WorldWideScience

Sample records for australopithecus bahrelghazali mio-pliocene

  1. Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad

    OpenAIRE

    Lebatard, Anne-Elisabeth; Bourlès, Didier L.; Duringer, Philippe; Jolivet, Marc; Braucher, Régis; Carcaillet, Julien; Schuster, Mathieu; Arnaud, Nicolas; Monié, Patrick; Lihoreau, Fabrice; Likius, Andossa; Mackaye, Hassan Taisso; Vignaud, Patrick; Brunet, Michel

    2008-01-01

    Ages were determined at two hominid localities from the Chad Basin in the Djurab Desert (Northern Chad). In the Koro Toro fossiliferous area, KT 12 locality (16°00′N, 18°53′E) was the site of discovery of Australopithecus bahrelghazali (Abel) and in the Toros-Menalla fossiliferous area, TM 266 locality (16°15′N, 17°29′E) was the site of discovery of Sahelanthropus tchadensis (Toumaï). At both localities, the evolutive degree of the associated fossil mammal assemblages allowed a biochronologic...

  2. Hypercarnivory, durophagy or generalised carnivory in the Mio-Pliocene hyaenids of South Africa?

    Directory of Open Access Journals (Sweden)

    Adam Hartstone-Rose

    2013-05-01

    Full Text Available Carnivorans, the members of the order Carnivora, exhibit wide dietary diversity – from overwhelmingly herbivorous species (like the giant and red pandas to species that specialise in the consumption of flesh (like the hypercarnivorous felids. Throughout the evolution of this order, many craniodental forms have emerged and gone extinct – notably the sabretooth felids that existed until the late Pleistocene. However, one carnivoran lineage, remarkable for its extreme masticatory adaptations, persists – the bone-cracking hyaenids. Three of the four extant members of this family (Crocuta crocuta, Hyaena hyaena and Parahyaena brunnea are among the most durophagous mammals to have ever lived. The fourth extant hyaenid – the aardwolf (Proteles cristatus – also exhibits impressive, although wholly different, masticatory adaptations as one of the most derived mammalian insectivores. How and when did the level of durophagy evident in extant bone-cracking hyenas evolve, and how do Mio-Pliocene hyenas compare to the extant members of the order in terms of their own dietary specialisations? An examination of the premolars of the Mio-Pliocene hyaenids from Langebaanweg, South Africa suggests that modern levels of durophagy appeared relatively recently. Results from an analysis of dental radii-of-curvature and premolar intercuspid notches suggest that these hyenas were neither bone crackers nor flesh specialists, but were dietary generalists.

  3. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods.

    Science.gov (United States)

    Amidon, William H; Fisher, G Burch; Burbank, Douglas W; Ciccioli, Patricia L; Alonso, Ricardo N; Gorin, Andrew L; Silverhart, Perri H; Kylander-Clark, Andrew R C; Christoffersen, Michael S

    2017-06-20

    Although Earth's climate history is best known through marine records, the corresponding continental climatic conditions drive the evolution of terrestrial life. Continental conditions during the latest Miocene are of particular interest because global faunal turnover is roughly synchronous with a period of global glaciation from ∼6.2-5.5 Ma and with the Messinian Salinity Crisis from ∼6.0-5.3 Ma. Despite the climatic and ecological significance of this period, the continental climatic conditions associated with it remain unclear. We address this question using erosion rates of ancient watersheds to constrain Mio-Pliocene climatic conditions in the south-central Andes near 30° S. Our results show two slowdowns in erosion rate, one from ∼6.1-5.2 Ma and another from 3.6 to 3.3 Ma, which we attribute to periods of continental aridity. This view is supported by synchrony with other regional proxies for aridity and with the timing of glacial ‟cold" periods as recorded by marine proxies, such as the M2 isotope excursion. We thus conclude that aridity in the south-central Andes is associated with cold periods at high southern latitudes, perhaps due to a northward migration of the Southern Hemisphere westerlies, which disrupted the South American Low Level Jet that delivers moisture to southeastern South America. Colder glacial periods, and possibly associated reductions in atmospheric CO 2 , thus seem to be an important driver of Mio-Pliocene ecological transitions in the central Andes. Finally, this study demonstrates that paleo-erosion rates can be a powerful proxy for ancient continental climates that lie beyond the reach of most lacustrine and glacial archives.

  4. Evidence for long-term uplift on the Canary Islands from emergent Mio Pliocene littoral deposits

    Science.gov (United States)

    Meco, Joaquín; Scaillet, Stéphane; Guillou, Hervé; Lomoschitz, Alejandro; Carlos Carracedo, Juan; Ballester, Javier; Betancort, Juan-Francisco; Cilleros, Antonio

    2007-06-01

    Several islands in the Canarian archipelago show marine deposits with identical fossil faunas, which are generally assigned to different glacioeustatic marine episodes: mainly Pleistocene episodes in Lanzarote and Fuerteventura, and Mio-Pliocene ones in Gran Canaria. Three fossil species ( Saccostrea chili, Nerita emiliana and Strombus coronatus) characterize all the marine deposits from southern Lanzarote, to the west and south of Fuerteventura and northeast of Gran Canaria. Three other species ( Ancilla glandiformis, Rothpletzia rudista and Siderastraea miocenica) confirm the chronostratigraphic attribution of these deposits. Other more occasional fossils (as Chlamys latissima, Isognomon soldanii and Clypeaster aegyptiacus) fit an upper Miocene and lower Pliocene age. This agrees with new K/Ar ages obtained from pillow lavas emplaced into the marine deposits (ca. 4.1 Ma in Gran Canaria, ca. 4.8 Ma in Fuerteventura) and from underlying (ca. 9.3 Ma in Gran Canaria) or overlying (ca. 9.8 Ma in Lanzarote) lava flows. The marine deposits are eroded but large continuous segments are preserved sloping gently towards the coast. Variations in the highest and the lowest elevations of the deposits apsl (above present sea level) indicate post-depositional uplift movements. Glacioeustatic causes are unlikely to be responsible for these variations on the basis of the coastal location of the deposits and their equatorial fauna characteristic of Mio-Pliocene corals. Differential uplift of the deposits across the archipelago is argued to result from the progressive seaward tilting of the islands along the insular volcanic trail marking the westward migration of hot spot head since 20 Ma. Successive westward accretion of younger volcanic edifices resulted in increasing lithostatic load of the crust with progressive (diachronous) tilting of the older edifices and their palaeo-shorelines marked by past coastal deposits.

  5. Micromammal biostratigraphy of the Alcoy Basin (Eastern Spain): remarks on the Mio-Pliocene boundary of the Iberian Peninsula

    International Nuclear Information System (INIS)

    Mansino, S.; Fierro, I.; Tossal, A.; Montoya, P.; Ruiz-Sánchez, F.J.

    2017-01-01

    The study of 13 micromammal localities in the southern section of the Gormaget ravine (Alcoi Basin, SE Spain) and another 4 localities in the northern section has allowed us to define four local biozones in the dawn of the Pliocene, possibly recording the Mio-Pliocene boundary. The great density of localities close to the Mio-Pliocene boundary has enabled us to achieve a great resolution in the biozonation of the earliest Pliocene, only comparable in the Iberian Peninsula to the record of the Teruel Basin (NE Spain). We interpret these biozones in the light ofthe Neogene Mammal units and the European Land Mammal Ages, and correlate them with other local biozones defined for the same time span in the Iberian Peninsula.

  6. Micromammal biostratigraphy of the Alcoy Basin (Eastern Spain): remarks on the Mio-Pliocene boundary of the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Mansino, S.; Fierro, I.; Tossal, A.; Montoya, P.; Ruiz-Sánchez, F.J.

    2017-11-01

    The study of 13 micromammal localities in the southern section of the Gormaget ravine (Alcoi Basin, SE Spain) and another 4 localities in the northern section has allowed us to define four local biozones in the dawn of the Pliocene, possibly recording the Mio-Pliocene boundary. The great density of localities close to the Mio-Pliocene boundary has enabled us to achieve a great resolution in the biozonation of the earliest Pliocene, only comparable in the Iberian Peninsula to the record of the Teruel Basin (NE Spain). We interpret these biozones in the light ofthe Neogene Mammal units and the European Land Mammal Ages, and correlate them with other local biozones defined for the same time span in the Iberian Peninsula.

  7. Diverse diets of the Mio-Pliocene carnivorans of Langebaanweg, South Africa

    Directory of Open Access Journals (Sweden)

    Adam Hartstone-Rose

    2016-07-01

    Full Text Available The Mio-Pliocene guild of carnivorans of Langebaanweg (LBW, South Africa, is phylogenetically and ecologically diverse. Unlike modern African fauna, this fossil sample contains a large ursid; although there are mustelids, herpestids and viverrids in Africa today, some of the LBW members of those families were much larger than their modern confamilials. There were also numerous felid species, including some that possess a more sabretoothed dental morphology, as well as several species of hyaenids that were very different from their modern confamilials. Questions remain about the dietary morphospace occupied by these fossils. Which taxa were predominately durophagous and which were the most hypercarnivorous? Did the level of durophagy and hypercarnivory in the LBW taxa reach the level of specialisation found in modern carnivores? In the current study, we evaluate the dietary specialisations of all the large terrestrial LBW carnivorans through analysis of the radii-of-curvature and intercuspid notches present in the mandibular dentition. We found that the LBW carnivorans had less sharp premolars than do their modern confamilials an indication of greater durophagy. However, some families contain individuals with more extreme intercuspid notch patterns, indicating greater hypercarnivory. The ursid also possessed a suite of morphology unlike any modern carnivoran, exhibiting some morphology conducive to durophagy and some that places it functionally among the most hypercarnivorous of modern carnivorans. Thus it was likely capable of consuming high levels of both flesh and bone.

  8. Giant bunodont Lutrinae from the Mio-Pliocene of Kenya and Uganda

    Directory of Open Access Journals (Sweden)

    Pickford, M.

    2005-12-01

    Full Text Available Three new species of bunodont otters are described from the Mio-Pliocene of East Africa. They are provisionally attributed to the genus Sivaonyx Pilgrim, 1931. The species described are Sivaonyx soriae, nov. sp. and Sivaonyx senutae nov. sp. from the Latest Miocene Lukeino Formation (Kenya and Sivaonyx kamuhangirei nov. sp. from the Pliocene of Kazinga and Warwire (Uganda. Additional material of the species Sivaonyx ekecaman (Werdelin, 2003 is described from Sagatia, Mabaget Formation (Kenya. The systematics of the new tribe Enhydriodontini are discussed and we report the presence of evolutionary tendencies in the bunodont African otters: increase in body size, modification of the carnassial teeth. In particular in the P4/ the protocone becomes well separated from the paracone, at the same time that an anterior valley develops.Se describen tres nuevas especies de nutrias bunodontas del Mio-plioceno de Africa oriental. Provisionalmente se adscriben al género Sivaonyx Pilgrim 1931. Las especies descritas son Sivaonyx soriae nov. sp y Sivaonyx senutae nov. sp. del Mioceno final de la formación Lukeino (Kenia, y Sivaonyx kamuhangirei nov. sp del Plioceno de Kazinga y Warwire (Uganda. También se describen nuevos fósiles de Sagatia, formación Magabet (Kenia atribuibles a la especie Sivaonyx ekecaman (Werdelin, 2003. Se discute la sistemática de la nueva tribu Enhydriotini y se señala la presencia de dos tendencias evolutivas en las nutrias bunodontas africanas: incremento de talla y modificación de las carniceras. Especialmente del P4/ en el que el protocono se va separando del paracono, al mismo tiempo que se desarrolla un valle en posición anterior.

  9. Magnetic record of Mio-Pliocene red clay and Quaternary loess-paleosol sequence in the Chinese Loess Plateau

    Directory of Open Access Journals (Sweden)

    Yougui Song

    2018-02-01

    Full Text Available This article presents magnetic data of a 300-m-thick Mio-Pliocene red clay and Quaternary loess-paleosol sequence near Chaona town in the Central Chinese Loess Plateau. Detailed magnetostratigraphy shows that the aeolian red clay began to accumulate at ca. 8.1 Ma. Here, we presented a high-resolution rock magnetic data at 20–40 cm intervals within 4.5–8 ka span per sample of this section, which has been published in Song et al. (2014 [1] and (2017 [2]. The dataset including the following magnetic parameters: mass magnetic susceptibility (χ, frequency-dependent susceptibility (χfd, saturation magnetization (Ms, saturation remanent magnetization (Mrs, coercive force (Bc, remanent coercivity (Bcr, saturation isothermal remanent magnetization (SIRM and S-ratio. Magnetic susceptibility and hysteresis parameters were measured at Lanzhou University and Kyoto University, respectively. This data provides a high-resolution rock magnetic evidences for understanding East Asia Monsoon change, Asian interior aridification and tectonic effect of the uplift of the Tibetan Plateau since middle Miocene period. Keywords: Rock magnetic record, Late Miocene and Pliocene red clay, Quaternary loess-paleosol sequence, Chinese Loess Plateau

  10. Multiple tectonic mode switches indicate short-duration heat pulses in a Mio-Pliocene metamorphic core complex, West Papua, Indonesia

    Science.gov (United States)

    White, L. T.; Hall, R.; Gunawan, I.

    2017-12-01

    The Wandaman Peninsula is a narrow (2 km) promontory in remote western New Guinea. The peninsula is almost entirely composed of medium- to high-grade metamorphic rocks considered to be associated with a Mio-Pliocene metamorphic core complex. Previous work has shown that the uplift and exhumation of the core complex has potentially brought some extremely young eclogite to the surface. These might be comparable to the world's youngest (4.3 Ma) eclogites found in the D'Entrecasteaux Islands at the opposite end of New Guinea. We show that tectonic history of this region is complex. This is because the metamorphic sequences in the Wandaman Peninsula record multiple phases of deformation, all within the last few million years. This is demonstrated through methodical collation of cross-cutting relations from field and microstructural studies across the peninsula. The first phase of deformation and metamorphism is associated with crustal extension and partial melting that took place at 5-7 Ma according to new U-Pb data from metamorphic zircons. This extensional phase ceased after a tectonic mode switch and the region was shortened. This is demonstrated by two phases of folding (1. recumbent and 2. open) that overprint the earlier extensional fabrics. All previous structures were later overprinted by brittle extensional faults and uplift. This extensional phase is still taking place today, as is indicated by submerged forests exposed along the coastline associated with recent earthquakes and hot springs. The sequence of metamorphic rocks that are exposed in the Wandaman Peninsula show that stress and thermal conditions can change rapidly. If we consider that the present is a key to the past, then such results can identify the duration of deformation and metamorphic events more accurately than in much older orogenic systems.

  11. Mio Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes: A case of volcanic controls on sedimentation in broken foreland basins

    Science.gov (United States)

    Martina, Federico; Dávila, Federico M.; Astini, Ricardo A.

    2006-04-01

    A well-constrained record of Miocene-Pliocene explosive volcanism is preserved within the broken foreland of Western Argentina along the Famatina Ranges. This paper focuses on the volcaniclastic record known as the Río Blanco member of the El Durazno Formation. Three facies can be recognized in the study area: (1) massive tuffs; (2) volcaniclastic conglomerates and (3) pumiceous sandstones. These facies are interpreted as primary pyroclastic flow deposits (ignimbrites) and reworked volcanogenic deposits within interacting volcanic-fluvial depositional systems. Alternation between ignimbrites and volcanogenic sandstones and conglomerates suggest a recurrent pattern of sedimentation related to recurrent volcanic activity. Considering the facies mosaic and relative thicknesses of facies, short periods of syn-eruption sedimentation (volcaniclastic deposits) seem to have been separated by longer inter-eruption periods, where normal stream-flow processes were dominant. The volcaniclastic component decreases up-section, suggesting a gradual reduction in volcanic activity. The mean sedimentation rate of the Río Blanco member is higher (0.44 mm/year) than those obtained for the underlying and overlying units. This increase cannot be fully explained by foreland basement deformation and tectonic loading. Hence, we propose subsidence associated with volcanic activity as the causal mechanism. Volcanism would have triggered additional accommodation space through coeval pyroclastic deposition, modification of the stream equilibrium profile, flexural loading of volcanoes, and thermal processes. These mechanisms may have favored the preservation of volcaniclastic beds in the high-gradient foreland system of Famatina during the Mio-Pliocene. Thus, the Río Blanco member records the response of fluvial systems to large, volcanism-induced sediment loads.

  12. Revised age estimates of Australopithecus-bearing deposits at Sterkfontein, South Africa.

    Science.gov (United States)

    Berger, Lee R; Lacruz, Rodrigo; De Ruiter, Darryl J

    2002-10-01

    The Sterkfontein fossil site in South Africa has produced the largest concentration of early hominin fossils from a single locality. Recent reports suggest that Australopithecus from this site is found within a broad paleontological age of between 2.5-3.5 Ma (Partridge [2000] The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 100-125; Partridge et al. [2000a], The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 129-130; Kuman and Clarke [2000] J Hum Evol 38:827-847). Specifically, the hominin fossil commonly referred to as the "Little Foot" skeleton from Member 2, which is arguably the most complete early hominin skeleton yet discovered, has been magnetostratigraphically dated to 3.30-3.33 Ma (Partridge [2000] The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 100-125; Partridge et al. [2000a], The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 129-130). More recent claims suggest that hominin fossils from the Jacovec Cavern are even older, being dated to approximately 3.5 Ma. Our interpretation of the fauna, the archeometric results, and the magnetostratigraphy of Sterkfontein indicate that it is unlikely that any Members yet described from Sterkfontein are in excess of 3.04 Ma in age. We estimate that Member 2, including the Little Foot skeleton, is younger than 3.0 Ma, and that Member 4, previously dated to between 2.4-2.8 Ma, is more likely to fall between 1.5-2.5 Ma. Our results suggest that Australopithecus africanus should not be considered as a temporal contemporary of Australopithecus afarensis, Australopithecus bahrelghazali, and Kenyanthropus platyops. Copyright 2002 Wiley-Liss, Inc.

  13. Metacarpal proportions in Australopithecus africanus.

    Science.gov (United States)

    Green, David J; Gordon, Adam D

    2008-05-01

    Recent work has shown that, despite being craniodentally more derived, Australopithecus africanus had more apelike limb-size proportions than A. afarensis. Here, we test whether the A. africanus hand, as judged by metacarpal shaft and articular proportions, was similarly apelike. More specifically, did A. africanus have a short and narrow first metacarpal (MC1) relative to the other metacarpals? Proportions of both MC breadth and length were considered: the geometric mean (GM) of articular and midshaft measurements of MC1 breadth was compared to those of MC2-4, and MC1 length was compared to MC3 length individually and also to the GM of MC2 and 3 lengths. To compare the extant hominoid sample with an incomplete A. africanus fossil record (11 attributed metacarpals), a resampling procedure imposed sampling constraints on the comparative groups that produced composite intrahand ratios. Resampled ratios in the extant sample are not significantly different from actual ratios based on associated elements, demonstrating the methodological appropriateness of this technique. Australopithecus africanus metacarpals do not differ significantly from the great apes in the comparison of breadth ratios but are significantly greater than chimpanzees and orangutans in both measures of relative length. Conversely, A. africanus has a significantly smaller breadth ratio than modern humans, but does not significantly differ from this group in either measure of relative length. We conclude that the first metacarpals of A. africanus are more apelike in relative breadth while also being more humanlike in relative length, a finding consistent with previous work on A. afarensis hand proportions. This configuration would have likely promoted a high degree of manipulative dexterity, but the relatively slender, apelike first metacarpal suggests that A. africanus did not place the same mechanical demands on the thumb as more recent, stone-tool-producing hominins.

  14. Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis

    OpenAIRE

    Ungar, Peter S.; Scott, Robert S.; Grine, Frederick E.; Teaford, Mark F.

    2010-01-01

    Many researchers have suggested that Australopithecus anamensis and Australopithecus afarensis were among the earliest hominins to have diets that included hard, brittle items. Here we examine dental microwear textures of these hominins for evidence of this. The molars of three Au. anamensis and 19 Au. afarensis specimens examined preserve unobscured antemortem microwear. Microwear textures of these individuals closely resemble those of Paranthropus boisei, having lower complexity values than...

  15. Did Australopithecus and Homo co-exist

    International Nuclear Information System (INIS)

    Vogel, J.C.

    1984-01-01

    Uranium series isotope dating of the tufas at Taung/Buxton suggests a considerably younger age for the Taung child (Australopithecus africanus) than has hitherto been accepted. If this later date is confirmed, it will necessitate a re-think of the evolutionary tree of Man and his ancestors

  16. Relative cheek-tooth size in Australopithecus.

    Science.gov (United States)

    McHenry, H M

    1984-07-01

    Until the discovery of Australopithecus afarensis, cheek-tooth megadontia was unequivocally one of the defining characteristics of the australopithecine grade in human evolution along with bipedalism and small brains. This species, however, has an average postcanine area of 757 mm2, which is more like Homo habilis (759 mm2) than A. africanus (856 mm2). But what is its relative cheek-tooth size in comparison to body size? One approach to this question is to compare postcanine tooth area to estimated body weight. By this method all Australopithecus species are megadont: they have cheek teeth 1.7 to 2.3 times larger than modern hominoids of similar body size. The series from A. afarensis to A. africanus to A. robustus to A. boisei shows strong positive allometry indicating increasing megadontia through time. The series from H. habilis to H. erectus to H. sapiens shows strong negative allometry which implies a sharp reduction in the relative size of the posterior teeth. Postcanine megadontia in Australopithecus species can also be demonstrated by comparing tooth size and body size in associated skeletons: A. afarensis (represented by A.L. 288-1) has a cheek-tooth size 2.8 times larger than expected from modern hominoids; A. africanus (Sts 7) and A. robustus (TM 1517) are over twice the expected size. The evolutionary transition from the megadont condition of Australopithecus to the trend of decreasing megadontia seen in the Homo lineage may have occurred between 3.0 and 2.5 m.y. from A. afarensis to H.habilis but other evidence indicates that it is more likely to have occurred between 2.5 to 2.0 m.y. from an A. africanus-like form to H. habilis.

  17. Variability of Australopithecus second maxillary molars from Sterkfontein Member 4.

    Science.gov (United States)

    Fornai, Cinzia; Bookstein, Fred L; Weber, Gerhard W

    2015-08-01

    The question of how many Australopithecus species lived at Sterkfontein Member 4 and Makapansgat continues to be controversial inasmuch as the fossils are poorly preserved, the stratigraphy is difficult to interpret, and the cranial, dental, and postcranial remains are mostly not associated. To proceed we applied the most intensive modern methods of 3D geometric morphometrics to dental form, specifically the shapes of the upper second molars (M(2)s) in a sample combining 13 Australopithecus, 11 Paranthropus, and 23 Homo. We analyzed outer and inner crown surfaces, as well as crown and cervical outlines both separately and together, using a total of 16 landmarks, 51 curve semilandmarks, and 48 pseudolandmarks over the four structures. Outer and inner enamel surfaces are highly correlated in this dataset, while crown outline is the least informative of the four structures. Homo was easily distinguished from both Australopithecus and Paranthropus by these methods, likewise Homo sapiens from Homo neanderthalensis. There were, however, no stable classes within the Australopithecus sample or between Australopithecus and Paranthropus. Instead, there was a gradient along which Australopithecus prometheus and Australopithecus africanus lie toward the extremes, with Paranthropus overlapping both. If there are indeed different species at this site, then either their M(2) morphologies are uninformative or else the present sample is too small to make an accurate assessment. Our findings suggest that the variability of the Australopithecus specimens will be difficult to interpret authoritatively, independent of the method used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis.

    Science.gov (United States)

    Ungar, Peter S; Scott, Robert S; Grine, Frederick E; Teaford, Mark F

    2010-10-27

    Many researchers have suggested that Australopithecus anamensis and Australopithecus afarensis were among the earliest hominins to have diets that included hard, brittle items. Here we examine dental microwear textures of these hominins for evidence of this. The molars of three Au. anamensis and 19 Au. afarensis specimens examined preserve unobscured antemortem microwear. Microwear textures of these individuals closely resemble those of Paranthropus boisei, having lower complexity values than Australopithecus africanus and especially Paranthropus robustus. The microwear texture complexity values for Au. anamensis and Au. afarensis are similar to those of the grass-eating Theropithecus gelada and folivorous Alouatta palliata and Trachypithecus cristatus. This implies that these Au. anamensis and Au. afarensis individuals did not have diets dominated by hard, brittle foods shortly before their deaths. On the other hand, microwear texture anisotropy values for these taxa are lower on average than those of Theropithecus, Alouatta or Trachypithecus. This suggests that the fossil taxa did not have diets dominated by tough foods either, or if they did that directions of tooth-tooth movement were less constrained than in higher cusped and sharper crested extant primate grass eaters and folivores.

  19. Anterior dental evolution in the Australopithecus anamensis–afarensis lineage

    OpenAIRE

    Ward, Carol V.; Plavcan, J. Michael; Manthi, Fredrick K.

    2010-01-01

    Australopithecus anamensis is the earliest known species of the Australopithecus–human clade and is the likely ancestor of Australopithecus afarensis. Investigating possible selective pressures underlying these changes is key to understanding the patterns of selection shaping the origins and early evolution of the Australopithecus–human clade. During the course of the Au. anamensis–afarensis lineage, significant changes appear to occur particularly in the anterior dentition, but also in jaw s...

  20. Revision of the Mio-Pliocene bunodont otter-like mammals of the Indian Subcontinent

    Directory of Open Access Journals (Sweden)

    Pickford, M.

    2007-06-01

    Full Text Available A revision of the Enhydriodontini of the Indian Subcontinent is undertaken on the basis of previously described and recently collected bunodont otter-like fossils from the sub-Himalayan Siwalik Group. It is confirmed that, with the passage of geological time spanning the period 13 – 3 Ma, there occurred a progressive increase in body size, a reduction of the anterior part of the premolar row and an increase in degree of cheek tooth bunodonty and cusp mastoidization. Functional analysis of a snout with a partly preserved incisor battery of Enhydriodon sivalensis, reveals that it was probably a molluscivore, preying principally on bivalves, while other species of enhydriodonts were more likely to have been piscivores and cancrivores. One new species of Sivaonyx is described from the base of the Late Miocene of Pakistan. Bunodont otter-like mammals from Eurasia, Africa and North America are briefly discussed in light of the revision of the Indo-Pakistan ones. The origins and phylogenetic relationships of these mammals remains obscure. The major differences in dental anatomy indicate that these Old World otter-like mammals should not be classified in Enhydrini, but in a tribe of their own Enhydriodontini new tribe.La revisión de los Enhydriontinos del subcontinente Indio se aborda, tanto en base a los fósiles de nutrias bunodontas previamente descritos, como a los hallazgos recientemente realizados en el Grupo de los Siwaliks en el sub-Himalaya. Se confirma que durante el período de tiempo comprendido entre los 13 a 3 Ma hubo un progresivo incremento en la talla corporal, una reducción de la parte anterior de la serie premolar y un incremento en el grado de bunodoncia y mastoidización de las cúspides de los dientes. El análisis funcional de un hocico de Enhydriodon sivalensis con la batería de incisivos parcialmente conservados revela que esta especie fue parcialmente malacófaga, alimentándose principalmente de bivalvos, mientras que otras especies de enhydriontinos fueron más piscívoras y cancrívoras. En el trabajo también se describe una nueva especie de Sivaonyx procedente de la base del Mioceno Terminal de Paquistán. Los mamíferos bunodontos de tipo nutria de Eurasia, África y América del Norte son brevemente discutidos a la luz de la revisión realizada para las formas paquistaníes. El origen y relaciones filogenéticas de estos mamíferos permanecen oscuros. Las importantes diferencias en anatomía dental indican que estos mamíferos de tipo nutria del Viejo Mundo no deberían ser clasificados como Enhydrini, sino en una tribu propia, Enhydriodontini nueva tribu.

  1. Rodent faunas of the Mio-Pliocene continental sediments of the Teruel-Alfambra region, Spain

    NARCIS (Netherlands)

    Weerd, A. van de

    1976-01-01

    In the large inland basin of Teruel-Calatayud the area around the town of Teruel is well known for its numerous remains of fossil mammals. They are found in Upper Miocene and Pliocene deposits, and some groups have already been studied in detail. Simultaneous with the collecting of fossil

  2. Evolution of the mandibular third premolar crown in early Australopithecus.

    Science.gov (United States)

    Delezene, Lucas K; Kimbel, William H

    2011-06-01

    The Pliocene hominins Australopithecus anamensis and Australopithecus afarensis likely represent ancestor-descendent taxa--possibly an anagenetic lineage--and capture significant change in the morphology of the canine and mandibular third premolar (P(3)) crowns, dental elements that form the canine honing complex in nonhuman catarrhines. This study focuses on the P(3) crown, highlighting plesiomorphic features in A. anamensis. The A. afarensis P(3) crown, in contrast, is variable in its expression of apomorphic features that are characteristic of geologically younger hominins. Temporal variation characterizes each taxon as well. The A. anamensis P(3) from Allia Bay, Kenya expresses apomorphic character states, shared with A. afarensis, which are not seen in the older sample of A. anamensis P(3)s from Kanapoi, Kenya, while spatiotemporal differences in shape exist within the A. afarensis hypodigm. The accumulation of derived features in A. afarensis results in an increased level of P(3) molarisation. P(3) molarisation did not evolve concurrent with postcanine megadontia and neither did the appearance of derived aspects of P(3) occlusal form coincide with the loss of canine honing in hominins, which is apparent prior to the origin of the genus Australopithecus. A. afarensis P(3) variation reveals the independence of shape, size, and occlusal form. The evolution of the P(3) crown in early Australopithecus bridges the wide morphological gap that exists between geologically younger hominins on the one hand and extant apes and Ardipithecus on the other. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Developmental simulation of the adult cranial morphology of Australopithecus sediba

    OpenAIRE

    Carlson, K.B.; de Ruiter, D.J.; DeWitt, T.J.; McNulty, K.P.; Carlson, K.J.; Tafforeau, P.; Berger, L.R.

    2016-01-01

    The type specimen of Australopithecus sediba (MH1) is a late juvenile, prompting some commentators to suggest that had it lived to adulthood its morphology would have changed sufficiently so as to render hypotheses regarding its phylogenetic relations suspect. Considering the potentially critical position of this species with regard to the origins of the genus Homo, a deeper understanding of this change is especially vital. As an empirical response to this critique, a developmental simulation...

  4. An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia

    OpenAIRE

    Haile-Selassie, Yohannes; Latimer, Bruce M.; Alene, Mulugeta; Deino, Alan L.; Gibert, Luis; Melillo, Stephanie M.; Saylor, Beverly Z.; Scott, Gary R.; Lovejoy, C. Owen

    2010-01-01

    Only one partial skeleton that includes both forelimb and hindlimb elements has been reported for Australopithecus afarensis. The diminutive size of this specimen (A.L. 288-1 ["Lucy"]) has hampered our understanding of the paleobiology of this species absent the potential impact of allometry. Here we describe a large-bodied (i.e., well within the range of living Homo) specimen that, at 3.58 Ma, also substantially antedates A.L. 288–1. It provides fundamental evidence of limb proportions, thor...

  5. From Australopithecus to Homo: the transition that wasn't?

    OpenAIRE

    Kimbel, William H.; Villmoare, Brian

    2016-01-01

    Although the transition from Australopithecus to Homo is usually thought of as a momentous transformation, the fossil record bearing on the origin and earliest evolution of Homo is virtually undocumented. As a result, the poles of the transition are frequently attached to taxa (e.g. A. afarensis, at ca 3.0 Ma versus H. habilis or H. erectus, at ca 2.0?1.7 Ma) in which substantial adaptive differences have accumulated over significant spans of independent evolution. Such comparisons, in which ...

  6. From Australopithecus to Homo: the transition that wasn't†

    Science.gov (United States)

    Kimbel, William H.

    2016-01-01

    Although the transition from Australopithecus to Homo is usually thought of as a momentous transformation, the fossil record bearing on the origin and earliest evolution of Homo is virtually undocumented. As a result, the poles of the transition are frequently attached to taxa (e.g. A. afarensis, at ca 3.0 Ma versus H. habilis or H. erectus, at ca 2.0–1.7 Ma) in which substantial adaptive differences have accumulated over significant spans of independent evolution. Such comparisons, in which temporally remote and adaptively divergent species are used to identify a ‘transition’, lend credence to the idea that genera should be conceived at once as monophyletic clades and adaptively unified grades. However, when the problem is recast in terms of lineages, rather than taxa per se, the adaptive criterion becomes a problem of subjectively privileging ‘key’ characteristics from what is typically a stepwise pattern of acquisition of novel characters beginning in the basal representatives of a clade. This is the pattern inferred for species usually included in early Homo, including H. erectus, which has often been cast in the role as earliest humanlike hominin. A fresh look at brain size, hand morphology and earliest technology suggests that a number of key Homo attributes may already be present in generalized species of Australopithecus, and that adaptive distinctions in Homo are simply amplifications or extensions of ancient hominin trends. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298460

  7. From Australopithecus to Homo: the transition that wasn't.

    Science.gov (United States)

    Kimbel, William H; Villmoare, Brian

    2016-07-05

    Although the transition from Australopithecus to Homo is usually thought of as a momentous transformation, the fossil record bearing on the origin and earliest evolution of Homo is virtually undocumented. As a result, the poles of the transition are frequently attached to taxa (e.g. A. afarensis, at ca 3.0 Ma versus H. habilis or H. erectus, at ca 2.0-1.7 Ma) in which substantial adaptive differences have accumulated over significant spans of independent evolution. Such comparisons, in which temporally remote and adaptively divergent species are used to identify a 'transition', lend credence to the idea that genera should be conceived at once as monophyletic clades and adaptively unified grades. However, when the problem is recast in terms of lineages, rather than taxa per se, the adaptive criterion becomes a problem of subjectively privileging 'key' characteristics from what is typically a stepwise pattern of acquisition of novel characters beginning in the basal representatives of a clade. This is the pattern inferred for species usually included in early Homo, including H. erectus, which has often been cast in the role as earliest humanlike hominin. A fresh look at brain size, hand morphology and earliest technology suggests that a number of key Homo attributes may already be present in generalized species of Australopithecus, and that adaptive distinctions in Homo are simply amplifications or extensions of ancient hominin trends.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  8. Phylogeny of early Australopithecus: new fossil evidence from the Woranso-Mille (central Afar, Ethiopia)

    OpenAIRE

    Haile-Selassie, Yohannes

    2010-01-01

    The earliest evidence of Australopithecus goes back to ca 4.2 Ma with the first recorded appearance of Australopithecus ‘anamensis’ at Kanapoi, Kenya. Australopithecus afarensis is well documented between 3.6 and 3.0 Ma mainly from deposits at Laetoli (Tanzania) and Hadar (Ethiopia). The phylogenetic relationship of these two ‘species’ is hypothesized as ancestor–descendant. However, the lack of fossil evidence from the time between 3.6 and 3.9 Ma has been one of its weakest points. Recent fi...

  9. Dental morphology and the phylogenetic "place" of Australopithecus sediba.

    Science.gov (United States)

    Irish, Joel D; Guatelli-Steinberg, Debbie; Legge, Scott S; de Ruiter, Darryl J; Berger, Lee R

    2013-04-12

    To characterize further the Australopithecus sediba hypodigm, we describe 22 dental traits in specimens MH1 and MH2. Like other skeletal elements, the teeth present a mosaic of primitive and derived features. The new nonmetric data are then qualitatively and phenetically compared with those in eight other African hominin samples, before cladistic analyses using a gorilla outgroup. There is some distinction, largely driven by contrasting molar traits, from East African australopiths. However, Au. sediba links with Au. africanus to form a South African australopith clade. These species present five apomorphies, including shared expressions of Carabelli's upper first molar (UM1) and protostylid lower first molar (LM1). Five synapomorphies are also evident between them and monophyletic Homo habilis/rudolfensis + H. erectus. Finally, a South African australopith + Homo clade is supported by four shared derived states, including identical LM1 cusp 7 expression.

  10. Mandibular remains support taxonomic validity of Australopithecus sediba.

    Science.gov (United States)

    de Ruiter, Darryl J; DeWitt, Thomas J; Carlson, Keely B; Brophy, Juliet K; Schroeder, Lauren; Ackermann, Rebecca R; Churchill, Steven E; Berger, Lee R

    2013-04-12

    Since the announcement of the species Australopithecus sediba, questions have been raised over whether the Malapa fossils represent a valid taxon or whether inadequate allowance was made for intraspecific variation, in particular with reference to the temporally and geographically proximate species Au. africanus. The morphology of mandibular remains of Au. sediba, including newly recovered material discussed here, shows that it is not merely a late-surviving morph of Au. africanus. Rather-as is seen elsewhere in the cranium, dentition, and postcranial skeleton-these mandibular remains share similarities with other australopiths but can be differentiated from the hypodigm of Au. africanus in both size and shape as well as in their ontogenetic growth trajectory.

  11. Human evolution. Human-like hand use in Australopithecus africanus.

    Science.gov (United States)

    Skinner, Matthew M; Stephens, Nicholas B; Tsegai, Zewdi J; Foote, Alexandra C; Nguyen, N Huynh; Gross, Thomas; Pahr, Dieter H; Hublin, Jean-Jacques; Kivell, Tracy L

    2015-01-23

    The distinctly human ability for forceful precision and power "squeeze" gripping is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of tools. However, it is unclear when these locomotory and manipulative transitions occurred. Here we show that Australopithecus africanus (~3 to 2 million years ago) and several Pleistocene hominins, traditionally considered not to have engaged in habitual tool manufacture, have a human-like trabecular bone pattern in the metacarpals consistent with forceful opposition of the thumb and fingers typically adopted during tool use. These results support archaeological evidence for stone tool use in australopiths and provide morphological evidence that Pliocene hominins achieved human-like hand postures much earlier and more frequently than previously considered. Copyright © 2015, American Association for the Advancement of Science.

  12. First record of the megatoothed shark Carcharocles megalodon from the Mio-Pliocene Purisima Formation of Northern California.

    OpenAIRE

    Boessenecker, Robert W.

    2016-01-01

    Megatoothed sharks (Family: Otodontidae) are among the most widely reported sharks in Cenozoic marine sediments worldwide, and certain species such as the famed Carcharocles megalodon are particularly abundant in Neogene deposits on the Atlantic margin of the United States. Cenozoic marine strata on the Pacific margin of North America have yielded one of the most densely sampled marine vertebrate records anywhere, but published occurrences of shark assemblages are uncommon. Rarer yet are publ...

  13. Sawfishes and Other Elasmobranch Assemblages from the Mio-Pliocene of the South Caribbean (Urumaco Sequence, Northwestern Venezuela)

    Science.gov (United States)

    2015-01-01

    The Urumaco stratigraphic sequence, western Venezuela, preserves a variety of paleoenvironments that include terrestrial, riverine, lacustrine and marine facies. A wide range of fossil vertebrates associated with these facies supports the hypothesis of an estuary in that geographic area connected with a hydrographic system that flowed from western Amazonia up to the Proto-Caribbean Sea during the Miocene. Here the elasmobranch assemblages of the middle Miocene to middle Pliocene section of the Urumaco sequence (Socorro, Urumaco and Codore formations) are described. Based on new findings, we document at least 21 taxa of the Lamniformes, Carcharhiniformes, Myliobatiformes and Rajiformes, and describe a new carcharhiniform species (†Carcharhinus caquetius sp. nov.). Moreover, the Urumaco Formation has a high number of well-preserved fossil Pristis rostra, for which we provide a detailed taxonomic revision, and referral in the context of the global Miocene record of Pristis as well as extant species. Using the habitat preference of the living representatives, we hypothesize that the fossil chondrichthyan assemblages from the Urumaco sequence are evidence for marine shallow waters and estuarine habitats. PMID:26488163

  14. New fission-track ages of mio-pliocene tuffs in the Sierras Pampeanas and Precordillera of Argentina

    International Nuclear Information System (INIS)

    Tabbutt, K.; Naeser, C.W.; Jordan, T.E.; Cerveny, P.F.

    1989-01-01

    Fission-track dates were determined for 18 volcanic tuff horizons located in nine Neogene foreland basin sequences distributed throughout the Precordillera and Sierras Pampeanas of Northwestern Argentina, an area of nearly horizontal subduction. These and other data indicate that a lower age limit for the sedimentary sequences studied is approximately 17 Ma. Therefore these fission-track dates constrain both the history of volcanic activity and the time of deposition in several foreland basins from the middle Miocene to Recent. Although the dates range from 3.6±0.8 Ma to 17.0±1.9 Ma, there is a marked increase in the number of ashes younger than 9 Ma. This implies that two distinct episodes of volcanic activity affected the region. The source of some of these tuffs is unknown but they are probably limited to the 'flat-slab' region between 27 deg and 32 deg S. Tuffs at Rio Blanco and Santa Florentina that are spatially associated with the Mogotes dacite domes of the Famatina Range represented magmatism bracketed from about 7 to 4 Ma in the region underlain by the flat-subducted plate. The stratigraphic relations in the basins show that the faulting that uplifted Sierra de Famatina was contemporaneous with the volcanism which reached the surface along the bounding faults. (Author) [es

  15. Sawfishes and Other Elasmobranch Assemblages from the Mio-Pliocene of the South Caribbean (Urumaco Sequence, Northwestern Venezuela.

    Directory of Open Access Journals (Sweden)

    Jorge D Carrillo-Briceño

    Full Text Available The Urumaco stratigraphic sequence, western Venezuela, preserves a variety of paleoenvironments that include terrestrial, riverine, lacustrine and marine facies. A wide range of fossil vertebrates associated with these facies supports the hypothesis of an estuary in that geographic area connected with a hydrographic system that flowed from western Amazonia up to the Proto-Caribbean Sea during the Miocene. Here the elasmobranch assemblages of the middle Miocene to middle Pliocene section of the Urumaco sequence (Socorro, Urumaco and Codore formations are described. Based on new findings, we document at least 21 taxa of the Lamniformes, Carcharhiniformes, Myliobatiformes and Rajiformes, and describe a new carcharhiniform species (†Carcharhinus caquetius sp. nov.. Moreover, the Urumaco Formation has a high number of well-preserved fossil Pristis rostra, for which we provide a detailed taxonomic revision, and referral in the context of the global Miocene record of Pristis as well as extant species. Using the habitat preference of the living representatives, we hypothesize that the fossil chondrichthyan assemblages from the Urumaco sequence are evidence for marine shallow waters and estuarine habitats.

