WorldWideScience

Sample records for australia adaptive evolution

  1. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  2. Adaptive evolution of molecular phenotypes

    International Nuclear Information System (INIS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-01-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak. (paper)

  3. "Preconceived Adaptation and Inverted Evolution"

    Science.gov (United States)

    Jungwirth, E.

    1975-01-01

    Alerts teachers, science-test writers and other relevant persons to the problem of distorted concepts which might arise from careless and/or irresponsible usage of the language of science. Provides examples of semantic problems in writings related to the concepts of adaptation and evolution. (GS)

  4. Changes in the genomic content of circulating Bordetella pertussis strains isolated from the Netherlands, Sweden, Japan and Australia: adaptive evolution or drift?

    Directory of Open Access Journals (Sweden)

    van der Lee Saskia

    2010-01-01

    Full Text Available Abstract Background Bordetella pertussis is the causative agent of human whooping cough (pertussis and is particularly severe in infants. Despite worldwide vaccinations, whooping cough remains a public health problem. A significant increase in the incidence of whooping cough has been observed in many countries since the 1990s. Several reasons for the re-emergence of this highly contagious disease have been suggested. A particularly intriguing possibility is based on evidence indicating that pathogen adaptation may play a role in this process. In an attempt to gain insight into the genomic make-up of B. pertussis over the last 60 years, we used an oligonucleotide DNA microarray to compare the genomic contents of a collection of 171 strains of B. pertussis isolates from different countries. Results The CGH microarray analysis estimated the core genome of B. pertussis, to consist of 3,281 CDSs that are conserved among all B. pertussis strains, and represent 84.8% of all CDSs found in the 171 B. pertussis strains. A total of 64 regions of difference consisting of one or more contiguous CDSs were identified among the variable genes. CGH data also revealed that the genome size of B. pertussis strains is decreasing progressively over the past 60 years. Phylogenetic analysis of microarray data generated a minimum spanning tree that depicted the phylogenetic structure of the strains. B. pertussis strains with the same gene content were found in several different countries. However, geographic specificity of the B. pertussis strains was not observed. The gene content was determined to highly correlate with the ptxP-type of the strains. Conclusions An overview of genomic contents of a large collection of isolates from different countries allowed us to derive a core genome and a phylogenetic structure of B. pertussis. Our results show that B. pertussis is a dynamic organism that continues to evolve.

  5. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  6. Directed evolution of adaptive traits

    Science.gov (United States)

    As a species, switchgrass is adapted to an amazingly broad range of environments, spanning hardiness zones ranging from HZ3 to HZ9 (Canada to Mexico), from the mid-grass prairie to the Atlantic Seaboard, from sandy soils to heavy clay soils, from acid to alkaline soils, and from wetland to dryland h...

  7. Adaptation, plant evolution, and the fossil record

    Science.gov (United States)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases

  8. An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia.

    Science.gov (United States)

    Prideaux, Gavin J; Long, John A; Ayliffe, Linda K; Hellstrom, John C; Pillans, Brad; Boles, Walter E; Hutchinson, Mark N; Roberts, Richard G; Cupper, Matthew L; Arnold, Lee J; Devine, Paul D; Warburton, Natalie M

    2007-01-25

    How well the ecology, zoogeography and evolution of modern biotas is understood depends substantially on knowledge of the Pleistocene. Australia has one of the most distinctive, but least understood, Pleistocene faunas. Records from the western half of the continent are especially rare. Here we report on a diverse and exceptionally well preserved middle Pleistocene vertebrate assemblage from caves beneath the arid, treeless Nullarbor plain of south-central Australia. Many taxa are represented by whole skeletons, which together serve as a template for identifying fragmentary, hitherto indeterminate, remains collected previously from Pleistocene sites across southern Australia. A remarkable eight of the 23 Nullarbor kangaroos are new, including two tree-kangaroos. The diverse herbivore assemblage implies substantially greater floristic diversity than that of the modern shrub steppe, but all other faunal and stable-isotope data indicate that the climate was very similar to today. Because the 21 Nullarbor species that did not survive the Pleistocene were well adapted to dry conditions, climate change (specifically, increased aridity) is unlikely to have been significant in their extinction.

  9. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    Directory of Open Access Journals (Sweden)

    Jami L. Dixon

    2014-02-01

    Full Text Available Studies of climate impacts on agriculture and adaptation often provide current or future assessments, ignoring the historical contexts farming systems are situated within. We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations. By comparing two farming systems, we note three major findings: (1 similar trends in farming system evolution have had differential impacts on the diversity of farming systems; (2 trends have contributed to the erosion of informal social and cultural institutions and an increasing dependence on formal institutions; and (3 trade-offs between components of adaptive capacity are made at the farm-scale, thus influencing farming system adaptive capacity. To identify the actual impacts of future climate change and variability, it is important to recognize the dynamic nature of adaptation. In practice, areas identified for further adaptation support include: shift away from one-size-fits-all approach the identification and integration of appropriate modern farming method; a greater focus on building inclusive formal and informal institutions; and a more nuanced understanding regarding the roles and decision-making processes of influential, but external, actors. More research is needed to understand farm-scale trade-offs and the resulting impacts across spatial and temporal scales.

  11. Bat echolocation calls: adaptation and convergent evolution

    OpenAIRE

    Jones, Gareth; Holderied, Marc W

    2007-01-01

    Bat echolocation calls provide remarkable examples of ‘good design’ through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, lase...

  12. Genome Evolution and Host Adaptation in Bartonella

    OpenAIRE

    Berglund, Eva Caroline

    2009-01-01

    Bacteria of the genus Bartonella infect the red blood cells of a wide range of wild and domestic mammals and are transmitted between hosts by blood-sucking insects. Although most Bartonella infections are asymptomatic, the genus contains several human pathogens. In this work, host adaptation and host switches in Bartonella have been studied from a genomic perspective, with special focus on the acquisition and evolution of genes involved in host interactions. As part of this study, the complet...

  13. Evolution of Genetic Variance during Adaptive Radiation.

    Science.gov (United States)

    Walter, Greg M; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-04-01

    Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.

  14. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  15. Biodiversity, evolution and adaptation of cultivated crops.

    Science.gov (United States)

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Epistatic adaptive evolution of human color vision.

    Directory of Open Access Journals (Sweden)

    Shozo Yokoyama

    2014-12-01

    Full Text Available Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV-free retinal environment, the short wavelength-sensitive (SWS1 visual pigment in human (human S1 switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.

  17. The Evolution of Distance Education in Australia: Past, Present, Future

    Science.gov (United States)

    Reiach, Stephen; Averbeck, Clemens; Cassidy, Virginie

    2012-01-01

    Australia's large size and scattered population made it a prime location for the development of correspondence education in the 1920s, and the country is still in the forefront of distance education. This article is based on an extensive interview with Terry Evans, professor at Deakin University in Australia, who reflects on the history of…

  18. Adaptive CGFs Based on Grammatical Evolution

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2015-01-01

    Full Text Available Computer generated forces (CGFs play blue or red units in military simulations for personnel training and weapon systems evaluation. Traditionally, CGFs are controlled through rule-based scripts, despite the doctrine-driven behavior of CGFs being rigid and predictable. Furthermore, CGFs are often tricked by trainees or fail to adapt to new situations (e.g., changes in battle field or update in weapon systems, and, in most cases, the subject matter experts (SMEs review and redesign a large amount of CGF scripts for new scenarios or training tasks, which is both challenging and time-consuming. In an effort to overcome these limitations and move toward more true-to-life scenarios, a study using grammatical evolution (GE to generate adaptive CGFs for air combat simulations has been conducted. Expert knowledge is encoded with modular behavior trees (BTs for compatibility with the operators in genetic algorithm (GA. GE maps CGFs, represented with BTs to binary strings, and uses GA to evolve CGFs with performance feedback from the simulation. Beyond-visual-range air combat experiments between adaptive CGFs and nonadaptive baseline CGFs have been conducted to observe and study this evolutionary process. The experimental results show that the GE is an efficient framework to generate CGFs in BTs formalism and evolve CGFs via GA.

  19. Co-evolution of Plant Biodiversity and Pedogeochemistry in Australia

    Science.gov (United States)

    Bui, E. N.; Gonzalez-Orozco, C.; Miller, J.

    2013-12-01

    With the geostatistical package geoR (Ribeiro and Diggle 2001), we used the National Geochemical Survey of Australia's 1315 reported total elemental concentrations for aluminium (Al), calcium (Ca), magnesium (Mg), sodium (Na), phosphorus (P), all in mg kg-1, for the fine earth (soil:water) and EC1:5 (soil:water) (de Caritat and Cooper 2011) to predict pedogeochemistry at 127,259 sites, representing presence data for 1020 Acacia species across Australia. Species in the genus Acacia are widely distributed across Australia. Here we show that strong associations exist between plant communities, individual species, and pedogeochemistry. Acacia communities in southern Australia are associated with high pH and high electrical conductivity, high total Mg on greenstone-derived soils, and high total Ca and Mg concentrations on calcareous and saline soils. Many species that tolerate extreme pedogeochemical conditions are range restricted. Both Acacia distribution and pedogeochemistry reflect climatic conditions. Species with strong correlation to local edaphic conditions present a higher potential for loss resulting from climate change, due to abiotic constraints. References de Caritat, P. & Cooper, M. (2011). National Geochemical Survey of Australia: The Geochemical Atlas of Australia. Geoscience Australia, Record 2011/20 (2 Volumes), 557 pp. Ribeiro, P.J. & Diggle, P.J. (2001). geoR: A package for geostatistical analysis. R-News Vol 1, No 2. Available at: http://cran.r-project.org/.

  20. Bat echolocation calls: adaptation and convergent evolution.

    Science.gov (United States)

    Jones, Gareth; Holderied, Marc W

    2007-04-07

    Bat echolocation calls provide remarkable examples of 'good design' through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge.

  1. Bat echolocation calls: adaptation and convergent evolution

    Science.gov (United States)

    Jones, Gareth; Holderied, Marc W

    2007-01-01

    Bat echolocation calls provide remarkable examples of ‘good design’ through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge. PMID:17251105

  2. Pervasive adaptive evolution in primate seminal proteins.

    Directory of Open Access Journals (Sweden)

    Nathaniel L Clark

    2005-09-01

    Full Text Available Seminal fluid proteins show striking effects on reproduction, involving manipulation of female behavior and physiology, mechanisms of sperm competition, and pathogen defense. Strong adaptive pressures are expected for such manifestations of sexual selection and host defense, but the extent of positive selection in seminal fluid proteins from divergent taxa is unknown. We identified adaptive evolution in primate seminal proteins using genomic resources in a tissue-specific study. We found extensive signatures of positive selection when comparing 161 human seminal fluid proteins and 2,858 prostate-expressed genes to those in chimpanzee. Seven of eight outstanding genes yielded statistically significant evidence of positive selection when analyzed in divergent primates. Functional clues were gained through divergent analysis, including several cases of species-specific loss of function in copulatory plug genes, and statistically significant spatial clustering of positively selected sites near the active site of kallikrein 2. This study reveals previously unidentified positive selection in seven primate seminal proteins, and when considered with findings in Drosophila, indicates that extensive positive selection is found in seminal fluid across divergent taxonomic groups.

  3. Pervasive Adaptive Evolution in Primate Seminal Proteins.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Seminal fluid proteins show striking effects on reproduction, involving manipulation of female behavior and physiology, mechanisms of sperm competition, and pathogen defense. Strong adaptive pressures are expected for such manifestations of sexual selection and host defense, but the extent of positive selection in seminal fluid proteins from divergent taxa is unknown. We identified adaptive evolution in primate seminal proteins using genomic resources in a tissue-specific study. We found extensive signatures of positive selection when comparing 161 human seminal fluid proteins and 2,858 prostate-expressed genes to those in chimpanzee. Seven of eight outstanding genes yielded statistically significant evidence of positive selection when analyzed in divergent primates. Functional clues were gained through divergent analysis, including several cases of species-specific loss of function in copulatory plug genes, and statistically significant spatial clustering of positively selected sites near the active site of kallikrein 2. This study reveals previously unidentified positive selection in seven primate seminal proteins, and when considered with findings in Drosophila, indicates that extensive positive selection is found in seminal fluid across divergent taxonomic groups.

  4. Biodiversity and Climate Change Adaptation in Australia: Strategy and Research Developments

    OpenAIRE

    Booth, Trevor

    2017-01-01

    Many countries are developing national strategies and action plans aimed at minimising the negative impacts of climate change on biodiversity. The purpose of this paper is to provide a brief overview not only of strategies and plans that have been developed in Australia, but also of research that has been carried out in Australia by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Climate Adaptation Flagship to assist the development of future strategies and plans. Maj...

  5. Improving cellulase production by Aspergillus niger using adaptive evolution

    NARCIS (Netherlands)

    Patyshakuliyeva, Aleksandrina; Arentshorst, Mark; Allijn, Iris E; Ram, Arthur F J; de Vries, Ronald P; Gelber, Isabelle Benoit

    OBJECTIVES: To evaluate the potential of adaptive evolution as a tool in generating strains with an improved production of plant biomass degrading enzymes. RESULTS: An Aspergillus niger cellulase mutant was obtained by adaptive evolution. Physiological properties of this mutant revealed a five times

  6. Evolution and Contingency: Poetry, Curriculum and Culture in Victoria, Australia

    Science.gov (United States)

    Weaven, Mary; Clark, Tom

    2011-01-01

    This article explores the changing place of poetry studies in the broader English curriculum of Victoria, Australia. Its focus is on how students learning to become English teachers engage with poetry studies. Setting this problem within the context of pedagogical theory and evidence about the evolving Victorian curriculum, we have interviewed six…

  7. Not different, Just Better: The Adaptive Evolution of an Enzyme

    Science.gov (United States)

    2015-12-20

    Our program provides a uniquely detailed functional understanding of how evolution by natural selection occurs at the molecular level. Many studies...different, just better: the adaptive evolution of a glycolytic enzyme. Queenstown, New Zealand: Queenstown Molecular Biology Conference, Enzyme Engineering... evolution experiment. This program was aimed at uncovering the molecular basis for a series of adaptive mutations in a key allosteric enzyme. We chose the

  8. Key issues review: evolution on rugged adaptive landscapes

    Science.gov (United States)

    Obolski, Uri; Ram, Yoav; Hadany, Lilach

    2018-01-01

    Adaptive landscapes represent a mapping between genotype and fitness. Rugged adaptive landscapes contain two or more adaptive peaks: allele combinations with higher fitness than any of their neighbors in the genetic space. How do populations evolve on such rugged landscapes? Evolutionary biologists have struggled with this question since it was first introduced in the 1930s by Sewall Wright. Discoveries in the fields of genetics and biochemistry inspired various mathematical models of adaptive landscapes. The development of landscape models led to numerous theoretical studies analyzing evolution on rugged landscapes under different biological conditions. The large body of theoretical work suggests that adaptive landscapes are major determinants of the progress and outcome of evolutionary processes. Recent technological advances in molecular biology and microbiology allow experimenters to measure adaptive values of large sets of allele combinations and construct empirical adaptive landscapes for the first time. Such empirical landscapes have already been generated in bacteria, yeast, viruses, and fungi, and are contributing to new insights about evolution on adaptive landscapes. In this Key Issues Review we will: (i) introduce the concept of adaptive landscapes; (ii) review the major theoretical studies of evolution on rugged landscapes; (iii) review some of the recently obtained empirical adaptive landscapes; (iv) discuss recent mathematical and statistical analyses motivated by empirical adaptive landscapes, as well as provide the reader with instructions and source code to implement simulations of evolution on adaptive landscapes; and (v) discuss possible future directions for this exciting field.

  9. Adaptive Game Level Creation through Rank-based Interactive Evolution

    DEFF Research Database (Denmark)

    Liapis, Antonios; Martínez, Héctor Pérez; Togelius, Julian

    2013-01-01

    This paper introduces Rank-based Interactive Evolution (RIE) which is an alternative to interactive evolution driven by computational models of user preferences to generate personalized content. In RIE, the computational models are adapted to the preferences of users which, in turn, are used...... artificial agents. Results suggest that RIE is both faster and more robust than standard interactive evolution and outperforms other state-of-the-art interactive evolution approaches....

  10. Climate change and infectious diseases in Australia: future prospects, adaptation options, and research priorities.

    Science.gov (United States)

    Harley, David; Bi, Peng; Hall, Gillian; Swaminathan, Ashwin; Tong, Shilu; Williams, Craig

    2011-03-01

    Climate change will have significant and diverse impacts on human health. These impacts will include changes in infectious disease incidence. In this article, the authors review the current situation and potential future climate change impacts for respiratory, diarrheal, and vector-borne diseases in Australia. Based on this review, the authors suggest adaptive strategies within the health sector and also recommend future research priorities.

  11. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive

  12. Urban Evolution: The Role of Water and Adaptation

    Science.gov (United States)

    Kaushal, S.

    2015-12-01

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and management decisions alter them. The concept of "urban evolution" was proposed in order to study changes in urban ecosystems over time. Urban evolution has exerted a major influence on Earth's water and elemental cycles from local to global scales over human history. A current understanding of urban evolution allows urban planning, management, and restoration to move beyond reactive management to predictive management. We explore two key mechanisms of urban evolution, urban selective pressure and adaptation, and their relationship to the evolution of modern water and biogeochemical cycles. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. We show how hydrological and biogeochemical traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations. We also discuss how urban evolution can be divided into distinct stages and transition periods of growth and expansion and decay and repair during the Anthropocene epoch. We explore multiple examples and drivers of urban evolution and adaptations including the role of unintended consequences and societal drivers. We also present a conceptual model for the evolution of urban waters from the Industrial Revolution to the present day emphasizing the role of urban adaptations in response to selective pressures. Finally, we conclude by proposing new concepts and questions for future research related to the urban evolution of water, material, and energy cycles.

  13. Evolution of Mosquito-Based Arbovirus Surveillance Systems in Australia

    Directory of Open Access Journals (Sweden)

    Andrew F. van den Hurk

    2012-01-01

    Full Text Available Control of arboviral disease is dependent on the sensitive and timely detection of elevated virus activity or the identification of emergent or exotic viruses. The emergence of Japanese encephalitis virus (JEV in northern Australia revealed numerous problems with performing arbovirus surveillance in remote locations. A sentinel pig programme detected JEV activity, although there were a number of financial, logistical, diagnostic and ethical limitations. A system was developed which detected viral RNA in mosquitoes collected by solar or propane powered CO2-baited traps. However, this method was hampered by trap-component malfunction, microbial contamination and large mosquito numbers which overwhelmed diagnostic capabilities. A novel approach involves allowing mosquitoes within a box trap to probe a sugar-baited nucleic-acid preservation card that is processed for expectorated arboviruses. In a longitudinal field trial, both Ross River and Barmah Forest viruses were detected numerous times from multiple traps over different weeks. Further refinements, including the development of unpowered traps and use of yeast-generated CO2, could enhance the applicability of this system to remote locations. New diagnostic technology, such as next generation sequencing and biosensors, will increase the capacity for recognizing emergent or exotic viruses, while cloud computing platforms will facilitate rapid dissemination of data.

