan Atlanta area, which is a rapidly growing, large population centre that relies solely on surface water for supply. Lake Lanier currently supplies about 70% of the water demand and has been involved in a protracted legal dispute for more than two decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling water demand by implementing a conservation plan, per capita use projections are still very high (at 511 L/day in 2035). Both non-potable reuse and indirect reuse of treated wastewater are contained in the most current water supply plan with up to 380,000 m3/day of wastewater treated using advanced wastewater treatment (nutrient removal) to be discharged into Lake Lanier. The water supply plan, however, includes no additional or new supply sources and has deleted any reference to the use of seawater desalination or other potential water sources which would provide diversification, thereby relying solely on the Coosa and Chattahoochee river reservoirs for the future. © 2014 IWA Publishing.

  16. On Austrian regional economics

    NARCIS (Netherlands)

    Heijman, W.J.M.; Leen, A.R.

    2004-01-01

    The aim of this research note is two-fold, firstly, to clarify the growing interaction between regional science and Austrian economics and their awareness of each other. We elucidate the Austrian methodology, called praxeology, which is especially misunderstood in regional science. Secondly, we tent

  17. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like sof...

  18. Water supply impacts of nuclear fall

    International Nuclear Information System (INIS)

    “Nuclear winter,” more properly called “nuclear fall,” could be caused by injection of large amounts of dust into the atmosphere. Besides causing a decrease in temperature, it could be accompanied by “nuclear drought,” a catastrophic decrease in precipitation. Dry land agriculture would then be impossible, and municipal, industrial, and irrigation water supplies would be diminished. It has been argued that nuclear winter/fall poses a much greater threat to human survival than do fall out or the direct impacts of a conflict. However, this does not appear to be true, at least for the U.S. Even under the unprecedented drought that could result from nuclear fall, water supplies would be available for many essential activities. For the most part, ground water supplies would be relatively invulnerable to nuclear drought, and adequate surface supplies would be available for potable uses. This assumes that conveyance facilities and power supplies survive a conflict largely intact or can be repaired

  19. Activities in water supply and sanitation.

    Science.gov (United States)

    1997-01-01

    The Economic and Social Council for Asia and the Pacific (ESCAP) held a regional workshop in Thailand in 1992 to demonstrate how women's involvement at all levels of environmentally sound and sustainable water supply and sanitation programs and projects could be made more effective, easier, and productive. Using the same modules, with the support of other organizations such as the Department of Development Support and Management Services, ESCAP conducted four more workshops in the Philippines, Lao People's Democratic Republic (PDR), Vietnam, and Thailand in 1995. In the Philippines, the National Commission on the Role of Filipino Women expressed its intention to adapt the modules for the country. In the Lao PDR, three project ideas were proposed which would assist the Lao Women Union in gaining knowledge on the planning, implementation, operation, and management of water supply and sanitation projects at the national, regional and project levels. In Vietnam, three main directions for action were identified for the promotion of close and active cooperation between the Rural Water Supply and Environmental Sanitation Centres and the system of the Women Union of Vietnam. In Thailand, the National Committee on Health and Environment of the National Commission on Women's Affairs expressed its willingness to seek budgetary allocation for the promotion of women's role in water supply and sanitation.

  20. 30 CFR 874.14 - Water supply restoration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... supply restoration projects. For purposes of this section, “water supply restoration projects” are...

  1. 40 CFR 230.50 - Municipal and private water supplies.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Municipal and private water supplies... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake...

  2. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi. PMID:24459990

  3. Scheduling Future Water Supply Investments Under Uncertainty

    Science.gov (United States)

    Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.

    2014-12-01

    Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).

  4. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  5. Climate vulnerability of drinking water supplies

    Science.gov (United States)

    Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes

    2016-04-01

    Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified

  6. Water Supply Planning for Landscape Irrigation in Virginia

    OpenAIRE

    Tucker, Adrienne Janel LaBranche

    2009-01-01

    A water supply plan approach was used to investigate irrigation application on landscaped areas in Virginia with a focus on turfgrass. The economically-important turfgrass industry in Virginia should be proactive in conserving drinking water supplies to meet human consumption needs, especially in drought times. This thesis investigates current irrigation water supplies, water supply sustainability, and alternative water sources to meet irrigation demands and offers an insight on how potable w...

  7. Intrusion problematic during water supply systems’ operation

    Directory of Open Access Journals (Sweden)

    Jesus Mora-Rodriguez, P. Amparo López-Jimenez, Helena M. Ramos

    2011-05-01

    Full Text Available Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  8. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  9. Anarchism and Austrian economics

    OpenAIRE

    Boettke, Peter

    2011-01-01

    In the 2011 Franz Cuhel Memorial Lecture, I argue that the study of endogenous rule formation in economic life (what I term the positive political economy of anarchism) should be studied in-depth and that the economic analysis of the Austrian school of economics provides many of the key analytical insights necessary for such study.

  10. 46 CFR 76.25-15 - Pumps and water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose....

  11. Oahu, Hawaii's Water Supply: 1848-2020 A.D.

    Science.gov (United States)

    Felix, John Henry

    Demand projections indicate that Oahu's natural ground water supply will be fully developed by the year 2000. Supplementary water resources will need to be developed in keeping with the growth of the economy and population. The author, chairman of the Honolulu Board of Water Supply, authoritatively discusses types of ground water in Hawaii, and…

  12. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate...

  13. Public water supplies of North Carolina : a summary of water sources, use, treatment, and capacity of water-supply systems

    Science.gov (United States)

    Mann, L.T., Jr.

    1978-01-01

    Data were collected during 1970-76 on 224 public water supply systems in North Carolina with 500 or more customers. This report summarizes these data that were previously published in five separate regional reports. The data are presented in order to Council of Government region, county, and water system name and include population served, average and maximum daily use, industrial use, water source, allowable draft of surface-water supplies, raw water pumping capacity, raw and finished water storage, type of water treatment, treatment plant capacity, and a summary of the chemical quality of finished water. Tables and maps provide cross references for system names, counties, Council of Government regions and water source.

  14. Microflora of drinking water distributed through decentralized supply systems (Tomsk)

    Science.gov (United States)

    Khvaschevskaya, A. A.; Nalivaiko, N. G.; Shestakova, A. V.

    2016-03-01

    The paper considers microbiological quality of waters from decentralized water supply systems in Tomsk. It has been proved that there are numerous microbial contaminants of different types. The authors claim that the water distributed through decentralized supply systems is not safe to drink without preliminary treatment.

  15. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  16. Water Allocation and Supply Reliability in the Murrumbidgee Valley

    OpenAIRE

    Jones, Randall E.; Musgrave, Warren F.; Bryant, Mike

    1992-01-01

    The objective of this study is to determine the average annual income and income variance of alternative irrigation water allocations and associated supply reliabilities in the Murrumbidgee Valley. Traditionally, water supply authorities have aimed to supply irrigators with their full allocations in all but the most severe drought years. This means that a substantial amount of water is held in storage as a reserve and in most years it is not utilised for irrigation or other, including environ...

  17. Water supply and tree growth. Part I. Water deficits

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T.

    1982-02-01

    Water supply is the most important environmental factor determining distribution, species composition and growth of forests. Net annual primary production of forests varies from as much as 3000 g/m/sub 2/ in wet regions to negligible amounts in dry regions. The water balance of trees has been characterized by visible wilting, tissue moisture content, relative water content, saturation deficit, and water potential. Water deficits develop readily in forest trees, even in trees growing in wet soil, because of excess transpiration over absorption of water. Water deficits adversely affect seed germination and cause shrinkage of leaves, stems, roots, fruits, and cones. Some of the decrease in photosynthesis during drought is the result of increased resistance to diffusion of CO/sub 2/ to chloroplasts and some to decrease in photosynthetic capacity. Water deficits inhibit shoot growth, wood production, and root growth. Yield of fruits and seeds can be inhibited at various stages of reproductive growth such as flower bud initiation, anthesis, pollination, fertilization, embryo growth, and fruit and seed enlargement. Water deficits may also induce leaf scorching and abscission, dieback of twigs and branches, and drought cracks. Severe water deficits often kill trees. Drought tolerance of trees may reflect desiccation avoidance or desiccation tolerance, with the former much more important. Among the most important of these are reduction in number and size of leaves; small, few, and sunken stomata; rapid stomatal closure; abundant leaf waxes; leaf shedding during droughts; extensive root development; capacity for twig and stem photosynthesis; living wood fibers; and strong development of palisade mesophyll.

  18. Calculation of Water Supply to Hydraulic Jet Devices

    OpenAIRE

    M. V. Krautsou; A. M. Krautsou

    2006-01-01

    Dependence for calculation of working fluid supply to water-air ejector is proposed. The de­pendence has been derived via analysis and processing of data being obtained by experimental research of water-jet devices.

  19. Water supply studies. [management and planning of water supplies in California

    Science.gov (United States)

    Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.

    1973-01-01

    The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.

  20. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks....

  1. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  2. Margins of the law pertaining to water supplies and waterways

    International Nuclear Information System (INIS)

    The author examines legal questions coming from points of contact of the law pertaining to water supplies and waterways on the one hand with the Waste Management Law, the Atomic Energy Law and Criminal Law on the other hand. He tries to find ways for solving the practical problems which arise with the execution of the law pertaining to water supplies and waterways. (HSCH)

  3. Water supply quality for use infood and for cleaning

    OpenAIRE

    Carmen Corina Visan; Rodica Segal

    2009-01-01

    : Drinking water from the supply network of the city of Foc�ani, Vrancea county is used in food preparation and also for cleaning the production areas, equipments and working tools. Data obtained from the analysis of microbiological parameters of reference of water supply quality are presented in this pape

  4. Development of city water supply net information system

    Institute of Scientific and Technical Information of China (English)

    CHENJing; GUOShiquan; LUJun

    2003-01-01

    Through analyzing the present conditions of water supply networks technical administration files in Chongqing, this paper points out the significance and urgency for exploiting advanced water supply networks information system. It also gives the concept of GIS and some suggestions for the exploitation.

  5. Review of Effectiveness of Rural Water Supply Schemes in India

    OpenAIRE

    Misra, Smita

    2008-01-01

    The prime objective of this study is to review the effectiveness of rural water supply schemes in different states in India. A total of 10 states have been covered in the study: Andhra Pradesh, Karnataka, Kerala, Maharashtra, Orissa, Punjab, Tamil Nadu, Uttar Pradesh, Uttarakhand, and West Bengal. The study explores the extent to which expenditure on rural water supply has been effective i...

  6. An Integrated Framework for Assessment of Hybrid Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2015-12-01

    Full Text Available Urban water managers around the world are adopting decentralized water supply systems, often in combination with centralized systems. While increasing demand for water arising from population growth is one of the primary reasons for this increased adoption of alternative technologies, factors such as climate change, increased frequency of extreme weather events and rapid urbanization also contribute to an increased rate of adoption of these technologies. This combination of centralized-decentralized water systems approach is referred to as “hybrid water supply systems” and is based on the premise that the provision of alternative water sources at local scales can both extend the capacity of existing centralized water supply infrastructures, and improve resilience to variable climatic conditions. It is important to understand, however, that decentralized water production and reuse may change the flow and composition of wastewater and stormwater, thereby potentially also having negative impacts on its effectiveness and performance. This paper describes a framework to assess the interactions between decentralized water supply systems and existing centralized water servicing approaches using several analytical tools, including water balance modelling, contaminant balance modelling and multi-criteria decision analysis. The framework enables the evaluation of impacts due to change in quantity and quality of wastewater and stormwater on the existing centralized system arising from the implementation of hybrid water supply systems. The framework consists of two parts: (1 Physical system analysis for various potential scenarios and (2 Ranking of Scenarios. This paper includes the demonstration of the first part of the framework for an area of Melbourne, Australia by comparing centralized water supply scenario with a combination of centralized water supply and reuse of treated waste water supply scenario.

  7. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  8. Optimal Dispatching of Large-scale Water Supply System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper deals with the use of optimal control techniques in large-scale water distribution networks. According to the network characteristics and actual state of the water supply system in China, the implicit model, which may be solved by utilizing the hierarchical optimization method, is established. In special, based on the analyses of the water supply system containing variable-speed pumps, a software tool has been developed successfully. The application of this model to the city of Shenyang (China) is compared to experiential strategy. The results of this study show that the developed model is a very promising optimization method to control the large-scale water supply systems.

  9. Improving Potable Water Accessibility And Sustainability Through Efficient Management Of Pipe Water Supply System

    OpenAIRE

    Nakabugo, Stella Mirembe

    2015-01-01

    This paper discusses how to improve potable water accessibility and sustainability through efficient management of pipe water supply system a case study of Uganda, Kampala region. Kampala the capital city of Uganda still faces a challenge to access clean potable water. Water supply coverage is 77.5 % showing at least 22.5 % of the total population has limited access to potable drinking water causing a gap between water supply and water demand. Hypotheses of the paper were that the city's popu...

  10. Isotopic fingerprint for phosphorus in drinking water supplies

    OpenAIRE

    Gooddy, Daren C.; Lapworth, Dan J.; Ascott, Matthew J.; Sarah A Bennett; Heaton, Timothy H.E.; Surridge, Ben W.J.

    2015-01-01

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ18OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ18OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distrib...

  11. Sustainability of Ancient Water Supply Facilities in Jerusalem

    OpenAIRE

    Barghouth, Jamal M.; Al-Sa`ed, Rashed M. Y.

    2009-01-01

    This paper presents an overview on the sustainability of ancient water supply systems in Jerusalem from the Chalcolithic period (4500–3200 B.C.) until the present time. Archaeological evidences and landscape settings were applied utilizing all available and accessible literature relevant to ancient water resources management in Jerusalem. Irrigated agriculture was practiced for many centuries in this region, hence sustainable water supply facilities were erected, including well developed aq...

  12. Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Prairie, J. R.; Jerla, C.

    2012-12-01

    The Colorado River Basin Water Supply & Demand Study (Study), part of the Basin Study Program under the Department of the Interior's WaterSMART Program, is being conducted by the Bureau of Reclamation and agencies representing the seven Colorado River Basin States. The purpose of the Study is to assess future water supply and demand imbalances in the Colorado River Basin over the next 50 years and develop and evaluate options and strategies to resolve those imbalances. The Study is being conducted over the period from January 2010 to September 2012 and contains four major phases: Water Supply Assessment, Water Demand Assessment, System Reliability Analysis, and Development and Evaluation of Opportunities for balancing supply and demand. To address the considerable amount of uncertainty in projecting the future state of the Colorado River system, the Study has adopted a scenario planning approach that has resulted in four water supply scenarios and up to six water demand scenarios. The water supply scenarios consider hydrologic futures derived from the observed historical and paleo-reconstructed records as well as downscaled global climate model (GCM) projections. The water demand scenarios contain differing projections of parameters such as population growth, water use efficiency, irrigated acreage, and water use for energy that result in varying projections of future demand. Demand for outdoor municipal uses as well as agricultural uses were adjusted based on changing rates of evapotranspiration derived from downscaled GCM projections. Water supply and demand scenarios are combined through Reclamation's long-term planning model to project the effects of future supply and demand imbalances on Colorado River Basin resources. These projections lend to an assessment of the effectiveness of a broad range of options and strategies to address future imbalances.

  13. Optimal location of micro-turbines in water supply network

    OpenAIRE

    Almeida Samora, Irene; Franca, Mário J.; Schleiss, Anton; Ramos, H.

    2015-01-01

    Micro-hydropower is currently expanding as a solution to improve the efficiency of water systems by using energy excesses which are typically lost. In the particular case of water supply systems, often excessive pressure exists in zones of the network connected to other areas situated at higher altitudes. Pressure reducing valves are commonly used as a mean for dissipation of this excess energy. In this work, the installation of micro-turbines in a closed water supply network is analyzed as a...

  14. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    ... Water Act (see 40 CFR 141), is exceeded. (ii) The water supply has been identified as a source of... contaminated water source. 203.61 Section 203.61 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61...

  15. Water supply at Los Alamos during 1993. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.; Stoker, A.K.; McLin, S.G.; Maes, M.N.; Glasco, T.A.

    1995-10-01

    This report summarizes production and aquifer conditions for water wells in the Guaje, Pajarito, and Otowi Well Fields. These wells supplied all of the potable water used for municipal and some industrial purposes in Los Alamos County and the Los Alamos National Laboratory during 1993. The wells in the Los Alamos Well Field were transferred to San Ildefonso Pueblo in 1992. Four of the wells in the Los Alamos Well Field were plugged in 1993. One of the two new wells in the Otowi Well Field became operational in 1993. The spring gallery in Water Canyon supplied nonpotable water for industrial use, while surface water from the Los Alamos Reservoir was diverted for irrigation. In 1993 no water was used from the Guaje Reservoir. Due to the maintenance and operating cost of diverting water from the reservoirs, it is not economically feasible to continue their use for irrigation. This report fulfills some of the requirements of the Los Alamos Groundwater Protection Management Program by documenting use of the groundwater for water supply and providing information hydrologic characteristics of the main aquifer. This report is a joint effort between the Laboratory Water Quality and Hydrology Group and the Utilities Department of Johnson Controls World Services Inc. (JCI). The purpose of this report is to ensure a continuing historical record and to provide guidance for management of water resources in long-range planning for the water supply system. We have issued one summary report for the period of 1947 to 1971 and 22 annual reports that contain the results of our studies of these water supplies. An additional report summarized the hydrology of the main aquifer with reference to future development of groundwater supplies. A report was issued in 1988 that examined the status of wells and future water supply.

  16. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  17. A global water supply reservoir yield model with uncertainty analysis

    International Nuclear Information System (INIS)

    Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series. (paper)

  18. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  19. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    Directory of Open Access Journals (Sweden)

    Clemencia Rodriguez

    2009-03-01

    Full Text Available The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  20. Modeling Integrated Water-User Decisions with Intermittent Supplies

    Science.gov (United States)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  1. Long term assurance of supply of heavy water

    International Nuclear Information System (INIS)

    The answer of Switzerland and Great Britain to a number of questions concerning the long-term assurance of the supply of heavy water are presented. The original problems are seen in the wider context of raw materials supply and its assurance in general. Non-proliferation aspects are touched

  2. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  3. Considerations of the Skilled Manpower Needs for Water Supply Systems.

    Science.gov (United States)

    Watters, Gregor

    1981-01-01

    General methods for determining skilled labor needs for water supply and wastewater treatment plant operation as applied in Turkey are outlined along with a model program for training personnel to meet these needs. (DC)

  4. Substantiating report for improvement of water supply facilities

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is to recommend construction of water storage facilities in, and the improvement of certain drainage and supply channels to, the Stillwater Wildlife...

  5. Sustainability of community water supply system managed by water user committee : a case study of rural water supply system in Nepal.

    OpenAIRE

    Raut, Kalyani

    2015-01-01

    Many Nepalese rural communities are suffering from lack of safe drinking water. One of the reasons is that approximately one third to one half of all drinking water supply systems fail shortly after the construction. The main purpose of this thesis project was to analyze sustainability of rural water supply project managed by water user committee implemented by DWSS in Dhulikhel, Bhakundebesi, kavre and Panchdhara, Kathmandu. In addition, the thesis also reviewed water supply system and i...

  6. Cambodia: Water Supply and Sanitation Sector Assessment, Strategy and Roadmap

    OpenAIRE

    Asian Development Bank

    2012-01-01

    Access to improved water supply, sanitation, and hygiene results in economic development and poverty reduction; ensures food safety and better livelihoods; preserves the environment; reduces health burden; improves school enrollment and retention rates, especially for girls; and empowers communities and provides opportunities for women. The Asian Development Bank (ADB) has prepared a sector assessment, strategy, and road map for the water supply and sanitation sector in Cambodia. Aside from a...

  7. An approach to the economic analysis of water supply projects

    OpenAIRE

    Lovei, Laszlo

    1992-01-01

    Development economists are increasingly concerned about the correct approach to economic analysis of projects. By looking for a compromise between theory (which identifies ideals) and practice (which deals within the bounds of time and resource constraints), Lovei focuses on potential guidelines for economic appraisals of water supply projects. He summarizes theory and the current World Bank guidelines on the economic analysis of water supply projects; reviews the method of economic analysis ...

  8. Failure Monitoring and Asset Condition Assessment in Water Supply Systems

    OpenAIRE

    Misiunas, Dalius

    2005-01-01

    In this thesis, different aspects of failure management in urban water supply systems are discussed. As assets are getting older, the number of pipe failures is increasing and an efficient failure management strategy becomes important. Two types of failure management strategies can be applied: proactive asset condition assessment and reactive failure detection and location. Currently available condition assessment techniques cannot be extensively applied in water supply systems due to high co...

  9. Cache County Water Demand/Supply Model

    OpenAIRE

    Hughes, Trevor C.; Norby, Gregory J.; Thyagarajan, Laxman

    1996-01-01

    This report descibes a municipal water demand forecasting model for use in areas of mixed rural and urban housing types. A series of residential demand functions were derived which forecast water demand based on the ype and density of housing and season. Micro sampling techniques were used to correlate water use data and explanatory variable data for low, medium, and high density housing. The demand functions were...

  10. Method of Distinguishing Hydrologic Drought for Water Supply System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    It is very common to design water supply system to adjust runoff. Thus it will not meet the practical needs if only the hydrologic drought in natural basin is studied. In practice the natural water balance and water deficits must be researched, i. e., the adjusting effects of the water supply system such as a reservoir should be considered, and the drought event be distinguished according to the special system. The problem of drought identification under adjusted runoff was investigated in this study. By considering water transfer during different periods, a method to distinguish hydrologic drought for the water supply system was developed, and a standard drought severity index SWDSI was proposed. The method has been applied in Pan Jiakou water supply system in China. From 1953 to 1997, a total of 14 hydrologic droughts were identified in the water supply system, among which there were 3 severe droughts, 6 moderate droughts and 5 light droughts. The results are in good agreement with the historic drought records.

  11. Restructuring the Water Supply at CERN

    CERN Document Server

    Nonis, M

    1999-01-01

    The CERN water network is the result of continuous extensions made to meet the different needs of the experiments and accelerators. Several studies concerning the current water consumption and the foreseen needs for the running of the new accelerators show a need to optimize the network and, where possible, reduce the consumption. Site construction works will begin in February 1999 and will continue until 2003; important modification works on the water network will only be possible during the shutdown for the dismantling of LEP. This paper will present the technical outlines and will report the status of the project. ST Division is involved in reorganizing the demineralized and primary cooling water circuits for the accelerators while Services Industriels de Genève (SIG) will be responsible for the works on pumping stations and on water networks.

  12. Austrian natural scientists in exile

    International Nuclear Information System (INIS)

    This text was written by E. Broda for the international symposium for exploration of the Austrian exile from 1934 to 1945 (“Internationales Symposiums zur Erforschung des österreichischen Exils von 1934 bis 1945”) in the year 1978. The article is about the specific problems of the Austrian scientific landscape, caused by the political events in the first half of the 20th century. The focus is primarily on the enormous ‘brain drain’, triggered by political repression in the period of Nazi rule (1938 - 1945), the Austro-fascism period (1934 - 1938) and the economic regression, anti-intellectual and anti-Semitic sentiment in the Country since 1918. The article emphasizes the importance of exile organizations, such as the ‘Free Austrian Movement’ or the ‘Association of Austrian Engineers, Chemists and Scientific Workers in Great Britain’ for the reconstruction of a scientific culture in Austria, after the Second World War. (rössner)

  13. Lesotho - Rural Water and Sanitation Supply

    Data.gov (United States)

    Millenium Challenge Corporation — The impact evaluation design of the rural water intervention proposes two separate approaches so as to ensure a “defensive evaluation” that is, so that results can...

  14. Water supply network district metering theory and case study

    CERN Document Server

    Di Nardo, Armando; Di Mauro, Anna

    2013-01-01

    The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.

  15. 7 CFR 612.5 - Dissemination of water supply forecasts and basic data.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dissemination of water supply forecasts and basic data... SUPPLY FORECASTS § 612.5 Dissemination of water supply forecasts and basic data. Water supply outlook reports prepared by NRCS and its cooperators containing water supply forecasts and basic data are...

  16. Intermittent Water Supplies: Challenges and Opportunities for Residential Water Users in Jordan

    OpenAIRE

    Rosenberg, David E.; Talozi, Samer; Lund, Jay

    2008-01-01

    Intermittent access to improved urban water supplies is a large and expanding global problem. This paper describes 16 supply enhancement and 23 demand management actions available to urban residential water users in Jordan to cope with intermittent supplies. We characterize actions by implementation, costs, and water quantities and qualities acquired or conserved. This effort systematically identifies potential options prior to detailed study and shows that water users have significant capaci...

  17. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  18. Vulnerability of drinking water supplies to engineered nanoparticles.

    Science.gov (United States)

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  19. Bulawayo water supplies: Sustainable alternatives for the next decade

    Science.gov (United States)

    Mkandla, Noel; Van der Zaag, Pieter; Sibanda, Peter

    Bulawayo is the second largest city in Zimbabwe with a population of nearly one million people. It is located on the watershed of Umzingwane and Gwayi catchments. The former is part of the Limpopo basin, while the latter drains into the Zambezi basin. Bulawayo has a good potential of economic development but has been stymied by lack of sufficient water. The city currently relies on five surface sources in the Umzingwane catchment where it has to compete with evaporation. The well field from the Nyamandlovu aquifer in the Gwayi catchment, which was constructed as an emergency measure during the 1992 drought, is currently not operational. Alternative water supply sources are far and expensive. A multilinear regression model was developed to analyse and quantify the factors affecting water consumption. It was found that per capita water consumption is very low, indicating suppressed demand. Water rationing, tariffs, rainfall, population growth and gross domestic product are the main factors influencing water consumption in Bulawayo. Assuming that these factors will continue to be influential, future water consumption was projected for intensive, regular and slack water demand management. Future water consumption was then compared with the current water supply capacity in order to determine the date by which the next water supply source is required. With slack demand management, the Nyamandlovu well field should have been operational by 2003, while by the year 2007 an additional source of water is required. With intensive demand management and assuming low population growth, current capacities may suffice to satisfy the suppressed demand until the year 2015, by which time Nyamandlovu wells should be operational again. The additional water supply sources that are currently being considered for Bulawayo (namely the Zambezi water pipeline; Gwayi Shangani dam; Mtshabezi dam; Lower Tuli dam; and Glass block dam) were then compared with an alternative water source not yet

  20. Outlook for future water supplies to the Great Lakes

    International Nuclear Information System (INIS)

    The net water supply to the Great Lakes basin is calculated from net inflows and outflows, precipitation, evaporation, and changes in storage. To predict future water supplies to the basin, it is necessary to predict the components of runoff, precipitation, and evaporation; these components include air temperature, humidity, and wind speed. Current predictability of water supplies is limited at best to ca 3 months into the future, which is inadequate for planning and analysis of water pipelines and diversions. Insight into potential future water supply conditions over a longer period can be provided by such approaches as climate models, statistical projections, climatic matching, and paleoclimate analysis. Discussion of these approaches focuses on climate scenarios based on the past recorded water supplies and on global warming models. A survey of past recorded precipitation and air temperatures in the Great Lakes basin shows a low precipitation trend from about 1890 to the early 1960s, with the 1970s to the present being a relatively high precipitation period. Examination of air temperatures shows a relatively cool period from about 1900 to 1929, a warm regime during 1929-59, and cool regime during 1960-80, and a relatively warm regime from 1980 on. Both the temperature and precipitation regimes appear to change abruptly as step functions, which cannot be predicted. If a global air temperature rise of 1-4 degree C occurs as predicted in many global warming models, Great Lakes water supplies will be reduced due to increased evapotranspiration and lake evaporation. Models cited indicate net basin supply to the lakes would decrease by 23% to 50%. 5 refs., 3 figs., 1 tab

  1. The Economics of Groundwater Replenishment for Reliable Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2014-06-01

    Full Text Available This paper explores the potential economic benefits of water banking in aquifers to meet drought and emergency supplies for cities where the population is growing and changing climate has reduced the availability of water. A simplified case study based on the city of Perth, Australia was used to estimate the savings that could be achieved by water banking. Scenarios for investment in seawater desalination plants and groundwater replenishment were considered over a 20 year period of growing demand, using a Monte Carlo analysis that embedded the Markov model. An optimisation algorithm identified the minimum cost solutions that met specified criteria for supply reliability. The impact of depreciation of recharge credits was explored. The results revealed savings of more than A$1B (~US$1B or 37% to 33% of supply augmentation costs by including water banking in aquifers for 95% and 99.5% reliability of supply respectively. When the hypothetically assumed recharge credit depreciation rate was increased from 1% p.a. to 10% p.a. savings were still 33% to 31% for the same reliabilities. These preliminary results show that water banking in aquifers has potential to offer a highly attractive solution for efficiently increasing the security of urban water supplies where aquifers are suitable.

  2. Indemnification of the quality of water supply in residential areas

    Institute of Scientific and Technical Information of China (English)

    CHENJing; GUOShiquan

    2003-01-01

    Most cities of our country now adopt the method of concentative pipe nets in water supply. In order to meet the users'' request of hydraulic pressure, some small residential areas or building groups have established water supply systems of secondary compression. Now most water supply enterprises do much work in purification processes of waterworks so as to improve the water quality; however, the secondary pollution because of water supply pipe nets is ignored. An investigation was done by special team of “security technology of water quality in residential areas” and they investigated water quality of waterworks and health and quarantine stations in big and middle cities of the whole country. The result indicates that secondary pollution of pipeline networks indeed exists. So, in order to resolve the question of secondary pollution and to provide people with clean and secure drinking water, the reason that secondary pollution came into being must be understood, moreover, concrete methods and measures aimed at each reason should be found out.

  3. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  4. Calculation of Water Supply to Hydraulic Jet Devices

    Directory of Open Access Journals (Sweden)

    M. V. Krautsou

    2006-01-01

    Full Text Available Dependence for calculation of working fluid supply to water-air ejector is proposed. The de­pendence has been derived via analysis and processing of data being obtained by experimental research of water-jet devices.

  5. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... the surface water supplies within the service area are insufficient from both a quality and quantity... Scoping Meetings MSU-Bottineau, Nelson Science Center Room 125, 105 Simrall Boulevard, Bottineau, ND Sleep... of the proposed action is to provide a reliable source of high quality treated water to...

  6. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... the surface water supplies within the service area are insufficient from both a quality and quantity... MSU-Bottineau, Nelson Science Center Room 125, 105 Simrall Boulevard, Bottineau, ND. Sleep Inn--Inn... of the proposed action is to provide a reliable source of high quality treated water to...

  7. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    Science.gov (United States)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  8. Rapid evaluation of water supply project feasibility in Kolkata, India

    Directory of Open Access Journals (Sweden)

    K. Dutta Roy

    2010-01-01

    Full Text Available Mega cities in developing countries are mostly dependent on external funding for improving the civic infrastructures like water supply. International and sometimes national agencies stipulate financial justifications for infrastructure funding. Expansion of drinking water network with external funding therefore requires explicit economic estimates. A methodology suitable for local condition has been developed in this study. Relevant field data were collected for estimating the cost of supply. The artificial neural network technique has been used for cost estimate. The willingness to pay survey has been used for estimating the benefits. Cost and benefit have been compared with consideration of time value of money. The risk and uncertainty have been investigated by Monte Carlo's simulation and sensitivity analysis. The results in this case indicated that consumers were willing to pay for supply of drinking water. It has been also found that supply up to 20 km from the treatment plant is economical after which new plants should be considered. The study would help to plan for economically optimal improvement of water supply. It could be also used for estimating the water tariff structure for the city.

  9. Rapid evaluation of water supply project feasibility in Kolkata, India

    Directory of Open Access Journals (Sweden)

    K. Dutta Roy

    2010-03-01

    Full Text Available Mega cities in developing countries are mostly dependent on external funding for improving the civic infrastructures like water supply. International and sometimes national agencies stipulate financial justifications for infrastructure funding. Expansion of drinking water network with external funding therefore requires explicit economic estimates. A methodology suitable for local condition has been developed in this study. Relevant field data were collected for estimating the cost of supply. The artificial neural network technique has been used for cost estimate. The willingness to pay survey has been used for estimating the benefits. Cost and benefit have been compared with consideration of time value of money. The risk and uncertainty have been investigated by Monte Carlo's simulation and sensitivity analysis. The results in this case indicated that consumers were willing to pay for supply of drinking water. It has been also found that supply up to 20 km from the treatment plant is economical after which new plants should be considered. The study would help to plan for economically optimal improvement of water supply. It could be also used for estimating the water tariff structure for the city.

  10. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  11. Sustainability of Ancient Water Supply Facilities in Jerusalem

    Directory of Open Access Journals (Sweden)

    Jamal M. Barghouth

    2009-11-01

    Full Text Available This paper presents an overview on the sustainability of ancient water supply systems in Jerusalem from the Chalcolithic period (4500–3200 B.C. until the present time. Archaeological evidences and landscape settings were applied utilizing all available and accessible literature relevant to ancient water resources management in Jerusalem. Irrigated agriculture was practiced for many centuries in this region, hence sustainable water supply facilities were erected, including well developed aqueducts, water harvesting pools and irrigation channels for water storage and landscaping purposes. To cope with seismic events, soil subsidence and water leakage, ancient water engineers and architects applied innovative construction methods for the erection of water pools, channels and aqueduct systems. Ancient water supply systems in Jerusalem are valuable treasures of past civilizations and crucial urban environmental facilities and their protection is consistent with sustainable development principles. Effective environmental assessment as a decision-making process for sustainable development can be applied to preserve threatened ancient water facilities from major development proposals and urban infrastructure projects in Jerusalem.

  12. Pressure: the politechnics of water supply in Mumbai.

    Science.gov (United States)

    Anand, Nikhil

    2011-01-01

    In Mumbai, most all residents are delivered their daily supply of water for a few hours every day, on a water supply schedule. Subject to a more precarious supply than the city's upper-class residents, the city's settlers have to consistently demand that their water come on “time” and with “pressure.” Taking pressure seriously as both a social and natural force, in this article I focus on the ways in which settlers mobilize the pressures of politics, pumps, and pipes to get water. I show how these practices not only allow settlers to live in the city, but also produce what I call hydraulic citizenship—a form of belonging to the city made by effective political and technical connections to the city's infrastructure. Yet, not all settlers are able to get water from the city water department. The outcomes of settlers' efforts to access water depend on a complex matrix of socionatural relations that settlers make with city engineers and their hydraulic infrastructure. I show how these arrangements describe and produce the cultural politics of water in Mumbai. By focusing on the ways in which residents in a predominantly Muslim settlement draw water despite the state's neglect, I conclude by pointing to the indeterminacy of water, and the ways in which its seepage and leakage make different kinds of politics and publics possible in the city. PMID:22171410

  13. Climatic changes, flood prevention and water supply in Slovenia

    OpenAIRE

    Aleš Bizjak

    1999-01-01

    The forecasts following research on climatic changes and consequences of global warming on the environment that were carried out by research institutes predict qualitative and quantitative changes in certain elements of the water cycle, such as: precipitation, soil humidity, storms and intensive weather and the sea level. The article shows possible effects of climatic change on the water cycle, floods and water supply in Slovenia

  14. Emergency water supply systems for fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sources of emergency water acceptable to the NRC staff are described and bases for the design of systems that furnish emergency water to the fuel storage pool, high-level radioactive waste storage, fire protection system, certain process vessels, and any other safety-related equipment or system requiring a supply of water to perform the design safety function, directly or indirectly, are presented. (LK)

  15. The water-supply system in Roman Pompeii

    OpenAIRE

    Olsson, Richard

    2015-01-01

    This study focusses on the urban infrastructure for water supply in Roman Pompeii. The water distribution network of lead pipes was constructed inside the city walls, at the time when the city was connected to an aqueduct. Life for the Pompeiians changed considerably when aqueduct water started running continuously in street fountains all around the city. The study is based on previous research and on my own investigations and measurements on site in connection with the Swedish Pompeii Projec...

  16. Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    Although an extensive literature emphasizes the disadvantages of intermittent water supply, it remains prevalent in rural areas of developing countries. Understanding the effects of water supply time restrictions on domestic water use activities and patterns, especially for hygienic purposes, is imp

  17. Renewable energy water supply - Mexico program summary

    Energy Technology Data Exchange (ETDEWEB)

    Foster, R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importance of training. It also presents much collected data as to the characteristics and performance of the installed systems.

  18. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    Science.gov (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  19. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  20. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    Science.gov (United States)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  1. 7 CFR 612.6 - Application for water supply forecast service.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Application for water supply forecast service. 612.6... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.6 Application for water supply forecast service. Requests for obtaining water supply forecasts...

  2. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... as required by 46 CFR part 52 or part 53, as applicable. Electric hot water supply boilers that meet... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than...

  3. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  4. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen;

    2010-01-01

    , Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading......The potential effect of widespread rainwater harvesting practices on mains water demand and quality management are investigated for three different types of urban areas characterized by different roof area to water demand ratios. Two rainfall patterns are considered with similar average annual...... depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard...

  5. Monitoring water supply systems for anomaly detection and response

    NARCIS (Netherlands)

    Bakker, M.; Lapikas, T.; Tangena, B.H.; Vreeburg, J.H.G.

    2012-01-01

    Water supply systems are vulnerable to damage caused by unintended or intended human actions, or due to aging of the system. In order to minimize the damages and the inconvenience for the customers, a software tool was developed to detect anomalies at an early stage, and to support the responsible s

  6. Electricity, Gas and Water Supply. Industry Training Monograph No. 4.

    Science.gov (United States)

    Dumbrell, Tom

    Australia's electricity, gas, and water supply industry employs only 0.8% of the nation's workers and employment in the industry has declined by nearly 39% in the last decade. This industry is substantially more dependent on the vocational education and training (VET) sector for skilled graduates than is the total Australian labor market. Despite…

  7. Barcelona's water supply, 1867–1967 : the transition to a modern system

    OpenAIRE

    Guàrdia Bassols, Manuel; Rosselló i Nicolau, Maribel; Garriga Bosch, Sergi

    2013-01-01

    Barcelona's water supply since 14th century to 1867, the Eixample's water supply problem the development of modern water supply since 1867 to 1967 the new sanitation system impact on water consumption water's slow entry into the domestic sphere from post-war restrictions to widespread water consumption. Peer Reviewed

  8. Public-supply water use in Kansas, 2013

    Science.gov (United States)

    Lanning-Rush, Jennifer L.; Eslick, Patrick J.