  16. Sawfishes and Other Elasmobranch Assemblages from the Mio-Pliocene of the South Caribbean (Urumaco Sequence, Northwestern Venezuela).

    Science.gov (United States)

    Carrillo-Briceño, Jorge D; Maxwell, Erin; Aguilera, Orangel A; Sánchez, Rodolfo; Sánchez-Villagra, Marcelo R

    2015-01-01

    The Urumaco stratigraphic sequence, western Venezuela, preserves a variety of paleoenvironments that include terrestrial, riverine, lacustrine and marine facies. A wide range of fossil vertebrates associated with these facies supports the hypothesis of an estuary in that geographic area connected with a hydrographic system that flowed from western Amazonia up to the Proto-Caribbean Sea during the Miocene. Here the elasmobranch assemblages of the middle Miocene to middle Pliocene section of the Urumaco sequence (Socorro, Urumaco and Codore formations) are described. Based on new findings, we document at least 21 taxa of the Lamniformes, Carcharhiniformes, Myliobatiformes and Rajiformes, and describe a new carcharhiniform species (†Carcharhinus caquetius sp. nov.). Moreover, the Urumaco Formation has a high number of well-preserved fossil Pristis rostra, for which we provide a detailed taxonomic revision, and referral in the context of the global Miocene record of Pristis as well as extant species. Using the habitat preference of the living representatives, we hypothesize that the fossil chondrichthyan assemblages from the Urumaco sequence are evidence for marine shallow waters and estuarine habitats.

  17. New Australopithecus boisei calvaria from East Lake Turkana, Kenya.

    Science.gov (United States)

    Brown, B; Walker, A; Ward, C V; Leakey, R E

    1993-06-01

    The calvaria of an adult Australopithecus boisei from Area 104, Koobi Fora, Lake Turkana, is described. The specimen, KNM-ER 23000, comes from sediments dated to about 1.9 Ma. It consists of the frontal, both parietals, both temporals, most of the occipital as well as two small pieces of sphenoid, and a mandibular tooth root. The specimen is presumed to be an adult male, based on its size and the great development of features associated with the masticatory apparatus. KNM-ER 23000 is close in general size and shape to KNM-ER 406, KNM-ER 13750, and Olduvai Hominid 5 and it has a mixture of features seen in these three roughly contemporaneous crania. The frontal, especially the tori, resembles that of OH 5; the parietals are most like those of KNM-ER 13750; the occipital is like those of the two other Turkana specimens, and the temporals have a mixture of features from all of these, This specimen adds to our knowledge of variability in A. boisei.

  18. Developmental simulation of the adult cranial morphology of Australopithecus sediba

    Directory of Open Access Journals (Sweden)

    Keely B. Carlson

    2016-07-01

    Full Text Available The type specimen of Australopithecus sediba (MH1 is a late juvenile, prompting some commentators to suggest that had it lived to adulthood its morphology would have changed sufficiently so as to render hypotheses regarding its phylogenetic relations suspect. Considering the potentially critical position of this species with regard to the origins of the genus Homo, a deeper understanding of this change is especially vital. As an empirical response to this critique, a developmental simulation of the MH1 cranium was carried out using geometric morphometric techniques to extrapolate adult morphology using extant male and female chimpanzees, gorillas and humans by modelling remaining development. Multivariate comparisons of the simulated adult A. sediba crania with other early hominin taxa indicate that subsequent cranial development primarily reflects development of secondary sexual characteristics and would not likely be substantial enough to alter suggested morphological affinities of A. sediba. This study also illustrates the importance of separating developmental vectors by sex when estimating ontogenetic change. Results of the ontogenetic projections concur with those from mandible morphology, and jointly affirm the taxonomic validity of A. sediba.

  19. Sexual dimorphism in the face of Australopithecus africanus.

    Science.gov (United States)

    Lockwood, C A

    1999-01-01

    Recently discovered crania of Australopithecus africanus from Sterkfontein Member 4 and Makapansgat enlarge the size range of the species and encourage a reappraisal of both the degree and pattern of sexual dimorphism. Resampling methodology (bootstrapping) is used here to establish that A. africanus has a greater craniofacial size range than chimpanzees or modern humans, a range which is best attributed to a moderately high degree of sexual dimorphism. Compared to other fossil hominins, this variation is similar to that of Homo habilis (sensu lato) but less than that of A. boisei. The finding of moderately high dimorphism is corroborated by a CV-based estimate and ratios between those specimens considered to be male and those considered to be female. Inferences about the pattern of craniofacial dimorphism in the A. africanus face currently rely on the relationship of morphology and size. Larger specimens, particularly Stw 505, show prominent superciliary eminences and glabellar regions, but in features related in part to canine size, such as the curvature of the infraorbital surface, large and small specimens of A. africanus are similar. In this respect, the pattern resembles that of modern humans more so than chimpanzees or lowland gorillas. A. africanus may also show novel patterns of sexual dimorphism when compared to extant hominines, such as in the form of the anterior pillar. However, males of the species do not exhibit characteristics of more derived hominins, such as A. robustus.

  20. Dental topography and diets of Australopithecus afarensis and early Homo.

    Science.gov (United States)

    Ungar, Peter

    2004-05-01

    Diet is key to understanding the paleoecology of early hominins. We know little about the diets of these fossil taxa, however, in part because of a limited fossil record, and in part because of limitations in methods available to infer their feeding adaptations. This paper applies a new method, dental topographic analysis, to the inference of diet from fossil hominin teeth. This approach uses laser scanning to generate digital 3D models of teeth and geographic information systems software to measure surface attributes, such as slope and occlusal relief. Because it does not rely on specific landmarks that change with wear, dental topographic analysis allows measurement and comparison of variably worn teeth, greatly increasing sample sizes compared with techniques that require unworn teeth. This study involved comparison of occlusal slope and relief of the lower second molars of Australopithecus afarensis (n=15) and early Homo (n=8) with those of Gorilla gorilla gorilla (n=47) and Pan troglodytes troglodytes (n=54). Results indicate that while all groups show reduced slope and relief in progressively more worn specimens, there are consistent differences at given wear stages among the taxa. Early Homo shows steeper slopes and more relief than chimpanzees, whereas A. afarensis shows less slope and relief than any of the other groups. The differences between the two hominin taxa are on the same order as those between the extant apes, suggesting similar degrees of difference in diet. Because these chimpanzees and gorillas differ mostly in fallback foods where they are sympatric, results suggest that the early hominins may likewise have differed mostly in fallback foods, with A. afarensis emphasizing harder, more brittle foods, and early Homo relying on tougher, more elastic foods.

  1. Further evidence of periodontal bone pathology in a juvenile specimen of Australopithecus africanus from Sterkfontein, South Africa

    CSIR Research Space (South Africa)

    Ripamonti, U

    1997-04-01

    Full Text Available The dentition and alveolar bone of a maxilla of a juvenile Australopithecus africanus have been examined using a high energy X-ray computed tomography scanner. Results indicate the presence of previously undetected severe alveolar bone loss...

  2. Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities.

    Science.gov (United States)

    Kivell, Tracy L; Kibii, Job M; Churchill, Steven E; Schmid, Peter; Berger, Lee R

    2011-09-09

    Hand bones from a single individual with a clear taxonomic affiliation are scarce in the hominin fossil record, which has hampered understanding the evolution of manipulative abilities in hominins. Here we describe and analyze a nearly complete wrist and hand of an adult female [Malapa Hominin 2 (MH2)] Australopithecus sediba from Malapa, South Africa (1.977 million years ago). The hand presents a suite of Australopithecus-like features, such as a strong flexor apparatus associated with arboreal locomotion, and Homo-like features, such as a long thumb and short fingers associated with precision gripping and possibly stone tool production. Comparisons to other fossil hominins suggest that there were at least two distinct hand morphotypes around the Plio-Pleistocene transition. The MH2 fossils suggest that Au. sediba may represent a basal condition associated with early stone tool use and production.

  3. Human evolution. Comment on "Human-like hand use in Australopithecus africanus".

    Science.gov (United States)

    Almécija, Sergio; Wallace, Ian J; Judex, Stefan; Alba, David M; Moyà-Solà, Salvador

    2015-06-05

    Skinner and colleagues (Research Article, 23 January 2015, p. 395), based on metacarpal trabecular bone structure, argue that Australopithecus africanus employed human-like dexterity for stone tool making and use 3 million years ago. However, their evolutionary and biological assumptions are misinformed, failing to refute the previously existing hypothesis that human-like manipulation preceded systematized stone tool manufacture, as indicated by the fossil record. Copyright © 2015, American Association for the Advancement of Science.

  4. Human evolution. Response to Comment on "Human-like hand use in Australopithecus africanus".

    Science.gov (United States)

    Skinner, Matthew M; Stephens, Nicholas B; Tsegai, Zewdi J; Foote, Alexandra C; Nguyen, N Huynh; Gross, Thomas; Pahr, Dieter H; Hublin, Jean-Jacques; Kivell, Tracy L

    2015-06-05

    Almécija and colleagues claim that we apply a simplified understanding of bone functional adaptation and that our results of human-like hand use in Australopithecus africanus are not novel. We argue that our results speak to actual behavior, rather than potential behaviors, and our functional interpretation is well supported by our methodological approach, comparative sample, and previous experimental data. Copyright © 2015, American Association for the Advancement of Science.

  5. An enlarged postcranial sample confirms Australopithecus afarensis dimorphism was similar to modern humans

    OpenAIRE

    Reno, Philip L.; McCollum, Melanie A.; Meindl, Richard S.; Lovejoy, C. Owen

    2010-01-01

    In a previous study, we introduced the template method as a means of enlarging the Australopithecus afarensis postcranial sample to more accurately estimate its skeletal dimorphism. Results indicated dimorphism to be largely comparable to that of Homo sapiens. Some have since argued that our results were biased by artificial homogeneity in our Au. afarensis sample. Here we report the results from inclusion of 12 additional, newly reported, specimens. The results are consistent with those of o...

  6. Gorilla-like anatomy on Australopithecus afarensis mandibles suggests Au. afarensis link to robust australopiths

    OpenAIRE

    Rak, Yoel; Ginzburg, Avishag; Geffen, Eli

    2007-01-01

    Mandibular ramus morphology on a recently discovered specimen of Australopithecus afarensis closely matches that of gorillas. This finding was unexpected given that chimpanzees are the closest living relatives of humans. Because modern humans, chimpanzees, orangutans, and many other primates share a ramal morphology that differs from that of gorillas, the gorilla anatomy must represent a unique condition, and its appearance in fossil hominins must represent an independently derived morphology...

  7. Sexual dimorphism in Australopithecus afarensis was similar to that of modern humans

    OpenAIRE

    Reno, Philip L.; Meindl, Richard S.; McCollum, Melanie A.; Lovejoy, C. Owen

    2003-01-01

    The substantial fossil record for Australopithecus afarensis includes both an adult partial skeleton [Afar Locality (A.L.) 288-1, “Lucy”] and a large simultaneous death assemblage (A.L. 333). Here we optimize data derived from both to more accurately estimate skeletal size dimorphism. Postcranial ratios derived from A.L. 288-1 enable a significant increase in sample size compared with previous studies. Extensive simulations using modern humans, chimpanzees, and gorilla...

  8. New fossils of Australopithecus anamensis from Kanapoi, West Turkana, Kenya (2003-2008).

    Science.gov (United States)

    Ward, C V; Manthi, F K; Plavcan, J M

    2013-11-01

    Renewed fieldwork from 2003 through 2008 at the Australopithecus anamensis type-site of Kanapoi, Kenya, yielded nine new fossils attributable to this species. These fossils all date to between 4.195 and 4.108 million years ago. Most were recovered from the lower fluvial sequence at the site, with one from the lacustrine sequence deltaic sands that overlie the lower fluvial deposits but are still below the Kanapoi Tuff. The new specimens include a partial edentulous mandible, partial maxillary dentition, two partial mandibular dentitions, and five isolated teeth. The new Kanapoi hominin fossils increase the sample known from the earliest Australopithecus, and provide new insights into morphology within this taxon. They support the distinctiveness of the early A. anamensis fossils relative to earlier hominins and to the later Australopithecus afarensis. The new fossils do not appreciably extend the range of observed variation in A. anamensis from Kanapoi, with the exception of some slightly larger molars, and a canine tooth root that is the largest in the hominin fossil record. All of the Kanapoi hominins share a distinctive morphology of the canine-premolar complex, typical early hominin low canine crowns but with mesiodistally longer honing teeth than seen in A. afarensis, and large, probably dimorphic, canine tooth roots. The new Kanapoi specimens support the observation that canine crown height, morphology, root size and dimorphism were not altered from a primitive ape-like condition as part of a single event in human evolution, and that there may have been an adaptive difference in canine function between A. anamensis and A. afarensis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. From Lucy to Kadanuumuu: balanced analyses of Australopithecus afarensis assemblages confirm only moderate skeletal dimorphism

    OpenAIRE

    Reno, Philip L.; Lovejoy, C. Owen

    2015-01-01

    Sexual dimorphism in body size is often used as a correlate of social and reproductive behavior in Australopithecus afarensis. In addition to a number of isolated specimens, the sample for this species includes two small associated skeletons (A.L. 288-1 or “Lucy” and A.L. 128/129) and a geologically contemporaneous death assemblage of several larger individuals (A.L. 333). These have driven both perceptions and quantitative analyses concluding that Au. afarensis was markedly dimorphic. The Te...

  10. Trabecular evidence for a human-like gait in Australopithecus africanus.

    Directory of Open Access Journals (Sweden)

    Meir M Barak

    Full Text Available Although the earliest known hominins were apparently upright bipeds, there has been mixed evidence whether particular species of hominins including those in the genus Australopithecus walked with relatively extended hips, knees and ankles like modern humans, or with more flexed lower limb joints like apes when bipedal. Here we demonstrate in chimpanzees and humans a highly predictable and sensitive relationship between the orientation of the ankle joint during loading and the principal orientation of trabecular bone struts in the distal tibia that function to withstand compressive forces within the joint. Analyses of the orientation of these struts using microCT scans in a sample of fossil tibiae from the site of Sterkfontein, of which two are assigned to Australopithecus africanus, indicate that these hominins primarily loaded their ankles in a relatively extended posture like modern humans and unlike chimpanzees. In other respects, however, trabecular properties in Au africanus are distinctive, with values that mostly fall between those of chimpanzees and humans. These results indicate that Au. africanus, like Homo, walked with an efficient, extended lower limb.

  11. Enamel-dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus.

    Science.gov (United States)

    Skinner, Matthew M; Gunz, Philipp; Wood, Bernard A; Hublin, Jean-Jacques

    2008-12-01

    Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.

  12. Mio-Pliocene glaciations of Central Patagonia: New evidence and tectonic implications Glaciaciones mio-pliocenas en Patagonia central: nueva evidencia e implicancias tectónicas

    Directory of Open Access Journals (Sweden)

    Yves Lagabrielle

    2010-07-01

    Full Text Available Patagonia is well known for spectacular oceurrences of a variety of glacial-derived landforms and deposits and for a long history of ancient glaciations. In this paper, we first review the diverse evidence that demonstrates the development of glacial-related sedimentary units within the Central Patagonian Cordillera since 7 Ma. Well preserved glacial landforms at the top surface of mesetas on both sides of the Lago General Carrera-Buenos Aires are described: the Meseta Guenguel to the north, and the volcanic Meseta del Lago Buenos Aires to the south. The latter meseta corresponds to a 3 Ma old, morphologically inverted paleo-piedmont, based on Ar/Ar dates of the uppermost lava flows. It shows evidence of glacier advances to the NE direction. Over a distance of 20 km, glacial landforms observed by remote sensing data and digital elevation model define glacial tongues that were fed by the Cordillera reliefs to the west. These lobes are now beheaded from their westward sources along a morpho-structural corridor that bounds the Meseta del Lago Buenos Aires to the west. These remnants can be correlated with the oldest glacial landforms recognized north of Lago General Carrera-Buenos Aires, on the Meseta Guenguel that form the Chipanque moraine system. From these features it is concluded that the glacial drainage network of Central Patagonia has been strongly modified following relief inversion in response to erosion processes and to tectonic causes. Changes occurred after 3 Ma, from a smooth piedmont surface covered by an extensive ice mantle ending with ampie glacial lobes, to the current series of deeply incised glacial valleys such as the Lago General Carrera-Buenos Aires depression. These new data bear important con-straints on the history and development of the first glaciations in southern South America.Patagonia es bien conocida por una espectacular geomorfología glacial y por una larga historia de antiguas glaciaciones. En este artículooprimero se describe la variada evidencia que demuestra el desarrolloo, desde hace 7 Ma, de unidades sedimentarias glacigénicas en la Cordillera Patagónica Central. Luego se describe una bien preservada geomorfología glacial en la cima de mesetas expuestas a ambos lados del lago General Carrera-Buenos Aires: en la Meseta Guenguel en el lado norte y en la meseta volcánica del lago Buenos Aires en el lado sur. Esta última corresponde a un paleo-piedemonte morfológicamente invertido de 3 Ma acorde a edades Ar/Ar de las lavas basálticas superiores. Exhibe evidencia del avance de glaciares hacia el NE. Observaciones hechas con sensores remotos y con modelos de elevación digital evidenciaron la presencia de formas glaciales a loolargo de una distancia de 20 km, las que fueron alimentadas desde los relieves cordilleranos ubicados al oeste. Estos lóbulos están ahora descabezados de su fuente ubicada al oeste a loolargo de un corredor morfoestructural que limita la Meseta del lago Buenos Aires por el oeste. Estos remanentes pueden ser correlacionados con las formas glaciales más antiguas reconocidas al norte del lago General Carrera-Buenos Aires en la Meseta Guenguel y que forman el sistema de morrenas Chipanque. Sobre la base de estos antecedentes se concluye que el sistema de drenaje de la Patagonia Central ha sido fuertemente modificado subsecuentemente a la inversion del relieve en respuesta a procesos erosivos y a causas tectónicas. Hubo cambios después de 3 Ma, desde una suave superficie de piedemonte cubierta por un extenso manto de hielooterminando con amplios lóbulos glaciales, hasta la actual serie de valles glaciales profundamente incididos tales como la depresión del lago General Carrera-Buenos Aires. Estos nuevos datos entregan importantes antecedentes a la historia y desarrolloode las primeras glaciaciones cenozoicas del sur de América del Sur.

  13. Influence of the Eastern California Shear Zone on deposition of the Mio-Pliocene Bouse Formation: Insights from the Cibola area, Arizona

    Science.gov (United States)

    Dorsey, Rebecca J.; O'Connell, Brennan; Homan, Mindy B.; Bennett, Scott E. K.

    2017-01-01

    The Eastern California Shear Zone (ECSZ) is a wide zone of late Cenozoic strike-slip faults and related diffuse deformation that currently accommodates ~20–25% of relative Pacific–North America plate motion in the lower Colorado River region (Fig. 1A; Dokka and Travis, 1990; Miller et al., 2001; Guest et al., 2007; Mahan et al., 2009). The ECSZ is kinematically linked southward to dextral faults in the northern Gulf of California (Bennett et al., 2016a), and it may have initiated ca. 8 Ma when major strike-slip faults developed in the northern Gulf and Salton Trough region (Bennett et al., 2016b; Darin et al., 2016; Woodburne, 2017). Thus deformation related to the ECSZ occurred in the lower Colorado River region during deposition of the Bouse Formation, which is commonly bracketed between 6.0 and 4.8 Ma (House et al., 2008; Sarna-Wojcicki et al., 2011; Spencer et al., 2013) and may be as old as 6–7 Ma in the south (McDougall and Miranda Martínez, 2014, 2016). Post-4.5 Ma broad sagging is recognized along the lower Colorado River (Howard et al., 2015), but the possibility that faults of the ECSZ influenced local to regional subsidence patterns during deposition of the Bouse Formation has received little attention to date (e.g., Homan, 2014; O’Connell et al., 2016). The Bouse Formation is a widespread sequence of late Miocene to early Pliocene deposits exposed discontinuously along the lower Colorado River corridor (Fig. 1A). In the southern Blythe basin it consists of three regionally correlative members: (1) Basal Carbonate, consisting of supratidal and intertidal mud-flat marls, intertidal and shallow subtidal bioclastic grainstone and conglomerate, and subtidal marl; (2) Siliciclastic member, consisting of Colorado River-derived green claystone, red mudstone and siltstone, and cross-bedded river channel sandstone; and (3) Upper Bioclastic member fossiliferous sandy calcarenite, coarse pebbly grainstone, and calcareous-matrix conglomerate (Homan, 2014; Dorsey et al., 2016; O’Connell et al., 2016, 2017). The southern Bouse Formation has been interpreted as recording deposition in either a lake (Spencer and Patchett, 1997; Spencer et al., 2008, 2013; Bright et al., 2016) or shallow marine setting (Buising, 1990; McDougall, 2008; McDougall and Miranda Martínez, 2014; O’Connell et al., 2017).In this paper we summarize key results from five field seasons of detailed stratigraphic analysis south of Cibola, Ariz. ( . 1). The data reveal systematic stratal thinning and thickening, pinch-outs, and wedging patterns in the Bouse Formation that we conclude were produced by syn-depositional tilting in response to growth of normal faults near the eastern margin of the basin. Similar stratal patterns in other nearby areas suggest widespread structural controls on deposition of the Bouse Formation. A palinspastic reconstruction of the lower Colorado River region at 5 Ma, modified from Bennett et al. (2016), provides insight to regional fault geometries in the ECSZ that may have controlled syn-depositional tilting and subsidence in Bouse depocenters shortly prior to and during initiation of the Colorado River.

  14. Comparative Taphonomy, Taphofacies, and Bonebeds of the Mio-Pliocene Purisima Formation, Central California: Strong Physical Control on Marine Vertebrate Preservation in Shallow Marine Settings

    Science.gov (United States)

    Boessenecker, Robert W.; Perry, Frank A.; Schmitt, James G.

    2014-01-01

    Background Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings. Methodology/Principal Findings Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies. Conclusions/Significance Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the dominant control of preservation is exerted by physical processes. The strong physical control on marine vertebrate preservation and preservational bias within the Purisima Formation has implications for paleoecologic and paleobiologic studies of marine vertebrates. Evidence of preservational bias among marine vertebrates suggests that careful consideration of taphonomic overprint must be undertaken before meaningful paleoecologic interpretations of shallow marine vertebrates is attempted. PMID:24626134

  15. The Quequén Salado river basin: Geology and biochronostratigraphy of the Mio-Pliocene boundary in the southern Pampean plain, Argentina

    Science.gov (United States)

    Beilinson, E.; Gasparini, G. M.; Tomassini, R. L.; Zárate, M. A.; Deschamps, C. M.; Barendregt, R. W.; Rabassa, J.

    2017-07-01

    The Quequén Salado river basin has been the focus of several contributions since the first decades of the XX century, namely dealing with the general geological features of the deposits and with the vertebrate remains. In this paper, the Neogene geological history documented by the Quequén Salado river exposures is reconstructed by means of stratigraphic, sedimentological and paleomagnetic studies along with the paleontological analysis of vertebrate remains. The study area is a crucial setting not only to better understand the evolution of the southern Pampas basin during the late Miocene-early Pliocene interval, but also to test the validity of the biochronologic and biostratigraphic schemes, especially the "Irenense". A geological model for the Quequén Salado river valley is proposed: a case of downcutting and headward erosion that contributes with a coherent interpretation to explain the spatial distribution of facies and fossil taxa: the younger in the distal sector of the Quequén Salado middle basin and the older in the lower basin. The sedimentary record is believed to represent the distal reaches of a distributary fluvial system that drained from the Ventania ranges. The stratigraphic section of Paso del Indio Rico results a key stratigraphic site to fully understand the stratigraphic nature of the boundary between the Miocene and the Pliocene (the Huayquerian and Montehermosan stages/ages). In this sense, two stratigraphically superposed range zones have been recognized in the area: Xenodontomys ellipticus Range Zone (latest Miocene-early Pliocene; late Huayquerian), and Eumysops laeviplicatus Range Zone (early Pliocene; Montehermosan). Taking into account the available geological and paleontological evidences, the "Irenense" would not represent a valid biostratigraphic unit, since, according to the geological model here proposed, it would be represented by elements of the Xenodontomys ellipticus Range Zone in the lower QS basin and by elements of the Eumysops laeviplicatus Range Zone in the middle QS basin.

  16. Comparative taphonomy, taphofacies, and bonebeds of the Mio-Pliocene Purisima Formation, central California: strong physical control on marine vertebrate preservation in shallow marine settings.

    Directory of Open Access Journals (Sweden)

    Robert W Boessenecker

    Full Text Available Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings.Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies.Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the dominant control of preservation is exerted by physical processes. The strong physical control on marine vertebrate preservation and preservational bias within the Purisima Formation has implications for paleoecologic and paleobiologic studies of marine vertebrates. Evidence of preservational bias among marine vertebrates suggests that careful consideration of taphonomic overprint must be undertaken before meaningful paleoecologic interpretations of shallow marine vertebrates is attempted.

  17. Variations of the Indian summer monsoon over the Mio-Pliocene recorded in the Bengal Fan (IODP Exp354): implications for the evolution of the terrestrial biosphere.

    Science.gov (United States)

    Galy, Valier; Feakins, Sarah; Karkabi, Elias; Ponton, Camilo; Galy, Albert; France-Lanord, Christian

    2017-04-01

    A pressing challenge in climate research is understanding the temporal evolution of the Indian monsoon system; its response to global and regional climatic controls (including warming); as well as implications in terms of vegetation (C4 expansion), erosion of the Himalaya and carbon sequestration in the Bengal Fan. Studies on climate dynamics have recently offered new insights into the mechanistic controls on the monsoon: the tectonic boundary of the Himalaya is implicated as the major control on Indian summer monsoon dynamics today. Since this region has been uplifted since at least the late Oligocene, it is possible to test the response of monsoon precipitation to global and regional climate change, and also understand feedbacks on the climate system via carbon sequestration in the Bengal Fan. The evidence for monsoon intensity changes across the Miocene and Pliocene is currently incomplete given temporal uncertainty and diagenesis in terrestrial records; biases in the records reconstructed from the distal fan; and conflicting evidence from wind speed and aridity metrics for a stronger or weaker monsoon. Our alternative approach is therefore to study the basin-wide hydrological changes recorded in a multi-proxy, multi-site study of the marine sediments of the Bengal Fan recovered during IODP expedition 354. In turbiditic sediments of Himalayan origin, the late Miocene C4 expansion was found in all three long records recovered during expedition 354 (i.e. at sites U1451, U1450 and U1455, from East to West) based on stable carbon isotope composition of terrestrial leaf-wax compounds. Cores from sites U1455 (a reoccupation of DSDP Leg 22 Site 218) provide the highest resolution record of the C4 transition, which appears to occur abruptly within a relatively continuous series of turbiditic sequences. Bio- and magneto-stratigraphic dating of these records by members of Expedition 354 science party is underway and will provide the best stratigraphic constraint of the C4 expansion in the Himalayan system. Hemipelagic sediments generally carry 13C enriched signatures indicative of C4-dominated source areas, and based on a combination of the wind field climatology and the wetness and ecosystems of source regions today, we suggest that these would likely represent wind transport, likely from peninsular India. Interestingly we found hemipelagic horizons carrying this enriched 13C character prior to the C4 expansion recorded in turbiditic sediments, likely revealing an earlier C4 colonization of peninsular India. Based on our preliminary data we thus propose that C4 plants colonized peninsular India around 9-10 Ma. The hydrogen isotopic composition of the same leaf-wax compounds reveals a surprisingly small (on the order of 10 ‰) isotopic shift associated with the late Miocene C4 expansion. In contrast, the hydrogen isotope composition shift observed across the last deglaciation is far greater (ca. 40‰; Hein et al., in prep.). Cores from site U1451, provide a low resolution record across at least the last 26 Myr and appear to indicate a long term hydrological change from ca. 11Ma to ca. 7Ma, as inferred from progressive D enrichment in the biomarker records. These compound specific hydrogen isotope data will be discussed in the context of changing erosion patterns and attendant variations in the strength of the Indian summer monsoon as well as with respect to the mechanisms that led to the C4 expansion.

  18. Opposing Extremes of Zygomatic Bone Morphology: Australopithecus Boisei versus Homo Neanderthalensis.

    Science.gov (United States)

    Rak, Yoel; Marom, Assaf

    2017-01-01

    The lateral margin of the zygomatic bone of Australopithecus boisei flares both anteriorly and laterally. As a result, the bone loses the suspensory bracing of the facial frame and is transformed into a visor-like structure that supports itself and gains its rigidity from its shape. The coronally oriented bony plates and the outline of the facial mask help the A. boisei face resist the effect of the visor-like structure, which tends to pull the bone plates of the face away from the midline. On the other hand, the nearly sagittal orientation of the zygomatic bone in Homo neanderthalensis helps the face resist torque and bending forces, which themselves stem from the positioning of the bite point on the anterior teeth. Although the zygomatic bones of these two taxa are highly specialized, they differ fundamentally from each other. Anat Rec, 300:152-159, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Sexual dimorphism in Australopithecus afarensis was similar to that of modern humans.

    Science.gov (United States)

    Reno, Philip L; Meindl, Richard S; McCollum, Melanie A; Lovejoy, C Owen

    2003-08-05

    The substantial fossil record for Australopithecus afarensis includes both an adult partial skeleton [Afar Locality (A.L.) 288-1, "Lucy"] and a large simultaneous death assemblage (A.L. 333). Here we optimize data derived from both to more accurately estimate skeletal size dimorphism. Postcranial ratios derived from A.L. 288-1 enable a significant increase in sample size compared with previous studies. Extensive simulations using modern humans, chimpanzees, and gorillas confirm that this technique is accurate and that skeletal size dimorphism in A. afarensis was most similar to that of contemporary Homo sapiens. These data eliminate some apparent discrepancies between the canine and skeletal size dimorphism in hominoids, imply that the species was not characterized by substantial sexual bimaturation, and greatly increase the probability that the reproductive strategy of A. afarensis was principally monogamy.

  20. The cranial base of Australopithecus afarensis: new insights from the female skull.

    Science.gov (United States)

    Kimbel, William H; Rak, Yoel

    2010-10-27

    Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7-3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4-3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen's forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama--all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base.

  1. Body proportions of Australopithecus afarensis and A. africanus and the origin of the genus Homo.

    Science.gov (United States)

    McHenry, H M; Berger, L R

    1998-07-01

    New discoveries of A. africanus fossils from Member 4 Sterkfontein reveal a body form quite unlike earlier Australopithecus species. The new adult material consists of over 48 fore- and hindlimb specimens and includes an associated partial skeleton, Stw 431. The forelimbs and relatively large: the average size of their joints corresponds to a modern human with body mass of 53 kg. The hindlimbs are much smaller with an average size matching a modern human of only 33 kg. Analyses of the Stw 431 partial skeleton confirm these results. In contrast, A. afarensis and anamensis more closely approximate a human pattern of forelimb joint size. This is an unanticipated complication in our understanding of early human evolution. In general, craniodental morphology tracks time in species of Australopithecus: A. anamensis (3.5-4.1 Ma) is the the most primitive with a strongly sloping symphysis, large canine roots, etc., A. afarensis (3.0-3.6 Ma) is less primitive, and A. africanus (2.6-3.0 Ma) shares many derived characteristics with early Homo (e.g., expanded brain, reduced canine, bicuspid lower third premolar, reduced prognathism, greater flexion of the cranial base, deeper TMJ). the new postcranial material, however, reveals an apparently primitive morphology of relatively large forelimb and small hindlimb joints resembling more the pongid than the human pattern. More pongid-like proportions are also present in the two known associated partial skeletons of H. habilis (OH 62 KNM-ER 3735). This may imply either (1) that A. africanus and H. habilis evolved craniodental characters in parallel with the lineage leading to later Homo, or (2) that fore- to hindlimb proportions of A. afarensis (and perhaps A. anamensis) evolved independent of the lineage leading to Homo and does not imply a close phylogenetic link with Homo. Both of these explanations or any other phylogeny imply homoplasy.

  2. The stable isotope setting of Australopithecus sediba at Malapa, South Africa

    Directory of Open Access Journals (Sweden)

    Emily Holt

    2016-07-01

    Full Text Available We report δ13C and δ18O results from carbonate-cemented cave sediments at Malapa in South Africa. The sediments were deposited during a short-period magnetic reversal at 1.977±0.003 Ma, immediately preceding deposition of Facies D sediments that contain the type fossils of Australopithecus sediba. Values of δ13C range between -5.65 and -2.09 with an average of -4.58±0.54‰ (Vienna Pee Dee Belemnite, VPDB and values of δ18O range between -6.14 and -3.84 with an average of -4.93±0.44‰ (VPDB. Despite signs of diagenetic alteration from metastable aragonite to calcite, the Malapa isotope values are similar to those obtained in two previous studies in South Africa for the same relative time period. Broadly, the Malapa δ13C values provide constraints on the palaeovegetation at Malapa. Because of the complex nature of the carbonate cements and mixed mineralogy in the samples, our estimates of vegetation type (C4-dominant must be regarded as preliminary only. However, the indication of a mainly C4 landscape is in contrast to the reported diet of A. sediba, and suggests a diverse environment involving both grassland and riparian woodland.

  3. From Lucy to Kadanuumuu: balanced analyses of Australopithecus afarensis assemblages confirm only moderate skeletal dimorphism

    Directory of Open Access Journals (Sweden)

    Philip L. Reno

    2015-04-01

    Full Text Available Sexual dimorphism in body size is often used as a correlate of social and reproductive behavior in Australopithecus afarensis. In addition to a number of isolated specimens, the sample for this species includes two small associated skeletons (A.L. 288-1 or “Lucy” and A.L. 128/129 and a geologically contemporaneous death assemblage of several larger individuals (A.L. 333. These have driven both perceptions and quantitative analyses concluding that Au. afarensis was markedly dimorphic. The Template Method enables simultaneous evaluation of multiple skeletal sites, thereby greatly expanding sample size, and reveals that A. afarensis dimorphism was similar to that of modern humans. A new very large partial skeleton (KSD-VP-1/1 or “Kadanuumuu” can now also be used, like Lucy, as a template specimen. In addition, the recently developed Geometric Mean Method has been used to argue that Au. afarensis was equally or even more dimorphic than gorillas. However, in its previous application Lucy and A.L. 128/129 accounted for 10 of 11 estimates of female size. Here we directly compare the two methods and demonstrate that including multiple measurements from the same partial skeleton that falls at the margin of the species size range dramatically inflates dimorphism estimates. Prevention of the dominance of a single specimen’s contribution to calculations of multiple dimorphism estimates confirms that Au. afarensis was only moderately dimorphic.

  4. Cranial morphology of Australopithecus afarensis: a comparative study based on a composite reconstruction of the adult skull.

    Science.gov (United States)

    Kimbel, W H; White, T D; Johanson, D C

    1984-08-01

    The Pliocene hominid species Australopithecus afarensis is represented by cranial, dental, and mandibular remains from Hadar, Ethiopia, and Laetoli, Tanzania. These fossils provide important information about the cranial anatomy of the earliest known hominids. Because complete crania or skulls are not known, we produced a composite reconstruction of an adult male skull based on 13 specimens from the Hadar Formation. The reconstruction serves as a testable hypothesis regarding functional relationships in the A. afarensis skull and is the basis for the comparative study presented here. We examine six major aspects of cranial and mandibular anatomy. We combine our results with those of White et al. (1981) in a discussion of alternate hypotheses of early hominid phylogeny. In the cranium, jaws, and teeth A. afarensis exhibits a morphological pattern that we interpret as primitive for the Hominidae. Homo habilis retains a number of these primitive features for which A. africanus, A. robustus, and A. boisei share derived character states, particularly in the masticatory apparatus. Homo and "robust" species of Australopithecus share a suite of derived cranial base features. These shared traits may relate to upper facial orthognathium which is also common to these taxa and are probably indicative of parallelism rather than a close phylogenetic relationship. The cranial base characteristics of A.L. 333-45 do not, contrary to Olson's (1981) claims, provide evidence for an A. afarensis--"robust" Australopithecus sister group. When the range of mastoid variation in extant African pongids and A. afarensis is examined thoroughly, the Pliocene hominid appears to retain a primitive, rather than derived, morphology.

  5. Australopithecus anamensis: a finite-element approach to studying the functional adaptations of extinct hominins.

    Science.gov (United States)

    Macho, Gabriele A; Shimizu, Daisuke; Jiang, Yong; Spears, Iain R

    2005-04-01

    Australopithecus anamensis is the stem species of all later hominins and exhibits the suite of characters traditionally associated with hominins, i.e., bipedal locomotion when on the ground, canine reduction, and thick-enameled teeth. The functional consequences of its thick enamel are, however, unclear. Without appropriate structural reinforcement, these thick-enameled teeth may be prone to failure. This article investigates the mechanical behavior of A. anamensis enamel and represents the first in a series that will attempt to determine the functional adaptations of hominin teeth. First, the microstructural arrangement of enamel prisms in A. anamensis teeth was reconstructed using recently developed software and was compared with that of extant hominoids. Second, a finite-element model of a block of enamel containing one cycle of prism deviation was reconstructed for Homo, Pan, Gorilla, and A. anamensis and the behavior of these tissues under compressive stress was determined. Despite similarities in enamel microstructure between A. anamensis and the African great apes, the structural arrangement of prismatic enamel in A. anamensis appears to be more effective in load dissipation under these compressive loads. The findings may imply that this hominin species was well adapted to puncture crushing and are in some respects contrary to expectations based on macromorphology of teeth. Taking together, information obtained from both finite-element analyses and dental macroanatomy leads us to suggest that A. anamensis was probably adapted for habitually consuming a hard-tough diet. However, additional tests are needed to understand the functional adaptations of A. anamensis teeth fully.

  6. Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution

    Science.gov (United States)

    Falk, Dean; Zollikofer, Christoph P. E.; Morimoto, Naoki; Ponce de León, Marcia S.

    2012-01-01

    The type specimen for Australopithecus africanus (Taung) includes a natural endocast that reproduces most of the external morphology of the right cerebral hemisphere and a fragment of fossilized face that articulates with the endocast. Despite the fact that Taung died between 3 and 4 y of age, the endocast reproduces a small triangular-shaped remnant of the anterior fontanelle, from which a clear metopic suture (MS) courses rostrally along the midline [Hrdlička A (1925) Am J Phys Anthropol 8:379–392]. Here we describe and interpret this feature of Taung in light of comparative fossil and actualistic data on the timing of MS closure. In great apes, the MS normally fuses shortly after birth, such that unfused MS similar to Taung’s are rare. In humans, however, MS fuses well after birth, and partially or unfused MS are frequent. In gracile fossil adult hominins that lived between ∼3.0 and 1.5 million y ago, MS are also relatively frequent, indicating that the modern human-like pattern of late MS fusion may have become adaptive during early hominin evolution. Selective pressures favoring delayed fusion might have resulted from three aspects of perinatal ontogeny: (i) the difficulty of giving birth to large-headed neonates through birth canals that were reconfigured for bipedalism (the “obstetric dilemma”), (ii) high early postnatal brain growth rates, and (iii) reorganization and expansion of the frontal neocortex. Overall, our data indicate that hominin brain evolution occurred within a complex network of fetopelvic constraints, which required modification of frontal neurocranial ossification patterns. PMID:22566620

  7. Kinematic parameters inferred from enamel microstructure: new insights into the diet of Australopithecus anamensis.

    Science.gov (United States)

    Macho, Gabriele A; Shimizu, Daisuke

    2010-01-01

    The dietary adaptations of Australopithecus anamensis are contentious, with suggestions that range from soft fruits to hard, brittle, tough, and abrasive foods. It is unlikely that all propositions are equally valid, however. Here we extend recent finite element (FE) analyses of enamel microstructure (Shimizu and Macho, 2008) to enquire about the range of loading directions (i.e., kinematics) to which A. anamensis enamel microstructure/molars could safely be subjected. The rationale underlying this study is the observation that hard brittle foods are broken down in crush, while tough foods require shear. The findings are compared with those of Pan and Gorilla. Eighteen detailed FE models of enamel microstructure were created and analysed. The results highlight the uniqueness of A. anamensis dental structure and imply that mastication in this species included a greater shear component than in Pan, as well as a wider range of loading directions; it is similar to that in Gorilla in this respect. These findings are in accord with microwear studies (Grine et al., 2006a). Unlike either of the great apes, however, enamel microstructure of A. anamensis was found to be poorly equipped to withstand loading parallel to the dentino-enamel junction; such loading regimes are associated with mastication of soft fleshy fruits. This, together with broader morphological considerations, raises doubts as to whether A. anamensis was essentially a frugivore that expanded its dietary niche as a result of fluctuations in environmental conditions, e.g., during seasonal food shortages. Instead, it is more parsimonious to conclude that the habitual diet of A. anamensis differed considerably from that of either of the extant African great apes.

  8. New postcranial fossils of Australopithecus afarensis from Hadar, Ethiopia (1990-2007).

    Science.gov (United States)

    Ward, Carol V; Kimbel, William H; Harmon, Elizabeth H; Johanson, Donald C

    2012-07-01

    Renewed fieldwork at Hadar, Ethiopia, from 1990 to 2007, by a team based at the Institute of Human Origins, Arizona State University, resulted in the recovery of 49 new postcranial fossils attributed to Australopithecus afarensis. These fossils include elements from both the upper and lower limbs as well as the axial skeleton, and increase the sample size of previously known elements for A. afarensis. The expanded Hadar sample provides evidence of multiple new individuals that are intermediate in size between the smallest and largest individuals previously documented, and so support the hypothesis that a single dimorphic species is represented. Consideration of the functional anatomy of the new fossils supports the hypothesis that no functional or behavioral differences need to be invoked to explain the morphological variation between large and small A. afarensis individuals. Several specimens provide important new data about this species, including new vertebrae supporting the hypothesis that A. afarensis may have had a more human-like thoracic form than previously appreciated, with an invaginated thoracic vertebral column. A distal pollical phalanx confirms the presence of a human-like flexor pollicis longus muscle in A. afarensis. The new fossils include the first complete fourth metatarsal known for A. afarensis. This specimen exhibits the dorsoplantarly expanded base, axial torsion and domed head typical of humans, revealing the presence of human-like permanent longitudinal and transverse arches and extension of the metatarsophalangeal joints as in human-like heel-off during gait. The new Hadar postcranial fossils provide a more complete picture of postcranial functional anatomy, and individual and temporal variation within this sample. They provide the basis for further in-depth analyses of the behavioral and evolutionary significance of A. afarensis anatomy, and greater insight into the biology and evolution of these early hominins. Copyright © 2011

  9. Forearm articular proportions and the antebrachial index in Homo sapiens, Australopithecus afarensis and the great apes.