  14. Managing climate risks through transformational adaptation: Economic and policy implications for key production regions in Australia

    Directory of Open Access Journals (Sweden)

    Shahbaz Mushtaq

    Full Text Available Transformational adaptations are expected to become more frequent and widespread in Australia, and globally, with a changing climate. However, any transformation adaptation will have complex and interconnected effects on rural communities, particularly income, employment and service provision, which will impact on regional sustainability. This paper investigates regional transformative adaptation options to manage climate risks for the rice and cotton industries of northern Queensland, Australia. More specifically, it seeks to identify when to move from incremental adaptation to transformative adaptation and, more importantly, to assess the potential regional economic consequences of such a transformative adaptation. The results indicate transformative adaptation could have large negative effects on regional economies. Relocation of rice or cotton in sugarcane production system will not compensate some negative regional impacts. More importantly, the increase in wheat production in Riverina will not compensate for the reduction in the higher value rice commodity. However, the cotton production system in Queensland is capable of transformational adaptation and incremental adaptation with little impact on regional communities. In contrast, the southern rice production region of the Riverina shows limited capacity for incremental adaptation, given the already high adoption of improved irrigation technologies and practices, and the limited scope to improve these further. The market incentives for the transformation adaptation of cotton and/or rice production in north Queensland are limited without government support. Alternatively, there may be interest from international investors, which would shift the focus from market opportunities to international food security. Keywords: Structural adjustment, Climate change, Environmental and water policy, Rice, Cotton, Regional economic model

  15. Ultra-hot Mesoproterozoic evolution of intracontinental central Australia

    Directory of Open Access Journals (Sweden)

    Weronika Gorczyk

    2015-01-01

    Full Text Available The Musgrave Province developed at the nexus of the North, West and South Australian cratons and its Mesoproterozoic evolution incorporates a 100 Ma period of ultra-high temperature (UHT metamorphism from ca. 1220 to ca. 1120 Ma. This was accompanied by high-temperature A-type granitic magmatism over an 80 Ma period, sourced in part from mantle-derived components and emplaced as a series of pulsed events that also coincide with peaks in UHT metamorphism. The tectonic setting for this thermal event (the Musgrave Orogeny is thought to have been intracontinental and the lithospheric architecture of the region is suggested to have had a major influence on the thermal evolution. We use a series of two dimensional, fully coupled thermo-mechanical-petrological numerical models to investigate the plausibility of initiating and prolonging UHT conditions under model setup conditions appropriate to the inferred tectonic setting and lithospheric architecture of the Musgrave Province. The results support the inferred tectonic framework for the Musgrave Orogeny, predicting periods of UHT metamorphism of up to 70 Ma, accompanied by thin crust and extensive magmatism derived from both crustal and mantle sources. The results also appear to be critically dependent upon the specific location of the Musgrave Province, constrained between thicker cratonic masses.

  16. Australia.

    Science.gov (United States)

    1989-03-01

    The smallest continent and one of the largest countries, Australia is a country of diverse geographical conditions and differing cultures of people unified by one predominant language and political system. Mountains, desert and rivers are some of the varying landscape features of Australia, although the climate and condition for most of the country is tropical. Original Australians, a hunting-gathering people called Aborigines, came to Australia over 38,000 years ago. Today the Aborigines compose about 1% of the population and live in traditional tribal areas as well as cities. The 1st European settlement came in 1788 from Great Britain. After World War II, the population doubled. Although the population is primarily composed of British and Irish immigrants, immigrants from other European countries such as Italy and Greece as well as refugees from Indochina, Vietnam, Cambodia and Laos are a significant factor to the growing Australian population. Australian and Aboriginal culture has took hold and took notice in the areas of opera, art, literature and film. The Australian Commonwealth is based on a constitution similar to that of the United States government. The National Parliament is bicameral with both the Senate and the House of Representatives having a select number of elected officials from each state and territory. The Australian economy is predominantly reliant on the sale of mineral and agricultural exports. History, economic changes, defense, international relations and notes to the traveler are also discussed in this overview of Australia.

  17. Extensive X-linked adaptive evolution in central chimpanzees

    DEFF Research Database (Denmark)

    Hvilsom, Christina; Qian, Yu; Bataillon, Thomas

    2012-01-01

    Surveying genome-wide coding variation within and among species gives unprecedented power to study the genetics of adaptation, in particular the proportion of amino acid substitutions fixed by positive selection. Additionally, contrasting the autosomes and the X chromosome holds information...... on the dominance of beneficial (adaptive) and deleterious mutations. Here we capture and sequence the complete exomes of 12 chimpanzees and present the largest set of protein-coding polymorphism to date. We report extensive adaptive evolution specifically targeting the X chromosome of chimpanzees with as much...... as 30% of all amino acid replacements being adaptive. Adaptive evolution is barely detectable on the autosomes except for a few striking cases of recent selective sweeps associated with immunity gene clusters. We also find much stronger purifying selection than observed in humans, and in contrast...

  18. Adaptive laboratory evolution – principles and applications for biotechnology

    Science.gov (United States)

    2013-01-01

    Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering. PMID:23815749

  19. Accessibility, constraint, and repetition in adaptive floral evolution.

    Science.gov (United States)

    Wessinger, Carolyn A; Hileman, Lena C

    2016-11-01

    Adaptive phenotypic evolution is shaped by natural selection on multiple organismal traits as well as by genetic correlations among traits. Genetic correlations can arise through pleiotropy and can bias the production of phenotypic variation to certain combinations of traits. This phenomenon is referred to as developmental bias or constraint. Developmental bias may accelerate or constrain phenotypic evolution, depending on whether selection acts parallel or in opposition to genetic correlations among traits. We discuss examples from floral evolution where genetic correlations among floral traits contribute to rapid, coordinated evolution in multiple floral organ phenotypes and suggest future research directions that will explore the relationship between the genetic basis of adaptation and the pre-existing structure of genetic correlations. On the other hand, natural selection may act perpendicular to a strong genetic correlation, for example when two traits are encoded by a subset of the same genes and natural selection favors change in one trait and stability in the second trait. In such cases, adaptation is constrained by the availability of genetic variation that can influence the focal trait with minimal pleiotropic effects. Examples from plant diversification suggest that the origin of certain adaptations depends on the prior evolution of a gene copy with reduced pleiotropic effects, generated through the process of gene duplication followed by subfunctionalization or neofunctionalization. A history of gene duplication in some developmental pathways appears to have allowed particular flowering plant linages to have repeatedly evolved adaptations that might otherwise have been developmentally constrained. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Climate change, mitigation and adaptation: the case of the Murray–Darling Basin in Australia

    OpenAIRE

    John Quiggin; David Adamson; Sarah Chambers; Peggy Schrobback

    2009-01-01

    Climate change is likely to have substantial effects on irrigated agriculture. It is anticipated that many areas that are already dry will become drier, while areas that already receive high rainfall may experience further increases. Extreme climate events such as droughts are likely to become more common. These patterns are evident in projections of climate change for the Murray–Darling Basin in Australia. To understand the effects of climate change, as modified by mitigation and adaptation,...

  1. Socio-Cultural Adaptation, Academic Adaptation and Satisfaction of International Higher Degree Research Students in Australia

    Science.gov (United States)

    Yu, Baohua; Wright, Ewan

    2016-01-01

    The number of international higher degree research students has grown at a significant rate in recent years, with Australia becoming a hub for attracting such students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in…

  2. Thermal evolution of the central Halls Creek Orogen, northern Australia

    International Nuclear Information System (INIS)

    Bodorkos, S.; Cawood, P.A.; Oliver, N.H.S.

    1999-01-01

    The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high temperature, low-pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850-1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a 207 Pb/ 206 Pb SHRIMP age of 1867 ± 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860-1855 Ma. prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer-parallel D 1 foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S 2 gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic 207 Pb/ 206 Pb age of 1845 ± 4 Ma. The S 2 fabric is folded around tight folds and cut by ductile shear zones associated with D 3 (ca 1830 Ma), and all pre-existing structures are folded around large-scale, open F 4 folds (ca 1820 Ma). Construction of a temperature-time path for the mid-crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400-500degC for 25-30 million years) encompassing two deformation phases. Protoliths to the Tickalara Metamorphics were

  3. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  4. The adaptation of Chinese adolescents in two societies: a comparison of Chinese adolescents in Hong Kong and Australia.

    Science.gov (United States)

    Leung, Cynthia; Karnilowicz, Wally

    2009-06-01

    This study aimed to compare the adaptation of two groups of migrant Chinese adolescents with their nonmigrant peers. The migrant adolescents included 55 Chinese migrant adolescents who migrated to Australia (Chinese-Australian) and 111 China-born adolescents who migrated to Hong Kong (Chinese-Hong Kong). The nonmigrant adolescents included 157 Anglo-Australian adolescents residing in Australia and 456 Hong Kong-born Chinese adolescents residing in Hong Kong. There were three research questions in this study. First, would there be any differences in the adaptation of Chinese migrant adolescents in different societies of settlement? Second, would migrant adolescents experience more adaptation problems than nonmigrant adolescents? Third, would there be any differences in the adaptation of adolescents in the two societies, Australia and Hong Kong? It was hypothesized that: (1) mainland Chinese migrant adolescents in Hong Kong would experience more adaptation problems than Chinese migrant adolescents in Australia; (2) migrant adolescents would report better adaptation than nonmigrant adolescents; (3) adolescents in Hong Kong would report poorer adaptation than adolescents in Australia. The participants were requested to complete a questionnaire on various adaptation outcome measures including life satisfaction, self-esteem, psychological symptoms, academic satisfaction, and behaviour problems. The results indicated that Chinese-Australian adolescents reported better psychological adaptation but Chinese-Hong Kong adolescents reported better sociocultural adaptation. Adolescents resident in Australia reported higher psychological adaptation but lower sociocultural adaptation than those in Hong Kong. Migrant adolescents reported better psychological and sociocultural adaptation than their nonmigrant counterparts. The results were discussed in relation to the social and educational systems of the two societies.

  5. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae

    Directory of Open Access Journals (Sweden)

    Jian-Cheng Wang

    2016-08-01

    Full Text Available Perennials and annuals apply different strategies to adapt to the adverse environment, based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica.

  6. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    Science.gov (United States)

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. Australia's arid-adapted butcherbirds experienced range expansions during Pleistocene glacial maxima.

    Science.gov (United States)

    Kearns, Anna M; Joseph, Leo; Toon, Alicia; Cook, Lyn G

    2014-05-30

    A model of range expansions during glacial maxima (GM) for cold-adapted species is generally accepted for the Northern Hemisphere. Given that GM in Australia largely resulted in the expansion of arid zones, rather than glaciation, it could be expected that arid-adapted species might have had expanded ranges at GM, as cold-adapted species did in the Northern Hemisphere. For Australian biota, however, it remains paradigmatic that arid-adapted species contracted to refugia at GM. Here we use multilocus data and ecological niche models (ENMs) to test alternative GM models for butcherbirds. ENMs, mtDNA and estimates of nuclear introgression and past population sizes support a model of GM expansion in the arid-tolerant Grey Butcherbird that resulted in secondary contact with its close relative--the savanna-inhabiting Silver-backed Butcherbird--whose contemporary distribution is widely separated. Together, these data reject the universal use of a GM contraction model for Australia's dry woodland and arid biota.

  8. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture...... and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794...... reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only...

  9. Exploring institutional adaptive capacity in practice: examining water governance adaptation in Australia

    Directory of Open Access Journals (Sweden)

    Yvette Bettini

    2015-03-01

    Full Text Available Adaptive capacity is widely held as a key property of resilient and transformative social-ecological systems. However, current knowledge of the term does not yet address key questions of how to operationalize this system condition to address sustainability challenges through research and policy. This paper explores temporal and agency dimensions of adaptive capacity in practice to better understand how system conditions and attributes enable adaptation. An institutional dynamics lens is employed to systemically examine empirical cases of change in urban water management. Comparative analysis of two Australian cities' drought response is conducted using institutional analysis and qualitative system dynamics mapping techniques. The study finds that three forms of adaptive capacity appear critical: the ability to learn, decide, and act. The analytical approach developed provides insight into change dynamics and the agency mechanisms that generate them. The paper proposes a typology of adaptive capacity by characterizing these change dynamics and mechanisms for locked-in, crisis, reorganizing, and stabilizing systems. This set of propositions on institutional conditions and forms of adaptive capacity is offered to further advance research on the topic and help to operationalize adaptive capacity in practice.

  10. Adaptive evolution and effective population size in wild house mice

    Czech Academy of Sciences Publication Activity Database

    Phifer-Rixey, M.; Bonhomme, F.; Boursot, P.; Churchill, G. A.; Piálek, Jaroslav; Tucker, P.; Nachman, M.

    2012-01-01

    Roč. 29, č. 10 (2012), s. 2949-2955 ISSN 0737-4038 R&D Projects: GA ČR GA206/08/0640 Institutional support: RVO:68081766 Keywords : substitution * adaptation * evolution * effective population size * house mouse Subject RIV: EG - Zoology Impact factor: 10.353, year: 2012

  11. Identification of genes that have undergone adaptive evolution in ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta) is a vital food security crop and staple in Africa, yet cassava brown streak disease (CBSD) and cassava mosaic disease result in substantial yield losses. The aim of this study was to identify genes that have undergone positive selection during adaptive evolution, from CBSD resistant, tolerant ...

  12. Adaptive evolution of plastron shape in emydine turtles.

    Science.gov (United States)

    Angielczyk, Kenneth D; Feldman, Chris R; Miller, Gretchen R

    2011-02-01

    Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones--one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  13. The adaptive evolution of the mammalian mitochondrial genome

    Directory of Open Access Journals (Sweden)

    O'Brien Stephen J

    2008-03-01

    Full Text Available Abstract Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas. Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation.

  14. Differential Evolution Algorithm with Self-Adaptive Population Resizing Mechanism

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2013-01-01

    Full Text Available A differential evolution (DE algorithm with self-adaptive population resizing mechanism, SapsDE, is proposed to enhance the performance of DE by dynamically choosing one of two mutation strategies and tuning control parameters in a self-adaptive manner. More specifically, more appropriate mutation strategies along with its parameter settings can be determined adaptively according to the previous status at different stages of the evolution process. To verify the performance of SapsDE, 17 benchmark functions with a wide range of dimensions, and diverse complexities are used. Nonparametric statistical procedures were performed for multiple comparisons between the proposed algorithm and five well-known DE variants from the literature. Simulation results show that SapsDE is effective and efficient. It also exhibits much more superiorresultsthan the other five algorithms employed in the comparison in most of the cases.

  15. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  16. The Evolution of Social Closure in School Education in New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Larissa Bamberry

    2011-01-01

    Full Text Available AbstractThis paper provides a case study of the evolution of social closure as experienced within the teaching profession in public school education in New South Wales, Australia. It charts the changing development of social closure mechanisms, from state-sanctioned, formalized, collectivist mechanisms, to organization-based formal and informal mechanisms derived from individualist criteria. Drawing on an empirical research project that examined the individual experiences of social closure amongst a group of school teachers, this paper finds that there is potential for both collective and individual resistance, or the development of ‘usurpationary’ strategies, at both the formal and the informal level. Detailed study of changing social closure strategies, and the strategies employed to resist social closure, can provide a more in-depth and nuanced understanding of how discrimination continues to operate in workplaces despite the existence of anti-discrimination and equal opportunity legislation in Australia.

  17. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.

    Science.gov (United States)

    Siepielski, Adam M; Beaulieu, Jeremy M

    2017-04-01

    Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. Adaptive evolution of conserved noncoding elements in mammals.

    Directory of Open Access Journals (Sweden)

    Su Yeon Kim

    2007-09-01

    Full Text Available Conserved noncoding elements (CNCs are an abundant feature of vertebrate genomes. Some CNCs have been shown to act as cis-regulatory modules, but the function of most CNCs remains unclear. To study the evolution of CNCs, we have developed a statistical method called the "shared rates test" to identify CNCs that show significant variation in substitution rates across branches of a phylogenetic tree. We report an application of this method to alignments of 98,910 CNCs from the human, chimpanzee, dog, mouse, and rat genomes. We find that approximately 68% of CNCs evolve according to a null model where, for each CNC, a single parameter models the level of constraint acting throughout the phylogeny linking these five species. The remaining approximately 32% of CNCs show departures from the basic model including speed-ups and slow-downs on particular branches and occasionally multiple rate changes on different branches. We find that a subset of the significant CNCs have evolved significantly faster than the local neutral rate on a particular branch, providing strong evidence for adaptive evolution in these CNCs. The distribution of these signals on the phylogeny suggests that adaptive evolution of CNCs occurs in occasional short bursts of evolution. Our analyses suggest a large set of promising targets for future functional studies of adaptation.

  19. Adapting to Climate Change: Lessons from Farmers and Peri-Urban Fringe Residents in South Australia

    Directory of Open Access Journals (Sweden)

    Guy M. Robinson

    2018-03-01

    Full Text Available This paper reports on results from two major research projects conducted in South Australia. The first investigates adaptation to climate change in two of the state’s major grain and sheep farming regions, using semi-structured interviews and focus groups. The second uses a postal questionnaire and an internet-based survey of residents in the peri-urban fringes of Adelaide, the state capital, to examine knowledge of and attitudes to climate change and resulting adaptations, especially in the context of increasing risk of wildfires. The research on adaptation to climate change in agriculture focused on formal institutions (e.g., government agencies and communities of practice (e.g., farm systems groups. Both groups noted that farmers autonomously adapt to various risks, including those induced by climate variability. The types and levels of adaptation varied among individuals partly because of barriers to adaptation, which included limited communication and engagement processes established between formal institutions and communities of practice. The paper discusses possibilities for more effective transfers of knowledge and information on climate change among formal institutions, communities of practice, trusted individual advisors and farmers. Research in the peri-urban fringe revealed that actions taken by individuals to mitigate and/or adapt to climate change were linked to the nature of environmental values held (or ecological worldview and place attachment. Individuals with a strong place attachment to the study area (the Adelaide Hills who possessed knowledge of and/or beliefs in climate change were most likely to take mitigating actions. This was also linked to previous experience of major risk from wildfires. The paper concludes by discussing prospects for developing co-management for reducing the impact of climate change across multiple groups in rural and peri-urban areas.

  20. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc

    2018-01-01

    Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. AL...... autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria....

  1. Adaptive evolution of facial colour patterns in Neotropical primates

    OpenAIRE

    Santana, Sharlene E.; Lynch Alfaro, Jessica; Alfaro, Michael E.

    2012-01-01

    The rich diversity of primate faces has interested naturalists for over a century. Researchers have long proposed that social behaviours have shaped the evolution of primate facial diversity. However, the primate face constitutes a unique structure where the diverse and potentially competing functions of communication, ecology and physiology intersect, and the major determinants of facial diversity remain poorly understood. Here, we provide the first evidence for an adaptive role of facial co...

  2. Australia's first fossil marsupial mole (Notoryctemorphia) resolves controversies about their evolution and palaeoenvironmental origins.

    Science.gov (United States)

    Archer, Michael; Beck, Robin; Gott, Miranda; Hand, Suzanne; Godthelp, Henk; Black, Karen

    2011-05-22

    Fossils of a marsupial mole (Marsupialia, Notoryctemorphia, Notoryctidae) are described from early Miocene deposits in the Riversleigh World Heritage Area, northwestern Queensland, Australia. These represent the first unequivocal fossil record of the order Notoryctemorphia, the two living species of which are among the world's most specialized and bizarre mammals, but which are also convergent on certain fossorial placental mammals (most notably chrysochlorid golden moles). The fossil remains are genuinely 'transitional', documenting an intermediate stage in the acquisition of a number of specializations and showing that one of these-the dental morphology known as zalambdodonty-was acquired via a different evolutionary pathway than in placentals. They, thus, document a clear case of evolutionary convergence (rather than parallelism) between only distantly related and geographically isolated mammalian lineages-marsupial moles on the island continent of Australia and placental moles on most other, at least intermittently connected continents. In contrast to earlier presumptions about a relationship between the highly specialized body form of the blind, earless, burrowing marsupial moles and desert habitats, it is now clear that archaic burrowing marsupial moles were adapted to and probably originated in wet forest palaeoenvironments, preadapting them to movement through drier soils in the xeric environments of Australia that developed during the Neogene.

  3. Sex speeds adaptation by altering the dynamics of molecular evolution.

    Science.gov (United States)

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  4. Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation.

    Science.gov (United States)

    Cheng, Jian; Guo, Xiaoxian; Cai, Pengli; Cheng, Xiaozhi; Piškur, Jure; Ma, Yanhe; Jiang, Huifeng; Gu, Zhenglong

    2017-11-01

    Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Trans gene regulation in adaptive evolution: a genetic algorithm model.