    2015-10-27

    This report, prepared by the U.S. Geological Survey in cooperation with the Kansas Department of Agriculture’s Division of Water Resources, presents derivative statistics of water used by Kansas public-supply systems in 2013. The published statistics from the previous 4 years (2009–12) are also shown with the 2013 statistics and are used to calculate a 5-year average. An overall Kansas average and regional averages also are calculated and presented.

  9. Water Supply of Accra, with Emphasis on Sachet Water.

    OpenAIRE

    Diawuo, Felix

    2011-01-01

    This project seeks to assess the impact of the sachet water industry on the health, socio-economic and the environmental situation of the inhabitants of Accra, the capital city of Ghana. In addressing the situation, the driving forces which have fuelled the shift of consum-er taste from the normal tap water and the traditional hand-tied-ice water products to the plastic sachet water (commonly known in as "Pure Water") are identified. Lack of access to continuous flow of improved water and the...

  10. Isotopic Fingerprint for Phosphorus in Drinking Water Supplies.

    Science.gov (United States)

    Gooddy, Daren C; Lapworth, Dan J; Ascott, Matthew J; Bennett, Sarah A; Heaton, Timothy H E; Surridge, Ben W J

    2015-08-01

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies.

  11. Identifying scale economies for different types of water supply organizations in Japan

    OpenAIRE

    Urakami, Takuya

    2005-01-01

    Although water supply systems include activities such as water intake; water purification; and water distribution, many water supply organizations are not always equipped with all three activities. In fact, Japan has two types of water companies: one that operates water intake and water purification (type 1); and the other which mainly operates water distribution (type 2). Many previous studies have attempted to identify scale economies for water supply organizations, but have failed to take ...

  12. Hospital Water Supply as a Potential Source of Opportunistic Pathogens

    Directory of Open Access Journals (Sweden)

    H. T. El-Zanfaly

    2012-01-01

    Full Text Available In Egypt as well as in many other developing countries, there are no specific standards for hospital water. Even water is free from the traditional bacterial indicators, it may represent a source of health hazards especially for elderly, children and patients under dialysis due to the presence of opportunistic pathogenic bacteria. The study was carried out on the bacteriological water quality at the intakes as well as the end of water treatment train of two water treatment plants that supplying three hospitals located in Greater Cairo, Egypt with water that used for different purposes. Samples of the raw water supply for the two water treatment plants (Nile River water showed ranges of 102-105 cfu mL-1, 102-104 MPN 100 mL-1, 102-104 MPN 100 mL-1 and 102-103 MPN 100 mL-1 for Heterotrophic Plate Count (HPC bacteria, Total Coliforms (TC, Fecal Coliforms (FC and Fecal Streptococci (FS, respectively. Treated water showed considerable reduction in HPC while the other bacterial indicators reached the undetectable level. The distribution system impact on treated water quality was limited to causing an increase in HPC bacteria. A study was carried out to determine the presence of Pseudomonas aeuginosa, Aeromonas spp. and Staphylococcus aureus in hospitals tap water, water reservoirs, as well as water for preparation of hemodialysis fluids. Although the post-chlorinated water in both water treatment plants was free from bacterial indicators, it still contaminated with the three studied opportunistic pathogenic bacteria. The detected opportunistic pathogens may be attributed to the distribution system condition and/or the presence of storage tanks. Hemodialysis water samples showed the higher percentage of P. aeruginosa isolates which represent a major source of health risk to patient’s attending dialysis process in hospitals and clinics. The presence of opportunistic bacteria in drinking water and dialysate with absence of coliform and low HPC

  13. Importance of pressure reducing valves (PRVs) in water supply networks.

    Science.gov (United States)

    Signoreti, R. O. S.; Camargo, R. Z.; Canno, L. M.; Pires, M. S. G.; Ribeiro, L. C. L. J.

    2016-08-01

    Challenged with the high rate of leakage from water supply systems, these managers are committed to identify control mechanisms. In order to standardize and control the pressure Pressure Reducing Valves (VRP) are installed in the supply network, shown to be more effective and provide a faster return for the actual loss control measures. It is known that the control pressure is while controlling the occurrence of leakage. Usually the network is sectored in areas defined by pressure levels according to its topography, once inserted the VRP in the same system will limit the downstream pressure. This work aims to show the importance of VRP as loss reduction for tool.

  14. An inexact-stochastic dual water supply programming model

    Science.gov (United States)

    Zhang, X. H.; Zhang, H. W.; Chen, B.; Guo, H. C.; Chen, G. Q.; Zhao, B. A.

    2009-01-01

    This paper introduces an inexact-stochastic dual water supply programming (ISDWSP) model based on analysis of the inexact characteristics in demand and supply subsystems of dual water supply system and their dynamic interactions. The model is based on an inexact chance-constrained programming (ICCP) method allowing both distribution information in B (right parameter in the model constrain) and uncertainties in A (left parameter in the model constrain) and C (parameter in the model function) with objective of maximizing economic return, and constrained to available water resource, economical, environmental and social constrains. The decision-making variables of ISDWSP model are water demanded amount by different sectors and waterworks building scale. In the solution process, the ISDWSP is transformed into two deterministic sub-models, which correspond to the upper and lower bounds of the objective function, and the reasonable interval solution set in the given decision space can be obtained by solving the two sub-models. Thus, decision alternatives can be obtained by adjusting decision variable values within their solution intervals and will be useful for decision makers to choose the projected applicable conditions considering tradeoffs between eco-environmental and economic objectives. The model is also applied in a new developing zone of North China with the results of the case study providing reasonable solutions for dynamic planning of different source water (DSW) allocation in a regional system. Finally, waterworks building plan is generated based on the projected applicable conditions.

  15. Visit of the Austrian Ambassador

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The Austrian Ambassador Wolfgang Petritsch (light raincoat) learns about superconducting magnets at the LHC magnet test facility in building SM18 during a visit to CERN. The blue pipe-like structure in the left background is String 2: the 120-m long full-scale model of an LHC cell, which is used to test LHC systems.

  16. Water Supply or ‘Beautiful Latrines’? Microcredit for Rural Water Supply and Sanitation in the Mekong Delta, Vietnam.

    OpenAIRE

    Nadine Reis; Mollinga, Peter P.

    2012-01-01

    "Around half of the Mekong Delta's rural population lacks year-round access to clean water. In combination with inadequate hygiene and poor sanitation this creates a high risk of diseases. Microcredit schemes are a popular element in addressing such problems on the global policy level. The present paper analyses the contradictory results of such a microcredit programme for rural water supply and sanitation in the context of the Mekong Delta, Vietnam, through a qualitative study primarily base...

  17. Environment and health: environmental sanitation and community water supply.

    Science.gov (United States)

    1997-01-01

    This article identifies important features of two 5-Year Plans in India. Currently, only about 200 cities have even a partial sewage system. Elementary sewage systems are nonexistent in rural villages. In 1990, under 5% of rural population had access to sanitary facilities. The result is widespread soil and water pollution and its accompanying disease. The Rural Water Supply Program was proposed in the 5th Plan, but was implemented in the 7th Plan (1985-90). Construction of latrines is still too low. Resources were insufficiently mobilized for latrine construction. An alternative would be to institute cost recovery and user pays principles. Low cost technology could be substituted. Low cost latrine systems should conform with users' social habits, local culture, and the customs of the community. The system should be affordable to users. The technology should be user-friendly and rely on use of local materials and workers. Over 90% of the population rely on community water supply facilities. Health has not benefited from the access to water supplies. The reasons are low hygienic standards, lack of water quality surveillance, and poor maintenance of equipment. The community does not participate. By 1996, people's access to water was reduced to 1 km in the plains, and 50 m in hilly areas. Surface waters are contaminated by fecal matter, fluoride, nitrate, and arsenic. The Water Quality Surveillance Program lacks an institutional framework and human resource development. There is a need for education about hygiene, unsafe drinking water, and poor sanitation for people and agency staff. PMID:12293893

  18. Environmental radioactivity and drinking water supply. Pt. 6

    International Nuclear Information System (INIS)

    Extensive studies dealt with the formation, the release and atmospheric distribution of radionuclides after various possible reactor incidents. The rate of the reactor inventory released in Chernobyl indicates that this incident is situated between the two maximum possible accidents. A further study published already 1971 on the threat of the drinking water supply by atomic catastrophies is confirmed in its main statement, that the drinking water such as it is gained in Germany is well protected from radioactive pollution. The frequently investigated decontamination efficiency of the water treatment grants an additional security. (orig./HP)

  19. Concentration and size of asbestos in water supplies.

    OpenAIRE

    Millette, J R; Clark, P. J.(SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK); Pansing, M F; Twyman, J D

    1980-01-01

    A review of the results of over 1500 asbestos analyses from U.S. water supplies suggests that the majority of water consumers are not exposed to asbestos concentrations in their drinking water over 1 x 10(6) fibers per liter. There are, however, some populations that are exposed to waterborne asbestos concentrations over 10 x 10(6) fibers per liter caused by natural erosion, mine processing wastes, waste pile erosion, corrosion of asbestos cement pipe, or disintegration of asbestos tile roofs...

  20. 7 CFR 612.2 - Snow survey and water supply forecast activities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Snow survey and water supply forecast activities. 612... SUPPLY FORECASTS § 612.2 Snow survey and water supply forecast activities. To carry out the cooperative snow survey and water supply forecast program, NRCS: (a) Establishes, maintains, and operates...

  1. Optimizing intermittent water supply in urban pipe distribution networks

    CERN Document Server

    Lieb, Anna M; Wilkening, Jon

    2015-01-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. Here, we develop a computational model of transition, transient pipe flow in a network, accounting for a wide variety of realistic boundary conditions. We validate the model against several published data sets, and demonstrate its use on a real pipe network. The model is extended to consider several optimization problems motivated by realistic scenarios. We demonstrate how to infer water flow in a small pipe network from a single pressure sensor, and show how to control water inflow to minimize damaging pressure gradients.

  2. Public perceptions of drinking water: a postal survey of residents with private water supplies

    Directory of Open Access Journals (Sweden)

    McEwen Scott A

    2006-04-01

    Full Text Available Abstract Background In Canada, the legal responsibility for the condition of private water supplies, including private wells and cisterns, rests with their owners. However, there are reports that Canadians test these water supplies intermittently and that treatment of such water is uncommon. An estimated 45% of all waterborne outbreaks in Canada involve non-municipal systems. An understanding of the perceptions and needs of Canadians served by private water supplies is essential, as it would enable public health professionals to better target public education and drinking water policy. The purpose of this study was to investigate the public perceptions of private water supplies in the City of Hamilton, Ontario (Canada, with the intent of informing public education and outreach strategies within the population. Methods A cross-sectional postal survey of 246 residences with private water supplies was conducted in May 2004. Questions pertained to the perceptions of water quality and alternative water sources, water testing behaviours and the self-identified need for further information. Results Private wells, cisterns or both, were the source of household water for 71%, 16% and 13% of respondents, respectively. Although respondents rated their water quality highly, 80% also had concerns with its safety. The most common concerns pertained to bacterial and chemical contamination of their water supply and its potential negative effect on health. Approximately 56% and 61% of respondents used in-home treatment devices and bottled water within their homes, respectively, mainly due to perceived improvements in the safety and aesthetic qualities compared to regular tap water. Testing of private water supplies was performed infrequently: 8% of respondents tested at a frequency that meets current provincial guidelines. Two-thirds of respondents wanted more information on various topics related to private water supplies. Flyers and newspapers were the two

  3. Karst aquifer in Galichica and possibilities for water supply to Ohrid with ground -water

    International Nuclear Information System (INIS)

    In this paper are presented some hydrogeological features of the karst aquifer in Mt Galichica, which contains important quantities of ground-water that can to used for the water supply of the town Ohrid. Based on the hydrogeological data are given three solutions that be can to used for water supply of Ohrid, the first one is to drill of deep wells, combination of deep and shallow wells, as well as construction of horizontal galleries.

  4. Water Supply Intakes - MO 2006 Major Water Users (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A major water user is any person, firm, corporation or the state of Missouri, its agencies or corporations and any other political subdivision of this state, their...

  5. Ventilation and hot water supply solar-heat collector

    OpenAIRE

    Овсянникова, Ирина Михайловна; Немировский, Илья Абрамович; Ганжа, Антон Николаевич

    2014-01-01

    Solar collectors intended for hot water supply needs are widely used today. However, the territorial position of Ukraine prevents their efficient use during the cold period of the year. This reduces their utilization factor and increases the payback period. The use of solar collectors as the recuperators of exhaust air will allow for their efficient operation during the heating season. This becomes possible because the cold air is heated by the indoor waste air heat particularly in the solar ...

  6. Multi Supply Plant. Power and potable water; Multi Supply Plant. Saehkoe ja vesi

    Energy Technology Data Exchange (ETDEWEB)

    Ranne, A. [VTT Energy, Espoo (Finland). Energy Systems

    2000-11-01

    The product concept of MSP (Multi Supply Plant) includes an integrated plant that eco-efficiently produces electricity and potable water on a site, where high reliability and good quality for the products are required, and where the total economy is paid attention to. MSP is based on integration of engine power plant and desalination plant in such a manner that waste heat from power plant is utilized in production of freshwater from seawater. The amount of construction of desalination plants has grown moderately during the last twenty years, and exceeds annually a capacity of one million m{sup 3} per day. The market for desalination is as such large, and additional capacity is assumed to be needed for relief of water scarcity in the future. But, the amount of suppliers of desalination plants is also large, and in addition, conditions on each site vary in a large range. MSP has an opportunity to reach a considerable market share in production of freshwater by modern distillation techniques and by using waste heat. In these days, engine power plants are built in all the continents and in different targets, where also lack of potable water exists. The areas suffering of water scarcity and having technical, economical and social potential to provide desalination plants are Middle East, southern and eastern countries of Mediterranean, some islands such as Canarian Islands, some countries in Middle America, a part of India, some countries in Far East, and USA. Desalination plants are built for special purposes also in other countries, e.g. for industry and tourism to ensure the reliable supply of pure water, and for purification of polluted ground water. The water scarcity is expected still to worsen on Earth due to growing population, rising living standard, growing agriculture and industry, and due to the overexploitation of natural water sources. The ground water reservoirs are polluted because of excessive use in several places. Poor sewage disposal pollutes also

  7. Watershed management for water supply in developing world city

    Institute of Scientific and Technical Information of China (English)

    车越; 杨凯; 吕永鹏; 张宏伟; 吴健; 杨永川

    2009-01-01

    The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.

  8. The Financing of Water Supply and Sewerage Services in Romania

    Directory of Open Access Journals (Sweden)

    Alina Florentina CUCOS

    2013-08-01

    Full Text Available Water supply and sewerage services represent utilities that must be provided to all users, both the urban and the rural. The responsibility to ensure these services in terms of non-discrimination and affordability belongs to the local authorities, which in the spirit of decentralization have exclusive jurisdiction on their establishment, organization and operation. Regardless of the chosen management, the funding of water supply and sewerage services, is accomplished by means of the prices and tariffs paid by the users. Their quantum, specific to some social services, covers the costs without allowing the accumulation of consistent profit margins, which would ensure the development of the specific infrastructure from the operators' own funds. It is therefore necessary that funding for the creation and rehabilitation of water supply and sewerage systems to be provided from other sources than the budgets of operators, such as: budgetary allocations of local public authorities, government or European funding programs. This paper is of interest because it captures just how the prices and tariffs for these services are composed, and the entire procedure for foundation, adjustment and modification that follows different rules from those of pricing in the market economy, and it provides a review of the types of programs through which the development of the specific technical-urban infrastructure and the significant increase in the number of users in the past 25 years.

  9. Insufficient water supply in an urban area - case study : Tegucigalpa, Honduras

    OpenAIRE

    Coello Midence Balthasar, Zairis Aida

    2011-01-01

    Tegucigalpa, the capital of Honduras, has experienced an unsatisfied water demand during the last three decades. The state owned water utility in charge of the water supply of the country, SANAA, has faced this deficit by providing an intermittent water supply. The intermittent water supply has increased the gap between the rich and the poor, who cannot afford water storage facilities. Theories explain water scarcity either by low precipitation or by lack of investment in water structures. Th...

  10. Exploring the water-energy nexus in Brazil: The electricity use for water supply

    International Nuclear Information System (INIS)

    The present work evaluates the electricity use for the water production and supply in Brazil. Five categories of indicators were proposed, that is, per capita, water losses, energy, greenhouse gases (GHGs) and financial/economic, which were used in the definition of municipal average values. It takes an average 0.862 ± 0.046 kWh m−3 for production and water supply in the country. The results demonstrate that the water supply systems accounted for, at least, 1.9% of total electricity consumption in Brazil in 2012, and the water loss wastes 27% of water and energy in the water supply systems from Brazil. The production and distribution of 1 m3 of water in Brazilian cities represents the emission of 0.050 ± 0.004 kgCO2e, being 0.014 ± 0.001 kgCO2e.m−3 associated with the water loss volumes. Furthermore, the average Brazilian cities' expenditure with electricity for the water supply is US$ 0.14 ± US$ 0.01, which corresponds to 16.8% ± 0.7% of operating expenditures and 12.9% ± 0.5% of total expenditure of the WSSs. The NE Region is the one that presents the greatest potential for the application of hydraulic and energy efficiency measures in water supply systems (WSSs). - Highlights: • We analyze the electricity use in Brazilian water supply systems. • Five categories of indicators were analyzed statistically. • Brazilian water supply systems uses 0.862 ± 0.046 kWh m−3 to supply water. • At least 1.9% of Brazilian electricity consumption is used in water supply systems. • The Northeast Region of Brazil presents the higher energy/water saving potential

  11. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  12. GENDER MAIN STREAMING IN WATER SUPPLY AND SANITATION PROJECTS

    Directory of Open Access Journals (Sweden)

    Simona FRONE

    2014-06-01

    Full Text Available As we have stated in the previous year conference paper, the human right to water and sanitation entitles everyoneto water and sanitation services which are available, accessible, affordable, acceptable and safe. Developmentprograms for water and sanitation services, as many other socio-economic development programs have often beenassumed to be neutral in terms of gender. However, sometimes there can be failures in the implementation andharnessing of such projects because of errors arising from lack of adequate integration of gender equality. In thispaper are highlighted some aspects and issues of gender mainstreaming in water supply and sanitation developmentprojects, including conclusions from a case study conducted by an NGO in a commune of Romania and ownrecommendations.

  13. [Medical and environmental aspects of the drinking water supply crisis].

    Science.gov (United States)

    Él'piner, L I

    2013-01-01

    Modern data determining drinking water supply crisis in Russia have been considered. The probability of influence of drinking water quality used by population on current negative demographic indices was shown. The necessity of taking into account interests of public health care in the process of formation of water management decisions was grounded. To achieve this goal the application of medical ecological interdisciplinary approach was proposed Its use is mostly effective in construction of goal-directed medical ecological sections for territorial schemes of the rational use and protection of water resources. Stages of the elaboration of these sections, providing the basing of evaluation and prognostic medical and environmental constructions on similar engineering studies of related disciplinary areas (hydrological, hydrogeological, hydrobiological, hydrochemical, environmental, socio-economic, technical and technological) were determined.

  14. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Science.gov (United States)

    2010-07-01

    ... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and... § 125.61. (b) Impact of discharge on public water supplies. (1) The applicant's modified discharge...

  15. Mr. Wolfgang Petritsch, Austrian Ambassador

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Dr.Peter Schmid/CERN/EP, Dr.Wolfgang Petritsch, Austrian Ambassador, Permanent representative at UN, Mrs.Nora Petritsch, Dr.Kurt Hubner/CERN/AC, Mrs. Frederike Klaus-Salesin, Adviser, Mrs.Andrea Strohmeier, Secretary of the Ambassador, Mr.Heinz Klaus, Attaché, Dr.Theodor Tortschanoff/CERN/LHC, Mr.Peter Storer, Advisor. Dr.Peter Schmid/CERN/EP, Dr.Wolfgang Petritsch, Austrian Ambassador, Permanent representative at UN, Mrs.Nora Petritsch, Dr.Kurt Hubner/CERN/AC, Mrs. Frederike Klaus-Salesin, Adviser, Mrs.Andrea Strohmeier, Secretary of the Ambassador, Mr.Heinz Klaus, Attaché, Dr.Theodor Tortschanoff/CERN/LHC, Mr.Peter Storer, Advisor.

  16. Energy and air emission effects of water supply.

    Science.gov (United States)

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  17. Energy and air emission effects of water supply.

    Science.gov (United States)

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process. PMID:19475934

  18. Public perception of drinking water from private water supplies: focus group analyses

    Directory of Open Access Journals (Sweden)

    McEwen Scott A

    2005-12-01

    Full Text Available Abstract Background Over four million Canadians receive their drinking water from private water supplies, and numerous studies report that these supplies often exceed the minimal acceptable standards for contamination. Canadians in rural areas test their water intermittently, if at all, and treatment of water from private supplies is not common. Understanding the perceptions of drinking water among residents served by private systems will enable public health professionals to better target education and outreach activities, and to address the needs and concerns of residents in their jurisdictions. The purpose of this study was to explore the drinking water perceptions and self-described behaviours and needs of participants served by private water systems in the City of Hamilton, Ontario (Canada. Methods In September 2003, three focus group discussions were conducted; two with men and women aged 36–65 years, and one with men and women 20–35 years of age. Results Overall, participants had positive perceptions of their private water supplies, particularly in the older age group. Concerns included bacterial and chemical contamination from agricultural sources. Testing of water from private supplies was minimal and was done less frequently than recommended by the provincial government. Barriers to water testing included the inconvenience of the testing process, acceptable test results in the past, resident complacency and lack of knowledge. The younger participants greatly emphasized their need for more information on private water supplies. Participants from all groups wanted more information on water testing, and various media for information dissemination were discussed. Conclusion While most participants were confident in the safety of their private water supply, the factual basis for these opinions is uncertain. Improved dissemination of information pertaining to private water supplies in this population is needed. Observed differences in

  19. Does Clean Water Make You Dirty? Water Supply and Sanitation in the Philippines

    Science.gov (United States)

    Bennett, Daniel

    2012-01-01

    Water supply investments in developing countries may inadvertently worsen sanitation if clean water and sanitation are substitutes. This paper examines the negative correlation between the provision of piped water and household sanitary behavior in Cebu, the Philippines. In a model of household sanitation, a local externality leads to a sanitation…

  20. Performance of constructed wetland system for public water supply.

    Science.gov (United States)

    Elias, J M; Salati Filho, E; Salati, E

    2001-01-01

    The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil-Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s(-1) has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP. PMID:11804153

  1. A new concept for the water supply at CERN

    CERN Document Server

    Inigo-Golfin, J

    1998-01-01

    The present state of the station Le Vengeron (the main pumping station supplying CERN with drinking water), and also to comply with the new Swiss standards impose a thorough consolidation and upgrade of this station which is shared with the Services Industriels de Genève (SIG). The total cost of the works (around 62 MCHF) would be shared proportionally to the nominal flow-rate demand which, at present, is of 2/3 for CERN and 1/3 for SIG. An alternative to the above is a complete review of CERN's water consumption, reducing our needs by half, thus allowing savings in both investment and operation. This reduction in investment cost would be diverted towards much needed consolidation works for the existing facilities within CERN. This paper also reviews the planning and possible ways for the execution of the works and the future responsibilities of operation of the water distribution systems (drinking and machine) inside CERN's sites.

  2. Water Markets, Demand and Cost Recovery for Piped Water Supply Services : Evidence from Southwest Sri Lanka

    OpenAIRE

    Nauges, Celine; VAN DEN BERG Caroline

    2006-01-01

    In many countries water supply is a service that is seriously underpriced, especially for residential consumers. This has led to a call for setting cost recovery policies to ensure that the tariffs charged for water supply cover the full cost of providing for the service. Yet, the question arises on how consumers will react to such price increases. The authors illustrate the impact of price increases on consumption of piped water through a study of the demand for water of piped and non-piped ...

  3. Urban Water Supply Industry Marketization of China in View of Public Water Service and Water Resource Management

    Institute of Scientific and Technical Information of China (English)

    Wang Yining

    2010-01-01

    Started with the discussions on the value orientation of urban water supply industry marketization,the article points out that the current urban water supply industry marketization reform is inconsistent with the goal of public water service equalization to some extent.The article also analyzes the problems emerged in urban water supply industry marketization reform and various reasons in view of efficiency and fairness.An efficiency and fairness oriented management model is built in this article to illustrate how the government should conciliate interests of various communities involved in the process of marketization reform of the urban water supply industry so as to actualize the coordination of efficiency and fairness.At the end,an assumption on urban water price is put forward to help achieve the public water service equalization.

  4. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  5. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2013-01-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  6. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What is the Reclamation Rural Water Supply... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply Program? This program addresses domestic, municipal, and industrial...

  7. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  8. Public water supplies in Gloucester County, New Jersey

    Science.gov (United States)

    Hardt, William F.

    1963-01-01

    . The average per capita public water supply consumption in 1959 was approximately 75 gallons per day. This report includes a summary of the history of the present installations, groundwater conditions, quality and availability of water, and potential future yield for the 2 public water systems in Gloucester County.

  9. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g-1, respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  10. Features of internal water supply and water disposal of shopping centers

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2014-01-01

    Full Text Available Pipeline from an external system should be inlet in the part of the building where a large number of water folding devices will be concentrated. As a rule, for shopping centers with a lot of water consumers it is necessary to make not less than three inputs, each of them should be connected to different areas of an external ring water supply system in order to make the work of the system more reliable.The places for water folding fittings in shopping centers are the following. The water folding devices: mixers are placed in sanitary cabins of shopping centers. Usually, for for water saving in buildings with a big pass-through capacity per hour it is reasonable to use contactless mixers, which are turned on upon raising a hand with a help of motion sensor or light sensor. Another important argument in favor of such mixers is prevention of infections spread for the reason that the consumer doesn't touch the device, so, the risk of bacteria transmission via the device decreases. Such mixer supplies water with a demanded expense and temperature. As a rule, water for such mixers moves from the centralized internal water supply system of hot water, mixing up with cold water. If there is no centralized hot water supply system, it is possible to use hot water storage heaters in case of a small number of visitors or to reject mixers at all in favor of the cranes giving water of only one temperature (cold, which is also practiced.For the branch of economic and household the water receivers are used, which are present in sanitary cabins in most cases by toilet bowls, wash basins, urinals.

  11. Trends in Rural Water Supply: Towards a Service Delivery Approach

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2013-10-01

    The papers in this special issue argue that tackling these challenges requires a shift in emphasis in rural water supply in developing countries: away from a de-facto focus on the provision of hardware for first-time access towards the proper use of installed hardware as the basis for universal access to rural water services. The outline of the main actions required to achieve this shift are becoming clearer. Chief amongst these are the professionalisation of community management and/or provision of direct support to community service providers; adoption of a wider range of service delivery models than community management alone; and addressing the sustainable financing of all costs with a particular focus on financing capital maintenance (asset management and direct support costs. This introductory paper provides an overview of these issues and a guide to the other articles, which demonstrate these points.

  12. Water supply of Rome in antiquity and today

    Science.gov (United States)

    Bono, P.; Boni, C.

    1996-03-01

    In ancient Rome, water was considered a deity to be worshipped and most of all utilized in health and art. The availability of huge water supplies was considered a symbol of opulence and therefore an expression of power. The countryside around Rome offered a spectacular view: it was adorned with an incalculable number of monuments, temples, and villas, and it was crossed by sturdy aqueducts with magnificent arcades. The aqueduct as a superelevated monumental work is a typical concept of the Roman engineering, although it is possible to recognize that the inspiration and the basic ideas came from Etruscan technology. The Etruscans did not construct real aqueducts, even though they built hydraulic works as irrigation channels, drainage systems, dams, etc. The Greeks had also built similar hydraulic structures, before the Roman influence. Interesting aqueduct remains are in Rome, Segovia (Spain), Nimes (France), and Cologne (Germany), among other places.

  13. Intrusion problematic during water supply systems' operation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Rodriguez, Jesus; Lopez-Jimenez, P. Amparo [Departamento de Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022, Valencia (Spain); Ramos, Helena M. [Civil Engineering Department and CEHIDRO, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal)

    2011-07-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  14. Vulnerability of water supply systems to cyber-physical attacks

    Science.gov (United States)

    Galelli, Stefano; Taormina, Riccardo; Tippenhauer, Nils; Salomons, Elad; Ostfeld, Avi

    2016-04-01

    The adoption of smart meters, distributed sensor networks and industrial control systems has largely improved the level of service provided by modern water supply systems. Yet, the progressive computerization exposes these critical infrastructures to cyber-physical attacks, which are generally aimed at stealing critical information (cyber-espionage) or causing service disruption (denial-of-service). Recent statistics show that water and power utilities are undergoing frequent attacks - such as the December power outage in Ukraine - , attracting the interest of operators and security agencies. Taking the security of Water Distribution Networks (WDNs) as domain of study, our work seeks to characterize the vulnerability of WDNs to cyber-physical attacks, so as to conceive adequate defense mechanisms. We extend the functionality of EPANET, which models hydraulic and water quality processes in pressurized pipe networks, to include a cyber layer vulnerable to repeated attacks. Simulation results on a medium-scale network show that several hydraulic actuators (valves and pumps, for example) can be easily attacked, causing both service disruption - i.e., water spillage and loss of pressure - and structural damages - e.g., pipes burst. Our work highlights the need for adequate countermeasures, such as attacks detection and reactive control systems.

  15. Arsenic in public water supplies and cardiovascular mortality in Spain

    International Nuclear Information System (INIS)

    Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from 10 μg/L. Compared to municipalities with arsenic concentrations 10 μg/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 μg/L.

  16. Water Supply or ‘Beautiful Latrines’? Microcredit for Rural Water Supply and Sanitation in the Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Nadine Reis

    2012-01-01

    Full Text Available Around half of the Mekong Delta’s rural population lacks year-round access to clean water. In combination with inadequate hygiene and poor sanitation this creates a high risk of diseases. Microcredit schemes are a popular element in addressing such problems on the global policy level. The present paper analyses the contradictory results of such a microcredit programme for rural water supply and sanitation in the context of the Mekong Delta, Vietnam, through a qualitative study primarily based on semi-structured interviews in rural communes of Can Tho City. We come to the conclusion that the programme has a positive effect regarding the safer disposal of human excreta as well as surface water quality, but a marginal impact on poverty reduction as it only reaches better-off households already having access to clean water. The paper shows how the outcome of rural water supply and sanitation policies are strongly influenced by the local ecological, technological, and social settings, in particular by stakeholders’ interests. The authors challenge the assumption that water supply and sanitation should be integrated into the same policy in all circumstances. ----- Etwa die Hälfte der ländlichen Bevölkerung des Mekong-Deltas hat nicht das ganze Jahr über Zugang zu sauberem Wasser. Zusammen mit unzureichender Hygiene und mangelnder sanitärer Grundversorgung erhöht diese Situation das Krankheitsrisiko. Auf globaler Ebene sind Mikrokreditprogramme eine gefragte Strategie, um diese Probleme zu behandeln. Der vorliegende Artikel analysiert die widersprüchlichen Ergebnisse eines solchen Mikrokreditprogramms für ländliche Wasser- und sanitäre Grundversorgung im Mekong-Delta in Vietnam im Rahmen einer qualitativen Studie, die auf halbstrukturierten Interviews im Raum Can Tho City basiert. Die Studie kommt zu dem Schluss, dass das Programm eine positive Wirkung in Bezug auf die sichere Entsorgung von Fäkalien und die Qualität des Regenwassers

  17. Austrian Economics, Neoclassicism, and the Market Test

    OpenAIRE

    Leland B. Yeager

    1997-01-01

    Professor Sherwin Rosen correctly suggests that the Austrian and neoclassical schools can be complementary, each accepting much from the other. However his recognition of Austrian strengths needs to be amplified and his criticisms need softening. His appeal to the market test risks encouraging anti-intellectual attitudes and practices

  18. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    Science.gov (United States)

    Brown, Philip S; Bhushan, Bharat

    2016-08-01

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  19. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    Science.gov (United States)

    Brown, Philip S; Bhushan, Bharat

    2016-08-01

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354732

  20. Water supply project feasibilities in fringe areas of Kolkata, India

    Directory of Open Access Journals (Sweden)

    K. Dutta Roy

    2010-09-01

    Full Text Available Water supply management to the peri-urban areas of the developing world is a complex task due to migration, infrastructure, paucity of fund etc. A cost-benefit methodology particularly suitable for the peri-urban areas has been developed for the city of Kolkata, India. The costs are estimated based on a neural network estimate. The water quality of the area is estimated from samples and a water quality index has been prepared. A questionnaire survey in the area has been conducted for relevant information like income, awareness and willingness to pay for safe drinking water. A factor analysis has been conducted for distinguishing the important factors of the survey and subsequent multiple regressions have been conducted for finding the relationships for the willingness to pay. A system dynamics model has been conducted to estimate the trend of increase of willingness to pay with the urbanizations in the peri-urban areas. A cost benefit analysis with the impact of time value of money has been executed. The risk and uncertainty of the project is investigated by Monte Carlos simulation and tornado diagrams. It has been found that the projects that are normally rejected in standard cost benefit analysis would be accepted if the impacts of urbanizations in the peri-urban areas are considered.

  1. Greater Vancouver's water supply receives ozone treatment

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, J.; Singh, I.; Reil, D. D.; Neden, G.

    2000-10-01

    To improve the overall quality of the treated water delivered to the member municipalities of the Greater Vancouver Water District (GVWD), the GVWD implemented a phased drinking water quality improvement program. The phased treatment program is directed at attaining effective disinfection while minimizing the formation of chlorinated disinfection by-products. Accordingly, the current primary disinfection method of chlorination was reevaluated and an ozone primary disinfection without filtration was authorized. Ozonization provides increased protection against Giardia and Cryptosporidium and a decrease in the formation potential for disinfection by-products (DPBs). This paper describes the design for the ozonation facility at Coquitlam, construction of which began in 1998 and completed during the summer of 2000. The facility houses the liquid oxygen supply, ozone generation, cooling water, ozone injection, primary off-gas ozone destruct system, and provides a home for various office, electrical maintenance and diesel generating functions. The second site at Capilano is expected to start construction in the fall of 2000 and be completed late in 2002. Wit its kilometre long stainless steel ozone contactor and sidestream injector tower, the Coquitlam Ozonation Facility is the first ozone pressure injection system of its kind in North America. 1 tab., 2 figs.

  2. A Holistic ICT Solution to Improve Matching between Supply and Demand over the Water Supply Distribution Chain

    Directory of Open Access Journals (Sweden)

    Gabriel Anzaldi

    2014-12-01

    Full Text Available While many water management tools exist, these systems are not usually interconnected and therefore cannot communicate between one another, preventing Integrated Water Resources Management to be fully achieved. This paper presents the solution proposed by WatERP project* where a novel solution enables better matching between water supply and demand from holistic perspective. Subsystems that control the production, management and consumption of water will be interconnected through both information architecture and intelligent infrastructure. The main outcome will consist of, a web-based Open Management Platform integrating near real-time knowledge on water supplies and demand, from sources to users, across geographic and organizational scales and supported by a knowledge base where information will be structured in water management ontology to ensure interoperability and maximize usability. WatERP will thus provide a major contribution to: 1 Improve coordination among actors, 2 Foster behavioural change, 3 Reduce water and energy consumption, 4 Optimize water accountability.

  3. FEATURES OF SCIENTIFIC INVESTIGATIONS CONDUCTED IN THE LABORATORIES OF THE DEPARTMENT OF WATER SUPPLY OF MGSU

    Directory of Open Access Journals (Sweden)

    Nikitina Irina Nikolaevna

    2016-03-01

    Full Text Available The article focuses on the work of the laboratories of the Department of Water Supply of MGSU. The laboratory of pipe-lines, pumping equipment and sanitary equipment operates in MGSU affiliated to the department of water supply. A hydraulic stand for testing and defining the the hydraulic characteristics of pressure and free-flow pipelines of water supply and sewerage systems is installed there. There are also stands for investigating the sanitary equipment of the buildings, the fire and hot water supply systems. The main research directions of the department of water supply are diverse: hydraulics of water supply systems, recon-struction of pipelines using trenchless technologies, reliable water supply and distribution systems, purification of natural water for drinking and industrial water supply, post-treatment of natural water for domestic water supply, resource conservation in domes-tic water supply systems, etc. The laboratory also has a computer lab, able to simultane-ously hold up to 30 students. In collaboration with the laboratory there operates a scien-tific circle for students and Master students, which provides a lot of interesting and useful information on the latest developments.

  4. Arsenic in drinking water: a worldwide water quality concern for water supply companies

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-06-01

    Full Text Available For more than a decade it has been known that shallow tube wells in Bangladesh are frequently contaminated with arsenic concentrations at a level that is harmful to human health. By now it is clear that a disaster of an unheard magnitude is going on: the World Health Organization has estimated that long-term exposure to arsenic in groundwater, at concentrations over 500 μg L−1, causes death in 1 in 10 adults. Other studies show that problems with arsenic in groundwater/drinking water occur in many more countries worldwide, such as in the USA and China. In Europe the focus on arsenic problems is currently confined to countries with high arsenic levels in their groundwater, such as Serbia, Hungary and Italy. In most other European countries, the naturally occurring arsenic concentrations are mostly lower than the European drinking water standard of 10 μg L−1. However, from the literature review presented in this paper, it is concluded that at this level health risks cannot be excluded. As consumers in European countries expect the drinking water to be of impeccable quality, it is recommended that water supply companies optimize arsenic removal to a level of <1 μg L−1, which is technically feasible.