    Science.gov (United States)

    Williams, Frank L'Engle; Cunningham, Deborah L; Amaral, Lia Q

    2015-12-01

    When hominin bipedality evolved, the forearms were free to adopt nonlocomotor tasks which may have resulted in changes to the articular surfaces of the ulna and the relative lengths of the forearm bones. Similarly, sex differences in forearm proportions may be more likely to emerge in bipeds than in the great apes given the locomotor constraints in Gorilla, Pan and Pongo. To test these assumptions, ulnar articular proportions and the antebrachial index (radius length/ulna length) in Homo sapiens (n=51), Gorilla gorilla (n=88), Pan troglodytes (n=49), Pongo pygmaeus (n=36) and Australopithecus afarensis A.L. 288-1 and A.L. 438-1 are compared. Intercept-adjusted ratios are used to control for size and minimize the effects of allometry. Canonical scores axes show that the proximally broad and elongated trochlear notch with respect to size in H. sapiens and A. afarensis is largely distinct from G. gorilla, P. troglodytes and P. pygmaeus. A cluster analysis of scaled ulnar articular dimensions groups H. sapiens males with A.L. 438-1 ulna length estimates, while one A.L. 288-1 ulna length estimate groups with Pan and another clusters most closely with H. sapiens, G. gorilla and A.L. 438-1. The relatively low antebrachial index characterizing H. sapiens and non-outlier estimates of A.L. 288-1 and A.L. 438-1 differs from those of the great apes. Unique sex differences in H. sapiens suggest a link between bipedality and forearm functional morphology. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Metacarpal torsion in apes, humans, and early Australopithecus: implications for manipulatory abilities

    Directory of Open Access Journals (Sweden)

    Michelle S.M. Drapeau

    2015-10-01

    Full Text Available Human hands, when compared to that of apes, have a series of adaptations to facilitate manipulation. Numerous studies have shown that Australopithecus afarensis and Au. africanus display some of these adaptations, such as a longer thumb relative to the other fingers, asymmetric heads on the second and fifth metacarpals, and orientation of the second metacarpal joints with the trapezium and capitate away from the sagittal plane, while lacking others such as a very mobile fifth metacarpal, a styloid process on the third, and a flatter metacarpo-trapezium articulation, suggesting some adaptation to manipulation but more limited than in humans. This paper explores variation in metacarpal torsion, a trait said to enhance manipulation, in humans, apes, early australopithecines and specimens from Swartkrans. This study shows that humans are different from large apes in torsion of the third and fourth metacarpals. Humans are also characterized by wedge-shaped bases of the third and fourth metacarpals, making the metacarpal-base row very arched mediolaterally and placing the ulnar-most metacarpals in a position that facilitate opposition to the thumb in power or cradle grips. The third and fourth metacarpals of Au. afarensis are very human-like, suggesting that the medial palm was already well adapted for these kinds of grips in that taxon. Au. africanus present a less clear human-like morphology, suggesting, perhaps, that the medial palm was less suited to human-like manipulation in that taxa than in Au. afarensis. Overall, this study supports previous studies on Au. afarensis and Au. africanus that these taxa had derived hand morphology with some adaptation to human-like power and precision grips and support the hypothesis that dexterous hands largely predated Homo.

  11. Pliocene hominin biogeography and ecology.

    Science.gov (United States)

    Macho, Gabriele A

    2015-10-01

    Australopithecus bahrelghazali, its origin and palaeobiology are not well understood. Reported from only one location some several thousand kilometres away from East African Pliocene hominin sites, it appears to have predominantly fed on C4 sources. Yet, it lacks the morphological adaptations of other primate C4 consumers like Paranthropus boisei and Theropithecus oswaldi. Furthermore, although considered to belong to Australopithecus afarensis by most researchers, A. bahrelghazali appears to differ from the former in a key aspect of its morphology: enamel thickness. To assess the phylogeny and palaeobiology of A. bahrelghazali, I first evaluate the dietary adaptations and energetics of A. bahrelghazali using empirical data of the feeding ecology of extant baboons, Papio cynocephalus. Information published on A. bahrelghazali morphology and habitat preference is used to select C4 foods with the appropriate mechanical properties and availability within the environment to create the models. By altering the feeding time on various food categories, I then test whether A. bahrelghazali could have subsisted on a C4 diet, thus accounting for the δ(13)C composition of its dental tissue. The effects of body mass on the volume of food consumed are taken into account. The outcomes of these simulations indicate that A. bahrelghazali could have subsisted on a diet of predominantly sedges, albeit with limitations. At higher energy requirements, i.e., above 3.5 times the BMR, it would be difficult for a medium-sized primate to obtain sufficient energy from a sedge-based diet. This is apparently due to constraints on foraging/feeding time, not because of the nutritional value of sedges per se. These results are discussed against the backdrop of A. bahrelghazali biogeography, palaeoenvironment, and phylogeny. The combined evidence makes it plausible to suggest that Northern Chad may have been a refugium for migrating mammals, including hominins, and throws new light on the deep

  12. Landscapes and their relation to hominin habitats: case studies from Australopithecus sites in eastern and southern Africa.

    Science.gov (United States)

    Reynolds, Sally C; Bailey, Geoff N; King, Geoffrey C P

    2011-03-01

    We examine the links between geomorphological processes, specific landscape features, surface water drainage, and the creation of suitable habitats for hominins. The existence of mosaic (i.e., heterogeneous) habitats within hominin site landscape reconstructions is typically explained using models of the riverine and gallery forest settings, or the pan or lake setting. We propose a different model: the Tectonic Landscape Model (TLM), where tectonic faulting and volcanism disrupts existing pan or river settings at small-scales (∼10-25 km). Our model encompasses the interpretation of the landscape features, the role of tectonics in creating these landscapes, and the implications for hominins. In particular, the model explains the underlying mechanism for the creation and maintenance of heterogeneous habitats in regions of active tectonics. We illustrate how areas with faulting and disturbed drainage patterns would have been attractive habitats for hominins, such as Australopithecus, and other fauna. Wetland areas are an important characteristic of surface water disturbance by fault activity; therefore we examine the tectonically-controlled Okavango Delta (Botswana) and the Nylsvley wetland (South Africa) as modern examples of how tectonics in a riverine setting significantly enhance the faunal and floral biodiversity. While tectonic landscapes may not have been the only type of attractive habitats to hominins, we propose a suite of landscape, faunal, and floral indicators, which when recovered together suggest that site environments may have been influenced by tectonic and/or volcanic activity while hominins were present. For the fossil sites, we interpret the faulting and landscapes around australopithecine-bearing sites of the Middle Awash (Ethiopia) and Makapansgat, Taung, and Sterkfontein (South Africa) to illustrate these relationships between landscape features and surface water bodies. Exploitation of tectonically active landscapes may explain why the

  13. Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors

    OpenAIRE

    Sellers, William I; Cain, Gemma M; Wang, Weijie; Crompton, Robin H

    2005-01-01

    This paper uses techniques from evolutionary robotics to predict the most energy-efficient upright walking gait for the early human relative Australopithecus afarensis, based on the proportions of the 3.2 million year old AL 288-1 ‘Lucy’ skeleton, and matches predictions against the nearly contemporaneous (3.5–3.6 million year old) Laetoli fossil footprint trails. The technique creates gaits de novo and uses genetic algorithm optimization to search for the most efficient patterns of simulated...

  14. Preliminary paleoecological insights from the Pliocene avifauna of Kanapoi, Kenya: Implications for the ecology of Australopithecus anamensis.

    Science.gov (United States)

    Field, Daniel J

    2017-09-28

    Fossil bird remains from the Pliocene hominin-bearing locality of Kanapoi comprise >100 elements representing at least 10 avian families, including previously undescribed elements referred to the 'giant' Pliocene marabou stork Leptoptilos cf. falconeri. The taxonomic composition of the Kanapoi fossil avifauna reveals an assemblage with a substantial aquatic component, corroborating geological evidence of this locality's close proximity to a large, slow-moving body of water. Both the taxonomic composition and relative abundance of avian higher-level clades at Kanapoi stand in stark contrast to the avifauna from the slightly older (∼4.4 Ma vs. 4.2 Ma) hominin-bearing Lower Aramis Member of Ethiopia, which has been interpreted as representing a mesic woodland paleoenvironment far from water. In general, the taxonomic composition of the Kanapoi avifauna resembles that from the Miocene hominoid-bearing locality of Lothagam (though Kanapoi is more diverse), and the aquatic character of the Kanapoi avifauna supports the idea that the environmental conditions experienced by Australopithecus anamensis at Kanapoi were markedly different from those experienced by Ardipithecus ramidus at Aramis. Additionally, the relative abundance of marabou stork (Leptoptilos) remains at Kanapoi may suggest a longstanding commensal relationship between total-clade humans and facultatively scavenging marabous. Additional avian remains from nearby fossil localities (e.g., the Nachukui Formation), ranging in age from 3.26 to 0.8 Ma, reveal the long-term persistence of an aquatic avifauna in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Quantifying mental foramen position in extant hominoids and Australopithecus: implications for its use in studies of human evolution.

    Science.gov (United States)

    Robinson, Chris A; Williams, Frank L

    2010-08-01

    The location of the mental foramen on the mandibular corpus has figured prominently in debates concerning the taxonomy of fossil hominins and Gorilla gorilla. In this study we quantify the antero/posterior (A/P) position of the mental foramen across great apes, modern humans and Australopithecus. Contrary to most qualitative assessments, we find significant differences between some extant hominoid species in mental foramen A/P position supporting its potential usefulness as a character for taxonomic and phylogenetic analyses of fossil hominoids. Gorilla gorilla, particularly the eastern subspecies, with a comparatively longer dental arcade and fossil and extant hominins with reduced canines and incisors tend to exhibit more anteriorly positioned mental foramina. Conversely, Pan troglodytes exhibits more posteriorly positioned mental foramina. Variation in this character among Gorilla gorilla subspecies supports recent taxonomic assessments that separate eastern and western populations. In all taxa other than Pan troglodytes the A/P position of the mental foramen is positively allometric with respect to dental arcade length. Thus, within each of these species, specimens with longer dental arcades tend to have more posteriorly positioned mental foramina. Those species with greater sexual dimorphism in canine size and dental arcade length (i.e., Gorilla gorilla and Pongo pygmaeus) exhibit more extreme differences between smaller and larger individuals. Moreover, among great apes those individuals with greater anterior convergence of the dental arcade tend to exhibit more posteriorly positioned mental foramina. Dental arcade length, canine crown area and anterior convergence are all significantly associated with mental foramen A/P position, suggesting that these traits may influence taxonomic variation in the A/P position of the mental foramen. (c) 2010 Wiley-Liss, Inc.

  16. Brief communication: beyond the South African cave paradigm--Australopithecus africanus from Plio-Pleistocene paleosol deposits at Taung.

    Science.gov (United States)

    Hopley, Philip J; Herries, Andy I R; Baker, Stephanie Edwards; Kuhn, Brian F; Menter, Colin G

    2013-06-01

    Following the discovery of the "Taung Child" (Australopithecus africanus) in 1924 in the Buxton-Norlim Limeworks near Taung, the fossil-bearing deposits associated with the Dart and Hrdlička pinnacles have been interpreted as the mined remnants of cave sediments that formed within the Plio-Pleistocene Thabaseek Tufa: either as a younger cave-fill or as contemporaneous carapace caves. When combined with the Plio-Pleistocene dolomitic cave deposits from the "Cradle of Humankind," a rather restricted view emerges that South African early hominins derived from cave deposits, whereas those of east and central Africa are derived from fluvio-lacustrine and paleosol deposits. We undertook a sedimentological and paleomagnetic analysis of the pink-colored deposit (PCS) from which the "Taung Child" is purported to have derived and demonstrate that it is a calcrete, a carbonate-rich pedogenic sediment, which formed on the paleo-land surface. The deposit extends 100 s of meters laterally beyond the Dart and Hrdlička Pinnacles where it is interbedded with the Thabaseek Tufa, indicating multiple episodes of calcrete development and tufa growth. The presence of in situ rhizoconcretions and insect trace fossils (Celliforma sp. and Coprinisphaera sp.) and the distinctive carbonate microfabric confirm that the pink deposit is a pedogenic calcrete, not a calcified cave sediment. Paleomagnetic and stratigraphic evidence indicates that a second, reversed polarity, fossil-bearing deposit (YRSS) is a younger fissure-fill formed within a solutional cavity of the normal polarity tufa and pink calcrete (PCS). These observations have implications for the dating, environment, and taphonomy of the site, and increase the likelihood of future fossil discoveries within the Buxton-Norlim Limeworks. Copyright © 2013 Wiley Periodicals, Inc.

  17. The apportionment of tooth size and its implications in Australopithecus sediba versus other Plio-pleistocene and recent African hominins.

    Science.gov (United States)

    Irish, Joel D; Hemphill, Brian E; de Ruiter, Darryl J; Berger, Lee R

    2016-11-01

    Australopithecus sediba is characterized further by providing formerly unpublished and refined mesiodistal and buccolingual crown measurements in the MH1 and MH2 specimens. After size correction, these data were compared with those in other fossil and recent samples to facilitate additional insight into diachronic hominin affinities. Six comparative samples consist of fossil species: A. africanus, A. afarensis, Homo habilis, Paranthropus robustus, P. boisei, and H. erectus. Others comprise H. sapiens and Pan troglodytes. Re-estimates of "actual" dimensions in damaged A. sediba teeth were effected through repeated measurements by independent observers. X-ray synchrotron microtomography allowed measurement of crowns obscured by matrix and noneruption. Tooth size apportionment analysis, an established technique for intraspecific comparisons, was then applied at this interspecific level to assess phenetic affinities using both within- and among-group data. Comparison of these highly heritable dimensions identified a general trend for smaller posterior relative to larger anterior teeth (not including canines), contra Paranthropus, that allies A. sediba with other australopiths and Homo; however, specific reductions and/or shape variation in the species' canines, third premolars, and anterior molars relative to the other teeth mirror the patterning characteristic of Homo. Of all samples, including east African australopiths, A. sediba appears most like H. habilis, H. erectus and H. sapiens regarding how crown size is apportioned along the tooth rows. These findings parallel those in prior studies of dental and other skeletal data, including several that suggest A. sediba is a close relative of, if not ancestral to, Homo. © 2016 Wiley Periodicals, Inc.

  18. Late Mio-Pliocene chemical weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau constrained by goethite (U-Th)/He dating: Implication for Asian summer monsoon

    Science.gov (United States)

    Deng, Xiao-Dong; Li, Jian-Wei; Shuster, David L.

    2017-08-01

    Chemical weathering has provided a potentially important feedback between tectonic forcing and climate evolution of the Asian continent, although precise constraints on the timing and history of weathering are only variably documented. Here, we use goethite (U-Th)/He and 4He/3He geochronology to constrain the timing and rates of chemical weathering at the Yulong porphyry Cu deposit on the eastern Tibetan Plateau. Goethite grains have (U-Th)/He ages ranging from 6.73 ± 0.51 to 0.53 ± 0.04 Ma that correlate with independent paleoclimatic proxies inferred from supergene Mn-oxides and loess deposits under variable tectonic regimes and vegetation zones over the southeastern Asia. This correlation indicates that regional climatic conditions, especially monsoonal precipitation, controlled chemical weathering and goethite precipitation in a vast area of southeastern Asia. The goethite ages suggest that the Asian summer monsoon was relatively strong from 7 to 4.6 Ma, but weakened between 4.6 and 4 Ma, and then significantly intensified from 4 to 2 Ma. The precipitation ages of goethites collected along a 100-m-thick weathering profile decrease with depth, and indicate a downward propagation of the weathering front at rates of table, which was possibly related to local surface uplift or reorganization of the river systems in southeastern Tibet during this period.

  19. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1).

    Science.gov (United States)

    Nagano, Akinori; Umberger, Brian R; Marzke, Mary W; Gerritsen, Karin G M

    2005-01-01

    The skeleton of Australopithecus afarensis (A.L. 288-1, better known as "Lucy") is by far the most complete record of locomotor morphology of early hominids currently available. Even though researchers agree that the postcranial skeleton of Lucy shows morphological features indicative of bipedality, only a few studies have investigated Lucy's bipedal locomotion itself. Lucy's energy expenditure during locomotion has been the topic of much speculation, but has not been investigated, except for several estimates derived from experimental data collected on other animals. To gain further insights into how Lucy may have walked, we generated a full three-dimensional (3D) reconstruction and forward-dynamic simulation of upright bipedal locomotion of this ancient human ancestor. Laser-scanned 3D bone geometries were combined with state-of-the-art neuromusculoskeletal modeling and simulation techniques from computational biomechanics. A detailed full 3D neuromusculoskeletal model was developed that encompassed all major bones, joints (10), and muscles (52) of the lower extremity. A model of muscle force and heat production was used to actuate the musculoskeletal system, and to estimate total energy expenditure during locomotion. Neural activation profiles for each of the 52 muscles that produced a single step of locomotion, while at the same time minimizing the energy consumed per meter traveled, were searched through numerical optimization. The numerical optimization resulted in smooth locomotor kinematics, and the predicted energy expenditure was appropriate for upright bipedal walking in an individual of Lucy's body size. (c) 2004 Wiley-Liss, Inc.

  20. Le sacrum de Sterkfontein Sts 14 Q ( Australopithecus africanus): nouvelles données sur la croissance et sur l'âge osseux du spécimen (hommage à R. Broom et J.T. Robinson) . The sacrum of Sterkfontein Sts 14 Q (Australopithecus africanus): new data on the growth and on the osseus age of the specimen (homage to R. Broom and J.T. Robinson)

    Science.gov (United States)

    Berge, Christine; Gommery, Dominique

    1999-08-01

    The fossil sacrum of Sterkfontein Sts 14Q ( Australopithecus africanus) was compared with 96 human sacrums of known age so as to reveal its growth stage. Robinson (1972) noticed the presence of an immature trait (unfused intervertebral disc between S1 and S2) in this individual which in other respects is supposed to be a fully matured adult. Our study brings us to define a "sub-adult" category corresponding to a class between the ages of 16 to 25 years in modern humans. Sts 14Q had the same state of maturation, which corresponds to a post-pubertal individual which had not finished its growth concerning the sacral breadth, and probably the pelvic breadth.

  1. Baboon Feeding Ecology Informs the Dietary Niche of Paranthropus boisei

    OpenAIRE

    Macho, Gabriele A.

    2014-01-01

    Hominins are generally considered eclectic omnivores like baboons, but recent isotope studies call into question the generalist status of some hominins. Paranthropus boisei and Australopithecus bahrelghazali derived 75%-80% of their tissues' δ(13)C from C4 sources, i.e. mainly low-quality foods like grasses and sedges. Here I consider the energetics of P. boisei and the nutritional value of C4 foods, taking into account scaling issues between the volume of food consumed and body mass, and P. ...

  2. Like father, like son: assessment of the morphological affinities of A.L. 288-1 (A. afarensis, Sts 7 (A. africanus and Omo 119-73-2718 (Australopithecus sp. through a three-dimensional shape analysis of the shoulder joint.

    Directory of Open Access Journals (Sweden)

    Julia Arias-Martorell

    Full Text Available The postcranial evidence for the Australopithecus genus indicates that australopiths were able bipeds; however, the morphology of the forelimbs and particularly that of the shoulder girdle suggests that they were partially adapted to an arboreal lifestyle. The nature of such arboreal adaptations is still unclear, as are the kind of arboreal behaviors in which australopiths might have engaged. In this study we analyzed the shape of the shoulder joint (proximal humerus and glenoid cavity of the scapula of three australopith specimens: A.L. 288-1 (A. afarensis, Sts 7 (A. africanus and Omo 119-73-2718 (Australopithecus sp. with three-dimensional geometric morphometrics. The morphology of the specimens was compared with that of a wide array of living anthropoid taxa and some additional fossil hominins (the Homo erectus specimen KNM-WT 15000 and the H. neanderthalensis specimen Tabun 1. Our results indicate that A.L. 288-1 shows mosaic traits resembling H. sapiens and Pongo, whereas the Sts 7 shoulder is most similar to the arboreal apes and does not present affinities with H. sapiens. Omo 119-73-2718 exhibits morphological affinities with the more arboreal and partially suspensory New World monkey Lagothrix. The shoulder of the australopith specimens thus shows a combination of primitive and derived traits (humeral globularity, enhancement of internal and external rotation of the joint, related to use of the arm in overhead positions. The genus Homo specimens show overall affinities with H. sapiens at the shoulder, indicating full correspondence of these hominin shoulders with the modern human morphotype.

  3. The Australopithecus Afarensis (Lucy) of Higher Education.

    Science.gov (United States)

    Gamble, John King

    1999-01-01

    Uses a fictitious character and story to express doubts about the use of business and marketing principles in American higher education. Asserts that higher education is profoundly different from other institutions, and that colleges and universities should be shielded from the vagaries of the market. (CAK)

  4. Isotopic evidence for an early shift to C₄ resources by Pliocene hominins in Chad.

    Science.gov (United States)

    Lee-Thorp, Julia; Likius, Andossa; Mackaye, Hassane T; Vignaud, Patrick; Sponheimer, Matt; Brunet, Michel

    2012-12-11

    Foods derived from C(4) plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in (13)C, indicating a dependence on C(4) resources. As these sites are over 3 million years in age, the results extend the pattern of C(4) dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C(4) plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats.

  5. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad

    Science.gov (United States)

    Lee-Thorp, Julia; Likius, Andossa; Mackaye, Hassane T.; Vignaud, Patrick; Sponheimer, Matt; Brunet, Michel

    2012-01-01

    Foods derived from C4 plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in 13C, indicating a dependence on C4 resources. As these sites are over 3 million years in age, the results extend the pattern of C4 dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C4 plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats. PMID:23150583

  6. Paléocontraintes et déformations syn- et post-collision Afrique Europe identifiées dans la couverture mésozoïque et cénozoïque du Haut Atlas occidental (Maroc)Syn- and post-collision Africa Europe palaeostresses and deformations identified in the West High-Atlas Mesozoic and Cenozoic cover (Morocco)

    Science.gov (United States)

    Amrhar, Mostafa

    Palaeostresses and deformation axis reconstruction related to the intracontinental High-Atlas uplift evidences two shortening phases from Upper Cretaceous to Quaternary. The first compression is oriented N20-30°E and is Maastrichtian to Oligocene age; the second one, oriented N120-160°E, is syn-Mio-Pliocene. Tectonic inversion of the lateral to compressive Jurassic regime is contemporaneous with the beginning of Africa and Europe collision. Rotation of the Mio-Pliocene shortening orientation could be linked to the change of the convergence direction between the Africa and Europe plates. To cite this article: M. Amrhar, C. R. Geoscience 334 (2002) 279-285.

  7. Patterns of dental development in Homo, Australopithecus, Pan, and Gorilla.

    Science.gov (United States)

    Smith, B H

    1994-07-01

    Smith ([1986] Nature 323:327-330) distinguished patterns of development of teeth of juvenile fossil hominids as being "more like humans" or "more like apes" based on statistical similarity to group standards. Here, this central tendency discrimination (CTD) is tested for its ability to recognize ape and human patterns of dental development in 789 subadult hominoids. Tooth development of a modern human sample (665 black southern Africans) was scored entirely by an outside investigator; pongid and fossil hominid samples (59 Pan, 50 Gorilla, and 14 fossil hominids) were scored by the author. The claim of Lampl et al. ([1993] Am. J. Phys. Anthropol. 90:113-127) that Smith's 1986 method succeeds in only 8% of human cases was not sustained. Figures for overall success of classification (87% humans, 68% apes) mask important effects of teeth sampled and age class. For humans, the power of CTD varied between 53% and 92% depending on the number and kind of teeth available--nearly that of a coin toss when data described only two nearby teeth, but quite successful with more teeth or distant teeth. For apes, only age class affected accuracy: "Infant" apes (M1 development or = root 1/4), however, were correctly discriminated in 87% of cases. Overall, CTD can be considered reliable (accuracy of 92% for humans and 88% for apes) when data contrast development of distant dental fields and subjects are juveniles (not infants). Restricting analysis of fossils to specimens satisfying these criteria, patterns of dental development of gracile australopithecines and Homo habilis remain classified with African apes. Those of Homo erectus and Neanderthals are classified with humans, suggesting that patterns of growth evolved substantially in the Hominidae. To standardize future research, the computer program that operationalizes CTD is now available.

  8. Messinian events in the Black Sea

    NARCIS (Netherlands)

    van Baak, Christiaan G C; Radionova, Eleanora P.; Golovina, Larisa A.; Raffi, Isabella; Kuiper, Klaudia F.; Vasiliev, Iuliana; Krijgsman, Wout

    2015-01-01

    Past hydrological interactions between the Mediterranean Sea and Black Sea are poorly resolved due to complications in establishing a high-resolution time frame for the Black Sea. We present a new greigite-based magnetostratigraphic age model for the Mio-Pliocene deposits of DSDP Hole 380/380A,

  9. Baboon feeding ecology informs the dietary niche of Paranthropus boisei.

    Directory of Open Access Journals (Sweden)

    Gabriele A Macho

    Full Text Available Hominins are generally considered eclectic omnivores like baboons, but recent isotope studies call into question the generalist status of some hominins. Paranthropus boisei and Australopithecus bahrelghazali derived 75%-80% of their tissues' δ(13C from C4 sources, i.e. mainly low-quality foods like grasses and sedges. Here I consider the energetics of P. boisei and the nutritional value of C4 foods, taking into account scaling issues between the volume of food consumed and body mass, and P. boisei's food preference as inferred from dento-cranial morphology. Underlying the models are empirical data for Papio cynocephalus dietary ecology. Paranthropus boisei only needed to spend some 37%-42% of its daily feeding time (conservative estimate on C4 sources to meet 80% of its daily requirements of calories, and all its requirements for protein. The energetic requirements of 2-4 times the basal metabolic rate (BMR common to mammals could therefore have been met within a 6-hour feeding/foraging day. The findings highlight the high nutritional yield of many C4 foods eaten by baboons (and presumably hominins, explain the evolutionary success of P. boisei, and indicate that P. boisei was probably a generalist like other hominins. The diet proposed is consistent with the species' derived morphology and unique microwear textures. Finally, the results highlight the importance of baboon/hominin hand in food acquisition and preparation.

  10. Baboon feeding ecology informs the dietary niche of Paranthropus boisei.

    Science.gov (United States)

    Macho, Gabriele A

    2014-01-01

    Hominins are generally considered eclectic omnivores like baboons, but recent isotope studies call into question the generalist status of some hominins. Paranthropus boisei and Australopithecus bahrelghazali derived 75%-80% of their tissues' δ(13)C from C4 sources, i.e. mainly low-quality foods like grasses and sedges. Here I consider the energetics of P. boisei and the nutritional value of C4 foods, taking into account scaling issues between the volume of food consumed and body mass, and P. boisei's food preference as inferred from dento-cranial morphology. Underlying the models are empirical data for Papio cynocephalus dietary ecology. Paranthropus boisei only needed to spend some 37%-42% of its daily feeding time (conservative estimate) on C4 sources to meet 80% of its daily requirements of calories, and all its requirements for protein. The energetic requirements of 2-4 times the basal metabolic rate (BMR) common to mammals could therefore have been met within a 6-hour feeding/foraging day. The findings highlight the high nutritional yield of many C4 foods eaten by baboons (and presumably hominins), explain the evolutionary success of P. boisei, and indicate that P. boisei was probably a generalist like other hominins. The diet proposed is consistent with the species' derived morphology and unique microwear textures. Finally, the results highlight the importance of baboon/hominin hand in food acquisition and preparation.

  11. Unusual death of millipedes (Diplopoda) towards the north of the Varkala Cliff section near Papanasam, Kerala, India

    OpenAIRE

    P.K. Sarkar; S. N. Mude, Madhuri Ukey

    2011-01-01

    The cliff section at Varkala, Kerala consisting of clay, lignite band, clay, sandy-clay, sandstone of Mio-Pliocene age. This sedimentary sequence is overlain by a thick laterite. Above the lower lignite band, in the exposed clay beds several struggling and dead millipedes can be observed. Their death is probably due to the action of dehydration related to the sulphuric water infiltration in the sediments. However, it still remains a mystery why these millipedes choose such a toxic environment...

  12. Polygenetic development and paleoenvironmental implications of a Pleistocene calcrete at Tongoy, central northern Chile.

    OpenAIRE

    M. Pfeiffer; J. Le Roux; H. Kemnitz

    2011-01-01

    The Norte Chico Region, in central northern Chile, is a particularly sensitive area to Quaternary climate changes because of its extreme climatic gradients. However, very little has been done to determine the late Pleistocene climatic conditions of the area. Calcretes are known to be important repositories of information on past ecosystems and environments. In the Tongoy paleobay, a series of four marine beach terraces have developed over a Mio-Pliocene calcareous formation since MIS 11 to th...

  13. Fruits and foliage of Pueraria (Leguminosae, Papilionoideae) from the Neogene of Eurasia and their biogeographic implications.

    Science.gov (United States)

    Wang, Qi; Manchester, Steven R; Dilcher, David L

    2010-12-01

    Pueraria (Leguminosae, Papilionoideae) is native in East Asia, South Asia, Southeast Asia, and Oceania and is well known as a rampant invasive weed in the southeastern United States (P. montana; better known as kudzu), but relatively little is known about its early evolution and biogeographic origin. • On the basis of comparative analyses of the fruit and leaflet architecture of closely related extant and fossil taxa, we studied the fossil history and biogeography of Pueraria. • Fossil Pueraria is recognized on the basis of distinctive fruit and foliage from the Mio-Pliocene of middle latitudes in China, Japan, Abkhazia, and Croatia. Recognition of P. miothunbergiana from the Mio-Pliocene of China and Japan is reinforced by a trifoliolate leaf as well as isolated lateral and terminal leaflets. Pueraria shanwangensis sp. nov. represents the first recognition of fossil Pueraria fruits. This fruit species co-occurs with P. miothunbergiana in the Middle Miocene Shanwang flora and possibly represents the same population. Pueraria maxima (Unger) comb. nov., previously named as Dolichites maximus or Desmodium maximum, is recognized on the basis of leaflets from the Miocene of Croatia and Abkhazia. Other prior fossil reports of Pueraria and Dolichites are reevaluated. • Pueraria had begun to diversify by at least the Middle Miocene and had spread into the Mio-Pliocene subtropical and temperate floras of the Balkan Peninsula, the Caucasus, and eastern Asia, which suggests the present diversity of this genus in tropical Asia and Oceania might have originated from the mid-latitudes of Eurasia.

  14. A morphometric analysis of hominin teeth attributed to Australopithecus, Paranthropus and Homo

    Directory of Open Access Journals (Sweden)

    Susan J. Dykes

    2016-11-01

    Full Text Available Teeth are the most common element in the fossil record and play a critical role in taxonomic assessments. Variability in extant hominoid species is commonly used as a basis to gauge expected ranges of variability in fossil hominin species. In this study, variability in lower first molars is visualised in morphospace for four extant hominoid species and seven fossil hominin species. A size-versus-shape-based principle component analysis plot was used to recognise spatial patterns applicable to sexual dimorphism in extant species for comparison with fossil hominin species. In three African great ape species, variability occurs predominantly according to size (rather than shape, with the gorilla sample further separating into a male and a female group according to size. A different pattern is apparent for the modern human sample, in which shape variability is more evident. There is overlap between male and female modern humans and some evidence of grouping by linguistic/tribal populations. When fossil hominin species are analysed using equivalent axes of variance, the specimens group around species holotypes in quite similar patterns to those of the extant African great apes, but six individual fossil molars fall well outside of polygons circumscribing holotype clusters; at least three of these specimens are of interest for discussion in the context of sexual dimorphism, species variability and current species classifications. An implication of this study is that, especially in the case of modern humans, great caution needs to be exercised in using extant species as analogues for assessing variability considered to be a result of sexual dimorphism in fossil hominin species.

  15. A morphometric analysis of hominin teeth attributed to Australopithecus, Paranthropus and Homo

    OpenAIRE

    Susan J. Dykes

    2016-01-01

    Teeth are the most common element in the fossil record and play a critical role in taxonomic assessments. Variability in extant hominoid species is commonly used as a basis to gauge expected ranges of variability in fossil hominin species. In this study, variability in lower first molars is visualised in morphospace for four extant hominoid species and seven fossil hominin species. A size-versus-shape-based principle component analysis plot was used to recognise spatial patterns applicable to...

  16. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    Science.gov (United States)

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become exceedingly difficult, and this difficulty, known as the "obstetrical dilemma", is likely to constrain the future evolution of brain size and, thus, privilege ongoing evolution in neurological reorganization. In modern babies, the brain spurt is accompanied by formation and tuning (pruning) of neurological connections, and development of dynamic higher-order networks that facilitate acquisition of grammatical language and, later in development, other advanced computational abilities such as musical or mathematical perception and performance. The cumulative evidence suggests that the emergence and refinement of grammatical language was a prime mover of hominin brain evolution.

  17. Virtual reconstruction of the Australopithecus africanus pelvis Sts 65 with implications for obstetrics and locomotion.

    Science.gov (United States)

    Claxton, Alexander G; Hammond, Ashley S; Romano, Julia; Oleinik, Ekaterina; DeSilva, Jeremy M

    2016-10-01

    Characterizing australopith pelvic morphology has been difficult in part because of limited fossilized pelvic material. Here, we reassess the morphology of an under-studied adult right ilium and pubis (Sts 65) from Member 4 of Sterkfontein, South Africa, and provide a hypothetical digital reconstruction of its overall pelvic morphology. The small size of the pelvis, presence of a preauricular sulcus, and shape of the sciatic notch allow us to agree with past interpretations that Sts 65 likely belonged to a female. The morphology of the iliac pillar, while not as substantial as in Homo, is more robust than in A.L. 288-1 and Sts 14. We created a reconstruction of the pelvis by digitally articulating the Sts 65 right ilium and a mirrored copy of the left ilium with the Sts 14 sacrum in Autodesk Maya. Points along the arcuate line were used to orient the ilia to the sacrum. This reconstruction of the Sts 65 pelvis looks much like a "classic" australopith pelvis, with laterally flared ilia and an inferiorly deflected pubis. An analysis of the obstetric dimensions from our reconstruction shows similarity to other australopiths, a likely transverse or oblique entrance of the neonatal cranium into the pelvic inlet, and a cephalopelvic ratio similar to that found in humans today. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Early hominin speciation at the Plio/Pleistocene transition.

    Science.gov (United States)

    Cameron, D W

    2003-01-01

    Over the last half-decade or so, there has been an explosion in the recognition of hominin genera and species. We now have the late Miocene genera Orrorin and Sahelanthropus, the mid Pliocene genus Kenyanthropus, three new Pliocene species of Australopithecus (A. anamensis, A. garhi and A. bahrelghazali) and a sub species of Ardipithecus (Ar. r. kadabba) to contend with. Excepting also the more traditional species allocated to Paranthropus, Australopithecus and early Homo we are approaching around 15 species over 5 million years (excluding hominin evolution over the last one million years). Can such a large number of hominin species be justified? An examination of extant hominid (Gorilla gorilla, Pan troglodytes, and Pan paniscus) anatomical variability indicates that the range of fossil hominin variability supports the recognition of this large number of fossil species. It is also shown that not all hominins are directly related to the emergence of early Homo and as such have become extinct. Indeed the traditional australopithecine species 'A'. anamensis, 'A'. afarensis and 'A'. garhi are considered here to belong to a distinct genus Praeanthropus. They are also argued not be hominins, but rather an as yet undefined hominid group from which the more derived hominins evolved. The first hominin is represented by A. africanus or a hominin very much like it. The Paranthropus clade is defined by a derived heterochronic condition of peramorphosis, associated with sequential progenesis (contraction of successive growth stages) in brain and dental development, but a mixture of peramorphic and paedomorphic features in its craniofacial anatomy. Conversely, Kenyanthropus and Homo both share a pattern of peramorphosis, associated with sequential hypermorphosis (prolongation of successive growth stages) in brain development, and paedomorphosis processes in cranial, facial and dental development. This suggests, that these two clades share an important synapomorphy not

  19. Shark-Cetacean trophic interaction, Duinefontein, Koeberg, (5 Ma, South Africa

    Directory of Open Access Journals (Sweden)

    Romala Govender

    2015-11-01

    Full Text Available This study forms part of a larger project to reconstruct the Mio-Pliocene marine palaeoenvironment along South Africa’s west coast. It documents the shark–cetacean trophic interaction during the Zanclean (5 Ma at Duinefontein (Koeberg. The damage described on the fragmentary cetacean bones was compared with similar damage observed on fossils from Langebaanweg, a Mio-Pliocene site on the west coast of South Africa, and data present in the literature. This comparison showed that the damage was the result of shark bites. The state of preservation makes it difficult to determine if the shark bite marks were the cause of death or as a result of scavenging. The presence of the bite marks on the bone would, however, indicate some degree of skeletonisation. Bite marks on some cranial fragments would suggest that the cetacean’s body was in an inverted position typical of a floating carcass. The preservation of the material suggests that the bones were exposed to wave action resulting in their fragmentation as well as abrasion, polishing and rolling. It also suggests that the cetacean skeletons were exposed for a long time prior to burial. The morphology of the bites suggests that the damage was inflicted by sharks with serrated and unserrated teeth. Shark teeth collected from the deposit include megalodon (Carcharodon megalodon, white (Carcharodon carcharias as well as mako (Isurus sp. and Cosmopolitodus hastalis sharks, making these sharks the most likely predators/scavengers.

  20. Evolution of Lake Chad Basin hydrology during the mid-Holocene: A preliminary approach from lake to climate modelling

    Science.gov (United States)

    Sepulchre, Pierre; Schuster, Mathieu; Ramstein, Gilles; Krinnezr, Gerhard; Girard, Jean-Francois; Vignaud, Patrick; Brunet, Michel

    2008-03-01

    During the mid-Holocene (6000 yr Before Present, hereafter yr BP) the Chad Basin was occupied by a large endoreic lake, called Lake Mega-Chad. The existence of this lake at that time seems linked to increased monsoonal moisture supply to the Sahel and the Sahara, which in turn was probably ultimately caused by variations in the orbital forcing and higher temperature gradients between ocean and continent. This study provides a synthesis of several works carried out on the Lake Chad Basin and analyses the results of a simulation of the mid-Holocene climate with an Atmosphere General Circulation Model (LMDZ for Laboratoire de Météorologie Dynamique, IPSL Paris), with emphasis on the possible conditions leading to the existence of Lake Mega-Chad. The aim is to define the best diagnostics to understand which mechanisms lead to the existence of the large lake. This paper is the first step of an ongoing work that intends to understand the environmental conditions that this part of Africa experienced during the Upper Miocene (ca. 7 Ma BP), an epoch that was contemporaneous with the first known hominids. Indeed, early hominids of Lake Chad Basin, Australopithecus bahrelghazali [ Brunet, M., et al., 1995. The first australopithecine 2500 kilometers west of the Rift-Valley (Chad). Nature, 378(6554): 273-275] and Sahelanthropus tchadensis [Brunet, M., et al., 2002. A new hominid from the Upper Miocene of Chad, central Africa. Nature, 418(6894): 145-151; Brunet, M., et al., 2005. New material of the earliest hominid from the Upper Miocene of Chad. Nature, 434(7034): 752-755] are systematically associated with wet episodes that are documented for 7 Ma BP [Vignaud, P., et al., 2002. Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature, 418(6894): 152-155] and testified by extended lacustrine deposits (diatomites, pelites, various aquatic fauna). Because the mid-Holocene was the last such mega-lake episode, our aim here is to assess the

  1. Late Miocene/Pliocene Ostracod Biostratigraphy from South Carpathian Foredeep, Romania (Badislava-Topolog Area)

    Science.gov (United States)

    Floroiu, Alina; Stoica, Marius; Vasiliev, Iuliana; Krijgsman, Wout

    2016-04-01

    The Paratethys epicontinental sea has been an essential paleogeographic feature defining the Eurasian interior since Oligocene. By the end of the Miocene, ongoing tectonic activity in the region determined severe restrictions of the connection of the large former Paratethys sea resulting in the formation of several smaller subbasins: the Pannonian basin, the Dacian basin, the Black Sea and the Caspian Sea. In the western part of the Dacian Basin, the thick and continuous Mio-Pliocene sedimentary successions of the Getic Depression of Romania provide an exceptional opportunity to study the paleoecological changes in the Eastern Paratethys during the time when the Mediterranean and Black Sea experienced important sea level changes related to the Messinian Salinity Crisis. These sedimentary successions were the basis of high-resolution magnetobiostratigraphic studies that allow a detailed correlation to the Geological Time Scale. Here, we present the main characteristics of the ostracod assemblages of the Late Miocene/Pliocene sedimentary succession from Badislava-Topolog section covering the Eastern Paratethys regional Maeotian and Pontian, stages that are, at moment, under ongoing formal stratigraphic definition process. The Mio-Pliocene is exposed in the central part of the Getic Depression, especially Topolog-Arges area, where it riches up to 500 m in thickness being incorporated into a large monocline structure with 15o-20o plungeto the south. The Upper Maeotian deposits from the area have developed mainly in fluviatile-deltaic facies with frequent continental intercalations. The ostracod assemblage is represented by rare fresh water ostracods of Candona, Pseudocandona and Ilyocypris genera, capable to populate unstable environments like flood-plains, lakes and rivers with temporary existence. The scarce Maeotian ostracod fauna from this marginal section differs essentially from the more diversified one of the same age recorded in areas that evolved in basinal

  2. Foramen magnum position in bipedal mammals.

    Science.gov (United States)

    Russo, Gabrielle A; Kirk, E Christopher

    2013-11-01

    The anterior position of the human foramen magnum is often explained as an adaptation for maintaining balance of the head atop the cervical vertebral column during bipedalism and the assumption of orthograde trunk postures. Accordingly, the relative placement of the foramen magnum on the basicranium has been used to infer bipedal locomotion and hominin status for a number of Mio-Pliocene fossil taxa. Nonetheless, previous studies have struggled to validate the functional link between foramen magnum position and bipedal locomotion. Here, we test the hypothesis that an anteriorly positioned foramen magnum is related to bipedalism through a comparison of basicranial anatomy between bipeds and quadrupeds from three mammalian clades: marsupials, rodents and primates. Additionally, we examine whether strepsirrhine primates that habitually assume orthograde trunk postures exhibit more anteriorly positioned foramina magna compared with non-orthograde strepsirrhines. Our comparative data reveal that bipedal marsupials and rodents have foramina magna that are more anteriorly located than those of quadrupedal close relatives. The foramen magnum is also situated more anteriorly in orthograde strepsirrhines than in pronograde or antipronograde strepsirrhines. Among the primates sampled, humans exhibit the most anteriorly positioned foramina magna. The results of this analysis support the utility of foramen magnum position as an indicator of bipedal locomotion in fossil hominins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Late cenozoic magmatism in the South Patagonian batholith: SHRIMP U-Pb zircon age evidence

    International Nuclear Information System (INIS)

    Fanning, C.M; Herve, F; Pankhurst, R.J; Thomson, S; Faundez, V

    2001-01-01

    The North Patagonian Batholith (NPB) has a zonal age pattern which includes a well defined belt of Miocene and Mio-Pliocene plutons in its central portion (Pankhurst et al., 1999) which are spatially, and probably genetically related to the Liquine-Ofqui Fault Zone. Previous geochronological studies in the Southern Patagonian Batholith (SPB), as summarized by Bruce et al. (1991), have yielded 9 late Cenozoic K-Ar or Ar-Ar ages out of a total of 116 age determinations. None of these young ages correspond to U-Pb determinations on zircons, and some of the young ages correspond to satellite plutons east of the SPB proper, such as the Torres del Paine intrusion. In this paper we present the first late Cenozoic SHRIMP U-Pb zircon ages in the area of the SPB. The morphology of the analysed zircon crystals is described and leads to some inferences on the methodology and on the geological interpretation of the obtained ages (au)

  4. Late Pleistocene acceleration of deformation across the northern Tianshan piedmont (China) evidenced from the morpho-tectonic evolution of the Dushanzi anticline

    Science.gov (United States)

    Charreau, Julien; Saint-Carlier, Dimitri; Lavé, Jérôme; Dominguez, Stéphane; Blard, Pierre-Henri; Avouac, Jean-Philippe; Brown, Nathan D.; Malatesta, Luca Claude; Wang, Shengli; Rhodes, Edward J.