    Science.gov (United States)

    Behera, N; Nanjundiah, V

    1997-09-21

    This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate-"plastic"-loci, where a plastic locus had a finite probability in each generation of functioning (being switched "on") or not functioning (being switched "off"). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation. Copyright 1997 Academic Press Limited.

  6. Increased tolerance towards serine obtained by adaptive laboratory evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Koza, Anna

    2014-01-01

    The amino acid serine has previously been identified as one of the top 30 candidates of value added chemicals, making the production of serine from glucose attractive. Production of serine have previously been attempted in E. coli and C. glutamicum, however, titers sufficient for commercial...... by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution...

  7. Competition and adaptation in an Internet evolution model.

    Science.gov (United States)

    Serrano, M Angeles; Boguñá, Marián; Díaz-Guilera, Albert

    2005-01-28

    We model the evolution of the Internet at the autonomous system level as a process of competition for users and adaptation of bandwidth capability. From a weighted network formalism, where both nodes and links are weighted, we find the exponent of the degree distribution as a simple function of the growth rates of the number of autonomous systems and connections in the Internet, both empirically measurable quantities. Our approach also accounts for a high level of clustering as well as degree-degree correlations, both with the same hierarchical structure present in the real Internet. Further, it also highlights the interplay between bandwidth, connectivity, and traffic of the network.

  8. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size...... this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits....

  9. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G

    2007-01-01

    -nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome......, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome......Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single...

  10. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  11. Socio-cultural reflections on heat in Australia with implications for health and climate change adaptation

    Directory of Open Access Journals (Sweden)

    Cathy Banwell

    2012-10-01

    Full Text Available Background : Australia has a hot climate with maximum summer temperatures in its major cities frequently exceeding 35°C. Although ‘heat waves’ are an annual occurrence, the associated heat-related deaths among vulnerable groups, such as older people, suggest that Australians could be better prepared to deal with extreme heat. Objective : To understand ways in which a vulnerable sub-population adapt their personal behaviour to cope with heat within the context of Australians’ relationship with heat. Design : We draw upon scientific, historical and literary sources and on a set of repeat interviews in the suburbs of Western Sydney with eight older participants and two focus group discussions. We discuss ways in which this group of older people modifies their behaviour to adapt to heat, and reflect on manifestations of Australians’ ambivalence towards heat. Results : Participants reported a number of methods for coping with extreme heat, including a number of methods of personal cooling, changing patterns of daily activity and altering dietary habits. The use of air-conditioning was near universal, but with recognition that increasing energy costs may become more prohibitive over time. Conclusions : While a number of methods are employed by older people to stay cool, these may become limited in the future. Australians’ attitudes may contribute to the ill-health and mortality associated with excessive heat.

  12. Managing urban water crises: adaptive policy responses to drought and flood in Southeast Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Brian W. Head

    2014-06-01

    Full Text Available In this case study, I examine the quality of decision-making under conditions of rapidly evolving urban water crises, and the adaptive policy challenges of building regional resilience in response to both drought and flood. Like other regions of Australia, Southeast Queensland has been subject to substantial cycles of drought and flood. I draw on resilience literature concerning sustainability, together with governance literature on policy change, to explain the changing awareness of urban water crises and the strategic options available for addressing these crises in this case study. The problem of resilience thinking opens up a number of important questions about the efficacy and adaptability of the policy system. The case provides insights into the interplay between the ways in which problems are framed, the knowledge bases required for planning and decision-making, the collaborative governance processes required for managing complex and rapidly evolving issues, and the overall capacity for policy learning over time. Regional resilience was proclaimed as a policy goal by government, but the practices remained largely anchored in traditional technical frameworks. Centralized investment decisions and governance restructures provoked conflict between levels of government, undermining the capacity of stakeholders to create more consensual approaches to problem-solving and limiting the collective learning that could have emerged.

  13. Adaptive evolution of the vertebrate skeletal muscle sodium channel

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2011-01-01

    Full Text Available Tetrodotoxin (TTX is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na v. The skeletal muscle Na v (Na v1.4 channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na v1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na v1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na v1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

  14. Adaptive evolution of rbcL in Conocephalum (Hepaticae, bryophytes).

    Science.gov (United States)

    Miwa, Hidetsugu; Odrzykoski, Ireneusz J; Matsui, Atsushi; Hasegawa, Masami; Akiyama, Hiroyuki; Jia, Yu; Sabirov, Renat; Takahashi, Hideki; Boufford, David E; Murakami, Noriaki

    2009-07-15

    An excess of nonsynonymous substitutions over synonymous ones has been regarded as an important indicator of adaptive evolution or positive selection at the molecular level. We now report such a case for rbcL sequences among cryptic species in Conocephalum (Hepaticae, Bryophytes). This finding can be regarded as evidence of adaptive evolution in several cryptic species (especially in F and JN types) within the genus. Bryophytes are small land plants with simple morphology. We can therefore expect the existence of several biologically distinct units or cryptic species within each morphological species. In our previous study, we found three rbcL types in Asian Conocephalum japonicum (Thunb.) Grolle and also found evidence strongly suggesting that the three types are reproductively isolated cryptic species. Additionally, we examined rbcL sequence variation in six cryptic species of C. conicum (L.) Dumort. previously recognized by allozyme analyses. As a result, we were able to discriminate the six cryptic species based only on their rbcL sequences. We were able to show that rbcL sequence variation is also useful in finding cryptic species of C. conicum.

  15. Using SHRIMP Zircon Geochronology to Characterise the Evolution of the Proterozoic Mount Isa Inlier, Australia

    Science.gov (United States)

    Neumann, N. L.; Southgate, P. N.; Gibson, G. M.

    2008-12-01

    The Proterozoic Mount Isa Inlier of northern Australia records an extensive record of basin evolution between 1800 Ma and 1575 Ma, and contains a number of world-class Pb-Zn-Ag, U and Iron Oxide Cu-Au deposits. Understanding the timing and nature of basin development is a critical component in understanding these mineral systems. The integration of U-Pb zircon SHIRMP geochronology with structural and facies analysis has allowed basin packages across this area to be divided into three superbasins; the Leichhardt, Calvert and Isa Superbasins. Detrital zircon geochronology of stratigraphic units within these basins has been used in conjunction with syn-sedimentary volcanics to constrain depositional ages, and to identify and characterise changes in provenance through time. Sedimentation between 1790 Ma and 1740 Ma associated with the Leichhardt Superbasin is characterised by fluvial to shallow marine sandstones deposited in half-grabens. Between 1690 Ma and 1670 Ma, deep-water turbidites in the eastern-most parts of the inlier were deposited during an interval of missing rock record on the platform to the west, and are coincident with the initiation of a break-up unconformity. Sedimentation between 1790 Ma and 1670 Ma is also associated with voluminous felsic and mafic magmatism, and mafic rocks emplaced during this time period record a change in geochemical signature from continental flood basalts to oceanic tholeiites. We interpret these changes to be consistent with an evolution in tectonic setting from intercontinental rifting to near passive margin development.

  16. Darwinian adaptation, population genetics and the streetcar theory of evolution.

    Science.gov (United States)

    Hammerstein, P

    1996-01-01

    This paper investigates the problem of how to conceive a robust theory of phenotypic adaptation in non-trivial models of evolutionary biology. A particular effort is made to develop a foundation of this theory in the context of n-locus population genetics. Therefore, the evolution of phenotypic traits is considered that are coded for by more than one gene. The potential for epistatic gene interactions is not a priori excluded. Furthermore, emphasis is laid on the intricacies of frequency-dependent selection. It is first discussed how strongly the scope for phenotypic adaptation is restricted by the complex nature of 'reproduction mechanics' in sexually reproducing diploid populations. This discussion shows that one can easily lose the traces of Darwinism in n-locus models of population genetics. In order to retrieve these traces, the outline of a new theory is given that I call 'streetcar theory of evolution'. This theory is based on the same models that geneticists have used in order to demonstrate substantial problems with the 'adaptationist programme'. However, these models are now analyzed differently by including thoughts about the evolutionary removal of genetic constraints. This requires consideration of a sufficiently wide range of potential mutant alleles and careful examination of what to consider as a stable state of the evolutionary process. A particular notion of stability is introduced in order to describe population states that are phenotypically stable against the effects of all mutant alleles that are to be expected in the long-run. Surprisingly, a long-term stable state can be characterized at the phenotypic level as a fitness maximum, a Nash equilibrium or an ESS. The paper presents these mathematical results and discusses - at unusual length for a mathematical journal - their fundamental role in our current understanding of evolution.

  17. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes

    Science.gov (United States)

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens. PMID:28360923

  18. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes.

    Science.gov (United States)

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens .

  19. On the adaptivity and complexity embedded into differential evolution

    Science.gov (United States)

    Senkerik, Roman; Pluhacek, Michal; Zelinka, Ivan; Jasek, Roman

    2016-06-01

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  20. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  1. On the adaptivity and complexity embedded into differential evolution

    Energy Technology Data Exchange (ETDEWEB)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman [Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic, senkerik@fai.utb.cz,pluhacek@fai.utb.cz (Czech Republic); Zelinka, Ivan [Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,708 33 Ostrava-Poruba, Czech Republic, ivan.zelinka@vsb.cz (Czech Republic)

    2016-06-08

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  2. On the adaptivity and complexity embedded into differential evolution

    International Nuclear Information System (INIS)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman; Zelinka, Ivan

    2016-01-01

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performed on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.

  3. A problem-oriented approach to understanding adaptation: lessons learnt from Alpine Shire, Victoria Australia.

    Science.gov (United States)

    Roman, Carolina

    2010-05-01

    Climate change is gaining attention as a significant strategic issue for localities that rely on their business sectors for economic viability. For businesses in the tourism sector, considerable research effort has sought to characterise the vulnerability to the likely impacts of future climate change through scenarios or ‘end-point' approaches (Kelly & Adger, 2000). Whilst useful, there are few demonstrable case studies that complement such work with a ‘start-point' approach that seeks to explore contextual vulnerability (O'Brien et al., 2007). This broader approach is inclusive of climate change as a process operating within a biophysical system and allows recognition of the complex interactions that occur in the coupled human-environmental system. A problem-oriented and interdisciplinary approach was employed at Alpine Shire, in northeast Victoria Australia, to explore the concept of contextual vulnerability and adaptability to stressors that include, but are not limited to climatic change. Using a policy sciences approach, the objective was to identify factors that influence existing vulnerabilities and that might consequently act as barriers to effective adaptation for the Shire's business community involved in the tourism sector. Analyses of results suggest that many threats, including the effects climate change, compete for the resources, strategy and direction of local tourism management bodies. Further analysis of conditioning factors revealed that many complex and interacting factors define the vulnerability and adaptive capacity of the Shire's tourism sector to the challenges of global change, which collectively have more immediate implications for policy and planning than long-term future climate change scenarios. An approximation of the common interest, i.e. enhancing capacity in business acumen amongst tourism operators, would facilitate adaptability and sustainability through the enhancement of social capital in this business community. Kelly, P

  4. Adaptive evolution and inherent tolerance to extreme thermal environments.

    Science.gov (United States)

    Cox, Jennifer; Schubert, Alyxandria M; Travisano, Michael; Putonti, Catherine

    2010-03-12

    When introduced to novel environments, the ability for a species to survive and rapidly proliferate corresponds with its adaptive potential. Of the many factors that can yield an environment inhospitable to foreign species, phenotypic response to variation in the thermal climate has been observed within a wide variety of species. Experimental evolution studies using bacteriophage model systems have been able to elucidate mutations, which may correspond with the ability of phage to survive modest increases/decreases in the temperature of their environment. Phage PhiX174 was subjected to both elevated (50 degrees C) and extreme (70 degrees C+) temperatures for anywhere from a few hours to days. While no decline in the phage's fitness was detected when it was exposed to 50 degrees C for a few hours, more extreme temperatures significantly impaired the phage; isolates that survived these heat treatments included the acquisition of several mutations within structural genes. As was expected, long-term treatment of elevated and extreme temperatures, ranging from 50-75 degrees C, reduced the survival rate even more. Isolates which survived the initial treatment at 70 degrees C for 24 or 48 hours exhibited a significantly greater tolerance to subsequent heat treatments. Using the model organism PhiX174, we have been able to study adaptive evolution on the molecular level under extreme thermal changes in the environment, which to-date had yet to be thoroughly examined. Under both acute and extended thermal selection, we were able to observe mutations that occurred in response to excessive external pressures independent of concurrently evolving hosts. Even though its host cannot tolerate extreme temperatures such as the ones tested here, this study confirms that PhiX174 is capable of survival.

  5. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    OpenAIRE

    Vigeland, Magnus Dehli; Spannagl, Manuel; Asp, Torben; Paina, Cristiana; Rudi, Heidi; Rognli, Odd Arne; Fjellheim, Siri; Sandve, Simen Rød

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted spec...

  6. Adaptive evolution of facial colour patterns in Neotropical primates.

    Science.gov (United States)

    Santana, Sharlene E; Lynch Alfaro, Jessica; Alfaro, Michael E

    2012-06-07

    The rich diversity of primate faces has interested naturalists for over a century. Researchers have long proposed that social behaviours have shaped the evolution of primate facial diversity. However, the primate face constitutes a unique structure where the diverse and potentially competing functions of communication, ecology and physiology intersect, and the major determinants of facial diversity remain poorly understood. Here, we provide the first evidence for an adaptive role of facial colour patterns and pigmentation within Neotropical primates. Consistent with the hypothesis that facial patterns function in communication and species recognition, we find that species living in smaller groups and in sympatry with a higher number of congener species have evolved more complex patterns of facial colour. The evolution of facial pigmentation and hair length is linked to ecological factors, and ecogeographical rules related to UV radiation and thermoregulation are met by some facial regions. Our results demonstrate the interaction of behavioural and ecological factors in shaping one of the most outstanding facial diversities of any mammalian lineage.

  7. Adaptive Evolution of CENP-A in Percid Fishes

    Directory of Open Access Journals (Sweden)

    Harriet N. A. Abbey

    2015-07-01

    Full Text Available Centromeric protein A (CENP-A is the epigenetic determinant of centromeres. This protein has been shown to be adaptively evolving in a number of animal and plant species. In a previous communication we were able to demonstrate that signs of adaptive evolution were detected in the comparison of CENP-A sequences from three percid fish species. In this study we isolated the CENP-A gene from eight additional species from the Percidae family. With these sequences and those previously obtained, we carried out a more robust statistical analysis of codon specific positive selection in CENP-A coding sequences of eleven percid species. We were able to demonstrate that at least two amino acid positions within the N-terminal tail are under strong positive selection and that one of these positions is potentially a substrate for phosphorylation. While nonsynonymous substitutions were detected in the histone fold domain, these were not statistically supported as resulting from positive selection.

  8. Adaptive evolution of the matrix extracellular phosphoglycoprotein in mammals

    Directory of Open Access Journals (Sweden)

    Machado João

    2011-11-01

    Full Text Available Abstract Background Matrix extracellular phosphoglycoprotein (MEPE belongs to a family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs that play a key role in skeleton development, particularly in mineralization, phosphate regulation and osteogenesis. MEPE associated disorders cause various physiological effects, such as loss of bone mass, tumors and disruption of renal function (hypophosphatemia. The study of this developmental gene from an evolutionary perspective could provide valuable insights on the adaptive diversification of morphological phenotypes in vertebrates. Results Here we studied the adaptive evolution of the MEPE gene in 26 Eutherian mammals and three birds. The comparative genomic analyses revealed a high degree of evolutionary conservation of some coding and non-coding regions of the MEPE gene across mammals indicating a possible regulatory or functional role likely related with mineralization and/or phosphate regulation. However, the majority of the coding region had a fast evolutionary rate, particularly within the largest exon (1467 bp. Rodentia and Scandentia had distinct substitution rates with an increased accumulation of both synonymous and non-synonymous mutations compared with other mammalian lineages. Characteristics of the gene (e.g. biochemical, evolutionary rate, and intronic conservation differed greatly among lineages of the eight mammalian orders. We identified 20 sites with significant positive selection signatures (codon and protein level outside the main regulatory motifs (dentonin and ASARM suggestive of an adaptive role. Conversely, we find three sites under selection in the signal peptide and one in the ASARM motif that were supported by at least one selection model. The MEPE protein tends to accumulate amino acids promoting disorder and potential phosphorylation targets. Conclusion MEPE shows a high number of selection signatures, revealing the crucial role of positive selection in the

  9. THE EVOLUTION OF THE DESIGN AND CONSTRUCTION OF MASONRY BUILDINGS IN AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Adrian Page

    2012-12-01

    Full Text Available Masonry is a construction material which is widely used in Australia in a number of forms (fired clay, concrete, calcium silicate, natural stone, autoclaved aerated concrete and in a wide range of both loadbearing and non-loadbearing applications. As such, it serves as the primary structural element in structures such as 3-4 story “walk up” apartment buildings or low rise commercial structures, or as a veneer or infill in housing or high rise framed construction. Despite its current widespread use, for masonry to remain a viable construction material in the future, design and construction practices need to be flexible, able to adapt to change and be receptive to innovation. This applies not only to advances in materials technology and the development of new products and building systems, but also an effective response to changes in the regulatory framework which have an increasing emphasis on thermal and acoustic performance, seismic resistance and sustainable practices. In this context, an overview of the Australian past, present and possible future masonry scene is given.

  10. How adaptive learning affects evolution: reviewing theory on the Baldwin effect

    NARCIS (Netherlands)

    Sznajder, B.; Sabelis, M.W.; Egas, M.

    2012-01-01

    We review models of the Baldwin effect, i.e., the hypothesis that adaptive learning (i.e., learning to improve fitness) accelerates genetic evolution of the phenotype. Numerous theoretical studies scrutinized the hypothesis that a non-evolving ability of adaptive learning accelerates evolution of

  11. Clusters of adaptive evolution in the human genome.

    Science.gov (United States)

    Scheinfeldt, Laura B; Biswas, Shameek; Madeoy, Jennifer; Connelly, Caitlin F; Akey, Joshua M

    2011-01-01

    Considerable work has been devoted to identifying regions of the human genome that have been subjected to recent positive selection. Although detailed follow-up studies of putatively selected regions are critical for a deeper understanding of human evolutionary history, such studies have received comparably less attention. Recently, we have shown that ALMS1 has been the target of recent positive selection acting on standing variation in Eurasian populations. Here, we describe a careful follow-up analysis of genetic variation across the ALMS1 region, which unexpectedly revealed a cluster of substrates of positive selection. Specifically, through the analysis of SNP data from the HapMap and Human Genome Diversity Project-Centre d'Etude du Polymorphisme Humain samples as well sequence data from the region, we find compelling evidence for three independent and distinct signals of recent positive selection across this 3 Mb region surrounding ALMS1. Moreover, we analyzed the HapMap data to identify other putative clusters of independent selective events and conservatively discovered 19 additional clusters of adaptive evolution. This work has important implications for the interpretation of genome-scans for positive selection in humans and more broadly contributes to a better understanding of how recent positive selection has shaped genetic variation across the human genome.