  5. The Forgotten Austrian Economics Language

    Directory of Open Access Journals (Sweden)

    Elena Bianca Vieru

    2013-02-01

    Full Text Available In light of the current events, namely the crisisthat economy has to face for quite someyears now, plenty of questions are raised, not only among specialists in the field but also amongordinary people as they prove to be most impoverished by these imbalances. Thus, this paper aims, asa first objective, to explain, froma general perspective and using an inductive-subjectivemethodology based on a brief survey as well as on observation, two of the most important causes that,according to the Austrian Business Cycle Theory, are the leading motives for triggering crises. Weare referring particularly to an excessivestate interventionismmanifested throughout itsexpansionary monetary policy.Secondly, we seek to establish the interconnections between theseelements and the case of the Great Depression as well as the current recession. The results we cameacross point out towards the same pattern designed by the Austrian economists, although thecircumstances are, each time, different. Hence, the contribution of this paper consists of handling thedetails that surround the subject by extracting only the essential aspects regarding the triggering ofcrises; we refer to the main ideas that need to be underlined for a better comprehension of the topic.

  6. Modeling the influence of various water stressors on regional water supply infrastructures and their embodied energy

    Science.gov (United States)

    Mo, Weiwei; Zhang, Qiong

    2016-06-01

    Water supply consumes a substantial amount of energy directly and indirectly. This study aims to provide an enhanced understanding of the influence of water stressors on the embodied energy of water supply (EEWS). To achieve this goal, the EEWS in 75 North Carolina counties was estimated through an economic input-output based hybrid life cycle assessment. Ten water stressor indicators related to population, economic development, climate, water source, and land use were obtained for the 75 counties. A multivariate analysis was performed to understand the correlations between water stressor indicators and the EEWS. A regression analysis was then conducted to identify the statistically significant indicators in describing the EEWS. It was found that the total amount of water supply energy varies significantly among selected counties. Water delivery presents the highest energy use and water storage presents the least. The total embodied energy was found to be highly correlated with total population. The regression analysis shows that the total embodied energy can be best described by total population and temperature indicators with a relatively high R square value of 0.69.

  7. A Holistic ICT Solution to Improve Matching between Supply and Demand over the Water Supply Distribution Chain

    OpenAIRE

    Gabriel Anzaldi

    2014-01-01

    While many water management tools exist, these systems are not usually interconnected and therefore cannot communicate between one another, preventing Integrated Water Resources Management to be fully achieved. This paper presents the solution proposed by WatERP project* where a novel solution enables better matching between water supply and demand from holistic perspective. Subsystems that control the production, management and consumption of water will be interconnected through both informa...

  8. The Shanggongshan Tunnel Kunming Zhangjiuhe River Water Diversion and Water Supply Project

    Institute of Scientific and Technical Information of China (English)

    J. P. Kaegi; M. Bachmann; A. Colombi

    2004-01-01

    Kunming is the political and economical centre of the Yunnan Province in the south -west of China and one of the most beautiful historical and cultural cities in China. It is also one of the 14 cities in China that are severely short of water. In order to solve the supply problem and to allow for future development of the local society and economy, the "Kunming Zhangjiuhe River Water Diversion and Water Supply Project" was implemented. The total investment for the project is about USD 476 million.The objective is to establish a water supply system with a capacity of 0.6 million tons of water per day.Major parts of the project are:capacity by 0. 442 billion m3 and an annual water supply of 0. 245 billion m3;tunnels, but also some siphons);pacity of 0.4 million tons per day in the initial stage and 0.6 million tons per day once completed;length of 93.43 km;sons.Project completion is planned for the end of 2006.

  9. Global net irrigation water requirements from various water supply sources during past and future periods

    Science.gov (United States)

    Yoshikawa, S.; Cho, J.; Hanasaki, N.; Kanae, S.

    2014-12-01

    Water supply sources for irrigation (e.g. rivers and reservoirs) are critically important for agricultural productivity. The current rapid increase in irrigation water use is considered unsustainable and threatens food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during past (1960-2001) and future (2002-2050) periods using the global water resources model, H08. The H08 model can simulate water requirements on a daily basis at a resolution of 1.0° × 1.0° latitude and longitude. The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR), medium-size reservoirs (MSR), and non-local non-renewable blue water (NNBW). The simulated results from 1960 to 2001 showed that RIV, MSR and NNBW increased significantly from the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, the increase in RIV declined as it approached a critical limit, due to the continued expansion of irrigation area. MSR and NNBW increased significantly, during the same time period, following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as a future increase in NNBW. After the 2020s, MSR was predicted to approach the critical limit, and ADD would account for 11-23% of the total requirements in the 2040s.

  10. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the...

  11. 78 FR 42945 - Public Water Supply Supervision Program; Program Revision for the State of Oregon

    Science.gov (United States)

    2013-07-18

    ... AGENCY Public Water Supply Supervision Program; Program Revision for the State of Oregon AGENCY... that the State of Oregon has revised its approved State Public Water Supply Supervision Primacy Program...; Long Term 2 Enhanced Surface Water Treatment Rule; Ground Water Rule; and Lead and Copper...

  12. 新奥法在核电厂盾构法隧道取水工程中的应用%Application of New Austrian Method in Shield Tunneling Water Intake Project in Nuclear Power Station

    Institute of Scientific and Technical Information of China (English)

    尤雪娣

    2014-01-01

    A nuclear power station used water-intake shield tunnel, thetunnel’s inner diameter is 6200mm which is largest in power station. The soil stratums are very complex, especially at the initial segment in local bedrock. It’s the ifrst time to introduce New Austrian Method into the construction technology of water-intake shield tunnel in power station, successfully resolved the problem that the general shield machine is not suitable for local bedrock. This method can provide reference for similar projects in future power stations.%A核电厂采用盾构法隧道取水,隧道内径达6200mm,为电力行业之最。盾构法取水隧道所穿越的土层相当复杂,尤其是起始段为局部基岩。A核电厂首次将新奥法引进到电厂取水盾构法隧道施工工艺中,成功地解决了土压平衡盾构机不适用于穿越局部岩基的难题,为今后电厂类似工程提供借鉴。

  13. Features of internal water supply and water disposal of shopping centers

    OpenAIRE

    Orlov Evgeniy Vladimirovich

    2014-01-01

    Pipeline from an external system should be inlet in the part of the building where a large number of water folding devices will be concentrated. As a rule, for shopping centers with a lot of water consumers it is necessary to make not less than three inputs, each of them should be connected to different areas of an external ring water supply system in order to make the work of the system more reliable.The places for water folding fittings in shopping centers are the following. The water foldi...

  14. Arsenic in public water supplies and cardiovascular mortality in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Ma Jose, E-mail: pmedrano@isciii.es [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Boix, Raquel; Pastor-Barriuso, Roberto [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Palau, Margarita [Subdireccion General de Sanidad Ambiental y Salud Laboral, Direccion General de Salud Publica y Sanidad Exterior, Ministerio de Sanidad y Politica Social, Madrid (Spain); Damian, Javier [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Ramis, Rebeca [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); CIBER en Epidemiologia y Salud Publica (CIBERESP), Madrid (Spain); Barrio, Jose Luis del [Departamento de Salud Publica, Universidad Rey Juan Carlos, Madrid (Spain); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States)

    2010-07-15

    water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 {mu}g/L.

  15. More efficient optimization of long-term water supply portfolios

    Science.gov (United States)

    Kirsch, Brian R.; Characklis, Gregory W.; Dillard, Karen E. M.; Kelley, C. T.

    2009-03-01

    The use of temporary transfers, such as options and leases, has grown as utilities attempt to meet increases in demand while reducing dependence on the expansion of costly infrastructure capacity (e.g., reservoirs). Earlier work has been done to construct optimal portfolios comprising firm capacity and transfers, using decision rules that determine the timing and volume of transfers. However, such work has only focused on the short-term (e.g., 1-year scenarios), which limits the utility of these planning efforts. Developing multiyear portfolios can lead to the exploration of a wider range of alternatives but also increases the computational burden. This work utilizes a coupled hydrologic-economic model to simulate the long-term performance of a city's water supply portfolio. This stochastic model is linked with an optimization search algorithm that is designed to handle the high-frequency, low-amplitude noise inherent in many simulations, particularly those involving expected values. This noise is detrimental to the accuracy and precision of the optimized solution and has traditionally been controlled by investing greater computational effort in the simulation. However, the increased computational effort can be substantial. This work describes the integration of a variance reduction technique (control variate method) within the simulation/optimization as a means of more efficiently identifying minimum cost portfolios. Random variation in model output (i.e., noise) is moderated using knowledge of random variations in stochastic input variables (e.g., reservoir inflows, demand), thereby reducing the computing time by 50% or more. Using these efficiency gains, water supply portfolios are evaluated over a 10-year period in order to assess their ability to reduce costs and adapt to demand growth, while still meeting reliability goals. As a part of the evaluation, several multiyear option contract structures are explored and compared.

  16. The Technical-Economic Analysis of Hot Water Supply Systems for Residential Buildings

    OpenAIRE

    Tumanova, Karīna; Cimbale, Aleksandra

    2015-01-01

    The article presents the measurements of hot water and supplied thermal energy consumption in residential buildings, where alterations in bottom distribution were made. Diagrams of hot water and supplied thermal energy consumption for 1 m³ hot water preparation were constructed, using the aggregated data. The research results show that hot water consumption differs from values offered in Regulations of Building Standard LBN 221-98, but the supplied thermal energy consumption for 1 m³ hot wate...

  17. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    OpenAIRE

    Murat Yalçıntaş; Melih Bulu; Murat Küçükvar; Hamidreza Samadi

    2015-01-01

    The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA) model, the time series water supply and demand forecasting model is ...

  18. Environmental Sustainability of Water Supply Systems Implemented at RWSSP-WN

    OpenAIRE

    Chauhan, Krishna

    2013-01-01

    Many Nepalese rural communities are suffering from lack of safe drinking water. One of the reasons is that approximately one third to one half of all drinking water supply systems fail shortly after the construction. The main purpose of this thesis project was to analyze the environmental sustainability of rural water supply systems implemented by the Rural Water Supply and Sanitation Project in Western Nepal(RWSSP-WN).In addition, the thesis project In addition, the thesis project also...

  19. National water summary 1987: Hydrologic events and water supply and use

    Science.gov (United States)

    Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.; Moody, David W.

    1990-01-01

    Water use in the United States, as measured by freshwater withdrawals in 1985, averaged 338,000 Mgal/d (million gallons per day), which is enough water to cover the 48 conterminous States to a depth of about 2.4 inches. Only 92,300 Mgal/d, or 27.3 percent of the water withdrawn, was consumptive use and thus lost to immediate further use; the remainder of the withdrawals (72.7 percent) was return flow available for reuse a number of times as the water flowed to the sea. The 1985 freshwater withdrawals were much less than the average 30 inches of precipitation that falls on the conterminous States each year; consumptive use accounted for only 7 percent of the estimated annual runoff of 1,230,000 Mgal/d. Nonetheless, as the State summaries on water supply and use clearly show, water is not always available when and where it is needed. Balancing water demands with available water supplies constitutes one of the major resource allocation issues that will face the United States in the coming decade. Of the 1985 freshwater withdrawals, 78.3 percent (265,000 Mgal/d) came from surface-water sources (streams and lakes), and 21.7 percent (73,300 Mgal/d) came from ground water. Surface water provided drinking water for about 47 percent of the Nation's total population. It was the source of 59.9 percent of the Nation's public-supply systems. For self-supplied withdrawals, surface water accounted for 1.6 percent of the domestic and commercial uses; 64.0 percent of the industrial and mining use; 99.4 percent of the thermoelectric generation withdrawals, mainly for cooling water; and 65.6 percent of the agricultural withdrawals. Eight States accounted for 43 percent of the surface-water use; California, Colorado, and Idaho used surface water primarily for irrigation, and Dlinois, Michigan, Ohio, Pennsylvania, and Texas used surface-water primarily for cooling condensers or reactors in thermoelectric plants. Ground water provided drinking water for 53 percent of the Nation's total

  20. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  1. Cities as Water Supply Catchments to deliver microclimate benefits

    Science.gov (United States)

    Beringer, J.; Tapper, N. J.; Coutts, A.; Loughnan, M.

    2010-12-01

    Urban development extensively modifies the natural hydrology, biodiversity, carbon balance, air quality and climate of the local and regional environment mainly due to increased impervious surface area (roads, pavements, roofs, etc.). Impervious surface are a legacy of urban infrastructure planning based on a ‘drained city’ to minimise flood risk. The result is a modification of the microclimate around buildings and on a city scale results in the Urban Heat Island (UHI) effect where the urban areas are much hotter than the surrounding rural areas. Such heating comes on top of 20th century human induced climate change, namely decreased rainfall and higher temperatures. Drought conditions have triggered water restrictions in many Australian cities that have dramatically reduced ‘irrigation’ in urban areas. Ironically the drying influence from climate change has now been compounded by the drying influence of water restrictions and the efficient removal of stormwater resulting in desert like climates during summer. This will be further exacerbated by the projected increases in hot days, extreme hot days, heat waves, etc. In turn this excessive heating will compromise the health and liveability of urban dwellers. Stormwater is a potential critical resource that could be used to keep water in the landscape to irrigate urban areas to improve urban micro-climates, sustain vegetation and provide other multiple benefits to create more liveable and resilient urban environments. In Australia's major cities, stormwater harvesting has the potential to provide a low cost, low energy, fit-for-purpose source of water to help secure city supplies. Stormwater reuse not only provides a potential mitigation tool for the UHI and global climate change but has multiple benefits to provide resilience such as 1) Improved human thermal comfort to reduce heat related stress and mortality, 2) Healthy and productive vegetation and increased carbon sequestration, 3) Decreased stormwater

  2. Schumpeter and Mises as 'Austrian Economists'

    OpenAIRE

    Vanberg, Viktor J.

    2008-01-01

    "Whether and, if so, in what sense Joseph A. Schumpeter (1883-1950) and Ludwig von Mises (1881-1973) may both be classified as ‘Austrian economists’ is a controversial issue. In terms of their biographical background they were, of course, Austrian nationals, and as students of Böhm-Bawerk and von Wieser both qualify in a formal sense as third-generation members of the Austrian School. Yet, whether they so qualify in a substantive sense as well is much more questionable. Apparen...

  3. Determination of Aluminium and Physicochemical Parameters in the Palm Oil Estates Water Supply at Johor, Malaysia

    Directory of Open Access Journals (Sweden)

    M. R. Siti Farizwana

    2010-01-01

    Full Text Available The study was to determine the concentration of aluminium (Al and study the physicochemical parameters (pH, total dissolved solids (TDS, turbidity, and residual chlorine in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S, the treatment plant outlet (TPO, and at the nearest houses (H1 and the furthest houses (H2 from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90. The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU. Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L. Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.

  4. Síndrome de Austrian

    Directory of Open Access Journals (Sweden)

    Márcio Estevão Midon

    2011-09-01

    Full Text Available Neste relato, é descrito o caso de um paciente masculino, 64 anos, sem história de etilismo, que se apresentou com a Tríade de Osler, que consiste no desenvolvimento de endocardite, pneumonia e meningite, por um mesmo agente. A síndrome é denominada síndrome de Austrian, quando a infecção for por Streptococcus pneumoniae. Serão discutidas as manifestações clínicas, fisiopatológicas e a terapêutica mais adequada para esse quadro. Tendo em vista a raridade do caso e a elevada morbimortalidade, serão enfatizadas a importância do diagnóstico precoce e o tratamento adequado, visando reduzir as complicações inerentes a essa doença.

  5. Austrian emission inventory for dust

    International Nuclear Information System (INIS)

    For the first time, Austrian emissions of anthropogenic particulate matter emissions to the atmosphere have been estimated. Results have been reported as total suspended particles (TSP) as well as for the fractions of particles smaller than 10 μm or 2.5 μm aerodynamic diameter (PM10, PM2.5), respectively. Base years for the inventory were 1990, 1995 and 1999. Excluded from this assessment is wind blown dust, which has been considered a natural source here. National statistics have been applied, specifically those also used previously in the Austrian air pollution inventory (OLI). Emission factors have been taken from literature compilations, only for exceptional cases specific Austrian assessments were performed or original literature on emission measurements was consulted. Resuspension of dust by road traffic emerged as the most important source. For the size fraction of PM10 this source contributed about half of the emissions, when applying the calculation scheme by the U.S. EPA. While this scheme is widely used and well documented, its validity is currently subject of intense scientific debate. As these results do not seem to coincide with ambient air measurements, resuspension of road dust is considered separately and not now included in the national total. The sum of all other sources increases from 75,000 t of TSP in 1990 and 1995 to 77,000 t in 1999, while both PM10 and PM2.5 exhibit decreasing tendency (at 45,000 t and 26,000 t in 1999, respectively). The increase in TSP derives from increasing traffic and friction related emissions (tire wear, break wear), decrease of the finer particulate matter is due to reductions in firewood consumption for domestic heating. Most important source sectors are fugitive emissions from material transfer in industry as well as the building industry and the tilling of agricultural land. Common to these sources is the high uncertainty of available data. Wood combustion is the most important of the non-fugitive emissions

  6. Framing the Water Challenge : Multilateral donor policies for water supply and sanitation 1960-2005

    OpenAIRE

    Bohman, Anna

    2006-01-01

    Opinions on what is best way to provide more people in low income countries with adequate water and sanitation services have changed over time. A recent policy paradigm suggests that private companies should be involved in WSS service provision to improve the situation for those in need. This study looks at how issues of water supply and sanitation (WSS) have been confronted by the international donor community and how strategies to improve performance in this sector have changed from the ear...

  7. The Consumer in Austrian Economics and the Austrian Perspective on Consumer Policy

    OpenAIRE

    Leen, A.R.

    1999-01-01

    In this thesis I examined the place of the competitive-entrepreneurial consumer in Austrian economic thought. For a neoclassical economist, competition among consumers is hard to find. For an Austrian economist, however, it is a necessity. The introduction puts forward the problem that although an Austrian economist believes that everyone -the consumer included- acts entrepreneurially, in his elucidation of the market process he gives the role of entrepreneur to the producer only.In Part I, "...

  8. Mitigation of three water supplies with high radon exposure to the employees

    International Nuclear Information System (INIS)

    A comprehensive survey to determine the occupational radiation exposure in water supplies and spas was conducted in the federal state of Upper Austria. The study comprises 45 water supplies. The limit for radon exposure of 6 MBq h m-3 was exceeded by two water supplies (WS 33 and WS 42). In one water supply (WS 29), the level of 2 MBq h m-3 was exceeded. These water supplies were mitigated. Prior to mitigation the main radon sources were identified. Mitigation measures were: evacuation of the outlet air of the vaporiser by means of a fan, installation of a fan in the exhaust air duct of the compensating reservoir, sealing of drain shafts and mechanical ventilation of the office. In all water supplies, the radon exposure was reduced to below 0.8 MBq h m-3 at a cost of approx. EUR 750 to EUR 1000. (authors)

  9. A Framework for Sustainable Urban Water Management through Demand and Supply Forecasting: The Case of Istanbul

    Directory of Open Access Journals (Sweden)

    Murat Yalçıntaş

    2015-08-01

    Full Text Available The metropolitan city of Istanbul is becoming overcrowded and the demand for clean water is steeply rising in the city. The use of analytical approaches has become more and more critical for forecasting the water supply and demand balance in the long run. In this research, Istanbul’s water supply and demand data is collected for the period during 2006 and 2014. Then, using an autoregressive integrated moving average (ARIMA model, the time series water supply and demand forecasting model is constructed for the period between 2015 and 2018. Three important sustainability metrics such as water loss to supply ratio, water loss to demand ratio, and water loss to residential demand ratio are also presented. The findings show that residential water demand is responsible for nearly 80% of total water use and the consumption categories including commercial, industrial, agriculture, outdoor, and others have a lower share in total water demand. The results also show that there is a considerable water loss in the water distribution system which requires significant investments on the water supply networks. Furthermore, the forecasting results indicated that pipeline projects will be critical in the near future due to expected increases in the total water demand of Istanbul. The authors suggest that sustainable management of water can be achieved by reducing the residential water use through the use of water efficient technologies in households and reduction in water supply loss through investments on distribution infrastructure.

  10. Post-fire water quality in forest catchments: a review with implications for potable water supply

    Science.gov (United States)

    Smith, Hugh; Sheridan, Gary; Lane, Patrick; Nyman, Petter; Haydon, Shane

    2010-05-01

    In many locations fire-prone forest catchments are utilised for the supply of potable water to small communities up to large cities. For example, in south-eastern Australia, wildfires have burned part or all of forest catchments supplying drinking water to Sydney (2001 wildfire), Canberra (2003), Adelaide (2007), Melbourne (2009), as well as various regional towns. Generally, undisturbed forest catchments are a source of high quality water. However, increases in erosion and sediment flux, runoff generation, and changes to the supply of key constituents after wildfire may result in contamination of water supplies. In this review, we present key physical and chemical constituents from a drinking water perspective that may be generated in burned forest catchments and examine post-fire changes to concentrations of these constituents in streams and reservoirs. The World Health Organisation (WHO) drinking water guideline values were used to assess reported post-fire constituent concentrations. Constituents examined include suspended sediment, ash, nutrients, trace metals, anions (Cl-, SO42-), cyanides, and polycyclic aromatic hydrocarbons (PAHs). Constituent concentrations in streams and reservoirs vary substantially following wildfire. In streams, maximum reported total suspended solid concentrations (SSC) in the first year after fire ranged from 11 to 143,000 mg L-1. SSC is often measured in studies of post-fire stream water quality, whereas turbidity is used in drinking water guidelines and more commonly monitored in water supply reservoirs. For burned catchment reservoirs in south-eastern Australia, peak turbidities increased over pre-fire conditions, as did the frequency of exceedance of the turbidity guideline. NO3-, NO2-, and NH4+ may increase after wildfire but maximum recorded concentrations have not exceeded WHO guideline values. Large post-fire increases in total N and total P concentrations in streams and reservoirs have been observed, although there are no

  11. [Use od ozone for disinfection of ships' system of water supply contaminated by Pseudomonas aeruginosa].

    Science.gov (United States)

    Rakhmanin, Iu A; Strikalenko, T V; Mokienko, A V; Stoianova, N V; Gutsel', Iu I

    1990-11-01

    Experimental substantiation is given of the use of ozone in doses, recommended for disinfection of water and ship water supply systems infected by Pseudomonas aeruginosa. The positive effect of ozonation of water supply systems infected by Pseudomonas aeruginosa was confirmed by results of field testing on ships of the Black sea marine steam-navigation.

  12. 77 FR 33456 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2012-06-06

    ... AGENCY Public Water Supply Supervision Program; Program Revision for the State of Washington AGENCY... that the State of Washington has revised its approved State Public Water Supply Supervision Primacy... Water, ] 243 Israel Road SE., 2nd floor, Tumwater, Washington 98501 and between the hours of 9:00...

  13. 76 FR 5157 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-01-28

    ... AGENCY Public Water Supply Supervision Program; Program Revision for the State of Alaska AGENCY... that the State of Alaska has revised its approved State Public Water Supply Supervision Primacy Program...; Long Term 2 Enhanced Surface Water Treatment Rule; and Lead and Copper Short-Term Regulatory...

  14. 76 FR 366 - Public Water Supply Supervision Program; Program Revision for the State of Washington

    Science.gov (United States)

    2011-01-04

    ... AGENCY Public Water Supply Supervision Program; Program Revision for the State of Washington AGENCY... that the State of Washington has revised its approved State Public Water Supply Supervision Primacy Program. Washington has adopted a definition for public water system that is analogous to EPA's...

  15. 76 FR 45253 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-07-28

    ... AGENCY Public Water Supply Supervision Program; Program Revision for the State of Alaska AGENCY... State of Alaska has revised its approved State Public Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to the EPA's Ground Water Rule. The EPA has determined that...

  16. 75 FR 18190 - New Jersey Water Supply Authority; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2010-04-09

    ... Energy Regulatory Commission New Jersey Water Supply Authority; Notice of Preliminary Permit Application.... On March 17, 2009, the New Jersey Water Supply Authority (New Jersey WSA) filed an application... generation of about 628 megawatt-hours. Applicant Contact: Edward Buss, P.E., New Jersey Water...

  17. Using an Integrated Hydrologic-Economic Model to Develop Minimum Cost Water Supply Portfolios and Manage Supply Risk

    Science.gov (United States)

    Characklis, G. W.; Ramsey, J.

    2004-12-01

    Water scarcity has become a reality in many areas as a result of population growth, fewer available sources, and reduced tolerance for the environmental impacts of developing the new supplies that do exist. As a result, successfully managing future water supply risk will become more dependent on coordinating the use of existing resources. Toward that end, flexible supply strategies that can rapidly respond to hydrologic variability will provide communities with increasing economic advantages, particularly if the frequency of more extreme events (e.g., drought) increases due to global climate change. Markets for established commodities (e.g., oil, gas) often provide a framework for efficiently responding to changes in supply and demand. Water markets, however, have remained relatively crude, with most transactions involving permanent transfers and long regulatory processes. Recently, interest in the use of flexible short-term transfers (e.g., leases, options) has begun to motivate consideration of more sophisticated strategies for managing supply risk, strategies similar to those used in more mature markets. In this case, communities can benefit from some of the advantages that water enjoys over other commodities, in particular, the ability to accurately characterize the stochastic nature of supply and demand through hydrologic modeling. Hydrologic-economic models are developed for two different water scarce regions supporting active water markets: Edward Aquifer and Lower Rio Grande Valley. These models are used to construct portfolios of water supply transfers (e.g., permanent transfers, options, and spot leases) that minimize the cost of meeting a probabilistic reliability constraint. Real and simulated spot price distributions allow each type of transfer to be priced in a manner consistent with financial theory (e.g., Black-Scholes). Market simulations are integrated with hydrologic models such that variability in supply and demand are linked with price behavior

  18. FEATURES OF SCIENTIFIC INVESTIGATIONS CONDUCTED IN THE LABORATORIES OF THE DEPARTMENT OF WATER SUPPLY OF MGSU

    OpenAIRE

    Nikitina Irina Nikolaevna; Eremeev Aleksandr Vladimirovich

    2016-01-01

    The article focuses on the work of the laboratories of the Department of Water Supply of MGSU. The laboratory of pipe-lines, pumping equipment and sanitary equipment operates in MGSU affiliated to the department of water supply. A hydraulic stand for testing and defining the the hydraulic characteristics of pressure and free-flow pipelines of water supply and sewerage systems is installed there. There are also stands for investigating the sanitary equipment of the buildings, the fire and hot ...

  19. Rethinking Sustainability, Scaling Up, and Enabling Environment: A Framework for Their Implementation in Drinking Water Supply

    OpenAIRE

    Urooj Q. Amjad; Edema Ojomo; Kristen Downs; Ryan Cronk; Jamie Bartram

    2015-01-01

    The terms sustainability, scaling up, and enabling environment are inconsistently used in implementing water supply projects. To clarify these terms we develop a framework based on Normalization Process Theory, and apply the framework to a hypothetical water supply project in schools. The resulting framework provides guidance on how these terms could be implemented and analyzed in water supply projects. We conclude that effective use of the terms sustainability, scaling up, and enabling envir...

  20. Effects of Local Nitrogen Supply on Water Uptake of Bean Plants in a Split Root System

    Institute of Scientific and Technical Information of China (English)

    Shiwei Guo; Qirong Shen; Holger Brueck

    2007-01-01

    To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.)plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared:homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels.Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.

  1. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Science.gov (United States)

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is...

  2. The energy and emissions footprint of water supply for Southern California

    Science.gov (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  3. Groundwater for urban water supplies in northern China - An overview

    Science.gov (United States)

    Zaisheng, Han

    Groundwater plays an important role for urban and industrial water supply in northern China. More than 1000 groundwater wellfields have been explored and installed. Groundwater provides about half the total quantity of the urban water supply. Complete regulations and methods for the exploration of groundwater have been established in the P.R. China. Substantial over-exploitation of groundwater has created environmental problems in some cities. Some safeguarding measures for groundwater-resource protection have been undertaken. Résumé Les eaux souterraines jouent un rôle important dans l'approvisionnement en eau des agglomérations et des industries du nord de la Chine. Les explorations ont conduit à mettre en place plus de 1000 champs de puits captant des eaux souterraines. Les eaux souterraines satisfont environ la moitié des besoins en eau des villes. Une réglementation complète et des méthodes d'exploration des eaux souterraines ont étéétablies en République Populaire de Chine. Une surexploitation très nette est à l'origine de problèmes environnementaux dans certaines villes. Des mesures ont été prises pour protéger la ressource en eau souterraine. Resumen El agua subterránea desempeña un papel importante en el suministro de agua para uso doméstico e industrial en la China septentrional. Se han explorado y puesto en marcha más de 1000 campos de explotación de aguas subterráneas, que proporcionan cerca de la mitad del total del suministro urbano. En la República Popular de China se han definido totalmente la legislación y la metodología para realizar estas explotaciones. La gran sobreexplotación en algunas ciudades ha creado algunos problemas medioambientales. Como consecuencia, se han llevado a cabo algunas medidas de protección de los recursos de aguas subterráneas.

  4. Hygienic assessment of long-term dynamics of the quality of water supplied to the population with centralized and decentralized water supply

    OpenAIRE

    ATAKHANOVA DILBAR

    2015-01-01

    On the basis of long-term dynamics of the quality of water supplied to the population with centralized and decentralized water supply of the Republic of Karakalpakstan, in assessing the levels of water pollution by chemical parameters as a risk factor for the population as a priority indicator index in terms of Karakalpakstan, can use the amount of total hardness of drinking water 7.0 or 10.0 mEq/l (depending on the presence or absence of structures for special treatment of tap water).

  5. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.

    Science.gov (United States)

    Qu, Xiaolei; Brame, Jonathon; Li, Qilin; Alvarez, Pedro J J

    2013-03-19

    Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems. The extraordinary properties of nanomaterials, such as high surface area, photosensitivity, catalytic and antimicrobial activity, electrochemical, optical, and magnetic properties, and tunable pore size and surface chemistry, provide useful features for many applications. These applications include sensors for water quality monitoring, specialty adsorbents, solar disinfection/decontamination, and high performance membranes. More importantly, the modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a

  6. Water residence times and nutrient budgets across an urbanizing gradient (Croton water supply area, NY)

    Science.gov (United States)

    Vitvar, T.; Burns, D. A.; Duncan, J. M.; Hassett, J. M.; Mitchell, M. J.

    2002-05-01

    Water residence times and nutrient budgets in 3 small watersheds in the Croton water supply area, NY, were examined. The watersheds (less than 1km 2) have different level of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on roads and slow flow through subsurface) and different watershed landscape characteristics (wet zones, hillslopes) . Measurements of the comprehensive chemical suite incl. components of nitrogen budget in the throughfall, stream water, soil water and groundwater in the saturated zone were performed bi-weekly over a period up to 2 years. Mean water residence times of the stream water were estimated using Oxygen-18 and Helium-3/Tritium isotopes. There are significant differences in the chemical composition and decrease of nitrification intensity and of mean streamwater residence time along the increasing watershed development. Within each watershed, longer water residence times (up to over 2 years) were estimated in the wetland zones without direct communication with streams in comparison to hillslope areas (up to over 1 year). The results can be used in watershed management and planning of the further urbanization of this water supply area.

  7. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  8. Isotopic metrics for structure, connectivity, and residence time in urban water supply systems

    Science.gov (United States)

    Bowen, Gabriel; Kennedy, Casey; Good, Stephen; Ehleringer, James

    2014-05-01

    Public water supply systems are the life-blood of urban areas, accessing, managing, and distributing water from an often complex array of sources to provide on-demand access to safe, potable water at the point-of-use. Water managers are faced with a wide range of potential threats, ranging from climate change to infrastructure failure to supply contamination. Information on the structure of supply and conveyance systems, connectivity within these systems, and links between the point-of-use and environmental water sources are thus critical to assessing the stability of water supplies and responding efficiently and effectively to water supply threats. We report datasets documenting stable hydrogen and oxygen isotope ratios of public supply water in cities of the United States across a range of scales. The data show a wide range of spatial and temporal variability that can be attributed to a combination of regional hydroclimate and water supply characteristics. Comparisons of public supply waters with model-based estimates of the isotopic composition of regional water sources suggests that major factors reflected in the tap water data include the degree of fragmentation of natural and man-made storage and conveyance systems, inter-basinal transfer of water, evaporative losses, and the total residence time of the natural and artificial systems being exploited. Because each of these factors contributes to determining the sustainability of water supply systems and their sensitivity to environmental disturbance, we propose a set of isotope-based metrics that can be used to efficiently assess and monitor the characteristics of public-supply systems in water security assessments and in support of management, planning, and outreach activities.

  9. Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Rygaard, Martin; Godskesen, B.; Jørgensen, C.;

    2014-01-01

    Increasing stress on water resources is driving urban water utilities to establish new concepts for water supply. This paper presents the consequences of proposed alternative water supply options using a unique combination of quantitative and qualitative methods from different research fields....... A former industrial harbor area in Copenhagen, Denmark, is currently under development and all infrastructure will be updated to accommodate 40,000 inhabitants and 40,000 jobs in the future. To reduce stress on water resources it has been proposed to establish a secondarywater supply in the area...... as an alternative to the conventional groundwater-based drinking water supply. Four alternative concepts for a secondarywater supply have been considered: 1) slightly polluted groundwater for use in toilets and laundry, 2) desalinated brackish water for use in toilets, laundry, and dishwashers, 3) desalinated...

  10. Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Rygaard, Martin; Godskesen, Berit; Jørgensen, C.;

    2013-01-01

    Nordhavn, a former industrial harbour area is under development into an integrated part of Copenhagen City. All infrastructures will be updated to accommodate 40,000 inhabitants and 40,000 jobs in the future. Our project assesses the potential for establishing a secondary water supply to relieve...... the pressure on the primary and conventional groundwater based drinking water supply. Four alternative water resources for a secondary water supply have been considered: 1) polluted groundwater for use in toilets and laundry, 2) desalinated brackish water for use in toilets, laundry, and dishwashers, 3...... assessment method for use in alternative water supplies and an evaluation of the four suggested concepts for alternative water supply in Copenhagen....

  11. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  12. Contribution of Water Saving to a Stable Power Supply in Vietnam

    OpenAIRE

    Takayuki Otani; Kanako Toyosada; Yasutoshi Shimizu

    2015-01-01

    In Vietnam, the rapid expansion of cities is exceeding the supply capacity for water and electricity, and restrictions on water supply and blackouts occur on a daily basis. In this study, the authors examined whether water-saving equipment could solve these problems. This paper focused on toilet bowls that consumed a large amount of water, and on showers for which heat consumption was high. In Vietnam, the main heat source for showers is the electric water heater, typically having a power con...

  13. DRINKING WATER SUPPLY MANAGEMENT THROUGH PUBLIC PARTICIPATION IN MUNICIPAL COUNCILS OF PUNE DISTRICT

    OpenAIRE

    Rode, Sanjay

    2014-01-01

    Drinking water demand is rising in Municipal Councils of Pune district. Population is continuously increasing because of industrialization, service sector growth and change in lifestyle. People demand safe drinking water for different purposes such as cooking, cleaning, washing cloth. There is need to provide safe, reliable and consistent drinking water in all municipal councils. Municipal councils must invest more money in storage and distribution of drinking water supply. Water supply conne...

  14. HORA - an Austrian platform for natural hazards

    Science.gov (United States)

    Hlatky, T.

    2009-04-01

    HORA - an Austrian platform for natural hazards as a new way in risk communication One initiatives launched in Austria demonstrate that public participation not only bears the risk of a partial transfer of responsibility by the authorities; it may above all prepare the ground for entirely new approaches and create new links. The recent installation of the first internet risk zoning system in Austria underscores the importance of involving private parties in natural disaster protection. This public-private partnership (PPP) between the Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW) and the Austrian Insurance Association (VVO) was launched in the wake of the 2002 flood disaster. The first project phase, the Austrian flood risk zoning system called HORA (screenshot see fig. 1), has now been accessible on the Web since 1st June 2006. In accordance with a risk partnership concluded between federal government, insurance companies and private parties, the project initiators seek to offer the public a preliminary risk assessment tool for evaluation of their home, industrial enterprise, of infrastructure. Digital risk maps shall provide information on 30-year, 100-year and 200-year flood events as they occur alongside the 26.000-km-long domestic river network. The probability with which a certain block of land is immersed in water during a flood event can be calculated by means of hydraulic engineering methods. These have traditionally relied on statistical figures, which are known to be very inaccurate, especially when major events such as flooding are concerned. The Vienna University of Technology (TU) (Institute of Hydraulic and Water Resources Engineering) has dedicated many years to developing more accurate, process oriented risk assessment techniques. The starting points was to identify different flood-triggering processes and to divide them into specific categories as long-duration rainfalls, short-duration rainfalls, storms

  15. Evaluation and optimization of secondary water supply system renovation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Due to pollution in second water supply system (SWSS), nine renovation alternative plans were proposed and comprehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appropriate plan for engineering projects. In addition, a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study, the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system, an optimal scheme was obtained, the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the comprehensive analysis. The analysis revealed that the optimal scheme, compared with two other randomly calculated ones, increased the percentage of service population by 19.6% and 13.6% respectively, which significantly improved social and economical benefits.

  16. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    Science.gov (United States)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  17. Automated Water Supply System and Water Theft Identification Using PLC and SCADA

    Directory of Open Access Journals (Sweden)

    Prof. Anubha Panchal,

    2014-04-01

    Full Text Available In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and control system for the real time installation, programmable logic controllers with basic functions communication systems, standard interfaces or dedicated ones with proximity sensors, electrical drive elements, measuring devices, etc. In this project it is proposed to develop the PLC & SCADA based water monitoring and theft prevention. Control System is further coupled to SCADA unit .This paper focuses particularly to a control system for controlling and monitoring within a Water Distribution System. Process automation system based upon utilization of an industrial PLC and PC systems including all the network components represents the best way to improve the water distribution technological process.

  18. National water summary 1987: Hydrologic events and water supply and use

    Science.gov (United States)

    Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.; Moody, David W.