    2018-04-01

    We document the temporal evolution of deformation in the northern Tianshan piedmont where the deformation is partitioned across several thrusts and folds. We focus on the Dushanzi anticline, where abandoned terraces and growth strata allow us to constrain the history of folding since the Miocene. Based on subsurface seismic imaging, structural measurements and morphological analysis, we show that this anticline is associated with two decollement levels. We use kink band migration in growth strata dated by paleomagnetism to constrain the shortening from the Mio-Pliocene to the Holocene. Our results show that the Dushanzi anticline has been active since at least 8 Ma and that the fold grew at a steady shortening rate of 0.6 ± 0.1 mm/yr from 8 to 1.5 Ma with possible variations from 2.5 to 1.5 Ma. Then it accelerated rapidly to a rate of 4.3 ± 1.0 mm/yr over at least the last 100 ka. These results, together with similar temporal shortening evolutions across other structures, suggest that the deformation rate across the eastern Tianshan piedmont increased relatively recently. This may reflect either a redistribution of the deformation from the internal structures toward the borders or a general acceleration of the deformation across the entire range.

  5. Thallium in mineral resources extracted in Poland

    Directory of Open Access Journals (Sweden)

    Bojakowska I.

    2013-04-01

    Full Text Available Thallium concentrations in primary mineral commodities extracted in Poland and processed in high temperatures were determined by ICP-MS method. Samples of hard and brown coal, copper-silver and zinclead ores, argillaceous and calcareous rocks of different genesis and age were analyzed. The highest thallium concentrations occur in the zinc-lead ores, the average content being of 52.1 mg/kg. The copper ores contain in average 1.4 mg/kg of thallium. Hard coals from the Upper Silesian Coal Basin display higher thallium content than those exploited in the Lublin Coal Basin. Brown coals from Turow deposit distinguish by much higher values, 0.7 mg/kg Tl, than those from huge Bełchatów and smaller Konin-Turek region deposits. Average thallium concentrations in clays used for ceramic materials are lower than 1 mg/kg, except of Mio-Pliocene Slowiany deposit. The average content of thallium in the studied limestone and dolomite raw materials for cement, lime, and metallurgical flux, and refractories is very low in comparison to the average amounts in the world carbonate rocks.

  6. Hydrogeochemical processes in the Plio-Quaternary Remila aquifer (Khenchela, Algeria)

    Science.gov (United States)

    Aouidane, Laiche; Belhamra, Mohamed

    2017-06-01

    The Remila Plain is a synclinal structure in northeast Algeria, situated within a semi-arid climate zone and composed of Mio-Pliocene-Quaternary deposits. Within the syncline, the Plio-Quaternary aquifer is the main source of drinking water for cattle and for agricultural irrigation water. This work aims to investigate the origin of groundwater mineralization and to identify the primary hydrogeochemical processes controlling groundwater evolution in the Remila aquifer. A total of 86 water samples from boreholes were analyzed for major, minor and stable isotopes (18O, 2H) over three seasons: first during low water levels in 2013, second during high water levels in 2014 and third for stable isotopes during low water levels in 2015. The analysis showed that the aquifer is controlled by five principal geochemical processes: (I) the dissolution of evaporite rocks, (II) cation exchange and reverse exchange reactions, (III) congruent dissolution of carbonates (calcite, dolomite) coupled with the dissolution of gypsum and calcite precipitation, (IV) sulfate reduction under anaerobic conditions, and (V) saltwater intrusion in the northeastern Sabkha plains. The 18O and deuterium concentrations in groundwater are very low, indicating that the aquifer is recharged by evaporated rainfall originating from the north slope of the Aurès Mountains which confirms that the aquifer is recharged in the southern part of the plain.

  7. The rise of ocean giants: maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic Oceans.

    Science.gov (United States)

    Pyenson, Nicholas D; Vermeij, Geerat J

    2016-07-01

    Large consumers have ecological influence disproportionate to their abundance, although this influence in food webs depends directly on productivity. Evolutionary patterns at geologic timescales inform expectations about the relationship between consumers and productivity, but it is very difficult to track productivity through time with direct, quantitative measures. Based on previous work that used the maximum body size of Cenozoic marine invertebrate assemblages as a proxy for benthic productivity, we investigated how the maximum body size of Cenozoic marine mammals, in two feeding guilds, evolved over comparable temporal and geographical scales. First, maximal size in marine herbivores remains mostly stable and occupied by two different groups (desmostylians and sirenians) over separate timeframes in the North Pacific Ocean, while sirenians exclusively dominated this ecological mode in the North Atlantic. Second, mysticete whales, which are the largest Cenozoic consumers in the filter-feeding guild, remained in the same size range until a Mio-Pliocene onset of cetacean gigantism. Both vertebrate guilds achieved very large size only recently, suggesting that different trophic mechanisms promoting gigantism in the oceans have operated in the Cenozoic than in previous eras. © 2016 The Authors.

  8. A synthesis: Late Cenozoic stress field distribution at northeastern corner of the Eastern Mediterranean, SE Turkey

    Science.gov (United States)

    Over, Semir; Ozden, Suha; Unlugenc, Ulvi Can; Yılmaz, Huseyin

    2004-01-01

    Fault kinematic analysis and inversion of focal mechanisms of shallow earthquakes reveal significant evolution of the regional stress regime in the northeastern most corner of the Eastern Mediterranean region since the Mio-Pliocene to the present time. This study was carried out in the interaction area between the Arabian/African plates and the Anatolian block. The evolution of stress regimes consists of a change from older transpression to younger transtension. Both strike-slip stress regimes having a NNW- to northwest-trending σHmax ( σ1) and ENE- to northeast-trending σHmin ( σ3) axes induce a sinistral component of displacement on the major intra-continental Karatas-Osmaniye and Misis-Ceyhan faults elongated with the northeast-trending Misis Range between Adana and Osmaniye provinces (sub-area i) and by a NNE-trending plate boundary Amanos fault running along Amanos Range between Antakya and Kahramanmaras provinces (sub-area ii). The inversion results show that the transtensional stress regime is dominantly strike-slip to extension, with an ENE- to northeast-trending σHmin ( σ3) axis for sub-areas ( i) and ( ii), respectively. The inversions of earthquake focal mechanisms indicate that the transtensional stress regime is still active in the whole study area since probably recent Quaternary time. To cite this article: S. Over et al., C. R. Geoscience 336 (2004).

  9. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    Science.gov (United States)

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. Molecules and fossils reveal punctuated diversification in Caribbean "faviid" corals.

    Science.gov (United States)

    Schwartz, Sonja A; Budd, Ann F; Carlon, David B

    2012-07-25

    Even with well-known sampling biases, the fossil record is key to understanding macro-evolutionary patterns. During the Miocene to Pleistocene in the Caribbean Sea, the fossil record of scleractinian corals shows a remarkable period of rapid diversification followed by massive extinction. Here we combine a time-calibrated molecular phylogeny based on three nuclear introns with an updated fossil stratigraphy to examine patterns of radiation and extinction in Caribbean corals within the traditional family Faviidae. Concatenated phylogenetic analysis showed most species of Caribbean faviids were monophyletic, with the exception of two Manicina species. The time-calibrated tree revealed the stem group originated around the closure of the Tethys Sea (17.0 Ma), while the genus Manicina diversified during the Late Miocene (8.20 Ma), when increased sedimentation and productivity may have favored free-living, heterotrophic species. Reef and shallow water specialists, represented by Diploria and Favia, originate at the beginning of the Pliocene (5 - 6 Ma) as the Isthmus of Panama shoaled and regional productivity declined. Later origination of the stem group than predicted from the fossil record corroborates the hypothesis of morphological convergence in Diploria and Favia genera. Our data support the rapid evolution of morphological and life-history traits among faviid corals that can be linked to Mio-Pliocene environmental changes.

  11. Autogenic Versus Allogenic Controls on the Evolution of a Coupled Fluvial Megafan-Mountainous Catchment System: Insight from Numerical Modelling

    Science.gov (United States)

    Mouchene, M.; van der Beek, P.; Carretier, S.; Mouthereau, F.

    2017-12-01

    Alluvial megafans are sensitive recorders of landscape evolution, controlled by both autogenic processes and allogenic forcing, and they are influenced by the coupled dynamics of the fan with its mountainous catchment. The Mio-Pliocene Lannemezan megafan in the northern Pyrenean foreland (SW France) was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised. The flight of alluvial terraces abandoned along the stream network may suggest a climatic control on the incision. We use a landscape evolution numerical model (CIDRE) to explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan, and we compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river on time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision on a shorter timescale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound do not appear to have played a role in the abandonment of the megafan.

  12. Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals

    Directory of Open Access Journals (Sweden)

    Schwartz Sonja A

    2012-07-01

    Full Text Available Abstract Background Even with well-known sampling biases, the fossil record is key to understanding macro-evolutionary patterns. During the Miocene to Pleistocene in the Caribbean Sea, the fossil record of scleractinian corals shows a remarkable period of rapid diversification followed by massive extinction. Here we combine a time-calibrated molecular phylogeny based on three nuclear introns with an updated fossil stratigraphy to examine patterns of radiation and extinction in Caribbean corals within the traditional family Faviidae. Results Concatenated phylogenetic analysis showed most species of Caribbean faviids were monophyletic, with the exception of two Manicina species. The time-calibrated tree revealed the stem group originated around the closure of the Tethys Sea (17.0 Ma, while the genus Manicina diversified during the Late Miocene (8.20 Ma, when increased sedimentation and productivity may have favored free-living, heterotrophic species. Reef and shallow water specialists, represented by Diploria and Favia, originate at the beginning of the Pliocene (5 – 6 Ma as the Isthmus of Panama shoaled and regional productivity declined. Conclusions Later origination of the stem group than predicted from the fossil record corroborates the hypothesis of morphological convergence in Diploria and Favia genera. Our data support the rapid evolution of morphological and life-history traits among faviid corals that can be linked to Mio-Pliocene environmental changes.

  13. Impact of climate changes during the last 5 million years on groundwater in basement aquifers.

    Science.gov (United States)

    Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent

    2015-09-22

    Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.

  14. Site characterization and site response in Port-au-Prince, Haiti

    Science.gov (United States)

    Hough, Susan E.; Yong, Alan K.; Altidor, Jean Robert; Anglade, Dieuseul; Given, Douglas D.; Mildor, Saint-Louis

    2011-01-01

    Waveform analysis of aftershocks of the Mw7.0 Haiti earthquake of 12 January 2010 reveals amplification of ground motions at sites within the Cul de Sac valley in which Port-au-Prince is situated. Relative to ground motions recorded at a hard-rock reference site, peak acceleration values are amplified by a factor of approximately 1.8 at sites on low-lying Mio-Pliocene deposits in central Port-au-Prince and by a factor of approximately 2.5–3 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplitude, predominant periods, variability, and polarization of amplification are consistent with predicted topographic amplification by a steep, narrow ridge. A swath of unusually high damage in this region corresponds with the extent of the ridge where high weak-motion amplifications are observed. We use ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to map local geomorphology, including characterization of both near-surface and of small-scale topographic structures that correspond to zones of inferred amplification.

  15. Description of a new species of Sparassocynus (Marsupialia: Didelphoidea: Sparassocynidae) from the late Miocene of Jujuy (Argentina) and taxonomic review of Sparassocynus heterotopicus from the Pliocene of Bolivia.

    Science.gov (United States)

    Abello, María Alejandra; De Los Reyes, Martín; Candela, Adriana Magdalena; Pujos, Francois; Voglino, Damián; Quispe, Bernardino Mamani

    2015-03-24

    A new species of sparassocynid marsupial, Sparassocynus maimarai n. sp. from the late Miocene of Maimará Formation (Jujuy Province, Argentina) is described from a left mandibular fragment with a complete p2-m4 series. It differs from the remaining species of the genus S. bahiai (Montehermosan-late Miocene/early Pliocene-of Buenos Aires Province, Argentina) and S. derivatus (Chapadmalalan and Marplatan-Pliocene of Buenos Aires Province) by its smaller size, the relatively longer m1 with respect to the m4, the presence of a lingual cingulum extended between para- and metaconid on the m1-3, and its more robust entoconids. As part of this study the taxonomic status of Sparassocynus heterotopicus (Montehermosan, Umala, Bolivia; Pliocene) was reviewed concluding that this taxon should be referred to as 'Sparassocynus' heterotopicus and considered a Didelphoidea of uncertain affinities. Sparassocynus maimarai n. sp. is the oldest records of the genus, adding new information to evaluate the origins and early diversification of sparassocynids. Sparassocynus maimarai n. sp. was recovered with precise stratigraphic control, highlighting its potential biostratigraphic significance to the temporal correlations between Maimará Formation and other Mio-Pliocene stratigraphic units from the northwestern Argentina.

  16. A multidisciplinary analysis to constrain exhumation and recent erosion history of the Tethyan Himalaya, based on apatite (U-Th-Sm)/He and cosmogenic nuclides dates from Central Nepal (Takkhola graben and the Mustang granite)

    Science.gov (United States)

    Rosenkranz, Ruben; Sahragard Sohi, Mohammad; Spiegel, Cornelia

    2015-04-01

    The exhumation of the Himalayan arc has been studied intensively throughout the last decades. For the Tethyan Himalaya, however, the youngest exhumation history is still unclear, mostly because of the lack of a significant apatite content in most Tethyan sediments (Crouzet et al. 2007). For this study we are using apatite (U-Th-Sm)/He thermochronology and cosmogenic nuclides for investigating exhumation and denudation of the Tethyan Himalaya back through time. Apatite (U-Th-Sm)/He thermochronology is sensitive to temperatures of ~40 to 85°C and thus to movements within the upper ~1.5 to 3 km of the earth's crust. During a recent field campaign, we sampled the Mustang granite, that intrudes the Tethyan marine sediments and the Takkhola-Graben. The graben can be seen as an inusual southern part of the normal faulting system affecting the whole Tibetan Plateau (Colchen, 1999). The timing of the activation of these faulting is still highly debated. The syntectonics filling of the Takkhola-Mustag graben consists of Mio-Pliocene fluvio-lacustrine deposits (Garzione et al. 2003). These were described as containing significant amounts of apatite, derived from the past erosion of the Mustang granitic body (Adhikari and Wagreich, 2011). Being only up to 1km thick, a post depositional thermal resetting of the apatite (U-Th-Sm)/He system is unlikely, so that the (U-Th-Sm)/He dates of the sediments are expected to have retained their information regarding source area exhumation. We took several sand samples from the Kali Gandaki River draining the present-day exposure of the Mustang granite. Furthermore, we sampled different stratigraphic levels of the Mio-Pliocene sedimentary rocks, i.e., from the Tetang and Takkahola formation deposited between 11 and 7 Ma. This sampling approach will not only provide information about the youngest denudation history of the Mustang granite /Tethyan Himalaya, but will also reveal insights into its past denudation and changes of denudation

  17. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    Science.gov (United States)

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Timing and sources of neogene and quaternary volcanism in South-Central Guatemala

    Science.gov (United States)

    Reynolds, James H.

    1987-08-01

    Five new and six existing radiometric age dates place constraints on the timing of volcanic episodes in a 1400-km 2 area east of Guatemala City. The source of the voluminous Miocene rhyolitic welded tuffs was the newly discovered Santa Rosa de Lima caldera, in the northern part of the area, not fissure eruptions as was previously believed. Resurgence during the Pliocene included the eruption of more silicic tuffs, followed by post-collapse volcanism around the perimeter. Volcanism in the southern part of the area occurred along the Neogene volcanic front. The sources for these Late Miocene and Pliocene andesitic lavas were not fissure eruptions, as was once believed, but were four large volcanic centers, Cerro Pinula, Ixhuatán, Teanzul, and Cerro La Gabia. The Santa Rosa de Lima caldera structure deflects the Jalpatagua Fault forming tensional fractures along which eruptions in the Quaternary Cuilapa-Barbarena cinder cone field took place. Pleistocene ash flows were erupted from Ixhuatán and Tecuamburro volcanoes in the southern part of the area. Tephras from Ayarza, Amatitlán, and Atitlán blanket the northern and central portions. Present-day activity is restricted to hot springs around the northern and eastern base of Tecuamburro volcano. Based on the work in this area it is proposed that rocks of the Miocene Chalatenango Formation throughout northern Central America were erupted from calderas behind the Neogene volcanic front. Rocks of the Mio-Pliocene Bálsamo Formation in Guatemala and El Salvador were erupted from discrete volcanic centers along the Neogene volcanic front. Pliocene rocks of the Cuscatlán Formation probably represent post-collapse volcanism around earlier caldera structures.

  19. Vicariance and Its Impact on the Molecular Ecology of a Chinese Ranid Frog Species-Complex (Odorrana schmackeri, Ranidae.

    Directory of Open Access Journals (Sweden)

    Yongmin Li

    Full Text Available Paleogeological events and Pleistocene climatic fluctuations have had profound influences on the genetic patterns and phylogeographic structure of species in southern China. In this study, we investigated the population genetic structure and Phylogeography of the Odorrana schmackeri species complex, mountain stream-dwelling odorous frogs, endemic to southern China. We obtained mitochondrial sequences (1,151bp of the complete ND2 gene and two flanking tRNAs of 511 individuals from 25 sites for phylogeographic analyses. Phylogenetic reconstruction revealed seven divergent evolutionary lineages, with mean pairwise (K2P sequence distances from 7.8% to 21.1%, except for a closer ND2 distance (3.4%. The complex geological history of southern China drove matrilineal divergence in the O. schmackeri species complex into highly structured geographical units. The first divergence between lineage A+B and other lineages (C-G had likely been influenced by the uplift of coastal mountains of Southeast China during the Mio-Pliocene period. The subsequent divergences between the lineages C-G may have followed the formation of the Three Gorges and the intensification of the East Asian summer monsoon during the late Pliocene and early Pleistocene. Demographic analyses indicated that major lineages A and C have been experienced recent population expansion (c. 0.045-0.245 Ma from multiple refugia prior to the Last Glacial Maximum (LGM. Molecular analysis suggest that these seven lineages may represent seven different species, three described species and four cryptic species and should at least be separated into seven management units corresponding to these seven geographic lineages for conservation.

  20. Arsenic concentrations in soils and sediments of the southern Pampean Plain, within Claromecó River Basin (Argentina)

    Science.gov (United States)

    Sosa, N. N.; Datta, S.; Zarate, M.

    2015-12-01

    The Pampean plain is an extensive flatland covering ~1000000 km2 of central and northern Argentina. The region, dominated by Neogene and quaternary volcanoclastic loess and loess-like deposits, shows one of the highest groundwater As concentrations of the world which cause serious problems to human health. The oxidising and high pH conditions of the Pampean groundwater leads to the dissolution of volcanic glass and Fe oxy-hydroxides and the release of As to water. Variation of As content related to lithogenic factors is evident from our study in Claromecó River Basin (Southern Pampean plain): the Mio-Pliocene fluvial facies (MPFF) show low As content (2.6mg/kg) compared to the Late Pleistocene fluvial facies (11.6mg/kg; LPFF). Furthermore, the pedogenic calcrete and the paleosols developed in fluvial facies present significantly different As content: 3.9 mg/Kg in MPFF pedogenic calcrete and 16.5 mg/Kg in LPFF paleosols. Modern soils show the highest As content, especially in the illuvial horizons (23.3 mg/Kg) controlled by grain size and clay mineralogy constituents. Preliminary results demonstrate a sedimentological control embarking differences in As concentrations. These differences are probably attributed to a major hydraulic gradient during the MPFF, which is reflected in grain size and in fluvial structures, which probably was followed by washed out sediments. A geomorphological control was observed through an increase of As concentrations from the interfluves (MPFF) to the valleys (LPFF) as well as from the upper to the lower basin zone within the LPFF. Pedogenic calcrete and paleosols developed in MPFF and LPFF respectively reflect the different geomorphological conditions showing high As content in LPFF paleosols (attributed to Fe oxy-hydroxides). This study relates mineralogy and sedimentological environment to groundwater, surface water from wetlands to understand the hydrochemical processes in controlling As within the Claromecó basin.

  1. Late Cenozoic stress distribution along the Misis Range in the Anatolian, Arabian, and African plate intersection region, SE Turkey

    Science.gov (United States)

    Over, Semir; Ozden, Suha; Can Unlugenc, Ulvi

    2004-06-01

    This study defines the Mio-Pliocene to present-day stress regime acting at the northeastern Mediterranean along the SE border of the Neogene Adana basin along the Misis Range. The inversion of earthquake focal mechanisms shows that the present-day state of stress is dominantly a transtension, combined the strike-slip and extension with a consistent ENE (N83°E) trending σHmin (σ3) axis. The inversion slip vectors measured on fault planes and chronologies between striations indicate a consistent strike-slip stress regime that varied from transpressional initially to transtensional during Pleistocene time, with the latter continuing into recent times as indicated by earthquake focal mechanism inversions. Both states have consistent NNW (N15°W) trending, compatible with NNW Arabian drift direction, and ENE (N75°E) trending σHmax (σ1) and σHmin (σ3) axes, respectively, but have significantly different mean arithmetic stress ratio (Rm) values: Rm = 0.75 indicating transpression for the old regional stress regime and Rm of 0.20 denoting transtensional for the younger regional stress regime. The crosscutting of striations confirms also the change within the strike-slip stress regime. Both stress regimes induce sinistral displacement along the major strike-slip fault systems, i.e., East Anatolian Fault, Karatas-Osmaniye Fault. The temporal stress regime change probably occurred during Quaternary time and resulted from coeval influence of the superimposed forces owing to subduction processes in the southwest along the Cyprus arc, continental collision in the east, and westward escape of the Anatolian Block in the north and west.

  2. Inherited weaknesses control deformation in the flat slab region of Central Argentina

    Science.gov (United States)

    Stevens, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.

    2015-12-01

    The Sierras Pampeanas region of west-central Argentina has long been considered a geologic type-area for flat-slab induced thick-skinned deformation. Frictional coupling between the horizontal subducting plate and South American lithosphere from ~12 Ma to the present provides an obvious causal mechanism for the basement block uplifts that characterize this region. New low temperature thermochronometry data show basement rocks from the central Sierras Pampeanas (~ longitude 66 ̊ W) including Sierras Cadena de Paiman, Velasco and Mazan retain a cooling history of Paleozoic - Mesozoic tectonics events. Results from this study indicate that less than 2 km of basement has been exhumed since at least the Mesozoic. These trends recorded by both apatite fission track (AFT) and apatite helium (AHe) thermochronometry suggest that recent Mio-Pliocene thick-skinned deformation associated with flat-slab subduction follow inherited zones of weakness from Paleozoic terrane sutures and shear zones and Mesozoic rifting. If a Cenozoic foreland basin exisited in this region, its thickness was minimal and was controlled by paleotopography. Pre-Cenozoic cooling ages in these ranges that now reach as high as 4 km imply significant exhumation of basement rocks before the advent of flat slab subduction in the mid-late Miocene. It also suggests that thick-skinned deformation associated with flat slab subduction may at least be facilitated by inherited crustal-scale weaknesses. At the most, pre-existing zones of weakness may be required in regions of thick-skinned deformation. Although flat-slab subduction plays an important role in the exhumation of the Sierras Pampeanas, it is likely not the sole mechanism responsible for thick-skinned deformation in this region. This insight sheds light on the interpretation of modern and ancient regions of thick-skinned deformation in Cordilleran systems.

  3. Vicariance and Its Impact on the Molecular Ecology of a Chinese Ranid Frog Species-Complex (Odorrana schmackeri, Ranidae).

    Science.gov (United States)

    Li, Yongmin; Wu, Xiaoyou; Zhang, Huabin; Yan, Peng; Xue, Hui; Wu, Xiaobing

    2015-01-01

    Paleogeological events and Pleistocene climatic fluctuations have had profound influences on the genetic patterns and phylogeographic structure of species in southern China. In this study, we investigated the population genetic structure and Phylogeography of the Odorrana schmackeri species complex, mountain stream-dwelling odorous frogs, endemic to southern China. We obtained mitochondrial sequences (1,151bp) of the complete ND2 gene and two flanking tRNAs of 511 individuals from 25 sites for phylogeographic analyses. Phylogenetic reconstruction revealed seven divergent evolutionary lineages, with mean pairwise (K2P) sequence distances from 7.8% to 21.1%, except for a closer ND2 distance (3.4%). The complex geological history of southern China drove matrilineal divergence in the O. schmackeri species complex into highly structured geographical units. The first divergence between lineage A+B and other lineages (C-G) had likely been influenced by the uplift of coastal mountains of Southeast China during the Mio-Pliocene period. The subsequent divergences between the lineages C-G may have followed the formation of the Three Gorges and the intensification of the East Asian summer monsoon during the late Pliocene and early Pleistocene. Demographic analyses indicated that major lineages A and C have been experienced recent population expansion (c. 0.045-0.245 Ma) from multiple refugia prior to the Last Glacial Maximum (LGM). Molecular analysis suggest that these seven lineages may represent seven different species, three described species and four cryptic species and should at least be separated into seven management units corresponding to these seven geographic lineages for conservation.

  4. East African Cenozoic vegetation history.

    Science.gov (United States)

    Linder, Hans Peter

    2017-11-01

    The modern vegetation of East Africa is a complex mosaic of rainforest patches; small islands of tropic-alpine vegetation; extensive savannas, ranging from almost pure grassland to wooded savannas; thickets; and montane grassland and forest. Here I trace the evolution of these vegetation types through the Cenozoic. Paleogene East Africa was most likely geomorphologically subdued and, as the few Eocene fossil sites suggest, a woodland in a seasonal climate. Woodland rather than rainforest may well have been the regional vegetation. Mountain building started with the Oligocene trap lava flows in Ethiopia, on which rainforest developed, with little evidence of grass and none of montane forests. The uplift of the East African Plateau took place during the middle Miocene. Fossil sites indicate the presence of rainforest, montane forest and thicket, and wooded grassland, often in close juxtaposition, from 17 to 10 Ma. By 10 Ma, marine deposits indicate extensive grassland in the region and isotope analysis indicates that this was a C 3 grassland. In the later Miocene rifting, first of the western Albertine Rift and then of the eastern Gregory Rift, added to the complexity of the environment. The building of the high strato-volcanos during the later Mio-Pliocene added environments suitable for tropic-alpine vegetation. During this time, the C 3 grassland was replaced by C 4 savannas, although overall the extent of grassland was reduced from the mid-Miocene high to the current low level. Lake-level fluctuations during the Quaternary indicate substantial variation in rainfall, presumably as a result of movements in the intertropical convergence zone and the Congo air boundary, but the impact of these fluctuations on the vegetation is still speculative. I argue that, overall, there was an increase in the complexity of East African vegetation complexity during the Neogene, largely as a result of orogeny. The impact of Quaternary climatic fluctuation is still poorly understood

  5. Plio-quaternary deposits in the Eastern Rharb (Nw Morocco): Electrosequential characterization

    Science.gov (United States)

    Al Mazini, Imane; Mridekh, Abdelaziz; Kili, Malika; El Mansouri, Bouâbid; El Bouhaddioui, Mohamed; Magrane, Bouchaib

    2018-02-01

    The Rharb basin, of which our study area is part, is located at the western extremity of the south Rif corridor. It corresponds to a subsiding zone that appeared in the Upper Miocene, between two major structural domains: the Rif to the north and east and the Meseta domain to the south. The eastern part of this basin is characterized by a Plio-Quaternary continental fill. Its geographical position and its structural and paleo-environmental contexts are reflected by a great facies heterogeneity. This work aims to image the subsurface structure and to characterize the distribution mode of Plio-Quaternary deposits of the eastern Rharb. The use of a database consisting of geo-electrical cross sections, hydrogeological drilling and wireline logging integrated in a Geographic Information System (GIS) allowed us to establish a new three-dimensional model of the top of the Mio-Pliocene substratum, new geo-electrical cross sections, as well as the isopach maps of lower, intermediate, upper and superficial geo-electric interval. This approach allowed us to characterize the Plio-Quaternary deposits of the study area and to highlight the effects of the tectonic regime and the relative sea level fluctuations on the sequential organization of these deposits. Our new model shows the development of prograding, aggrading and retrograding parasequences denoting the existence of autogenic mechanisms in the organization of plio-quaternary deposits of the eastern part of the Rharb basin. Therefore, it opens new perspectives for the exploration of water resources and monitoring their quality throughout the basin.

  6. Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene

    Directory of Open Access Journals (Sweden)

    C. Contoux

    2013-07-01

    Full Text Available Given the growing evidence for megalakes in the geological record, assessing their impact on climate and vegetation is important for the validation of palaeoclimate simulations and therefore the accuracy of model–data comparison in lacustrine environments. Megalake Chad (MLC occurrences are documented not only for the mid-Holocene but also for the Mio-Pliocene (Schuster et al., 2009. At this time, the surface covered by water would have reached up to ~350 000 km2 (Ghienne et al., 2002; Schuster et al., 2005; Leblanc et al., 2006, making it an important evaporation source, possibly modifying climate and vegetation in the Chad Basin. We investigated the impact of such a giant continental water area in two different climatic backgrounds within the Paleoclimate Model Intercomparison Project phase 3 (PMIP3: the late Pliocene (3.3 to 3 Ma, i.e. the mid-Piacenzian warm period and the mid-Holocene (6 kyr BP. In all simulations including MLC, precipitation is drastically reduced above the lake surface because deep convection is inhibited by overlying colder air. Meanwhile, convective activity is enhanced around MLC because of the wind increase generated by the flat surface of the megalake, transporting colder and moister air towards the eastern shore of the lake. The effect of MLC on precipitation and temperature is not sufficient to widely impact vegetation patterns. Nevertheless, tropical savanna is present in the Chad Basin in all climatic configurations, even without MLC presence, showing that the climate itself is the driver of favourable environments for sustainable hominid habitats.

  7. Depósitos epitermales de baja sulfuración ricos en sulfuros de metales base, distrito aurífero La Carolina, San Luis, Argentina

    Directory of Open Access Journals (Sweden)

    Gallard-Esquivel María Cecilia

    2011-12-01

    Full Text Available Low-sulfidation epithermal base-metal sulfide-rich deposits, La Carolina gold-bearing district,San Luis, Argentina. La Carolina gold-bearing district is located at the western end of the Metallogenetic Belt of San Luis, which is spatially and genetically related to the mesosilicic volcanism of mio-pliocene age. The volcanic arc experienced an eastward migration, due to the flattening of the Nazca plate in the segment 27°-33°S, known as the Pampean flat-slab. At La Carolina, the volcanic activity occurred between 8.2 and 6.3 Ma. It encompasses lavas and pyroclastics of andesitic, dacitic, latitic and trachytic composition. The mesosilicic magmas belong to normal to high-k calc-alkaline and shoshonitic suites. Structural analysis shows that previous structures have strongly controlled the emplacement of volcanic rocks and related mineral deposits at La Carolina allowing to define a pullapart.In this gold-bearing district there are eigth small mineralized prospects. The mineralogy consists of pyrite, arsenic rich pyrite, galena, sphalerite, marcasite, melnikovite, chalcopyrite, pyrrhotite, arsenopyrite, tennantitetetrahedrite, digenite, covellite, bornite, pyrargiryte, hessite, silvanite, pearceite, argirodite, gold, silver, greigite, boulangerite, jamesonite and electrum. The gangue consists of quartz, calcite, chalcedony and minor adularia.The hydrothermal alteration is widespread and comprise phyllic and argillic mineral assemblages characterized by sericite, illite, interstratified I/S, and silicic; propylitic alteration is also present as an outer halo. Fluid inclusions studies show that the formation temperatures range between 230º to 330º C. Boiling and mixing with meteoric water led to mineral precipitation. Based on the mineralogy, textures, hydrothermal alteration, formation temperatures,fluid chemistry and prospective geochemistry the mineralizations have been classified as low-sulfidation epithermal base-metal sulfide-rich deposits.

  8. Ardipithecus ramidus and the evolution of the human cranial base.

    Science.gov (United States)

    Kimbel, William H; Suwa, Gen; Asfaw, Berhane; Rak, Yoel; White, Tim D

    2014-01-21

    The early Pliocene African hominoid Ardipithecus ramidus was diagnosed as a having a unique phylogenetic relationship with the Australopithecus + Homo clade based on nonhoning canine teeth, a foreshortened cranial base, and postcranial characters related to facultative bipedality. However, pedal and pelvic traits indicating substantial arboreality have raised arguments that this taxon may instead be an example of parallel evolution of human-like traits among apes around the time of the chimpanzee-human split. Here we investigated the basicranial morphology of Ar. ramidus for additional clues to its phylogenetic position with reference to African apes, humans, and Australopithecus. Besides a relatively anterior foramen magnum, humans differ from apes in the lateral shift of the carotid foramina, mediolateral abbreviation of the lateral tympanic, and a shortened, trapezoidal basioccipital element. These traits reflect a relative broadening of the central basicranium, a derived condition associated with changes in tympanic shape and the extent of its contact with the petrous. Ar. ramidus shares with Australopithecus each of these human-like modifications. We used the preserved morphology of ARA-VP 1/500 to estimate the missing basicranial length, drawing on consistent proportional relationships in apes and humans. Ar. ramidus is confirmed to have a relatively short basicranium, as in Australopithecus and Homo. Reorganization of the central cranial base is among the earliest morphological markers of the Ardipithecus + Australopithecus + Homo clade.

  9. Burial and thermal history simulation of the Abu Rudeis-Sidri oil field, Gulf of Suez-Egypt: A 1D basin modeling study

    Science.gov (United States)

    Awadalla, Ahmed; Hegab, Omar A.; Ahmed, Mohammed A.; Hassan, Saad

    2018-02-01

    An integrated 1D model on seven wells has been performed to simulate the multi-tectonic phases and multiple thermal regimes in the Abu Rudeis-Sidri oilfield. Concordance between measured and calculated present-day temperatures is achieved with present-day heat flows in the range of 42-55 mW/m2. Reconstruction of the thermal and burial histories provides information on the paleotemperature profiles, the timing of thermal activation as well as the effect of the Oligo-Miocene rifting phases and its associated magmatic activity. The burial histories show the pre-rift subsidence was progressive but modest, whereas the syn-rift was more rapid (contemporaneous with the main rifting phases and basin formation). Finally, the early post-rift thermal subsidence was slow to moderate in contrast to the late post-rift thermal subsidence which was moderate to rapid. The simulated paleo heat flow illustrates a steady state for the pre-rift phase and non-steady state (transient) for syn-rift and postrift phases. Three geothermal regimes are recognized, each of which is associated with a specific geological domain. 1) A lower geothermal regime reflects the impact of stable tectonics (pre-rift). 2) The higher temperature distribution reflects the syn-rift high depositional rate as well as the impact of stretching and thinning (rifting phases) of the lithosphere. 3) A local higher geothermal pulse owing to the magmatic activity during the Oligo-Miocene time (ARM-1 and Sidri-7 wells). Paleoheat flow values of 100mW/m2 (Oligo-Miocene rifting phase) increased to 120mW/m2 (Miocene rifting phase) and lesser magnitude of 80mW/m2 (Mio- Pliocene reactivation phase) have been specified. These affected the thermal regime and temperature distribution by causing perturbations in subsurface temperatures. A decline in the background value of 60mW/m2 owing to conductive cooling has been assigned. The blanketing effect caused by low thermal conductivity of the basin-fill sediments has been simulated

  10. Water-borne radon and hydrogeochemical based uranium exploration in Rajamundry sandstone, W. Godavari district, Andhra Pradesh

    International Nuclear Information System (INIS)

    Jeyagopal, A.V.; Rajaraman, H.S.; Som, Anjan

    2010-01-01

    The lithology and sedimentary structures of the Rajamundry Formation of the Mio-Pliocene age covering an area of 1100 sq.km. indicate that it may be a typical valley fill sediment. It is about 600 m thick comprising sandstone and clay with lignite as the main lithounits. It is continental in onshore and marine in the offshore and is in contact with Gondwana sediments and Rajamundry traps. Tertiary sandstones are important hosts for uranium mineralisation. The reducing gas (Methane or other volatile hydrocarbon) moving to uraniferous oxidising water has precipitated uranium in the sediments in South Texas and Northwest Colorado, USA: (a) along faults, (b) above petroliferous aquifers, (c) vertically above hydrocarbon accumulations and (d) oil-water interface at hydrocarbon accumulations i.e., at the points of introduction of reducent into oxidising ground waters. In this context, Rajamundry sandstone lying above the natural gas and petroleum bearing Krishna Godavari basin with faults is an important geological setting for uranium mineralisation. The exploration strategies of hydrogeochemical survey and water-borne Radon (Rn) surveys were selected in this soil-covered area. Hydrogeochemical survey carried out in the Rajamundry sandstone has brought out four hydro-uranium anomalous zones with water samples (10-45ppb) falling around Kadiyadda, Madhavaram, Erramalla and Chinna Malapalle areas of West Godavari district, Andhra Pradesh. The zones vary from 9 to 24 sq km area. Water-borne Radon was utilized as a tool for exploration of uranium in this soil covered terrain. Rn contours cluster around two zones around Kadiyadda and SW of Gollagudem wherein the Rn value is >60 counts/50 sec/500 ml. These Rn anomalies fall within the above mentioned hydrouranium anomalous zones. Gamma-ray logging of private bore wells has recorded relatively higher radioactivity in Kommugudem, which also falls in the high hydrouranium - high waterborne radon zone. These data and

  11. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).

    Science.gov (United States)

    Rix, Michael G; Cooper, Steven J B; Meusemann, Karen; Klopfstein, Seraina; Harrison, Sophie E; Harvey, Mark S; Austin, Andrew D

    2017-04-01

    -plugging in transitional arid zone taxa have evolved twice independently in Western Australia, while in Misgolas and Cataxia, burrow door-building behaviours have likely been independently lost at least three times in the eastern Australian mesic zone. We also show that the presence of idiopids in New Zealand (Cantuaria) is likely to be the result of recent dispersal from Australia, rather than ancient continental vicariance. By providing the first comprehensive, continental synopsis of arid zone biogeography in an Australian arachnid lineage, we show that the diversification of arbanitine Idiopidae was intimately associated with climate shifts during the Neogene, resulting in multiple Mio-Pliocene radiations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A multi-locus inference of the evolutionary diversification of extant flamingos (Phoenicopteridae).

    Science.gov (United States)

    Torres, Chris R; Ogawa, Lisa M; Gillingham, Mark A F; Ferrari, Brittney; van Tuinen, Marcel

    2014-03-01

    Modern flamingos (Phoenicopteridae) occupy a highly specialized ecology unique among birds and represent a potentially powerful model system for informing the mechanisms by which a lineage of birds adapts and radiates. However, despite a rich fossil record and well-studied feeding morphology, molecular investigations of the evolutionary progression among modern flamingos have been limited. Here, using three mitochondrial (mtDNA) markers, we present the first DNA sequence-based study of population genetic variation in the widely distributed Chilean Flamingo and, using two mtDNA and 10 nuclear (nDNA) markers, recover the species tree and divergence time estimates for the six extant species of flamingos. Phylogenetic analyses include likelihood and Bayesian frameworks and account for potential gene tree discordance. Analyses of divergence times are fossil calibrated at the divergence of Mirandornithes (flamingos + grebes) and the divergence of crown grebes. mtDNA sequences confirmed the presence of a single metapopulation represented by two minimally varying mtDNA barcodes in Chilean flamingos. Likelihood and Bayesian methods recovered identical phylogenies with flamingos falling into shallow-keeled (comprising the Greater, American and Chilean Flamingos) and deep-keeled (comprising the Lesser, Andean and James's Flamingos) sub-clades. The initial divergence among flamingos occurred at or shortly after the Mio-Pliocene boundary (6-3 Ma) followed by quick consecutive divergences throughout the Plio-Pleistocene. There is significant incongruence between the ages recovered by the mtDNA and nDNA datasets, likely due to mutational saturation occurring in the mtDNA loci. The finding of a single metapopulation in the widespread Chilean Flamingo confirms similar findings in other widespread flamingo species. The robust species phylogeny is congruent with previous classifications of flamingos based on feeding morphology. Modern phoenicopterids likely originated in the New

  13. Zagros Geodynamics, From Subduction to Collision: The Fate of the Neotethys

    Science.gov (United States)

    Omrani, J.; Agard, P.; Jolivet, L.; Whitechurch, H.; Monié, P.