  12. Virulence and Evolution of West Nile Virus, Australia, 1960-2012.

    Science.gov (United States)

    Prow, Natalie A; Edmonds, Judith H; Williams, David T; Setoh, Yin X; Bielefeldt-Ohmann, Helle; Suen, Willy W; Hobson-Peters, Jody; van den Hurk, Andrew F; Pyke, Alyssa T; Hall-Mendelin, Sonja; Northill, Judith A; Johansen, Cheryl A; Warrilow, David; Wang, Jianning; Kirkland, Peter D; Doggett, Stephen; Andrade, Christy C; Brault, Aaron C; Khromykh, Alexander A; Hall, Roy A

    2016-08-01

    Worldwide, West Nile virus (WNV) causes encephalitis in humans, horses, and birds. The Kunjin strain of WNV (WNVKUN) is endemic to northern Australia, but infections are usually asymptomatic. In 2011, an unprecedented outbreak of equine encephalitis occurred in southeastern Australia; most of the ≈900 reported cases were attributed to a newly emerged WNVKUN strain. To investigate the origins of this virus, we performed genetic analysis and in vitro and in vivo studies of 13 WNVKUN isolates collected from different regions of Australia during 1960-2012. Although no disease was recorded for 1984, 2000, or 2012, isolates collected during those years (from Victoria, Queensland, and New South Wales, respectively) exhibited levels of virulence in mice similar to that of the 2011 outbreak strain. Thus, virulent strains of WNVKUN have circulated in Australia for >30 years, and the first extensive outbreak of equine disease in Australia probably resulted from a combination of specific ecologic and epidemiologic conditions.

  13. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model

    Science.gov (United States)

    Deo, Ravinesh C.; Kisi, Ozgur; Singh, Vijay P.

    2017-02-01

    Drought forecasting using standardized metrics of rainfall is a core task in hydrology and water resources management. Standardized Precipitation Index (SPI) is a rainfall-based metric that caters for different time-scales at which the drought occurs, and due to its standardization, is well-suited for forecasting drought at different periods in climatically diverse regions. This study advances drought modelling using multivariate adaptive regression splines (MARS), least square support vector machine (LSSVM), and M5Tree models by forecasting SPI in eastern Australia. MARS model incorporated rainfall as mandatory predictor with month (periodicity), Southern Oscillation Index, Pacific Decadal Oscillation Index and Indian Ocean Dipole, ENSO Modoki and Nino 3.0, 3.4 and 4.0 data added gradually. The performance was evaluated with root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (r2). Best MARS model required different input combinations, where rainfall, sea surface temperature and periodicity were used for all stations, but ENSO Modoki and Pacific Decadal Oscillation indices were not required for Bathurst, Collarenebri and Yamba, and the Southern Oscillation Index was not required for Collarenebri. Inclusion of periodicity increased the r2 value by 0.5-8.1% and reduced RMSE by 3.0-178.5%. Comparisons showed that MARS superseded the performance of the other counterparts for three out of five stations with lower MAE by 15.0-73.9% and 7.3-42.2%, respectively. For the other stations, M5Tree was better than MARS/LSSVM with lower MAE by 13.8-13.4% and 25.7-52.2%, respectively, and for Bathurst, LSSVM yielded more accurate result. For droughts identified by SPI ≤ - 0.5, accurate forecasts were attained by MARS/M5Tree for Bathurst, Yamba and Peak Hill, whereas for Collarenebri and Barraba, M5Tree was better than LSSVM/MARS. Seasonal analysis revealed disparate results where MARS/M5Tree was better than LSSVM. The results highlight the

  14. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular ev...... evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops......Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular...

  15. Adaptation strategies for health impacts of climate change in Western Australia: Application of a Health Impact Assessment framework

    International Nuclear Information System (INIS)

    Spickett, Jeffery T.; Brown, Helen L.; Katscherian, Dianne

    2011-01-01

    Climate change is one of the greatest challenges facing the globe and there is substantial evidence that this will result in a number of health impacts, regardless of the level of greenhouse gas mitigation. It is therefore apparent that a combined approach of mitigation and adaptation will be required to protect public health. While the importance of mitigation is recognised, this project focused on the role of adaptation strategies in addressing the potential health impacts of climate change. The nature and magnitude of these health impacts will be determined by a number of parameters that are dependent upon the location. Firstly, climate change will vary between regions. Secondly, the characteristics of each region in terms of population and the ability to adapt to changes will greatly influence the extent of the health impacts that are experienced now and into the future. Effective adaptation measures therefore need to be developed with these differences in mind. A Health Impact Assessment (HIA) framework was used to consider the implications of climate change on the health of the population of Western Australia (WA) and to develop a range of adaptive responses suited to WA. A broad range of stakeholders participated in the HIA process, providing informed input into developing an understanding of the potential health impacts and potential adaptation strategies from a diverse sector perspective. Potential health impacts were identified in relation to climate change predictions in WA in the year 2030. The risk associated with each of these impacts was assessed using a qualitative process that considered the consequences and the likelihood of the health impact occurring. Adaptations were then developed which could be used to mitigate the identified health impacts and provide responses which could be used by Government for future decision making. The periodic application of a HIA framework is seen as an ideal tool to develop appropriate adaptation strategies to

  16. The evolution of sustainable remediation in Australia and New Zealand: A storyline.

    Science.gov (United States)

    Smith, Garry; Nadebaum, Peter

    2016-12-15

    This article describes the 'storyline' of the early and recent growth of sustainable remediation (SR) practice in Australia and New Zealand (ANZ), in order to inform and support other SR stakeholders, and to identify some lessons learned. Achievement of full acceptance and consistency across relevant ANZ regulatory jurisdictions and industry sectors will take time and will require publication of successful examples of SR application. The article describes the respective policy and regulatory contexts for sustainable remediation practice in Australia and in New Zealand; several milestone activities and events in the growth of SR in ANZ; and example SR methodologies and policies produced by stakeholders and remediation practitioners including the Sustainable Remediation Forum of Australia and New Zealand (SuRF ANZ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation.

    Science.gov (United States)

    Shan, Lei; Wu, Qi; Wang, Le; Zhang, Lei; Wei, Fuwen

    2018-03-01

    Taste 2 receptors (TAS2R) mediate bitterness perception in mammals, thus are called bitter taste receptors. It is believed that these genes evolved in response to species-specific diets. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens styani) in the order Carnivora are specialized herbivores with an almost exclusive bamboo diet (>90% bamboo). Because bamboo is full of bitter tasting compounds, we hypothesized that adaptive evolution has occurred at TAS2R genes in giant and red pandas throughout the course of their dietary shift. Here, we characterized 195 TAS2R genes in 9 Carnivora species and examined selective pressures on these genes. We found that both pandas harbor more putative functional TAS2R genes than other carnivores, and pseudogenized TAS2R genes in the giant panda are different from the red panda. The purifying selection on TAS2R1, TAS2R9 and TAS2R38 in the giant panda, and TAS2R62 in the red panda, has been strengthened throughout the course of adaptation to bamboo diet, while selective constraint on TAS2R4 and TAS2R38 in the red panda is relaxed. Remarkably, a few positively selected sites on TAS2R42 have been specifically detected in the giant panda. These results suggest an adaptive response in both pandas to a dietary shift from carnivory to herbivory, and TAS2R genes evolved independently in the 2 pandas. Our findings provide new insight into the molecular basis of mammalian sensory evolution and the process of adaptation to new ecological niches. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  18. The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence.

    NARCIS (Netherlands)

    Mekel-Bobrov, N.; Posthuma, D.; Gilbert, S.L.; Lind, P.; Gosso, M.F.; Luciano, M.; Harris, S.E.; Bates, T.C.; Polderman, T.J.C.; Whalley, L.J.; Fox, H.; Starr, J.M.; Evans, P.D.; Montgomery, GW; Fernandes, C.; Heutink, P.; Martin, N.G.; Boomsma, D.I.; Deary, I.J.; Wright, M.J.; de Geus, E.J.C.; Lahn, B.T.

    2007-01-01

    Recent studies have made great strides towards identifying putative genetic events underlying the evolution of the human brain and its emergent cognitive capacities. One of the most intriguing findings is the recurrent identification of adaptive evolution in genes associated with primary

  19. Benefits of a Recombination-Proficient Escherichia coli System for Adaptive Laboratory Evolution

    OpenAIRE

    Peabody, George; Winkler, James; Fountain, Weston; Castro, David A.; Leiva-Aravena, Enzo; Kao, Katy C.

    2016-01-01

    Adaptive laboratory evolution typically involves the propagation of organisms asexually to select for mutants with the desired phenotypes. However, asexual evolution is prone to competition among beneficial mutations (clonal interference) and the accumulation of hitchhiking and neutral mutations. The benefits of horizontal gene transfer toward overcoming these known disadvantages of asexual evolution were characterized in a strain of Escherichia coli engineered for superior sexual recombinati...

  20. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis.

    Directory of Open Access Journals (Sweden)

    Nicolas Galtier

    2016-01-01

    Full Text Available The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila experiencing a very high adaptive rate, while other (e.g. humans are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla-with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed.

  1. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia.

    Directory of Open Access Journals (Sweden)

    Haripriya Rangan

    Full Text Available This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.

  2. Adaptive evolution of sexual systems in pedunculate barnacles

    DEFF Research Database (Denmark)

    Yusa, Yoichi; Yoshikawa, Mai; Kitaura, Jun

    2012-01-01

    to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males...... and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin....

  3. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential

    DEFF Research Database (Denmark)

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    . An individual-based eco-genetic model is devised that includes neutral and functional loci in a realistic ecological setting. In line with theoretical expectations, we find that fishing induces evolution towards slow growth, early maturation at small size and higher reproductive investment. We show, first......Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing......, that the choice of genetic model (based on either quantitative genetics or gametic inheritance) influences the evolutionary recovery of traits after fishing ceases. Second, we analyse the influence of three factors possibly involved in the lack of evolutionary recovery: the strength of selection, the effect...

  4. Aspects of the structural and late thermal evolution of the Redbank Thrust system, central Australia: constraints from the Speares Metamorphics

    International Nuclear Information System (INIS)

    Biermeier, C.; Wiesinger, M.; Stuewe, K.; Foster, D.A.

    2003-01-01

    We present new data on the field geology and late thermal evolution of the Redbank Thrust system in the Arunta Block of central Australia. Geochronological and field data from the Speares Meta-morphics are also used to relate the thermal evolution of the Redbank Thrust system to the structural evolution of the region. We show that several stages in the evolution might be discerned. An originally sedimentary sequence was intruded by mafic intrusions and then deformed during partial melting to form the principal foliation observed in the region (D1). This sequence was then folded during D2 into upright folds with north- to northeast-plunging fold axes. These events are likely to correlate with the Strangways and/or Argilke and Chewings Orogenies known from previous studies. Subsequently, the Redbank Thrust was initiated during D3. This event is recognised by deflection of the host rocks into the shear zone and might therefore have been associated with a component of strike-slip motion. It occurred probably at or before 1500-1400 Ma. Subsequent north-over-south thrust motion in the Redbank Thrust formed the intense mylonitic fabric and folded the mylonitic fabric during D4 into asymmetric folds with shallow fold axes. New 40 Ar/ 39 Ar K-feldspar ages from three samples collected from variably deformed branches of the Redbank Thrust and undeformed rocks in the Speares Metamorphics suggest that most parts of the Redbank Thrust system cooled relatively slowly after metamorphism and deformation in the Mesoproterozoic so that the D4 thrusting might have been very long-lived. Minimum ages of the K-feldspar age spectra show that the entire region cooled below 200 deg C by approximately 300 Ma. Apatite fission track ages from nine samples show that cooling through the apatite partial annealing zone occurred during Cretaceous time (ca 150-70 Ma) and modelled cooling histories are consistent with the cooling rates obtained from the K-feldspar data. They indicate that final

  5. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  6. Genome wide analyses reveal little evidence for adaptive evolution in many plant species.

    Science.gov (United States)

    Gossmann, Toni I; Song, Bao-Hua; Windsor, Aaron J; Mitchell-Olds, Thomas; Dixon, Christopher J; Kapralov, Maxim V; Filatov, Dmitry A; Eyre-Walker, Adam

    2010-08-01

    The relative contribution of advantageous and neutral mutations to the evolutionary process is a central problem in evolutionary biology. Current estimates suggest that whereas Drosophila, mice, and bacteria have undergone extensive adaptive evolution, hominids show little or no evidence of adaptive evolution in protein-coding sequences. This may be a consequence of differences in effective population size. To study the matter further, we have investigated whether plants show evidence of adaptive evolution using an extension of the McDonald-Kreitman test that explicitly models slightly deleterious mutations by estimating the distribution of fitness effects of new mutations. We apply this method to data from nine pairs of species. Altogether more than 2,400 loci with an average length of approximately 280 nucleotides were analyzed. We observe very similar results in all species; we find little evidence of adaptive amino acid substitution in any comparison except sunflowers. This may be because many plant species have modest effective population sizes.

  7. Time in Redox Adaptation Processes: From Evolution to Hormesis

    Directory of Open Access Journals (Sweden)

    Mireille M. J. P. E. Sthijns

    2016-09-01

    Full Text Available Life on Earth has to adapt to the ever changing environment. For example, due to introduction of oxygen in the atmosphere, an antioxidant network evolved to cope with the exposure to oxygen. The adaptive mechanisms of the antioxidant network, specifically the glutathione (GSH system, are reviewed with a special focus on the time. The quickest adaptive response to oxidative stress is direct enzyme modification, increasing the GSH levels or activating the GSH-dependent protective enzymes. After several hours, a hormetic response is seen at the transcriptional level by up-regulating Nrf2-mediated expression of enzymes involved in GSH synthesis. In the long run, adaptations occur at the epigenetic and genomic level; for example, the ability to synthesize GSH by phototrophic bacteria. Apparently, in an adaptive hormetic response not only the dose or the compound, but also time, should be considered. This is essential for targeted interventions aimed to prevent diseases by successfully coping with changes in the environment e.g., oxidative stress.

  8. Evolution and adaptation of Pseudomonas aeruginosa in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Madsen Sommer, Lea Mette

    of natural environments, the primary obstacle is re-sampling of the samepopulation over time, especially if the population is small.Nevertheless, it has been accomplished: Chronic airway infections of cystic fibrosis (CF) patients have offered a unique view into the adaptationand evolution of Pseudomonas...

  9. Water scarcity and institutional change: lessons in adaptive governance from the drought experience of Perth, Western Australia.

    Science.gov (United States)

    Bettini, Y; Brown, R; de Haan, F J

    2013-01-01

    Urban water systems will be increasingly challenged under future climates and global pressures. Meeting challenges by reconfiguring water systems to integrate supplies and deliver multifunctional uses is technically well described. Adjusting the institutions that frame the management of these systems is not well operationalized in practice or conceptualized in theory. This study seeks to address this gap through an institutional analysis of Perth, Australia, a city where drought crisis has put under pressure both management practices and the institutional setting that underlies them. The study found that while trusted practices moderated water scarcity, the stability of the institutional setting may not facilitate a shift toward adaptable institutional configurations suited to future conditions. The results identified three key ingredients for a flexible institutional setting: (i) feedbacks in the system through better information management, (ii) reflexive dialogue and strategic use of projects to generate greater learning opportunities, and (iii) policy level support for sector-wide collaboration through progressive agendas, incentives for innovation and capacity building in stakeholder and community engagement. Further, the results suggest that a deeper understanding of institutional dynamics is needed to enable adaptive governance. The paper provides an analytical framework for diagnosing how greater adaptive capacity might be mobilized through influencing these dynamics.

  10. Space-time adaptive wavelet methods for parabolic evolution problems

    NARCIS (Netherlands)

    Schwab, C.; Stevenson, R.

    2009-01-01

    With respect to space-time tensor-product wavelet bases, parabolic initial boundary value problems are equivalently formulated as bi-infinite matrix problems. Adaptive wavelet methods are shown to yield sequences of approximate solutions which converge at the optimal rate. In case the spatial domain

  11. The bill of evolution : trophic adaptations in anseriform birds

    NARCIS (Netherlands)

    Kurk, Carolina Deborah

    2008-01-01

    Adaptive radiation involves the rapid divergence of a single ancestral species into a group of species each occupying a different ecological niche. Differences between species are the result of trade-offs in the ability to exploit different environments to avoid competitive interactions. The many

  12. A Model for Designing Adaptive Laboratory Evolution Experiments

    DEFF Research Database (Denmark)

    LaCroix, Ryan A.; Palsson, Bernhard O.; Feist, Adam M.

    2017-01-01

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite...

  13. A historical account of the governance of midwifery education in Australia and the evolution of the Continuity of Care Experience.

    Science.gov (United States)

    Tierney, Olivia; Sweet, Linda; Houston, Don; Ebert, Lyn

    2017-10-11

    Midwifery programs leading to registration as a midwife in Australia have undergone significant change over the last 20 years. During this time accreditation and governance around midwifery education has been reviewed and refined, moving from state to national jurisdiction. A major change has been the mandated inclusion of Continuity of Care Experiences as a clinical practice-based learning component. The purpose of this discussion is to present the history of the governance and accreditation of Australian midwifery programs. With a particular focus on the evolution of the Continuity of Care Experience as a now mandated clinical practice based experience. Historical and contemporary documents, research and grey literature, are drawn together to provide a historical account of midwifery programs in Australia. This will form the background to the inclusion of the Continuity of Care Experience and discuss research requirements to enhance the model to ensure it is educationally sound. The structure and processes for the Continuity of Care Experience vary between universities and there is currently no standard format across Australia. As such, how it is interpreted and conducted varies amongst students, childbearing women, academics and midwives. The Continuity of Care Experience has always been strongly advocated for; however there is scant evidence available in terms of its educational theory underpinnings. Research concerned with the intended learning objectives and outcomes for the Continuity of Care Experience will support the learning model and ensure it continues into the future as an educationally sound learning experience for midwifery students. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  14. From lifetime to evolution: timescales of human gut microbiota adaptation

    Directory of Open Access Journals (Sweden)

    Sara eQuercia

    2014-11-01

    Full Text Available Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The gut microbiota continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies.

  15. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature?

    DEFF Research Database (Denmark)

    Bailey, Susan; Bataillon, Thomas

    2015-01-01

    There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses...... and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights...... regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have...

  16. Revolution then evolution: the advance of health economic evaluation in Australia.

    Science.gov (United States)

    Lopert, Ruth; Viney, Rosalie

    2014-01-01

    All governments face immense challenges in providing affordable healthcare for their citizens, and the diffusion of novel health technologies is a key driver of growth in expenditure for many. Although important methodological and process variations exist around the world, health economic evaluation is increasingly seen as an important tool to support decision-making around the introduction of new health technologies, interventions and programmes in countries of varying stages of economic development. In Australia, the assessment of the comparative cost-effectiveness of new medicines proposed for subsidy under the country's national drug subsidy programme, the Pharmaceutical Benefits Scheme, was introduced in the late 1980s and became mandatory in 1993, making Australia the first country to introduce such a requirement nationally. Since then the use of health economic evaluation has expanded and been applied to support decision-making across a broader range of health technologies, as well as to programmes in public health. Copyright © 2014. Published by Elsevier GmbH.

  17. Charles Darwin in Australia; or How To Introduce Some Local Colour to the Teaching of Evolution, Geology, Meteorology, and the Determination of Longitude.

    Science.gov (United States)

    Nicholas, Frank W.

    The background to Charles Darwin's little-known visit to Australia, and the account of his experiences while here, provide some invaluable historical material for teaching evolution, geology, meteorology, and the determination of longitude. Indeed, by using his Australian experiences as a foundation, it is possible to explain the theory of…

  18. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    Science.gov (United States)

    Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  19. The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community.

    Science.gov (United States)

    Bassar, Ronald D; Simon, Troy; Roberts, William; Travis, Joseph; Reznick, David N

    2017-02-01

    Species coexistence may result by chance when co-occurring species do not strongly interact or it may be an evolutionary outcome of strongly interacting species adapting to each other. Although patterns like character displacement indicate that coexistence has often been an evolutionary outcome, it is unclear how often the evolution of coexistence represents adaptation in only one species or reciprocal adaptation among all interacting species. Here, we demonstrate a strong role for evolution in the coexistence of guppies and killifish in Trinidadian streams. We experimentally recreated the temporal stages in the invasion and establishment of guppies into communities that previously contained only killifish. We combined demographic responses of guppies and killifish with a size-based integral projection model to calculate the fitness of the phenotypes of each species in each of the stages of community assembly. We show that guppies from locally adapted populations that are sympatric with killifish have higher fitness when paired with killifish than guppies from allopatric populations. This elevated fitness involves effects traceable to both guppy and killifish evolution. We discuss the implications of our results to the study of species coexistence and how it may be mediated through eco-evolutionary feedbacks. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  20. Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats).