    1990-01-01

    Water use in the United States, as measured by freshwater withdrawals in 1985, averaged 338,000 Mgal/d (million gallons per day), which is enough water to cover the 48 conterminous States to a depth of about 2.4 inches. Only 92,300 Mgal/d, or 27.3 percent of the water withdrawn, was consumptive use and thus lost to immediate further use; the remainder of the withdrawals (72.7 percent) was return flow available for reuse a number of times as the water flowed to the sea. The 1985 freshwater withdrawals were much less than the average 30 inches of precipitation that falls on the conterminous States each year; consumptive use accounted for only 7 percent of the estimated annual runoff of 1,230,000 Mgal/d. Nonetheless, as the State summaries on water supply and use clearly show, water is not always available when and where it is needed. Balancing water demands with available water supplies constitutes one of the major resource allocation issues that will face the United States in the coming decade. Of the 1985 freshwater withdrawals, 78.3 percent (265,000 Mgal/d) came from surface-water sources (streams and lakes), and 21.7 percent (73,300 Mgal/d) came from ground water. Surface water provided drinking water for about 47 percent of the Nation's total population. It was the source of 59.9 percent of the Nation's public-supply systems. For self-supplied withdrawals, surface water accounted for 1.6 percent of the domestic and commercial uses; 64.0 percent of the industrial and mining use; 99.4 percent of the thermoelectric generation withdrawals, mainly for cooling water; and 65.6 percent of the agricultural withdrawals. Eight States accounted for 43 percent of the surface-water use; California, Colorado, and Idaho used surface water primarily for irrigation, and Dlinois, Michigan, Ohio, Pennsylvania, and Texas used surface-water primarily for cooling condensers or reactors in thermoelectric plants. Ground water provided drinking water for 53 percent of the Nation's total

  19. Calculation method and operation optimization of water supply and distribution systems equipped with water wells

    Directory of Open Access Journals (Sweden)

    O.Y. Pobereznichenko

    2014-04-01

    Full Text Available In the paper, there has been proposed a method of hydraulic and feasibility studies for water systems equipped with water wells which allows determining the optimal set of system structures and the most efficient regimes of their joint performance during operation. Some of the most difficult for hydraulic and feasibility calculations are water supply and distribution systems (hereinafter - SPRV, which contain water wells with borehole pumps. When designing new systems, setting up newly built ones and reconstructing the existing systems, it is necessary to choose the optimal set of structures, their optimal sizes and the most efficient regime of their joint performance. Currently, such systems are the most common for the underground water intake, and the complexity of the optimization calculations of their interacting structures joint performance, is accounted for with the need to specify the characteristics of all wells, their mutual interdependence, and the changes of their characteristics during operation.

  20. An Assessment of Factors Having Impact on Water Quality in Water Supply Pipelines

    Directory of Open Access Journals (Sweden)

    Auksė Amosenkienė

    2011-04-01

    Full Text Available Water samples were collected from Vilnius drinking water distribution system fed by treated and different groundwater. Parameters related to bacterial growth have been measured considering these samples: temperature, concentration of free residual chlorine, ammonium, nitrates and nitrites. Results showed that treated groundwater was less susceptible to favour bacterial growth in the pipelines. The obtained results also showed that the potential growth induced by the distribution of treated water could be reduced if: ammonium levels were below 0.5 mg/l at the outlet of the water treatment plant; biological ammonium removal treatment implementation should reduce the levels of the nitrates and nitrites of the treated supplied water. Article in Lithuanian

  1. The Consumer in Austrian Economics and the Austrian Perspective on Consumer Policy

    NARCIS (Netherlands)

    Leen, A.R.

    1999-01-01

    In this thesis I examined the place of the competitive-entrepreneurial consumer in Austrian economic thought. For a neoclassical economist, competition among consumers is hard to find. For an Austrian economist, however, it is a necessity. The introduction puts forward the problem that although an A

  2. Comparison of nitrate levels in raw water and finished water from historical monitoring data on Iowa municipal drinking water supplies.

    Science.gov (United States)

    Weyer, Peter J; Smith, Brian J; Feng, Zhen-Fang; Kantamneni, Jiji R; Riley, David G

    2006-05-01

    Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils. Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds, many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism is the use of nitrate concentrations from retrospective drinking water data to assign exposure levels. Residential point-of-use nitrate data are scarce; gaps in historical data for municipal supply finished water hamper exposure classification efforts. We used generalized linear regression models to estimate and compare historical raw water and finished water nitrate levels (1960s-1990s) in single source Iowa municipal supplies to determine whether raw water monitoring data could supplement finished water data to improve exposure assessment. Comparison of raw water and finished water samples (same sampling date) showed a significant difference in nitrate levels in municipalities using rivers; municipalities using other surface water or alluvial groundwater had no difference in nitrate levels. A regional aggregation of alluvial groundwater municipalities was constructed based on results from a previous study showing regional differences in nitrate contamination of private wells; results from this analysis were mixed, dependent upon region and decade. These analyses demonstrate using historical raw water nitrate monitoring data to supplement finished water data for exposure assessment is appropriate for individual Iowa municipal supplies using alluvial groundwater, lakes or reservoirs. Using alluvial raw water data on a regional basis is dependent on region and decade.

  3. Water Residence Times and Runoff Sources Across an Urbanizing Gradient (Croton Water Supply Area, New York)

    Science.gov (United States)

    Vitvar, T.; Burns, D. A.; Duncan, J. M.; Hassett, J. M.; McDonnell, J. J.

    2002-12-01

    Water residence times and nutrient budgets were measured in 3 small watersheds in the Croton water supply area, NY. The watersheds (less than 1km 2) have different levels of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on impervious surfaces and slow flow through the subsurface) and different watershed landscape characteristics (wet zones, hillslopes). Throughfall, stream water, soil water and groundwater in the saturated zone were sampled bi-weekly during a period of up to 2 years and analyzed for major chemical constituents, oxygen-18 content, and nitrogen species. Mean residence times of the stream water of about 30 weeks were estimated using Oxygen-18 and Helium-3/Tritium isotopes for all 3 watersheds. There was no significant difference in mean residence times among the three study watersheds, despite their different levels of urbanization. However, residence times from a few weeks up to ca 2 years vary within the watersheds, depending on the local runoff sources and their geographical conditions (riparian and hillslope topography, aquifer type). The runoff sources were quantified for selected streamwater and groundwater sampling sites using the end member mixing analysis technique (EMMA). The mixing analysis shows the impact of the runoff sources on runoff generation in the selected watersheds, i.e. it shows how big is the impact of urbanization on the runoff generation and how big is the natural control. These results may be useful in watershed management and planning of further urbanization in the Croton water supply area.

  4. Allocation of Augmented Water Supply Under a Priority Water Rights System

    Science.gov (United States)

    Graham, L. P.; Labadie, J. W.; Hutchison, I. P. G.; Ferguson, K. A.

    1986-07-01

    A generalized network flow model has been developed to simulate the allocation of additional water supplies in a river basin with observance of the prior appropriation doctrine of water rights and other legal requirements such as interstate compact agreements. The computer model, called MODSIMR, is capable of simulating complex river basin morphology while incorporating a relational data base management system for efficiently accessing prioritized water rights. Program MODSIMR is a generalized model designed to be applicable to a wide variety of river basins operating under an appropriative water rights system. As a demonstration of its usage, MODSIMR was applied to the Rio Grande Basin of Colorado, New Mexico, and Texas for predicting allocation and use of increased runoff from simulated silvicultural activities on the Rio Grande National Forest. Results indicate that under the current institutional framework, increased runoff would primarily be allocated to agricultural users in Colorado. Computer results also showed the potential value to Colorado of the Closed Basin Project in the San Luis Valley and the possibility of determining optimal pumping schemes for the Project using MODSIMR. Program MODSIMR will be useful in future economic studies to determine the benefits of the augmented water supply under various water use scenarios.

  5. 43 CFR 404.51 - Are proposed projects under the Rural Water Supply Program reviewed by the Administration?

    Science.gov (United States)

    2010-10-01

    ... Water Supply Program reviewed by the Administration? 404.51 Section 404.51 Public Lands: Interior... SUPPLY PROGRAM Feasibility Studies § 404.51 Are proposed projects under the Rural Water Supply Program... the Reclamation's Rural Water Supply Program. This includes review under Executive Order 12322...

  6. On-plot drinking water supplies and health: A systematic review.

    Science.gov (United States)

    Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie

    2016-07-01

    Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water. PMID:27118130

  7. On-plot drinking water supplies and health: A systematic review.

    Science.gov (United States)

    Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie

    2016-07-01

    Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water.

  8. 75 FR 26709 - Clarke County Water Supply Project, Clarke County, IA

    Science.gov (United States)

    2010-05-12

    ... Natural Resources Conservation Service Clarke County Water Supply Project, Clarke County, IA AGENCY... Moines, IA 50309-2180, telephone: 515-284- 4769. SUPPLEMENTARY INFORMATION: A Notice of Intent (NOI) to... http://www.ia.nrcs.usda.gov . A map of the Clarke County Water Supply proposed study sites will also...

  9. Water Supply and Sanitation in Nigeria : Turning Finance into Services for 2015 and Beyond

    OpenAIRE

    World Bank

    2011-01-01

    This analysis aims to help Nigeria assess its own service delivery pathways for turning finance into water supply and sanitation services, in the subsectors of rural and urban water supply, rural and urban sanitation, and hygiene. This second Country Status Overview (CSO2) compares Nigeria's own estimates of coverage with data from the UNICEF/WHO Joint Monitoring Programme (JMP). The impac...

  10. Water Supply Intakes, water blowoff, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Supply Intakes dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'water...

  11. Water Supply Intakes, water vlv, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Supply Intakes dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'water...

  12. Drought Mitigation Ability Index and Application Based on Balance between Water Supply and Demand

    OpenAIRE

    Shaohua Liu; Denghua Yan; Jianhua Wang; Baisha Weng; Gang Wang; Meijian Yang

    2015-01-01

    Drought impacts not only nature, but also the socioeconomic system and results from the imbalance of water supply and demand. It is necessary to estimate the ability of drought mitigation on the basis of water allocation. In this research, the drought mitigation ability index (DMAI) was constructed by the ratio of theoretical water supply and demand obtained from the optimal water allocation. Then, the DMAI was applied to Daqinghe watershed for temporal-spatial validation compared with the ag...

  13. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia.

    Science.gov (United States)

    Jovanovic, Dragana; Jakovljević, Branko; Rašić-Milutinović, Zorica; Paunović, Katarina; Peković, Gordana; Knezević, Tanja

    2011-02-01

    Vojvodina, a northern region of Serbia, belongs to the Pannonian Basin, whose aquifers contain high concentrations of arsenic. This study represents arsenic levels in drinking water in ten municipalities in Serbia. Around 63% of all water samples exceeded Serbian and European standards for arsenic in drinking water. Large variations in arsenic were observed among supply systems. Arsenic concentrations in public water supply systems in Vojvodina were much higher than in other countries in the Pannonian Basin.

  14. The management of potable water supply : the case of Mkhwanazi Tribal Authority / Magwaza, D.W.

    OpenAIRE

    Magwaza, Duduzile Witness

    2011-01-01

    This mini–dissertation addresses the management of the potable water supply in the Mkhwanazi Tribal Authority's area of jurisdiction. The main objectives of the study were to determine the organisational structures and public policies governing the potable water supply in the uMhlathuze Local Municipality with a view to establishing the factors that hinder the provision of potable water to some parts of the Mkhwanazi Tribal Area and also determine how the present potable water situation is pe...

  15. Appraisal of Rural Water Supply: Case Study of Kwara State, North Central Nigeria

    OpenAIRE

    Peter Aderemi Adeoye; Adesiji Richard Adeolu; Hassana Mustapha Ibrahim

    2013-01-01

    Provision of clean domestic water for both rural and urban dwellers should be seen as a necessity by policy makers. However, this is not so for developing nations where rural dwellers are neglected whenever water supply schemes are been contemplated. This paper assessed rural water supply system in Kwara State, North Central Nigeria. Questionnaires were administered to respondents in the area under investigation for quantitative evaluation while samples were taken from their prevailing water...

  16. Assessment of sustainability in Austrian wine production

    Directory of Open Access Journals (Sweden)

    Rosner Franz Gerhard

    2015-01-01

    Full Text Available The aim of the project was to find out whether environmental sustainability can be measured not only with regard to climate change and carbon consumption but also as to other criteria concerning material consumption, energy, soil, biodiversity and water. We investigated which measures in the vineyard and wine cellar can lead to “better” sustainability while ensuring a high quality standard. 343 activities were identified to fulfill 61 quality objectives. Of the 2,191 sustainability assessments that were determined the measurements of the individual sustainability criteria vary and are in some cases even negatively correlated. Nevertheless, it was still possible to differentiate sustainably managed wineries from others in all of the Austrian wine producing areas. In our approach, a specifically developed online tool can calculate the expression of ecological, economic and social sustainability and show the effects in a spider diagram in the form of a traffic light rating system. Moreover, an algorithm suggests adequately which quality improvements can be achieved. If part of the management system is changed the online tool will show the positive and negative sustainability effects.

  17. Depletion of Water Resources, Issues and Challenges of Water Supply Management in Mazar-i-Sharif City, Afghanistan

    Directory of Open Access Journals (Sweden)

    Sabirullah Muradi

    2013-05-01

    Full Text Available This study was carried out with aim of providing valuable information for emerging water supply system management and better realize in water demand of Mazar-i-Sharif city. Most of the Mazar-i-Sharif city inhabitants lack an adequate, safe supply of water. Lack of water resources, management regulation, compounded by the recent year climate changes; In addition, lack of basic infrastructure, Moreover, extensively extent of urbanization, Issues and challenges in water management and increasing in population. The purpose of this study is to manage water resource for reasonable use of water supply system within the area. To this, large amount of data derived from 80 of water boreholes, like water level/Table, Type of geological materials, Hydraulic conductivity. In addition, hydrological data collected and analyzed. Due to reduction of aquifer recharge and precipitation 190 mm/year, progressing of population, increasing of water consumption; Thus, this study suggest, additional water resources for the area.

  18. Hydrogeological investigations of the locality "Mitev Most" for water supply to Kumanovo with ground water

    OpenAIRE

    Mircovski, Vojo; Dimov, Gorgi; Sijakova-Ivanova, Tena; Milanovski , Mome

    2015-01-01

    This paper shows the results from detailed hydrogeological investigations on locality Mitev Most for water supply to Kumanovo with ground water. In the first stage of investigations were conducted detailed hydrogeological and geophysical explorations and were made six exploration boreholes. In the second phase, in the alluvial Quaternary sediments and in the Paleozoic marbles were made three exploration – exploitation wells EB-MM–1 with depth of 42 m, EB-MM–2 with depth 33 m and EB-MM–3 with ...

  19. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  20. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  1. Occurrence of selected volatile organic compounds and soluble pesticides in Texas public water-supply source waters, 1999-2001

    Science.gov (United States)

    Mahler, Barbara June; Canova, Michael G.; Gary, Marcus O.

    2002-01-01

    During 1999?2001, the U.S. Geological Survey, in cooperation with the Texas Natural Resource Conservation Commission, collected samples of untreated water from 48 public water-supply reservoirs and 174 public water-supply wells. The samples were analyzed for volatile organic compounds (VOCs) and soluble pesticides; in addition, well samples were analyzed for nitrite plus nitrate and tritium. This fact sheet summarizes the findings of the source-water sampling and analyses. Both VOCs and pesticides were detected much more frequently in surface water than in ground water. The only constituent detected at concentrations exceeding the maximum contaminant level for drinking water was nitrate. These results will be used in the Texas Source-Water Assessment Program to evaluate the susceptibility of public water-supply source waters to contamination.

  2. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    Science.gov (United States)

    Chang, Heejun; Jung, Il-Won; Strecker, Angela; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; Moradkhani; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  3. Water supply in the long term: a risk assessment

    NARCIS (Netherlands)

    Hoekstra, A.Y.

    2000-01-01

    Integrated water assessment studies are often confined to a study of physical aspects, considering the relation between surface and groundwater, water quantity and water quality, and between water, land and climate. The interaction between changes in the water system and socio-economic development i

  4. Economic concepts to address future water supply-demand imbalances in Iran, Morocco and Saudi Arabia

    NARCIS (Netherlands)

    Hellegers, P.; Immerzeel, W.W.; Droogers, P.

    2013-01-01

    In Middle East and North Africa (MENA) countries, renewable groundwater and surface water supply are limited while demand for water is growing rapidly. Climate change is expected to increase water demand even further. The main aim of this paper is to evaluate the water supply–demand imbalances in Ir

  5. Hydrogeological interpretation of natural radionuclide contents in Austrian groundwaters

    Science.gov (United States)

    Schubert, Gerhard; Berka, Rudolf; Hörhan, Thomas; Katzlberger, Christian; Landstetter, Claudia; Philippitsch, Rudolf

    2010-05-01

    The Austrian Agency for Health and Food Safety (AGES) stores comprehensive data sets of radionuclide contents in Austrian groundwater. There are several analyses concerning Rn-222, Ra-226, gross alpha and gross beta as well as selected analyses of Ra-228, Pb-210, Po-210, Uranium and U-234/U-238. In a current project financed by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, AGES and the Geological Survey of Austria (GBA) are evaluating these data sets with regard to the geological backgrounds. Several similar studies based on groundwater monitoring have been made in the USA (for instance by Focazio, M.J., Szabo, Z., Kraemer, T.F., Mullin, A.H., Barringer, T.H., De Paul, V.T. (2001): Occurrence of selected radionuclides in groundwater used for drinking water in the United States: a reconnaissance survey, 1998. U.S. Geological Survey Water-Resources Investigations Report 00-4273). The geological background for the radionuclide contents of groundwater will be derived from geological maps in combination with existing Thorium and Uranium analyses of the country rocks and stream-sediments and from airborne radiometric maps. Airborne radiometric data could contribute to identify potential radionuclide hot spot areas as only airborne radiometric mapping could provide countrywide Thorium and Uranium data coverage in high resolution. The project will also focus on the habit of the sampled wells and springs and the hydrological situation during the sampling as these factors can have an important influence on the Radon content of the sampled groundwater (Schubert, G., Alletsgruber, I., Finger, F., Gasser, V., Hobiger, G. and Lettner, H. (2010): Radon im Grundwasser des Mühlviertels (Oberösterreich) Grundwasser. - Springer (in print). Based on the project results an overview map (1:500,000) concerning the radionuclide potential should be produced. The first version should be available in February 2011.

  6. The Free Rider Problem in Community-Based Rural Water Supply: A Game Theoretic Analysis

    OpenAIRE

    Matthew Breier; Martine Visser

    2006-01-01

    Community-based water supply projects in rural South Africa have frequently proved unsustainable, with many communities unable to raise sufficient funds to meet operation and maintenance costs. A key obstacle to cost recovery (and the focus of this paper) is the free rider problem. As rural water services are frequently supplied as a public good, the link between paying for water and receiving it is not as straightforward as it is for private goods, and beneficiaries may have a material incen...

  7. A review of Ancient Roman water supply exploring techniques of pressure reduction.

    OpenAIRE

    Monteleone, M. C.; Yeung, Hoi; Smith, Richard

    2007-01-01

    The Ancient Roman water supply systems still leave us astonished when admiring the solidity of the ruins of aqueducts surviving around Europe. Some parts of these systems are still in use at present and prove the practical efficiency of Roman hydraulics in the principles acquired from the populations living in the different regions of the Empire. In Pompeii the urban water supply system stands as a clear example of the Roman planning of urban complex networks by using small water towers to se...

  8. Optimum Operation Management of the İstanbul Water Supply System

    OpenAIRE

    DURANYILDIZ, İsmail; BAYAZIT, Mehmetçik

    2000-01-01

    Water for cities containing millions of citizens is at present being supplied mostly from surface resources. These resources are generally in different river basins, far from the city center, and are developed by means of multireservoirs planned for the single purpose of water supply. They must be investigated with the system concept both in planning and operation phases in order to provide an integrated management. This study emphasizes the operation problem of the multireservoir water suppl...

  9. Piped-Water Supplies in Rural Areas of the Mekong Delta, Vietnam: Water Quality and Household Perceptions

    Directory of Open Access Journals (Sweden)

    Gert-Jan Wilbers

    2014-07-01

    Full Text Available In the Mekong Delta (MD in Vietnam, piped-water supply stations are being intensively built to reach the millennium development goal (MDG to provide safe and clean drinking water resources to communities. However, studies focusing on the effectiveness of supply stations in reaching these goals are scarce to date. Water samples from 41 water supply stations in the MD were collected between June and October 2012. Water samples were analyzed for general parameters, salinity, nutrients, metal(loids and microbial indicator bacteria and compared with World Health Organization (WHO and Vietnamese drinking water guidelines. In addition, 542 household interviews were conducted to investigate the connection rate to piped-water and people’s perceptions regarding piped-water supplies. The results show that water guidelines were exceeded for pH (min. 6.2, turbidity (max. 10 FTU, Cl (max. 1,576 mg·L−1, NH4 (max. 7.92 mg·L−1, Fe (431.1 µg·L−1, Hg (11.9 µg·L−1, and microbial indicator bacteria (max. total coliform 50,000 CFU 100 mL−1. Moreover, more than half of the interviewed households with access to a piped-water supply did not use this supply as a source of drinking water due to (i high connection fees; (ii preference for other water sources; and (iii perceived poor quality/quantity. Our study shows that the maintenance and distribution of water supply stations should significantly improve in order for piped-water to become a reliable drinking water source. Additionally, alternatives, such as rainwater harvesting and decentralized treatment facilities, should also be considered.

  10. Drinking Water Supply Management through Innovative Methods and Finance in Municipal Councils of Mumbai Metropolitan Region

    Directory of Open Access Journals (Sweden)

    Sanjay RODE

    2014-06-01

    Full Text Available Drinking water is a basic need of human being. Adequate, continuous and safe quantity of drinking water supply reduces the burden of diseases and improve standard of living of people. The water demand is continuously increasing with urbanization in Mumbai Metropolitan Region. The supply of drinking water is inadequate due to more demand by different units. The demand of drinking water is higher by population, commercial units, health care, educational institutions and industry. The deficit in supply of drinking water supply is observed in all the municipal councils of Mumbai Metropolitan Region. The Tobit regression shows that the water demand is positively co-related to the population, malls and theaters in all councils. Therefore the policies of public private partnership will bring good result in water supply infrastructure. The municipal councils should be allowed to issue municipal bonds to raise long term capital. The water use laws and awareness among people about scarcity of water will reduce water waste and improve its effective use. Government and municipal councils should look long term solution to reduce water scarcity in metropolitan region.

  11. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change

    Science.gov (United States)

    Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha

    2016-09-01

    A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.

  12. Constraining uncertainties in water supply reliability in a tropical data scarce basin

    Science.gov (United States)

    Kaune, Alexander; Werner, Micha; Rodriguez, Erasmo; de Fraiture, Charlotte

    2015-04-01

    Assessing the water supply reliability in river basins is essential for adequate planning and development of irrigated agriculture and urban water systems. In many cases hydrological models are applied to determine the surface water availability in river basins. However, surface water availability and variability is often not appropriately quantified due to epistemic uncertainties, leading to water supply insecurity. The objective of this research is to determine the water supply reliability in order to support planning and development of irrigated agriculture in a tropical, data scarce environment. The approach proposed uses a simple hydrological model, but explicitly includes model parameter uncertainty. A transboundary river basin in the tropical region of Colombia and Venezuela with an approximately area of 2100 km² was selected as a case study. The Budyko hydrological framework was extended to consider climatological input variability and model parameter uncertainty, and through this the surface water reliability to satisfy the irrigation and urban demand was estimated. This provides a spatial estimate of the water supply reliability across the basin. For the middle basin the reliability was found to be less than 30% for most of the months when the water is extracted from an upstream source. Conversely, the monthly water supply reliability was high (r>98%) in the lower basin irrigation areas when water was withdrawn from a source located further downstream. Including model parameter uncertainty provides a complete estimate of the water supply reliability, but that estimate is influenced by the uncertainty in the model. Reducing the uncertainty in the model through improved data and perhaps improved model structure will improve the estimate of the water supply reliability allowing better planning of irrigated agriculture and dependable water allocation decisions.

  13. Residents’ perceptions of institutional performance in water supply in Dar es Salaam

    Science.gov (United States)

    Mwakalila, Shadrack

    This paper addresses the performance of institutions in water supply systems for improving social and economic benefits of people living in Dar es Salaam city. The methods employed in field data and information collection included interviews, questionnaire, focus group discussions and participatory observation. Kinondoni and Ilala Districts were used as case study. The study revealed that, the main water sources in the study areas are boreholes, shallow wells, rain water and water vendors. Other minor sources are piped water and natural water sources, such as rivers and streams. The supply of piped water by Dar es Salaam Water Sewerage and Sanitation Company (DAWASA/DAWASCO) meets only 45% of the total water demands. Individuals own and sell water from boreholes, shallow wells, piped water connected to their individual houses and natural wells located in their individual plots. The price of one 20 l bucket of water from a water vendor depends on the availability of water and the distance walked from the water source to the customer. Majority of the respondents (77.5%) indicated that individual water delivery systems provide sufficient water as compared to five years ago in the study areas. Few of the respondents (6.3%) said individual water delivery systems have no capacity to provide sufficient water while 16.3% indicate that individual water delivery systems provide moderate water supply but are important in supplementing other water providers in the study areas. The study reveals that a majority of the local population are satisfied with the capacity of individual water delivery systems in providing water for household uses. This paper recommends some improvements to be done to water supply systems in the Dar es Salaam city.

  14. Treatment of liquid wastes at the Austrian Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    After a review of the different categories, ammounts, types and sources of liquid wastes, arising at the Austrian Research Centre Seibersdorf, the collection and distribution of these wastes are described. The treatment of these effluents in the categories Cooling Water, Faeces, Inactive Line, Active Line and Alpha Line is shown in several examples. Special attention is given on the treatment of wastes containing organic liquids. A review of the release rates shows the efficiency of the treatment system. A short view on future installations closes the paper. (author)

  15. Protecting the Quality of Public Water-Supply Sources : A Guide for Water Utilities, Municipal Authorities, and Environmental Agencies

    OpenAIRE

    Foster, Stephen; Hirata, Richardo; Gomes, Daniel; D'Elia, Monica; PARIS Marta

    2009-01-01

    Water-supply quality is too often taken for granted. Because we can see rivers and streams, they command most attention when talk turns to water quality but subsurface aquifers are every bit as important as a source of public water-supply and are also under threat of pollution. Acting now to protect them makes sound economic sense, because it is always cheaper to maintain the quality of gr...

  16. Economic concepts to address future water supply-demand imbalances in Iran, Morocco and Saudi Arabia

    Science.gov (United States)

    Hellegers, Petra; Immerzeel, Walter; Droogers, Peter

    2013-10-01

    In Middle East and North Africa (MENA) countries, renewable groundwater and surface water supply are limited while demand for water is growing rapidly. Climate change is expected to increase water demand even further. The main aim of this paper is to evaluate the water supply-demand imbalances in Iran, Morocco and Saudi Arabia in 2040-2050 under dry, average and wet climate change projections and to show on the basis of the marginal cost and marginal value of water the optimum mix of supply-side and demand-side adjustments to address the imbalance. A hydrological model has been used to estimate the water supply-demand imbalance. Water supply and demand curves have been used to explore for which (marginal value of) water usage the marginal cost of supply-enhancement becomes too expensive. The results indicate that in the future in all cases, except in Iran under the wet climate projection, the quantity of water demanded has to be reduced considerably to address the imbalance, which is indeed what is currently happening already.

  17. Microbial contamination of groundwater at small community water supplies in Finland.

    Science.gov (United States)

    Pitkänen, Tarja; Karinen, Päivi; Miettinen, Ilkka T; Lettojärvi, Heidi; Heikkilä, Annika; Maunula, Reetta; Aula, Vesa; Kuronen, Henry; Vepsäläinen, Asko; Nousiainen, Liina-Lotta; Pelkonen, Sinikka; Heinonen-Tanski, Helvi

    2011-06-01

    The raw water quality and associations between the factors considered as threats to water safety were studied in 20 groundwater supplies in central Finland in 2002-2004. Faecal contaminations indicated by the appearance of Escherichia coli or intestinal enterococci were present in five small community water supplies, all these managed by local water cooperatives. Elevated concentrations of nutrients in raw water were linked with the presence of faecal bacteria. The presence of on-site technical hazards to water safety, such as inadequate well construction and maintenance enabling surface water to enter into the well and the insufficient depth of protective soil layers above the groundwater table, showed the vulnerability of the quality of groundwater used for drinking purposes. To minimize the risk of waterborne illnesses, the vulnerable water supplies need to be identified and appropriate prevention measures such as disinfection should be applied. PMID:21809781

  18. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris

    2006-06-01

    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  19. A Data Mining Approach to Modelling of Water Supply Assets

    DEFF Research Database (Denmark)

    Babovic, V.; Drecourt, J.; Keijzer, M.;

    2002-01-01

    supply assets are mainly situated underground, and therefore not visible and under the influence of various highly unpredictable forces. This paper proposes the use of advanced data mining methods in order to determine the risks of pipe bursts. For example, analysis of the database of already occurred...

  20. Feedback control of water supply in an NFT growing system

    NARCIS (Netherlands)

    Gieling, Th.H.; Janssen, H.J.J.; Vries, de H.C.; Loef, P.

    2001-01-01

    The paper explores a concept of irrigation control, where the supply of nutrient solution is controlled without the use of predictive uptake models but rather by the use of a direct feedback of a drain flow measurement. This concept proves to be a viable approach. Results are presented, showing the

  1. Analysis and Depiction of Accessibility Levels of Water Supply Schemes in Rural Akwa Ibom State, Nigeria

    OpenAIRE

    Uwem Ituen; Jacob Atser; Samuel N Edem

    2016-01-01

    This study analyzed and depicted accessibility levels of water schemes in rural areas of Akwa Ibom State, Nigeria. Data on rural water schemes, population data as well as a community map of the study area were utilized. GIS technique was employed in creating a database of water schemes and the spatial distribution of the water schemes displayed on the map of the study area. Based on the criteria stipulated in the National Water Supply and Sanitation Policy for Nigeria, percentage rural water ...

  2. President Hans Ager of Austrian Federal Council Visits China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>An Austrian goodwill delegation led by Hans . Ager, president of the Austrian Federal Coun-cil and board member of the Austrian Association for Promotion of Friendship and Cultural Relations with China (AAPFCRC), paid a friendly visit to China in November, 2003 at the invitation of the CPAFFC. On the delegation were Dietmar Bachmann, president of the Industrial Federation of

  3. Austrian Philosophy. The Legacy of Franz Brentano

    OpenAIRE

    Smith, Barry

    1994-01-01

    This book is a survey of the most important developments in Austrian philosophy in its classical period from the 1870s to the Anschluss in 1938. But I hope that the volume will be seen also as a contribution to philosophy in its own right as an attempt to philosophize in the spirit of those, above all Roderick Chisholm, Rudolf Haller, Kevin Mulligan and Peter Simons, who have done so much to demonstrate the continued fertility of the ideas and methods of the Austrian philosophers in our own d...

  4. The Continuing Relevance of Austrian Capital Theory

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul

    2012-01-01

    The article presents a speech by Professor Nicolai J. Foss of Copenhagen Business School, delivered at the Austrian Scholars Conference held on March 8, 2012 in Auburn, Alabama, in which he discussed the knowledge essays by economist Friedrich A. von Hayek, the concept of capital theory and the w......The article presents a speech by Professor Nicolai J. Foss of Copenhagen Business School, delivered at the Austrian Scholars Conference held on March 8, 2012 in Auburn, Alabama, in which he discussed the knowledge essays by economist Friedrich A. von Hayek, the concept of capital theory...... and the works of Hayek on political philosophy and cultural evolution....

  5. Optimal operation of water supply systems with tanks based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Ting-chao; ZHANG Tu-qiao; LI Xun

    2005-01-01

    In view of the poor water supply system's network properties, the system's complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm;a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.

  6. Large-Scale Water Resources Management within the Framework of GLOWA-Danube - Part B: The Water Supply Model

    Science.gov (United States)

    Nickel, D.; Barthel, R.; Schmid, C.; Braun, J.

    2003-04-01

    The research project GLOWA-Danube, financed by the German Federal Government, investigates long-term changes in the water cycle of the Upper Danube river basin in light of global climatic change. Its concrete aim is to build a fully integrated decision support tool that combines the competence of eleven different institutes in domains covering all major aspects governing the water cycle - from the formation of clouds to groundwater flow patterns to the behaviour of the water consumer. The research group "Water Supply" at the Institute of Hydraulic Engineering (IWS), Universitaet Stuttgart, has the central task of creating an agent-based model of the water supply sector. The Water Supply model will act as a link between the various physical models determining water quality and availability on the one hand and the actors models determining water demand on the other, which together form the tool DANUBIA. Ultimately, with the help of scenario testing, the water supply model will indicate the ability of the water supply system in the Upper Danube catchment to adapt to changing boundary conditions using different management approaches. The specific aim of the Water Supply model is the creation of a model which is not only able to simulate the present day system of water extraction, treatment and distribution but also its development and change with time. As most changes to the system are brought about by decisions made by relevant actors in the field of water management or their behaviour (in response to political and economic boundary conditions, changes in water demand or water quality, advances in technology etc.), the use of agent-based modelling was chosen, whereby an agent is seen as a computer system (in our case representing a human or group of humans) which is aware of its environment, has defined objectives and is able to act independently in order to meet these objectives. Whereas agent-based modelling has received much attention over the past decades, the use

  7. Water and nitrogen use efficiency under limited water supply for maize to increase land productivity

    International Nuclear Information System (INIS)

    As drought is the main environmental factor limiting productivity, the study of plant response to water deficit has been one of the major research topics. The increasing of maize evapotranspiration ET does not always mean the increase of efficiency because, the brightest ET value does not always mean the highest grain yield value, AS the result of the mechanisms relating to the grain yield and ET which are far from simple. The rain amount and distribution during the reproductive stage is the main meteorological factor in flouncing yield. In our study 1991, the high soil moisture content determines a reduction of maize grain yield, in the wet years due to excess of water under irrigation conditions which normally limits root development as a result of insufficient oxygen for transpiration and lac ha of nitrate formation, the yield response to water deficit of different hybrids is of major importance in production planing. The available water supply would be directed towards fully meeting requirements of the hybrids with the higher K sub y over the restricted area and for the hybrids with a lower K sub y, the overall production will increase by extending the area under irrigation, without fully meeting water requirement provided water deficit do not exceed critical values.1 tab; 9 figs (Author)

  8. Environmental radioactivity and drinking water supply. Pt. 4

    International Nuclear Information System (INIS)

    The enrichment of radioactivity in the sediments reflects the radioactive pollution of the surface waters. As a result of the good retention capacity of the subsoil and the slow water transport in the unsaturated zone the groundwater was protected against the fallout as expected; even in karst areas only very low concentrations of artificial radioactivity were found in the groundwater. In drinking water no artificial radioactivity was detected in most samples. Only in very few cases the radioactivity of drinking water from surface waters exceeded just the detection limits. The investigations confirmed the previous findings, that the exposition path over drinking water may be neglected compared with other exposition routes. (orig./HP)

  9. Use of isotopic tools to delimit areas of harnessing for drinking water supply - Final report

    International Nuclear Information System (INIS)

    Within the frame of an action of the ONEMA-BRGM convention (Methodological approaches and tools for the protection of drinking water harnessing against diffuse pollutions), this study aims at developing a synthesis of isotopic geochemical tools to obtain the information required for the delimitation of harnessing supply areas. The report first describes the conventional tools: water molecule steady isotopes, radioactive isotopes, water dating tools, tools developed for another use, and artificial tracers. It presents the possible uses of natural and artificial tracers to determine parameters like flow directions, water residence duration, exchanges between aquifers and water sheet-river interactions. It gives an overview of knowledge on the use of isotopic methods to determine the origin of contaminants. It proposes a brief overview of a previous study of water sheets-rivers relationships. It finally discusses the use of geochemical and isotopic tools when delimiting supply areas for harnessing aimed at drinking water supply

  10. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  11. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    Science.gov (United States)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  12. Estimated Demand and Supply for Irrigation Water in Southern NSW

    OpenAIRE

    Jones, Randall; Fagan, Margot

    1996-01-01

    1n February 1994 the Council of Australian Governments (COAG) agreed to a number of significant reforms of the water industry. One of the most important was to "implement comprehensive systems of water allocations or entitlements backed by separation of water property rights from the land title and clear specification of entitlements in terms of ownership, volume, reliability. transferability and, if appropriate, quality. In relation to trading in water allocations or entitlements COAG also n...

  13. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  14. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Science.gov (United States)

    2010-10-01

    ... the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.58 Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply...