    2008-12-01

    The Zagros orogen preserves the record of three main periods/regimes in the convergence history of the Neotethys: (1) Long-lasting subduction processes and arc magmatism (>150-35 Ma). Trace and rare-earth element systematics on the upper plate Sanandaj-Sirjan and Urumieh-Dokhtar magmatic arcs show that they originated from similar, subduction-related mantle sources. The inward shift of arc magmatism (~300 km) from the former to the latter at the end of the Tertiary likely resulted from a change in kinematics and was predated by the formation of the Paleocene-Eocene intraoceanic arc of Kermanshah (earlier thought to represent a remnant of the Peri-Arabic obduction). Oceanic subduction proper ended by 35-30 Ma and was followed by collision. (2) A distinctive period of pertubation of subduction processes (115-85 Ma). A sharp rise of convergence velocities across the Neotethys at ~115 Ma was followed by two regional- scale (i.e., > 3000 km along strike), coeval (~100-80 Ma), short-lived major tectonic phenomena: - the transient exhumation of oceanic blueschists all along the Neotethyan subduction zone, which testifies to a change in plate-slab coupling, - the development of intra-oceanic subduction ultimately leading to the obduction of oceanic crust onto Arabia. (3) Collision and slab tear at depths (~25-0 Ma). Collision started before ~25-23 Ma (in Lorestan) and resulted in 70 km of shortening in the internal zones alone over the last 20-15 My. Calc-alkaline magmatism resumed in the Urumieh-Dokhtar magmatic arc after collision, mainly from the Mio-Pliocene onwards. In Central Zagros this syn-collision magmatism shows a distinctive adakitic trend attributable to the melting at depths of mafic material in response to localized slab breakoff (i.e. 200-300 km along strike), as further supported by tomography. The timing of this event is thus broadly coeval with slab-breakoff below southern Turkey and supports the view that slab tearing propagated in the Neotethyan slab

  14. Incomplete cryptic speciation between intertidal and subtidal morphs of Acrocnida brachiata (Echinodermata: Ophiuroidea) in the Northeast Atlantic.

    Science.gov (United States)

    Muths, D; Davoult, D; Gentil, F; Jollivet, D

    2006-10-01

    The brittle-star Acrocnida brachiata (Montagu) lives in sandy-bottom habitat of both intertidal and subtidal zones along the coasts of the northwestern Europe. An allozyme frequency-based survey (five enzyme loci) was combined with a mitochondrial (mt) COI haplotype analysis (598-bp sequences) on 17 populations to trace back past colonization pathways from the actual population structure of the species. Both genetic markers display a sharp genetic break between intertidal (clade I) and subtidal populations (clade S). This break corresponds to an allele frequency inversion at three enzyme loci (Hk, Pgm and Pgi) and a deep divergence of about 20% in mtCOI sequences between most of the intertidal populations and other samples. The geographic distribution of clade I seems to be more restricted than clade S as it is absent from the intertidal of the eastern English Channel and North Sea and may be replaced by clade S in south Brittany. Applying previously published rates of mutation, divergence between the two clades is estimated to pre-date 5 million years ago and may be due to allopatric speciation processes at the Mio-Pliocene transition. The occurrence of putative hybrids in a few localities, however, suggests incomplete cryptic speciation with secondary contact zones. The relative importance of colonization history vs. habitat specialization are discussed in the light of neutral evolution as tested from mtCOI gene sequences. While differential selection seems to have contributed little to the separation of the lineages, it may have played a role in the emergence of adaptive polymorphisms in the hybrid zone. Furthermore, congruent spatial patterns of differentiation were observed in both clades suggesting a recent increase in population size. These findings are in agreement with a recent expansion of the populations during or after the formation of the English Channel, from a southern refuge for the subtidal clade whereas the intertidal clade may have persisted

  15. Geographic variation in the African-Iberian ground beetle Rhabdotocarabus melancholicus (Coleoptera: Carabidae and its taxonomical and biogeographical implications

    Directory of Open Access Journals (Sweden)

    París, M.

    1995-12-01

    Full Text Available A study of morphological variation among populations from southern Spain and northwestern Africa of Rhabdotocarabus melancholicus (Fabricius, 1798 shows that there is statistical support for the recognition of three taxa: R. m. submeridionalis (Breuning, 1975 distributed over southeastern Spain, R. m. dehesicola n. ssp. from southwestern Spain and southern Portugal and R. m. melancholicus geographically restricted to northwestern Africa. This new arrangement changes previous biogeographic pictures for the genus, since R. m. melancholicus is not present in Europe and the range of variation observed within Iberian R. melancholicus is increased with new endemic taxa. We propose that the current differentiation among taxa is the result of successive vicariance events caused by dramatic paleogeographic changes which have occurred in the western Mediterranean region since the Mio-Pliocene boundary.Un estudio de la variación morfológica de poblaciones del sur de España y del noroeste de África de Rhabdotocarabus melancholicus (Fabricius, 1798 permite reconocer estadísticamente la existencia de dos taxa en las porciones meridionales de la Península Ibérica: R. m. submeridionalis (Breuning, 1975 distribuido por la región suroriental ibérica y R. m. dehesicola n. ssp. del suroeste de España y sur de Portugal; un tercer taxon, R. m. melancholicus, antes incluido en la fauna ibérica se considera ahora exclusivo del noroeste de África. Esta nueva estructura taxonómica cambia el cuadro biogeográfico previamente considerado para el género, ya que R. m. melancholicus no se encuentra en Europa, mientras que la diversidad taxonómica observada en Iberia se incrementa con dos táxones endémicos. Proponemos que la diferenciación observada es el producto de eventos vicariantes sucesivos resultado de los amplios cambios paleogeográficos producidos en la región mediterránea occidental desde el límite Mio-Pliocénico.

  16. Development of the palatal size in Pan troglodytes, Hominids and Homo sapiens.

    Science.gov (United States)

    Arnold, W H; Zoellner, A; Sebastian, T

    2004-12-01

    As the hard palate plays an important role in speech production it was the aim of this study whether similarities or dissimilarities in palatal size may allow conclusions about the ability to produce speech in the extant investigated species. The palatal size of Pan troglodytes, Homo sapiens, Australopithecus afarensis, Australopithecus africanus, Australopithecus robustus, Australopithecus boisei, Homo erectus, Homo neanderthalensis and Cro-Magnon has been investigated using euclidian distance matrix analysis (EDMA) and thin-plate-spline analysis. The results show that the palatal size of all australopithecine specimens and H. erectus is very similar to that of P toglodytes, whereas the palatal size of H. neanderthalensis more closely resembles that of H. sapiens. Postnatal development of palatal size in P troglodytes is different from that of H. sapiens. In P troglodytes not only the size of the palate changes but also the form. In H. sapiens there is little change in form, but a continuos uniform growth from infantile to adult specimens. From the results we conclude that in all australopithecine samples which have been investigated, the palatal size is similar to that of P troglodytes. Therefore, it is unlikely that austraopithecine individuals were capable of producing vowels and consonants. The palatal size of H. neandethalensis and Cro-Magnon is similar to that of H. sapiens which may indicate the possibility that they were capable of speech production.

  17. Tuff above “Lucy” Older than expected

    Science.gov (United States)

    Katzoff, Judith A.

    A poster paper presented at the AGU Spring Meeting offers evidence that the fossil specimen of Australopithecus afarensis known as “Lucy” may be older than had been previously thought. Many anthropologists consider “Lucy” a pivotal find in tracing the evolution of our species.

  18. Zum Ursprung der Hominidae

    Science.gov (United States)

    Henke, Winfried

    1981-08-01

    A fundamental problem of hominisation is the branching of the human lineage leading to the genus Homo from other hominoids. At present discussed hypotheses of a Miocene separation of the pongid and hominid lineage are described under consideration of numerous new fossils from Europe, Asia and Africa. Of special interest is the possibility of an adhominisation of the genus Australopithecus (including A. afarensis).

  19. New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins

    Directory of Open Access Journals (Sweden)

    J. Michael Plavcan

    2012-03-01

    Full Text Available Whilst reduced size, altered shape and diminished sexual dimorphism of the canine–premolar complex are diagnostic features of the hominin clade, little is known about the rate and timing of changes in canine size and shape in early hominins. The earliest Australopithecus, Australopithecus anamensis, had canine crowns similar in size to those of its descendant Australopithecus afarensis, but a single large root alveolus has suggested that this species may have had larger and more dimorphic canines than previously recognised. Here we present three new associated dentitions attributed to A. anamensis, recently recovered from the type site of Kanapoi, Kenya, that provide evidence of canine evolution in early Australopithecus. These fossils include the largest mandibular canine root in the hominin fossil record. We demonstrate that, although canine crown height did not differ between these species, A. anamensis had larger and more dimorphic roots, more like those of extant great apes and Ardipithecus ramidus, than those of A. afarensis. The canine and premolar occlusal shapes of A. anamensis also resemble those of Ar. ramidus, and are intermediary between extant great apes and A. afarensis. A. afarensis achieved Homo-like maxillary crown basal proportions without a reduction in crown height. Thus, canine crown size and dimorphism remained stable during the early evolution of Australopithecus, but mandibular root dimensions changed only later within the A. anamensis–afarensis lineage, coincident with morphological changes in the canine–premolar complex. These observations suggest that selection on canine tooth crown height, shape and root dimensions was not coupled in early hominin evolution, and was not part of an integrated adaptive package.

  20. Lucy's flat feet: the relationship between the ankle and rearfoot arching in early hominins.

    Directory of Open Access Journals (Sweden)

    Jeremy M DeSilva

    Full Text Available BACKGROUND: In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence from radiographs of modern humans (n = 261 that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8% have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and "Lucy" (A.L. 288-1, a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles. CONCLUSIONS/SIGNIFICANCE: This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis "Lucy" has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch

  1. Modeling along-axis variations in fault architecture in the Main Ethiopian Rift: implications for Nubia-Somalia kinematics

    Science.gov (United States)

    Erbello, Asfaw; Corti, Giacomo; Sani, Federico; Kidane, Tesfaye

    2016-04-01

    The Main Ethiopian Rift (MER), at the northern termination of the East African Rift, is an ideal locale where to get insights into the long-term motion between Nubia and Somalia. The rift is indeed one of the few places along the plate boundary where the deformation is narrow: its evolution is thus strictly related to the kinematics of the two major plates, whereas south of the Turkana depression a two-plate model for the EARS is too simplistic as extension occurs both along the Western and Eastern branches and different microplates are present between the two major plates. Despite its importance, the kinematics responsible for development and evolution of the MER is still a matter of debate: indeed, whereas the Quaternary-present kinematics of rifting is rather well constrained, the plate kinematics driving the initial, Mio-Pliocene stages of extension is still not clear, and different hypothesis have been put forward, including: polyphase rifting, with a change in direction of extension from NW-SE extension to E-W extension; constant Miocene-recent NW-SE extension; constant Miocene-recent NE-SW extension; constant, post-11 Ma extension consistent with the GPS-derived kinematics (i.e., roughly E-W to ESE-WNW). To shed additional light on this controversy and to test these different hypothesis, in this contribution we use new crustal-scale analogue models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The extension direction is indeed one of the most important parameters controlling the architecture of continental rifts and the relative abundance and orientation of different fault sets that develop during oblique rifting is typically a function of the angle between the extension direction and the orthogonal to the rift trend (i.e., the obliquity angle). Since the trend of the MER varies along strike, and consequently it is

  2. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    Science.gov (United States)

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries

  3. The promotion of geomorphosites on salt from Sovata - Praid and Turda using cultural and scientific tourism

    Science.gov (United States)

    Toma, B.; Irimus, I.; Petrea, D.

    2012-04-01

    The paper highlights the role of geomorphosites on salt, in experts and specialists training, in geography of tourism and planning, namely, the involvement of educational factor in defining managerial and marketing skills of future specialists in training. Geographical area of investigation belongs to the Transylvanian tectonic basin, overlapped to saliferous tectonic area from eastern Transylvania, represented by Praid - Sovata - Corund anticline and Sic -Cojocna - Turda anticline, analysis is focused on the Praid - Sovata and Turda diapirs. Saliferous area Praid - Sovata - Corund is situated on the contact area of the Transylvanian Basin with neo-eruptiv mountain chain of Eastern Carpathians, Calimani - Gurghiu - Harghita, and at the contact of Târnavelor Plateau with the orogen alignment of Gurghiu - Harghita Mountains. The salt body, in the horizontal plane, has a quasi-circular shape, slightly ellipsoidal, with diameters of 1.2 and 1.4 km, and is estimated to have a burial depth of 2.6 to 2.8 km. The salt massif from Praid, pierce the Mio-Pliocene blanket around and appears at the surface as diapir, flanked by sedimentary rocks that are partially covered by extrusive post-Pliocene volcanic formations and Quaternary deposits. Evaporitic deposits presents a varied lithology represented by gypsum, anhydrite, salt rock, potassium salt and celestine. The salt massif from Turda develops on the anticline Sic -Cojocna - Turda, oriented NE - SW, 2 km NE of Turda's downtown. It has an elongated shape, about 4 km, with widths ranging from 700 m to 200 m and also with a thickness ranging from 750 m to over 1000 m. In terms of stratigraphy, the salt massif is surrounded by deposits belonging to Badenian, Sarmatian and Quaternary. Due to salt dissolution by meteoric waters, carsto-saline lakes were formed, and due to ceiling collapse, because of an intensive exploitation, and infiltrations of rainwater and rivers, antropo-salted lakes were formed. The water and mud of

  4. Parametric study of the impact of waste pollutants on groundwater: the case of Abidjan District (Ivory Coast)

    Science.gov (United States)

    Agnès Kouamé, Amenan; Jaboyedoff, Michel; Tacher, Laurent; Derron, Marc-Henri; Franz, Martin

    2015-04-01

    Abidjan like numerous African cities is experiencing a significant and uncontrolled population growth. The annual growth rate is estimated at 3.99% by the National Institute of Statistics. This rapid population growth also generates growing needs in general and especially for drinking water and economic activities. In the District of Abidjan, groundwater comes from the Mio-Pliocene age aquifer called "Continental Terminal". This unconfined aquifer is the main source of water supply. Its lithology consists of four levels. Actually only the two upper levels outcrop and constitute the main part of the Continental Terminal aquifer. Some recent studies report a potential overexploitation and pollution of Abidjan groundwater (Jourda, 1986, Kouame 2007, Deh, 2013). This deterioration in water quality could be due to the release of domestic and industrial waste water, pesticide and fertilizer from crops and toxic waste sites containing high doses of organochlorines, of hydrogen sulfide and sulfides. This risk is also linked to the economic activities such as car workshops, gas stations and the sand exploitation in the lagoon. To observe the likely evolution of such contaminants in the subsurface and we developed hydrogeological models that couple groundwater flow and transport with FEFLOW software. The model is composed of a sandy layer where two constant hydraulic heads of 55 m and 0.2 m are imposed on the north and the south respectively. We carried out grain size analysis of some samples (E2, E3, E4, E5, and E6) which shows particle size ranging between 0.0001 mm and 8 mm. This grain size analysis performed by sieving underwater and laser indicates that these five soils are: loamy sand with traces of clay and gravel for E2 and E5; Sandy loam with traces of clay for E3; Sand with traces of clay and gravel for E4 and Sand with traces of silt and clay for E6. Their porosity and average values of permeability coefficient K measured in the laboratory range from 0.2 to 0

  5. Comparative zircon tephrochronology: correlating the Pliocene Bouse tephra, lower Colorado River trough, California, with the Lawlor Tuff of the Sonoma volcanic field, California

    Science.gov (United States)

    Harvey, J. C.

    2013-12-01

    Identification, correlation, and absolute dating of glassy volcanic ash and cryptically reworked pyroclastic deposits can be problematic. This is especially the case in strongly weathered samples where primary glass chemistry may not be preserved, or in lacustrine and fluvial environments where detrital materials can heavily bias bulk analysis or produce complex age distributions in single crystal dating approaches. These problems have frustrated numerous attempts to date a singular key ash horizon from the Mio-Pliocene Bouse Formation in southern California (fine-grained carbonate beds and clastic sediments derived from the Colorado River, deposited in the lower Colorado River Trough). Constraining the depositional age of the Bouse Formation is important for understanding the evolution of the Colorado River system, the uplift history of the Colorado Plateau, and the climate conditions involved in Colorado River evolution. Prior attempts to directly date the ash have been inconclusive. A K-Ar in glass date of 5.47 × 0.20 Ma (Shafiqullah et al., 1980) was questioned because of the potential disturbance of both the parent and daughter products of potassium decay in glass, and 40Ar/39Ar geochronology on bulk glass and bulk plagioclase separates (Spencer et al., 2000) produced discordant results. Recent glass chemistry correlation of the ash horizon to the 4.83 × 0.011 Ma Lawlor Tuff, Sonoma volcanic field, California (Sarna-Wojcicki et al., 2011), has also been contentious, because that age appears to conflict with the proposed onset of the delivery of Colorado River sediment through to the Gulf of California (Dorsey et al., 2007). To resolve the persistent age arguments, comparative zircon tephrochronology has been undertaken utilizing the single-crystal analysis capabilities of secondary ion mass spectrometry. Here, U-Pb zircon crystallization age spectra, U and Th abundances, and oxygen isotopic composition are presented which confirm the correlation of the Bouse

  6. Neogene Uplift and Exhumation of Plutonic Bodies in the Beni Bou Ifrour Massif (Nador, northeastern Morocco)

    Science.gov (United States)

    Lebret, Noëmie; Jolivet, Laurent; Branquet, Yannick; Bourdier, Jean-Louis; Jolivet, Marc; Marcoux, Eric

    2013-04-01

    In Neogene times, the whole Mediterranean Sea was the center of an intense magmatic activity. This post-collisional magmatism produced a large amount of volcanic edifices through the Alpine belts, together with some intrusives. These plutonic bodies can be associated with skarn-type mineralization, well-known in Elba Island or Serifos Island (Cyclades), where they are generally exhumed by detachment faults. In Morocco, the plutons hosted by the Beni Bou Ifrour massif are connected to the biggest skarn-type iron concentrations of the country (production > 60 Mt, reserves ≈ 25 Mt). The purpose of this work is to explain the late uplift of this massif and subsequent exhumation of the intrusives. As a final product of the Africa-Eurasia plate convergence since ca. 70 Ma, the Rif Mountains constitute the westernmost segment of the Mediterranean Alpine belts. In the oriental part of this range, volcanic summits and Paleozoic to Mesozoic massifs outcrop in the surrounding Mio-Pliocene plains. The Beni Bou Ifrour massif, in the Nador province, consists in a dome-shaped folded Mesozoic series (Domerian to Barremian) affected by a slight epizonal regional metamorphism (ca. 14-12 Ma), dislocated by Neogene NE-SW faults and eventually sealed by upper Miocene transgressive sediments. The hosted intrusives (7.58 ± 0.03 Ma; Duggen et al., 2005) are the plutonic equivalents to the potassic calc-alkaline lavas (andesites mainly) from the surrounding "satellite" volcanic massifs. They turn out to stand in higher topographic position than the younger shoshonitic lavas of the neighboring Gourougou stratovolcano (6.12 ± 0.01 Ma; Duggen et al., 2005). Previous studies have attributed this uplift to the action of normal faults (pull-apart basins; Guillemin & Houzay, 1982), thrusting (Kerchaoui, 1985; 1995) or even of a caldeira resurgence (El Bakkali, 1995). To discriminate against those exhumation mechanisms, field work has been performed, coming along with new cross-sections to

  7. 87Sr/86Sr-ratios, foraminiferal data and sedimentology of the Latest Miocene - Pliocene cyclic carbonates of La Désirade (Guadeloupe, France)

    Science.gov (United States)

    Weber*, P. J. N.; Baumgartner-Mora*, C.; Baumgartner*, P. O.

    2012-04-01

    La Désirade is a small island located east of Grande Terre and Basse Terre, the main islands of the Guadeloupe Archipelago in the Lesser Antilles Arc. La Désirade is an "forearc outer high" located immediately west of the trench where Atlantic crust is presently subducted under the Caribbean Plate. The "Limestone Table" (LT) of La Désirade has been considered as a Plio-Quaternary reefal deposit. However, the prominent feature of this reef slope. They document the mobilisation of carbonate material on an adjacent platform by storms and their gravitational emplacement. The provenance of both the reefal carbonate debris and the tuffaceous components must be to the west, i. e. Marie Galante and Grande Terre. We have studied the biochronology of both benthic and planktonic foraminifera and measured 87Sr/86Sr ratios of selected biogenic shells such as aragonitic gastropods, corals, echinoderms and foraminifera. Recrystallisation and preservation has been controlled by SEM, cathodoluminescence, carbon/oxygen isotopes and XRF to avoid diagenetically altered samples. Planktonic foraminifera of the "detrital offshore limestones" give a latest Miocene/early Pliocene age (lower zone N19), while 87Sr/86Sr -ratios cluster in the latest Miocene-earliest Pliocene, depending on the calibration applied. For the LT 87Sr/86Sr ratios from the base of the section cluster in the earliest Pliocene, while the top gives a late middle to late Pliocene age. These ages constrain the Neogene vertical tectonic movements of the island. We have also dated Pleistocene terraces and fringing reefs that are in an unconformable contact along paleocliffs with the Mio-Pliocene sediments. In the lower unit of the LT, sedimentary environments alternate between below wave base, muddy carbonates documenting glacioeustatic highstads, and wave-bedded, winnowed bioclastic carbonates representing lowstands. In the upper LT unit synsedimentary, tectonic subsidence must have decelerated, resulting in a

  8. Analyse quantitative du réseau hydrographique du bassin versant du Slănic (Roumanie

    Directory of Open Access Journals (Sweden)

    Florina Grecu

    2007-12-01

    Full Text Available L'étude porte sur le bassin versant du Slănic, un affluent du Buzău. Ce bassin de taille relativement réduite (433 km2 est situé dans la région des Carpates et des Subcarpates de la Courbure, région très active sur le plan sismique. Du point de vue lithologique, le bassin du Slănic correspond à des flyschs paléogènes et à des molasses mio-pliocènes. Ces roches peu résistantes ont facilité une forte érosion du relief. Actuellement, les précipitations présentent souvent une forte intensité, et elles se produisent fréquemment après des périodes de sécheresse. Elles sont ainsi très agressives et déclenchent une érosion intense. L'analyse de quelques paramètres morphométriques [grand nombre de segments de cours d'eau d'ordres 1 (5230 et 2 (944 ; densité élevée des segments par rapport à la superficie du bassin (environ 15 segments / km2 ; longueur moyenne réduite des segments d'ordre 1 (260 m par rapport à ceux d'ordre 2 (530 m] s'accorde avec des temps de concentration des eaux courts et une forte énergie des écoulements. La vitesse de réaction aux précipitations des segments d'ordres inférieurs est en outre favorisée par la répartition spatiale des pluies et par les conditions lithologiques.The study is focused on the Slănic basin which has a small size (433 km2. The hydrographical basin of Slănic, situated in the Carpathian and Subcarpathian Curvature, a very active from neotectonical viewpoint area, is a part of the Buzău basin. From a petrographic point of view, the Slănic hydrographic basin belongs to the paleogen flysch deposits (within the Carpathian sector and to the mio-pliocen molasse (within the Subcarpathian area latter formed by predominantely friable rocks which have encouraged deep fragmentation of the relief. Actual rainfalls are often very intensive, and they frequently occur after dry seasons. The analysis of morphometric parameters shows many elementary segments of first

  9. The first hominin from the early Pleistocene paleocave of Haasgat, South Africa.

    Science.gov (United States)

    Leece, A B; Kegley, Anthony D T; Lacruz, Rodrigo S; Herries, Andy I R; Hemingway, Jason; Kgasi, Lazarus; Potze, Stephany; Adams, Justin W

    2016-01-01

    Haasgat is a primate-rich fossil locality in the northeastern part of the Fossil Hominid Sites of South Africa UNESCO World Heritage Site. Here we report the first hominin identified from Haasgat, a partial maxillary molar (HGT 500), that was recovered from an ex situ calcified sediment block sampled from the locality. The in situ fossil bearing deposits of the Haasgat paleokarstic deposits are estimated to date to slightly older than 1.95 Ma based on magnetobiostratigraphy. This places the hominin specimen at a critical time period in South Africa that marks the last occurrence of Australopithecus around 1.98 Ma and the first evidence of Paranthropus and Homo in the region between ∼2.0 and 1.8 Ma. A comprehensive morphological evaluation of the Haasgat hominin molar was conducted against the current South African catalogue of hominin dental remains and imaging analyses using micro-CT, electron and confocal microscopy. The preserved occlusal morphology is most similar to Australopithecus africanus or early Homo specimens but different from Paranthropus. Occlusal linear enamel thickness measured from micro-CT scans provides an average of ∼2.0 mm consistent with Australopithecus and early Homo. Analysis of the enamel microstructure suggests an estimated periodicity of 7-9 days. Hunter-Schreger bands appear long and straight as in some Paranthropus, but contrast with this genus in the short shape of the striae of Retzius. Taken together, these data suggests that the maxillary fragment recovered from Haasgat best fits within the Australopithecus-early Homo hypodigms to the exclusion of the genus Paranthropus. At ∼1.95 Ma this specimen would either represent another example of late occurring Australopithecus or one of the earliest examples of Homo in the region. While the identification of this first hominin specimen from Haasgat is not unexpected given the composition of other South African penecontemporaneous site deposits, it represents one of the few hominin

  10. South Turkwel: a new pliocene hominid site in Kenya.

    Science.gov (United States)

    Ward, C V; Leakey, M G; Brown, B; Brown, F; Harris, J; Walker, A

    1999-01-01

    New fossils discovered south of the Turkwel River in northern Kenya include an associated metacarpal, capitate, hamate, lunate, pedal phalanx, mandibular fragment, and teeth. These fossils probably date to around 3.5 m.y.a. Faunal information suggests that the environment at South Turkwel was predominantly bushland. The mandibular and dental remains are fragmentary, but the postcranial fossils are informative. Comparisons with Australopithecus, modern human, chimpanzee and gorilla hand bones suggest that the Turkwel hominid was most like Australopithecus afarensis and A. africanus. Carpometacarpal articulations are intermediate between those of modern humans and African apes, suggesting enhanced gripping capabilities compared with extant apes. The hamulus was strikingly large, similar in proportion only to Neandertals and some gorillas, suggesting the presence of powerful forearms and hands. There are no indicators of adaptations to knuckle-walking or suspensory locomotion in the hand, and the pedal phalanx suggests that this hominid was habitually bipedal. Copyright 1999 Academic Press.

  11. Experimental perspective on fallback foods and dietary adaptations in early hominins.

    Science.gov (United States)

    Scott, Jeremiah E; McAbee, Kevin R; Eastman, Meghan M; Ravosa, Matthew J

    2014-01-01

    The robust jaws and large, thick-enameled molars of the Plio-Pleistocene hominins Australopithecus and Paranthropus have long been interpreted as adaptations for hard-object feeding. Recent studies of dental microwear indicate that only Paranthropus robustus regularly ate hard items, suggesting that the dentognathic anatomy of other australopiths reflects rare, seasonal exploitation of hard fallback foods. Here, we show that hard-object feeding cannot explain the extreme morphology of Paranthropus boisei. Rather, analysis of long-term dietary plasticity in an animal model suggests year-round reliance on tough foods requiring prolonged postcanine processing in P. boisei. Increased consumption of such items may have marked the earlier transition from Ardipithecus to Australopithecus, with routine hard-object feeding in P. robustus representing a novel behaviour.

  12. Morphological affinities of Homo naledi with other Plio-Pleistocene hominins: a phenetic approach

    Directory of Open Access Journals (Sweden)

    WALTER A. NEVES

    Full Text Available ABSTRACT Recent fossil material found in Dinaledi Chamber, South Africa, was initially described as a new species of genus Homo, namely Homo naledi. The original study of this new material has pointed to a close proximity with Homo erectus. More recent investigations have, to some extent, confirmed this assignment. Here we present a phenetic analysis based on dentocranial metric variables through Principal Components Analysis and Cluster Analysis based on these fossils and other Plio-Pleistocene hominins. Our results concur that the Dinaledi fossil hominins pertain to genus Homo. However, in our case, their nearest neighbors are Homo habilis and Australopithecus sediba. We suggest that Homo naledi is in fact a South African version of Homo habilis, and not a new species. This can also be applied to Australopithecus sediba.

  13. Associated ilium and femur from Koobi Fora, Kenya, and postcranial diversity in early Homo

    OpenAIRE

    Ward, C.V.; Feibel, C.S.; Hammond, A.S.; Leakey, L.N.; Moffett, E.A.; Plavcan, J.M.; Skinner, Matthew M.; Spoor, F.; Leakey, M.G.

    2015-01-01

    During the evolution of hominins, it is generally accepted that there was a shift in postcranial morphology between Australopithecus and the genus Homo. Given the scarcity of associated remains of early Homo, however, relatively little is known about early Homo postcranial morphology. There are hints of postcranial diversity among species, but our knowledge of the nature and extent of potential differences is limited. Here we present a new associated partial ilium and femur from Koobi Fora, K...

  14. Diet of Paranthropus boisei in the early Pleistocene of East Africa

    OpenAIRE

    Cerling, Thure E.; Mbua, Emma; Kirera, Francis M.; Manthi, Fredrick Kyalo; Grine, Frederick E.; Leakey, Meave G.; Sponheimer, Matt; Uno, Kevin T.

    2011-01-01

    The East African hominin Paranthropus boisei was characterized by a suite of craniodental features that have been widely interpreted as adaptations to a diet that consisted of hard objects that required powerful peak masticatory loads. These morphological adaptations represent the culmination of an evolutionary trend that began in earlier taxa such as Australopithecus afarensis, and presumably facilitated utilization of open habitats in the Plio-Pleistocene. Here, we use stable isotopes to sh...

  15. Experimental perspective on fallback foods and dietary adaptations in early hominins

    OpenAIRE

    Scott, Jeremiah E.; McAbee, Kevin R.; Eastman, Meghan M.; Ravosa, Matthew J.

    2014-01-01

    The robust jaws and large, thick-enameled molars of the Plio–Pleistocene hominins Australopithecus and Paranthropus have long been interpreted as adaptations for hard-object feeding. Recent studies of dental microwear indicate that only Paranthropus robustus regularly ate hard items, suggesting that the dentognathic anatomy of other australopiths reflects rare, seasonal exploitation of hard fallback foods. Here, we show that hard-object feeding cannot explain the extreme morphology of Paranth...

  16. The deciduous lower dentition of Ouranopithecus macedoniensis (Primates, Hominoidea) from the late Miocene deposits of Macedonia, Greece.

    Science.gov (United States)

    Koufos, George D; de Bonis, Louis

    2004-06-01

    Two mandibular fragments with associated milk teeth assigned to the late Miocene hominoid primate Ouranopithecus macedoniensis are analyzed. The fossils, which belong to a single individual, were found in the Vallesian locality of "Ravin de la Pluie" of the Axios Valley (Macedonia, Greece). The material is described here and compared with extant and extinct hominoids, allowing assessment of the evolutionary trends in the deciduous lower dentition within the Hominoidea. Hylobatids represent the more primitive pattern. Gorilla is slightly more derived than hylobatids, but less derived than Pongo and Pan, the latter being the most derived. With relatively smaller deciduous canines and more molarized deciduous premolars, Ouranopithecus is more derived than both Pan and Gorilla. Among the fossil hominoids, Proconsul, representing the primitive condition, has a very simple dp(3)and a dp(4)that has a trigonid that is taller than the talonid and which lacks a hypoconulid. Griphopithecus is more derived than Proconsul in having a dp(4) with a lower trigonid, a hypoconulid, and a less oblique cristid obliqua. Australopithecus and Paranthropus possess a similar morphology to that of Homo, while Ardipithecus appears to be more primitive than the latter genera. Ouranopithecus has a more derived lower milk dentition than Proconsul and Griphopithecus, but less derived than Australopithecus and Paranthropus. The comparison of the lower milk dentition of Ouranopithecus confirms our previous conclusions suggesting that this fossil hominoid shares derived characters with Australopithecus and Homo.

  17. Hominin hand bone fossils from Sterkfontein Caves, South Africa (1998-2003 excavations).

    Science.gov (United States)

    Pickering, Travis Rayne; Heaton, Jason L; Clarke, Ron J; Stratford, Dominic

    2018-05-01

    We describe eleven hominin metacarpals and phalanges recovered from Jacovec Cavern and Member 4 of the Sterkfontein Formation between 1998 and 2003. Collectively, the fossils date in excess of 2.0 Ma, and are probably attributable to Australopithecus africanus and/or Australopithecus prometheus. When combined with results of previous studies on Australopithecus postcranial functional morphology, the new data presented here suggest that at least some late Pliocene and/or early Pleistocene hominins from Sterkfontein were arboreally adept. This finding accords with the reconstruction of the site's >2.0 Ma catchment area as well-vegetated and containing significant woody components. In addition, most of the new specimens described here evince morphologies that indicate the hands from which they derived lacked complete modern humanlike manual dexterity, which is integral to the manufacture and use of intentionally shaped stone tools. The absence of lithic artifacts from both stratigraphic units from which the fossils were excavated is consistent with this conclusion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The first hominin from the early Pleistocene paleocave of Haasgat, South Africa

    Directory of Open Access Journals (Sweden)

    AB Leece

    2016-05-01

    Full Text Available Haasgat is a primate-rich fossil locality in the northeastern part of the Fossil Hominid Sites of South Africa UNESCO World Heritage Site. Here we report the first hominin identified from Haasgat, a partial maxillary molar (HGT 500, that was recovered from an ex situ calcified sediment block sampled from the locality. The in situ fossil bearing deposits of the Haasgat paleokarstic deposits are estimated to date to slightly older than 1.95 Ma based on magnetobiostratigraphy. This places the hominin specimen at a critical time period in South Africa that marks the last occurrence of Australopithecus around 1.98 Ma and the first evidence of Paranthropus and Homo in the region between ∼2.0 and 1.8 Ma. A comprehensive morphological evaluation of the Haasgat hominin molar was conducted against the current South African catalogue of hominin dental remains and imaging analyses using micro-CT, electron and confocal microscopy. The preserved occlusal morphology is most similar to Australopithecus africanus or early Homo specimens but different from Paranthropus. Occlusal linear enamel thickness measured from micro-CT scans provides an average of ∼2.0 mm consistent with Australopithecus and early Homo. Analysis of the enamel microstructure suggests an estimated periodicity of 7–9 days. Hunter–Schreger bands appear long and straight as in some Paranthropus, but contrast with this genus in the short shape of the striae of Retzius. Taken together, these data suggests that the maxillary fragment recovered from Haasgat best fits within the Australopithecus—early Homo hypodigms to the exclusion of the genus Paranthropus. At ∼1.95 Ma this specimen would either represent another example of late occurring Australopithecus or one of the earliest examples of Homo in the region. While the identification of this first hominin specimen from Haasgat is not unexpected given the composition of other South African penecontemporaneous site deposits, it represents

  19. Bone strength and athletic ability in hominids: Ardipithecus ramidus to Homo sapiens

    Science.gov (United States)

    Lee, S. A.

    2013-03-01

    The ability of the femur to resist bending stresses is determined by its midlength cross-sectional geometry, its length and the elastic properties of the mineral part of the bone. The animal's athletic ability, determined by a ``bone strength index,'' is limited by this femoral bending strength in relation to the loads on the femur. This analysis is applied to the fossil record for Homo sapiens, Homo neanderthalensis, Homo erectus, Homo habilis, Australopithecus afarensis and Ardipithecus ramidus. Evidence that the femoral bone strength index of modern Homo sapiens has weakened over the last 50,000 years is found.

  20. Position des lignes temporales sur le cranium de «Mrs » Ples (A.africanus) : une attribution sexuelle est-elle possible ?Possible position of the temporal lines on the cranium of 'Mrs' Ples (A. africanus): is sexual determination possible?

    Science.gov (United States)

    Prat, Sandrine; Thackeray, John Francis

    2001-03-01

    The cranium and associated matrix of Sts 5, a cranium of Australopithecus africanus is re-examined in the context of an unfused sagittal suture and the position of the temporal lines. These lines are not developed as a sagittal crest although they are close to the mid-sagittal line. A comparative study of the presence of sagittal crests in male, female, juvenile and adult specimens of extant great apes ( Gorilla, Pan, Pongo) suggests that the existence of a sagittal crest is influenced to a greater extent by anatomical age rather than by the sex of the individuals.

  1. Stable isotope-based diet reconstructions of Turkana Basin hominins

    OpenAIRE

    Cerling, Thure E.; Manthi, Fredrick Kyalo; Mbua, Emma N.; Leakey, Louise N.; Leakey, Meave G.; Leakey, Richard E.; Brown, Francis H.; Grine, Frederick E.; Hart, John A.; Kaleme, Prince; Roche, Hélène; Uno, Kevin T.; Wood, Bernard A.

    2013-01-01

    Hominin fossil evidence in the Turkana Basin in Kenya from ca. 4.1 to 1.4 Ma samples two archaic early hominin genera and records some of the early evolutionary history of Paranthropus and Homo. Stable carbon isotopes in fossil tooth enamel are used to estimate the fraction of diet derived from C3 or C4 resources in these hominin taxa. The earliest hominin species in the Turkana Basin, Australopithecus anamensis, derived nearly all of its diet from C3 resources. Subsequently, by ca. 3.3 Ma, t...

  2. Taxonomic attribution of the Olduvai hominid 7 manual remains and the functional interpretation of hand morphology in robust australopithecines.

    Science.gov (United States)

    Moyà-Solà, Salvador; Kohler, Meike; Alba, David M; Almécija, Sergio

    2008-01-01

    In this paper, we test the currently accepted taxonomic hypothesis that the hand of the Homo habilis holotype Olduvai hominid 7 (OH7) from Olduvai Gorge can be unambiguously assigned to Homo. Morphometric and morphological comparison with humans and australopithecines (Australopithecus and Paranthropus) indicate that the OH7 hand most likely belongs to P. boisei. The morphological adaptations of Paranthropus are thus further evaluated in the light of the alternative taxonomic hypothesis for OH7. Functional analyses suggest that morphological features related to human-like precision grasping, previously considered diagnostic of toolmaking by some, may be alternatively attributed to specialized manual feeding techniques in robust australopithecines. Copyright 2008 S. Karger AG, Basel.

  3. [Evolution of the pelvis and hip throughout history: from primates to modern man].

    Science.gov (United States)

    Lapègue, F; Jirari, M; Sethoum, S; Faruch, M; Barcelo, C; Moskovitch, G; Ponsot, A; Rabat, M-C; Labarre, D; Vial, J; Chiavassa, H; Baunin, C; Railhac, J-J; Sans, N

    2011-06-01

    The evolution to a bipedal mode of locomotion was accompanied by a verticalization of the spine and a modification in the shape of the pelvis: horizontal curvature and sagittal rotation. Phylogenesis meets ontogenesis: flat bones in fetuses similar to the monkey, australopithecus features at birth and "human-like" features by 7 or 8years of age. These anatomical modifications explain the characteristics of human bipedalism: stable, economical, with hip and knee extension in the standing position with little lateral motion. Some pathologies induce a regression to a more archaic mode of bipedal locomotion. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.

  4. Species, genera, and phylogenetic structure in the human fossil record: a modest proposal.

    Science.gov (United States)

    Tattersall, Ian

    2017-05-01

    Because of the greater morphological distances among them, genera should be more robustly recognizable in the fossil record than species are. But there are clearly upper as well as lower bounds to their species inclusivity. Currently, the vast majority of fossils composing the large and rapidly expanding paleoanthropological record are crammed into one of two genera (Australopithecus vs Homo), expanding the latter, especially, far beyond any reasonable morphological or phylogenetic limits. This excessive inclusivity obscures both diversity and the complexities of phylogenetic structure within the hominid family. © 2017 Wiley Periodicals, Inc.