    Science.gov (United States)

    Yunpeng, Liang; Li, Yu

    2015-01-01

    As the second biggest animal group in mammals, Chiroptera (bats) demonstrates many unique adaptive features in terms of flight, echolocation, auditory acuity, feeding habit, hibernation and immune defense, providing an excellent system for understanding the molecular basis of how organisms adapt to the living environments encountered. In this review, we summarize the researches on the molecular mechanism of the adaptive evolution of Chiroptera, especially the recent researches at the genome levels, suggesting a far more complex evolutionary pattern and functional diversity than previously thought. In the future, along with the increasing numbers of Chiroptera species genomes available, new evolutionary patterns and functional divergence will be revealed, which can promote the further understanding of this animal group and the molecular mechanism of adaptive evolution.

  1. Brain evolution and development: adaptation, allometry and constraint.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. © 2016 The Author(s).

  2. Genetic constraints on adaptive evolution in principle and in practice

    Science.gov (United States)

    Weinreich, Daniel

    2014-03-01

    Geneticists have long recognized that pairs of mutations often produce surprising effects on the organism, given their effects in isolation. Such mutational interactions are called epistasis. Importantly, epistasis among mutations influencing an organism's survival or reproductive success can constrain the temporal order in which mutations will be favored by natural selection. After exploring these theoretical considerations more fully, we will demonstrate substantial epistatic constraint on the evolution of an enzyme that confers bacterial antibiotic resistance. Such epistatically induced constraints turn out to be rather common in enzyme evolution, and we will briefly discuss recent work that seeks to explicate its mechanistic basis using methods of molecular and structural biology. Finally we observe that the epistatic interaction between two mutations itself often varies with genetic context, implying the existence of higher-order interactions. We present a computational framework for assessing magnitude of epistatic interactions of all orders, and show that non-negligible epistatic interactions of all orders are common in a diverse set of biological systems. Work supported by NIGMS Award R01GM095728 and NSF Emerging Frontiers Award 1038657

  3. Brain evolution and development: adaptation, allometry and constraint

    Science.gov (United States)

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  4. Helicobacter pylori Evolution: Lineage- Specific Adaptations in Homologs of Eukaryotic Sel1-Like Genes

    OpenAIRE

    Ogura, Masako; Perez, J. Christian; Mittl, Peer R. E; Lee, Hae-Kyung; Dailide, Geidrius; Tan, Shumin; Ito, Yoshiyuki; Secka, Ousman; Dailidiene, Daiva; Putty, Kalyani; Berg, Douglas E; Kalia, Awdhesh

    2007-01-01

    Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs t...

  5. Adaptive specializations, social exchange, and the evolution of human intelligence

    Science.gov (United States)

    Cosmides, Leda; Barrett, H. Clark; Tooby, John

    2010-01-01

    Blank-slate theories of human intelligence propose that reasoning is carried out by general-purpose operations applied uniformly across contents. An evolutionary approach implies a radically different model of human intelligence. The task demands of different adaptive problems select for functionally specialized problem-solving strategies, unleashing massive increases in problem-solving power for ancestrally recurrent adaptive problems. Because exchange can evolve only if cooperators can detect cheaters, we hypothesized that the human mind would be equipped with a neurocognitive system specialized for reasoning about social exchange. Whereas humans perform poorly when asked to detect violations of most conditional rules, we predicted and found a dramatic spike in performance when the rule specifies an exchange and violations correspond to cheating. According to critics, people's uncanny accuracy at detecting violations of social exchange rules does not reflect a cheater detection mechanism, but extends instead to all rules regulating when actions are permitted (deontic conditionals). Here we report experimental tests that falsify these theories by demonstrating that deontic rules as a class do not elicit the search for violations. We show that the cheater detection system functions with pinpoint accuracy, searching for violations of social exchange rules only when these are likely to reveal the presence of someone who intends to cheat. It does not search for violations of social exchange rules when these are accidental, when they do not benefit the violator, or when the situation would make cheating difficult. PMID:20445099

  6. Monitoring drug markets in the Internet age and the evolution of drug monitoring systems in Australia.

    Science.gov (United States)

    Burns, Lucy; Roxburgh, Amanda; Bruno, Raimondo; Van Buskirk, Joe

    2014-01-01

    In Australia, drug monitoring systems have been in place for more than a decade allowing for the measurement of ongoing trends in drug use and the detection of new drugs. The Drug Trends Unit at the National Drug and Alcohol Research Centre monitors drugs through four separate systems. The Illicit Drug Reporting System (IDRS) measures the price, purity, and availability of drugs that are primarily injected. The Ecstasy and Related Drugs Reporting System (EDRS) monitors psychostimulants that are used recreationally. The National Illicit Drugs Indicator Project (NIDIP) analyzes indicator data including drug-related hospitalizations and deaths. Finally, the Drugs and Emerging Technologies Project (DNeT) analyzes the role of the Internet in the procurement and use of novel psychoactive substances. This paper provides an overview of each component of the system, demonstrating how the system has evolved over time. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans

    Directory of Open Access Journals (Sweden)

    Shen Tong

    2012-03-01

    Full Text Available Abstract Background Cetaceans (whales, dolphins and porpoises are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs, which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. Results We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω values along most (30 out of 33 examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS, and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans habitat, and the other to the rapid diversification and radiation of oceanic dolphins. Conclusions This

  8. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    Science.gov (United States)

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.

  9. Evolution of the societal value of water resources for economic development versus environmental sustainability in Australia from 1843 to 2011

    Science.gov (United States)

    Wei, Y.; Wei, J., , Dr; Western, A. W.

    2017-12-01

    The scale of human activity in the last 200 years has reached a point where our actions are affecting the global biophysical environment to such a degree and at such a speed that irreversible effects are being observed. Societal values are generally seen as leading to changes in human decisions and actions, but have not been addressed adequately in current water management, which is blind to changes in the social drivers for, or societal responses to, management decisions. This paper describes the evolution of societal value of water resources in Australia over a period of 169 years. These values were classified into two groups: supporting economic development versus supporting environmental sustainability. The Sydney Morning Herald newspaper was used as the main data source to track the changes in the societal value of water resources. Content analysis was used to create a description of the evolution of these societal values. Mathematical regression analysis, in combination of transition theory, was used to determine the stages of transition of the societal value, and the co-evolved social-ecological framework was used to explain how the evolution of societal values interacted with water management policies/practices and droughts. Key findings included that the transition of the societal value of water resources fitted the sigmoid curve - a conceptual S curve for the transition of social systems. Also, the transition of societal value of water resources in Australia went through three stages: (1) pre-development (1900s-1960s), when the societal value of water resources was dominated by economic development; (2) take-off (1962-1980), when the societal value of water resources reflected the increasing awareness of the environment due to the outbreak of pollution events; (3) acceleration (1981-2011), when the environment-oriented societal value of water resources combined with the Millennium Drought to trigger a package of policy initiatives and management practices

  10. Temperature Adaptation Markedly Determines Evolution within the Genus Saccharomyces▿

    Science.gov (United States)

    Salvadó, Z.; Arroyo-López, F. N.; Guillamón, J. M.; Salazar, G.; Querol, A.; Barrio, E.

    2011-01-01

    The present study uses a mathematical-empirical approach to estimate the cardinal growth temperature parameters (Tmin, the temperature below which growth is no longer observed; Topt, the temperature at which the μmax equals its optimal value; μopt, the optimal value of μmax; and Tmax, the temperature above which no growth occurs) of 27 yeast strains belonging to different Saccharomyces and non-Saccharomyces species. S. cerevisiae was the yeast best adapted to grow at high temperatures within the Saccharomyces genus, with the highest optimum (32.3°C) and maximum (45.4°C) growth temperatures. On the other hand, S. kudriavzevii and S. bayanus var. uvarum showed the lowest optimum (23.6 and 26.2°C) and maximum (36.8 and 38.4°C) growth temperatures, respectively, confirming that both species are more psychrophilic than S. cerevisiae. The remaining Saccharomyces species (S. paradoxus, S. mikatae, S. arboricolus, and S. cariocanus) showed intermediate responses. With respect to the minimum temperature which supported growth, this parameter ranged from 1.3 (S. cariocanus) to 4.3°C (S. kudriavzevii). We also tested whether these physiological traits were correlated with the phylogeny, which was accomplished by means of a statistical orthogram method. The analysis suggested that the most important shift in the adaptation to grow at higher temperatures occurred in the Saccharomyces genus after the divergence of the S. arboricolus, S. mikatae, S. cariocanus, S. paradoxus, and S. cerevisiae lineages from the S. kudriavzevii and S. bayanus var. uvarum lineages. Finally, our mathematical models suggest that temperature may also play an important role in the imposition of S. cerevisiae versus non-Saccharomyces species during wine fermentation. PMID:21317255

  11. Adaptive management for mitigating Cryptosporidium risk in source water: a case study in an agricultural catchment in South Australia.

    Science.gov (United States)

    Bryan, Brett A; Kandulu, John; Deere, Daniel A; White, Monique; Frizenschaf, Jacqueline; Crossman, Neville D

    2009-07-01

    Water-borne pathogens such as Cryptosporidium pose a significant human health risk and catchments provide the first critical pollution 'barrier' in mitigating risk in drinking water supply. In this paper we apply an adaptive management framework to mitigating Cryptosporidium risk in source water using a case study of the Myponga catchment in South Australia. Firstly, we evaluated the effectiveness of past water quality management programs in relation to the adoption of practices by landholders using a socio-economic survey of land use and management in the catchment. The impact of past management on the mitigation of Cryptosporidium risk in source water was also evaluated based on analysis of water quality monitoring data. Quantitative risk assessment was used in planning the next round of management in the adaptive cycle. Specifically, a pathogen budget model was used to identify the major remaining sources of Cryptosporidium in the catchment and estimate the mitigation impact of 30 alternative catchment management scenarios. Survey results show that earlier programs have resulted in the comprehensive adoption of best management practices by dairy farmers including exclusion of stock from watercourses and effluent management from 2000 to 2007. Whilst median Cryptosporidium concentrations in source water have decreased since 2004 they remain above target levels and put pressure on other barriers to mitigate risk, particularly the treatment plant. Non-dairy calves were identified as the major remaining source of Cryptosporidium in the Myponga catchment. The restriction of watercourse access of non-dairy calves could achieve a further reduction in Cryptosporidium export to the Myponga reservoir of around 90% from current levels. The adaptive management framework applied in this study was useful in guiding learning from past management, and in analysing, planning and refocusing the next round of catchment management strategies to achieve water quality targets.

  12. The evolution of the doctrine of restraint of trade in Australia: a law reform perspective

    OpenAIRE

    Cheng, John Wei-Ting

    2017-01-01

    This thesis examines the present state of the common law doctrine of restraint of trade from a law reform perspective. The doctrine was developed in England between the 1600s and mid-1800s and its evolution over the centuries has been a slow and ongoing process. The present state of the doctrine and its application in the Australian jurisdiction presents a challenging set of circumstances due to the difficulties faced by contracting parties when they wish to engage in restraint of trade. ...

  13. Adaptive evolution of the FADS gene cluster within Africa.

    Directory of Open Access Journals (Sweden)

    Rasika A Mathias

    Full Text Available Long chain polyunsaturated fatty acids (LC-PUFAs are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA from plant-based medium chain (MC PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ∼85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60-80 kya.

  14. Gradually Adaptive Frameworks: Reasonable Disagreement and the Evolution of Evaluative Systems in Music Education

    Science.gov (United States)

    Haskins, Stanley

    2013-01-01

    The concept of "gradually adaptive frameworks" is introduced as a model with the potential to describe the evolution of belief evaluative systems through the consideration of reasonable arguments and evidence. This concept is demonstrated through an analysis of specific points of disagreement between David Elliott's praxial philosophy…

  15. Studying the Genetics of Behavior and Evolution by Adaptation and Natural Selection.

    Science.gov (United States)

    Silverman, Jules

    1998-01-01

    Provides an exercise designed to give students an appreciation for the genetic basis of behavior. Employs the phenomenon of glucose aversion as an example of evolution by mutation and accelerated natural selection, thereby revealing one of the ways in which organisms adapt to human interference. (DDR)

  16. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    DEFF Research Database (Denmark)

    Ocholla, Harold; Preston, Mark D; Mipando, Mwapatsa

    2014-01-01

    BACKGROUND:  Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS:  We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used...

  17. 'Newness-struggle-success' continuum: a qualitative examination of the cultural adaptation process experienced by overseas-qualified dentists in Australia.

    Science.gov (United States)

    Balasubramanian, Madhan; Brennan, David S; Spencer, A John; Short, Stephanie D

    2016-04-01

    Objectives Overseas-qualified dentists constitute a significant proportion of the Australian dental workforce (approximately one in four). The aim of the present study was to provide a better understanding of the cultural adaptation process of overseas-qualified dentists in Australia, so as to facilitate their integration into the Australian way of life and improve their contribution to Australian healthcare, economy and society. Methods Life stories of 49 overseas-qualified dentists from 22 countries were analysed for significant themes and patterns. We focused on their settlement experience, which relates to their social and cultural experience in Australia. This analysis was consistent with a hermeneutic phenomenological approach to qualitative social scientific research. Results Many participants noted that encounters with 'the Australian accent' and 'slang' influenced their cultural experience in Australia. Most of the participants expressed 'fascination' with the people and lifestyle in Australia, primarily with regard to the relaxed way of life, cultural diversity and the freedom one usually experiences living in Australia. Few participants expressed 'shock' at not being able to find a community of similar religious faith in Australia, as they are used to in their home countries. These issues were analysed in two themes; (1) language and communication; and (2) people, religion and lifestyle. The cultural adaptation process of overseas-qualified dentists in Australia is described as a continuum or superordinate theme, which we have entitled the 'newness-struggle-success' continuum. This overarching theme supersedes and incorporates all subthemes. Conclusion Family, friends, community and organisational structures (universities and public sector) play a vital role in the cultural learning process, affecting overseas-qualified dentist's ability to progress successfully through the cultural continuum. What is known about the topic? Australia is a popular host

  18. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    Directory of Open Access Journals (Sweden)

    Gao Lei

    2011-06-01

    Full Text Available Abstract Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco, the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional

  19. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns.

    Science.gov (United States)

    Sen, Lin; Fares, Mario A; Liang, Bo; Gao, Lei; Wang, Bo; Wang, Ting; Su, Ying-Juan

    2011-06-03

    The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put forward the conclusion that

  20. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    LENUS (Irish Health Repository)

    Sen, Lin

    2011-06-03

    Abstract Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase\\/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such

  1. APPLICATION OF RESTART COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY (RCMA-ES TO GENERATION EXPANSION PLANNING PROBLEM

    Directory of Open Access Journals (Sweden)

    K. Karthikeyan

    2012-10-01

    Full Text Available This paper describes the application of an evolutionary algorithm, Restart Covariance Matrix Adaptation Evolution Strategy (RCMA-ES to the Generation Expansion Planning (GEP problem. RCMA-ES is a class of continuous Evolutionary Algorithm (EA derived from the concept of self-adaptation in evolution strategies, which adapts the covariance matrix of a multivariate normal search distribution. The original GEP problem is modified by incorporating Virtual Mapping Procedure (VMP. The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units is considered. Two different constraint-handling methods are incorporated and impact of each method has been compared. In addition, comparison and validation has also made with dynamic programming method.

  2. Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna.

    Science.gov (United States)

    Nogueira, Anselmo; Rey, P J; Lohmann, L G

    2012-11-01

    Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for ant-plant-herbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade-offs with new trichomes) that may have affected the evolution of ant-plant associations. We measured seven EFN quantitative traits in all 105 species included in a well-supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on ant-EFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K-values evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static-optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade-off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K-values evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  3. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    Science.gov (United States)

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  4. Range Expansion Compromises Adaptive Evolution in an Outcrossing Plant.

    Science.gov (United States)

    González-Martínez, Santiago C; Ridout, Kate; Pannell, John R

    2017-08-21

    Neutral genetic diversity gradients have long been used to infer the colonization history of species [1, 2], but range expansion may also influence the efficacy of natural selection and patterns of non-synonymous polymorphism in different parts of a species' range [3]. Recent theory predicts both an accumulation of deleterious mutations and a reduction in the efficacy of positive selection as a result of range expansion [4-8]. These signatures have been sought in a number of studies of the human range expansion out of Africa, but with contradictory results [9-14]. We analyzed the polymorphism patterns of 578,125 SNPs (17,648 genes) in the European diploid plant Mercurialis annua, which expanded its range from an eastern Mediterranean refugium into western habitats with contrasted climates [15]. Our results confirmed strong signatures of bottlenecks and revealed the accumulation of mildly to strongly deleterious mutations in range-front populations. A significantly higher number of these mutations were homozygous in individuals in range-front populations, pointing to increased genetic load and reduced fitness under a model of recessive deleterious effects. We also inferred a reduction in the number of selective sweeps in range-front versus core populations. These signatures have persisted even in a dioecious herb subject to substantial interpopulation gene flow [15]. Our results extend support from humans to plants for theory on the dynamics of mutations under selection during range expansion, showing that colonization bottlenecks can compromise adaptive potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    Science.gov (United States)

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  6. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature?

    Science.gov (United States)

    Bailey, Susan F; Bataillon, Thomas

    2016-01-01

    There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  7. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction.

    Directory of Open Access Journals (Sweden)

    Pep Charusanti

    Full Text Available Adaptation is normally viewed as the enemy of the antibiotic discovery and development process because adaptation among pathogens to antibiotic exposure leads to resistance. We present a method here that, in contrast, exploits the power of adaptation among antibiotic producers to accelerate the discovery of antibiotics. A competition-based adaptive laboratory evolution scheme is presented whereby an antibiotic-producing microorganism is competed against a target pathogen and serially passed over time until the producer evolves the ability to synthesize a chemical entity that inhibits growth of the pathogen. When multiple Streptomyces clavuligerus replicates were adaptively evolved against methicillin-resistant Staphylococcus aureus N315 in this manner, a strain emerged that acquired the ability to constitutively produce holomycin. In contrast, no holomycin could be detected from the unevolved wild-type strain. Moreover, genome re-sequencing revealed that the evolved strain had lost pSCL4, a large 1.8 Mbp plasmid, and acquired several single nucleotide polymorphisms in genes that have been shown to affect secondary metabolite biosynthesis. These results demonstrate that competition-based adaptive laboratory evolution can constitute a platform to create mutants that overproduce known antibiotics and possibly to discover new compounds as well.

  8. Perceptions of Cyclone Preparedness: Assessing the Role of Individual Adaptive Capacity and Social Capital in the Wet Tropics, Australia

    Directory of Open Access Journals (Sweden)

    Sandanam Anushka

    2018-04-01

    Full Text Available Given projections of future climate-related disasters, understanding the conditions that facilitate disaster preparedness is critical to achieving sustainable development. Here, we studied communities within the Wet Tropics bioregion, Australia to explore whether people’s perceived preparedness for a future cyclone relates to their: (1 perceived individual adaptive capacity (in terms of flexibility and capacity to plan and learn; and (2 structural and cognitive social capital. We found that people’s perceived cyclone preparedness was only related to their perceived individual flexibility in the face of change. Given that people’s perceived cyclone preparedness was related to individualistic factors, it is plausible that individualism-collectivism orientations influence people’s perceptions at an individual level. These results suggest that in the Wet Tropics region, enhancing people’s psychological flexibility may be an important step when preparing for future cyclones. Our study highlights the need to tailor disaster preparedness initiatives to the region in question, and thus our results may inform disaster risk management and sustainable development policies.