  15. Iron isotopes in bottom waters from the Bransfield Strait: Implications for deep water Fe supply

    Science.gov (United States)

    Stichel, Torben; Homoky, William; Connelly, Douglas; Klar, Jessica; Mills, Rachel

    2015-04-01

    Iron (Fe) is an important micro-nutrient in the global ocean. However, its low bioavailability due to poor solubility in oxygenated waters, leads to a strongly limiting character of this trace metal as a nutrient. The major sources of Fe to seawater are largely known (i.e. aeolian dust deposition, riverine and groundwater input, seawater-sediment interaction, and hydrothermal vents) but the relative significance of these sources to the marine Fe supply are not yet well quantified. Areas with low atmospheric inputs, such as the Southern Ocean, are severely Fe limited in surface waters. Here, strong upwelling and a deeply penetrating surface mixed layer fuel one of the largest biogeochemical cycles of trace metals in the global ocean. One significant pathway to bottom waters is the benthic flux of trace metals from hydrothermal systems, where Fe can be stabilised in the water column by different dissolved species. For example, benthic fauna, such as tube-worms, may enhance transportation of dissolved trace metals from pore waters through oxic surface layers of sediments into the deep ocean. Concentrations of total dissolvable Fe (DFe) in these bottom waters have been reported to be significantly higher than surrounding seawater (Aquilina et al., 2014). Here we present DFe isotope composition of bottom water from the Hook Ridge, a shallow (~1100m) sediment covered volcanic feature within a rifted margin. On the basis of Fe isotopes we will determine whether Fe is released by non-reductive dissolution from poorly oxygenated sediments via the presence of tubeworms Sclerolinum spec. This will help to evaluate whether benthic fluxes from hydrothermal fields can be a major source of bioavailable Fe to the deep Southern Ocean. References: Aquilina, A., Homoky, W.B., Hawkes, J. A., Lyons, T.W., Mills, R. a., 2014. Hydrothermal sediments are a source of water column Fe and Mn in the Bransfield Strait, Antarctica. Geochim. Cosmochim. Acta 137, 64-80. doi:10.1016/j.gca.2014.04.003

  16. The sustainability of urban water supply in low income countries: a livelihoods model

    NARCIS (Netherlands)

    Hadipuro, W.; Wiering, M.A.; Naerssen, A.L. van

    2013-01-01

    Urban water supply can be managed by public institutions, private companies, communities, or by combinations thereof. Controversy continues over which system can most effectively improve livelihoods. Responding to this discussion, an extended model of sustainable livelihoods analysis is proposed tha

  17. Water Supply Intakes, Published in 2006, 1:1200 (1in=100ft) scale, Farmer.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Supply Intakes dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2006. Data by this...

  18. Estimated Public Supply Water Use of the Southwest Principal Aquifers (SWPA) study in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a 100-meter cell resolution raster of estimated use of public supply water for the southwestern United States. The dataset was generated from...

  19. Anatomic adaptation of seedlings of woody plants to various levels of soil water supply

    OpenAIRE

    I. P. Grigoryuk; V. I. Tkachov; P. P. Yavorivskyi

    2005-01-01

    Tree seedlings anatomical parameters adaptation to different soil water supply levels were studied. Differences in stomata number and shape and fiber length for leaf-bearing species and central cylinder area for coniferous species have been determined.

  20. Washoe County : Regional water supply and quality study : Phase II final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The major goal of this study was to help structure a solution to the fragmented responsibilities for conservation, resource management, water supply, wastewater,...

  1. Back-Propagation Artificial Neural Networks for Water Supply Pipeline Model

    Institute of Scientific and Technical Information of China (English)

    朱东海; 张土乔; 毛根海

    2002-01-01

    Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results.

  2. Drought and Water Supply. Implications of the Massachusetts Experience for Municipal Planning.

    Science.gov (United States)

    Russell, Clifford S.; And Others

    This book uses the 1962-66 Massachusetts drought data as a base of information to build a planning model of water resources that is of interest to students and professionals involved with water management. Using a demand-supply ratio to measure the relative inadequacy of a given water system, the authors then project demand into the drought period…

  3. Geography in the Social Studies: High School Simulation on Water Supply

    Science.gov (United States)

    Dunn, James M.

    2009-01-01

    This is a ready-to-use simulation that has high school students portraying all of the key players that decide how water from the Colorado River will be allocated. Students act as judges, lobbyists, news analysts, and even protesters during a mock water conference. Water supply is promised beyond nature's delivery, so the problem is real and will…

  4. 43 CFR 404.12 - Can Reclamation provide assistance with the construction of a rural water supply project under...

    Science.gov (United States)

    2010-10-01

    ... the construction of a rural water supply project under this program? 404.12 Section 404.12 Public... RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.12 Can Reclamation provide assistance with the construction of a rural water supply project under this program? Reclamation may provide assistance with...

  5. 43 CFR 404.56 - If a financial assistance agreement is entered into for a rural water supply project that...

    Science.gov (United States)

    2010-10-01

    ... entered into for a rural water supply project that benefits more than one Indian tribe, is the approval of... Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.56 If a financial assistance agreement is entered into for a rural water supply project...

  6. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-13

    ... Energy Regulatory Commission Project No. 14142-000 East Maui Pumped Storage Water Supply LCC; Notice of... Competing Applications On April 1, 2011, East Maui Pumped Storage Water Supply LCC filed an application for... the feasibility of the East Maui Pumped Storage Water Supply Project to be located on the Miliko...

  7. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-27

    ... Energy Regulatory Commission West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit... April 1, 2011, West Maui Pumped Storage Water Supply, LLC, filed an application for a preliminary permit... supply project effluent water to an existing irrigation system; (5) a powerhouse with two...

  8. Transfer of adapted water supply technologies through a demonstration and teaching facility [in press

    OpenAIRE

    Nestmann, Franz; Oberle, Peter; Ikhwan, Muhammad; Stoffel, Daniel; Blaß, Hans Joachim; Töws, Dietrich; Schmidt, Steffen

    2016-01-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as ‘economic water scarcity’ which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapid...

  9. Austrian Airlines:Safety is our Business!

    Institute of Scientific and Technical Information of China (English)

    Guo Yan

    2006-01-01

    @@ Mighty Capacity Managed "Although Austrian Airlines is a middle-sized company, it has a mighty capacity of over 10 million customers every year. Because it has an extensive European service network." G(o)tz stressed to China's Foreign Trade.

  10. Opportunities for renewable energy technologies in water supply in developing country villages

    Energy Technology Data Exchange (ETDEWEB)

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P. [Water for People, Denver, CO (United States)

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  11. Economic feasibility, cost and issues related to acquiring water right options to secure drought water supplies for Lahontan Valley Wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The focus of this study, prepared for The Nature Conservancy, is on the economic feasibility and issues related to implementing water supply option contracts to...

  12. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  13. Spatial Patterns of Residential Water Supply Accessibility Levels in Anambra State, Nigeria

    Directory of Open Access Journals (Sweden)

    Ezenwaji, E. E.

    2014-01-01

    Full Text Available The aim of this study was to determine the extent of regional imbalances in residential water supply in Anambra State. To achieve this aim, primary data were collected between June and July 2012 from interviews on respondents and field observation, while secondary data were obtained from published materials from the State Ministry of Public Utilities, Water Resources and Community Development. Data generated were analysed to produce clusters using Cluster Analytical Technique which was calculated with the aid of MINITAB version 16 statistical package. Result shows that residential water supply accessibility pattern in Anambra State is structured into 4 zones (clusters. From the findings it was suggested that to improve the residential water supply access in various parts of the State, urgent water resources planning is needed to address the water poverty areas identified in the study.

  14. Water safety plans. Hazard study and risk assessment of a water supply system in Bizkaia. Application to the water catchment stage

    Directory of Open Access Journals (Sweden)

    María José Astillero Pinilla

    2012-12-01

    Full Text Available The best way to guarantee a safe and high quality water supply is to establish a control and management plan for the water supply system that focuses on risk prevention. In this study, the methodology and analytical steps established in the Water Safety Plan Manual (WHO and the Guide to the Control and Management of Water Supply Systems (Autonomous Government of the Basque Country were used to carry out hazard and risk assessment in a water supply system in Bizkaia. Although the application has only been carried out in the water catchment stage, it has already provided information about the benefits, as well as the problems encountered. Therefore, from the results obtained, it can be seen that this methodology is clearly effective for determining risks that had passed unnoticed, and for establishing new control measures. It also demonstrates the importance of co-operation between the bodies not directly related to the operation of the water supply system.

  15. Influence of radioactive fallout on water supply and sewerage in Finland; Radioaktiivisen laskeuman vaikutukset vesihuoltoon

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Saxen, R.; Puhakainen, M. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Hatva, T.; Ahosilta, P.; Tenhunen, J. [National Board of Waters and the Environment, Helsinki (Finland)

    1995-09-01

    The report reviews the practices and organization of water supply and sewerage in Finland and is related to their response to radioactive fallout situations. The contribution of drinking water to the internal radiation dose caused by radioactive fallout has earlier been small in Finland. However, in a wide-scale fallout situation, the decreasing of collective dose received from water may be justified, if the dose can be reduced at a reasonable cost, for instance by a temporary change of the raw water source. Efficient exchange of information between radiation protection and water supply experts is important for successful dose reduction measures. In Finland waterworks deliver tap water to 4.2 million people. Half of the water is ground water, and generally very well protected against fallout radioactivity. The other half is treated surface water. (6 figs., 5 tabs.).

  16. Influence of radioactive fallout on water supply and sewerage in Finland

    International Nuclear Information System (INIS)

    The report reviews the practices and organization of water supply and sewerage in Finland and is related to their response to radioactive fallout situations. The contribution of drinking water to the internal radiation dose caused by radioactive fallout has earlier been small in Finland. However, in a wide-scale fallout situation, the decreasing of collective dose received from water may be justified, if the dose can be reduced at a reasonable cost, for instance by a temporary change of the raw water source. Efficient exchange of information between radiation protection and water supply experts is important for successful dose reduction measures. In Finland waterworks deliver tap water to 4.2 million people. Half of the water is ground water, and generally very well protected against fallout radioactivity. The other half is treated surface water. (6 figs., 5 tabs.)

  17. Energy efficiency of elevated water supply tanks for high-rise buildings

    International Nuclear Information System (INIS)

    Highlights: ► We evaluate energy efficiency for water supply tank location in buildings. ► Water supply tank arrangement in a building affects pumping energy use. ► We propose a mathematical model for optimal design solutions. ► We test the model with measurements in 22 Hong Kong buildings. ► A potential annual energy saving for Hong Kong is up to 410 TJ. -- Abstract: High-rise housing, a trend in densely populated cities around the world, increases the energy use for water supply and corresponding greenhouse gas emissions. This paper presents an energy efficiency evaluation measure for water supply system designs and a mathematical model for optimizing pumping energy through the arrangement of water tanks in a building. To demonstrate that the model is useful for establishing optimal design solutions that integrate energy consumption into urban water planning processes which cater to various building demands and usage patterns, measurement data of 22 high-rise residential buildings in Hong Kong are employed. The results show the energy efficiency of many existing high-rise water supply systems is about 0.25 and can be improved to 0.26–0.37 via water storage tank relocations. The corresponding annual electricity that can be saved is 160–410 TJ, a 0.1–0.3% of the total annual electricity consumption in Hong Kong.

  18. Computer simulation for risk management: Hydrogen refueling stations and water supply of a large region

    DEFF Research Database (Denmark)

    Markert, Frank; Kozine, Igor

    2012-01-01

    in applying DES models to the analysis of large infrastructures for refueling stations and water supply. Two case studies are described which are concerned with the inherently safer supply and storage of hydrogen at refueling stations and an established drinking water supply system of a large metropolitan...... by the conventional reliability analysis models and systems analysis methods. An improvement and alternative to the conventional approach is seen in using Discrete Event Simulation (DES) models that can better account for the dynamic dimensions of the systems. The paper will describe the authors’ experience...

  19. Internal Corrosion Control of Water Supply Systems Code of Practice

    Science.gov (United States)

    This Code of Practice is part of a series of publications by the IWA Specialist Group on Metals and Related Substances in Drinking Water. It complements the following IWA Specialist Group publications: 1. Best Practice Guide on the Control of Lead in Drinking Water 2. Best Prac...

  20. [Mercury in ASGM and its impact on water resources used for domestic water supply].

    Science.gov (United States)

    Díaz-Arriaga, Farith A

    2014-01-01

    In regions affected by artisanal and small-scale gold mining (ASGM), the inhalation of mercury vapor and the ingestion of fish contaminated with this metal constitute the main sources of mercury contamination that affect human health. Nevertheless, according to the World Health Organization, another source of contamination is polluted water. Although mercury in freshwater is usually found in very low concentrations because it is swiftly consumed by aquatic microorganisms, evidence shows that under specific circumstances its concentration in water can reach high levels, even surpassing the 2.0 μg/L stipulated by Colombian legislation for use as a domestic water supply. Mercury concentrations above 3.0 μg/L have been found in some Colombian municipalities, and above 8.0 μg/L in other regions around the world. Even though mercury consumption via water is a minor concern, along with other alimentary sources this low mercury concentration contributes to the total burden that affects human health. PMID:26120863

  1. The Use Of Fuzzy Set Theory In Exploitation Management Process On The Water Supply Network

    Directory of Open Access Journals (Sweden)

    Piegdoń Izabela

    2015-11-01

    Full Text Available Daily exploitation of the network, collected data base concerning the pipes failures and knowledge of employees forming the base of data using in effective failure removal process. The paper presents a methodology of assessment of technical condition of water pipes, based on ranking the failures and danger degree they present resulting the lack of water supply to the water consumers. Often decision making process take place under uncertainty conditions, therefore presented method is based on assessment of degree of danger pipe failure making by experts using fuzzy theory and fuzzy sets. In the paper a fuzzy graph including various types of failures causing lack of water supply was presented.

  2. Development of Water Supply and Billing Systems for Effective Utility Distribution

    OpenAIRE

    Philipa O. Idogho; Yahaya Olotu

    2015-01-01

    Safe drinking water is a strong constraint to the attainment of Millennium Development Goals by 2020. The water supply coverage of 38.3% of the total population corresponds to 45 litres per person and an average supply period of 3.5 hours daily. This further explains the degree of water-stress in Ikare. Annual non-revenue of 18.3% represented $6.2 million USD which was lost to physical water loss, thus leading to gradual increase in operation ratio value of 1.05. Chlorinatio...

  3. Modelling Water Supply-Billing and Collection Systems for Effective Utility Distribution

    OpenAIRE

    Olotu Yahaya; Unuigbe O.M.; Eleta Paul.O.; Stephen A.O.

    2015-01-01

    Safe drinking water is a strong constraint to the attainment of Millennium Development Goals by 2020. The water supply coverage of 38.3% of the total population corresponds to 45 litres per person and an average supply period of 3.5 hours daily. This further explains the degree of water-stress in Ikare. Annual non-revenue of 18.3% represented $6.2 million USD which was lost to physical water loss, thus leading to gradual increase in operation ratio value of 1.05. Chlorina...

  4. Striving for success in sanitation, hygiene, and water supply.

    Science.gov (United States)

    Leblanc, Maryanne

    2014-01-01

    An estimated 800,000 people do not have access to improved water sources, and 2.5 billion are without access to improved sanitation. As a result, an estimated 1800 children under 5 years of age die every day from preventable diseases related to water, sanitation & hygiene; more are ill or stunted. To sustainably improve people's health, actors in the water sector at all levels should use flexible, integrated approaches focused on behavior change and service delivery. Approaches and technologies should be as simple as possible while still protecting human health and the environment. Remember, it's not just about the toilet. PMID:24566351

  5. Undermining Demand Management with Supply Management: Moral Hazard in Israeli Water Policies

    Directory of Open Access Journals (Sweden)

    David Katz

    2016-04-01

    Full Text Available Most water managers use a mixture of both supply-side and demand-side policies, seeking to capitalize on the relative advantages of each. However, supply augmentation undertaken to avoid overdrafts can reduce the effectiveness of demand management policies if the two strategies are not carefully integrated. Such a result can stem from a type of moral hazard phenomenon by which consumers, aware of the increases in potential supply, discount the importance of conservation. This is illustrated by the case of Israel. Initial national-scale water-supply projects were followed by over-extraction, which, in turn, compelled implementation of wide-spread demand management measures to reduce consumption. With the recent advent of large-scale desalination in Israel, public perception regarding the importance of conservation has diminished and consumption has increased—this, despite periodic drought conditions and critically low levels of water reserves.

  6. Analysis of the Possible Use of Solar Photovoltaic Energy in Urban Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Bojan Đurin

    2014-05-01

    Full Text Available Because of the importance of water supply for the sustainability of urban areas, and due to the significant consumption of energy with prices increasing every day, an alternative solution for sustainable energy supply should be sought in the field of Renewable Energy Sources (RES. An innovative solution as presented in this paper has until now not been comprehensively analyzed. This work presents the solution with the application of a (Photovoltaic PV generator. The main technological features, in addition to the designing methodology and case study are presented in this paper. The critical period approach has been used for the first time for system sizing. The application of this sizing method provides a high reliability of the proposed system. The obtained results confirm the assumption that the PV generator is a promising energy sustainable solution for urban water supply systems. The service reservoir, which acts as water and energy storage for the proposed system, provides the basis for a sustainable solution of water and energy supply. In accordance with the proposed, the reliability of such system is high. This concept of energy supply operation does not generate any atmospheric emission of greenhouse gases, which contributes significantly to the reduction of the impacts of climate changes. The proposed solution and designing methodology are widely applicable and in accordance with the characteristics of the water supply system and climate.

  7. Mitigating Corporate Water Risk: Financial Market Tools and Supply Management Strategies

    Directory of Open Access Journals (Sweden)

    Wendy M. Larson

    2012-10-01

    Full Text Available A decision framework for business water-risk response is proposed that considers financial instruments and supply management strategies. Based on available and emergent programmes, companies in the agricultural, commodities, and energy sectors may choose to hedge against financial risks by purchasing futures contracts or insurance products. These strategies address financial impacts such as revenue protection due to scarcity and disruption of direct operations or in the supply chain, but they do not directly serve to maintain available supplies to continue production. In contrast, companies can undertake actions in the watershed to enhance supply reliability and/or they can reduce demand to mitigate risk. Intermediate strategies such as purchasing of water rights or water trading involving financial transactions change the allocation of water but do not reduce overall watershed demand or increase water supply. The financial services industry is playing an increasingly important role, by considering how water risks impact decision making on corporate growth and market valuation, corporate creditworthiness, and bond rating. Risk assessment informed by Conditional Value-at-Risk (CVaR measures is described, and the role of the financial services industry is characterised. A corporate decision framework is discussed in the context of water resources management strategies under complex uncertainties.

  8. Contact elimination of iron from groundwater in agricultural water supply

    OpenAIRE

    O.Y. Pobereznichenko

    2015-01-01

    The authors constructed an experimental setup for contact elimination of iron from groundwater with a bioreactor and a polystyrene foam filter at an agricultural enterprise to ensure a regulatory content of iron in potable water. A method to calculate structural and technological parameters for filters to ensure minimum capital and operating costs under the regulatory quality indicators for purified water was developed. Based on experimental research, the relationship between the speed o...

  9. Fragmented Flows: Water Supply in Los Angeles County

    Science.gov (United States)

    Pincetl, Stephanie; Porse, Erik; Cheng, Deborah

    2016-08-01

    In the Los Angeles metropolitan region, nearly 100 public and private entities are formally involved in the management and distribution of potable water—a legacy rooted in fragmented urban growth in the area and late 19th century convictions about local control of services. Yet, while policy debates focus on new forms of infrastructure, restructured pricing mechanisms, and other technical fixes, the complex institutional architecture of the present system has received little attention. In this paper, we trace the development of this system, describe its interconnections and disjunctures, and demonstrate the invisibility of water infrastructure in LA in multiple ways—through mapping, statistical analysis, and historical texts. Perverse blessings of past water abundance led to a complex, but less than resilient, system with users accustomed to cheap, easily accessible water. We describe the lack of transparency and accountability in the current system, as well as its shortcomings in building needed new infrastructure and instituting new water rate structures. Adapting to increasing water scarcity and likely droughts must include addressing the architecture of water management.

  10. Review: Natural tracers in fractured hard-rock aquifers in the Austrian part of the Eastern Alps—previous approaches and future perspectives for hydrogeology in mountain regions

    Science.gov (United States)

    Hilberg, Sylke

    2016-08-01

    Extensive in-depth research is required for the implementation of natural tracer approaches to hydrogeological investigation to be feasible in mountainous regions. This review considers the application of hydrochemical and biotic parameters in mountain regions over the past few decades with particular reference to the Austrian Alps, as an example for alpine-type mountain belts. A brief introduction to Austria's hydrogeological arrangement is given to show the significance of fractured hard-rock aquifers for hydrogeological science as well as for water supply purposes. A literature search showed that research concerning fractured hard-rock aquifers in Austria is clearly underrepresented to date, especially when taking the abundance of this aquifer type and the significance of this topic into consideration. The application of abiotic natural tracers (hydrochemical and isotope parameters) is discussed generally and by means of examples from the Austrian Alps. The potential of biotic tracers (microbiota and meiofauna) is elucidated. It is shown that the meiofauna approach to investigating fractured aquifers has not yet been applied in the reviewed region, nor worldwide. Two examples of new approaches in mountainous fractured aquifers are introduced: (1) use of CO2 partial pressure and calcite saturation of spring water to reconstruct catchments and flow dynamics (abiotic approach), and, (2) consideration of hard-rock aquifers as habitats to reconstruct aquifer conditions (biotic approach).

  11. Associations between Fecal Indicator Bacteria Prevalence and Demographic Data in Private Water Supplies in Virginia

    OpenAIRE

    Smith, Tamara L

    2013-01-01

    Over 1.7 million Virginians rely on private water systems to supply household water. The heaviest reliance on these systems occurs in rural areas, which are often underserved in terms of financial resources and access to environmental health education. As the Safe Drinking Water Act (SDWA) does not regulate private water systems, it is the sole responsibility of the homeowner to maintain and monitor these systems.     Previous limited studies indicate that microbial contamination of drinking ...

  12. The inter-relationships between urban dynamics and water resource and supply based on multitemporal analysis

    Science.gov (United States)

    Aldea, Alexandru; Aldea, Mihaela

    2016-08-01

    The growth and concentration of population, housing and industry in urban and suburban areas in the continuous evolution of a city over time causes complex social, economic, and physical challenges. The population and its relationship with the use and development of the land and water is a critical issue of urban growth, and since ancient times land, water and man were directly involved in the human populations' survival. Nevertheless the current potential of study over this relationship between urban growth, water supply, drainage and water resources conditions becomes more and more attractive due to the possibility to make use of the broader variety of information sources and technologies readily available in recent years, with emphasis on the open data and on the big data as primary sources. In this regard we present some new possibilities of analyses over the demographics, land use/land cover and water supply and conservation based on a study over a Romanian region of development (Bucharest-Ilfov). As urban development usually outgrows the existing water supply systems, the resolution consists in drilling new and deeper wells, building new water distribution pipelines, building longer aqueducts and larger reservoirs, or finding new sources and constructing completely new water supply systems, water supplies may evolve this way from a result into a cause and driver of urban growth. The evolution trends of the studied area was estimated based on the open satellite time-series imagery and remote sensing techniques by land use/land cover extraction and the identification of the changes in urbanization. The survey is mainly focused on the expansion of the water network in terms of areal, total length and number of connections correlated with the amount of water produced, consumed and lost within a supply zone. Some urban human activities including the industrial ones alter water resource by pollution, over pumping of groundwater, construction of dams and reservoirs

  13. The child health implications of privatizing Africa's urban water supply.

    Science.gov (United States)

    Kosec, Katrina

    2014-05-01

    Can private sector participation (PSP) in the piped water sector improve child health? I use child-level data from 39 African countries during 1986-2010 to show that PSP decreases diarrhea among urban-dwelling, under-five children by 2.6 percentage points, or 16% of its mean prevalence. Children from the poorest households benefit most. PSP is also associated with a 7.8 percentage point increase in school attendance of 7-17 year olds. Importantly, PSP increases usage of piped water by 9.7 percentage points, suggesting a possible causal channel explaining health improvements. To attribute causality, I exploit time-variation in the private water market share controlled by African countries' former colonizers. A placebo analysis reveals that PSP does not affect respiratory illness, nor does it affect a control group of rural children.

  14. Optimum contracted-for water supply for hotels in arid coastal regions.

    Science.gov (United States)

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area).

  15. Optimum contracted-for water supply for hotels in arid coastal regions.

    Science.gov (United States)

    Lamei, A; von Münch, E; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water for their domestic water demands, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their domestic water needs. There is normally a contractual agreement stating a minimum requirement that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). This paper describes a model to determine what value a hotel should choose for its contracted-for water supply in order to minimize its total annual water costs. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh, Egypt.The managers of hotels with expected high occupancy rates (74% and above) can contract for more than 80%. On the other hand, hotels with expected lower occupancy rates (60% and less) can contract for less than 70% of the peak daily domestic water demand. With a green area ratio of 40 m(2)/room or less, an on-site wastewater treatment plant can satisfy the required irrigation demand for an occupancy rate as low as 42%. Increasing the ratio of green irrigated area to 100 m(2)/room does not affect the contracted-for water supply at occupancy rates above 72%; at lower occupancy rates, however, on-site treated wastewater is insufficient for irrigating the green areas. Increasing the green irrigated area to 120 m(2)/room increases the need for additional water, either from externally sourced treated wastewater or potable water. The cost of the former is much lower than the latter (0.58 versus 1.52 to 2.14 US$/m(3) in the case study area). PMID:19403967

  16. Water supply and use in Deaf Smith, Swisher, and nearby counties in the Texas Panhandle

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    Irrigation for agriculture is the primary water use in the area of Deaf Smith and Swisher Counties, Texas, and the Ogallala Formation is the main water source. The availability of water in the 12-county area is projected to decrease markedly over the next 5 decades because of the steady depletion of ground water in recoverable storage. Water requirements in the 12-county area are projected to exceed available supplies from about 1990 through 2030. The shortage for the year 2030 is estimated to be approximately 4 million acre-feet under high-growth-rate conditions. Because of its semiarid climate, the area has little available surface water to augment the supply of the Ogallala Formation, which, despite its depletion, could be the principal source of water for the repository. There are, however, other potential sources of water: (1) Lake Mackenzie, on Tule Creek; (2) the Santa Rosa Formation, which underlies much of the Southern High Plains and locally yields moderate amounts of good-quality water; and (3) the Wolfcamp Series, which yields low amounts of highly saline water. The effluents of municipal wastewater treatment plants and municipal water systems may also be useful as supplements to the repository's primary water supply.

  17. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  18. Assessing the Impact of Active Land Management in Mitigating Wildfire Threat to Source Water Supply Quality

    Science.gov (United States)

    Bladon, K. D.; Silins, U.; Emelko, M. B.; Flannigan, M.; Dupont, D.; Robinne, F.; Wang, X.; Parisien, M. A.; Stone, M.; Thompson, D. K.; Tymstra, C.; Schroeder, D.; Kienzle, S. W.; Anderson, A.

    2014-12-01

    The vast majority of surface water supplies in Alberta originates in forested regions of the province, and supports approximately 94 municipal utilities, 208 communities, and 67% of the provincial population. These surface water supplies are highly vulnerable to contamination inputs and changing water conditions associated with wildfires. A provincial scale risk analysis framework is being used to investigate the magnitude and likelihood of wildfire occurrence in source water regions to evaluate the potential for altered water quality and quantity. The initial analysis identified which forested regions and which municipal drinking water treatment facilities are most at risk from wildfire. The efficacy of several current and potential landscape treatments to mitigate wildfire threats, along with the likely outcome of these treatments on mitigation of potential impacts of wildfire to drinking water treatment, are being modeled. A Monte Carlo modeling approach incorporating wildfire regime characteristics is used to simulate the ignition and growth of wildfires and generate outcome distributions for the different mitigation strategies. Cumulative changes in water quality at large river basin scales are being modeled and linked to water treatment impacts with the Soil and Water Assessment Tool (SWAT). A critical foundation of this approach is the close interaction of a large, trans-disciplinary team of researchers capable of integrating highly diverse issues of landscape wildfire dynamics, cross-scale water supply issues, and their linkage to downstream risks to drinking water treatment engineering.

  19. Securing Unlimited Water Supply in Adelaide over the Next Century Balancing Desalinated and Murray-Darling Basin Water

    OpenAIRE

    Michael G. Porter; Zohid Askarov; Sarah Hilborn

    2015-01-01

    This paper assesses the two major water supply options for a growing but relatively dry metropolitan Adelaide – desalination and expanded trading of water from the Murray-Darling Basin (MDB). What we present in this paper is a portfolio approach suggesting a mixed strategy of desalination and water trading to meet growing demand over the hundred year period from 2014. Crucially, the scope for expanding water trading keeps average costs down, for as long as the political agreements work and dr...

  20. Radon in domestic water supplies in the UK

    International Nuclear Information System (INIS)

    In a novel experiment carried out by school children the level of naturally occurring 222Rn has been measured in domestic tap water at 504 locations throughout the UK. Most values were close to 1 Bq.1-1 and none were above the limit suggested by the UK National Radiological Protection Board of 100 Bq.1-1. The values are considerably lower than in many US tap waters and provide a negligible contribution to the level of inhaled radon in room air. (author)

  1. Evaluation of demonstration technologies: Quail creek water supply system

    International Nuclear Information System (INIS)

    The U.S. EPA is currently demonstrating central and household treatment units at several sites in the U.S. The Quail Creek System near Spicewood, Texas is one of these sites where the technology demonstration program is scheduled to be completed soon as part of the EPA's Office of Ground Water and Drinking Water demonstration initiative. The report provides a summary of the small system demonstration project and presents an evaluation of the information collected during the operation, and by the EPA in September 1992

  2. Climate threats, water supply vulnerability and the risk of a water crisis in the Monterrey Metropolitan Area (Northeastern Mexico)

    Science.gov (United States)

    Sisto, Nicholas P.; Ramírez, Aldo I.; Aguilar-Barajas, Ismael; Magaña-Rueda, Víctor

    2016-02-01

    This paper evaluates the risk of a water crisis - a substantial, sudden reduction in water supply - in the Monterrey Metropolitan Area (MMA), posed by climate threats and the vulnerability of its water supply system. Our analysis of long-term precipitation, water supply and water availability data reveals that the MMA is highly vulnerable to recurring periods of exceptionally low precipitation and scarce surface water availability. We identify two episodes in the recent past (1998 and 2013) when the MMA water supply system almost collapsed as reservoirs neared depletion in the face of abnormally dry weather. Furthermore our climate projections point to warmer and drier future conditions for the region and consequently, heightened climate threats. We conclude that the risk of a water crisis in the MMA is substantial and probably will increase due to climate change. This establishes a clear and pressing need for a comprehensive package of adaptation measures to mitigate the consequences of a water crisis should one occur as well as to reduce the likelihood of such an event.

  3. Nationwide occurrence of radon and other natural radioactivity in public water supplies

    Energy Technology Data Exchange (ETDEWEB)

    Horton, T. R.

    1985-10-01

    The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water, to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supplies. Samples from more than 2500 public water supplies representing 35 states were collected. Although we sampled only about five percent of the total number of groundwater supplies in the 48 contiguous states of the US, those samples represent nearly 45 percent of the water consumed by US groundwater users in the 48 contiguous states. Sample results are summarized by arithmetic mean, geometric mean, and population weighted arithmetic mean for each state and the entire US. Results include radon, gross alpha, gross beta, Ra-226, Ra-228, total Ra, U-234, U-238, total U, and U-234/U-238 ratios. Individual public water supply results are found in the appendices. 24 refs., 91 figs., 51 tabs.

  4. The interaction of mineral nutrition and water supply in the process of winter wheat production

    Directory of Open Access Journals (Sweden)

    J. Šhivra

    2013-12-01

    Full Text Available In pot experiments performed in 1972-1976 with winter wheat variety 'Ilyichovka' grown at three levels of increasing mineral nutrition and at different levels of water supply (70% and 40% of maximal water capacity an interaction was observed between mineral nutrition and water availability on the yield and some physiological characteristics of the plants. Water stress during heading stage reduced nearly by one half the grain yield per plant, mostly by decreasing the number of completely filled grains. The quicker leaf senescence and grain number reduction as well as the total grain yield due to water stress differed between the nutritional levels. The relations between leaf surface area and grain yields were nearly linear in treatments with optimal water supply, but were markedly changed by water stress.

  5. Radioactivity in drinking water supplies in Western Australia.

    Science.gov (United States)

    Walsh, M; Wallner, G; Jennings, P

    2014-04-01

    Radiochemical analysis was carried out on 52 drinking water samples taken from public outlets in the southwest of Western Australia. All samples were analysed for Ra-226, Ra-228 and Pb-210. Twenty five of the samples were also analysed for Po-210, and 23 were analysed for U-234 and U-238. Ra-228 was found in 45 samples and the activity ranged from Ra-226 was detected in all 52 samples and the activity ranged from 3.200 to 151.1 mBq L(-1). Po-210 was detected in 24 samples and the activity ranged from 0.000 to 114.2 mBq L(-1). These data were used to compute the annual radiation dose that persons of different age groups and also for pregnant and lactating females would receive from drinking this water. The estimated doses ranged from 0.001 to 2.375 mSv y(-1) with a mean annual dose of 0.167 mSv y(-1). The main contributing radionuclides to the annual dose were Ra-228, Po-210 and Ra-226. Of the 52 drinking water samples tested, 94% complied with the current Australian Drinking Water Guidelines, while 10% complied with the World Health Organization's radiological guidelines which many other countries use. It is likely that these results provide an overestimate of the compliance, due to limitations, in the sampling technique and resource constraints on the analysis. Because of the increasing reliance of the Western Australian community on groundwater for domestic and agricultural purposes, it is likely that the radiological content of the drinking water will increase in the future. Therefore there is a need for further monitoring and analysis in order to identify problem areas.

  6. Proposal for a Model of Co-Management for the Small Community Water Supplies in Colombia

    Directory of Open Access Journals (Sweden)

    Andrea Bernal

    2014-01-01

    Full Text Available This paper reviews the conceptual evolution of Community Based Monitoring (CBM from different approaches : social capital, common pool resources and co-management or collaborative management, and presents the main co-management strategies applied to water supply at small scale: local and community driven development (LCDD and sustainable services at scale (SSS. Supported by this theoretical background, and in order to improve access to drinking water in rural communities in Colombia, the authors propose a co-management model for small and community water supplies.

  7. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    Hamer, de W.; Love, D.; Owen, R.; Booij, M.J.; Hoekstra, A.Y.

    2007-01-01

    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  8. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    Hamer, de W.; Love, D.; Owen, R.; Booij, M.J.; Hoekstra, A.Y.

    2008-01-01

    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  9. Assessment of Water Supply Sources in Tundia Area, Dilling Locality, South Kordofan State, Sudan

    OpenAIRE

    Ali, Hamid Omer; Mustafa, Khalid

    2010-01-01

    Tundia, like most areas in South Kordofan was seriously affected by the North-South war, with infrastructure and basic services, particularly water points, left in poor conditions. The increasing number of returnees also exerts additional pressure on the limited water supply points, causing several inter and intra-group conflicts, particularly during summertime. It is envisaged that access...

  10. Post-Construction Support and Sustainability in Community-Managed Rural Water Supply

    OpenAIRE

    Bakalian, Alexander; Wakeman, Wendy

    2009-01-01

    Water projects in developing countries are inaugurated with great fanfare by the governments, lenders, and sponsors that make them possible; the projects' results, however, don't always receive the publicity of groundbreaking ceremonies. This study reports the findings of a multi-country research project intended to discover how such rural water supply (RWS) systems actually perform. Its e...

  11. Concerns in Water Supply and Pollution Control: Legal, Social, and Economic.

    Science.gov (United States)

    Burke, D. Barlow, Jr.; And Others

    This bulletin contains three articles which focus on ground water's potential as a dependable supply source and some of the problems impeding the development of that potential. The authors' concerns are discussed from the vantage point of their areas of specialization: law, sociology, and economics. The first author states that water law abounds…

  12. Social Status Variations in Attitudes and Conceptualization Pertaining to Water Pollution and Supply.

    Science.gov (United States)

    Spaulding, Irving A.

    Data, secured by questionnaire from single household dwelling units in Warwick, Rhode Island, were used to ascertain differences among social status groups with respect to attitudes and conceptualization pertaining to water pollution and water supply. A social status index was used to delineate three status groups having high, middle, and low rank…

  13. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  14. Problems of Water Supply and Sanitation in Kpakungu Area of Minna (Nigeria.

    Directory of Open Access Journals (Sweden)

    Bamiji Adeleye

    2014-07-01

    Full Text Available Access to clean water and adequate sanitation has been a challenging issue in Kpakungu. Due to the unavailability of clean water sources and poor sanitation most of the inhabitants of Kpakungu are threaten with the spread of diseases such as diarrhoea and cholera and this has led to the degenerating situation of Kpakungu. Assessing the problems of water supply and sanitation in Kpakungu area of Minna, Niger State using GIS (Geographic Information System is aimed at providing access to adequate portable water supply and a better sanitation through the use of research and advocacy. This is achieved by identifying the pattern of access to public water supply and sanitation in Kpakungu and the creation of a database of the existing water source and their yield was determined to enhance planning. This research involved the use of both primary and secondary data to achieve a thorough assessment of the problems of poor water supply and sanitation in the study area. It was discovered that the problems of poor water supply and sanitation often leave most women and children on queues for several hours and those that cannot endure are forced to travel long miles in search for alternative source of water, which may not be fit for drinking. In the light of this, mothers are prevented from domestic work and most children are kept away from school. At the end of the research water and sanitation blue print for the study area was designed and a proposal was sent to relevant government agencies and ministries for the provision of more sources of potable water in the community. In this regard, Public Private Dialogue (PPD was initiated and adequate follow up process was made until the aim of the research was achieved.

  15. The Nested Site Selection Model for Water Treatment Plants Based on the Optimization of Water Supply Radius

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-01-01

    Full Text Available This paper analyzes the site selection problems of water treatment plants by utilizing the set covering model. Fully consider the influence of the pipe network arrangement on the site selection when confirming the covering radius, analyze the best water supply radius of water treatment plants combining investment benefits and pipe network optimization theory, and take the best water supply radius as the covering radius. Make the pipe network optimization nest into the site selection problem meanwhile confirming the covering radius, which fully reflect the viewpoints of the integrated logistics arrangement system. Considering the multiple solutions of the set covering model, this paper introduces the model of which the cost’s present value is minimum to make the quadratic optimization and get the best site selection results of water treatment plant. At last, this paper verifies the model by combining with the cases of water supply project construction of a county; the results prove that the model is feasible and effective. This paper expects to provide some reference for the planning design of regionally centralized water supply projects concerning villages and small towns and the site selection and construction of water treatment plant.

  16. [Preventive measures for improvement of suitability of water from individual water supply objects in the areas ravaged by war].