  5. Ophiolite Emplacement and the Effects of the Subduction of the Active Chile Ridge System: Heterogeneous Paleostress Regimes Recorded in the Taitao Ophiolite (Southern Chile Emplazamiento de ofiolitas y los efectos de la subducción de la dorsal activa de Chile: Regímenes heterogéneos de paleostress registrados en la Oflolita Taitao (Sur de Chile

    Directory of Open Access Journals (Sweden)

    Eugenio E Veloso

    2009-01-01

    Full Text Available The repeated north and southward migration of the Chile Triple junction, offshore the Península de Taitao, is expected to have imposed contrasting stress fields in the forearc for the last 6 Ma because of changes in convergence direction and rate of subducting plates. NNW-SSE to E-W and minor NE-SW striking brittle faults developed in the plutonic units of the Mio-Pliocene Taitao Ophiolite, whereas NNE-SSW and minor NW-SE trending faults developed in its eastern border (Bahía Barrientes fault-zone. These brittle faults are studied to elucídate the style of ophiolite emplacement and the tectonic effects resulting from the alternated migration of the Chile Triple junction in the área. Analyses of heterogeneous fault-slip data on both áreas suggest that faults were activated by different stress fields. Two different compressional stress fields were identified in the plutomc units (A and B, whereas three different stress fields, ranging from compressional to strike-slip, were identified in the BahíaBarrientos fault-zone (C, D and E. Calculated directions of Oj axes for A, C, D and E solutions are mostly E-W trending, roughly similar to the convergence direction of subducting plates, whereas that for B solution is counterclockwise rotated ca. 60° with respect to the previous E-W trend. Brittle structures related to solution B were attributed to an early deformation of the ophiolite, most probably developed shortly after its emplacement {ca. 6 Ma. These structures were further counterclockwise rotated, while new structures (related to solution A developed in the plutomc units in order to absorb the continuous deformation. In the eastern margin of the ophiolite, the stress field divided inte compressional and strike-slip components. During periods of relatively strong compression (fast subduction of the Nazca píate, the fault-zone experienced well defined compressional and strike-slip movements (solutions C and D. In contrast, during periods of

  6. La châine andine du Pérou Central: chronologie, orientation et styles des phases tectoniques du Tertiaire Supérieur - Aperçus sur la Tectonique Quaternaire

    Directory of Open Access Journals (Sweden)

    1975-01-01

    fase de deformaciones quebradizas del plioceno, según una dirección de acortamiento N 090 (entre 8 y 4,5 M A. Una fase mioceno reciente (entre 14 y 10,5 M.A. con dirección N 000 en las Altas Mesetas y quizás de dirección N 045 en la Cordillera Occidental da deformaciones quebradizas pero con una ligera tectónica flexible La fase mioceno antiguo (entre 21 y 14 M.A. está caracterizada por una dirección N 045, estructuras quebradizas y anchas estructuras flexibles. La fase oligoceno inferior (entre 21,5 y 40 M.A. concierne a esfuerzos mucho más importantes en estructuras mas profundas. Las fases mioceno y plioceno están superpuestas. El estudio de la falla de Gran Bretaña confirma estos resultados sin que se pueda tener la prueba de dos fases mioceno se trata de un accidente de descolgamiento con escasos desechos horizontales. Las fallas de la zona de La Oroya-Junín-Tarma tienen una geometría semejante al accidente de Gran Bretaña: se pueden observar tres fases sin que sea posible darles una fecha pero sus características corresponden a las fases plioceno, mioceno y oligoceno inferior. Algunas observaciones en la Cordillera Blanca parecen relacionarse a las del Sur de Huancavelica, pero quedan por precisar. El cuaternario muestra una tectónica compresiva de direcciones N 130 en la Cordillera Blanca y San Ramón, N 000 y N 040 en la cuenca de Huancayo (eventualmente también N 075 siguiendo la edad de la formación Jauja. No se ha observado fallas normales mas que en la Cordillera Blanca (¿distensión? ¿subida del macizo granítico?. The mio-pliocene tectonic episodes are studied in many sectors of the Central Peruvian Andes South of Huancavelica (Choclococha, Huachocolpa, Lircay, a pliocene episode of breaking compression but with a light folding tectonic The ancient miocene episode (between 8 and 4.5 m y.. A recent miocene episode (between 14 and 105 m.y of direction N 000 in the High Plateaux and may be of direction N 045 in the western chain of

  7. Fish as a proxy for African paleogeography: results from both extant and fossil taxa and prospects to constrain faunal exchange pathway through time

    Science.gov (United States)

    Otero, Olga; Joordens, Josephine; Dettai, Agnès; Christ, Leemans; Pinton, Aurélie

    2016-04-01

    : relationships between Chad and neighbouring basins throughout the Mio-Pliocene. Palaeobiogeography, Palaeoclimatology, Palaeoecology, 274 (2009): 134-139. [5] Argyriou T., Otero O., Pavlakis P., Boaz N.T. 2012 - Description and paleobiogeographical implications of new Semlikiichthys (Teleostei, Perciformes) fish material from the Late Miocene deposits of Sahabi, Libya. Geobios, 45(2012): 429-436. [6] Joordens J (Pi) - Coastal origins? A biogeographical model for mominin evolution and dispersal in Africa between 5 and 2.5 million years ago.

  8. Our Magnetic Planet (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Laj, Carlo

    2015-04-01

    and Turkey) allowed to show that the main post-cretaceous geodynamical evolution of the Aegean Realm is dominated since 30 My by two phases of rotational deformation in opposite sense around two poles: one just north of Albania for the western part, the second in the South Eastern Mediterranean for the eastern part. During the sampling of Mio-Pliocene marls in Crete, using a LETI portable magnetometer to the development of which I have participated, we sampled a geomagnetic reversal registered over about 50 cm of sediments. Interestingly, some intermediate directions were clearly apparent. This gave me the idea that the dynamical directional behaviour of the reversing field could be studied. At the time, only a very few and very incomplete similar records existed. For me, this has been the beginning of an extraordinary adventure still going on today. From the accumulation of data, first from Crete, then from other worldwide spread sites, it became apparent, as illustrated in a cover of Nature, that sedimentary reversal transition paths had a tendency to coincide with the seismically cold deep regions, suggesting that a lower mantle control existed over the reversing geodynamo. This idea, sometimes greeted with scepticism, has stimulated joint efforts to test it both from different disciplines and different experimental and theoretical approaches. It is fair to say that 25 years after it was proposed, our idea is still "on the table" and discussed. We then turned to the study of the changes of the geomagnetic field intensity, still inadequately described at the time. Because measurements of traditional small cubic samples was largely too time consuming to allow surveys of the amplitude we had in mind, I adapted the u-channel measurement techniques to small access pass-through cryogenic magnetometers, and suggested to W. Goree of 2G-Enterprises a modification of the standard pick-up coil geometry (called the Laj-system by the manufacturer) to allow high spatial

  9. A hominin first rib discovered at the Sterkfontein Caves, South Africa

    Directory of Open Access Journals (Sweden)

    Gaokgatlhe Tawane

    2016-05-01

    Full Text Available First ribs – the first or most superior ribs in the thorax – are rare in the hominin fossil record, and when found, have the potential to provide information regarding the upper thorax shape of extinct hominins. Here, we describe a partial first rib from Member 4 of the Sterkfontein Caves, South Africa. The rib shaft is broken away, so only the head and neck are preserved. The rib is small, falling closest to small-bodied Australopithecus first ribs (AL 288-1 and MH1. Given that it was recovered near the StW 318 femur excavation, which also represents a small individual, we suggest that the two may be associated. Three-dimensional geometric morphometric analyses were used to quantify the rib fragment morphology and compare it to extant hominoid and other fossil hominin ribs. While only the proximal end is preserved, our analyses show that South African Australopithecus share derived features of the proximal first rib more closely resembling A. afarensis and later hominins than great apes.

  10. First early hominin from central Africa (Ishango, Democratic Republic of Congo.

    Directory of Open Access Journals (Sweden)

    Isabelle Crevecoeur

    Full Text Available Despite uncontested evidence for fossils belonging to the early hominin genus Australopithecus in East Africa from at least 4.2 million years ago (Ma, and from Chad by 3.5 Ma, thus far there has been no convincing evidence of Australopithecus, Paranthropus or early Homo from the western (Albertine branch of the Rift Valley. Here we report the discovery of an isolated upper molar (#Ish25 from the Western Rift Valley site of Ishango in Central Africa in a derived context, overlying beds dated to between ca. 2.6 to 2.0 Ma. We used µCT imaging to compare its external and internal macro-morphology to upper molars of australopiths, and fossil and recent Homo. We show that the size and shape of the enamel-dentine junction (EDJ surface discriminate between Plio-Pleistocene and post-Lower Pleistocene hominins, and that the Ishango molar clusters with australopiths and early Homo from East and southern Africa. A reassessment of the archaeological context of the specimen is consistent with the morphological evidence and suggest that early hominins were occupying this region by at least 2 Ma.

  11. New high-resolution computed tomography data of the Taung partial cranium and endocast and their bearing on metopism and hominin brain evolution.

    Science.gov (United States)

    Holloway, Ralph L; Broadfield, Douglas C; Carlson, Kristian J

    2014-09-09

    Falk and colleagues [Falk D, Zollikofer CP, Morimoto N, Ponce de León MS (2012) Proc Natl Acad Sci U S A 109(22):8467-8470] hypothesized that selective pressures favored late persistence of a metopic suture and open anterior fontanelle early in hominin evolution, and they put an emphasis on the Taung Child (Australopithecus africanus) as evidence for the antiquity of these adaptive features. They suggested three mutually nonexclusive pressures: an "obstetric dilemma," high early postnatal brain growth rates, and neural reorganization in the frontal cortex. To test this hypothesis, we obtained the first high-resolution computed tomography (CT) data from the Taung hominin. These high-resolution image data and an examination of the hominin fossil record do not support the metopic and fontanelle features proposed by Falk and colleagues. Although a possible remnant of the metopic suture is observed in the nasion-glabella region of the Taung partial cranium (but not along the frontal crest), this character state is incongruent with the zipper model of metopic closure described by Falk and colleagues. Nor do chimpanzee and bonobo endocast data support the assertion that delayed metopic closure in Taung is necessary because of widening (reorganization) of the prefrontal or frontal cortex. These results call into question the adaptive value of delaying metopic closure, and particularly its antiquity in hominin evolution. Further data from hominoids and hominins are required to support the proposed adaptive arguments, particularly an obstetric dilemma placing constraints on neural and cranial development in Australopithecus.

  12. Radius of Paranthropus robustus from member 1, Swartkrans formation, South Africa.

    Science.gov (United States)

    Grine, F E; Susman, R L

    1991-03-01

    Recently recovered hominid postcrania from Member 1, Swartkrans Formation include the proximal and distal ends of a right radius attributed to a single individual of Paranthropus robustus. These fossils are essentially similar to Australopithecus afarensis, A. africanus, and P. boisei homologues. The head manifests an ape-like circumferentia articularis, and the distal end has prominent medial, dorsal, and lateral tubercles and a well developed brachioradialis crest, features also commonly exhibited by extant great apes. The volar set of the P. robustus radiocarpal joint, like that of Australopithecus homologues, more closely resembles the neutral condition exhibited by Homo than the greater flexion evinced by living apes. Compared with fossil and recent specimens of Homo, the configuration of the P. robustus radial head suggests enhanced stability against medial displacement during pronation and supination; the strong crest for the attachment of brachioradialis may attest to enhanced forearm flexor capability. In addition, this crest and the prominent dorsal tubercles may indicate enhanced hand extensor and, therefore, hand flexor capabilities. The differences in radial morphology between Paranthropus and Homo may relate to significant behavioral differences between these two synchronic taxa.

  13. A Homo habilis maxilla and other newly-discovered hominid fossils from Olduvai Gorge, Tanzania.

    Science.gov (United States)

    Clarke, R J

    2012-08-01

    In 1995, a 1.8 million year old hominid maxilla with complete dentition (OH 65) was excavated from Bed I in the western part of Olduvai Gorge. The molar crowns are small relative to the long flaring roots, and the root of the canine is very long and straight. The broad maxilla with wide U-shaped palate and the form of the tooth roots closely match those of KNM-ER 1470 which, in its parietal size and morphology, matches the type specimen of Homo habilis, OH 7. Thus, OH 65 and KNM-ER 1470 group with OH 7 as representatives of H. habilis while some other Olduvai specimens, such as OH 13 and OH 24, have more in common in terms of morphology and brain size with Australopithecus africanus. Between 1995 and 2007, the OLAPP team has recovered teeth of eight other hominid individuals from various parts of Olduvai Gorge. These have been identified as belonging to H. habilis, Paranthropus boisei, and Australopithecus cf. africanus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology.

    Science.gov (United States)

    Ward, Carol V; Tocheri, Matthew W; Plavcan, J Michael; Brown, Francis H; Manthi, Fredrick Kyalo

    2014-01-07

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato.

  15. Shape Ontogeny of the Distal Femur in the Hominidae with Implications for the Evolution of Bipedality.

    Directory of Open Access Journals (Sweden)

    Melissa Tallman

    Full Text Available Heterochrony has been invoked to explain differences in the morphology of modern humans as compared to other great apes. The distal femur is one area where heterochrony has been hypothesized to explain morphological differentiation among Plio-Pleistocene hominins. This hypothesis is evaluated here using geometric morphometric data to describe the ontogenetic shape trajectories of extant hominine distal femora and place Plio-Pleistocene hominins within that context. Results of multivariate statistical analyses showed that in both Homo and Gorilla, the shape of the distal femur changes significantly over the course of development, whereas that of Pan changes very little. Development of the distal femur of Homo is characterized by an elongation of the condyles, and a greater degree of enlargement of the medial condyle relative to the lateral condyle, whereas Gorilla are characterized by a greater degree of enlargement of the lateral condyle, relative to the medial. Early Homo and Australopithecus africanus fossils fell on the modern human ontogenetic shape trajectory and were most similar to either adult or adolescent modern humans while specimens of Australopithecus afarensis were more similar to Gorilla/Pan. These results indicate that shape differences among the distal femora of Plio-Pleistocene hominins and humans cannot be accounted for by heterochrony alone; heterochrony could explain a transition from the distal femoral shape of early Homo/A. africanus to modern Homo, but not a transition from A. afarensis to Homo. That change could be the result of genetic or epigenetic factors.

  16. Comparative analysis of trabecular bone structure and orientation in South African hominin tali.

    Science.gov (United States)

    Su, Anne; Carlson, Kristian J

    2017-05-01

    Tali of several hominin taxa are preserved in the fossil record and studies of the external morphology of these often show a mosaic of human-like and ape-like features. This has contributed to a growing recognition of variability characterizing locomotor kinematics of Australopithecus. In contrast, locomotor kinematics of another Plio-Pleistocene hominin, Paranthropus, are substantially less well-documented, in part, because of the paucity of postcranial fossils securely attributed to the genus. Since the talus transmits locomotor-based loads through the ankle and its internal structure is hypothesized to reflect accommodation to such loads, it is a cornerstone structure for reconstructing locomotor kinematics. Here we quantify and characterize trabecular bone morphology within tali attributed to Australopithecus africanus (StW 102, StW 363, StW 486) and Paranthropus robustus (TM 1517), making quantitative comparisons to modern humans, extant non-human apes, baboons, and a hominin talus attributed to Paranthropus boisei (KNM-ER 1464). Using high-resolution images of fossil tali (25 μm voxels), nine trabecular bone subregions of interest beneath the articular surface of the talar trochlea were segmented to quantify localized patterns in distribution and primary strut orientation. It was found that trabecular strut orientation and shape, in some cases, can discriminate amongst species characterized by different locomotor foot kinematics. Discriminant function analyses using standard trabecular bone structural properties align TM 1517 with Pan and Gorilla, while other hominin tali structurally most resemble those of baboons. In primary strut orientation, Paranthropus tali (KNM-ER 1464 and TM 1517) resemble the human condition in the anterior-medial subregion, where strut orientation appears positioned to distribute compressive loads medially and distally toward the talar head. In A. africanus tali (particularly StW 486), primary strut orientation in this region

  17. Comentario: A la Presentación del Hombre de las Cavernas. De los Primeros Homínidos al Neanderthal

    Directory of Open Access Journals (Sweden)

    Gonzalo Correal Urrego

    2015-06-01

    Full Text Available

    Luego de la ponderada exposición del doctor Mendoza, en el corto espacio de que disponemos solo nos resta recapitular algunos de los aspectos más relevantes de su disertación y resumir algunos hitos que precedieron y otros que tuvieron continuidad luego de la aparición de Homo antecesor.

    Los hallazgos paleoantropológicos de las últimas décadas han sido muy importantes. Connotadosinvestigadores discuten en la actualidad si Sahelantropus Tchadensis, Orrin Tugenensis y Ardipithecus ramidus con una antigüedad que los aproxima a los 6 millones de años pueden ser considerados como precursores de los homínidos. Mientras se acrecientan las discusiones sobre los orígenes de los Homínidos, Meave Leakey cree que el fragmento de mandíbula de 5’600.000 años desenterrado en Lothagan, Kenya, en 1967 es el fósil de homínido más antiguo que se ha descubierto hasta hoy; otros hallazgos verificados en las postrimerías de los noventa corresponden a ejemplares del antiguo homínido Australopithecus afarensis descubierto por Donald Johansson, esqueleto que fuera bautizado con el nombre de Lucy.

    Procedente de Hadar, en Etiopía, su edad se calcula en 3´900.000 años. Testimonio silencioso del paso de legendarios primates, son las huellas de pisadas impresas en el fango de la ceniza volcánica de la llanura de Laetoli en Tanzania, y que han sido fechadas en 3’600.000 años. Una mandíbula exhumada en Tanzania por Mary Leaky, fue fechada en 3’500.000 años, y con los hallazgos de Turkana en 1994 el horizonte retrocede otros 600.000 años, con Australopitecus amanensis.

    Hoy se conocen cinco especies de Australopithecus, algunos como Australopithecus garghi elaboraron artefactos líticos muy rudimentarios.

  18. Sédimentation et tectonique dans le bassin marin Eocène supérieur-Oligocène des Alpes du Sud Sedimentation and Tectonics in the Upper Eocene-Oligocene Marine Basin in the Southern Alps

    Directory of Open Access Journals (Sweden)

    Riche P.

    2006-11-01

    'exprime nettement moins que précédemment. Le toit des grès est marqué par une surface de discontinuité fortement érosive correspondant à des canyons sous-marins de direction NE-SO. Cette surface peut être mise en relation avec l'écoulement des olistostromes qui termine le remplissage du bassin. La mise en place de ces olistostromes et des olistolithes qui les accompagnent n'est pas paléontologiquement datée : elle débute avec la fin de la sédimentation gréseuse. L'ensemble est encore affecté par une distension E-O ce qui tend à montrer que cette mise en place est antérieure à la phase de serrage miocène. La confrontation entre les observations de terrain, les expériences de sédimentation en canal et l'interprétation sismique de bassins offshore argumente les interprétations proposées. This paper is based on local field surveys performed recently by Institut Français du Pétrole (IFP and Ecole Nationale Supérieure du Pétrole et des Moteurs (ENSPM in the western part of the southern Alps nummulitic basin, to help interpret seismic data. It underlines the role of extensional tectonics during sedimentation. It questions the geodynamic interpretation of the basin as a foredeep basin in the Alpine orogenic belt. On a Mesozoic basement folded by the Pyreneo-Provençale orogeny, as early as the Lutetian the nummulitic transgression flooded the eastern area, which was subsequently obscured by the Pennine main fault during Mio-Pliocene times. It spread westward during the Upper Eocene. In the meantime, an E-W extension, shown clearly along the Var River faults and along the edge of the Pelvoux range, fragmented the fringes of the basin with blocks tilted during sedimentation. The result is fast changes of facies within the basal carbonates, which pass from platform types to slope types and to thin gravitational sediments farther into the basin. The overlying marls correspond to slope facies wrapping the inherited topography. The Gres d'Annot s. l

  19. Bone strength and athletic ability in hominids: Ardipithecus ramidus to Homo sapiens

    Science.gov (United States)

    Lee, Scott

    2012-10-01

    A methodology for the evaluation of the athletic ability of animals based on the strength of their femur and their body mass is developed. The ability of the femur to resist bending stresses is determined by its midlength cross-sectional geometry, its length and the elastic properties of the mineral part of the bone. The animal's athletic ability, determined by a ``bone strength index,'' is limited by this femoral bending strength in relation to the loads on the femur. This analysis is applied to the fossil record for Homo sapiens, Homo neanderthalensis, Homo erectus, Homo habilis, Australopithecus afarensis and Ardipithecus ramidus. Evidence that the femoral bone strength index of modern Homo sapiens has weakened over the last 50,000 years is found.

  20. Mudslide and/or animal attack are more plausible causes and circumstances of death for AL 288 ('Lucy'): A forensic anthropology analysis.

    Science.gov (United States)

    Charlier, Phillippe; Coppens, Yves; Augias, Anaïs; Deo, Saudamini; Froesch, Philippe; Huynh-Charlier, Isabelle

    2018-01-01

    Following a global morphological and micro-CT scan examination of the original and cast of the skeleton of Australopithecus afarensis AL 288 ('Lucy'), Kappelman et al. have recently proposed a diagnosis of a fall from a significant height (a tree) as a cause of her death. According to topographical data from the discovery site, complete re-examination of a high-quality resin cast of the whole skeleton and forensic experience, we propose that the physical process of a vertical deceleration cannot be the only cause for her observed injuries. Two different factors were involved: rolling and multiple impacts in the context of a mudslide and an animal attack with bite marks, multi-focal fractures and violent movement of the body. It is important to consider a differential diagnosis of the observed fossil lesions because environmental factors should not be excluded in this ancient archaeological context as with any modern forensic anthropological case.

  1. Diet of Paranthropus boisei in the early Pleistocene of East Africa.

    Science.gov (United States)

    Cerling, Thure E; Mbua, Emma; Kirera, Francis M; Manthi, Fredrick Kyalo; Grine, Frederick E; Leakey, Meave G; Sponheimer, Matt; Uno, Kevin T

    2011-06-07

    The East African hominin Paranthropus boisei was characterized by a suite of craniodental features that have been widely interpreted as adaptations to a diet that consisted of hard objects that required powerful peak masticatory loads. These morphological adaptations represent the culmination of an evolutionary trend that began in earlier taxa such as Australopithecus afarensis, and presumably facilitated utilization of open habitats in the Plio-Pleistocene. Here, we use stable isotopes to show that P. boisei had a diet that was dominated by C(4) biomass such as grasses or sedges. Its diet included more C(4) biomass than any other hominin studied to date, including its congener Paranthropus robustus from South Africa. These results, coupled with recent evidence from dental microwear, may indicate that the remarkable craniodental morphology of this taxon represents an adaptation for processing large quantities of low-quality vegetation rather than hard objects.

  2. The evolution of human and ape hand proportions.

    Science.gov (United States)

    Almécija, Sergio; Smaers, Jeroen B; Jungers, William L

    2015-07-14

    Human hands are distinguished from apes by possessing longer thumbs relative to fingers. However, this simple ape-human dichotomy fails to provide an adequate framework for testing competing hypotheses of human evolution and for reconstructing the morphology of the last common ancestor (LCA) of humans and chimpanzees. We inspect human and ape hand-length proportions using phylogenetically informed morphometric analyses and test alternative models of evolution along the anthropoid tree of life, including fossils like the plesiomorphic ape Proconsul heseloni and the hominins Ardipithecus ramidus and Australopithecus sediba. Our results reveal high levels of hand disparity among modern hominoids, which are explained by different evolutionary processes: autapomorphic evolution in hylobatids (extreme digital and thumb elongation), convergent adaptation between chimpanzees and orangutans (digital elongation) and comparatively little change in gorillas and hominins. The human (and australopith) high thumb-to-digits ratio required little change since the LCA, and was acquired convergently with other highly dexterous anthropoids.

  3. Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Martínez, I; Arsuaga, J L; Quam, R; Carretero, J M; Gracia, A; Rodríguez, L

    2008-01-01

    This study describes and compares two hyoid bones from the middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca (Spain). The Atapuerca SH hyoids are humanlike in both their morphology and dimensions, and they clearly differ from the hyoid bones of chimpanzees and Australopithecus afarensis. Their comparison with the Neandertal specimens Kebara 2 and SDR-034 makes it possible to begin to approach the question of temporal variation and sexual dimorphism in this bone in fossil humans. The results presented here show that the degree of metric and anatomical variation in the fossil sample was similar in magnitude and kind to living humans. Modern hyoid morphology was present by at least 530 kya and appears to represent a shared derived feature of the modern human and Neandertal evolutionary lineages inherited from their last common ancestor.

  4. Ontogeny of the maxilla in Neanderthals and their ancestors.

    Science.gov (United States)

    Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-12-07

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.

  5. Mineralogy of the Laetolil Footprint Tuff: A comparison with possible volcanic sources from the Crater Highlands and Gregory Rift

    Science.gov (United States)

    Zaitsev, Anatoly N.; Spratt, John; Sharygin, Victor V.; Wenzel, Thomas; Zaitseva, Olga A.; Markl, Gregor

    2015-11-01

    Sadiman volcano in northern Tanzania was postulated as a source of the Upper Laetolil Tuff 7 renowned for its 3.66 Ma old footprints of Australopithecus afarensis as both localities show similarities in terms of their mineralogy. Despite this widely accepted view, Laetoli and Sadiman differ in some key features, particularly in the absence of melilite at Sadiman, and in their magnetite composition. Magnetite from these localities shows significant differences in Mg, Al and Ti contents. Compositions of major, minor and accessory minerals and the occurrence of carbonate-silicate melt inclusions in magnetite from Laetoli indicate their formation from a fractionated carbonate- and melilite-bearing nephelinitic melt. This differs from the melt from which the Sadiman rocks formed. We propose that the nephelinitic Mosonik volcano, located to the north-east from Laetoli, could be a potential source for the Upper Laetolil Footprint Tuff 7.

  6. A vuelo de pájaro: Una mirada a la Salud Pública de Etiopía Overview to Ethiopian’s Public Health

    OpenAIRE

    Liliana Palacios

    2006-01-01

    Pienso en Etiopía y no sé por dónde empezar, mezcla de sentimientos y mucha, pero mucha información… La vida y la muerte pueden convivir tan de cerca que cualquier experiencia se tiñe de una matiz especial. También llamada Abissinia, Etiopia sigue siendo hoy día tierra mítica y gracias a Lucy Australopithecus Afarensis es reconocida antropológicamente como el posible lugar de origen del género humano. Al mismo tiempo, es uno de los países en vías de desarrollo con indicadores de salud por deb...

  7. Energetics in Homo erectus and other early hominins: the consequences of increased lower-limb length.

    Science.gov (United States)

    Steudel-Numbers, Karen L

    2006-11-01

    Previous studies of daily energy expenditure (DEE) in hominin fossils have estimated locomotor costs using a formula that was based on six species, all 18 kg or less in mass, including no primates, and that has a number of other problems when applied in an ecological context. It is well established that the energetic cost of human walking is lower than that of representative mammals, particularly for individuals with long lower limbs. The current study reevaluates the daily energy expenditures of a variety of hominin species using more appropriate approaches to estimating locomotor costs. To estimate DEE for primates, I relied on published data on body mass, day range, and the percentage of time spent in various activities. Based on those data, I calculated a value for nonlocomotor DEE. I then used a variant of a method that I have suggested elsewhere to calculate the daily cost due to locomotion (DEEL) and summed the two to calculate total DEE. The more up-to-date methods for calculating the cost of travel result in lower estimates of this aspect of the energy budget than seen in previous studies. Values obtained here for DEE in various representatives of Australopithecus are lower than reported previously by around 200 kcal/day. Taking into account the greater economy of human walking, particularly the effect of the longer lower limbs found in many later Homo species, also results in lowered estimates of DEE. Elongation of the lower limbs in H. erectus reduced relative travel costs nearly 50% in comparison to A.L. 288-1 (A. afarensis). The present method for calculating DEE indicates that female H. erectus DEE was 84% greater than that of female Australopithecus; this disparity is even larger than that suggested by previous workers.

  8. Body mass estimates of hominin fossils and the evolution of human body size.

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G; Jungers, William L; Richmond, Brian G

    2015-08-01

    Body size directly influences an animal's place in the natural world, including its energy requirements, home range size, relative brain size, locomotion, diet, life history, and behavior. Thus, an understanding of the biology of extinct organisms, including species in our own lineage, requires accurate estimates of body size. Since the last major review of hominin body size based on postcranial morphology over 20 years ago, new fossils have been discovered, species attributions have been clarified, and methods improved. Here, we present the most comprehensive and thoroughly vetted set of individual fossil hominin body mass predictions to date, and estimation equations based on a large (n = 220) sample of modern humans of known body masses. We also present species averages based exclusively on fossils with reliable taxonomic attributions, estimates of species averages by sex, and a metric for levels of sexual dimorphism. Finally, we identify individual traits that appear to be the most reliable for mass estimation for each fossil species, for use when only one measurement is available for a fossil. Our results show that many early hominins were generally smaller-bodied than previously thought, an outcome likely due to larger estimates in previous studies resulting from the use of large-bodied modern human reference samples. Current evidence indicates that modern human-like large size first appeared by at least 3-3.5 Ma in some Australopithecus afarensis individuals. Our results challenge an evolutionary model arguing that body size increased from Australopithecus to early Homo. Instead, we show that there is no reliable evidence that the body size of non-erectus early Homo differed from that of australopiths, and confirm that Homo erectus evolved larger average body size than earlier hominins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A quantitative and qualitative reanalysis of the endocast from the juvenile Paranthropus specimen l338y-6 from Omo, Ethiopia.

    Science.gov (United States)

    White, D D; Falk, D

    1999-12-01

    Based on an analysis of its endocast, Holloway (1981 Am J Phys Anthropol 53:109-118) attributed the juvenile Omo L338y-6 specimen to Australopithecus africanus (i.e., gracile australopithecines) rather than to Paranthropus (Australopithecus) boisei (robust australopithecines) favored by other workers (Rak and Howell [1978] Am J Phys Anthropol 48:345-366). Holloway's attribution was based on the specimen's (1) low cranial capacity, (2) gracile-like meningeal vessels, (3) gracile-like cerebellar hemispheres, and (4) absence of an enlarged occipital/marginal (O/M) sinus system. Recent work, however, has shown that criteria 1 and 2 are not useful for sorting gracile from robust australopithecines (Culotta [1999] Science 284:1109-1111; Falk [1993] Am J Phys Anthropol 92:81-98). In this paper, we test criterion 3 by quantifying the endocranial cerebellar and occipital morphology reproduced on the Omo L338y-6 endocast, and comparing it to seven endocasts from South and East African early hominids. Our preliminary results show that metric analysis of this specimen cannot be used to sort it preferentially with either robust or gracile australopithecines. Finally, we demonstrate that, contrary to previous reports, the Omo L338y-6 endocast reproduces an enlarged left occipital sinus (criterion 4). This observation is consistent with the original attribution of the Omo specimen to robust australopithecines (Rak and Howell [1978] Am J Phys Anthropol 48:345-366). Furthermore, if Omo L338y-6 was a robust australopithecine, this discovery extends the occurrence of an enlarged O/M sinus system to one of the earliest known paranthropines. Am J Phys Anthropol 110:399-406, 1999. Copyright 1999 Wiley-Liss, Inc.

  10. Three-dimensional shape variation of talar surface morphology in hominoid primates.

    Science.gov (United States)

    Parr, W C H; Soligo, C; Smaers, J; Chatterjee, H J; Ruto, A; Cornish, L; Wroe, S

    2014-07-01

    The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long-distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction-abduction, plantar-dorsal flexion and inversion-eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three-dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orangutans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore provide a

  11. The pattern of hominin postcranial evolution reconsidered in light of size-related shape variation of the distal humerus.

    Science.gov (United States)

    Lague, Michael R

    2014-10-01

    Previous research suggests that some hominin postcranial features do not follow a linear path of increasing modernization through geological time. With respect to the distal humerus, in particular, the earliest known hominin specimens are reportedly among the most modern in morphology, while some later humeri appear further removed from the average modern human shape. Although Plio-Pleistocene humeri vary widely in size, previous studies have failed to account for size-related shape variation when making morphometric comparisons. This study reexamines hominin postcranial evolution in light of distal humeral allometry. Using two-dimensional landmark data, the relationship between specimen size and shape among modern humans is quantified using multivariate regression and principal components analysis of size-shape space. Fossils are compared with modern human shapes expected at a given size, as well as with the overall average human shape. The null hypothesis of humeral isometry in modern humans is rejected. Subsequently, if one takes allometry into account, the apparent pattern of hominin humeral evolution does not resemble the pattern described above. All 14 of the Plio-Pleistocene hominin fossils examined here share a similar pattern of shape differences from equivalently-sized modern humans, though they vary in the extent to which these differences are expressed. The oldest specimen in the sample (KNM-KP 271; Australopithecus anamensis) exhibits the least human-like elbow morphology. Similarly primitive morphology characterizes all younger species of Australopithecus as well as Paranthropus robustus. After 2 Ma, a subtly more human-like elbow morphology is apparent among specimens attributed to early Homo, as well as among isolated specimens that may represent either Homo or Paranthropus boisei. This study emphasizes the need to consider size-related shape variation when individual fossil specimens are compared with the average shape of a comparative group

  12. A geometric morphometrics comparative analysis of Neandertal humeri (epiphyses-fused) from the El Sidrón cave site (Asturias, Spain).

    Science.gov (United States)

    Rosas, Antonio; Pérez-Criado, Laura; Bastir, Markus; Estalrrich, Almudena; Huguet, Rosa; García-Tabernero, Antonio; Pastor, Juan Francisco; de la Rasilla, Marco

    2015-05-01

    A new collection of 49,000 year old Neandertal fossil humeri from the El Sidrón cave site (Asturias, Spain) is presented. A total of 49 humeral remains were recovered, representing 10 left and 8 right humeri from adults, adolescents, and a juvenile (not included in the analyses). 3D geometric morphometric (GM) methods as well as classic anthropological variables were employed to conduct a broad comparative analysis by means of mean centroid size and shape comparisons, principal components analysis, and cluster studies. Due to the fragmentary nature of the fossils, comparisons were organized in independent analyses according to different humeral portions: distal epiphysis, diaphysis, proximal epiphysis, and the complete humerus. From a multivariate viewpoint, 3D-GM analyses revealed major differences among taxonomic groups, supporting the value of the humerus in systematic classification. Notably, the Australopithecus anamensis (KP-271) and Homo ergaster Nariokotome (KNM-WT 15000) distal humerus consistently clusters close to those of modern humans, which may imply a primitive condition for Homo sapiens morphology. Australopithecus specimens show a high degree of dispersion in the morphospace. The El Sidrón sample perfectly fits into the classic Neandertal pattern, previously described as having a relatively wide olecranon fossa, as well as thin lateral and medial distodorsal pillars. These characteristics were also typical of the Sima de los Huesos (Atapuerca) sample, African mid-Pleistocene Bodo specimen, and Lower Pleistocene TD6-Atapuerca remains and may be considered as a derived state. Finally, we hypothesize that most of the features thought to be different between Neandertals and modern humans might be associated with structural differences in the pectoral girdle and shoulder joint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Brief communication: could Kadanuumuu (KSD-VP-1/1) and Lucy (AL 288-1) have walked together comfortably?

    Science.gov (United States)

    Kramer, Patricia Ann

    2012-12-01

    The estimated lower limb length (0.761-0.793 m) of the partial skeleton of Australopithecus afarensis from Woranso-Mille (KSD-VP-1/1) is outside the previously known range for Australopithecus and within the range of modern humans. The lower limb length of KSD-VP-1/1 is particularly intriguing when juxtaposed against the lower limb length estimate of the other partial skeleton of A. afarensis, AL 288-1 (0.525 m). A sample of 36 children (age, >7 years, trochanteric height = 0.56-0.765 m) and 16 adults (trochanteric height = 0.77-1.00 m) walked at their self-selected slow, preferred, and fast walking velocities, while their oxygen consumption was monitored. Lower limb length and velocity were correlated with slow (P VP-1/1 (slow = 0.73-0.75 m/s, preferred = 1.08-1.11 m/s, and fast = 1.48-1.54 m/s) is 36-44% higher than that of AL 288-1 (slow = 0.53 m/s, preferred = 0.78 m/s, and fast = 1.07 m/s). The optimal velocity for AL 288-1 is 1.04 m/s, whereas that for KSD-VP-1/1 is 1.29-1.33 m/s. This degree of lower limb length dimorphism suggests that members of a group would have had to compromise their preferences to walk together or to split into subgroups to walk at their optimal velocity. Copyright © 2012 Wiley Periodicals, Inc.

  15. Homo floresiensis-like fossils from the early Middle Pleistocene of Flores.

    Science.gov (United States)

    van den Bergh, Gerrit D; Kaifu, Yousuke; Kurniawan, Iwan; Kono, Reiko T; Brumm, Adam; Setiyabudi, Erick; Aziz, Fachroel; Morwood, Michael J

    2016-06-09

    The evolutionary origin of Homo floresiensis, a diminutive hominin species previously known only by skeletal remains from Liang Bua in western Flores, Indonesia, has been intensively debated. It is a matter of controversy whether this primitive form, dated to the Late Pleistocene, evolved from early Asian Homo erectus and represents a unique and striking case of evolutionary reversal in hominin body and brain size within an insular environment. The alternative hypothesis is that H. floresiensis derived from an older, smaller-brained member of our genus, such as Homo habilis, or perhaps even late Australopithecus, signalling a hitherto undocumented dispersal of hominins from Africa into eastern Asia by two million years ago (2 Ma). Here we describe hominin fossils excavated in 2014 from an early Middle Pleistocene site (Mata Menge) in the So'a Basin of central Flores. These specimens comprise a mandible fragment and six isolated teeth belonging to at least three small-jawed and small-toothed individuals. Dating to ~0.7 Ma, these fossils now constitute the oldest hominin remains from Flores. The Mata Menge mandible and teeth are similar in dimensions and morphological characteristics to those of H. floresiensis from Liang Bua. The exception is the mandibular first molar, which retains a more primitive condition. Notably, the Mata Menge mandible and molar are even smaller in size than those of the two existing H. floresiensis individuals from Liang Bua. The Mata Menge fossils are derived compared with Australopithecus and H. habilis, and so tend to support the view that H. floresiensis is a dwarfed descendent of early Asian H. erectus. Our findings suggest that hominins on Flores had acquired extremely small body size and other morphological traits specific to H. floresiensis at an unexpectedly early time.

  16. A systematic reassessment and paleogeographic review of fossil xenarthra from Peru

    Directory of Open Access Journals (Sweden)

    2004-01-01

    exclusivamente andino presentando formas de tamaño pequeño, cuadrupedos y con tendencia a pastar perteneciente al subgénero M. (Pseudomegatherium e incluye a M. (P. tarijensis, M. (P. elenense, M. (P. urbinai y una nueva especie de la zona norandina. Las grandes especies de perezosos como M. (Megatherium americanum, Lestodon sp., y Scelidotherium leptocephalum descubiertos en las Pampas Argentinas no han sido reportados en el Perú. Un nuevo megaloníquido muy peculiar fue descubierto en la costa norte (desierto de Cupisnique y en los Andes, cerca al lago Titicaca (cueva casa del diablo. Dataciones relizadas con 14C, así como la asociación faunística indican que la mayoría de los mamíferos fósiles del Perú pertenecen al Lujanense. A lo largo de la costa y probablemente en la Amazonía, los Xenarthra han sido descubiertos en localidades abiertas, en contraste con la región andina donde la mayor parte de los especímenes se conservaron en cuevas. En el Perú y en toda Sudamérica los grandes Xenartros se extinguen al comienzo del Holoceno. A revision of Peruvian Xenarthra and the discovery of new specimens have increased our knowledge of the Order in this country. About thirty sites from three geographic regions, Amazonian Forest, the Andes, and the coast have yielded Xenarthra in Peru. The only well known Pre-Pleistocene Xenarthra is Thalassocnus from the Mio-Pliocene of the Pisco Formation. Pleistocene Phyllophaga (Megatheriidae, Nothrotheriidae, Mylodontidae, and Megalonychidae and Cingulata (Pampatheriidae and Glyptodontidae are rare in the Amazonian forest region, abundant in the coastal region and are particularly frequent in the Andes (between 2 500 and 4 500 meters. Cingulata are not as diverse and are represented only by Holmesina cf. paulacoutoi along the coast and Glyptodon clavipes in the Andes. The mylodontid Glossotherium sp. is recognized in the entire Peruvian coast and the scelidothere Scelidodon chiliensis is abundant in both the Andes and northern

  17. Contemporary flowstone development links early hominin bearing cave deposits in South Africa

    Science.gov (United States)

    Pickering, Robyn; Kramers, Jan D.; Hancox, Philip John; de Ruiter, Darryl J.; Woodhead, Jon D.

    2011-06-01

    The Cradle of Humankind cave sites in South Africa preserve fossil evidence of four early hominin taxa: Australopithecus africanus, Australopithecus sediba, Paranthropus robustus and early Homo. In order to integrate this record into a pan-African scenario of human evolutionary history it is critical to have reliable dates and temporal ranges for the southern African hominins. In the past a lack of precise and accurate chronological data has prevented the evaluation of the temporal relationships between the various sites. Here we report new uranium-lead (U-Pb) radiometric ages obtained from sheets of calcium carbonate flowstone inter-bedded between clastic cave sediments at the site of Swartkrans, providing bracketing ages for the fossiliferous deposits. The fossil bearing units of Swartkrans, specifically the Hanging Remnant and Lower Bank of Member 1, are underlain by flowstone layers dated to 2.25 ± 0.05 Ma and 2.25 ± 0.08 Ma and capped by layers of 1.8 ± 0.01 Ma and 1.7 ± 0.07 Ma. The age bracket of the Member 1 deposits is therefore between 2.31 and 1.64 Ma. However, by combining the U-Pb with biostratigraphic data we suggest that this can be narrowed down to between 1.9 and 1.8 Ma. These data can be compared with other recently dated sites and a radiometrically dated U-Pb age sequence formed: Sterkfontein Member 4, Swartkrans Member 1, Malapa, and Cooper's D. From this new U-Pb dataset, a pattern of contemporary flowstone development emerges, with different caves recording the same flowstone-forming event. Specifically overlapping flowstone formation takes place at Swartkrans and Sterkfontein at ~ 2.29 Ma and ~ 1.77 Ma, and at Sterkfontein and Malapa at ˜ 2.02 Ma. This suggests a regional control over the nature and timing of speleothem development in cave deposits and these flowstone layers could assist in future correlation, both internal to specific deposits and regionally between sites.

  18. Evaluating morphometric body mass prediction equations with a juvenile human test sample: accuracy and applicability to small-bodied hominins.