  9. Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2017-04-01

    Full Text Available The evolution of herbivory in early tetrapods was crucial in the establishment of terrestrial ecosystems, although it is so far unclear what effect this innovation had on the macro-evolutionary patterns observed within this clade. The clades that entered this under-filled region of ecospace might be expected to have experienced an “adaptive radiation”: an increase in rates of morphological evolution and speciation driven by the evolution of a key innovation. However such inferences are often circumstantial, being based on the coincidence of a rate shift with the origin of an evolutionary novelty. The conclusion of an adaptive radiation may be made more robust by examining the pattern of the evolutionary shift; if the evolutionary innovation coincides not only with a shift in rates of morphological evolution, but specifically in the morphological characteristics relevant to the ecological shift of interest, then one may more plausibly infer a causal relationship between the two. Here I examine the impact of diet evolution on rates of morphological change in one of the earliest tetrapod clades to evolve high-fibre herbivory: Captorhinidae. Using a method of calculating heterogeneity in rates of discrete character change across a phylogeny, it is shown that a significant increase in rates of evolution coincides with the transition to herbivory in captorhinids. The herbivorous captorhinids also exhibit greater morphological disparity than their faunivorous relatives, indicating more rapid exploration of new regions of morphospace. As well as an increase in rates of evolution, there is a shift in the regions of the skeleton undergoing the most change; the character changes in the herbivorous lineages are concentrated in the mandible and dentition. The fact that the increase in rates of evolution coincides with increased change in characters relating to food acquisition provides stronger evidence for a causal relationship between the herbivorous

  10. A shift from magnitude to sign epistasis during adaptive evolution of a bacterial social trait.

    Science.gov (United States)

    Zee, Peter C; Mendes-Soares, Helena; Yu, Yuen-Tsu N; Kraemer, Susanne A; Keller, Heike; Ossowski, Stephan; Schneeberger, Korbinian; Velicer, Gregory J

    2014-09-01

    Although the importance of epistasis in evolution has long been recognized, remarkably little is known about the processes by which epistatic interactions evolve in real time in specific biological systems. Here, we have characterized how the epistatic fitness relationship between a social gene and an adapting genome changes radically over a short evolutionary time frame in the social bacterium Myxococcus xanthus. We show that a highly beneficial effect of this social gene in the ancestral genome is gradually reduced--and ultimately reversed into a deleterious effect--over the course of an experimental adaptive trajectory in which a primitive form of novel cooperation evolved. This reduction and reversal of a positive social allelic effect is driven solely by changes in the genetic context in which the gene is expressed as new mutations are sequentially fixed during adaptive evolution, and explicitly demonstrates a significant evolutionary change in the genetic architecture of an ecologically important social trait. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    Science.gov (United States)

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.

  12. A Convergent Differential Evolution Algorithm with Hidden Adaptation Selection for Engineering Optimization

    Directory of Open Access Journals (Sweden)

    Zhongbo Hu

    2014-01-01

    Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.

  13. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia.

    Science.gov (United States)

    Currell, Matthew; Banfield, Dominic; Cartwright, Ian; Cendón, Dioni I

    2017-05-01

    Recent expansion of shale and coal seam gas production worldwide has increased the need for geochemical studies in aquifers near gas deposits, to determine processes impacting groundwater quality and better understand the origins and behavior of dissolved hydrocarbons. We determined dissolved methane concentrations (n = 36) and δ 13 C and δ 2 H values (n = 31) in methane and groundwater from the 46,000-km 2 Gippsland Basin in southeast Australia. The basin contains important water supply aquifers and is a potential target for future unconventional gas development. Dissolved methane concentrations ranged from 0.0035 to 30 mg/L (median = 8.3 mg/L) and were significantly higher in the deep Lower Tertiary Aquifer (median = 19 mg/L) than the shallower Upper Tertiary Aquifer (median = 3.45 mg/L). Groundwater δ 13 C DIC values ranged from -26.4 to -0.4 ‰ and were generally higher in groundwater with high methane concentrations (mean δ 13 C DIC  = -9.5 ‰ for samples with >3 mg/L CH 4 vs. -16.2 ‰ in all others), which is consistent with bacterial methanogenesis. Methane had δ 13 C CH4 values of -97.5 to -31.8 ‰ and δ 2 H CH4 values of -391 to -204 ‰ that were also consistent with bacterial methane, excluding one site with δ 13 C CH4 values of -31.8 to -37.9 ‰, where methane may have been thermogenic. Methane from different regions and aquifers had distinctive stable isotope values, indicating differences in the substrate and/or methanogenesis mechanism. Methane in the Upper Tertiary Aquifer in Central Gippsland had lower δ 13 C CH4 (-83.7 to -97.5 ‰) and δ 2 H CH4 (-236 to -391 ‰) values than in the deeper Lower Tertiary Aquifer (δ 13 C CH4  = -45.8 to -66.2 ‰ and δ 2 H CH4  = -204 to -311 ‰). The particularly low δ 13 C CH4 values in the former group may indicate methanogenesis at least partly through carbonate reduction. In deeper groundwater, isotopic values were more consistent with acetate fermentation. Not

  14. Go forth, evolve and prosper: the genetic basis of adaptive evolution in an invasive species.

    Science.gov (United States)

    Franks, Steven J; Munshi-South, Jason

    2014-05-01

    Invasive species stand accused of a familiar litany of offences, including displacing native species, disrupting ecological processes and causing billions of dollars in ecological damage (Cox 1999). Despite these transgressions, invasive species have at least one redeeming virtue--they offer us an unparalleled opportunity to investigate colonization and responses of populations to novel conditions in the invaded habitat (Elton 1958; Sakai et al. 2001). Invasive species are by definition colonists that have arrived and thrived in a new location. How they are able to thrive is of great interest, especially considering a paradox of invasion (Sax & Brown 2000): if many populations are locally adapted (Leimu & Fischer 2008), how could species introduced into new locations become so successful? One possibility is that populations adjust to the new conditions through plasticity--increasing production of allelopathic compounds (novel weapons), or taking advantage of new prey, for example. Alternatively, evolution could play a role, with the populations adapting to the novel conditions of the new habitat. There is increasing evidence, based on phenotypic data, for rapid adaptive evolution in invasive species (Franks et al. 2012; Colautti & Barrett 2013; Sultan et al. 2013). Prior studies have also demonstrated genetic changes in introduced populations using neutral markers, which generally do not provide information on adaptation. Thus, the genetic basis of adaptive evolution in invasive species has largely remained unknown. In this issue of Molecular Ecology, Vandepitte et al. (2014) provide some of the first evidence in invasive populations for molecular genetic changes directly linked to adaptation. © 2014 John Wiley & Sons Ltd.

  15. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient.

    Science.gov (United States)

    Urbanski, Jennifer; Mogi, Motoyoshi; O'Donnell, Deborah; DeCotiis, Mark; Toma, Takako; Armbruster, Peter

    2012-04-01

    Abstract Understanding the mechanisms of adaptation to spatiotemporal environmental variation is a fundamental goal of evolutionary biology. This issue also has important implications for anticipating biological responses to contemporary climate warming and determining the processes by which invasive species are able to spread rapidly across broad geographic ranges. Here, we compare data from a historical study of latitudinal variation in photoperiodic response among Japanese and U.S. populations of the invasive Asian tiger mosquito Aedes albopictus with contemporary data obtained using comparable methods. Our results demonstrated rapid adaptive evolution of the photoperiodic response during invasion and range expansion across ∼15° of latitude in the United States. In contrast to the photoperiodic response, size-based morphological traits implicated in climatic adaptation in a wide range of other insects did not show evidence of adaptive variation in Ae. albopictus across either the U.S. (invasive) or Japanese (native) range. These results show that photoperiodism has been an important adaptation to climatic variation across the U.S. range of Ae. albopictus and, in conjunction with previous studies, strongly implicate the photoperiodic control of seasonal development as a critical evolutionary response to ongoing contemporary climate change. These results also emphasize that photoperiodism warrants increased attention in studies of the evolution of invasive species.

  16. Evolution of plasticity and adaptive responses to climate change along climate gradients.

    Science.gov (United States)

    Kingsolver, Joel G; Buckley, Lauren B

    2017-08-16

    The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).

  17. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    Science.gov (United States)

    Wong, Alex; Rodrigue, Nicolas; Kassen, Rees

    2012-09-01

    Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  18. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alex Wong

    2012-09-01

    Full Text Available Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  19. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata).

    Science.gov (United States)

    Torres-Dowdall, Julián; Handelsman, Corey A; Reznick, David N; Ghalambor, Cameron K

    2012-11-01

    Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator-induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high- and low-predation environments. We reared full-siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high-predation ecotype. However, when reared in the absence of predator cues, guppies from high- and low-predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high- versus low-predation environments. Thus, divergence in plasticity is due to phenotypic differences between high- and low-predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by-product of adaptation to the derived environment. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  20. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30ºC

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature...... temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature.......Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution...

  1. Putative adaptive inter-slope divergence of transposon frequency in fruit flies (Drosophila melanogaster) at "Evolution Canyon", Mount Carmel, Israel.

    Science.gov (United States)

    Beiles, Avigdor; Raz, Shmuel; Ben-Abu, Yuval; Nevo, Eviatar

    2015-10-14

    small differences. The large gap among the 11 TEs favored on the NFS was significant and supports our rejection of drift as the only explanation of the distribution of the slope differences. The gaps in the distribution of the differences separated the putative TEs with strong enough selection from those TEs that couldn't overrule the migration. The results are compared and contrasted with the directional effect of the frequencies of the same TEs in the study of global climatic comparisons across thousands of kilometers. From the 11 putative adaptive TEs in the local "Evolution Canyon," six differentiate in the same direction as in the continental comparisons and four in the opposite direction. One TE, FBti0019144, differentiated in EC in the same direction as in Australia and in the opposite direction to that of North America. We presume that the major divergent evolutionary driving force at the local EC microsite is natural selection overruling gene flow. Therefore, after we rejected drift as an explanation of all the large slope differences, we regarded them as putatively adaptive. In order to substantiate the individual TE adaptation, we need to increase the sample sizes and reveal the significant adaptive TEs. The comparison of local and global studies show only partial similarity in the adaptation of the TEs, because of the dryness of the ecologically tropical climate in EC, in contrast to the wet tropical climate in the global compared climates. Moreover, adaptation of a TE may be expressed only in part of the time and specific localities.

  2. The elusive nature of adaptive mitochondrial DNA evolution of an Arctic lineage prone to frequent introgression

    DEFF Research Database (Denmark)

    Melo-Ferreira, Jose; Vilela, Joana; Fonseca, Miguel M.

    2014-01-01

    understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread....... Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive...... lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may...

  3. Contributions of protein-coding and regulatory change to adaptive molecular evolution in murid rodents.

    Directory of Open Access Journals (Sweden)

    Daniel L Halligan

    Full Text Available The contribution of regulatory versus protein change to adaptive evolution has long been controversial. In principle, the rate and strength of adaptation within functional genetic elements can be quantified on the basis of an excess of nucleotide substitutions between species compared to the neutral expectation or from effects of recent substitutions on nucleotide diversity at linked sites. Here, we infer the nature of selective forces acting in proteins, their UTRs and conserved noncoding elements (CNEs using genome-wide patterns of diversity in wild house mice and divergence to related species. By applying an extension of the McDonald-Kreitman test, we infer that adaptive substitutions are widespread in protein-coding genes, UTRs and CNEs, and we estimate that there are at least four times as many adaptive substitutions in CNEs and UTRs as in proteins. We observe pronounced reductions in mean diversity around nonsynonymous sites (whether or not they have experienced a recent substitution. This can be explained by selection on multiple, linked CNEs and exons. We also observe substantial dips in mean diversity (after controlling for divergence around protein-coding exons and CNEs, which can also be explained by the combined effects of many linked exons and CNEs. A model of background selection (BGS can adequately explain the reduction in mean diversity observed around CNEs. However, BGS fails to explain the wide reductions in mean diversity surrounding exons (encompassing ~100 Kb, on average, implying that there is a substantial role for adaptation within exons or closely linked sites. The wide dips in diversity around exons, which are hard to explain by BGS, suggest that the fitness effects of adaptive amino acid substitutions could be substantially larger than substitutions in CNEs. We conclude that although there appear to be many more adaptive noncoding changes, substitutions in proteins may dominate phenotypic evolution.

  4. Analysis of Adaptive Strategy Selection within Differential Evolution on the BBOB-2010 Noiseless Benchmark

    OpenAIRE

    Fialho, Álvaro; Ros, Raymond

    2010-01-01

    This document presents an empirical analysis of the Fitness-based Area-Under-Curve - Bandit (F-AUC-Bandit), an adaptive strategy (or operator) selection method recently proposed in the context of Genetic Algorithms. It is here used to select, while solving the problem, the strategy to be applied for the next offspring generation based on the recent known performance of each of the available ones, within a Differential Evolution algorithm applied to contin- uous optimization problems. Experime...

  5. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Madsen Sommer, Lea Mette; Molin, Søren

    2015-01-01

    Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic....... Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization...

  6. Dietary Change and Adaptive Evolution of enamelin in Humans and Among Primates

    OpenAIRE

    Kelley, Joanna L.; Swanson, Willie J.

    2008-01-01

    Scans of the human genome have identified many loci as potential targets of recent selection, but exploration of these candidates is required to verify the accuracy of genomewide scans and clarify the importance of adaptive evolution in recent human history. We present analyses of one such candidate, enamelin, whose protein product operates in tooth enamel formation in 100 individuals from 10 populations. Evidence of a recent selective sweep at this locus confirms the signal of selection foun...

  7. Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles.

    Science.gov (United States)

    Escalona, Tibisay; Weadick, Cameron J; Antunes, Agostinho

    2017-10-01

    The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies.

    Science.gov (United States)

    Sandberg, Troy E; Lloyd, Colton J; Palsson, Bernhard O; Feist, Adam M

    2017-07-01

    Adaptive laboratory evolution (ALE) experiments are often designed to maintain a static culturing environment to minimize confounding variables that could influence the adaptive process, but dynamic nutrient conditions occur frequently in natural and bioprocessing settings. To study the nature of carbon substrate fitness tradeoffs, we evolved batch cultures of Escherichia coli via serial propagation into tubes alternating between glucose and either xylose, glycerol, or acetate. Genome sequencing of evolved cultures revealed several genetic changes preferentially selected for under dynamic conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent "generalist" strain developed, while in another, two "specialist" subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists and specialists, in one case being completely abolished, while gene expression data distinguished the transcriptional strategies implemented by strains in pursuit of growth optimality. Genome-scale metabolic modeling techniques were then used to help explain the inherent substrate differences giving rise to the observed distinct adaptive strategies. This study gives insight into the population dynamics of adaptation in an alternating environment and into the underlying metabolic and genetic mechanisms. Furthermore, ALE-generated optimized strains have phenotypes with potential industrial bioprocessing applications. IMPORTANCE Evolution and natural selection inexorably lead to an organism's improved fitness in a given environment, whether in a laboratory or natural setting. However, despite the frequent natural occurrence of complex and dynamic growth environments, laboratory evolution experiments typically maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to

  10. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    2007-08-01

    Full Text Available It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate-female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate-female interaction.

  11. Benefits of a Recombination-Proficient Escherichia coli System for Adaptive Laboratory Evolution

    Science.gov (United States)

    Peabody, George; Winkler, James; Fountain, Weston; Castro, David A.; Leiva-Aravena, Enzo

    2016-01-01

    ABSTRACT Adaptive laboratory evolution typically involves the propagation of organisms asexually to select for mutants with the desired phenotypes. However, asexual evolution is prone to competition among beneficial mutations (clonal interference) and the accumulation of hitchhiking and neutral mutations. The benefits of horizontal gene transfer toward overcoming these known disadvantages of asexual evolution were characterized in a strain of Escherichia coli engineered for superior sexual recombination (genderless). Specifically, we experimentally validated the capacity of the genderless strain to reduce the mutational load and recombine beneficial mutations. We also confirmed that inclusion of multiple origins of transfer influences both the frequency of genetic exchange throughout the chromosome and the linkage of donor DNA. We built a simple kinetic model to estimate recombination frequency as a function of transfer size and relative genotype enrichment in batch transfers; the model output correlated well with the experimental data. Our results provide strong support for the advantages of utilizing the genderless strain over its asexual counterpart during adaptive laboratory evolution for generating beneficial mutants with reduced mutational load. IMPORTANCE Over 80 years ago Fisher and Muller began a debate on the origins of sexual recombination. Although many aspects of sexual recombination have been examined at length, experimental evidence behind the behaviors of recombination in many systems and the means to harness it remain elusive. In this study, we sought to experimentally validate some advantages of recombination in typically asexual Escherichia coli and determine if a sexual strain of E. coli can become an effective tool for strain development. PMID:27613685

  12. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution.

    Science.gov (United States)

    Flegr, Jaroslav

    2013-01-16

    Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ.Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation--while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation.The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories.

  13. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  14. Context-Aware Mobile Service Adaptation via a Co-Evolution eXtended Classifier System in Mobile Network Environments

    OpenAIRE

    Shangguang Wang; Zibin Zheng; Zhengping Wu; Qibo Sun; Hua Zou; Fangchun Yang

    2014-01-01

    With the popularity of mobile services, an effective context-aware mobile service adaptation is becoming more and more important for operators. In this paper, we propose a Co-evolution eXtended Classifier System (CXCS) to perform context-aware mobile service adaptation. Our key idea is to learn user context, match adaptation rule, and provide the best suitable mobile services for users. Different from previous adaptation schemes, our proposed CXCS can produce a new user's initial classifier p...

  15. Evolution of adaptive diversity and genetic connectivity in Arctic charr (Salvelinus alpinus) in Iceland

    Science.gov (United States)

    Kapralova, K H; Morrissey, M B; Kristjánsson, B K; Ólafsdóttir, G Á; Snorrason, S S; Ferguson, M M

    2011-01-01

    The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr. PMID:21224880

  16. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution.

    Science.gov (United States)

    Vigueira, C C; Olsen, K M; Caicedo, A L

    2013-04-01

    Weeds are among the greatest pests of agriculture, causing billions of dollars in crop losses each year. As crop field management practices have changed over the past 12 000 years, weeds have adapted in turn to evade human removal. This evolutionary change can be startlingly rapid, making weeds an appealing system to study evolutionary processes that occur over short periods of time. An understanding of how weeds originate and adapt is needed for successful management; however, relatively little emphasis has been placed on genetically characterizing these systems. Here, we review the current literature on agricultural weed origins and their mechanisms of adaptation. Where possible, we have included examples that have been genetically well characterized. Evidence for three possible, non-mutually exclusive weed origins (from wild species, crop-wild hybrids or directly from crops) is discussed with respect to what is known about the microevolutionary signatures that result from these processes. We also discuss what is known about the genetic basis of adaptive traits in weeds and the range of genetic mechanisms that are responsible. With a better understanding of genetic mechanisms underlying adaptation in weedy species, we can address the more general process of adaptive evolution and what can be expected as we continue to apply selective pressures in agroecosystems around the world.

  17. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Pedersen, Søren Damkiær; Khademi, Seyed Mohammad Hossein

    2014-01-01

    advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive...... pressures act on the pathogens' ability to acquire iron. Here, we investigated the within-host evolution of P. aeruginosa, and we found evidence that P. aeruginosa during long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other...... iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections....

  18. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-04

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  19. Adaptive evolution of the mitochondrial ND6 gene in the domestic horse.