    Science.gov (United States)

    Venus, Miroslav

    2005-01-01

    The aim of this article was to test the success of sanation of unsatisfactory individual water supply objects in the areas ravages of war. 198 individual water supply objects were consolidated in the area of Voćin, with hyperchlorination and pumping out of water, after which desinfection with chlorine preparation was carried out. Samples of drinking water taken for bacteriological analysis were analyzed on total coliform bacteria, fecal coliform bacteria and fecal streptococci by method of membranous filtration, while the number of colonies of aerobic bacteria at 22 degrees C and 37 degrees C were determined on triptosis-glucosis-yeast agar. Good samples, considering the Regulations on health suitability of drinking water, were 152, or 77%. In unfit samples, which were 46, or 23%, the most common isolates were fecal streptococci, with frequency of 30%. Although public waterworks represent the best way to supply people with good drinking water, it is possible to achieve a satisfactory degree of water quality from individual water supply objects with implementation of public health activities, if we execute them periodically and professionally.

  17. Analysis And Assessment Of The Security Method Against Incidental Contamination In The Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-09-01

    Full Text Available The paper presents the main types of surface water incidental contaminations and the security method against incidental contamination in water sources. Analysis and assessment the collective water supply system (CWSS protection against incidental contamination was conducted. Failure Mode and Effects Analysis (FMEA was used. The FMEA method allow to use the product or process analysis, identification of weak points, and implementation the corrections and new solutions for eliminating the source of undesirable events. The developed methodology was shown in application case. It was found that the risk of water contamination in water-pipe network of the analyzed CWSS caused by water source incidental contamination is at controlled level.

  18. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    International Nuclear Information System (INIS)

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement

  19. Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2016-06-01

    Full Text Available This study proposes a hedging rule model which is composed of a two-period reservior operation model considering the damage depth and hedging rule parameter optimization model. The former solves hedging rules based on a given poriod’s water supply weighting factor and carryover storage target, while the latter optimization model is used to optimize the weighting factor and carryover storage target based on the hedging rules. The coupling model gives the optimal poriod’s water supply weighting factor and carryover storage target to guide release. The conclusions achieved from this study as follows: (1 the water supply weighting factor and carryover storage target have a direct impact on the three elements of the hedging rule; (2 parameters can guide reservoirs to supply water reasonably after optimization of the simulation and optimization model; and (3 in order to verify the utility of the hedging rule, the Heiquan reservoir is used as a case study and particle swarm optimization algorithm with a simulation model is adopted for optimizing the parameter. The results show that the proposed hedging rule can improve the operation performances of the water supply reservoir.

  20. Implications of bulk water transfer on local water management institutions: A case study of the Melamchi Water Supply Project in Nepal

    OpenAIRE

    Pant, Dhruba; Bhattarai, Madhusudan; Basnet, Govinda

    2008-01-01

    "To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implic...

  1. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.

    Science.gov (United States)

    Chamberlain, Jim F; Sabatini, David A

    2014-08-01

    In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay.

  2. Use of the water supply system of special purpose in buildings

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    Full Text Available A water supply system of a special purpose is a necessary element in hot and cold shops of the industrial enterprises, office buildings and the medical centers, and also other rooms. The water supply systems of a special purpose, which give subsalty, sparkling water and water sated with oxygen, allow people to prevent, for example, strong dehydration of an organism, which is possible at big losses of water, especially in case of the people working in hot shops. Various elements of special drinking water supply system are given in the article, their main functions are described. Different types of the water folding devices pumping water to consumers, one of which is drinking fountain, are considered. Possible systems of water filtration, which can be established for quality improvement, are transferred. Among them the great role is played by membrane technologies and the return osmosis, which is widely applied now. Today there is a possibility of construction, both the centralized water supply system of a special purpose, and local. Besides, the least is a more preferable option taking into account capital expenditure for construction and operation, and also it can lead to solid resource-saving as a result of the electric energy saving going for water heating in heaters. Automatic machines of drinking water for a local water supply system of a special purpose have indisputable advantages. They are capable to carry out several functions at the same time, and also to distribute water to consumers. It allows placing all the necessary equipment, which will be well in harmony with the environment in their small and compact case, and will fit into any difficult interior of the room. Also they are very easily connected to the systems of an internal water supply system by means of a propylene tube that allows to change their sposition in space and to transfer to any place of the room with fast installation of equipment. Also the ecological effect was

  3. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China.

  4. Contaminated small drinking water supplies and risk of infectious intestinal disease: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Helen L Risebro

    Full Text Available BACKGROUND: This study sought to identify whether elevated risk of infectious intestinal disease (IID exists in contaminated small water supply consumers compared with consumers drinking from small supplies complying with current standards and whether this effect is modified by age. METHODOLOGY AND PRINCIPAL FINDINGS: A prospective cohort study of 611 individuals receiving small supplies in England was conducted. Water supplies received sanitary inspection and examination for indicator bacteria and participants maintained a daily record of IID. Regression modeling with generalized estimating equations that included interaction terms between age and indicators of fecal pollution was performed. Crude IID prevalence was 9 · 3 days with symptoms/1000 person days (95%CI: 8 · 4, 10 · 1 and incidence was 3 · 2 episodes/1000 person days (95%CI, 2 · 7, 3 · 7 or 1 · 2 episodes per person year. Although there was no overall association between IID risk and indicator presence, there was strong interaction between age and indicator presence. In children under ten, relative risk (RR of IID in those drinking from enterococci contaminated supplies was 4.8 (95%CI: 1.5, 15.3 for incidence and 8.9 (95%CI: 2.8, 27.5 for prevalence. In those aged 10 to 59, IID risk was lower but not statistically significant. CONCLUSIONS: Contaminated small water supplies pose a substantial risk of IID to young children who live in homes reliant on these supplies. By contrast older children and adults do not appear to be at increased risk. Health care professionals with responsibility for children living in homes provided by very small water supplies should make parents aware of the risk.

  5. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Directory of Open Access Journals (Sweden)

    Tarja Pitkänen

    2015-08-01

    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  6. Optimization and coordination of South-to-North Water Diversion supply chain with strategic customer behavior

    Directory of Open Access Journals (Sweden)

    Zhi-song CHEN

    2012-12-01

    Full Text Available The South-to-North Water Diversion (SNWD Project is a significant engineering project meant to solve water shortage problems in North China. Faced with market operations management of the water diversion system, this study defined the supply chain system for the SNWD Project, considering the actual project conditions, built a decentralized decision model and a centralized decision model with strategic customer behavior (SCB using a floating pricing mechanism (FPM, and constructed a coordination mechanism via a revenue-sharing contract. The results suggest the following: (1 owing to water shortage supplements and the excess water sale policy provided by the FPM, the optimal ordering quantity of water resources is less than that without the FPM, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without the FPM; (2 wholesale pricing and supplementary wholesale pricing with SCB are higher than those without SCB, and the optimal profits of the whole supply chain, supplier, and external distributor are higher than they would be without SCB; and (3 considering SCB and introducing the FPM help increase the optimal profits of the whole supply chain, supplier, and external distributor, and improve the efficiency of water resources usage.

  7. Future water supply management adaptation measures - case study of Ljubljana field aquifer

    Science.gov (United States)

    Čenčur Curk, B.; Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Bogardi, I.

    2012-04-01

    The main drinking water supply problems are related to the significant change of groundwater quantity and quality observed in the last decades as an effect of land use practices and very likely also climate change. The latter may affect the ability of drinking water suppliers to provide enough water of sufficient quality to the consumers. These topics were studied in the frame of SEE project CC-WaterS (Climate Change and Impact on Water Supply) with the main goal to develop a water supply management system regarding optimisation of water extraction and land use restrictions under climate change scenarios for water suppliers, since existing management practices are mostly inadequate to reduce impacts of CC on water supply reliability. The main goal was a designation of appropriate measures and risk assessment to adapt water supply to changing climate and land use activities considering socio-economic aspects. This was accomplished by using 'Fuzzy Decimaker', which is a tool for selecting and ranking risk reduction measures or management actions for local waterworks or water authorities under the pressure of climate change. Firstly, management options were selected and ranked. For public water supply of Ljubljana, the capital of Slovenia, several management options were selected. For improvement of water supply and preservation of water resource quantities there is a need for engineering interventions, such as reducing water losses on pipelines. For improving drinking water safety and preserving water resource quality farmers are not allowed to use fertilisers in the first safeguarding zone and they get compensations for income reduction because of lower farming production. Compensations for farming restrictions in the second safeguarding zone were applied as additional management option. On the other hand, drinking water treatment is another management option to be considered. Trends in groundwater level are decreasing, above all recharge areas of waterworks

  8. Improved Filtration Technology for Pathogen Reduction in Rural Water Supplies

    Directory of Open Access Journals (Sweden)

    Valentine Tellen

    2010-06-01

    Full Text Available Intermittent bio-sand filtration (BSF is a low-cost process for improving water quality in rural households. This study addresses its two drawbacks: flow limitations requiring excessive waiting, and inadequate purification when high flows are imposed. Two modifications were examined: increasing the sand’s effective size, and adding zero-valent iron (ZVI into the media as a disinfectant. After 65 days, percent reductions in total coliform, fecal coliform, and fecal streptococci averaged 98.9% for traditional BSF and 99% for the improved BSF. Both modifications showed statistically significant improvements. Increased sand size and ZVI addition can counter the drawbacks of traditional BSF.

  9. Evolution of Water Supply, Sanitation, Wastewater, and Stormwater Technologies Globally

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-02-01

    Full Text Available This paper provides an outline of history of hydro-technologies in the west and the east. It is an overview of the special issue on “the evolution of hydro-technologies globally”, in which the key topics regarding the history of water and sanitation worldwide, and its importance to future cities are presented and discussed. It covers a wide range of relevant historical issues, and is presented in three categories: productivity assessment, institutional framework and mechanisms, and governance aspects. This paper concludes by discussing the challenges on future research in this field of study.

  10. Active space heating and hot water supply with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  11. Study on the Technology of Supplying Water Safely by Long-Distance Pipeline

    Institute of Scientific and Technical Information of China (English)

    CHEN Yanbo; YU Taipin; LIU Junhua; ZHAO Hongbin

    2008-01-01

    The extensively built long-distance water transmission pipelines have become the main water sources for urban areas.To ensure the reliability and safety of the water supply,from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline.The monitoring,calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable;the hydraulic state transition is smooth when operating conditions change or water supply accidents occur,avoiding the damage of water hammer.This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps ofbuilding a mathematics model for the analysis of dynamic hydraulic status.

  12. The voice of Austrians at CERN

    CERN Multimedia

    2009-01-01

    On 7 May the Austrian Minister for Science announced that, after over 50 years of membership, Austria would withdraw from CERN. By 18 May the Austrian Chancellor had reversed the decision. The Bulletin spoke to some of the Austrian community at CERN about the rollercoaster of events in between. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-056/CERN-MOVIE-2009-056-0753-kbps-640x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-056/CERN-MOVIE-2009-056-Multirate-200-to-753-kbps-640x360-25-fps.wmv', 'false', 533, 300, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-056/CERN-MOVIE-2009-056-posterframe-640x360-at-10-percent.jpg', '1180837', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-056/CERN-MOVIE-2009-056-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); To watch this video in German click here. There was jubil...

  13. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    Science.gov (United States)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  14. The Use Of Fuzzy Set Theory In Exploitation Management Process On The Water Supply Network

    OpenAIRE

    Piegdoń Izabela; Tchórzewska-Cieślak Barbara

    2015-01-01

    Daily exploitation of the network, collected data base concerning the pipes failures and knowledge of employees forming the base of data using in effective failure removal process. The paper presents a methodology of assessment of technical condition of water pipes, based on ranking the failures and danger degree they present resulting the lack of water supply to the water consumers. Often decision making process take place under uncertainty conditions, therefore presented method is based on ...

  15. Analysis And Assessment Of The Security Method Against Incidental Contamination In The Collective Water Supply System

    OpenAIRE

    Szpak Dawid; Tchórzewska – Cieślak Barbara

    2015-01-01

    The paper presents the main types of surface water incidental contaminations and the security method against incidental contamination in water sources. Analysis and assessment the collective water supply system (CWSS) protection against incidental contamination was conducted. Failure Mode and Effects Analysis (FMEA) was used. The FMEA method allow to use the product or process analysis, identification of weak points, and implementation the corrections and new solutions for eliminating the sou...

  16. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    OpenAIRE

    Matrosov, E. S.; Huskova, I.; Kasprzyk, J. R.; J. J. Harou; Lambert, C; Reed, P. M.

    2015-01-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximi...

  17. Optimization and coordination of South-to-North Water Diversion supply chain with strategic customer behavior

    OpenAIRE

    Chen, Zhi-Song; Wang, Hui-Min

    2012-01-01

    The South-to-North Water Diversion (SNWD) Project is a significant engineering project meant to solve water shortage problems in North China. Faced with market operations management of the water diversion system, this study defined the supply chain system for the SNWD Project, considering the actual project conditions, built a decentralized decision model and a centralized decision model with strategic customer behavior (SCB) using a floating pricing mechanism (FPM), and constructed a coordin...

  18. Understanding the influence of climate change on the embodied energy of water supply.

    Science.gov (United States)

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems.

  19. Anthropogenic warming has decreased water supply in North Central Texas

    Science.gov (United States)

    Brikowski, T. H.

    2015-12-01

    North Central Texas, including Dallas-Ft. Worth, the 4th largest metropolitan area in the U.S., has been in a state of drought for most of this 21st Century. Seven million residents there depend almost exclusively on surface water resources, and net water storage declined precipitously until record rainfall in early 2015. Part of the decline in water availability can be attributed to reduced runoff, where despite slightly above normal precipitation, natural basin runoff has declined almost 20% since its peak in the mid-1990's. These changes have coincided with 0.85oC warming above the historical 20th Century mean. Prevalent Vertisol (cracking) soils in the region make runoff especially sensitive to climate variations, and make it difficult to apply traditional hydrologic models to investigate climate-runoff links. Non-parametric (empirical) runoff elasticity methods circumvent these limitations, and are applied here, focusing on the Upper Trinity River basin (UTB). Diagrammatic assessment of UTB temperature-precipitation (T-Pr) runoff elasticity indicates persistent warming greatly increases the risk of reduced runoff, based on historical experience. Evaluation of individual parameter elasticity indicates dry periods since 2000 have primarily been T-driven, in contrast to the Pr-driven 1951-6 drought of record. Observed decline in runoff during 2000-2010 is entirely attributable to increased T. Additional runoff declines from 2011-14 were driven by reduced Pr, augmenting the T-driven reductions. These T effects are most prominent to the west, and decline to minimal extent just east of the UTB. The observed warming can be related to anthropogenic CO2 increase with >95% certainty based on comparison of CMIP5 climate model results for the UTB with and without CO2 forcing. UTB runoff fraction of Pr decreased after 1980 with >97.5% certainty. These results strongly indicate that 21st Century 20% decline in runoff from previous century norms is largely attributable to

  20. Energy and water supply systems in remote regions considering renewable energies and seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Bognar, Kristina

    2013-09-01

    Increasing the integration of renewable energy sources into mainly fossil energy dominated infrastructures is a challenging goal for various reasons. Islands and remote regions for example, often depend on the import of fossil fuels for power generation. Due to the combined effect of high oil prices and transportation costs, energy supply systems based on renewable energies are already able to compete with fossil-fuel based supply systems successfully. Focusing on arid regions, fresh water scarcity, resulting from low natural water stocks or excessive groundwater usage, is a further limiting factor for development. Seawater desalination can be the solution in many cases. How seawater desalination and remote island-grids with a high share of renewable energies can enrich each other, is still not sufficiently investigated. To answer this and related research questions, a model for optimizing self-sufficient energy and water supply systems has been developed within this research work.

  1. Balance of Water Supply-demand in Paddy Fields in Hilly Regions in Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    Hong ZHANG; Xinlu JIANG; Hongzhu FAN; Jiaguo ZHENG

    2012-01-01

    Abstract [Objective] The aim was to study the effects of water supply and con- sumption on water saving and drought resistance. [Method] Controlling field experi- ment was conducted to explore water balance between supply and demand in paddy fields in hilly regions in Sichuan Province. [Result] Rainfall in hilly areas was 3 611.10 m3/hm2; water for irrigation was 6 299.25 m3/hm~, evapotranspiration of rice was 6 424.95 m3/hm2; deep leakage was 2 459.55 m3/hm2; overflowing amount was 1 026.00 m3/hm2. In addition, water consumption totaled 8 884.50 m3/hm2 during rice production; water use was 0.99 kg/m3 and use efficiency of irrigated water was 1.40 kg/m3, [Conclu- sion] Water supply and consumption should be further organized to save water and fight against drought in hilly areas in Sichuan Province.

  2. Energy efficiency in a water supply system:Energy consumption and CO2 emission

    Institute of Scientific and Technical Information of China (English)

    Helena M.RAMOS; Filipe VIEIRA; Didia I.C.COVAS

    2010-01-01

    This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources.A model of multi-criteria optimization for energy efficiency based on water and environmental management policies,including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution,was developed and applied to a water supply system.The methodology developed includes three solutions:(1)the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed,(2)the optimization of pumping operation according to the electricity tariff and water demand,and(3)the use of other renewable energy sources,including a wind turbine,to supply energy to the pumping station,with the remaining energy being sold to the national electric grid.The use of an integrated solution(water and energy)proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power,and the use of a wind source allows for the reduction of energy consumption in pumping stations,as well as of the CO2 emission to the atmosphere.

  3. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape

    Science.gov (United States)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.

    2008-12-01

    Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the

  4. Investigating the Effectiveness of Ultraviolet (UV Water Purification as Replacement of Chlorine Disinfection in Domestic Water Supply

    Directory of Open Access Journals (Sweden)

    Olaoye

    2012-08-01

    Full Text Available Domestic water supply to residential buildings through hand-dug wells has been widely accepted as a reliable substitute to government owned municipal water supply system in Nigeria. This Paper investigates theeffectiveness of Ultraviolet (UV Water Sterilizers as a suitable replacement of chlorine disinfection in the removal of microbiological contaminants in domestic water supply. Water from an established contaminated well in Ogbomoso, Nigeria, were subjected, simultaneously and in parallel, to chlorine dosing and contact withUV light, over a period of seven (7 days without pre-filtration, and additional seven (7 days with pre-filtration. Pre-filtration was accomplished by the use of a calibrated pressure filter. Effluent water samples were taken daily for the two (2 scenarios to the laboratory for physical, chemical and biological analyses. The resultsindicated that UV water purification method was more effective only when pre-filtration of raw water was introduced. With monitored prefiltration prior to ultraviolet purification, the colony count, MPN Coliform Organisms and MPN E. Coli Organisms recorded seven day-average values of 1, 0 and 0, respectively. In both scenarios, it was confirmed that UV method produced no bi-products and did not alter the taste, pH or other properties of water, in contradistiction to chlorine disinfection method

  5. Foreign Identities in the Austrian E-Government

    OpenAIRE

    Ivkovic, Mario; Stranacher, Klaus

    2010-01-01

    With the revision of the Austrian E-Government Act [8] in the year 2008, the legal basis for a full integration of foreign persons in the Austrian e-government, has been created. Additionally, the E-Government Equivalence Decree [1] has been published in June 2010. This decree clarifies which foreign electronic identities are considered to be equivalent to Austrian identities and can be electronically registered within the Austrian identity register. Based on this legal framework a concept ha...

  6. Quality of surface-water supplies in the Triangle Area of North Carolina, water years 2012–13

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-09-07

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2011 through September 2012 (water year 2012) and October 2012 through September 2013 (water year 2013). Major findings for this period include:Annual precipitation was approximately 2 percent above the long-term mean (average) annual precipitation in 2012 and approximately 3 percent below the long-term mean in 2013.In water year 2012, streamflow was generally below the long-term mean during most of the period for the 10 project streamflow gaging stations. Streamflow was near or above the long-term mean at the same streamflow gaging stations during the 2013 water year.More than 7,000 individual measurements of water quality were made at a total of 17 sites—6 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-three water-quality properties or constituents were measured; State water-quality standards exist for 23 of these.All observations met State water-quality standards for pH, temperature, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium.North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, turbidity, chlorophyll a, copper, iron, manganese, mercury, silver, and zinc. Exceedances occurred at all 17 sites.Stream samples collected during storm events contained elevated concentrations of 19 water-quality constituents relative to non-storm events.

  7. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    Science.gov (United States)

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for

  8. Innovative Approaches to Teaching Packaging Design Using the Example of Mineral Water Supply Chains

    Science.gov (United States)

    Lestyánszka Škůrková, Katarína; Bajor, Peter; Trafela, Sabrina

    2013-12-01

    Designing the packaging of a product has many critical factors. In our paper, we present some of them on the example of a simple product: mineral water. In spite of the fact that today not only products, but also supply chains are competing with each other, designers sometimes pay little attention to considering the packaging system not only from the customer and the producer side, but for warehousing and transportation as well. We cover a lot of "what can go wrong" scenarios on the example of mineral water packaging for the purpose of defining the critical points in the supply chain.

  9. Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel;

    2013-01-01

    This paper investigates the impact of the dynamic hydraulic conditions on the kinetics of chlorine decay in water supply systems. A simulation framework has been developed for the scale-adaptive hydraulic and chlorine decay modelling under steady- and unsteady-state flows. An unsteady decay...... of experimental data provides new insights for the near real-time modelling and management of water quality as well as highlighting the uncertainty and challenges of accurately modelling the loss of disinfectant in water supply networks....... coefficient is defined which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. By coupling novel instrumentation technologies for continuous hydraulic monitoring and water quality sensors for in-pipe water quality sensing...

  10. Comparative study of water quality of rivers used for raw water supply and ex-mining lakes in Perak, Malaysia

    International Nuclear Information System (INIS)

    Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO42− COD, Cl− Na+ Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 μs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl− 0.483 to 3.339mg/l, SO42− 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

  11. Towards risk-based drought management in the Netherlands: making water supply levels transparent to water users

    Science.gov (United States)

    Maat Judith, Ter; Marjolein, Mens; Vuren Saskia, Van; der Vat Marnix, Van

    2016-04-01

    To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, assessed the impact of climate change and socio-economic development, and explored strategies to deal with these impacts. The Programme initiated a joint approach to water supply management with stakeholders and developed a national adaptation plan that is able to adapt to future uncertain conditions. The adaptation plan consists of a set of preferred policy pathways - sequences of possible actions and measures through time - to achieve targets while responding in a flexible manner to uncertain developments over time, allowing room to respond to new opportunities and insights. With regard to fresh water allocation, the Delta Programme stated that supplying water of sufficient quality is a shared responsibility that requires cohesive efforts among users in the main and regional water system. The national and local authorities and water users involved agreed that the water availability and, where relevant, the water quality should be as transparent and predictable as possible under normal, dry and extremely dry conditions. They therefore introduced the concept of "water supply service levels", which should describe water availability and quality that can be delivered with a certain return period, for all regions and all relevant water users in the Netherlands. The service levels form an addition to the present policy and should be decided on by 2021. At present water allocation during periods of (expected) water shortage occurs according to a prearranged ranking system (a water hierarchy scheme based on a list of priorities), if water availability drops below a critical low level. The aim is to have supply levels available that are based on the probability of occurrence and economic impact of water shortage, and that are transparent for all water users in the regional water systems and the main water system. As part of the European project

  12. Assessing protozoan risks for surface drinking water supplies in Nova Scotia, Canada.

    Science.gov (United States)

    Krkosek, Wendy; Reed, Victoria; Gagnon, Graham A

    2016-02-01

    Protozoa, such as Cryptosporidium parvum and Giardia lamblia, pose a human health risk when present in drinking water. To minimize health risks, the Nova Scotia Treatment Standards for surface water and groundwater under the direct influence of surface water require a 3-log reduction for Giardia cysts and Cryptosporidium oocysts. This study determined the protozoan risk of municipal surface source waters in Nova Scotia, through the use of a pre-screening risk analysis of water supplies, followed by subsequent water quality analysis of the seven highest risk supplies. The water supplies were monitored monthly for 1 year to obtain baseline data that could be used for a quantitative microbial risk assessment (QMRA). The QMRA model outcomes were compared to the Health Canada health target of 10(-6) disability-adjusted life years/person/year. QMRA modeling shows that the treatment facilities meet the required log reductions and disability-adjusted life year target standards under current conditions. Furthermore, based on the results of this work, Nova Scotia should maintain the current 3-log reduction standard for Giardia cysts and Cryptosporidium oocysts. The results of this study show that a pre-screening step can help to inform water sources that are particularly vulnerable to protozoan contamination, which can lead to more focused, cost-effective sampling, and monitoring programs. PMID:26837839

  13. Hydropower potential of municipal water supply dams in Turkey. A case study in Ulutan Dam

    Energy Technology Data Exchange (ETDEWEB)

    Kucukali, Serhat [Civil Engineering Department, Zonguldak Karaelmas University, Incivez 67100, Zonguldak (Turkey)

    2010-11-15

    This paper aims to analyze the hydropower potential of municipal water supply dams in Turkey. The facility is in favor with the energy policy of Turkish Government and European Union. In the study, the design head of the power plant was selected as the average water level of the reservoir and the discharge was calculated from the annual water supply of the dam. It has been estimated that the existing 45 municipal water supply dams of Turkey have an electric energy potential of 173 GWh/year, corresponding to about 24,000,000 Euro/year economic benefit. The financing of these facilities can be provided from international funding institutions. For a case study, Zonguldak Ulutan Dam and its water treatment plant have been investigated in detail. The current electricity consumption of the water treatment plant is 4,500,000 kWh/year and the facility provides 35,000 m{sup 3}/day water to 6 settlements. The installation of a hydropower plant on the mentioned water treatment plant will cut the electric consumption by 24%. The proposed project has a payback period of 1.4 years and it can produce clean and feasible energy. (author)

  14. Hydropower potential of municipal water supply dams in Turkey: A case study in Ulutan Dam

    Energy Technology Data Exchange (ETDEWEB)

    Kucukali, Serhat, E-mail: kucukali78@hotmail.co

    2010-11-15

    This paper aims to analyze the hydropower potential of municipal water supply dams in Turkey. The facility is in favor with the energy policy of Turkish Government and European Union. In the study, the design head of the power plant was selected as the average water level of the reservoir and the discharge was calculated from the annual water supply of the dam. It has been estimated that the existing 45 municipal water supply dams of Turkey have an electric energy potential of 173 GWh/year, corresponding to about 24,000,000 Euro/year economic benefit. The financing of these facilities can be provided from international funding institutions. For a case study, Zonguldak Ulutan Dam and its water treatment plant have been investigated in detail. The current electricity consumption of the water treatment plant is 4,500,000 kWh/year and the facility provides 35,000 m{sup 3}/day water to 6 settlements. The installation of a hydropower plant on the mentioned water treatment plant will cut the electric consumption by 24%. The proposed project has a payback period of 1.4 years and it can produce clean and feasible energy.

  15. Assessing protozoan risks for surface drinking water supplies in Nova Scotia, Canada.

    Science.gov (United States)

    Krkosek, Wendy; Reed, Victoria; Gagnon, Graham A

    2016-02-01

    Protozoa, such as Cryptosporidium parvum and Giardia lamblia, pose a human health risk when present in drinking water. To minimize health risks, the Nova Scotia Treatment Standards for surface water and groundwater under the direct influence of surface water require a 3-log reduction for Giardia cysts and Cryptosporidium oocysts. This study determined the protozoan risk of municipal surface source waters in Nova Scotia, through the use of a pre-screening risk analysis of water supplies, followed by subsequent water quality analysis of the seven highest risk supplies. The water supplies were monitored monthly for 1 year to obtain baseline data that could be used for a quantitative microbial risk assessment (QMRA). The QMRA model outcomes were compared to the Health Canada health target of 10(-6) disability-adjusted life years/person/year. QMRA modeling shows that the treatment facilities meet the required log reductions and disability-adjusted life year target standards under current conditions. Furthermore, based on the results of this work, Nova Scotia should maintain the current 3-log reduction standard for Giardia cysts and Cryptosporidium oocysts. The results of this study show that a pre-screening step can help to inform water sources that are particularly vulnerable to protozoan contamination, which can lead to more focused, cost-effective sampling, and monitoring programs.

  16. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.

    Science.gov (United States)

    de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale

    2015-04-01

    A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants.

  17. Dublin Ireland: a city addressing challenging water supply, management, and governance issues

    Directory of Open Access Journals (Sweden)

    Mary Kelly-Quinn

    2014-12-01

    Full Text Available The population of Dublin City and its suburbs currently stands at 1.3 million and is projected to reach 2.1 million by 2022. There is pressure on its water supply system (inadequate catchment sources, ageing infrastructure including treatment facilities, and distribution network with little or no spare capacity despite Ireland's relatively high rainfall that is well distributed throughout the year; albeit the greatest rainfall occurs in the west and southwest and at some remove from Dublin. The current governance approach to addressing the projected water supply deficit relies heavily on a combination of identifying new supply sources to secure the long-term water supply needs of the city together with an intense drive toward achieving "demand-side" reduced usage and conservation targets in accordance with EU benchmarks for various individual and sectoral users. This potentially emerging crisis of water scarcity in Dublin, with drivers including population growth, greater industrial and institutional demands, migration, and climate change, has generated one of the most significant public water works projects proposed in Irish history, which is to abstract raw water from the Shannon River Basin in the midland region and, following treatment, pump it to a storage reservoir in a cut-away bog before piping to the Greater Dublin Area. The preparations for this scheme have brought to the forefront some longstanding Irish water resources governance issues and challenges. This provides a unique opportunity and imperative at this time to take a more comprehensive look at the decision-making process in this regard, one done in the context of new European and national policies requiring incorporation of integrated planning to sustain ecosystem services, water resources management, water services management, and flood defense principles, and one taking account of the current unprecedented state of flux in which water resources management institutions in

  18. External control of the public water supply in 29 Brazilian cities

    Directory of Open Access Journals (Sweden)

    Suzely Adas Saliba Moimaz

    2012-02-01

    Full Text Available The fluoridation of public water supplies is considered the most efficient public health measure for dental caries prevention. However, fluoride levels in the public water supply must be kept constant and adequate for the population to gain preventive benefit. The aim of this study was to analyze fluoride levels in the public water supply of 29 Brazilian municipalities during a 48-month period from November 2004 to October 2008. Three collection sites were defined for each source of municipal public water supply. Water samples were collected monthly and analyzed at the Research Laboratory of the Nucleus for Public Health (NEPESCO, Public Health Postgraduate Program, Araçatuba Dental School (UNESP. Of the 6862 samples analyzed, the fluoride levels of 53.5% (n = 3671 were within the recommended parameters, those of 30.4% (n = 2084 were below these parameters, and those of 16.1% (n = 1107 were above recommended values. Samples from the same collection site showed temporal variability in fluoride levels. Variation was also observed among samples from collection sites with different sources within the same municipality. Although 53.5% of the samples contained the recommended fluoride levels, these findings reinforce the importance of monitoring to minimize the risk of dental fluorosis and to achieve the maximum benefit in the prevention of dental caries.

  19. Transforming Water Supply Regimes in India: Do Public-Private Partnerships Have a Role to Play?

    Directory of Open Access Journals (Sweden)

    Govind Gopakumar

    2010-10-01

    Full Text Available Public-private partnerships (PPP are an important governance strategy that has recently emerged as a solution to enhance the access of marginalised residents to urban infrastructures. With the inception of neo-liberal economic reforms in India, in Indian cities too PPP has emerged as an innovative approach to expand coverage of water supply and sanitation infrastructures. However, there has been little study of the dynamics of partnership efforts in different urban contexts: What role do they play in transforming existing infrastructure regimes? Do reform strategies such as partnerships result in increased privatisation or do they make the governance of infrastructures more participative? Reviewing some of the recent literature on urban political analysis, this article develops the concept of water supply regime to describe the context of water provision in three metropolitan cities in India. To further our understanding of the role of PPP within regimes, this article sketches five cases of water supply and sanitation partnerships located within these three metropolitan cities. From these empirical studies, the article arrives at the conclusion that while PPP are always products of the regime-context they are inserted within, quite often strategic actors in the partnership use the PPP to further their interests by initiating a shift in the regime pathway. This leads us to conclude that PPPs do play a role in making water supply regimes more participative but that depends on the nature of the regime as well as the actions of partners.

  20. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  1. Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila

    NARCIS (Netherlands)

    Valster, R.M.

    2011-01-01

    Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila
    Free-living protozoa, which feed on bacteria, play an important role in the communities of microorganisms and invertebrates in drinking water supplies and in (warm) tap water i

  2. Antimicrobial Resistance, Virulence Factors and Genetic Diversity of Escherichia coli Isolates from Household Water Supply in Dhaka, Bangladesh

    NARCIS (Netherlands)

    P.K. Talukdar (Prabhat Kumar); M. Rahman; A. Nabi (Ashikun); Z. Islam (Zhahirul); M.M. Hoque (Mahfuzul); H.P. Endtz (Hubert)

    2013-01-01

    textabstractBackground: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected

  3. [Concentration and form of asbestos fibers in tap drinking water contaminated from a water supply pipe with asbestos-cement].

    Science.gov (United States)

    Saitoh, K; Takizawa, Y; Muto, H; Hirano, K

    1992-10-01

    The identification and concentration of asbestos fibers in tap drinking water supplied in a central area of Akita Prefecture, Japan, were determined by phase-contrast microscopy and a scanning electron microscope equipped with an energy-dispersive X-ray microanalyzer. The following results were obtained. 1. Asbestos fibers were found in the tap water from two areas in which an asbestos-cement pipe was used for public water supply. The concentrations of asbestos fibers in the tap water were 2.7 x 10(4) to 27.0 x 10(4) fibers per liter of water in area A and 10.0 x 10(4) to 21.0 x 10(4) in area B. On the other hand, no asbestos fiber contamination was observed in tap water of area C, which shared a common water source with area A. A vinyl chloride pipe was used over the entire length of the water supply in route C. 2. Crocidolite was the predominant type of asbestos fiber detected in the tap water. Chrysotile and a mixture of chrysotile and amosite were also observed. 3. Almost all asbestos fibers detected in the tap water possessed the form of thick or sheaved fibers with lengths ranging from ca. 5 to 10 microns. Their shapes were very different from those of asbestos fibers found in the atmosphere. The typical form of the latter is short (ca. 1 micron in length) and needle-like. 4. It was suggested that the contamination of asbestos fibers in the tap water was caused by erosion and peeling off of the inner wall of the asbestos-cement pipe used as a conduit. In order to evaluate the safety of drinking water in Japan, an extensive survey on asbestos-fiber contamination in tap water is necessary. PMID:1464953

  4. Long-term climate sensitivity of an integrated water supply system: The role of irrigation.

    Science.gov (United States)

    Guyennon, Nicolas; Romano, Emanuele; Portoghese, Ivan

    2016-09-15

    The assessment of the impact of long-term climate variability on water supply systems depends not only on possible variations of the resources availability, but also on the variation of the demand. In this framework, a robust estimation of direct (climate induced) and indirect (anthropogenically induced) effects of climate change is mandatory to design mitigation measures, especially in those regions of the planet where the groundwater equilibrium is strongly perturbed by exploitations for irrigation purposes. The main goal of this contribution is to propose a comprehensive model that integrates distributed crop water requirements with surface and groundwater mass balance, able to consider management rules of the water supply system. The proposed overall model, implemented, calibrated and validated for the case study of the Fortore water supply system (Apulia region, South Italy), permits to simulate the conjunctive use of the water from a surface artificial reservoir and from groundwater. The relative contributions of groundwater recharges and withdrawals to the aquifer stress have been evaluated under different climate perturbations, with emphasis on irrigation practices. Results point out that irrigated agriculture primarily affects groundwater discharge, indicating that ecosystem services connected to river base flow are particularly exposed to climate variation in irrigated areas. Moreover, findings show that the recharge both to surface and to groundwater is mainly affected by drier climate conditions, while hotter conditions have a major impact on the water demand. The non-linearity arising from combined drier and hotter conditions may exacerbate the aquifer stress by exposing it to massive sea-water intrusion.

  5. The urgent need for environmental sanitation and a safe drinking water supply in Mbandjock, Cameroon.

    Science.gov (United States)

    Tchounwou, P B; Lantum, D M; Monkiedje, A; Takougang, I; Barbazan, P

    1997-07-01

    Studies were conducted to assess the physical, chemical, and bacteriological qualities of drinking water in Mbandjock, Cameroon. Study results indicated that the vast majority of drinking water sources possessed acceptable physical and chemical qualities, according to the World Health Organization standards. However, microbiological analyses revealed that only the waters treated by the Cameroon National Water Company (SNEC) and the Sugar Processing Company (SOSUCAM) were acceptable for human consumption. All spring and well waters presented evidences of fecal contamination from human and/or animal origin. Water from these sources should, therefore, be treated before use for drinking. Since the majority of the population gets its water from wells and springs, there is an urgent need to develop a health education program, within the framework of primary health care, with respect to environmental sanitation and safe drinking water supply in this community. PMID:9216865

  6. Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach

    International Nuclear Information System (INIS)

    Water and energy are important resources for regional economies and are inextricably and reciprocally linked. Global water and energy demand will increase significantly by 2030 while climate change will worsen water availability. Thus, it is important to ensure a sustainable energy supply despite the increasing severity of water resource constraints. Numerous studies have analyzed water requirements to produce energy from production perspectives. However, energy is generally supplied by both internal and external producers. Thus, it is necessary to consider the availability of water to produce energy from consumption perspectives also. We evaluate the water footprint of the energy supply of Liaoning Province, China. We apply the standard top-down approach using an input–output framework. We estimate the water footprint of the energy supply of Liaoning Province at 854 million m3 in 2002, with 47% of water used for electricity and heating. Our results reveal that energy supply could depend on water resources in neighboring provinces; external producers met 80% of the water footprint of energy supply, although only 35% of energy supply was imported. If Liaoning Province decreased its external dependency, withdrawal of available water resources within the province would increase from 86% to 91%. To guarantee future regional energy security, it is important to manage water resources effectively through water-efficient electricity generation and by allocating water resources among sectors. - Highlights: • We assess the water footprint of energy supply (WFES) for Liaoning Province, China. • The WFES for 2002 was 854 million m3, with 47% used for electricity and heating. • External sources accounted for 80% of the WFES and 47% of the energy supply. • Without energy imports, water resource withdrawal would increase from 86% to 91%. • Effective water resource management is important for regional energy security

  7. Performance Measurement of Water Desalination Supply Chain Using Balanced Scorecard Model

    Directory of Open Access Journals (Sweden)

    Hasan Balfaqih

    2016-02-01

    Full Text Available The purpose of this study is to propose a theoretical framework based on a balanced scorecard (BSC for performance measurement in the water desalination supply chain (WDSC. The reason for choosing this context is that the supply chain (SC of water desalination has received a great amount of attention, due to issues related to the increased need of fresh water for agricultural, industrial and human consumptions. The research methodology is based on literature analysis concerning performance measurement and metrics, the water desalination industry and the BSC model. Different SC performance measures which related to WDSC have been reviewed and distributed into four BSC perspectives: financial, customer, internal business, and learning & growth. The article provides a structured theoretical framework specific for WDSC. This is the first developed framework in WDSC which could serve as a reference to develop applicable performance indicators, and it is expected that both researchers and practitioners would benefit from the proposed framework.