    Science.gov (United States)

    Walker, Christopher S; Yapuncich, Gabriel S; Sridhar, Shilpa; Cameron, Noël; Churchill, Steven E

    2018-02-01

    Body mass is an ecologically and biomechanically important variable in the study of hominin biology. Regression equations derived from recent human samples allow for the reasonable prediction of body mass of later, more human-like, and generally larger hominins from hip joint dimensions, but potential differences in hip biomechanics across hominin taxa render their use questionable with some earlier taxa (i.e., Australopithecus spp.). Morphometric prediction equations using stature and bi-iliac breadth avoid this problem, but their applicability to early hominins, some of which differ in both size and proportions from modern adult humans, has not been demonstrated. Here we use mean stature, bi-iliac breadth, and body mass from a global sample of human juveniles ranging in age from 6 to 12 years (n = 530 age- and sex-specific group annual means from 33 countries/regions) to evaluate the accuracy of several published morphometric prediction equations when applied to small humans. Though the body proportions of modern human juveniles likely differ from those of small-bodied early hominins, human juveniles (like fossil hominins) often differ in size and proportions from adult human reference samples and, accordingly, serve as a useful model for assessing the robustness of morphometric prediction equations. Morphometric equations based on adults systematically underpredict body mass in the youngest age groups and moderately overpredict body mass in the older groups, which fall in the body size range of adult Australopithecus (∼26-46 kg). Differences in body proportions, notably the ratio of lower limb length to stature, influence predictive accuracy. Ontogenetic changes in these body proportions likely influence the shift in prediction error (from under- to overprediction). However, because morphometric equations are reasonably accurate when applied to this juvenile test sample, we argue these equations may be used to predict body mass in small-bodied hominins

  19. Analysis of the dental morphology of Plio-Pleistocene hominids. IV. Mandibular postcanine root morphology.

    Science.gov (United States)

    Wood, B A; Abbott, S A; Uytterschaut, H

    1988-02-01

    allocated to EAFHOM, and a single specimen, KMN-ER 3731, to EAFROB. Published assessments of the root morphology of the 'robust' australopithecines from Swartkrans suggest that the premolar root form of Australopithecus (Paranthropus) robustus is not obviously intermediate between the presumed ancestral condition, and the 'molarised' mandibular premolar root systems of Australopithecus (Paranthropus) boisei.

  20. Skull 5 from Dmanisi: Descriptive anatomy, comparative studies, and evolutionary significance.

    Science.gov (United States)

    Rightmire, G Philip; Ponce de León, Marcia S; Lordkipanidze, David; Margvelashvili, Ann; Zollikofer, Christoph P E

    2017-03-01

    A fifth hominin skull (cranium D4500 and mandible D2600) from Dmanisi is massively constructed, with a large face and a very small brain. Traits documented for the first time in a basal member of the Homo clade include the uniquely low ratio of endocranial volume to basicranial width, reduced vertex height, angular vault profile, smooth nasal sill coupled with a long and sloping maxillary clivus, elongated palate, and tall mandibular corpus. The convex clivus and receding symphysis of skull 5 produce a muzzle-like form similar to that of Australopithecus afarensis. While the Dmanisi cranium is very robust, differing from OH 13, OH 24, and KNM-ER 1813, it resembles Homo habilis specimens in the "squared off" outline of its maxilla in facial view, maxillary sulcus, rounded and receding zygomatic arch, and flexed zygomaticoalveolar pillar. These characters distinguish early Homo from species of Australopithecus and Paranthropus. Skull 5 is unlike Homo rudolfensis cranium KNM-ER 1470. Although it appears generally primitive, skull 5 possesses a bar-like supraorbital torus, elongated temporal squama, occipital transverse torus, and petrotympanic traits considered to be derived for Homo erectus. As a group, the Dmanisi crania and mandibles display substantial anatomical and metric variation. A key question is whether the fossils document age-related growth and sex dimorphism within a single population, or whether two (or more) distinct taxa may be present at the site. We use the coefficient of variation to compare Dmanisi with Paranthropus boisei, H. erectus, and recent Homo sapiens, finding few signals that the Dmanisi sample is excessively variable in comparison to these reference taxa. Using cranial measurements and principal components analysis, we explore the proposal that the Dmanisi skulls can be grouped within a regionally diverse hypodigm for H. erectus. Our results provide only weak support for this hypothesis. Finally, we consider all available morphological

  1. A vuelo de pájaro: Una mirada a la Salud Pública de Etiopía Overview to Ethiopian’s Public Health

    Directory of Open Access Journals (Sweden)

    Liliana Palacios

    2006-03-01

    Full Text Available Pienso en Etiopía y no sé por dónde empezar, mezcla de sentimientos y mucha, pero mucha información… La vida y la muerte pueden convivir tan de cerca que cualquier experiencia se tiñe de una matiz especial. También llamada Abissinia, Etiopia sigue siendo hoy día tierra mítica y gracias a Lucy Australopithecus Afarensis es reconocida antropológicamente como el posible lugar de origen del género humano. Al mismo tiempo, es uno de los países en vías de desarrollo con indicadores de salud por debajo de la media mundial y un sistema relativamente joven que aun no termina de responder a las necesidades de su población. Al igual que otros países en las mismas características, los etíopes recurren a una mezcla de medicina tradicional vs servicios halopáticos mientras que las políticas nacionales siguen tratando de dar las pautas acordes a los lineamientos y metas mundiales, dando como resultado un panorama interesante para un salubrista público y cualquier personal sanitario interesado en la situación sanitaria de otros lugares.I think about Ethiopia and I am not clear how to start, a mixture of feelings and a lot of information is surrounding me… The life and death can stay so close that any experience has a special tone. Named Abissinia as well, Ethiopia is still today a mythic land. Due to "Lucy" Australopithecus Afarensis finding, it is acknowledged like the starting point of human being. In addition, it is one of the developing countries with core health indicators under world´ standard line and a "Fresh Health System" which still doesn’t cover properly the population’s needs. Like another country in this situation, the Ethiopian look for a mixture of Traditional medicine Vs Western one, meanwhile the National policies are trying of reach the aims and outlines fixed in the world. Like a result, there is an interesting landscape to any Public Health specialist and/or someone who can be interested in abroad sanitarian

  2. Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene

    Science.gov (United States)

    Levin, Naomi E.; Haile-Selassie, Yohannes; Frost, Stephen R.; Saylor, Beverly Z.

    2015-10-01

    The incorporation of C4 resources into hominin diet signifies increased dietary breadth within hominins and divergence from the dietary patterns of other great apes. Morphological evidence indicates that hominin diet became increasingly diverse by 4.2 million years ago but may not have included large proportions of C4 foods until 800 thousand years later, given the available isotopic evidence. Here we use carbon isotope data from early to mid Pliocene hominin and cercopithecid fossils from Woranso-Mille (central Afar, Ethiopia) to constrain the timing of this dietary change and its ecological context. We show that both hominins and some papionins expanded their diets to include C4 resources as early as 3.76 Ma. Among hominins, this dietary expansion postdates the major dentognathic morphological changes that distinguish Australopithecus from Ardipithecus, but it occurs amid a continuum of adaptations to diets of tougher, harder foods and to committed terrestrial bipedality. In contrast, carbon isotope data from cercopithecids indicate that C4-dominated diets of the earliest members of the Theropithecus oswaldi lineage preceded the dental specialization for grazing but occurred after they were fully terrestrial. The combined data indicate that the inclusion of C4 foods in hominin diet occurred as part of broader ecological changes in African primate communities.

  3. Unique Dental Morphology of Homo floresiensis and Its Evolutionary Implications.

    Science.gov (United States)

    Kaifu, Yousuke; Kono, Reiko T; Sutikna, Thomas; Saptomo, Emanuel Wahyu; Jatmiko; Due Awe, Rokus

    2015-01-01

    Homo floresiensis is an extinct, diminutive hominin species discovered in the Late Pleistocene deposits of Liang Bua cave, Flores, eastern Indonesia. The nature and evolutionary origins of H. floresiensis' unique physical characters have been intensively debated. Based on extensive comparisons using linear metric analyses, crown contour analyses, and other trait-by-trait morphological comparisons, we report here that the dental remains from multiple individuals indicate that H. floresiensis had primitive canine-premolar and advanced molar morphologies, a combination of dental traits unknown in any other hominin species. The primitive aspects are comparable to H. erectus from the Early Pleistocene, whereas some of the molar morphologies are more progressive even compared to those of modern humans. This evidence contradicts the earlier claim of an entirely modern human-like dental morphology of H. floresiensis, while at the same time does not support the hypothesis that H. floresiensis originated from a much older H. habilis or Australopithecus-like small-brained hominin species currently unknown in the Asian fossil record. These results are however consistent with the alternative hypothesis that H. floresiensis derived from an earlier Asian Homo erectus population and experienced substantial body and brain size dwarfism in an isolated insular setting. The dentition of H. floresiensis is not a simple, scaled-down version of earlier hominins.

  4. Can Chimpanzee Biology Highlight Human Origin and Evolution?

    Directory of Open Access Journals (Sweden)

    Itai Roffman

    2010-07-01

    Full Text Available The closest living relatives of humans are their chimpanzee/bonobo (Pan sister species, members of the same subfamily “Homininae”. This classification is supported by over 50 years of research in the fields of chimpanzee cultural diversity, language competency, genomics, anatomy, high cognition, psychology, society, self-consciousness and relation to others, tool use/production, as well as Homo level emotions, symbolic competency, memory recollection, complex multifaceted problem-solving capabilities, and interspecies communication. Language competence and symbolism can be continuously bridged from chimpanzee to man. Emotions, intercommunity aggression, body language, gestures, facial expressions, and vocalization of intonations seem to parallel between the sister taxa Homo and Pan. The shared suite of traits between Pan and Homo genus demonstrated in this article integrates old and new information on human–chimpanzee evolution, bilateral informational and cross-cultural exchange, promoting the urgent need for Pan cultures in the wild to be protected, as they are part of the cultural heritage of mankind. Also, we suggest that bonobos, Pan paniscus, based on shared traits with Australopithecus, need to be included in Australopithecine’s subgenus, and may even represent living-fossil Australopithecines. Unfolding bonobo and chimpanzee biology highlights our common genetic and cultural evolutionary origins.

  5. Neck function in early hominins and suspensory primates: Insights from the uncinate process.

    Science.gov (United States)

    Meyer, Marc R; Woodward, Charles; Tims, Amy; Bastir, Markus

    2018-02-28

    Uncinate processes are protuberances on the cranial surface of subaxial cervical vertebrae that assist in stabilizing and guiding spinal motion. Shallow uncinate processes reduce cervical stability but confer an increased range of motion in clinical studies. Here we assess uncinate processes among extant primates and model cervical kinematics in early fossil hominins. We compare six fossil hominin vertebrae with 48 Homo sapiens and 99 nonhuman primates across 20 genera. We quantify uncinate morphology via geometric morphometric methods to understand how uncinate process shape relates to allometry, taxonomy, and mode of locomotion. Across primates, allometry explains roughly 50% of shape variation, as small, narrow vertebrae feature the relatively tallest, most pronounced uncinate processes, whereas larger, wider vertebrae typically feature reduced uncinates. Taxonomy only weakly explains the residual variation, however, the association between Uncinate Shape and mode of locomotion is robust, as bipeds and suspensory primates occupy opposite extremes of the morphological continuum and are distinguished from arboreal generalists. Like humans, Australopithecus afarensis and Homo erectus exhibit shallow uncinate processes, whereas A. sediba resembles more arboreal taxa, but not fully suspensory primates. Suspensory primates exhibit the most pronounced uncinates, likely to maintain visual field stabilization. East African hominins exhibit reduced uncinate processes compared with African apes and A. sediba, likely signaling different degrees of neck motility and modes of locomotion. Although soft tissues constrain neck flexibility beyond limits suggested by osteology alone, this study may assist in modeling cervical kinematics and positional behaviors in extinct taxa. © 2018 Wiley Periodicals, Inc.

  6. Diet of Theropithecus from 4 to 1 Ma in Kenya.

    Science.gov (United States)

    Cerling, Thure E; Chritz, Kendra L; Jablonski, Nina G; Leakey, Meave G; Manthi, Fredrick Kyalo

    2013-06-25

    Theropithecus was a common large-bodied primate that co-occurred with hominins in many Plio-Pleistocene deposits in East and South Africa. Stable isotope analyses of tooth enamel from T. brumpti (4.0-2.5 Ma) and T. oswaldi (2.0-1.0 Ma) in Kenya show that the earliest Theropithecus at 4 Ma had a diet dominated by C4 resources. Progressively, this genus increased the proportion of C4-derived resources in its diet and by 1.0 Ma, had a diet that was nearly 100% C4-derived. It is likely that this diet was comprised of grasses or sedges; stable isotopes cannot, by themselves, give an indication of the relative importance of leaves, seeds, or underground storage organs to the diet of this primate. Theropithecus throughout the 4- to 1-Ma time range has a diet that is more C4-based than contemporaneous hominins of the genera Australopithecus, Kenyanthropus, and Homo; however, Theropithecus and Paranthropus have similar proportions of C4-based resources in their respective diets.

  7. Associated ilium and femur from Koobi Fora, Kenya, and postcranial diversity in early Homo.

    Science.gov (United States)

    Ward, Carol V; Feibel, Craig S; Hammond, Ashley S; Leakey, Louise N; Moffett, Elizabeth A; Plavcan, J Michael; Skinner, Matthew M; Spoor, Fred; Leakey, Meave G

    2015-04-01

    During the evolution of hominins, it is generally accepted that there was a shift in postcranial morphology between Australopithecus and the genus Homo. Given the scarcity of associated remains of early Homo, however, relatively little is known about early Homo postcranial morphology. There are hints of postcranial diversity among species, but our knowledge of the nature and extent of potential differences is limited. Here we present a new associated partial ilium and femur from Koobi Fora, Kenya, dating to 1.9 Ma (millions of years ago) that is clearly attributable to the genus Homo but documents a pattern of morphology not seen in eastern African early Homo erectus. The ilium and proximal femur share distinctive anatomy found only in Homo. However, the geometry of the femoral midshaft and contour of the pelvic inlet do not resemble that of any specimens attributed to H. erectus from eastern Africa. This new fossil confirms the presence of at least two postcranial morphotypes within early Homo, and documents diversity in postcranial morphology among early Homo species that may reflect underlying body form and/or adaptive differences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hypothesis: brain size and skull shape as criteria for a new hominin family tree.

    Science.gov (United States)

    Chardin, Pierre

    2014-10-01

    Today, gorillas and chimpanzees live in tropical forests, where acid soils do not favor fossilization. It is thus widely believed that there are no fossils of chimpanzees or gorillas. However, four teeth of a 0.5-million-year (Ma)-old chimpanzee were discovered in the rift valley of Kenya (McBrearty and Jablonski, 2005), and a handful of teeth of a 10-Ma-old gorilla-like creature were found in Ethiopia (Suwa et al., 2007), close to the major sites of Homo discoveries. These discoveries indicate that chimpanzees and gorillas once shared their range with early Homo. However, the thousands of hominin fossils discovered in the past century have all been attributed to the Homo line. Thus far, our family tree looks like a bush with many dead-branches. If one admits the possibility that the australopithecines can also be the ancestors of African great apes, one can place Paranthropus on the side of gorilla ancestors and divide the remaining Australopithecus based on the brain size into the two main lines of humans and chimpanzees, thereby resulting in a coherent family tree. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. A new horned crocodile from the Plio-Pleistocene hominid sites at Olduvai Gorge, Tanzania.

    Directory of Open Access Journals (Sweden)

    Christopher A Brochu

    Full Text Available BACKGROUND: The fossil record reveals surprising crocodile diversity in the Neogene of Africa, but relationships with their living relatives and the biogeographic origins of the modern African crocodylian fauna are poorly understood. A Plio-Pleistocene crocodile from Olduvai Gorge, Tanzania, represents a new extinct species and shows that high crocodylian diversity in Africa persisted after the Miocene. It had prominent triangular "horns" over the ears and a relatively deep snout, these resemble those of the recently extinct Malagasy crocodile Voay robustus, but the new species lacks features found among osteolaemines and shares derived similarities with living species of Crocodylus. METHODOLOGY/PRINCIPAL FINDINGS: The holotype consists of a partial skull and skeleton and was collected on the surface between two tuffs dated to approximately 1.84 million years (Ma, in the same interval near the type localities for the hominids Homo habilis and Australopithecus boisei. It was compared with previously-collected material from Olduvai Gorge referable to the same species. Phylogenetic analysis places the new form within or adjacent to crown Crocodylus. CONCLUSIONS/SIGNIFICANCE: The new crocodile species was the largest predator encountered by our ancestors at Olduvai Gorge, as indicated by hominid specimens preserving crocodile bite marks from these sites. The new species also reinforces the emerging view of high crocodylian diversity throughout the Neogene, and it represents one of the few extinct species referable to crown genus Crocodylus.

  10. Possible brucellosis in an early hominin skeleton from sterkfontein, South Africa.

    Directory of Open Access Journals (Sweden)

    Ruggero D'Anastasio

    Full Text Available We report on the paleopathological analysis of the partial skeleton of the late Pliocene hominin species Australopithecus africanus Stw 431 from Sterkfontein, South Africa. A previous study noted the presence of lesions on vertebral bodies diagnosed as spondylosis deformans due to trauma. Instead, we suggest that these lesions are pathological changes due to the initial phases of an infectious disease, brucellosis. The macroscopic, microscopic and radiological appearance of the lytic lesions of the lumbar vertebrae is consistent with brucellosis. The hypothesis of brucellosis (most often associated with the consumption of animal proteins in a 2.4 to 2.8 million year old hominid has a host of important implications for human evolution. The consumption of meat has been regarded an important factor in supporting, directing or altering human evolution. Perhaps the earliest (up to 2.5 million years ago paleontological evidence for meat eating consists of cut marks on animal remains and stone tools that could have made these marks. Now with the hypothesis of brucellosis in A. africanus, we may have evidence of occasional meat eating directly linked to a fossil hominin.

  11. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia.

    Science.gov (United States)

    McPherron, Shannon P; Alemseged, Zeresenay; Marean, Curtis W; Wynn, Jonathan G; Reed, Denné; Geraads, Denis; Bobe, René; Béarat, Hamdallah A

    2010-08-12

    The oldest direct evidence of stone tool manufacture comes from Gona (Ethiopia) and dates to between 2.6 and 2.5 million years (Myr) ago. At the nearby Bouri site several cut-marked bones also show stone tool use approximately 2.5 Myr ago. Here we report stone-tool-inflicted marks on bones found during recent survey work in Dikika, Ethiopia, a research area close to Gona and Bouri. On the basis of low-power microscopic and environmental scanning electron microscope observations, these bones show unambiguous stone-tool cut marks for flesh removal and percussion marks for marrow access. The bones derive from the Sidi Hakoma Member of the Hadar Formation. Established (40)Ar-(39)Ar dates on the tuffs that bracket this member constrain the finds to between 3.42 and 3.24 Myr ago, and stratigraphic scaling between these units and other geological evidence indicate that they are older than 3.39 Myr ago. Our discovery extends by approximately 800,000 years the antiquity of stone tools and of stone-tool-assisted consumption of ungulates by hominins; furthermore, this behaviour can now be attributed to Australopithecus afarensis.

  12. Fossil Carder Bee's Nest from the Hominin Locality of Taung, South Africa.

    Directory of Open Access Journals (Sweden)

    Jennifer F Parker

    Full Text Available The Buxton-Norlim Limeworks southwest of Taung, South Africa, is renowned for the discovery of the first Australopithecus africanus fossil, the 'Taung Child'. The hominin was recovered from a distinctive pink calcrete that contains an abundance of invertebrate ichnofauna belonging to the Coprinisphaera ichnofacies. Here we describe the first fossil bee's nest, attributed to the ichnogenus Celliforma, from the Plio-Pleistocene of Africa. Petrographic examination of a cell lining revealed the preservation of an intricate organic matrix lined with the calcitic casts of numerous plant trichomes-a nesting behaviour unique to the modern-day carder bees (Anthidiini. The presence of Celliforma considered alongside several other recorded ichnofossils can be indicative of a dry, savannah environment, in agreement with recent work on the palaeoenvironment of Plio-Pleistocene southern Africa. Moreover, the occurrence of ground-nesting bees provides further evidence that the pink calcrete deposits are of pedogenic origin, rather than speleogenic origin as has previously been assumed. This study demonstrates the potential value of insect trace fossils as palaeoenvironmental indicators.

  13. Chimpanzee subspecies and ‘robust’ australopithecine holotypes, in the context of comments by Darwin

    Directory of Open Access Journals (Sweden)

    S. Prat

    2010-02-01

    Full Text Available On the basis of comparative anatomy (including chimpanzees, gorillas and other primates, Darwin1 suggested that Africa was the continent from which ‘progenitors’ of humankind evolved. Hominin fossils from this continent proved him correct. We present the results of morphometric analyses based on cranial data obtained from chimpanzee taxa currently recognised as distinct subspecies, namely Pan troglodytes troglodytes and Pan troglodytes schweinfurthii, as well as Pan paniscus (bonobo. Our objective was to use a morphometric technique2 to quantify the degree of similarity between pairs of specimens, in the context of a statistical (probabilistic definition of a species.3–5 Results obtained from great apes, including two subspecies of chimpanzee, were assessed in relation to same-scale comparisons between the holotypes of ‘robust’ australopithecine (Plio-Pleistocene hominin taxa which have traditionally been distinguished at a species level, notably Paranthropus robustus from South Africa, and Paranthropus (Australopithecus/ Zinjanthropus boisei from East Africa. The question arises as to whether the holotypes of these two taxa, TM 1517 from Kromdraai6 and OH 5 from Olduvai,7 respectively, are different at the subspecies rather than at the species level.

  14. First occurrence of early Homo in the Nachukui Formation (West Turkana, Kenya) at 2.3-2.4 Myr.

    Science.gov (United States)

    Prat, Sandrine; Brugal, Jean-Philip; Tiercelin, Jean-Jacques; Barrat, Jean-Alix; Bohn, Marcel; Delagnes, Anne; Harmand, Sonia; Kimeu, Kamoya; Kibunjia, Mzalendo; Texier, Pierre-Jean; Roche, Hélène

    2005-08-01

    Cognitive abilities and techno-economic behaviours of hominids in the time period between 2.6-2.3 Myr have become increasingly well-documented. This time period corresponds to the oldest evidence for stone tools at Gona (Kada Gona, West Gona, EG 10-12, OGS 6-7), Hadar (AL 666), lower Omo valley (Ftji1, 2 & 5, Omo 57, Omo 123) in Ethiopia, and West Turkana (Lokalalei sites -LA1 & LA2C-) in Kenya. In 2002 a new palaeoanthropological site (LA1alpha), 100 meters south of the LA1 archaeological site, produced a first right lower molar of a juvenile hominid (KNM-WT 42718). The relative small size of the crown, its marked MD elongation and BL reduction, the relative position of the cusps, the lack of a C6 and the mild expression of a protostylid, reinforced by metrical analyses, demonstrate the distinctiveness of this tooth compared with Australopithecus afarensis, A. anamensis, A. africanus and Paranthropus boisei, and its similarity to early Homo. The LA1alpha site lies 2.2 m above the Ekalalei Tuff which is slightly younger than Tuff F dated to 2.34+/-0.04 Myr. This juvenile specimen represents the oldest occurrence of the genus Homo in West Turkana.

  15. The mid-face of lower Pleistocene hominins and its bearing on the attribution of SK 847 and StW 53.

    Science.gov (United States)

    Williams, Frank L'engle; Schroeder, Lauren; Ackermann, Rebecca Rogers

    2012-08-01

    SK 847 and StW 53 have often been cited as evidence for early Homo in South Africa. To examine whether midfacial morphology is in agreement with these attributions, we analyze Euclidean distances calculated from 3-D coordinates on the maxillae of SK 847 and StW 53, as well as Australopithecus africanus (Sts 5, Sts 71), Paranthropus robustus (SK 46, SK 48, SK 52, SK 83), early Homo (KNM-ER 1813, KNM-ER 1805, KNM-ER 3733, KNM-WT 15000), P. boisei (KNM-ER 406, KNM-WT 17000, KNM-WT 17400), Gorilla gorilla (n=116), Homo sapiens (n=342), Pan paniscus (n=21) and P. troglodytes (n=65). Multivariate analyses separate extant hominoids suggesting we have captured taxonomic affinity. With the exception of SK 847 and SK 52, South African fossils tend to cluster together. P. robustus differs substantially from East African robust megadonts. SK 847 and StW 53 resemble the East African Homo specimens that are the most australopith-like, such as KNM-WT 15000 and KNM-ER 1813. The resemblance between StW 53 and Homo is driven partly by similarities in maxillary size. When distances are scaled, StW 53 aligns with A. africanus, while SK 847 clusters primarily with early Homo. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Dental microwear and stable isotopes inform the paleoecology of extinct hominins.

    Science.gov (United States)

    Grine, Frederick E; Sponheimer, Matt; Ungar, Peter S; Lee-Thorp, Julia; Teaford, Mark F

    2012-06-01

    Determining the diet of an extinct species is paramount in any attempt to reconstruct its paleoecology. Because the distribution and mechanical properties of food items may impact postcranial, cranial, mandibular, and dental morphologies related to their procurement, ingestion, and mastication, these anatomical attributes have been studied intensively. However, while mechanical environments influence skeletal and dental features, it is not clear to what extent they dictate particular morphologies. Although biomechanical explanations have been widely applied to extinct hominins in attempts to retrodict dietary proclivities, morphology may say as much about what they were capable of eating, and perhaps more about phylogenetic history, than about the nature of the diet. Anatomical attributes may establish boundary limits, but direct evidence left by the foods that were actually (rather than hypothetically) consumed is required to reconstruct diet. Dental microwear and the stable light isotope chemistry of tooth enamel provide such evidence, and are especially powerful when used in tandem. We review the foundations for microwear and biogeochemistry in diet reconstruction, and discuss this evidence for six early hominin species (Ardipithecus ramidus, Australopithecus anamensis, Au. afarensis, Au. africanus, Paranthropus robustus, and P. boisei). The dietary signals derived from microwear and isotope chemistry are sometimes at odds with inferences from biomechanical approaches, a potentially disquieting conundrum that is particularly evident for several species. Copyright © 2012 Wiley Periodicals, Inc.

  17. The feeding biomechanics and dietary ecology of Paranthropus boisei.

    Science.gov (United States)

    Smith, Amanda L; Benazzi, Stefano; Ledogar, Justin A; Tamvada, Kelli; Pryor Smith, Leslie C; Weber, Gerhard W; Spencer, Mark A; Lucas, Peter W; Michael, Shaji; Shekeban, Ali; Al-Fadhalah, Khaled; Almusallam, Abdulwahab S; Dechow, Paul C; Grosse, Ian R; Ross, Callum F; Madden, Richard H; Richmond, Brian G; Wright, Barth W; Wang, Qian; Byron, Craig; Slice, Dennis E; Wood, Sarah; Dzialo, Christine; Berthaume, Michael A; van Casteren, Adam; Strait, David S

    2015-01-01

    The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus. © 2014 Wiley Periodicals, Inc.

  18. Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene.

    Science.gov (United States)

    Lee-Thorp, Julia A; Sponheimer, Matt; Passey, Benjamin H; de Ruiter, Darryl J; Cerling, Thure E

    2010-10-27

    Accumulating isotopic evidence from fossil hominin tooth enamel has provided unexpected insights into early hominin dietary ecology. Among the South African australopiths, these data demonstrate significant contributions to the diet of carbon originally fixed by C(4) photosynthesis, consisting of C(4) tropical/savannah grasses and certain sedges, and/or animals eating C(4) foods. Moreover, high-resolution analysis of tooth enamel reveals strong intra-tooth variability in many cases, suggesting seasonal-scale dietary shifts. This pattern is quite unlike that seen in any great apes, even 'savannah' chimpanzees. The overall proportions of C(4) input persisted for well over a million years, even while environments shifted from relatively closed (ca 3 Ma) to open conditions after ca 1.8 Ma. Data from East Africa suggest a more extreme scenario, where results for Paranthropus boisei indicate a diet dominated (approx. 80%) by C(4) plants, in spite of indications from their powerful 'nutcracker' morphology for diets of hard objects. We argue that such evidence for engagement with C(4) food resources may mark a fundamental transition in the evolution of hominin lineages, and that the pattern had antecedents prior to the emergence of Australopithecus africanus. Since new isotopic evidence from Aramis suggests that it was not present in Ardipithecus ramidus at 4.4 Ma, we suggest that the origins lie in the period between 3 and 4 Myr ago.

  19. Further analysis of mandibular molar crown and cusp areas in Pliocene and early Pleistocene hominids.

    Science.gov (United States)

    Suwa, G; Wood, B A; White, T D

    1994-04-01

    Crown and cusp areas of mandibular molars were measured and analyzed on a sample of 249 specimens attributed to Australopithecus afarensis, A. africanus, A. (Paranthropus) robustus, A. (P.) boisei, and early Homo. In addition to intertaxon comparisons, we compared data that had been collected independently by two of the authors using methods that differ slightly in technique of measurement. Interobserver differences were evaluated by the t-test of paired comparisons, method error statistic, percent differences, and principal component analysis. Results suggest that between-technique error of measurement of overall crown area is small. Error estimates for individual cusp area measurements were of larger relative magnitude. However, these were not sufficient to detract from the conclusions derived from comparative analyses. Our results are in general agreement with previous assessments of early hominid dental size. Crown areas of A. africanus, however, exhibit a mosaic pattern, with M1 similar in size to that of A. afarensis and early Homo, and M2 and M3 similar in size to that of A. robustus. Intertaxon comparisons of relative cusp area were undertaken by univariate statistics and principal component analysis. These analyses revealed that while A. (P.) robustus and A. (P.) boisei both possess mandibular molars with cusp proportions significantly different from the 'non-robust' taxa, these differences are substantially greater in A. (P.) boisei.

  20. Stable isotope-based diet reconstructions of Turkana Basin hominins

    Science.gov (United States)

    Cerling, Thure E.; Kyalo Manthi, Fredrick; Mbua, Emma N.; Leakey, Louise N.; Leakey, Meave G.; Leakey, Richard E.; Brown, Francis H.; Grine, Frederick E.; Hart, John A.; Kaleme, Prince; Roche, Hélène; Uno, Kevin T.; Wood, Bernard A.

    2013-06-01

    Hominin fossil evidence in the Turkana Basin in Kenya from ca. 4.1 to 1.4 Ma samples two archaic early hominin genera and records some of the early evolutionary history of Paranthropus and Homo. Stable carbon isotopes in fossil tooth enamel are used to estimate the fraction of diet derived from C3 or C4 resources in these hominin taxa. The earliest hominin species in the Turkana Basin, Australopithecus anamensis, derived nearly all of its diet from C3 resources. Subsequently, by ca. 3.3 Ma, the later Kenyanthropus platyops had a very wide dietary range-from virtually a purely C3 resource-based diet to one dominated by C4 resources. By ca. 2 Ma, hominins in the Turkana Basin had split into two distinct groups: specimens attributable to the genus Homo provide evidence for a diet with a ca. 65/35 ratio of C3- to C4-based resources, whereas P. boisei had a higher fraction of C4-based diet (ca. 25/75 ratio). Homo sp. increased the fraction of C4-based resources in the diet through ca. 1.5 Ma, whereas P. boisei maintained its high dependency on C4-derived resources.

  1. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships.

    Science.gov (United States)

    Dembo, Mana; Matzke, Nicholas J; Mooers, Arne Ø; Collard, Mark

    2015-08-07

    The phylogenetic relationships of several hominin species remain controversial. Two methodological issues contribute to the uncertainty-use of partial, inconsistent datasets and reliance on phylogenetic methods that are ill-suited to testing competing hypotheses. Here, we report a study designed to overcome these issues. We first compiled a supermatrix of craniodental characters for all widely accepted hominin species. We then took advantage of recently developed Bayesian methods for building trees of serially sampled tips to test among hypotheses that have been put forward in three of the most important current debates in hominin phylogenetics--the relationship between Australopithecus sediba and Homo, the taxonomic status of the Dmanisi hominins, and the place of the so-called hobbit fossils from Flores, Indonesia, in the hominin tree. Based on our results, several published hypotheses can be statistically rejected. For example, the data do not support the claim that Dmanisi hominins and all other early Homo specimens represent a single species, nor that the hobbit fossils are the remains of small-bodied modern humans, one of whom had Down syndrome. More broadly, our study provides a new baseline dataset for future work on hominin phylogeny and illustrates the promise of Bayesian approaches for understanding hominin phylogenetic relationships. © 2015 The Author(s).

  2. Carnivoran remains from the Malapa hominin site, South Africa.

    Directory of Open Access Journals (Sweden)

    Brian F Kuhn

    Full Text Available Recent discoveries at the new hominin-bearing deposits of Malapa, South Africa, have yielded a rich faunal assemblage associated with the newly described hominin taxon Australopithecus sediba. Dating of this deposit using U-Pb and palaeomagnetic methods has provided an age of 1.977 Ma, being one of the most accurately dated, time constrained deposits in the Plio-Pleistocene of southern Africa. To date, 81 carnivoran specimens have been identified at this site including members of the families Canidae, Viverridae, Herpestidae, Hyaenidae and Felidae. Of note is the presence of the extinct taxon Dinofelis cf. D. barlowi that may represent the last appearance date for this species. Extant large carnivores are represented by specimens of leopard (Panthera pardus and brown hyaena (Parahyaena brunnea. Smaller carnivores are also represented, and include the genera Atilax and Genetta, as well as Vulpes cf. V. chama. Malapa may also represent the first appearance date for Felis nigripes (Black-footed cat. The geochronological age of Malapa and the associated hominin taxa and carnivoran remains provide a window of research into mammalian evolution during a relatively unknown period in South Africa and elsewhere. In particular, the fauna represented at Malapa has the potential to elucidate aspects of the evolution of Dinofelis and may help resolve competing hypotheses about faunal exchange between East and Southern Africa during the late Pliocene or early Pleistocene.

  3. Relationship of squamosal suture to asterion in pongids (Pan): relevance to early hominid brain evolution.

    Science.gov (United States)

    Holloway, R L; Shapiro, J S

    1992-11-01

    Based on 244 measurements of the relationship of the squamosal suture to the landmark asterion in 49 chimpanzee skulls, it is shown that in the normal lateral view the squamosal suture is very rarely inferior to asterion. In hominid crania, the squamosal suture is always well superior to asterion. Even in Pan, that part of the squamosal suture most homologous with the remnant found on the Hadar AL 162-28 Australopithecus afarensis hominid cranial fragment is very rarely inferior to asterion. Such variability suggests that Falk's (Nature 313:45-47, 1985) orientation of the Hadar specimen is incorrect; she places asterion superior to the position of the squamosal suture if projected endocranially. The implication for the brain endocast is that, however the fragment is oriented, the posterior aspect of the intraparietal (IP) sulcus is in a very posterior position relative to any chimpanzee brain. The distance from the posterior aspect of IP to occipital pole is twice as great in chimpanzee brain casts than on the Hadar AL 162-28 endocast, even though the chimpanzee brain casts are smaller in overall size. This suggests that brain reorganization, at least as exemplified as a reduction in primary visual striate cortex (area 17 of Brodmann), occurred early in hominid evolution, prior to any major brain expansion.

  4. DNH 109: A fragmentary hominin near-proximal ulna from Drimolen, South Africa

    Directory of Open Access Journals (Sweden)

    Andrew Gallagher

    2011-05-01

    Full Text Available We describe a fragmentary, yet significant, diminutive proximal ulna (DNH 109 from the Lower Pleistocene deposits of Drimolen, Republic of South Africa. On the basis of observable morphology and available comparative metrics, DNH 109 is definitively hominin and is the smallest African Plio-Pleistocene australopith ulna yet recovered. Mediolateral and anteroposterior dimensions of the proximal diaphysis immediately distal to the m. brachialis sulcus in DNH 109 yield an elliptical area (π/4 *m-l*a-p that is smaller than the A.L. 333-38 Australopithecus afarensis subadult from Hadar. Given the unusually broad mediolateral/anteroposterior diaphyseal proportions distal to the brachialis sulcus, the osseous development of the medial and lateral borders of the sulcus, and the overall size of the specimen relative to comparative infant, juvenile, subadult and adult comparative hominid ulnae (Gorilla, Pan and Homo, it is probable that DNH 109 samples an australopith of probable juvenile age at death. As a result of the fragmentary state of preservation and absence of association with taxonomically diagnostic craniodental remains, DNH 109 cannot be provisionally assigned to any particular hominin genus (Paranthropus or Homo at present. Nonetheless, DNH 109 increases our known sample of available Plio-Pleistocene subadult early hominin postcrania.

  5. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes' Hearing Evolution.

    Directory of Open Access Journals (Sweden)

    J Braga

    Full Text Available Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species' sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo,Gorilla and (Pan,Homo most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection of its hearing organ. Premodern (Homo erectus and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the "hypertrophied" cochlea in the genus Homo (as opposed to the australopiths and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record.

  6. Quantum Field Theory in Curved Spacetime

    Science.gov (United States)

    Reynolds, Sally C.; Gallagher, Andrew

    2012-03-01

    List of contributors; Foreword J. T. Francis Thackeray; 1. African genesis: an evolving paradigm Sally C. Reynolds; 2. Academic genealogy Peter Ungar and Phillip V. Tobias; Part I. In Search of Origins: Evolutionary Theory, New Species, and Paths into the Past: 3. Speciation in hominin evolution Colin Groves; 4. Searching for a new paradigm for hominid origins in Chad (Central Africa) Michel Brunet; 5. From hominoid arboreality to hominid bipedalism Brigitte Senut; 6. Orrorin and the African ape/hominid dichotomy Martin Pickford; 7. A brief history and results of 40 years of Sterkfontein excavations Ronald J. Clarke; Part II. Hominin Morphology Through Time: Brains, Bodies and Teeth: 8. Hominin brain evolution, 1925-2011: an emerging overview Dean Falk; 9. The issue of brain reorganisation in Australopithecus and early hominids: Dart had it right Ralph L. Holloway; 10. The mass of the human brain: is it a spandrel? Paul R. Manger, Jason Hemingway, Muhammad Spocter and Andrew Gallagher; 11. Origin and diversity of early hominin bipedalism Henry M. McHenry; 12. Forelimb adaptations in Australopithecus afarensis Michelle S. M. Drapeau; 13. Hominin proximal femur morphology from the Tugen Hills to Flores Brian G. Richmond and William L. Jungers; 14. Daily rates of dentine formation and root extension rates in Paranthropus boisei, KNM-ER 1817, from Koobi Fora, Kenya M. Christopher Dean; 15. On the evolutionary development of early hominid molar teeth and the Gondolin Paranthropus molar Kevin L. Kuykendall; 16. Digital South African fossils: morphological studies using reference-based reconstruction and electronic preparation Gerhard W. Weber, Philipp Gunz, Simon Neubauer, Philipp Mitteroecker and Fred L. Bookstein; Part III. Modern Human Origins: Patterns, and Processes: 17. Body size in African Middle Pleistocene Homo Steven E. Churchill, Lee R. Berger, Adam Hartstone-Rose and Headman Zondo; 18. The African origin of recent humanity Milford H. Wolpoff and Sang-Hee Lee

  7. Analysis of the dental morphology of Plio-pleistocene hominids. I. Mandibular molars: crown area measurements and morphological traits.

    Science.gov (United States)

    Wood, B A; Abbott, S A

    1983-01-01

    This study has used accurate measurements of crown area and precise assessments of the morphological traits of mandibular molars in an attempt to define the metrical and morphological characteristics of early hominid taxa. A total of 196 Plio-Pleistocene hominid molars were either allocated to one of six informal taxonomic groups or considered as individual cases. Accurate measurements of crown base area made from occlusal photographs have enabled us to estimate the effects of interproximal wear on crown areas. The average correction factor over the three molar types is around 2-4% with a maximum of 6%. The patterns of distribution of extra cusps show interesting differences between taxa. None of the M-1S in the two groups of 'gracile' hominids from East and South Africa bears a C6, but it is common in the two 'robust' taxa. The distribution of a C7 is the reverse of this, it being rare in the robust' taxa, and more common in the 'gracile' groups. There is thus no simple relationship between cusp number and tooth size. Our observations on the protostylid suggest that though it is more common in the 'robust' australopithecines than the 'graciles', when it does occur it is more strongly expressed in the 'gracile' group. The combination of simple metrical data, and the assessment of morphological traits, can help in the classification of enigmatic or incomplete specimens. Some isolated teeth from the collection at Koobi Fora can confidently be assigned to Australopithecus boisei, and useful guides have been provided for taxonomic assessment of the skull KNM-ER 1805, and the mandibles KNM-ER 1506 and 1820.

  8. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy".

    Directory of Open Access Journals (Sweden)

    Christopher B Ruff

    Full Text Available While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply

  9. Virtual reconstruction of modern and fossil hominoid crania: consequences of reference sample choice.

    Science.gov (United States)

    Senck, Sascha; Bookstein, Fred L; Benazzi, Stefano; Kastner, Johann; Weber, Gerhard W

    2015-05-01

    Most hominin cranial fossils are incomplete and require reconstruction prior to subsequent analyses. Missing data can be estimated by geometric morphometrics using information from complete specimens, for example, by using thin-plate splines. In this study, we estimate missing data in several virtually fragmented models of hominoid crania (Homo, Pan, Pongo) and fossil hominins (e.g., Australopithecus africanus, Homo heidelbergensis). The aim is to investigate in which way different references influence estimations of cranial shape and how this information can be employed in the reconstruction of fossils. We used a sample of 64 three-dimensional digital models of complete human, chimpanzee, and orangutan crania and a set of 758 landmarks and semilandmarks. The virtually knocked out neurocranial and facial areas that were reconstructed corresponded to those of a real case found in A.L. 444-2 (A. afarensis) cranium. Accuracy of multiple intraspecies and interspecies reconstructions was computed as the maximum square root of the mean squared difference between the original and the reconstruction (root mean square). The results show that the uncertainty in reconstructions is a function of both the geometry of the knockout area and the dissimilarity between the reference sample and the specimen(s) undergoing reconstruction. We suggest that it is possible to estimate large missing cranial areas if the shape of the reference is similar enough to the shape of the specimen reconstructed, though caution must be exercised when employing these reconstructions in subsequent analyses. We provide a potential guide for the choice of the reference by means of bending energy. © 2015 Wiley Periodicals, Inc.