    Science.gov (United States)

    Ning, T; Xiao, H; Li, J; Hua, S; Zhang, Y P

    2010-01-26

    Mitochondria play a crucial role in energy metabolism through oxidative phosphorylation. Organisms living at high altitudes are potentially influenced by oxygen deficits and cold temperatures. The severe environmental conditions can impact on metabolism and direct selection of mitochondrial DNA. As a wide-ranging animal, the domestic horse (Equus caballus) has developed various morphological and physiological characteristics for adapting to different altitudes. Thus, this is a good species for studying adaption to high altitudes at a molecular level. We sequenced the complete NADH dehydrogenase 6 gene (ND6) of 509 horses from 24 sampling locations. By comparative analysis of three horse populations living at different altitudes (>2200 m, 1200-1700 m, and horses was found distributed on the selected branches. We conclude that the high-altitude environment has directed adaptive evolution of the mitochondrial ND6 gene in the plateau horse.

  20. Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae, an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C and cold (5±1°C acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau.

  1. Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna

    Science.gov (United States)

    Kirkland, C. L.; Smithies, R. H.; Spaggiari, C. V.; Wingate, M. T. D.; Quentin de Gromard, R.; Clark, C.; Gardiner, N. J.; Belousova, E. A.

    2017-05-01

    The crystalline basement beneath the Cretaceous to Cenozoic Bight and Eucla Basins, in Western Australia has received comparatively little attention even though it lies on the eastern margin of one of the most mineral resource endowed regions on the planet. This basement is characterized by a complex geological evolution spanning c. 2 billion years, but paucity of outcrop and younger basin cover present a daunting challenge to understand the basement geology. In this work the composition of the unexposed Proterozoic crystalline basement to the Bight and Eucla Basins is investigated through zircon Hf isotopes and whole rock geochemistry from new drillcore samples. This region includes two geophysically defined basement entities: The Madura Province, containing: 1) c. 1478 Ma Sleeper Camp Formation, which has variable isotopic signatures including evolved values interpreted to reflect reworking of rare slivers of hyperextended Archean crust, 2) 1415-1389 Ma Haig Cave Supersuite, with mantle-like isotope values interpreted as melting of subduction-modified N-MORB source, and 3) 1181-1125 Ma Moodini Supersuite, with juvenile isotopic signatures interpreted to reflect mixed mafic lower-crustal and asthenospheric melts produced at the base of thinned crust. The Coompana Province, to the east of the Madura Province, has three major magmatic components: 1) c. 1610 Ma Toolgana Supersuite, with chemical and isotopic characteristics of primitive arc rock, 2) c. 1490 Ma Undawidgi Supersuite, with juvenile isotope values consistent with extensional processes involving asthenospheric input and 3) 1192-1140 Ma Moodini Supersuite, with strong isotopic similarity to Moodini Supersuite rocks in the Madura Province. This new isotopic and geochemical data shows that the Madura and Coompana regions together represent a huge tract of predominantly juvenile material. Magma sources recognised, include; 1) depleted mantle, producing MORB-like crust at c. 1950 Ma, but also contributing to

  2. Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint?

    Science.gov (United States)

    Harpur, Brock A; Zayed, Amro

    2013-07-01

    The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.

  3. Adaptive evolution of cooperation through Darwinian dynamics in Public Goods games.

    Science.gov (United States)

    Deng, Kuiying; Chu, Tianguang

    2011-01-01

    The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population.

  4. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils.

    Science.gov (United States)

    Sanyal, Anushree; Decocq, Guillaume

    2016-09-09

    Studies of the biogeographic distribution of seed oil content in plants are fundamental to understanding the mechanisms of adaptive evolution in plants as seed oil is the primary energy source needed for germination and establishment of plants. However, seed oil content as an adaptive trait in plants is poorly understood. Here, we examine the adaptive nature of seed oil content in 168 angiosperm families occurring in different biomes across the world. We also explore the role of multiple seed traits like seed oil content and composition in plant adaptation in a phylogenetic and nonphylogenetic context. It was observed that the seed oil content in tropical plants (28.4 %) was significantly higher than the temperate plants (24.6 %). A significant relationship between oil content and latitude was observed in three families Papaveraceae, Sapindaceae and Sapotaceae indicating that selective forces correlated with latitude influence seed oil content. Evaluation of the response of seed oil content and composition to latitude and the correlation between seed oil content and composition showed that multiple seed traits, seed oil content and composition contribute towards plant adaptation. Investigation of the presence or absence of phylogenetic signals across 168 angiosperm families in 62 clades revealed that members of seven clades evolved to have high or low seed oil content independently as they did not share a common evolutionary path. The study provides us an insight into the biogeographical distribution and the adaptive role of seed oil content in plants. The study indicates that multiple seed traits like seed oil content and the fatty acid composition of the seed oils determine the fitness of the plants and validate the adaptive hypothesis that seed oil quantity and quality are crucial to plant adaptation.

  5. Niche evolution and adaptive radiation: Testing the order of trait divergence

    Science.gov (United States)

    Ackerly, D.D.; Schwilk, D.W.; Webb, C.O.

    2006-01-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (?? niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (?? niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This ?? niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (?? niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the ?? niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of ?? niche traits might be a common feature of niche evolution in

  6. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    Science.gov (United States)

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122

  7. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers.

    Science.gov (United States)

    Tokita, Masayoshi; Yano, Wataru; James, Helen F; Abzhanov, Arhat

    2017-02-05

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Authors.

  8. Rapid evolution of an adaptive cyanogenesis cline in introduced North American white clover (Trifolium repens L.).

    Science.gov (United States)

    Kooyers, Nicholas J; Olsen, Kenneth M

    2012-05-01

    White clover is polymorphic for cyanogenesis (HCN production after tissue damage), and this herbivore defence polymorphism has served as a classic model for studying adaptive variation. The cyanogenic phenotype requires two interacting biochemical components; the presence/absence of each component is controlled by a simple Mendelian gene (Ac/ac and Li/li). Climate-associated cyanogenesis clines occur in both native (Eurasian) and introduced populations worldwide, with cyanogenic plants predominating in warmer locations. Moreover, previous studies have suggested that epistatic selection may act within populations to maintain cyanogenic (AcLi) plants and acyanogenic plants that lack both components (acli plants) at the expense of plants possessing a single component (Acli and acLi plants). Here, we examine the roles of selection, gene flow and demography in the evolution of a latitudinal cyanogenesis cline in introduced North American populations. Using 1145 plants sampled across a 1650 km transect, we determine the distribution of cyanogenesis variation across the central United States and investigate whether clinal variation is adaptive or an artefact of population introduction history. We also test for the evidence of epistatic selection. We detect a clear latitudinal cline, with cyanogenesis frequencies increasing from 11% to 86% across the transect. Population structure analysis using nine microsatellite loci indicates that the cline is adaptive and not a by-product of demographic history. However, we find no evidence for epistatic selection within populations. Our results provide strong evidence for rapid adaptive evolution in these introduced populations, and they further suggest that the mechanisms maintaining adaptive variation may vary among populations of a species. © 2012 Blackwell Publishing Ltd.

  9. Hybridization of Adaptive Differential Evolution with an Expensive Local Search Method

    Directory of Open Access Journals (Sweden)

    Rashida Adeeb Khanum

    2016-01-01

    Full Text Available Differential evolution (DE is an effective and efficient heuristic for global optimization problems. However, it faces difficulty in exploiting the local region around the approximate solution. To handle this issue, local search (LS techniques could be hybridized with DE to improve its local search capability. In this work, we hybridize an updated version of DE, adaptive differential evolution with optional external archive (JADE with an expensive LS method, Broydon-Fletcher-Goldfarb-Shano (BFGS for solving continuous unconstrained global optimization problems. The new hybrid algorithm is denoted by DEELS. To validate the performance of DEELS, we carried out extensive experiments on well known test problems suits, CEC2005 and CEC2010. The experimental results, in terms of function error values, success rate, and some other statistics, are compared with some of the state-of-the-art algorithms, self-adaptive control parameters in differential evolution (jDE, sequential DE enhanced by neighborhood search for large-scale global optimization (SDENS, and differential ant-stigmergy algorithm (DASA. These comparisons reveal that DEELS outperforms jDE and SDENS except DASA on the majority of test instances.

  10. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Hyman, James M [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Higdon, Dave [Los Alamos National Laboratory; Ter Braak, Cajo J F [NETHERLANDS; Diks, Cees G H [UNIV OF AMSTERDAM

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  11. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    Science.gov (United States)

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  12. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

    Directory of Open Access Journals (Sweden)

    Lynch Vincent J

    2007-01-01

    Full Text Available Abstract Background Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Results Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. Conclusion These data show that increases in genomic complexity (through gene duplications can lead to phenotypic complexity (venom composition and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  13. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    Directory of Open Access Journals (Sweden)

    Sharon A Jansa

    Full Text Available The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae and pitvipers (Serpentes: Crotalinae. In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF, a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  14. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation.

    Science.gov (United States)

    Burbrink, Frank T; Chen, Xin; Myers, Edward A; Brandley, Matthew C; Pyron, R Alexander

    2012-12-07

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification.

  15. Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Science.gov (United States)

    Wang, Shuai; Wang, Sen; Luo, Yingfeng; Xiao, Lihua; Luo, Xuenong; Gao, Shenghan; Dou, Yongxi; Zhang, Huangkai; Guo, Aijiang; Meng, Qingshu; Hou, Junling; Zhang, Bing; Zhang, Shaohua; Yang, Meng; Meng, Xuelian; Mei, Hailiang; Li, Hui; He, Zilong; Zhu, Xueliang; Tan, Xinyu; Zhu, Xing-quan; Yu, Jun; Cai, Jianping; Zhu, Guan; Hu, Songnian; Cai, Xuepeng

    2016-01-01

    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica. PMID:27653464

  16. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Lloyd, Colton J.; Palsson, Bernhard O.

    2017-01-01

    and specialists, in one case being completely abolished, while gene expression data distinguished the transcriptional strategies implemented by strains in pursuit of growth optimality. Genome-scale metabolic modeling techniques were then used to help explain the inherent substrate differences giving rise...... applications.IMPORTANCE Evolution and natural selection inexorably lead to an organism's improved fitness in a given environment, whether in a laboratory or natural setting. However, despite the frequent natural occurrence of complex and dynamic growth environments, laboratory evolution experiments typically...... of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation...

  17. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2013-01-01

    Full Text Available Abstract Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ. Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III, genetic revolution model of Mayr (class IV or the frozen plasticity theory of Flegr (class V, suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation – while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III or elastic (class IV and V on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation. The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories. Reviewers This article was reviewed by Claus Wilke, Pierre Pantarotti and David Penny (nominated by Anthony Poole.

  18. Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat

    DEFF Research Database (Denmark)

    Zepeda Mendoza, M. Lisandra; Xiong, Zijun; Escalera-Zamudio, Marina

    2018-01-01

    Adaptation to specialized diets often requires modifications at both genomic and microbiome levels. We applied a hologenomic approach to the common vampire bat (Desmodus rotundus), one of the only three obligate blood-feeding (sanguivorous) mammals, to study the evolution of its complex dietary...... integrated viral elements, a dietary and phylogenetic influence on gut microbiome taxonomic and functional profiles, and that both genetic elements harbour key traits related to the nutritional (for example, vitamin and lipid shortage) and non-nutritional (for example, nitrogen waste and osmotic homeostasis...

  19. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution.

    Science.gov (United States)

    Koonin, Eugene V

    2016-12-23

    The study of any biological features, including genomic sequences, typically revolves around the question: what is this for? However, population genetic theory, combined with the data of comparative genomics, clearly indicates that such a "pan-adaptationist" approach is a fallacy. The proper question is: how has this sequence evolved? And the proper null hypothesis posits that it is a result of neutral evolution: that is, it survives by sheer chance provided that it is not deleterious enough to be efficiently purged by purifying selection. To claim adaptation, the neutral null has to be falsified. The adaptationist fallacy can be costly, inducing biologists to relentlessly seek function where there is none.

  20. Design of 2-D Recursive Filters Using Self-adaptive Mutation Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Lianghong Wu

    2011-08-01

    Full Text Available This paper investigates a novel approach to the design of two-dimensional recursive digital filters using differential evolution (DE algorithm. The design task is reformulated as a constrained minimization problem and is solved by an Self-adaptive Mutation DE algorithm (SAMDE, which adopts an adaptive mutation operator that combines with the advantages of the DE/rand/1/bin strategy and the DE/best/2/bin strategy. As a result, its convergence performance is improved greatly. Numerical experiment results confirm the conclusion. The proposedSAMDE approach is effectively applied to test a numerical example and is compared with previous design methods. The computational experiments show that the SAMDE approach can obtain better results than previous design methods.

  1. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    Science.gov (United States)

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  2. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  3. Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Min Hui

    Full Text Available Elucidating the genetic mechanisms of adaptation to the hydrothermal vent in organisms at genomic level is significant for understanding the adaptive evolution process in the extreme environment. We performed RNA-seq on four different tissues of a vent crab species, Austinograea alayseae, producing 725,461 unigenes and 134,489 annotated genes. Genes related to sensory, circadian rhythm, hormone, hypoxia stress, metal detoxification and immunity were identified. It was noted that in the degenerated eyestalk, transcription of phototransduction related genes which are important for retinal function was greatly reduced; three crucial neuropeptide hormones, one molt-inhibiting and two crustacean hyperglycemic hormone precursors were characterized with conserved domains; hypoxia-inducible factor 1 and two novel isoforms of metallothioneins in the vent crabs were discovered. An analysis of 6,932 orthologs among three crabs A. alayseae, Portunus trituberculutus and Eriocheir sinensis revealed 19 positive selected genes (PSGs. Most of the PSGs were involved in immune responses, such as crustins and anti-lipopolysaccharide factor, suggesting their function in the adaptation to environment. The characterization of the first vent crab transcriptome provides abundant resources for genetic and evolutionary studies of this species, and paves the way for further investigation of vent adaptation process in crabs.

  4. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tosato, Valentina; Sims, Jason; West, Nicole; Colombin, Martina; Bruschi, Carlo V

    2017-05-01

    Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.

  5. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  6. An adaptive left–right eigenvector evolution algorithm for vibration isolation control

    International Nuclear Information System (INIS)

    Wu, T Y

    2009-01-01

    The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left–right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left–right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left–right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left–right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches

  7. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes.

    Science.gov (United States)

    Lyu, Haomin; He, Ziwen; Wu, Chung-I; Shi, Suhua

    2018-01-01

    Several clades of mangrove trees independently invade the interface between land and sea at the margin of woody plant distribution. As phenotypic convergence among mangroves is common, the possibility of convergent adaptation in their genomes is quite intriguing. To study this molecular convergence, we sequenced multiple mangrove genomes. In this study, we focused on the evolution of transposable elements (TEs) in relation to the genome size evolution. TEs, generally considered genomic parasites, are the most common components of woody plant genomes. Analyzing the long terminal repeat-retrotransposon (LTR-RT) type of TE, we estimated their death rates by counting solo-LTRs and truncated elements. We found that all lineages of mangroves massively and convergently reduce TE loads in comparison to their nonmangrove relatives; as a consequence, genome size reduction happens independently in all six mangrove lineages; TE load reduction in mangroves can be attributed to the paucity of young elements; the rarity of young LTR-RTs is a consequence of fewer births rather than access death. In conclusion, mangrove genomes employ a convergent strategy of TE load reduction by suppressing element origination in their independent adaptation to a new environment. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Evolution of cooperation facilitated by reinforcement learning with adaptive aspiration levels.

    Science.gov (United States)

    Tanabe, Shoma; Masuda, Naoki

    2012-01-21

    Repeated interaction between individuals is the main mechanism for maintaining cooperation in social dilemma situations. Variants of tit-for-tat (repeating the previous action of the opponent) and the win-stay lose-shift strategy are known as strong competitors in iterated social dilemma games. On the other hand, real repeated interaction generally allows plasticity (i.e., learning) of individuals based on the experience of the past. Although plasticity is relevant to various biological phenomena, its role in repeated social dilemma games is relatively unexplored. In particular, if experience-based learning plays a key role in promotion and maintenance of cooperation, learners should evolve in the contest with nonlearners under selection pressure. By modeling players using a simple reinforcement learning model, we numerically show that learning enables the evolution of cooperation. We also show that numerically estimated adaptive dynamics appositely predict the outcome of evolutionary simulations. The analysis of the adaptive dynamics enables us to capture the obtained results as an affirmative example of the Baldwin effect, where learning accelerates the evolution to optimality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    Science.gov (United States)

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.

  10. Adaptive evolution of insect selective excitatory β-type sodium channel neurotoxins from scorpion venom.

    Science.gov (United States)

    Wu, Wenlan; Li, Zhongjie; Ma, Yibao

    2017-06-01

    Insect selective excitatory β-type sodium channel neurotoxins from scorpion venom (β-NaScTxs) are composed of about 70-76 amino acid residues and share a common scaffold stabilized by four unique disulfide bonds. The phylogenetic analysis of these toxins was hindered by limited sequence data. In our recent study, two new insect selective excitatory β-NaScTxs, LmIT and ImIT, were isolated from Lychas mucronatus and Isometrus maculatus, respectively. With the sequences previously reported, we examined the adaptive molecular evolution of insect selective excitatory β-NaScTxs by estimating the nonsynonymous-to-synonymous rate ratio (ω=d N /d S ). The results revealed 12 positively selected sites in the genes of insect selective excitatory β-NaScTxs. Moreover, these positively selected sites match well with the sites important for interacting with sodium channels, as demonstrated in previous mutagenesis study. These results reveal that adaptive evolution after gene duplication is one of the most important genetic mechanisms of scorpion neurotoxin diversification. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    Science.gov (United States)

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  12. Evolution of cooperation through adaptive interaction in a spatial prisoner's dilemma game

    Science.gov (United States)

    Pan, Qiuhui; Liu, Xuesong; Bao, Honglin; Su, Yu; He, Mingfeng

    2018-02-01

    In this paper, we study the effect of adaptive interaction on the evolution of cooperation in a spatial prisoner's dilemma game. The connections of players are co-evolutionary with cooperation; whether adjacent players can play the prisoner's dilemma game is associated with the strategies they took in the preceding round. If a player defected in the preceding round, his neighbors will refuse to play the prisoner's dilemma game with him in accordance with a certain probability distribution. We use the disconnecting strength to represent this probability. We discuss the evolution of cooperation with different values of temptation to defect, sucker's payoff and disconnecting strength. The simulation results show that cooperation can be significantly enhanced through increasing the value of the disconnecting strength. In addition, the increase in disconnecting strength can improve the cooperators' ability to resist the increase in temptation and the decrease in reward. We study the parameter ranges for three different evolutionary results: cooperators extinction, defectors extinction, cooperator and defector co-existence. Meanwhile, we recruited volunteers and designed a human behavioral experiment to verify the theoretical simulation results. The punishment of disconnection has a positive effect on cooperation. A higher disconnecting strength will enhance cooperation more significantly. Our research findings reveal some significant insights into efficient mechanisms of the evolution of cooperation.

  13. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    Science.gov (United States)

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  14. A Bayesian Network Based Adaptability Design of Product Structures for Function Evolution

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural or functional features along with customer satisfaction, manufacturing cost, sale price, market sales, and indirect factors are modeled as random variables denoted as nodes in the Bayesian networks. The structure of the Bayesian model is then determined based on the historical data, which captures the dynamic sophisticated relationship of customer demands of a product, structural design, and market performance. Application of our approach to an electric toothbrush product family evolution design problem shows that our model allows for designers to interrogate with the model and obtain theoretical and decision support for dynamic product feature design process.