  8. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    Science.gov (United States)

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  9. Inter-basin water transfer-supply model and risk analysis with consideration of rainfall forecast information

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast information from the global forecast system (GFS), the actual diversion amount can be determined according to the inter-basin water transfer rules with the decision tree method; secondly, the reservoir supply operation system is used to distribute water resource of the inter-basin water transfer reservoir; finally, the integrated risk assessment model is built by selecting the reliability of water transfer, the reliability (water shortage risk), the resiliency and the vulnerability of water supply as risk analysis indexes. The case study shows that the inter-basin water transfer-supply model with rainfall forecast information considered can reduce the comprehensive risk and improve the utilization efficiency of water resource, as compared with conventional and optimal water distribution models.

  10. Effect of different water supply on morphology, growth and photosynthetic characteristcs of Salix Psammophila seedlings in Maowusu sandland, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Response pattern was investigated for seedlings of Salixpsammophila, a dominant shrub in Maowusu sandland, to the simulated precipitation change by artificially controlling water supply at four levels. The growth characters, in term of plant height, stemdiameter, total branch number, total leaf number and area, total bifurcation ratio, total branch length and branch number, length, leaf number, leaf area of each branch order, and leaf, branch, root mass significantly increased when water supply increased. Thatwater supply had significant effect on biomass allocation showed different investment pattern of biomass resource of the seedlings grwn different water supply treatments. Stomatal density of abaxial leaf surface decreased, and stomatal apparatus length and width of adaxial and abaxial leaf surface increased with the increase in water supply, while Stomatal density of adaxial leaf surface was not affected by water supply. Water supply obviously affected the diurnal changes of photosynthetic rate, and the photo synthetic rate of the seedlings showed strongly midday depression growing under the 157.5 mm water supply, but not growing under higher water supply. Additionally the Assimilation-light response curves and fluorescence efficiency more showed that water supply improve photosynthesis capacity. Finally, S.psammophila seedlings stood out by their slow growth and relatively high investments in root growth in order to reduce tissue losing rate and consumption of water resource for keeping water balance under water stress. The seedlings that grown under high water supply did by their fast growth and relatively high investments in branch and leaf growth in order to improve the power of capturing light energy for higher photosynthesis.

  11. Developing system robustness analysis for drought risk management: an application on a water supply reservoir

    Directory of Open Access Journals (Sweden)

    M. J. P. Mens

    2015-01-01

    Full Text Available Droughts will likely become more frequent, of greater magnitude and of longer duration in the future due to climate change. Already in the present climate, a variety of drought events may occur with different exceedance frequencies. These frequencies are becoming more uncertain due to climate change. Many methods in support of drought risk management focus on providing insight into changing drought frequencies, and use water supply reliability as key decision criterion. In contrast, robustness analysis focuses on providing insight into the full range of drought events and their impact on a system's functioning. This method has been developed for flood risk systems, but applications on drought risk systems are lacking. This paper aims to develop robustness analysis for drought risk systems, and illustrates the approach through a case study with a water supply reservoir and its users. We explore drought characterization and the assessment of a system's ability to deal with drought events, by quantifying the severity and socio-economic impact of a variety of drought events, both frequent and rare ones. Furthermore, we show the effect of three common drought management strategies (increasing supply, reducing demand and implementing hedging rules on the robustness of the coupled water supply and socio-economic system. The case is inspired by Oologah Lake, a multipurpose reservoir in Oklahoma, United States. Results demonstrate that although demand reduction and supply increase may have a comparable effect on the supply reliability, demand reduction may be preferred from a robustness perspective. To prepare drought management plans for dealing with current and future droughts, it is thus recommended to test how alternative drought strategies contribute to a system's robustness rather than relying solely on water reliability as the decision criterion.

  12. Dealing with Uncertainties in Fresh Water Supply: Experiences in the Netherlands

    NARCIS (Netherlands)

    Thissen, W.A.H.; Kwakkel, J.H.; Mens, M.; Van der Sluijs, J.; Stemberger, S.; Wardekker, A.; Wildschut, D.

    2015-01-01

    Developing fresh water supply strategies for the long term needs to take into account the fact that the future is deeply uncertain. Not only the extent of climate change and the extent and nature of its impacts are unknown, also socio-economic conditions may change in unpredictable ways, as well as

  13. IMPROVEMENTS IN WATER SUPPLY SYSTEMS BASED ON OPTIMIZATION AND RECOGNITION OF CONSUMPTION PATTERNS

    Directory of Open Access Journals (Sweden)

    A. M. F. DINIZ

    2015-05-01

    Full Text Available Water supply systems consume large amounts of energy because of the pumping processes involved. The operational strategy of using frequency converters enables the system to work with better adjusted discharge rate to meet demand. In this case, an optimization strategy can establish an optimal procedure in order to schedule the rotational speed of pumps over a period and guarantee a volume of water in the supply tank. This work presents and solves an optimization problem that provides the optimal schedule for the rotational speed of pumps in a real water supply system considering minimizing the use of electricity and the cost thereof and maintenance. The optimization problem is based on two Artificial Neural Networks (ANN models that provide the total power consumption in the pumping system and level of water in the tank. Pattern recognition techniques in univariate time series based on the real data are used to forecast the demand curve according to the season ofthe year. The results show the potential savings generated by the proposed method and show the feasibility of scheduling the rotational speed of the pumps to ensure the minimum energy cost without affecting hourly demand and the security of the supply system.

  14. Addressing stakeholder conflicts in rural South Africa using a water supply model

    NARCIS (Netherlands)

    D' Hont, F.M.; Clifford-Holmes, J.K.; Slinger, J.H.

    2013-01-01

    A system dynamics modelling approach is adopted to deepen understanding of the effects of operational management on the performance of the Greater Kirkwood water supply system in South Africa. Currently, the interrupted operation of the system has led to perceptions of systemic social injustice on t

  15. Design Manual: Removal of Fluoride from Drinking Water Supplies by Activated Alumina

    Science.gov (United States)

    This document is an updated version of the Design Manual: Removal of Fluoride from Drinking Water Supplies by Activated Alumina (Rubel, 1984). The manual is an in-depth presentation of the steps required to design and operate a fluoride removal plant using activated alumina (AA)...

  16. A decision support system for optimization of regional drinking water supply

    NARCIS (Netherlands)

    Vink, C.; Schot, P.P.

    2000-01-01

    Finding a strategy that allows economically efficient drinking water production in regional supply systems at minimal environmental cost is often a complex task. In order to determine the optimal spatial production configuration, a systematic trade off among costs and benefits of possible strategies

  17. 77 FR 42486 - Intent To Prepare an Integrated Water Supply Storage Reallocation Report; Environmental Impact...

    Science.gov (United States)

    2012-07-19

    ... Report; Environmental Impact Statement for Missouri River Municipal and Industrial (M & I) Reallocation...: Notice of intent. SUMMARY: Pursuant to the National Environmental Policy Act of 1969 (NEPA), as amended..., intends to prepare an integrated Municipal and Industrial (M&I) Water Supply Storage Reallocation...

  18. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  19. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water and supplies

    Science.gov (United States)

    Waterborne illnesses are a growing concern among health agencies worldwide and regulatory efforts to prevent microbial contamination of water supplies are constantly evolving to stay ahead of the threat. The United States Environmental Protection Agency has established several rules to combat the co...

  20. Self-Supply as a Complementary Water Services Delivery Model in Ethiopia

    Directory of Open Access Journals (Sweden)

    John Butterworth

    2013-10-01

    Full Text Available Self-supply, where households invest to develop their own easily-accessible water supplies, is identified as an alternative service delivery model that is potentially complementary to more highly subsidised community-level provision. The approach is widespread in Ethiopia with family wells bringing additional benefits that are in line with wider government objectives, such as supporting small-scale irrigation. However, two recent studies show the current performance of traditional or family wells to be far below potential with most sources providing unsafe water in the absence of adequate protection. Wider formal recognition of Self-supply in policy and the development of the government-led Self-supply Acceleration Programme (SSAP aim to extend access and improve aspects of performance including water quality. However, a key finding of the paper is that successful uptake of this programme requires a transformation in the attitudes of donor agencies and the roles of government regional- and woreda-level staff, amongst others. Necessary shifts in mindsets and revision of planning mechanisms, as well as the day-to-day operational support requirements, represent a challenge for an under-resourced sector. Other household-focused development interventions such as Community-led Total Sanitation (CLTS and Household Water Treatment and Storage (HWTS face some similar challenges, so the processes for the development of one approach could help in the scaling up of all.

  1. Water Supply Deficiency and Implications for Rural Development in the Niger-Delta Region of Nigeria

    Science.gov (United States)

    Nkwocha, E. E.

    2009-01-01

    There is a growing concern about the marginalization of the Niger Delta region of Nigeria in terms of infrastructural and social services provision. This study examined the water supply deficiency and its general implications for rural development within the region. Data and other study characteristics were extracted from 501 subjects drawn from…

  2. A Bakken two-step : Rotex combines fresh water supply with produced water disposal at a single facility

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-02-15

    Rotex Energy Ltd. processes and disposes of oilfield waste and provides source water to producers. The company is now undertaking waste disposal projects in conjunction with the Acho Dene Koe and its company, Beaver Enterprises. The company's new oilfield waste management facility in Willmar, Saskatchewan offers a supply of consistent fracturing-compatible water for well completion as well as a disposal site for produced water. Producers in Saskatchewan require massive amounts of water for multi-stage horizontal fracs. Rotex offers fracturing water that is of a consistent quality and temperature in order to provide cost-effective stability for producing while reducing pressure on the surface watershed. Water from the plant site is delivered fully heated to the fracturing site. Customers that buy the frac water use the same Willmar facility for the subsequent disposal of the produced water. Rotex also pays producers for the crude oil recovered from their waste streams. 2 figs.

  3. Strengthening Sustainable Water Supply Services through Domestic Private Sector Providers in Cambodia

    OpenAIRE

    World Bank

    2016-01-01

    With the exception of Myanmar, Cambodia has the lowest access to piped water supply in the South East Asia region, which was estimated to be 21 percent in 2015. Less than one in ten rural households (7 percent) have access to piped water services on their premises, while for urban households, three out of four households enjoy these services (75 percent) (WHO and UNICEF, 2015). Against this ...

  4. Location sites for nuclear power plants and the public drinking water supplies

    International Nuclear Information System (INIS)

    This report presents the results of a study by the Dutch RIWA- Working Group Nuclear Power Plants, of the possible effects of a nuclear-reactor melt-down accident upon the drinking-water supply in the Netherlands which is dependent on surface waters. The aim of this report is to contribute to the 're-consideration with regard to siting of nuclear power plants' of the Dutch government. In the case of a nuclear-reactor melt-down accident in the Netherlands or directly adjacent countries, surface waters destined for drinking-water production may be contaminated severely. The amount of contamination depends, among other things, upon the distance, wind direction, dry as well as wet deposition and the features of the place yielding drinking water. From calculations of contamination of surface waters in the case of open- supply build up it appears that the derived norm of the radionuclide cocktail may be exceeded for a period of weeks up to several months or even years. There are reasons to draw the same conclusion for supply build up in the dunes by means of surface infiltration in the dunes. A melt-down accident can cause very severe contamination. Also here it can be stated that, in the case of a calamity in the Netherlands or directly adjacent countries, a norm transgression may occur for weeks up to years. In view of the risks which nuclear power plants can hold for the drinking-water supply which depends upon surface-waters as basis element. Severe objections should be made with respect to the siting of nuclear power plants in the Netherlands unless the occurrence of melt-down accidents could be excluded. 11 refs.; 4 figs.; 7 tabs

  5. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    Science.gov (United States)

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply.

  6. Clogging of water supply wells in alluvial aquifers by mineral incrustations, central Serbia

    OpenAIRE

    Majkić-Dursun Brankica; Vulić Predrag; Dimkić Milan

    2015-01-01

    The formation of incrustations on public water supply well screens reduces their performance considerably. The incrustations increase hydraulic losses, reduce the capacity of the well and screen, affect the quality of the pumped water and increase maintenance costs. In alluvial environments, the most common deposits are iron and manganese hydroxides. However, the rates of formation, compositions and levels of crystallization vary, depending on the geochemic...

  7. Rhode Island Water Supply System Management Plan Database (WSSMP-Version 1.0)

    Science.gov (United States)

    Granato, Gregory E.

    2004-01-01

    In Rhode Island, the availability of water of sufficient quality and quantity to meet current and future environmental and economic needs is vital to life and the State's economy. Water suppliers, the Rhode Island Water Resources Board (RIWRB), and other State agencies responsible for water resources in Rhode Island need information about available resources, the water-supply infrastructure, and water use patterns. These decision makers need historical, current, and future water-resource information. In 1997, the State of Rhode Island formalized a system of Water Supply System Management Plans (WSSMPs) to characterize and document relevant water-supply information. All major water suppliers (those that obtain, transport, purchase, or sell more than 50 million gallons of water per year) are required to prepare, maintain, and carry out WSSMPs. An electronic database for this WSSMP information has been deemed necessary by the RIWRB for water suppliers and State agencies to consistently document, maintain, and interpret the information in these plans. Availability of WSSMP data in standard formats will allow water suppliers and State agencies to improve the understanding of water-supply systems and to plan for future needs or water-supply emergencies. In 2002, however, the Rhode Island General Assembly passed a law that classifies some of the WSSMP information as confidential to protect the water-supply infrastructure from potential terrorist threats. Therefore the WSSMP database was designed for an implementation method that will balance security concerns with the information needs of the RIWRB, suppliers, other State agencies, and the public. A WSSMP database was developed by the U.S. Geological Survey in cooperation with the RIWRB. The database was designed to catalog WSSMP information in a format that would accommodate synthesis of current and future information about Rhode Island's water-supply infrastructure. This report documents the design and implementation of

  8. Sustainability of Rural Water Supply and Sanitation Services under Community Management Approach: The case of six villages in Tanzania

    OpenAIRE

    Mtinda, Elias

    2007-01-01

    Abstract Community management of the rural water supply and sanitation services is considered as one of the options for achieving sustainability of the water services. International communities and donors are steering this concept. National water policy in Tanzania puts more emphasis on community participation and management of water and sanitation (WATSAN) schemes. This study on the sustainability of the rural water supply and sanitation services focused on community management and participa...

  9. The potential for snow to supply human water demand in the present and future

    Science.gov (United States)

    Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.

    2015-11-01

    Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins—which together have a present population of ∼2 billion people—are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of >300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.

  10. Higher energy efficiency and better water quality by using model predictive flow control at water supply systems

    NARCIS (Netherlands)

    Bakker, M.; Verberk, J.Q.J.C.; Palmen, L.J.; Sperber, V.; Bakker, G.

    2011-01-01

    Half of all water supply systems in the Netherlands are controlled by model predictive flow control; the other half are controlled by conventional level based control. The differences between conventional level based control and model predictive control were investigated in experiments at five full

  11. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health.

    OpenAIRE

    Kravitz, J. D.; Nyaphisi, M.; Mandel, R; Petersen, E.

    1999-01-01

    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of tot...

  12. The occurrence of radioactivity in public water supplies in the United States.

    Science.gov (United States)

    Hess, C T; Michel, J; Horton, T R; Prichard, H M; Coniglio, W A

    1985-05-01

    Examination of the collected data for radionuclide concentration measurements in public water supplies in the United States show more than 51,000 measurements for gross alpha-particle activity and/or Ra, 89,900 measurements for U, and 9,000 measurements for Rn. These measurements were made as part of national and state surveys of radionuclide concentrations in utility water supplies for Ra and Rn; and the National Uranium Resource Evolution (NURE) survey for U which included non-utility water supplies. Surface water has low values for Ra and Rn but levels comparable to ground water for U. Separate isotope measurements were not taken for much of the Ra and U data. Because 226Ra to 228Ra ratios and 238U to 234U ratios are not fixed in water, further measurements are needed to establish the specific isotopic concentrations by region. Analysis of the state average values in geological provinces shows the highest provincial areas for Ra are the Upper Coastal Plain, the glaciated Central Platform, and the Colorado plateau. For U, the highest areas are the Colorado plateau, the West Central Platform, and the Rocky Mountains. For Rn, the highest provinces are New England and the Appalachian Highlands-Piedmont. Regional hydrogeological and geochemical models are suggested for guiding the formulation of regional standards and monitoring strategies. Utility supplies serving small populations have the highest concentration for each radionuclide and have the lowest fraction of samples measured, which shows a need for further measurements of these small population water supplies. Risk estimates for the average concentration of Ra in utility ground water give about 941 fatal cancers per 70.7-yr lifetime in the United States. Risk estimates for the average concentration of U in utility surface and ground water give about 105 fatal cancers per 70.7-yr lifetime in the United States. Using 1 pCi/liter in air for 10,000 pCi/l in water, the Rn in utility water risk estimate is for 4

  13. Contribution of Water Saving to a Stable Power Supply in Vietnam

    Directory of Open Access Journals (Sweden)

    Takayuki Otani

    2015-06-01

    Full Text Available In Vietnam, the rapid expansion of cities is exceeding the supply capacity for water and electricity, and restrictions on water supply and blackouts occur on a daily basis. In this study, the authors examined whether water-saving equipment could solve these problems. This paper focused on toilet bowls that consumed a large amount of water, and on showers for which heat consumption was high. In Vietnam, the main heat source for showers is the electric water heater, typically having a power consumption of 2500–4500 W. Although the current diffusion rate of such water heaters is just 13%, their use will spread widely in the future. These heaters have already placed a peak load on electricity consumption in winter when a large amount of energy is consumed for heating water, and they will become a significant factor in blackout risks as their use becomes commonplace nationwide. It is clear that the introduction of water-saving showers will allow not only a more efficient use of water resources, but will also mitigate against the risk of blackouts.

  14. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or... Service regulations under 30 CFR 250.803; or (2) The fire main system under § 149.415. (b) If the...

  15. Domestic rainwater harvesting to improve water supply in rural South Africa

    Science.gov (United States)

    Mwenge Kahinda, Jean-marc; Taigbenu, Akpofure E.; Boroto, Jean R.

    Halving the proportion of people without sustainable access to safe drinking water and basic sanitation, is one of the targets of the 7th Millennium Development Goals (MDGs). In South Africa, with its mix of developed and developing regions, 9.7 million (20%) of the people do not have access to adequate water supply and 16 million (33%) lack proper sanitation services. Domestic Rainwater Harvesting (DRWH), which provides water directly to households enables a number of small-scale productive activities, has the potential to supply water even in rural and peri-urban areas that conventional technologies cannot supply. As part of the effort to achieve the MDGs, the South African government has committed itself to provide financial assistance to poor households for the capital cost of rainwater storage tanks and related works in the rural areas. Despite this financial assistance, the legal status of DRWH remains unclear and DRWH is in fact illegal by strict application of the water legislations. Beyond the cost of installation, maintenance and proper use of the DRWH system to ensure its sustainability, there is risk of waterborne diseases. This paper explores challenges to sustainable implementation of DRWH and proposes some interventions which the South African government could implement to overcome them.

  16. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2016-01-01

    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.

  17. The new Bracciano water supply system; Il nuovo acquedotto del lago di Bracciano

    Energy Technology Data Exchange (ETDEWEB)

    Diaco, Mario; Eramo, Biagio; Martino, Giorgio [ACEA, Azienda Comunale Energia ed Ambiente, Rome (Italy)

    1996-09-01

    The New Bracciano Aqueduct will almost complete the Rome Water Supply System planned since 1955; as well it represents the prosecution of the ancient Rome water supply tradition started more than two thousand years ago. The new aqueduct, with its present discharge of 3.2 m{sup 3}/s increasable to 8.0 m{sup 3}/s in the future, will improve Rome water system reliability. It will be possible, infact, to put ``out of service`` one of the other main roman aqueducts without creating any problem to users. This is of great importance for the reliability actually related to incertain stability condition of the oldest roman aqueduct as well as Peschiera (about 50 years old) and Acqua Marcia (more of 90 years old) Aqueducts.

  18. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    Science.gov (United States)

    Middleton, D. R. S.; Watts, M. J.; Hamilton, E. M.; Ander, E. L.; Close, R. M.; Exley, K. S.; Crabbe, H.; Leonardi, G. S.; Fletcher, T.; Polya, D. A.

    2016-05-01

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P private water supplies as the dominant source of inorganic As exposure in the study population of PWS users.

  19. Municipal water supply dams as a source of small hydropower in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kucukali, Serhat [Civil Engineering Department, Zonguldak Karaelmas University, Incivez 67100, Zonguldak (Turkey)

    2010-09-15

    In Turkey the laws published in recent years succeeded in promoting the utilization of renewable energy for electricity generation. After the publication of Renewable Energy Law on 18 May 2005 in Turkey there occurred a boost in renewable energy projects along with hydropower development. Thus, the economically feasible hydropower potential of Turkey increased 15% and the construction of hydropower plants also increased by a factor of four in 2007 as compared to 2006. From this perspective, this paper was aimed to evaluate the small hydropower potential of municipal water supply dams of Turkey and discussed the current situation of SHP plants in terms of the government policy. It is estimated that the installing small hydropower plants to exiting 45 municipal water supply dams in Turkey will generate 173 GWh/year electric energy without effecting the natural environment. For a case study, Zonguldak Ulutan Dam and its water treatment plant has been investigated in detail. (author)

  20. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    Science.gov (United States)

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  1. Energy efficiency in a water supply system: Energy consumption and CO2 emission

    Directory of Open Access Journals (Sweden)

    Helena M. RAMOS

    2010-09-01

    Full Text Available This paper presents important fundaments associated to the water/energy consumption and enhances the importance of renewable energy sources. A model of multi-criterion optimization for energy efficiency based on water and environment management policy, the preservation of the water resources, the control of water pressure and energy consumption, through a hybrid energy solution is developed and applied to a water supply system. The methodology developed includes three solutions: (i water turbine installation in pipes where there is a need to control the pressure by pressure reducing valves, (ii the optimization of pumping operations according to the electricity tariff and the water demand and (iii the addition of a renewable energy source, a wind turbine, to supply energy to the pump-station and to sell the remaining to the national grid. The use of an integrated solution (water/energy shows to be a valuable input to benefit from available hydro energy in WSS to produce clean power and the use of wind source allows reducing the energy consumption in pump-stations, which is still mostly based on fossil fuels with high levels of CO2 emissions.

  2. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    Directory of Open Access Journals (Sweden)

    T. Y. Stigter

    2009-01-01

    Full Text Available This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells.

    For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s−1 of high quality groundwater (55% of the regional demand, requiring only disinfection (900 l s−1 or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make

  3. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    Science.gov (United States)

    Carruth, Robert L.; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  4. Fluoride content in drinking water supply in São Miguel volcanic island (Azores, Portugal).

    Science.gov (United States)

    Cordeiro, S; Coutinho, R; Cruz, J V

    2012-08-15

    High fluoride contents in the water supply of the city of Ponta Delgada, located in the volcanic island of São Miguel (Azores, Portugal) have been reported. Dental fluorosis in São Miguel has been identified and described in several medical surveys. The water supply in Ponta Delgada consists entirely of groundwater. A study was carried out in order to characterize the natural F-pollution of a group of springs (30) and wells (3), that are associated to active central volcanoes of a trachytic nature. Two springs known for their high content in fluoride were sampled, both located in the central volcano of Furnas. The sampled waters are cold, ranging from slightly acidic to slightly alkaline (pH range 6.53-7.60), exhibiting a low electrical conductivity (springs range 87-502 μS/cm; wells range 237-1761 μS/cm), and are mainly from the Na-HCO(3), Na-HCO(3)-Cl and Na-Cl-HCO(3) water types. Results suggest two main trends of geochemical evolution: silicate weathering, enhanced by CO(2) dilution, and seawater spraying. Fluoride contents range between 0.17 mg/L and 2 mg/L, and no seasonal variations were detected. Results in the sources of the water supply system are lower than those of the Furnas volcano, which reach 5.09 mgF/L, demonstrating the effect of F-rich gaseous emanations in this area. Instead, the higher fluoride contents in the water supply are mainly due to silicate weathering in aquifers made of more evolved volcanic rocks. PMID:22705903

  5. Improving regulatory effectiveness in federal/state siting actions: water supplies and the nuclear licensing process

    International Nuclear Information System (INIS)

    The Interstate Conference on Water Problems (ICWP) is a national association of State, intrastate, and interstate officials concerned with water resources administration and related matters. The Conference was established in 1959 as an outgrowth of regional conferences on water problems as recognized in the same year by action of the General Assembly of the States. This report was produced by the Interstate Conference on Water Problems in an effort to provide a compilation and summary of the views of selected States regarding relationships of water supplies to the nuclear power plant licensing process. This publication does not represent the official position of the U.S Water Resources Council, or the U.S. Nuclear Regulatory Commission, nor does it represent the position of any single state or the ICWP

  6. Water supply dynamics and quality of alternative water sources in low-income areas of Lilongwe City, Malawi

    Science.gov (United States)

    Chidya, Russel C. G.; Mulwafu, Wapulumuka O.; Banda, Sembeyawo C. T.

    2016-06-01

    Recent studies in many developing countries have shown that Small Scale Independent Providers (SSIPs) in low-income areas (LIAs) are practical alternatives to water utilities. This study explored supply dynamics and quality of alternative water sources in four LIAs of Lilongwe City in Malawi using qualitative and quantitative methods. Household-level surveys (n = 120) and transect walks were employed to determine the socio-economic activities in the areas. One-on-one discussions were made with water source owners (SSIPs) (n = 24). Data on policy and institutional frameworks was collected through desktop study and Key Informant Interviews (n = 25). Quality of the water sources (shallow wells and boreholes) was determined by collecting grab samples (n = 24) in triplicate using 500 mL bottles. Selected physico-chemical and microbiological parameters were measured: pH, EC, TDS, turbidity, water temperature, salinity, K, Na, Ca, Mg, Cl-, F-, NO3-, alkalinity, water hardness, Fecal coliform (FC) and Faecal Streptococci (FS) bacteria. Water quality data was compared with Malawi Bureau of Standards (MBS) and World Health Organization (WHO) guidelines for drinking water. Shallow wells were reported (65%, n = 120) to be the main source of water for household use in all areas. Some policies like prohibition of boreholes and shallow wells in City locations were in conflict with other provisions of water supply, sanitation and housing. High levels of FC (0-2100 cfu/100 mL) and FS (0-1490 cfu/100 mL) at several sites (>90%, n = 24) suggest water contamination likely to impact on human health. This calls for upgrading and recognition of the water sources for improved water service delivery.

  7. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  8. THE USE OF RT-PCR FOR THE DETECTION OF ENTERIC VIRUSES IN PRAIRIE SURFACE DRINKING WATER SUPPLIES

    Science.gov (United States)

    Concerns over the microbial safety of drinking water supplies have focused on bacteria and parasites while the occurrence of pathogenic waterborne viruses have been largely ignored. In fact, water supplies are not routinely monitored for human enteric viruses. This is despite t...

  9. The occurrence of Aeromonas spp. in the bottled mineral water, well water and tap water from the municipal supplies

    Directory of Open Access Journals (Sweden)

    Denise de Oliveira Scoaris

    2008-10-01

    Full Text Available The aim of this work was to study the occurrence of Aeromonas sp in the bottled mineral water, well water and tap water from the municipal supplies. Positive samples were found for Aeromonas spp. 12.7% from the mineral water, 8.3% from the artesian water and 6.5% from the tap water. The recovery of Aeromonas spp. was significantly higher in the bottled mineral and artesian water than in the tap water from municipal supplies. The occurrence of the Aeromonas spp. did not correlate significantly with the contamination indicator bacteria (i.e. total coliforms in the artesian water samples. However, a significant correlation was found between Aeromonas spp. and total coliforms in the both mineral water and tap water samples. The presence or absence of a correlation between the indicator bacteria and Aeromonas could reflect the occasional appearance of the pathogen in the drinking water and the different rates of survival and recovery of these agents compared with those fecal indicators. The finding that 41.6, 14.8 and 9.0 % of the artesian water, bottled mineral water and tap water, respectively, sampled in the current study failed to meet the Brazilian standard for total coliforms in the drinking water should therefore be of concern.A porcentagem de amostras positivas para Aeromonas foi de 12.7% para água mineral, 8.3% para água de poço artesiano e 6.5% para água do sistema público de abastecimento. O isolamento de Aeromonas spp. foi significativamente maior em água mineral e água de poço artesiano do que em água do sistema público. A ocorrência de Aeromonas spp. não teve correlação significativa com os indicadores de contaminação tradicionalmente utilizados (coliformes totais em amostras de água de poço artesiano. No entanto, esta correlação foi positiva e significativa em água mineral e água do sistema público. A presença ou ausência de correlação entre bactérias indicadoras e a presença de Aeromonas pode refletir o

  10. Water-supply potential from an asphalt-lined catchment near Holualoa Kona, Hawaii

    Science.gov (United States)

    Chinn, Salwyn S.W.

    1965-01-01

    The Jenkins-Whitesburg area includes approximately 250 square miles In Letcher and Pike Counties in the southeastern part of the Eastern Coal Field. In this area ground water is the principal source of water for nearly all rural families, most public supplies, several coal mines and coal processing plants, and one bottling plant. The major aquifers in the Jenkins-Whitesburg area are the Breathitt and Lee Formations of Pennsylvanian age. Other aquifers range in age from Devonian to Quaternary but are not important in this area because they occur at great depth or yield little or no water. The Breathitt Formation occurs throughout the area except along the crest and slopes of Pine Mountain and where it is covered by unconsolidated material of Quaternary age. The Breathitt Formation consists of shale, sandstone, and lesser amounts of coal and associated underclay. The yield of wells penetrating the Breathitt Formation ranges from less than 1 to 330 gallons per minute. Well yield is controlled by the type and depth of well, character of the aquifer, and topography of the well site. Generally, deep wells drilled in valleys of perennial streams offer the best potential for high yields. Although enough water for a minimum domestic supply (more than 100 gallons per day) may be obtained from shale, all high-yielding wells probably obtain water from vertical joints and from bedding planes which are best developed in sandstone. About 13 percent of the wells inventoried in the Breathitt Formation failed to supply enough water for a minimum domestic supply. Most of these are shallow dug wells or drilled wells on hillsides or hilltops. Abandoned coal mines are utilized as large infiltration galleries and furnish part of the water for several public supplies. The chemical quality of water from the Breathitt Formation varies considerably from place to place, but the water generally is acceptable for most domestic and industrial uses. Most water is a calcium magnesium bicarbonate

  11. Assessment of scale formation and corrosion of drinking water supplies in Ilam city (Iran

    Directory of Open Access Journals (Sweden)

    Zabihollah Yousefi

    2016-05-01

    Full Text Available Background: Scaling and corrosion are the two most important indexes in water quality evaluation. Pollutants are released in water due to corrosion of pipelines. The aim of this study is to assess the scale formation and corrosion of drinking water supplies in Ilam city (Iran. Methods: This research is a descriptive and cross-sectional study which is based on the 20 drinking water sources in Ilam city. Experiments were carried out in accordance with the Water and Wastewater Co. standard methods for water and wastewater experiment. The data were analyzed by using Microsoft Excel and GraphPad Prism 5. The results were compared with national and international standards. Results: The mean and standard deviation (SD values of Ryznar, Langelier, Aggressive, Puckorius and Larson-Skold indices in year 2009 were equal to 7.833 (±0.28, -0.102 (±0.35, 11.88 (±0.34, 7.481 (±0.22 and 0.801 (±0.44, respectively, and were 7.861 (±0.28, -0.175 (±0.34, 11.84 (±0.37, 7.298(±0.32 and 0.633 (±0.47, for year 2013 respectively. The average of Langelier, Ryznar, Aggression, and Puckorius indices indicate that potable water resources in Ilam city have the tendency to be corrosive. Statistical analysis and figures carried out by GraphPad Prism version 5.04. Conclusion: The results of different indices for water resources of Ilam city revealed that water supplies of Ilam city were corrosive. Water quality control and replacement of distribution pipes in development of water network should be carried out. Moreover, water pipelines should be preserved with several modes of corrosion inhibition.

  12. Challenging pathways to safe water access in rural Uganda: From supply to demand-driven water governance

    Directory of Open Access Journals (Sweden)

    Resty Naiga

    2015-03-01

    Full Text Available Uganda has experienced a major policy shift from a supply-driven to a demand-driven approach in rural water provision since 1990. The article sheds light on the rural population’s access to safe water within the changing institutional frameworks. We analysed individual and group interviews with key informants from national to community levels and relevant official documents with the ‘Social-Ecological Systems’ framework. Since the implementation of the demand-driven approach, rural safe water coverage has slightly improved but operation and maintenance of water sources pose a great challenge hampering, long-term access to safe water. The abrupt and top-down imposed policy shift has resulted in competing signals from old and new policies creating uncertainty and ambiguity about responsibilities, rules and incentives. The analysis shows the importance of taking into account the implications of national institutional disturbances on local collective action for long-term access to safe water.

  13. Hydropower and water supply: competing water uses under a future drier climate modeling scenarios for the Tagus River basin, Portugal

    Science.gov (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Carmona Rodrigues, António; João Cruz, Maria; Grosso, Nuno

    2014-05-01

    Climate change in the Mediterranean region is expected to affect existing water resources, both in quantity and quality, as decreased mean annual precipitation and more frequent extreme precipitation events are likely to occur. Also, energy needs tend to increase, together with growing awareness that fossil fuels emissions are determinately responsible for global temperature rise, enhancing renewable energy use and reinforcing the importance of hydropower. When considered together, these facts represent a relevant threat to multipurpose reservoir operations. Great Lisbon main water supply (for c.a. 3 million people), managed by EPAL, is located in Castelo de Bode Reservoir, in the Tagus River affluent designated as Zêzere River. Castelo de Bode is a multipurpose infrastructure as it is also part of the hydropower network system of EDP, the main power company in Portugal. Facing the risk of potential climate change impacts on water resources availability, and as part of a wider project promoted by EPAL (designated as ADAPTACLIMA), climate change impacts on the Zêzere watershed where evaluated based on climate change scenarios for the XXI century. A sequential modeling approach was used and included downscaling climate data methodologies, hydrological modeling, volume reservoir simulations and water quality modeling. The hydrological model SWAT was used to predict the impacts of the A2 and B2 scenarios in 2010-2100, combined with changes in socio-economic drivers such as land use and water demands. Reservoir storage simulations where performed according to hydrological modeling results, water supply needs and dam operational requirements, such as minimum and maximum operational pool levels and turbine capacity. The Ce-Qual-W2 water quality model was used to assess water quality impacts. According to climate scenarios A2 and B2, rainfall decreases between 10 and 18% are expected by 2100, leading to drier climatic conditions and increased frequency and magnitude of

  14. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together

    Science.gov (United States)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana

    2014-11-01

    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of

  15. Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation

    DEFF Research Database (Denmark)

    Kirkegaard, Peter; Hansen, Steffen Foss; Rygaard, Martin

    2015-01-01

    O). The concentration of ZnO-NPs also includes zinc ions, thus the concentration of ZnO-NPs is likely to be lower than that indicated here. The worst case removal by the wastewater reclamation bank infiltration system was predicted to lead to tap water concentrations of up to 3.3 μg L−1 (Ag), 13 μg L−1 (TiO2), and 0......Water scarcity brings an increased focus on wastewater reclamation for drinking water supply. Meanwhile, the production volume of nanoparticles (NPs) is rapidly increasing, but to date there has been little attention given to the fate of NPs in water systems based on wastewater reclamation. We have...... investigated the possible concentrations of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles in tap water for water supplies based on reclaimed wastewater. Tap water concentrations of the NPs were assessed by mass flow analyses of two typical wastewater reclamation concepts: 1) advanced...

  16. Neurobehavioral Performance of Estate Residents with Privately-Treated Water Supply.

    Directory of Open Access Journals (Sweden)

    Siti Farizwana Mohd Ridzwan

    2013-12-01

    Full Text Available Neurotoxicants present in water supply may affect human functions in terms of attention, response speed and perceptual motor speed. Neurobehavioural performance can be influenced by gender, age and education levels. This study aims to assess the neurobehavioral performance of palm oil estate residents with private water supply in southern Peninsular of Malaysia.A total of 287 and 246 participants from estates with private (PWS and public water supply (PUB were recruited to complete a demographic and subjective symptom questionnaire followed by the Neurobehavioral Core Test Battery (NCTB.PWS participants who consumed privately-treated water performed poorly in all NCTB tests compared to PUB participants except for Santa Ana test. Significant group differences in neurobehavioral performance were found for Digit Span Backward (P=0.047, Benton Visual Retention (P=0.006 and Trail Making B tests (P<0.05; which measures the function of memory, attention and visual perception-conceptual. Gender, age and years of education influenced the NCTB scores (P<0.05. Female participants performed poorly in tests measuring latency but excellently tackled those tests that determined association. Younger participants from both PWS and PUB performed better on NCTB tests when compared to other age groups (P<0.05. PWS and PUB participants in this study who received a longer duration of education excelled in the NCTB tests (P=0.000.Poor neurobehavioral performance is associated with low water supply quality which affects neurofunctions in terms of attention, memory, response and perceptual motor speed.