  10. The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology?

    Science.gov (United States)

    Wells, Jonathan C K; DeSilva, Jeremy M; Stock, Jay T

    2012-01-01

    The difficult birth process of humans, often described as the "obstetric dilemma," is commonly assumed to reflect antagonistic selective pressures favoring neonatal encephalization and maternal bipedal locomotion. However, cephalo-pelvic disproportion is not exclusive to humans, and is present in some primate species of smaller body size. The fossil record indicates mosaic evolution of the obstetric dilemma, involving a number of different evolutionary processes, and it appears to have shifted in magnitude between Australopithecus, Pleistocene Homo, and recent human populations. Most attention to date has focused on its generic nature, rather than on its variability between populations. We re-evaluate the nature of the human obstetric dilemma using updated hominin and primate literature, and then consider the contribution of phenotypic plasticity to variability in its magnitude. Both maternal pelvic dimensions and fetal growth patterns are sensitive to ecological factors such as diet and the thermal environment. Neonatal head girth has low plasticity, whereas neonatal mass and maternal stature have higher plasticity. Secular trends in body size may therefore exacerbate or decrease the obstetric dilemma. The emergence of agriculture may have exacerbated the dilemma, by decreasing maternal stature and increasing neonatal growth and adiposity due to dietary shifts. Paleodemographic comparisons between foragers and agriculturalists suggest that foragers have considerably lower rates of perinatal mortality. In contemporary populations, maternal stature remains strongly associated with perinatal mortality in many populations. Long-term improvements in nutrition across future generations may relieve the dilemma, but in the meantime, variability in its magnitude is likely to persist. Copyright © 2012 Wiley Periodicals, Inc.

  11. A new species of great ape from the late Miocene epoch in Ethiopia.

    Science.gov (United States)

    Suwa, Gen; Kono, Reiko T; Katoh, Shigehiro; Asfaw, Berhane; Beyene, Yonas

    2007-08-23

    With the discovery of Ardipithecus, Orrorin and Sahelanthropus, our knowledge of hominid evolution before the emergence of Pliocene species of Australopithecus has significantly increased, extending the hominid fossil record back to at least 6 million years (Myr) ago. However, because of the dearth of fossil hominoid remains in sub-Saharan Africa spanning the period 12-7 Myr ago, nothing is known of the actual timing and mode of divergence of the African ape and hominid lineages. Most genomic-based studies suggest a late divergence date-5-6 Myr ago and 6-8 Myr ago for the human-chimp and human-gorilla splits, respectively-and some palaeontological and molecular analyses hypothesize a Eurasian origin of the African ape and hominid clade. We report here the discovery and recognition of a new species of great ape, Chororapithecus abyssinicus, from the 10-10.5-Myr-old deposits of the Chorora Formation at the southern margin of the Afar rift. To the best of our knowledge, these are the first fossils of a large-bodied Miocene ape from the African continent north of Kenya. They exhibit a gorilla-sized dentition that combines distinct shearing crests with thick enamel on its 'functional' side cusps. Visualization of the enamel-dentine junction by micro-computed tomography reveals shearing crest features that partly resemble the modern gorilla condition. These features represent genetically based structural modifications probably associated with an initial adaptation to a comparatively fibrous diet. The relatively flat cuspal enamel-dentine junction and thick enamel, however, suggest a concurrent adaptation to hard and/or abrasive food items. The combined evidence suggests that Chororapithecus may be a basal member of the gorilla clade, and that the latter exhibited some amount of adaptive and phyletic diversity at around 10-11 Myr ago.

  12. Developmental identity versus typology: Lucy has only four sacral segments.

    Science.gov (United States)

    Machnicki, Allison L; Lovejoy, C Owen; Reno, Philip L

    2016-08-01

    Both interspecific and intraspecific variation in vertebral counts reflect the action of patterning control mechanisms such as Hox. The preserved A.L. 288-1 ("Lucy") sacrum contains five fused elements. However, the transverse processes of the most caudal element do not contact those of the segment immediately craniad to it, leaving incomplete sacral foramina on both sides. This conforms to the traditional definition of four-segmented sacra, which are very rare in humans and African apes. It was recently suggested that fossilization damage precludes interpretation of this specimen and that additional sacral-like features of its last segment (e.g., the extent of the sacral hiatus) suggest a general Australopithecus pattern of five sacral vertebrae. We provide updated descriptions of the original Lucy sacrum. We evaluate sacral/coccygeal variation in a large sample of extant hominoids and place it within the context of developmental variation in the mammalian vertebral column. We report that fossilization damage did not shorten the transverse processes of the fifth segment of Lucy's sacrum. In addition, we find that the extent of the sacral hiatus is too variable in apes and hominids to provide meaningful information on segment identity. Most importantly, a combination of sacral and coccygeal features is to be expected in vertebrae at regional boundaries. The sacral/caudal boundary appears to be displaced cranially in early hominids relative to extant African apes and humans, a condition consistent with the likely ancestral condition for Miocene hominoids. While not definitive in itself, a four-segmented sacrum accords well with the "long-back" model for the Pan/Homo last common ancestor. Am J Phys Anthropol 160:729-739, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Recent origin of low trabecular bone density in modern humans

    Science.gov (United States)

    Chirchir, Habiba; Kivell, Tracy L.; Ruff, Christopher B.; Hublin, Jean-Jacques; Carlson, Kristian J.; Zipfel, Bernhard; Richmond, Brian G.

    2015-01-01

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354

  14. The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters.

    Science.gov (United States)

    Argue, Debbie; Groves, Colin P; Lee, Michael S Y; Jungers, William L

    2017-06-01

    Although the diminutive Homo floresiensis has been known for a decade, its phylogenetic status remains highly contentious. A broad range of potential explanations for the evolution of this species has been explored. One view is that H. floresiensis is derived from Asian Homo erectus that arrived on Flores and subsequently evolved a smaller body size, perhaps to survive the constrained resources they faced in a new island environment. Fossil remains of H. erectus, well known from Java, have not yet been discovered on Flores. The second hypothesis is that H. floresiensis is directly descended from an early Homo lineage with roots in Africa, such as Homo habilis; the third is that it is Homo sapiens with pathology. We use parsimony and Bayesian phylogenetic methods to test these hypotheses. Our phylogenetic data build upon those characters previously presented in support of these hypotheses by broadening the range of traits to include the crania, mandibles, dentition, and postcrania of Homo and Australopithecus. The new data and analyses support the hypothesis that H. floresiensis is an early Homo lineage: H. floresiensis is sister either to H. habilis alone or to a clade consisting of at least H. habilis, H. erectus, Homo ergaster, and H. sapiens. A close phylogenetic relationship between H. floresiensis and H. erectus or H. sapiens can be rejected; furthermore, most of the traits separating H. floresiensis from H. sapiens are not readily attributable to pathology (e.g., Down syndrome). The results suggest H. floresiensis is a long-surviving relict of an early (>1.75 Ma) hominin lineage and a hitherto unknown migration out of Africa, and not a recent derivative of either H. erectus or H. sapiens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Using the covariation of extant hominoid upper and lower jaws to predict dental arcades of extinct hominins.

    Science.gov (United States)

    Stelzer, Stefanie; Gunz, Philipp; Neubauer, Simon; Spoor, Fred

    2018-01-01

    Upper and lower jaws are well represented in the fossil record of mammals and are frequently used to diagnose species. Some hominin species are only known by either their maxillary or mandibular morphology, and in this study, we explore the possibility of predicting their complementary dental arcade shape to aid the recognition of conspecific specimens in the fossil record. To this end, we apply multiple multivariate regression to analyze 3D landmark coordinates collected on associated upper and lower dental arcades of extant Homo, Pan, Gorilla, Pongo, and Hylobates. We first study the extant patterns of variation in dental arcade shape and quantify how accurate predictions of complementary arcades are. Then we explore applications of this extant framework for interpreting the fossil record based on two fossil hominin specimens with associated upper and lower jaws, KNM-WT 15000 (Homo erectus sensu lato) and Sts 52 (Australopithecus africanus), as well as two non-associated specimens of Paranthropus boisei, the maxilla of OH 5 and the Peninj mandible. We find that the shape differences between the predictions and the original fossil specimens are in the range of variation within genera or species and therefore are consistent with their known affinity. Our approach can provide a reference against which intraspecific variation of extinct species can be assessed. We show that our method predicts arcade shapes reliably even if the target shape is not represented in the reference sample. We find that in extant hominoids, the amount of within-taxon variation in dental arcade shape often overlaps with the amount of between-taxon shape variation. This implies that whereas a large difference in dental arcade shape between two individuals typically suggests that they belong to different species or even genera, a small shape difference does not necessarily imply conspecificity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Environmental change and hominin exploitation of C4-based resources in wetland/savanna mosaics.

    Science.gov (United States)

    Stewart, Kathlyn M

    2014-12-01

    Eastern and southern Africa experienced ongoing climatic and tectonic instability in the Plio-Pleistocene, alongside declining forests and expanding grasslands. Most known hominin genera (Australopithecus spp., Kenyanthropus, Paranthropus spp., Homo spp.) appear roughly between 4.2 and 1.8 Ma (millions of years ago). Explanations for these speciation events have focused on adaptations to environmental change, particularly in terrestrial biomes. However, the links between environmental change and hominin adaptations have not always been clear. Often overlooked is that Plio-Pleistocene vegetation included not just terrestrial environments, but a large component of edaphic (wet) C4 grasses and sedges. In this paper it is suggested that in response to environmental fluctuations, hominins engaged in conservative long-term ecological and dietary patterns, based on predictable C4/C3 wetland and terrestrial resources. Data are presented from six hominin locales, which demonstrate reliance on plant-based resources (sedges, grasses, and other vegetation) in C4-inclusive wetland/savanna mosaics. After roughly 2.4 Ma, severe climate variability is associated with early Homo and perhaps Paranthropus boisei broadening their diet to familiar but less preferred foods: vertebrates and invertebrates. These foods consistently provided early Homo with essential nutrients, which reduced selection pressures and allowed for increases in brain size. After 1.65 Ma, a 20% increase in the C4 dietary component of Homo occurs alongside increased relative brain size. P. boisei also increases its C4 dietary component by 15% after 1.65 Ma. These increases imply that both taxa continued to broaden their diet within the C4-based wetlands/savanna biome, with Homo putting a greater emphasis on mammals. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. The effect of early hominin occlusal morphology on the fracturing of hard food items.

    Science.gov (United States)

    Berthaume, Michael; Grosse, Ian R; Patel, Nirdesh D; Strait, David S; Wood, Sarah; Richmond, Brian G

    2010-04-01

    Tooth profile plays an important role in interpretations of the functional morphology of extinct species. We tested hypotheses that australopith occlusal morphology influences the fracture force required to crack large, hard food items using a combination of physical testing and finite element analysis (FEA). We performed mechanical experiments simulating both molar and premolar biting using metal replicas of four hominin specimens representing species that differ in occlusal relief (Praeanthropus afarensis, Australopithecus africanus, Paranthropus robustus, and P. boisei). The replicas were inserted into an Instron machine and used to fracture hollow acrylic hemispheres with known material properties. These hemispheres simulate a hard and brittle food item but exhibit far less variability in size and strength than actual nuts or seeds, thereby facilitating interpretations of tooth function. Fracture forces and fracture displacements were measured, and analysis of variance revealed significant differences in fracture force and energy between specimens and tooth types. Complementing the physical testing, a nonlinear contact finite element model was developed to simulate each physical test. Experimental and FEA results showed good correspondence in most cases, and FEA identified stress concentrations consistent with mechanical models predicting that radial/median fractures are important factors in the failure of nut and seed shells. The fracture force data revealed functional similarities between relatively unworn Pr. afarensis and P. robustus teeth, and between relatively unworn A. africanus and heavily worn P. boisei teeth. These results are inconsistent with functional hypotheses, and raise the possibility that the tooth morphology of early hominins and other hard object feeders may not represent adaptations for inducing fractures in large, hard food items, but rather for resisting fractures in the tooth crown. (c) 2010 Wiley-Liss, Inc.

  18. The evolutionary relationships and age of Homo naledi: An assessment using dated Bayesian phylogenetic methods.

    Science.gov (United States)

    Dembo, Mana; Radovčić, Davorka; Garvin, Heather M; Laird, Myra F; Schroeder, Lauren; Scott, Jill E; Brophy, Juliet; Ackermann, Rebecca R; Musiba, Chares M; de Ruiter, Darryl J; Mooers, Arne Ø; Collard, Mark

    2016-08-01

    Homo naledi is a recently discovered species of fossil hominin from South Africa. A considerable amount is already known about H. naledi but some important questions remain unanswered. Here we report a study that addressed two of them: "Where does H. naledi fit in the hominin evolutionary tree?" and "How old is it?" We used a large supermatrix of craniodental characters for both early and late hominin species and Bayesian phylogenetic techniques to carry out three analyses. First, we performed a dated Bayesian analysis to generate estimates of the evolutionary relationships of fossil hominins including H. naledi. Then we employed Bayes factor tests to compare the strength of support for hypotheses about the relationships of H. naledi suggested by the best-estimate trees. Lastly, we carried out a resampling analysis to assess the accuracy of the age estimate for H. naledi yielded by the dated Bayesian analysis. The analyses strongly supported the hypothesis that H. naledi forms a clade with the other Homo species and Australopithecus sediba. The analyses were more ambiguous regarding the position of H. naledi within the (Homo, Au. sediba) clade. A number of hypotheses were rejected, but several others were not. Based on the available craniodental data, Homo antecessor, Asian Homo erectus, Homo habilis, Homo floresiensis, Homo sapiens, and Au. sediba could all be the sister taxon of H. naledi. According to the dated Bayesian analysis, the most likely age for H. naledi is 912 ka. This age estimate was supported by the resampling analysis. Our findings have a number of implications. Most notably, they support the assignment of the new specimens to Homo, cast doubt on the claim that H. naledi is simply a variant of H. erectus, and suggest H. naledi is younger than has been previously proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Energetic cost of walking in fossil hominins.

    Science.gov (United States)

    Vidal-Cordasco, M; Mateos, A; Zorrilla-Revilla, G; Prado-Nóvoa, O; Rodríguez, J

    2017-11-01

    Many biomechanical studies consistently show that a broader pelvis increases the reaction forces and bending moments across the femoral shaft, increasing the energetic costs of unloaded locomotion. However, a biomechanical model does not provide the real amount of metabolic energy expended in walking. The aim of this study is to test the influence of pelvis breadth on locomotion cost and to evaluate the locomotion efficiency of extinct Pleistocene hominins. The current study measures in vivo the influence of pelvis width on the caloric cost of locomotion, integrating anthropometry, body composition and indirect calorimetry protocols in a sample of 46 subjects of both sexes. We show that a broader false pelvis is substantially more efficient for locomotion than a narrower one and that the influence of false pelvis width on the energetic cost is similar to the influence of leg length. Two models integrating body mass, femur length and bi-iliac breadth are used to estimate the net and gross energetic costs of locomotion in a number of extinct hominins. The results presented here show that the locomotion of Homo was not energetically more efficient than that of Australopithecus and that the locomotion of extinct Homo species was not less efficient than that of modern Homo sapiens. The changes in the anatomy of the pelvis and lower limb observed with the appearance of Homo ergaster probably did not fully offset the increased expenditure resulting from a larger body mass. Moreover, the narrow pelvis in modern humans does not contribute to greater efficiency of locomotion. © 2017 Wiley Periodicals, Inc.

  20. Configurational approach to identifying the earliest hominin butchers.

    Science.gov (United States)

    Domínguez-Rodrigo, Manuel; Pickering, Travis Rayne; Bunn, Henry T

    2010-12-07

    The announcement of two approximately 3.4-million-y-old purportedly butchered fossil bones from the Dikika paleoanthropological research area (Lower Awash Valley, Ethiopia) could profoundly alter our understanding of human evolution. Butchering damage on the Dikika bones would imply that tool-assisted meat-eating began approximately 800,000 y before previously thought, based on butchered bones from 2.6- to 2.5-million-y-old sites at the Ethiopian Gona and Bouri localities. Further, the only hominin currently known from Dikika at approximately 3.4 Ma is Australopithecus afarensis, a temporally and geographically widespread species unassociated previously with any archaeological evidence of butchering. Our taphonomic configurational approach to assess the claims of A. afarensis butchery at Dikika suggests the claims of unexpectedly early butchering at the site are not warranted. The Dikika research group focused its analysis on the morphology of the marks in question but failed to demonstrate, through recovery of similarly marked in situ fossils, the exact provenience of the published fossils, and failed to note occurrences of random striae on the cortices of the published fossils (incurred through incidental movement of the defleshed specimens across and/or within their abrasive encasing sediments). The occurrence of such random striae (sometimes called collectively "trampling" damage) on the two fossils provide the configurational context for rejection of the claimed butchery marks. The earliest best evidence for hominin butchery thus remains at 2.6 to 2.5 Ma, presumably associated with more derived species than A. afarensis.

  1. The paleoecology of the Upper Laetolil Beds, Laetoli Tanzania: A review and synthesis

    Science.gov (United States)

    Su, Denise F.; Harrison, Terry

    2015-01-01

    The Upper Laetolil Beds of Laetoli, Tanzania (∼3.6-3.85 Ma) has yielded a large and varied faunal assemblage, including specimens of Australopithecus afarensis. In contrast with contemporaneous eastern African A. afarensis sites in Kenya and Ethiopia, there is no indication of permanent rivers or other large bodies of water at the site, and the apparently drier environment supported a quite different faunal and floral community as reconstructed from the fossil record. Therefore, a deeper understanding of the paleoecology at Laetoli can be illuminating for questions of habitat access and use by A. afarensis, as well as its behavioral flexibility. This paper reviews the substantial body of evidence accumulated that allows for a detailed reconstruction of the Pliocene paleoenvironment of Laetoli. A synthesis of the different lines of evidence suggests that the Upper Laetolil Beds was a mosaic of grassland-shrubland-woodland habitats with extensive woody vegetation in the form of shrubs, thickets and bush, as well as a significant presence of dense woodland habitats along seasonal river courses and around permanent springs. The vegetation during the Pliocene at Laetoli was likely impacted by the strongly seasonal availability of water and the volcanic ash falls that periodically blanketed the area. A comparison with the paleoenvironments of other A. afarensis sites and a review of its inferred dietary behavior suggest that A. afarensis was an ecological generalist that was able to consume a wide variety of dietary resources in mosaic habitats, although their differential abundances at different sites may be indicative of specific ecological requirements that impact their success in particular environments.

  2. Lucy's back: Reassessment of fossils associated with the A.L. 288-1 vertebral column.

    Science.gov (United States)

    Meyer, Marc R; Williams, Scott A; Smith, Michael P; Sawyer, Gary J

    2015-08-01

    The Australopithecus afarensis partial skeleton A.L. 288-1, popularly known as "Lucy" is associated with nine vertebrae. The vertebrae were given provisional level assignments to locations within the vertebral column by their discoverers and later workers. The continuity of the thoracic series differs in these assessments, which has implications for functional interpretations and comparative studies with other fossil hominins. Johanson and colleagues described one vertebral element (A.L. 288-1am) as uniquely worn amongst the A.L. 288-1 fossil assemblage, a condition unobservable on casts of the fossils. Here, we reassess the species attribution and serial position of this vertebral fragment and other vertebrae in the A.L. 288-1 series. When compared to the other vertebrae, A.L. 288-1am falls well below the expected size within a given spinal column. Furthermore, we demonstrate this vertebra exhibits non-metric characters absent in hominoids but common in large-bodied papionins. Quantitative analyses situate this vertebra within the genus Theropithecus, which today is solely represented by the gelada baboon but was the most abundant cercopithecoid in the KH-1s deposit at Hadar where Lucy was discovered. Our additional analyses confirm that the remainder of the A.L. 288-1 vertebral material belongs to A. afarensis, and we provide new level assignments for some of the other vertebrae, resulting in a continuous articular series of thoracic vertebrae, from T6 to T11. This work does not refute previous work on Lucy or its importance for human evolution, but rather highlights the importance of studying original fossils, as well as the efficacy of the scientific method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A simple rule governs the evolution and development of hominin tooth size.

    Science.gov (United States)

    Evans, Alistair R; Daly, E Susanne; Catlett, Kierstin K; Paul, Kathleen S; King, Stephen J; Skinner, Matthew M; Nesse, Hans P; Hublin, Jean-Jacques; Townsend, Grant C; Schwartz, Gary T; Jernvall, Jukka

    2016-02-25

    The variation in molar tooth size in humans and our closest relatives (hominins) has strongly influenced our view of human evolution. The reduction in overall size and disproportionate decrease in third molar size have been noted for over a century, and have been attributed to reduced selection for large dentitions owing to changes in diet or the acquisition of cooking. The systematic pattern of size variation along the tooth row has been described as a 'morphogenetic gradient' in mammal, and more specifically hominin, teeth since Butler and Dahlberg. However, the underlying controls of tooth size have not been well understood, with hypotheses ranging from morphogenetic fields to the clone theory. In this study we address the following question: are there rules that govern how hominin tooth size evolves? Here we propose that the inhibitory cascade, an activator-inhibitor mechanism that affects relative tooth size in mammals, produces the default pattern of tooth sizes for all lower primary postcanine teeth (deciduous premolars and permanent molars) in hominins. This configuration is also equivalent to a morphogenetic gradient, finally pointing to a mechanism that can generate this gradient. The pattern of tooth size remains constant with absolute size in australopiths (including Ardipithecus, Australopithecus and Paranthropus). However, in species of Homo, including modern humans, there is a tight link between tooth proportions and absolute size such that a single developmental parameter can explain both the relative and absolute sizes of primary postcanine teeth. On the basis of the relationship of inhibitory cascade patterning with size, we can use the size at one tooth position to predict the sizes of the remaining four primary postcanine teeth in the row for hominins. Our study provides a development-based expectation to examine the evolution of the unique proportions of human teeth.

  4. Variation among early Homo crania from Olduvai Gorge and the Koobi Fora region.

    Science.gov (United States)

    Rightmire, G P

    1993-01-01

    Fossils recognized as early Homo were discovered first at Olduvai Gorge in 1959 and 1960. Teeth, skull parts and hand bones representing three individuals were found in Bed I, and more material followed from Bed I and lower Bed II. By 1964, L.S.B. Leakey, P.V. Tobias, and J.R. Napier were ready to name Homo habilis. But almost as soon as they had, there was confusion over the hypodigm of the new species. Tobias himself suggested that OH 13 resembles Homo erectus from Java, and he noted that OH 16 has teeth as large as those of Australopithecus. By the early 1970s, however, Tobias had put these thoughts behind him and returned to the opinion that all of the Olduvai remains are Homo habilis. At about this time, important discoveries began to flow from the Koobi Fora region in Kenya. To most observers, crania such as KNM-ER 1470 confirmed the presence of Homo in East Africa at an early date. Some of the other specimens were problematical. A.C. Walker and R.E. Leakey raised the possibility that larger skulls including KNM-ER 1470 differ significantly from smaller-brained, small-toothed individuals such as KNM-ER 1813. Other workers emphasized that there are differences of shape as well as size among the hominids from Koobi Fora. There is now substantial support for the view that in the Turkana and perhaps also in the Olduvai assemblages, there is more variation than would be expected among male and female conspecifics. One way to approach this question of sorting would be to compare all of the new fossils against the original material from Olduvai which was used to characterize Homo habilis in 1964. A problem is that the Olduvai remains are fragmentary, and none of them provides much information about vault form or facial structure. An alternative is to work first with the better crania, even if these are from other sites. I have elected to treat KNM-ER 1470 and KNM-ER 1813 as key individuals. Comparisons are based on discrete anatomy and measurements. Metric results

  5. Biometrical studies upon hominoid teeth: the coefficient of variation, sexual dimorphism and questions of phylogenetic relationship.

    Science.gov (United States)

    Blumenberg, B

    1985-01-01

    Sexual dimorphism as a function of variation in hominoid tooth metrics has been investigated for four groups of taxa: Recent great apes (two subfamilies), Dryopiths (one subfamily), Ramapiths (one subfamily) and hominids (one family). Gorilla, and to a lesser extent Pan, appear characterized by very high levels of sexual dimorphism and meet several criteria for statistical outliers. Recent great apes are the only group exhibiting consistently high levels of sexual dimorphism. Ramapiths are the only group characterized by low levels of sexual dimorphism and their relative canine length is most similar to Dryopiths. Both Dryopiths and hominids contain taxa with low and intermediate levels of sexual dimorphism. The Gingerich and Shoeninger hypothesis relating coefficients of variation to occlusal complexity is supported. Non-parametric statistics suggest that homogeneity of coefficient of variation profiles over most of the tooth row is characteristic of only the Dryopiths and a composite data set composed of the Dryopith plus Ramapith tooth measurements. Oxnard's model for the multifactorial basis of multiple sexual dimorphisms is also supported. The Dryopith and hominid patterns of sexual dimorphism are similar, an observation that suggests phylogenetic relationship. At the taxonomic level of subfamily or family, sexual dimorphism is a character of cladistic usefulness and possible phylogenetic valence. Assuming that breeding system and sexual dimorphism are functional correlates as many workers suggest, then Ramapithecus sp. China, Sivapithecus indicus and possibly Australopithecus boisei are good candidates for having possessed monogamous breeding/social structures. All Dryopith taxa, S. sivalensis, Sivapithecus sp. China, A. afarensis, Homo habilis and H. erectus emerge as the best candidates for having possessed a polygynous breeding/social structure. No biometrical affinities of Ramapiths with hominids can be demonstrated and some phylogenetic relationship with

  6. Taphonomy of fossils from the hominin-bearing deposits at Dikika, Ethiopia.

    Science.gov (United States)

    Thompson, Jessica C; McPherron, Shannon P; Bobe, René; Reed, Denné; Barr, W Andrew; Wynn, Jonathan G; Marean, Curtis W; Geraads, Denis; Alemseged, Zeresenay

    2015-09-01

    Two fossil specimens from the DIK-55 locality in the Hadar Formation at Dikika, Ethiopia, are contemporaneous with the earliest documented stone tools, and they collectively bear twelve marks interpreted to be characteristic of stone tool butchery damage. An alternative interpretation of the marks has been that they were caused by trampling animals and do not provide evidence of stone tool use or large ungulate exploitation by Australopithecus-grade hominins. Thus, resolving which agents created marks on fossils in deposits from Dikika is an essential step in understanding the ecological and taphonomic contexts of the hominin-bearing deposits in this region and establishing their relevance for investigations of the earliest stone tool use. This paper presents results of microscopic scrutiny of all non-hominin fossils collected from the Hadar Formation at Dikika, including additional fossils from DIK-55, and describes in detail seven assemblages from sieved surface sediment samples. The study is the first taphonomic description of Pliocene fossil assemblages from open-air deposits in Africa that were collected without using only methods that emphasize the selective retention of taxonomically-informative specimens. The sieved assemblages show distinctive differences in faunal representation and taphonomic modifications that suggest they sample a range of depositional environments in the Pliocene Hadar Lake Basin, and have implications for how landscape-based taphonomy can be used to infer past microhabitats. The surface modification data show that no marks on any other fossils resemble in size or shape those on the two specimens from DIK-55 that were interpreted to bear stone tool inflicted damage. A large sample of marks from the sieved collections has characteristics that match modern trampling damage, but these marks are significantly smaller than those on the DIK-55 specimens and have different suites of characteristics. Most are not visible without magnification

  7. Evolution of the auditory ossicles in extant hominids: metric variation in African apes and humans

    Science.gov (United States)

    Quam, Rolf M; Coleman, Mark N; Martínez, Ignacio

    2014-01-01

    of sexual dimorphism were found in the ossicles within each taxon, but some relationship with body size and several dimensions of the ear bones was found. Several of the metric distinctions in the incus and stapes imply a slightly different articulation of the ossicular chain within the tympanic cavity in African apes compared with humans. The limited auditory implications of these metric differences in the ossicles are also discussed. Finally, the results of this study suggest that several plesiomorphic features for apes may be retained in the ear bones of the early hominin taxa Australopithecus and Paranthropus as well as in the Neandertals. PMID:24845949

  8. Perikymata spacing and distribution on hominid anterior teeth.

    Science.gov (United States)

    Dean, M C; Reid, D J

    2001-11-01

    We documented the spacing and distribution of perikymata on the buccal enamel surface of fossil hominin anterior teeth with reference to a sample of modern human and modern great ape teeth. A sample of 27 anterior teeth attributed to Australopithecus (5 to A. afarensis, 22 to A. africanus) and of 33 attributed to Paranthropus (6 to P. boisei, and 27 to P. robustus) were replicated and sputter-coated with gold to enable reflected light microscopy of their surface topography. Anterior teeth were then divided into 10 equal divisions of buccal crown height. The total perikymata count in each division of crown height was recorded using a binocular microscope fitted with a vernier micrometer eyepiece. Then the mean number of perikymata per millimeter was calculated for each division. Similar comparative data for a modern sample of 115 unworn human anterior teeth and 30 African great ape anterior teeth were collected from ground sections. Perikymata counts in each taxon (together with either known or presumed periodicities of perikymata) were then used to estimate enamel formation times in each division of crown height, for all anterior tooth types combined. The distributions of these estimates of time taken to form each division of crown height follow the same trends as the actual perikymata counts and differ between taxa in the same basic way. The distinction between modern African great apes and fossil hominins is particularly clear. Finally, we calculated crown formation times for each anterior tooth type by summing cuspal and lateral enamel formation times. Estimates of average crown formation times in australopiths are shorter than those calculated for both modern human and African great ape anterior teeth. The data presented here provide a better basis for exploring differences in perikymata spacing and distribution among fossil hominins, and provide the first opportunity to describe four specimens attributed to Homo in this context. Preliminary data indicate that

  9. Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins.

    Science.gov (United States)

    Lacruz, Rodrigo S; Dean, M Christopher; Ramirez-Rozzi, Fernando; Bromage, Timothy G

    2008-08-01

    Early hominins formed large and thick-enamelled cheek-teeth within relatively short growth periods as compared with modern humans. To understand better the developmental basis of this process, we measured daily enamel increments, or cross striations, in 17 molars of Plio-Pleistocene hominins representing seven different species, including specimens attributed to early Homo. Our results show considerable variation across species, although all specimens conformed to the known pattern characterised by greater values in outer than inner enamel, and greater cuspal than cervical values. We then compared our results with the megadontia index, which represents tooth size in relation to body mass, for each species to assess the effect of daily growth rates on tooth size. Our results indicate that larger toothed (megadont) taxa display higher rates or faster forming enamel than smaller toothed hominins. By forming enamel quickly, large tooth crowns were able to develop within the constraints of shorter growth periods. Besides daily increments, many animals express long-period markings (striae of Retzius) in their enamel. We report periodicity values (number of cross striations between adjacent striae) in 14 new specimens of Australopithecus afarensis, Paranthropus aethiopicus, Paranthropus boisei, Homo habilis, Homo rudolfensis and Homo erectus, and show that long-period striae express a strong association with male and average male-female body mass. Our results for Plio-Pleistocene hominins show that the biological rhythms that give rise to long-period striae are encompassed within the range of variation known for modern humans, but show a lower mean and modal value of 7 days in australopithecines. In our sample of early Homo, mean and modal periodicity values were 8 days, and therefore similar to modern humans. These new data on daily rates of enamel formation and periodicity provide a better framework to interpret surface manifestations of internal growth markings on

  10. Skull diversity in the Homo lineage and the relative position of Homo naledi.

    Science.gov (United States)

    Schroeder, Lauren; Scott, Jill E; Garvin, Heather M; Laird, Myra F; Dembo, Mana; Radovčić, Davorka; Berger, Lee R; de Ruiter, Darryl J; Ackermann, Rebecca R

    2017-03-01

    The discovery of Homo naledi has expanded the range of phenotypic variation in Homo, leading to new questions surrounding the mosaic nature of morphological evolution. Though currently undated, its unique morphological pattern and possible phylogenetic relationships to other hominin taxa suggest a complex evolutionary scenario. Here, we perform geometric morphometric analyses on H. naledi cranial and mandibular remains to investigate its morphological relationship with species of Homo and Australopithecus. We use Generalized Procrustes analysis to place H. naledi within the pattern of known hominin skull diversity, distributions of Procrustes distances among individuals to compare H. naledi and Homo erectus, and neighbor joining trees to investigate the potential phenetic relationships between groups. Our goal is to address a set of hypotheses relating to the uniqueness of H. naledi, its affinity with H. erectus, and the age of the fossils based on skull morphology. Our results indicate that, cranially, H. naledi aligns with members of the genus Homo, with closest affiliations to H. erectus. The mandibular results are less clear; H. naledi closely associates with a number of taxa, including some australopiths. However, results also show that although H. naledi shares similarities with H. erectus, some distances from this taxon - especially small-brained members of this taxon - are extreme. The neighbor joining trees place H. naledi firmly within Homo. The trees based on cranial morphology again indicate a close relationship between H. naledi and H. erectus, whereas the mandibular tree places H. naledi closer to basal Homo, suggesting a deeper antiquity. Altogether, these results emphasize the unique combination of features (H. erectus-like cranium, less derived mandible) defining H. naledi. Our results also highlight the variability within Homo, calling for a greater focus on the cause of this variability, and emphasizing the importance of using the

  11. Structural History of Human SRGAP2 Proteins.

    Science.gov (United States)

    Sporny, Michael; Guez-Haddad, Julia; Kreusch, Annett; Shakartzi, Sivan; Neznansky, Avi; Cross, Alice; Isupov, Michail N; Qualmann, Britta; Kessels, Michael M; Opatowsky, Yarden

    2017-06-01

    In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4-2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A's inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Flaked stones and old bones: biological and cultural evolution at the dawn of technology.

    Science.gov (United States)

    Plummer, Thomas

    2004-01-01

    The appearance of Oldowan sites ca. 2.6 million years ago (Ma) may reflect one of the most important adaptive shifts in human evolution. Stone artifact manufacture, large mammal butchery, and novel transport and discard behaviors led to the accumulation of the first recognized archaeological debris. The appearance of the Oldowan sites coincides with generally cooler, drier, and more variable climatic conditions across Africa, probably resulting in a net decrease in woodland foods and an increase in large mammal biomass compared to the early and middle Pliocene. Shifts in plant food resource availability may have provided the stimulus for incorporating new foods into the diet, including meat from scavenged carcasses butchered with stone tools. Oldowan artifact form varies with clast size, shape, raw material physical properties, and flaking intensity. Oldowan hominins preferred hard raw materials with good fracture characteristics. Habitual stone transport is evident from technological analysis, and raw material sourcing to date suggests that stone was rarely moved more than 2-3 km from source. Oldowan debris accumulation was spatially redundant, reflecting recurrent visitation of attractive points on the landscape. Thin archaeological horizons from Bed I Olduvai Gorge, Tanzania, were probably formed and buried in less than 10 years and document hominin processing of multiple carcasses per year. Transport beyond simple refuging behavior is suggested by faunal density at some site levels. By 2.0 Ma, hominin rank within the predatory guild may have been moderately high, as they probably accessed meaty carcasses through hunting and confrontational scavenging, and hominin-carnivore competition appears minimal at some sites. It is likely that both Homo habilis sensu stricto and early African H. erectus made Oldowan tools. H. habilis sensu stricto was more encephalized than Australopithecus and may foreshadow H. erectus in lower limb elongation and some thermoregulatory

  13. Early hominid evolution and ecological change through the African Plio-Pleistocene.

    Science.gov (United States)

    Reed, K E

    1997-01-01

    The habitats in which extinct hominids existed has been a key issue in addressing the origin and extinction of early hominids, as well as in understanding various morphological and behavioral adaptations. Many researchers postulated that early hominids lived in an open savanna (Dart, 1925; Robinson, 1963; Howell, 1978). However, Vrba (1985, 1988) has noted that a major global climatic and environmental shift from mesic, closed to xeric, open habitats occurred in the late African Pliocene (approximately 2.5 m.y.a.), thus implying that the earliest hominids existed in these mesic, wooded environs. This climatic shift is also suggested to have contributed to a pulse in speciation events with turnovers of many bovid and possibly hominid species. Previous environmental reconstructions of hominid localities have concentrated on taxonomic identities and taxonomic uniformitarianism to provide habitat reconstructions (e.g., Vrba, 1975; Shipman & Harris, 1988). In addition, relative abundances of species are often used to reconstruct a particular environment, when in fact taphonomic factors could be affecting the proportions of taxa. This study uses the morphological adaptations of mammalian assemblages found with early hominids to reconstruct the habitat based on each species' ecological adaptations, thus minimizing problems introduced by taxonomy and taphonomy. Research presented here compares east and south African Plio-Pleistocene mammalian fossil assemblages with 31 extant mammalian communities from eight different habitat types. All communities are analyzed through ecological diversity methods, that is, each species trophic and locomotor adaptations are used to reconstruct an ecological community and derive its vegetative habitat. Reconstructed habitats show that Australopithecus species existed in fairly wooded, well-watered regions. Paranthropus species lived in similar environs and also in more open regions, but always in habitats that include wetlands. Homo is the

  14. Morphometric variation in Plio-Pleistocene hominid distal humeri.

    Science.gov (United States)

    Lague, M R; Jungers, W L

    1996-11-01

    The magnitude and meaning of morphological variation among Plio-Pleistocene hominid distal humeri have been recurrent points of disagreement among paleoanthropologists. Some researchers have found noteworthy differences among fossil humeri that they believe merit taxonomic separation, while others question the possibility of accurately sorting these fossils into different species and/or functional groups. Size and shape differences among fossil distal humeri are evaluated here to determine whether the magnitude and patterns of these differences can be observed within large-bodied, living hominoids. Specimens analyzed in this study have been assigned to various taxa (Australopithecus afarensis, A. africanus, A. anamensis, Paranthropus, and early Homo) and include AL 288-1m, AL 288-1s, AL 137-48a, AL 322-1, Gomboré IB 7594, TM 1517, KNM-ER 739, KNM-ER 1504, KMN-KP 271 (Kanapoi), and Stw 431. Five extant hominoid populations are sampled to provide a standard by which to consider differences found between the fossils, including two modern human groups (Native American and African American), one group of Pan troglodytes, and two subspecies of Gorilla gorilla (G.g. beringei, G.g. gorilla). All possible pairwise d values (average Euclidena distances) are calculated within each of the reference populations using an exact randomization procedure. This is done using both raw linear measurements as well as scale-free shape data created as ratios of each measurement to the geometric mean. Differences between each pair of fossil humeri are evaluated by comparing their d values to the distribution of d values found within each of the reference populations. Principal coordinate analysis and an unweighted pair group method with arithmetic averages (UPGMA) cluster analysis are utilized to further assess similarities and differences among the fossils. Finally, canonical variates analysis and discriminant analysis are employed using all hominoid samples in order to control for

  15. Using (1)(0)Be cosmogenic isotopes to estimate erosion rates and landscape changes during the Plio-Pleistocene in the Cradle of Humankind, South Africa.

    Science.gov (United States)

    Dirks, Paul H G M; Placzek, Christa J; Fink, David; Dosseto, Anthony; Roberts, Eric

    2016-07-01

    Concentrations of cosmogenic (10)Be, measured in quartz from chert and river sediment around the Cradle of Humankind (CoH), are used to determine basin-averaged erosion rates and estimate incision rates for local river valleys. This study focusses on the catchment area that hosts Malapa cave with Australopithecus sediba, in order to compare regional versus localized erosion rates, and better constrain the timing of cave formation and fossil entrapment. Basin-averaged erosion rates for six sub-catchments draining the CoH show a narrow range (3.00 ± 0.28 to 4.15 ± 0.37 m/Mega-annum [Ma]; ±1σ) regardless of catchment size or underlying geology; e.g. the sub-catchment with Malapa Cave (3 km(2)) underlain by dolomite erodes at the same rate (3.30 ± 0.30 m/Ma) as the upper Skeerpoort River catchment (87 km(2)) underlain by shale, chert and conglomerate (3.23 ± 0.30 m/Ma). Likewise, the Skeerpoort River catchment (147 km(2)) draining the northern CoH erodes at a rate (3.00 ± 0.28 m/Ma) similar to the Bloubank-Crocodile River catchment (627 km(2)) that drains the southern CoH (at 3.62 ± 0.33 to 4.15 ± 0.37 m/Ma). Dolomite- and siliciclastic-dominated catchments erode at similar rates, consistent with physical weathering as the rate controlling process, and a relatively dry climate in more recent times. Erosion resistant chert dykes along the Grootvleispruit River below Malapa yield an incision rate of ∼8 m/Ma at steady-state erosion rates for chert of 0.86 ± 0.54 m/Ma. Results provide better palaeo-depth estimates for Malapa Cave of 7-16 m at the time of deposition of A. sediba. Low basin-averaged erosion rates and concave river profiles indicate that the landscape across the CoH is old, and eroding slowly; i.e. the physical character of the landscape changed little in the last 3-4 Ma, and dolomite was exposed on surface probably well into the Miocene. The apparent absence of early Pliocene- or Miocene-aged cave deposits and

  16. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa

    Science.gov (United States)

    Bonnefille, Raymonde

    2010-07-01

    Ma in East Africa, 3 Ma earlier than in West Africa where it is documented at 7 Ma. At large geographical scale, this first increase in grass pollen simultaneously to forest increase in the marine records is interpreting as reflecting wetter conditions over the continent. Indeed, under global humid conditions, savanna could spread over the desert areas in the Northern and Eastern directions. A forest phase is well documented in West Africa between 7.5 and 7 Ma, but has not been shown in East Africa, mainly because of low resolution analysis of the DSDP East African record which needs further investigation for that period. A strong vegetation change took place between 6.3 and 6 Ma. It was marked by a trend of important decrease tree cover of the vegetation, simultaneous in West and East Africa. At that time, very arid conditions shown by scarce tree cover occurred over the whole tropical region. This happened before (or at) the early beginning of the Messinian crisis. Generally arid conditions coincide with the accepted timing for the Chimpanzee/hominid split, and record of Sahelanthropus tchadensis in Chad and Orrorin tugenensis in Kenya, although these fossils were found under locally wooded environment. The period from 6 to 4 Ma saw the appearance of Ardipithecus and diversification of Australopithecines occurring during a progressive increased tree cover in the broad-scale vegetation that culminated at 3.9 Ma, during A. anamensis time and before the first appearance of Australopithecus afarensis. Important variations in the vegetation occurred between 4 and 3 Ma, and many plant ecosystems were available to A.afarensis, a hominid which had a wide geographical distribution and persisted at Hadar under temporal climatic and environmental variability. The strongest and abrupt decline of forest pollen accompanied by an increase in the grass pollen was found at 2.7 Ma, more pronounced in the West than in East Africa. It was accompanied by a significant increase in C 4