  17. Variable Frequency Constant Pressure Water Supply System Design%变频恒压供水系统设计

    Institute of Scientific and Technical Information of China (English)

    尤志强

    2016-01-01

    小区供水是变频恒压供水系统经常应用的例子。随着人民的生活条件越来越好,所以供水方式要越来越高效节能。小区供水系统是用PLC和变频器制作的供水控制系统。%District water supply is an example of constant frequency and constant pressure water supply system.In recent years, the development of people's living conditions are getting better and better, so the way to water supply more and more efficient and energy saving.District water supply system is a water supply control system with PLC and frequency changer.

  18. Energy Costs of Urban Water Supply Systems: Evidence from India (Invited)

    Science.gov (United States)

    Malghan, D.; Mehta, V. K.; Goswami, R.

    2013-12-01

    For the first time in human history more people around the globe now live in urban centres rather than in rural settings. Although India's urban population proportion at 31% is still below the global average, it has been urbanizing rapidly. The population growth rate in urban India is more than two-and-half times that of rural India. The current Indian urban population, of over 370 million people, exceeds that of the total population of every other country on the planet with the exception of China. Supplying water to India's burgeoning urban agglomerations poses a challenge in terms of social equity, biophysical sustainability, and economic efficiency. A typical Indian city relies on both surface and ground water sources. Several Indian cities import surface water from distances that now exceed a hundred kilometres and across gradients of up to three thousand metres. While the depleting groundwater levels as a result of rapidly growing demand from urban India is at least anecdotally understood even when reliable estimates are not available, the energy costs of supplying water to urban India has thus far not received academic or policy attention it deserves. We develop a simple framework to integrate distributed groundwater models with water consumption data to estimate the energy and emissions associated with supplying water to urban centres. We assemble a unique data set from seventy five of the largest urban agglomerations in India and derive estimated values of energy consumption and carbon emissions associated with water provision in urban India. Our analysis shows that in every major city, the energy cost associated with long distance import of surface water significantly exceeds groundwater extraction. However, with rapidly depleting groundwater levels, we estimate inflection points for select cities when energy costs of groundwater extraction will exceed energy required to import surface water into the city. In addition to the national snapshot, we also

  19. Climate change impacts on water supply: implications for reservoir management in Upper Sabor, northeast Portugal

    Science.gov (United States)

    Carvalho-Santos, Claudia; Monteiro, António T.; Azevedo, João; Nunes, João Pedro

    2016-04-01

    Climate change scenarios project warmer temperatures and less precipitation in Mediterranean watersheds. This can aggravate drought conditions, with negative impacts on water supply. Here, reservoirs may play an important role to mitigate these impacts. However, the implications of climate change are not always considered in the reservoir planning and management. This study aimed to address this issue for the Upper Sabor watershed, northeast Portugal. This is a medium watershed (403km2), part of the Sabor river, a tributary of Douro (one of the major rivers in the Iberian Peninsula). It is a mountainous watershed (up to 1500m), characterized by humid Mediterranean climate, with three dry months in summer. Almost 52% of the area is occupied by shrubland and 18% agriculture. Water supply for about 33 000 people has been based almost exclusively in one reservoir, but constant problems of water supply in dry summers, which coincide with a doubling of population due to summer holidays, led to the construction of a new reservoir in 2015. The Soil and Water Assessment Tool (SWAT) model was used for a climate change impact assessment, considering the current water supply regime (single reservoir) and the construction of the new reservoir. SWAT was calibrated and validated against daily-observed discharge and reservoir volume, with a good agreement between model predictions and observations. Results from four GCMs (General Circulation Models) for two scenarios (RCP 4.5 and RCP 8.5) were statistically downscaled and bias-corrected with ground observations; climate scenarios for 2021-2040 and 2041-2060 were compared with a control period in 1981-2000. In the future, a general increase of temperatures is expected in the Upper Sabor watershed, especially in the maximum temperature under RCP 8.5 scenario for 2041-2060 (Tmax: +2.88°C). The change in precipitation is more uncertain, with larger differences according to the selected climate model. Annual precipitation would

  20. Risk indicators for water supply systems for a drought Decision Support System in central Tuscany (Italy)

    Science.gov (United States)

    Rossi, Giuseppe; Garrote, Luis; Caporali, Enrica

    2010-05-01

    Identifying the occurrence, the extent and the magnitude of a drought can be delicate, requiring detection of depletions of supplies and increases in demand. Drought indices, particularly the meteorological ones, can describe the onset and the persistency of droughts, especially in natural systems. However they have to be used cautiously when applied to water supply systems. They show little correlation with water shortage situations, since water storage, as well as demand fluctuation, play an important role in water resources management. For that reason a more dynamic indicator relating supply and demand is required in order to identify situations when there is risk of water shortages. In water supply systems there is great variability on the natural water resources and also on the demands. These quantities can only be defined probabilistically. This great variability is faced defining some threshold values, expressed in probabilistic terms, that measure the hydrologic state of the system. They can identify specific actions in an operational context in different levels of severity, like the normal, pre-alert, alert and emergency scenarios. They can simplify the decision-making required during stressful periods and can help mitigate the impacts of drought by clearly defining the conditions requiring actions. The threshold values are defined considering the probability to satisfy a given fraction of the demand in a certain time horizon, and are calibrated through discussion with water managers. A simplified model of the water resources system is built to evaluate the threshold values and the management rules. The threshold values are validated with a long term simulation that takes into account the characteristics of the evaluated system. The levels and volumes in the different reservoirs are simulated using 20-30 years time series. The critical situations are assessed month by month in order to evaluate optimal management rules during the year and avoid conditions

  1. Long-term climate sensitivity of an integrated water supply system: The role of irrigation.

    Science.gov (United States)

    Guyennon, Nicolas; Romano, Emanuele; Portoghese, Ivan

    2016-09-15

    The assessment of the impact of long-term climate variability on water supply systems depends not only on possible variations of the resources availability, but also on the variation of the demand. In this framework, a robust estimation of direct (climate induced) and indirect (anthropogenically induced) effects of climate change is mandatory to design mitigation measures, especially in those regions of the planet where the groundwater equilibrium is strongly perturbed by exploitations for irrigation purposes. The main goal of this contribution is to propose a comprehensive model that integrates distributed crop water requirements with surface and groundwater mass balance, able to consider management rules of the water supply system. The proposed overall model, implemented, calibrated and validated for the case study of the Fortore water supply system (Apulia region, South Italy), permits to simulate the conjunctive use of the water from a surface artificial reservoir and from groundwater. The relative contributions of groundwater recharges and withdrawals to the aquifer stress have been evaluated under different climate perturbations, with emphasis on irrigation practices. Results point out that irrigated agriculture primarily affects groundwater discharge, indicating that ecosystem services connected to river base flow are particularly exposed to climate variation in irrigated areas. Moreover, findings show that the recharge both to surface and to groundwater is mainly affected by drier climate conditions, while hotter conditions have a major impact on the water demand. The non-linearity arising from combined drier and hotter conditions may exacerbate the aquifer stress by exposing it to massive sea-water intrusion. PMID:27161129

  2. An application of MC-SDSS for water supply management during a drought crisis.

    Science.gov (United States)

    Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Shahabi, Mahmoud; Bazdar, Saba

    2015-07-01

    Climate change influences many countries' rainfall patterns and temperatures. In Iran, population growth has increased water demands. Tabriz is the capital of East Azerbaijan province, in northwestern Iran. A large proportion of the water required for this city is supplied from dams; thus, it is important to find alternatives to supply water for this city, which is the largest industrial city in northwestern Iran. In this paper, the groundwater quality was assessed using 70 wells in Tabriz Township. This work seeks to define the spatial distribution of groundwater quality parameters such as chloride, electrical conductivity (EC), pH, hardness, and sulfate using Geographic Information Systems (GIS) and geostatistics; map groundwater quality for drinking purposes employing multiple-criteria decision-making (MCDM), such as the Analytical Hierarchy Process (AHP) and fuzzy logic, in the study area; and develop an Spatial Decision Support System (SDSS) for managing a water crisis in the region. The map produced by the AHP is more accurate than the map produced using fuzzy logic because in the AHP, priorities were assigned to each parameter based on the weights given by water quality experts. The final map indicates that the groundwater quality increases from the north to the south and from the west to the east within the study area. During critical conditions, the groundwater quality maps and the presented SDSS core can be utilized by East Azerbaijan Regional Water Company to develop an SDSS to drill new wells or to select existing wells to supply drinking water to Tabriz City. PMID:26038321

  3. Beneficial use of waste heat in municipal water supply. Technical report TR-79-3

    Energy Technology Data Exchange (ETDEWEB)

    Porter, R.W.

    1979-08-01

    The relatively low temperature of thermal discharges from steam-electric power plants makes waste-heat utilization difficult without modification of the power cycle and attendant reduction in electrical energy generated. In situ beneficial use of waste heat by direct once-through condenser discharge into a municipal water supply is discussed. Computations are presented regarding the matching of flow rates, heat losses in distribution and energy savings. A number of benefits and penalties are also assessed qualitatively including legal and operational aspects and reliability. Especially attractive are improvements in electrical generating efficiency, and savings in water-heater energy. Secondary advantages include alleviation of pipe freeze up in winter and improved efficiency of slightly heated waste-water treatment. Penalties include additional pumping power for distribution in the water supply due to increased back pressure on the steam turbines which employ condensers cooled by the water they pump. Additional chlorine is also required to maintain a residual concentration in the distribution system. There may also be difficulties with public acceptance of water preheated by up to about 24/sup 0/F, especially in summer. The water supply of greater Chicago and 4880 MW(e) of colocated fossil-fired load-following generating capacity were analyzed as a hypothetical test case. It was concluded that the net annual energy savings is 23 x 10/sup 12/B, equivalent to 4 million bbl of oil, with a net savings in cost of $12./capita for the population of 4.66 m. While not developed for energy conservation purposes, three actual systems with operating experience are summarized. In order to determine feasibility of application, site-specific systems analysis is required.

  4. Integrating agricultural policies and water policies under water supply and climate uncertainty

    Science.gov (United States)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  5. Trading-off tolerable risk with climate change adaptation costs in water supply systems

    Science.gov (United States)

    Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; O'Sullivan, Michael J.; Watson, Tim

    2016-02-01

    Choosing secure water resource management plans inevitably requires trade-offs between risks (for a variety of stakeholders), costs, and other impacts. We have previously argued that water resources planning should focus upon metrics of risk of water restrictions, accompanied by extensive simulation and scenario-based exploration of uncertainty. However, the results of optimization subject to risk constraints can be sensitive to the specification of tolerable risk, which may not be precisely or consistently defined by different stakeholders. In this paper, we recast the water resources planning problem as a multiobjective optimization problem to identify least cost schemes that satisfy a set of criteria for tolerable risk, where tolerable risk is defined in terms of the frequency of water use restrictions of different levels of severity. Our proposed method links a very large ensemble of climate model projections to a water resource system model and a multiobjective optimization algorithm to identify a Pareto optimal set of water resource management plans across a 25 years planning period. In a case study application to the London water supply system, we identify water resources management plans that, for a given financial cost, maximize performance with respect to one or more probabilistic criteria. This illustrates trade-offs between financial costs of plans and risk, and between risk criteria for four different severities of water use restrictions. Graphical representation of alternative sequences of investments in the Pareto set helps to identify water management options for which there is a robust case for including them in the plan.

  6. Integration of water footprint accounting and costs for optimal pulp supply mix in paper industry

    DEFF Research Database (Denmark)

    Manzardo, Alessandro; Ren, Jingzheng; Piantella, Antonio;

    2014-01-01

    studies have focused on these aspects, but there have been no previous reports on the integrated application of raw material water footprint accounting and costs in the definition of the optimal supply mix of chemical pulps from different countries. The current models that have been applied specifically...... that minimizes the water footprint accounting results and costs of chemical pulp, thereby facilitating the assessment of the water footprint by accounting for different chemical pulps purchased from various suppliers, with a focus on the efficiency of the production process. Water footprint accounting......Chemical pulp is one of the most important raw materials used in the paper industry. This material is known to make a significant contribution to the water footprint and cost of final paper products; therefore, chemical pulp is crucial in determining the competitiveness of final products'. Several...

  7. Nitrate and nitrite levels of potable water supply in Warri, Nigeria: a public health concern.

    Science.gov (United States)

    Nduka, John Kanayochukwu; Orisakwe, Orish Ebere; Ezenweke, Linus Obi

    2010-01-01

    In this study, the authors investigated the nitrate and nitrite in different water sources (surface water, shallow well water, and borehole water) in the market and industrialized areas of Warri in the Niger Delta area of Nigeria. The authors' goal was to find the comparative levels of nitrates and nitrites from these two parts of the community. They selected five sampling sites from industrialized areas and another five from market areas. Nitrate and nitrites were determined using a DR/4000 UV-Vis spectrophotometer. The appreciable quantities of nitrates and nitrites found in these investigations have some public health implications. This study suggests that indiscriminate disposal of waste and poor sanitation may be additional contributing factors in the nitrate pollution of the water supply in the Niger Delta area of Nigeria. PMID:20104831

  8. Emerging and Innovative Techniques for Arsenic Removal Applied to a Small Water Supply System

    Directory of Open Access Journals (Sweden)

    António J. Alçada

    2009-12-01

    Full Text Available The impact of arsenic on human health has led its drinking water MCL to be drastically reduced from 50 to 10 ppb. Consequently, arsenic levels in many water supply sources have become critical. This has resulted in technical and operational impacts on many drinking water treatment plants that have required onerous upgrading to meet the new standard. This becomes a very sensitive issue in the context of water scarcity and climate change, given the expected increasing demand on groundwater sources. This work presents a case study that describes the development of low-cost techniques for efficient arsenic control in drinking water. The results obtained at the Manteigas WTP (Portugal demonstrate the successful implementation of an effective and flexible process of reactive filtration using iron oxide. At real-scale, very high removal efficiencies of over 95% were obtained.

  9. Sustainable water supply systems in India: The role of financial institutions and ethical perspective

    Directory of Open Access Journals (Sweden)

    Gowda Krishne

    2011-01-01

    Full Text Available Water is a scarce resource and an important basic necessity for the human survival. The quantity of potable water on earth is limited and its availability per person is reducing day by day due to increase in global population and damage to environment. Though water available in nature is free, sizeable investment is needed in order to supply water to the people at their doorsteps with required quality. This paper deals with the role of financial institutions in the balanced distribution of water for the public, the related problems with various regulatory instruments, and ethical perspectives for efficient utilization of this scarce resource through internal control aimed at long term sustainability.

  10. Life-cycle and freshwater withdrawal impact assessment of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin;

    2013-01-01

    with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields......Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark...... situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further...

  11. Reconciling Scale Mismatch in Water Governance, Hydro-climatic Processes and Infrastructure Systems of Water Supply in Las Vegas

    Science.gov (United States)

    Garcia, M. E.; Alarcon, T.; Portney, K.; Islam, S.

    2013-12-01

    Water resource systems are a classic example of a common pool resource due to the high cost of exclusion and the subtractability of the resource; for common pool resources, the performance of governance systems primarily depends on how well matched the institutional arrangements and rules are to the biophysical conditions and social norms. Changes in water governance, hydro-climatic processes and infrastructure systems occur on disparate temporal and spatial scales. A key challenge is the gap between current climate change model resolution, and the spatial and temporal scale of urban water supply decisions. This gap will lead to inappropriate management policies if not mediated through a carefully crafted decision making process. Traditional decision support and planning methods (DSPM) such as classical decision analysis are not equipped to deal with a non-static climate. While emerging methods such as decision scaling, robust decision making and real options are designed to deal with a changing climate, governance systems have evolved under the assumption of a static climate and it is not clear if these methods are well suited to the existing governance regime. In our study, these questions are contextualized by examining an urban water utility that has made significant changes in policy to adapt to changing conditions: the Southern Nevada Water Authority (SNWA) which serves metropolitan Las Vegas. Like most desert cities, Las Vegas exists because of water; the artesian springs of the Las Vegas Valley once provided an ample water supply for Native Americans, ranchers and later a small railroad city. However, population growth has increased demands far beyond local supplies. The area now depends on the Colorado River for the majority of its water supply. Natural climate variability with periodic droughts has further challenged water providers; projected climate changes and further population growth will exacerbate these challenges. Las Vegas is selected as a case

  12. Rehabilitation concepts for gas- and drinking water supply networks; Rehabilitationskonzepte fuer Erdgas- und Trinkwasserversorgungsnetze

    Energy Technology Data Exchange (ETDEWEB)

    Kittl, M. [Thuega AG, Muenchen (Germany)

    2000-07-01

    The technical condition of the supply for gas and drinking-water is decisive for the security of supply and operation. There is an increasing pressure on cost reduction in the gas and water distribution utilities as well as an increasing demand of technical and external requirements to be complied with to ensure safe operation. This is why it is necessary to plan the maintenance on the basis of rehabilitation concepts. Forecasts of necessary renewals, priority lists, and the use of operational information systems have proved to be adequate for the practical adoption of the rehabilitation concepts. (orig.) [German] Der technische Zustand der Gas- und Trinkwasserversorgungsnetze ist entscheidend fuer die Versorgungssicherheit. Sowohl der Kostendruck in der Versorgungswirtschaft als auch die technischen und externen Anforderungen an einen sicheren Netzbetrieb nehmen zu. Damit wird die Planung der Instandhaltung auf Basis von Rehabilitationskonzepten notwendig. Erneuerungsbedarfsprognosen, Prioritaetenlisten und der Einsatz von Betriebsmittel-Informationssystemen haben sich zur praktischen Umsetzung der Rehabilitationskonzepte bewaehrt. (orig.)

  13. Developing Streamflow Model for Sustainable Rural Water Supply at Ndimoko, Imo State, Nigeria

    Directory of Open Access Journals (Sweden)

    B. C. Okoro

    2014-02-01

    Full Text Available Streamflow model of Imo River at Ndimoko was developed using statistical method ofleast squares. High and positive values of coefficient of correlation (r of 0.953 andcoefficient of determination (r2 of 0.908 were obtained. The standard error ofestimate (SQ.h has small value of 1.82 indicating that the regression model fits the data.The model represents the nonlinear relationship between annual maximum discharge andannual maximum stage. The model developed is necessary for the design of dam,estimation of the size of reservoir, water conservation methods, potable water supply,flood estimation, wild life protection and recreational use of water in the locality. In otherwords, this model will play an important role in ensuring that future planning andmanagement of water in a rural area is scientifically based and efficiently made.Recommendations are made that hydrologic modeling be applied in water resourcesplanning, design and management activities for environmental sustainability. Keywords: Maximum Stage, Maximum Discharge, Coefficient of Correlation, Coefficientof Determination, Water Supply.

  14. Using a Geographical Information System to investigate the relationship between reported cryptosporidiosis and water supply

    Directory of Open Access Journals (Sweden)

    Lake Iain

    2004-07-01

    Full Text Available Abstract Background This paper reports on a study investigating the epidemiology of sporadic cryptosporidiosis in the North West of England and Wales using a Geographical Information System (GIS to map location of residence of cases. Some 747 reports of cases were made to CDSC North West of which 649 reports were suitable for analysis. Cases were plotted on the maps of water supply zone and water quality area boundaries, provided by the two main water utilities. Results It was notable that there were major spatial variations in attack rate across the North West and Wales. The most dramatic example was the large difference between the Greater Manchester conurbation with many reports and Liverpool with none. Given the distribution of previously detected waterborne outbreaks in the region it was initially thought that drinking water source may be an explanation. However, an analysis of the distribution of cases in the Greater Manchester area showed no correlation with any of five water supplies that serve the conurbation. Conclusions Our study has shown a dramatic variation in the incidence of laboratory confirmed cryptosporidiosis within two regions of the United Kingdom. Further analysis has not been able to prove drinking water as a likely explanation of this variation which so far remains unexplained.

  15. Water Supply Changes N and P Conservation in a Perennial Grass Leymus chinensis

    Institute of Scientific and Technical Information of China (English)

    Ju-Ying Huang; Hai-Long Yu; Ling-Hao Li; Zhi-You Yuan; Samuel Bartels

    2009-01-01

    Changes in precipitation can influence soil water and nutrient availability, and thus affect plant nutrient conservation strategies. Better understanding of how nutrient conservation changes with variations in water availability is crucial for predicting the potential influence of global climate change on plant nutrient-use strategy. Here, green-leaf nitrogen (N) and phosphorus (P) concentrations, N- and P-resorption proficiency (the terminal N and P concentration in senescent leaves,NRP and PRP, respectively), and N- and P-resorption efficiency (the proportional N and P withdrawn from senescent leaves prior to abscission, NRE and PRE, respectively) of Leymus chinensis (Trin.) Tzvel., a typical perennial grass species in northern China, were examined along a water supply gradient to explore how plant nutrient conservation responds to water change. Increasing water supply at low levels ( 9000 mL/year). These results indicated that changes in water availability at low levels could affect leaf-level nutrient characteristics, especially for the species in semiarid ecosystems. Therefore, global changes in precipitation may pose effects on plant nutrient economy, and thus on nutrient cycling in the plant-soil systems.

  16. Evolving Groundwater Rights and Management in Metropolitan Los Angeles: Implications for Water Supply and Stormwater

    Science.gov (United States)

    Porse, E.; Pincetl, S.; Glickfeld, M.

    2015-12-01

    Groundwater supports many aspects of human life. In cities, groundwater can provide a cost-effective source of water for drinking and industrial uses, while groundwater basins provide storage. The role of groundwater in a city's water supply tends to change over time. In the Los Angeles metropolitan area, groundwater is critical. Over decades, users in the region's many basins allocated annual pumping rights to groundwater among users through adjudications. These rights were determined through collective processes over decades, which contributed to the complex array of public and private organizations involved in water management. The rights also continue to evolve. We analyzed changes in the distribution of groundwater rights over time for adjudicated basins in Southern Los Angeles County. Results indicate that groundwater rights are increasingly: 1) controlled or regulated by public institutions and municipalities, and 2) consolidated among larger users. Yet, both the percentage of total supplies provided by groundwater, as well as the distribution of groundwater rights, varies widely among cities and communities throughout Los Angeles. As metropolitan Los Angeles faces reduced water imports and emphasizes local water reliance, access to pumping rights and storage capacity in groundwater basins will become even more vital. We discuss implications of our results for future urban water management.

  17. A Simple Discussion on the Supply and Demand of Water Resources in the Western Region of China

    Institute of Scientific and Technical Information of China (English)

    Yu Hongbo

    2006-01-01

    We are accustomed to solve the problem of the water scarcity in the western region by the thought of increasing the effective supply of water to meet the needs of Go-west Campaign. After introducing the dynamic equilibrium principle on supply and demand in economy,we find that we should solve the problem of the water scarcity in the western region through reducing total demand to achieve the dynamic equilibrium of supply and demand. Finally water resources in the western region can be enlarged by an accumulated way.

  18. Transfer of adapted water supply technologies through a demonstration and teaching facility

    Science.gov (United States)

    Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.

    2016-05-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the

  19. Transfer of adapted water supply technologies through a demonstration and teaching facility

    Science.gov (United States)

    Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.

    2016-09-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the

  20. Climate Informed Economic Instruments to Enhance Urban Water Supply Resilience to Hydroclimatological Variability and Change

    Science.gov (United States)

    Brown, C.; Carriquiry, M.; Souza Filho, F. A.

    2006-12-01

    Hydroclimatological variability presents acute challenges to urban water supply providers. The impact is often most severe in developing nations where hydrologic and climate variability can be very high, water demand is unmet and increasing, and the financial resources to mitigate the social effects of that variability are limited. Furthermore, existing urban water systems face a reduced solution space, constrained by competing and conflicting interests, such as irrigation demand, recreation and hydropower production, and new (relative to system design) demands to satisfy environmental flow requirements. These constraints magnify the impacts of hydroclimatic variability and increase the vulnerability of urban areas to climate change. The high economic and social costs of structural responses to hydrologic variability, such as groundwater utilization and the construction or expansion of dams, create a need for innovative alternatives. Advances in hydrologic and climate forecasting, and the increasing sophistication and acceptance of incentive-based mechanisms for achieving economically efficient water allocation offer potential for improving the resilience of existing water systems to the challenge of variable supply. This presentation will explore the performance of a system of climate informed economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on water-sensitive stakeholders. The system is comprised of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Contract and insurance parameters are linked to forecasts and the evolution of seasonal precipitation and streamflow and designed for financial and political viability. A simulation of system performance is presented based on ongoing work in Metro Manila, Philippines. The

  1. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  2. Dealing with Uncertainties in Fresh Water Supply: Experiences in the Netherlands

    OpenAIRE

    Thissen, W.A.H.; Kwakkel, J. H.; Mens, M.; Sluijs, J; Stemberger, S.; Wardekker, A.; Wildschut, D.

    2015-01-01

    Developing fresh water supply strategies for the long term needs to take into account the fact that the future is deeply uncertain. Not only the extent of climate change and the extent and nature of its impacts are unknown, also socio-economic conditions may change in unpredictable ways, as well as social preferences. Often, it is not possible to find solid ground for estimating probabilities for the relevant range of imaginable possible future developments. Yet, some of these may have profou...

  3. Developing system robustness analysis for drought risk management: an application on a water supply reservoir

    OpenAIRE

    Mens, M.J.P.; K. Gilroy; Williams, D

    2015-01-01

    Droughts will likely become more frequent, of greater magnitude and of longer duration in the future due to climate change. Already in the present climate, a variety of drought events may occur with different exceedance frequencies. These frequencies are becoming more uncertain due to climate change. Many methods in support of drought risk management focus on providing insight into changing drought frequencies, and use water supply reliability as key decisio...

  4. Some Optimization Methods for Increasing the Energy Efficiency of the Water Supply Systems

    OpenAIRE

    Kostadinova, Slavica; Panev, Ace; Cingoski, Vlatko

    2015-01-01

    We are witnessing the rapid growth of the energy prices and there are expectations that they will continue to grow in the future. Consequently, there is a constant need of energy efficiency improvements that could be achieved by decreasing of energy losses, smart and efficient energy utilization and conservation of energy resources. The water supply systems are large energy consumers. So, the investments in the increasing of their energy efficiency will not only have an economic d...

  5. Characterization of components of water supply systems from GPR images and tools of intelligent data analysis.

    OpenAIRE

    Ayala Cabrera, David

    2015-01-01

    [EN] Over time, due to multiple operational and maintenance activities, the networks of water supply systems (WSSs) undergo interventions, modifications or even are closed. In many cases, these activities are not properly registered. Knowledge of the paths and characteristics (status and age, etc.) of the WSS pipes is obviously necessary for efficient and dynamic management of such systems. This problem is greatly augmented by considering the detection and control of leaks. Access to reliable...

  6. Water Supply Options for the East Bay Municipal Utility District: A Critical Analysis

    OpenAIRE

    Fisher, Anthony C.

    1988-01-01

    The two main objectives of the East Bay Municipal Utility District (EBMUD) water supply management program are to cope with a failure of the aqueducts in the Delta due to earthquake and flood damage and to mitigate periodic shortages. EBMUD emphasizes construction of additional terminal storage, specifically development of a reservoir in Buckhorn Canyon, to meet both objectives. Better alternatives--cheaper and less environmentally damaging--are (to cope with failure) use of existing termin...

  7. Hydraulic analysis of water supply system Šmartno ob Paki

    OpenAIRE

    Stropnik, Petra

    2006-01-01

    The subject of the Graduation Project is the hydraulics of the Šmartno ob Paki water supply system. The primary focus is on the analysis of pressure and flow conditions using the appropriate software tools, and the optimisation of the existing situation. The Graduation Project features a theoretical and a practical part. The theoretical part includes all the bases required for hydraulic modelling, and the calculations and analysis of hydraulic conditions, while the practical part involves the...

  8. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region

    KAUST Repository

    Ghaffour, Noreddine

    2013-01-01

    Desalination is no longer considered as a nonconventional resource to supply potable water in several countries, especially in the Gulf Corporation Countries (GCC) and Middle East and North Africa (MENA) region as most of the big cities rely almost 100% on desalinated water for their supply. Due to the continuous increase in water demand, more large-scale plants are expected to be constructed in the region. However, most of the large cities in these countries have very limited water storage capacity, ranging from hours to a few days only and their groundwater capacity is very limited. The growing need for fresh water has led to significant cost reduction, because of technological improvements of desalination technologies which makes it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high peak in the summer season. However, desalination and power plants are economically and technically efficient only if they are fully operated at close to full capacity. In addition, desalination plants are exposed to external constraints leading to unexpected shutdowns (e.g. red tides). Hybridization of different technologies, including reverse osmosis and thermal-based plants, is used to balance the power to water mismatch in the demand by using the idle power from co-generation systems during low power demand periods. This has led to consideration of storage of additional desalinated water to allow for maximum production and stability in operation. Aquifer storage and recovery (ASR) would then be a good option to store the surplus of desalinated water which could be used when water demand is high or during unexpected shutdowns of desalination plants. In addition, increased reuse of treated wastewater could bring an integrated approach to water resources management. In this

  9. Storage and Non-Payment: Persistent Informalities within the Formal Water Supply of Hubli-Dharwad, India

    OpenAIRE

    Zachary Burt; Isha Ray

    2014-01-01

    Urban water systems in Asia and Africa mostly provide intermittent rather than continuous water supplies; such systems compromise water quality and inconvenience the user. Starting in 2008, an upgrade to continuous (24/7) water services was provided for 10% of the twin cities of Hubli-Dharwad, India, through a process of privatisation and formalisation. The goals were to improve water quality, free consumers from collecting and storing water, and reduce non-revenue (i.e. unpaid for) water. Dr...

  10. Chemical and microbiological qualities of The East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong.

    Science.gov (United States)

    Ho, K C; Chow, Y L; Yau, J T S

    2003-09-01

    Currently, about 80% of drinking water in Hong Kong is abstracted from The East River (Dongjiang) that is located in the mainland side of China. Literature records and monitoring results of 2000-2001 confirmed that the lower section of the Dongjiang had been contaminated by organic and inorganic pollutants. Statistical analyses showed that the increases of total cadmium, copper and zinc in the surface layer of sediment of Hong Kong reservoirs from 1994 to 2001 were positively correlated (significant at pwater samples of the Dongjiang and Hong Kong reservoirs. While analytical results found that currently most of the heavy metals, trace organics and microbes were removed by the drinking water treatment plants in Hong Kong, the long-term health risk of drinking water contamination should not be overlooked. The Water Supplies Department of Hong Kong is recommended to intensify its water quality monitoring program to cover pathogenic bacteria and parasites in watercourses and reservoirs. PMID:12867174

  11. Water Supply and Temperature Effects on Some Nutritive Constituents of Direct Sown Onion

    Directory of Open Access Journals (Sweden)

    Attila OMBÓDI

    2016-06-01

    Full Text Available Irrigation is a prerequisite for economical onion production under dry conditions. However, its effect on dry matter and nutrient content often remains a concern for growers. A direct sown onion hybrid was grown under open field, rain-fed and irrigated conditions for three years, investigating the effects of air temperature and water supply on some nutritive constituents. Dry matter, storage sugar, total flavonol and total polyphenol content showed strong positive correlation with average air temperature and negative correlation with water supply. However, irrigation had a positive effect on storage sugar and dry matter content. Presumably better water supply during dry periods ensured by irrigation provided the basis for higher photosynthetic production, and hereby more dry matter partitioning and accumulation in the bulb, a storage organ. An unexpected decrease in vitamin C content was experienced in 2011 and 2012, compared to the result of 2010, which was explained by the hot and dry conditions of the pre-harvest irrigation cut-off period. Fibre and ash content was found to be the most stable nutritional characteristics, affected neither by the environmental conditions, nor by the irrigation. Irrigation has proved to be very beneficial for direct sown onion, doubling bulb yield while not affecting the nutritive quality negatively.

  12. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  13. Contingency interim measure for the public water supply at Barnes, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2009-07-09

    This document presents a conceptual design for a contingency interim measure (IM) for treatment of the public water supply system at Barnes, Kansas, should this become necessary. The aquifer that serves the public water supply system at Barnes has been affected by trace to low concentrations of carbon tetrachloride and its degradation product, chloroform. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2008a) have demonstrated that groundwater at the Barnes site is contaminated with carbon tetrachloride at concentrations exceeding the Kansas Tier 2 risk-based screening level (RBSL) and the EPA maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) formerly operated a grain storage facility in Barnes, approximately 800 ft east-southeast of the public water supply wells. Carbon tetrachloride was used in the treatment of grain. Another potential source identified in an investigation conducted for the KDHE (PRC 1996) is the site of a former agriculture building owned by the local school district (USD 223). This building is located immediately east of well PWS3. The potential contingency IM options evaluated in this report include the treatment of groundwater at the public water supply wellheads and the provision of an alternate water supply via Washington County Rural Water District No.2 (RWD 2). This document was developed in accordance with KDHE Bureau of Environmental Remediation (BER) Policy No.BER-RS-029 (Revised) (KDHE 2006a), supplemented by guidance from the KDHE project manager. Upon the approval of this contingency IM conceptual design by the KDHE, the CCC/USDA will prepare a treatment system design document that will contain the following elements: (1) Description of the approved contingency IM treatment method; (2) Drawings and/or schematics provided by the contractor and/or manufacturer of the approved technology; (3) A

  14. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity

  15. Manmade radionuclide vector in Austrian soil and vegetation near Temelin nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sinojmeri, M.; Ringer, V. [Oesterreichische Agentur fuer Gesundheit und Ernaehrungssicherheit - AGES (Austria)

    2014-07-01

    Since Chernobyl NPP accident an environmental monitoring program concerning the Upper Austrian region near Czech Republic Nuclear Power Plant, NPP Temelin, is in progress between AGES and BMLFUV, the Austrian Federal Ministry of Agriculture, Forestry, Environment, Water and Food, in Austria. This paper presents the results obtained during the sampling campaign over biennial period of 2010-2011. Soil samples, grass and different cereal species were collected. Beside Cs-134, Cs-137 and Sr-89, Sr-90 isotopes, at this phase the number of isotopes determined was extended with plutonium isotopes Pu-238, Pu-239, Pu-240, Pu-241 and Am-241. A comparison of these results with the existing data so far is presented. New knowledge was obtained related the bio-kinetic parameters of these elements in the environment. Document available in abstract form only. (authors)

  16. Evaluation of the thermal performance of dead-legs in domestic hot water supply installations

    Energy Technology Data Exchange (ETDEWEB)

    Burberry, P.J.; Edwards, R.E.; Irwin, C.

    1986-01-01

    This paper describes, in brief, the first stage of a programme of research carried out at UMIST as part of the programme of the Building Research Establishment, (Garston), which is intended to establish a realistic model of thermal performance and water consumption for domestic hot water supply installations, a design procedure and a basis for design standards. The work involves the laboratory validation of a dynamic mathematicl simulation of the combined heat and mass transfer concerned in the operation of simple ''dead-leg'' configurations, for a variety of pipe diameters, pipe lengths, draw-off rates and demand profiles.

  17. Quality Improvement of a Small Water Supply. A Practical Application of a Full System of Nanofiltration

    OpenAIRE

    R. Marin Galvin; J. M. Rodriguez Mellado

    2013-01-01

    The THM level in the Spanish drinking water is limited to less than 0.100 mg/L, due to its potential toxicological effect on humans. This paper investigates the comparison of the results obtained in a small supply of water that historically presented THM contents out of the Spanish normative, versus the results there obtained when the treatment was modified with the inclusion of a nanofiltration system. So, the conventional treatment first applied was that of pre-oxidation with chlorine and/o...

  18. Network Topology of the Austrian Airline Flights

    CERN Document Server

    Han, D D; Qian, J H

    2007-01-01

    We analyze the directed, weighted and evolutionary Austrian airline flight network. It is shown that such a specific airline flight network displays features of small-world networks, namely large clustering coefficient and small average shortest-path length. We study the detailed flight information both in a week and on a whole. In both cases, the degree distributions reveal power law with exponent value of 2 $\\sim$ 3 for the small degree branch and a flat tail for the large degree branch. Similarly, the flight weight distributions have power-law for the small weight branch. The degree-degree correlation analysis shows the network has disassortative behavior, i.e. the large airports are likely to link to smaller airports.

  19. Measuring the Impact of Convenient Water Supply on Household Time Use in Rural Ethiopia

    Science.gov (United States)

    Cook, J.; Masuda, Y.; Fortmann, L.; Smith-Nilson, M.; Gugerty, M.

    2012-12-01

    What is the impact of providing convenient water supply on water carriers' pattern of time use? How much of the freed time is re-allocated to paid market work, education (for girls), agricultural labor, or leisure? Do women report spending more time on activities they enjoy? Does convenient water supply lead to a re-allocation of leisure time to other household members? These questions are an important, but largely missing, piece of the economic evidence base for investment in the water supply sector. Cairncross and Valdmanis (2007) observe that "given the relevance of the time-saving benefit to water supply policy and the fact that the benefit is usually uppermost in the mind of the consumer, it is remarkable how few data have been collected on the amounts of time spent collecting water". We address this gap by measuring changes in time use among female water carriers before and after new water systems are installed in three rural villages in the Oromia region of Ethiopia. The timing of completion of the projects in the three villages was staggered over time for logistical reasons, so our quasi-experimental design allows us to control for any region-wide changes in time use. Because of low literacy levels, we used a pictorial time use elicitation approach based on respondents' recall of the previous day as well as the standard questions used in the DHS and LSMS ("how many minutes..."). We measured time use for all household members over the age of 10. We use this unique panel dataset with both pre- and post-project time use data to examine not only the effect on water carriers' time use but also any intra-household reallocation of time savings. In total, we interviewed 454 randomly-selected households in the three villages over three rainy seasons, and collected time use information on 1,590 household members. Primary water carriers spend (pre-project) an average of 110 minutes per day collecting water, roughly representative of water collection times reported in

  20. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    Science.gov (United States)

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to