  15. Pacific-Australia Climate Change Science and Adaptation Planning program: supporting climate science and enhancing climate services in Pacific Island Countries

    Science.gov (United States)

    Kuleshov, Yuriy; Jones, David; Hendon, Harry; Charles, Andrew; Shelton, Kay; de Wit, Roald; Cottrill, Andrew; Nakaegawa, Toshiyuki; Atalifo, Terry; Prakash, Bipendra; Seuseu, Sunny; Kaniaha, Salesa

    2013-04-01

    Over the past few years, significant progress in developing climate science for the Pacific has been achieved through a number of research projects undertaken under the Australian government International Climate Change Adaptation Initiative (ICCAI). Climate change has major impact on Pacific Island Countries and advancement in understanding past, present and futures climate in the region is vital for island nation to develop adaptation strategies to their rapidly changing environment. This new science is now supporting new services for a wide range of stakeholders in the Pacific through the National Meteorological Agencies of the region. Seasonal climate prediction is particularly important for planning in agriculture, tourism and other weather-sensitive industries, with operational services provided by all National Meteorological Services in the region. The interaction between climate variability and climate change, for example during droughts or very warm seasons, means that much of the early impacts of climate change are being felt through seasonal variability. A means to reduce these impacts is to improve forecasts to support decision making. Historically, seasonal climate prediction has been developed based on statistical past relationship. Statistical methods relate meteorological variables (e.g. temperature and rainfall) to indices which describe large-scale environment (e.g. ENSO indices) using historical data. However, with observed climate change, statistical approaches based on historical data are getting less accurate and less reliable. Recognising the value of seasonal forecasts, we have used outputs of a dynamical model POAMA (Predictive Ocean Atmosphere Model for Australia), to develop web-based information tools (http://poama.bom.gov.au/experimental/pasap/index.shtml) which are now used by climate services in 15 partner countries in the Pacific for preparing seasonal climate outlooks. Initial comparison conducted during 2012 has shown that the

  16. Evolution of the Gondwanaland Archaean Shield: ion microprobe zircon dating and southwestern Australia/Wilkes Land, Antartica

    International Nuclear Information System (INIS)

    Lovering, J.F.; Comaford, D.J.

    1979-01-01

    The ion microprobe has been used to study 207 Pb/ 206 Pb ages on 20μm-sized sites on single zircon grains from coastal rocks on either side of the rift in the Gondwanaland Archaean Shield between southwestern Australia and Wilkes Land, Antarctica. The ages on individual sites on zircon grains from a variety of rock types from southwestern Australia show a range from 1600 m.y. to about 3400 m.y., with an inverse dependence on the uranium abundance at each site. Ages of zircons from rocks from the Antartic region show a range from 1600 m.y. to 3100 m.y

  17. Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)

    Science.gov (United States)

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J.; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients. PMID:23620821

  18. Adaptive evolution of the myo6 gene in old world fruit bats (family: pteropodidae.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available Myosin VI (encoded by the Myo6 gene is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae, and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae. To investigate what role(s the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients.

  19. Adaptation ofEscherichia colito Long-Term Serial Passage in Complex Medium: Evidence of Parallel Evolution.

    Science.gov (United States)

    Kram, Karin E; Geiger, Christopher; Ismail, Wazim Mohammed; Lee, Heewook; Tang, Haixu; Foster, Patricia L; Finkel, Steven E

    2017-01-01

    Experimental evolution of bacterial populations in the laboratory has led to identification of several themes, including parallel evolution of populations adapting to carbon starvation, heat stress, and pH stress. However, most of these experiments study growth in defined and/or constant environments. We hypothesized that while there would likely continue to be parallelism in more complex and changing environments, there would also be more variation in what types of mutations would benefit the cells. In order to test our hypothesis, we serially passaged Escherichia coli in a complex medium (Luria-Bertani broth) throughout the five phases of bacterial growth. This passaging scheme allowed cells to experience a wide variety of stresses, including nutrient limitation, oxidative stress, and pH variation, and therefore allowed them to adapt to several conditions. After every ~30 generations of growth, for a total of ~300 generations, we compared both the growth phenotypes and genotypes of aged populations to the parent population. After as few as 30 generations, populations exhibit changes in growth phenotype and accumulate potentially adaptive mutations. There were many genes with mutant alleles in different populations, indicating potential parallel evolution. We examined 8 of these alleles by constructing the point mutations in the parental genetic background and competed those cells with the parent population; five of these alleles were found to be adaptive. The variety and swiftness of adaptive mutations arising in the populations indicate that the cells are adapting to a complex set of stresses, while the parallel nature of several of the mutations indicates that this behavior may be generalized to bacterial evolution. IMPORTANCE With a growing body of work directed toward understanding the mechanisms of evolution using experimental systems, it is crucial to decipher what effects the experimental setup has on the outcome. If the goal of experimental laboratory

  20. Climate change, uncertainty and adaptation: the case of irrigated agriculture in the Murray-Darling Basin in Australia

    OpenAIRE

    Quiggin, John; Adamson, David; Chambers, Sarah; Schrobback, Peggy

    2010-01-01

    Climate change is likely to have substantial effects on irrigated agriculture. Extreme climate events such as droughts are likely to become more common. These patterns are evident in median projections of climate change for the Murray–Darling Basin in Australia. Understanding climate change effects on returns from irrigation involves explicit representation of spatial changes in natural stocks (i.e. water supply) and their temporal variability (i.e. frequency of drought states of nature) and ...

  1. Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse.

    Directory of Open Access Journals (Sweden)

    Nicole E Forbes

    Full Text Available The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2 (HK-wt to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase. Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30 thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants, and protein production (6 of 12 mutants in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution.

  2. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.

    Science.gov (United States)

    Pilote, Alex J; Donovan, Lisa A

    2016-12-01

    Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.

  3. The eunuch phenomenon: adaptive evolution of genital emasculation in sexually dimorphic spiders.

    Science.gov (United States)

    Kuntner, Matjaž; Agnarsson, Ingi; Li, Daiqin

    2015-02-01

    Under natural and sexual selection traits often evolve that secure paternity or maternity through self-sacrifice to predators, rivals, offspring, or partners. Emasculation-males removing their genitals-is an unusual example of such behaviours. Known only in insects and spiders, the phenomenon's adaptiveness is difficult to explain, yet its repeated origins and association with sexual size dimorphism (SSD) and sexual cannibalism suggest an adaptive significance. In spiders, emasculation of paired male sperm-transferring organs - secondary genitals - (hereafter, palps), results in 'eunuchs'. This behaviour has been hypothesized to be adaptive because (i) males plug female genitals with their severed palps (plugging hypothesis), (ii) males remove their palps to become better fighters in male-male contests (better-fighter hypothesis), perhaps reaching higher agility due to reduced total body mass (gloves-off hypothesis), and (iii) males achieve prolonged sperm transfer through severed genitals (remote-copulation hypothesis). Prior research has provided evidence in support of these hypotheses in some orb-weaving spiders but these explanations are far from general. Seeking broad macroevolutionary patterns of spider emasculation, we review the known occurrences, weigh the evidence in support of the hypotheses in each known case, and redefine more precisely the particular cases of emasculation depending on its timing in relation to maturation and mating: 'pre-maturation', 'mating', and 'post-mating'. We use a genus-level spider phylogeny to explore emasculation evolution and to investigate potential evolutionary linkage between emasculation, SSD, lesser genital damage (embolic breakage), and sexual cannibalism (females consuming their mates). We find a complex pattern of spider emasculation evolution, all cases confined to Araneoidea: emasculation evolved at least five and up to 11 times, was lost at least four times, and became further modified at least once. We also find

  4. Design Of Multivariable Fractional Order Pid Controller Using Covariance Matrix Adaptation Evolution Strategy

    Directory of Open Access Journals (Sweden)

    Sivananaithaperumal Sudalaiandi

    2014-06-01

    Full Text Available This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO distillation columns described byWood and Berry and Ogunnaike and Ray are considered for the design of multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral Absolute Error (IAE as objective function. The results of previously reported PI/PID controller are considered for comparison purposes. Simulation results reveal that the performance of FOPI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also, CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.

  5. Adaptive Differential Evolution Approach for Constrained Economic Power Dispatch with Prohibited Operating Zones

    Directory of Open Access Journals (Sweden)

    Abdellatif HAMOUDA

    2011-12-01

    Full Text Available Economic power dispatch (EPD is one of the main tools for optimal operation and planning of modern power systems. To solve effectively the EPD problem, most of the conventional calculus methods rely on the assumption that the fuel cost characteristic of a generating unit is a continuous and convex function, resulting in inaccurate dispatch. This paper presents the design and application of efficient adaptive differential evolution (ADE algorithm for the solution of the economic power dispatch problem, where the non-convex characteristics of the generators, such us prohibited operating zones and ramp rate limits of the practical generator operation are considered. The 26 bus benchmark test system with 6 units having prohibited operating zones and ramp rate limits was used for testing and validation purposes. The results obtained demonstrate the effectiveness of the proposed method for solving the non-convex economic dispatch problem.

  6. Phases and Actions of the Evolution of the Concept of Quality in Canada and Australia – A Theoretical Modelling of the Development of Knowledge in Business Performance in the XXI Century - The Approach to Excellence

    Directory of Open Access Journals (Sweden)

    Cristina Raluca Popescu

    2015-05-01

    Full Text Available In the paper “Phases and Actions of the Evolution of the Concept of Quality in Canada and Australia – A Theoretical Modelling of the Development of Knowledge in Business Performance in the XXI Century - The Approach to Excellence” the authors present the basic features of the phases and actions of the evolution of the concept of quality in Canada and Australia, as a theoretical modelling of the development of knowledge in business performance in the XXI century in order to improve the organizational processes so that excellence can be achieved.

  7. Adaptive reptile color variation and the evolution of the Mc1r gene.

    Science.gov (United States)

    Rosenblum, Erica Bree; Hoekstra, Hopi E; Nachman, Michael W

    2004-08-01

    The wealth of information on the genetics of pigmentation and the clear fitness consequences of many pigmentation phenotypes provide an opportunity to study the molecular basis of an ecologically important trait. The melanocortin-1 receptor (Mc1r) is responsible for intraspecific color variation in mammals and birds. Here, we study the molecular evolution of Mc1r and investigate its role in adaptive intraspecific color differences in reptiles. We sequenced the complete Mc1r locus in seven phylogenetically diverse squamate species with melanic or blanched forms associated with different colored substrates or thermal environments. We found that patterns of amino acid substitution across different regions of the receptor are similar to the patterns seen in mammals, suggesting comparable levels of constraint and probably a conserved function for Mc1r in mammals and reptiles. We also found high levels of silent-site heterozygosity in all species, consistent with a high mutation rate or large long-term effective population size. Mc1r polymorphisms were strongly associated with color differences in Holbrookia maculata and Aspidoscelis inornata. In A. inornata, several observations suggest that Mc1r mutations may contribute to differences in color: (1) a strong association is observed between one Mc1r amino acid substitution and dorsal color; (2) no significant population structure was detected among individuals from these populations at the mitochondrial ND4 gene; (3) the distribution of allele frequencies at Mc1r deviates from neutral expectations; and (4) patterns of linkage disequilibrium at Mc1r are consistent with recent selection. This study provides comparative data on a nuclear gene in reptiles and highlights the utility of a candidate-gene approach for understanding the evolution of genes involved in vertebrate adaptation.

  8. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  9. Pre-adaptations and the evolution of pollination by sexual deception: Cope's rule of specialization revisited

    Science.gov (United States)

    Vereecken, Nicolas J.; Wilson, Carol A.; Hötling, Susann; Schulz, Stefan; Banketov, Sergey A.; Mardulyn, Patrick

    2012-01-01

    Pollination by sexual deception is arguably one of the most unusual liaisons linking plants and insects, and perhaps the most illustrative example of extreme floral specialization in angiosperms. While considerable progress has been made in understanding the floral traits involved in sexual deception, less is known about how this remarkable mimicry system might have arisen, the role of pre-adaptations in promoting its evolution and its extent as a pollination mechanism outside the few groups of plants (primarily orchids) where it has been described to date. In the Euro-Mediterranean region, pollination by sexual deception is traditionally considered to be the hallmark of the orchid genus Ophrys. Here, we introduce two new cases outside of Ophrys, in plant groups dominated by generalized, shelter-mimicking species. On the basis of phylogenetic reconstructions of ancestral pollination strategies, we provide evidence for independent and bidirectional evolutionary transitions between generalized (shelter mimicry) and specialized (sexual deception) pollination strategies in three groups of flowering plants, and suggest that pseudocopulation has evolved from pre-adaptations (floral colours, shapes and odour bouquets) that selectively attract male pollinators through shelter mimicry. These findings, along with comparative analyses of floral traits (colours and scents), shed light on particular phenotypic changes that might have fuelled the parallel evolution of these extraordinary pollination strategies. Collectively, our results provide the first substantive insights into how pollination sexual deception might have evolved in the Euro-Mediterranean region, and demonstrate that even the most extreme cases of pollinator specialization can reverse to more generalized interactions, breaking ‘Cope's rule of specialization’. PMID:23055065

  10. Evolution-guided adaptation of an adenylation domain substrate specificity to an unusual amino acid.

    Directory of Open Access Journals (Sweden)

    Simon Vobruba

    Full Text Available Adenylation domains CcbC and LmbC control the specific incorporation of amino acid precursors in the biosynthesis of lincosamide antibiotics celesticetin and lincomycin. Both proteins originate from a common L-proline-specific ancestor, but LmbC was evolutionary adapted to use an unusual substrate, (2S,4R-4-propyl-proline (PPL. Using site-directed mutagenesis of the LmbC substrate binding pocket and an ATP-[32P]PPi exchange assay, three residues, G308, A207 and L246, were identified as crucial for the PPL activation, presumably forming together a channel of a proper size, shape and hydrophobicity to accommodate the propyl side chain of PPL. Subsequently, we experimentally simulated the molecular evolution leading from L-proline-specific substrate binding pocket to the PPL-specific LmbC. The mere change of three amino acid residues in originally strictly L-proline-specific CcbC switched its substrate specificity to prefer PPL and even synthetic alkyl-L-proline derivatives with prolonged side chain. This is the first time that such a comparative study provided an evidence of the evolutionary relevant adaptation of the adenylation domain substrate binding pocket to a new sterically different substrate by a few point mutations. The herein experimentally simulated rearrangement of the substrate binding pocket seems to be the general principle of the de novo genesis of adenylation domains' unusual substrate specificities. However, to keep the overall natural catalytic efficiency of the enzyme, a more comprehensive rearrangement of the whole protein would probably be employed within natural evolution process.

  11. DiffeRential Evolution Adaptive Metropolis with Sampling From Past States

    Science.gov (United States)

    Vrugt, J. A.; Laloy, E.; Ter Braak, C.

    2010-12-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. In a previous paper te{vrugt_1} we have presented the {D}iffe{R}ential {E}volution {A}daptive {M}etropolis (DREAM) MCMC scheme that automatically tunes the scale and orientation of the proposal distribution during evolution to the posterior target distribution. In the same paper, detailed balance and ergodicity of DREAM have been proved, and various examples involving nonlinearity, high-dimensionality, and multimodality have shown that DREAM is generally superior to other adaptive MCMC sampling approaches. Standard DREAM requires at least N = d chains to be run in parallel, where d is the dimensionality of the posterior. Unfortunately, running many parallel chains is a potential source of inefficiency, as each individual chain must travel to high density region of the posterior. The lower the number of parallel chains required, the greater the practical applicability of DREAM for computationally demanding problems. This paper extends DREAM with a snooker updater and shows by simulation and real examples that DREAM can work for d up to 50-100 with far fewer parallel chains (e.g. N = 3) by generating jumps using differences of pairs of past states

  12. Molecular events in adaptive evolution of the hatching strategy of ovoviviparous fishes.

    Science.gov (United States)

    Kawaguchi, Mari; Tomita, Kenji; Sano, Kaori; Kaneko, Toyoji

    2015-01-01

    Ovoviviparous fish, whose embryonic development and hatching take place in the maternal body, is one of the good model organisms for studying adaptive evolution. Using genome database of the ovoviviparous platy Xiphophorus maculatus, we tried to search hatching enzyme genes (high choriolytic enzyme HCE and low choriolytic enzyme LCE) and egg envelope protein genes (choriogenin H, Hm, and L). Analysis of genes co-localized with them confirmed that shared synteny was found between platy and medaka genome. Both hatching enzyme genes HCE and LCE were pseudogenized in platy. In addition, one of the three choriogenin genes Hm was completely lost from the genome, the other two genes H and L encoded functional proteins. On the other hand, the expression of H and L was very low as compared to oviparous fishes, and the platy egg envelope was extremely thinner. Considering that ovoviviparous fish embryos are protected in the maternal body, an importance of egg envelope for protection of egg/embryo would be reduced in the ovoviviparous fishes. Platy embryos would escape from their thin egg envelope without help of hatching enzymes. In another ovoviviparous fish, black rockfish belonging to different order from the platy, one of the hatching enzyme genes has been reported to be pseudogenized, that is, the embryo of black rockfish can escape from egg envelope by only one hatching enzyme HCE. Adaptive evolution of the hatching strategy of ovoviviparous teleosts may be established by pseudogenization of hatching enzyme genes and/or lowering of expression and/or pseudogenization of hatching enzyme and egg envelope genes. © 2014 Wiley Periodicals, Inc.

  13. Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection.

    Science.gov (United States)

    Edward, Dominic A; Fricke, Claudia; Chapman, Tracey

    2010-08-27

    Artificial selection and experimental evolution document natural selection under controlled conditions. Collectively, these techniques are continuing to provide fresh and important insights into the genetic basis of evolutionary change, and are now being employed to investigate mating behaviour. Here, we focus on how selection techniques can reveal the genetic basis of post-mating adaptations to sexual selection and sexual conflict. Alteration of the operational sex ratio of adult Drosophila over just a few tens of generations can lead to altered ejaculate allocation patterns and the evolution of resistance in females to the costly effects of elevated mating rates. We provide new data to show how male responses to the presence of rivals can evolve. For several traits, the way in which males responded to rivals was opposite in lines selected for male-biased, as opposed to female-biased, adult sex ratio. This shows that the manipulation of the relative intensity of intra- and inter-sexual selection can lead to replicable and repeatable effects on mating systems, and reveals the potential for significant contemporary evolutionary change. Such studies, with important safeguards, have potential utility for understanding sexual selection and sexual conflict across many taxa. We discuss how artificial selection studies combined with genomics will continue to deepen our knowledge of the evolutionary principles first laid down by Darwin 150 years ago.

  14. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae.

    Science.gov (United States)

    Givnish, Thomas J; Barfuss, Michael H J; Van Ee, Benjamin; Riina, Ricarda; Schulte, Katharina; Horres, Ralf; Gonsiska, Philip A; Jabaily, Rachel S; Crayn, Darren M; Smith, J Andrew C; Winter, Klaus; Brown, Gregory K; Evans, Timothy M; Holst, Bruce K; Luther, Harry; Till, Walter; Zizka, Georg; Berry, Paul E; Sytsma, Kenneth J

    2014-02-01

    We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C₃ vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.

  15. The recognition signal hypothesis for the adaptive evolution of religion : a phylogenetic test with Christian denominations.

    Science.gov (United States)

    Matthews, Luke J

    2012-06-01

    Recent research on the evolution of religion has focused on whether religion is an unselected by-product of evolutionary processes or if it is instead an adaptation by natural selection. Adaptive hypotheses for religion include direct fitness benefits from improved health and indirect fitness benefits mediated by costly signals and/or cultural group selection. Herein, I propose that religious denominations achieve indirect fitness gains for members through the use of ecologically arbitrary beliefs, rituals, and moral rules that function as recognition markers of cultural inheritance analogous to kin and species recognition of genetic inheritance in biology. This recognition signal hypotheses could act in concert with either costly signaling or cultural group selection to produce evolutionarily altruistic behaviors within denominations. Using a cultural phylogenetic analysis, I show that a large set of religious behaviors among extant Christian denominations supports the prediction of the recognition signal hypothesis that characters change more frequently near historical schisms. By incorporating demographic data into the model, I show that more-distinctive denominations, as measured through dissimilar characteristics, appear to be protected from intrusion by nonmembers in mixed-denomination households, and that they may be experiencing greater biological growth of their populations even in the present day.

  16. Adaptive evolution of simian immunodeficiency viruses isolated from two conventional progressor macaques with neuroaids

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Brian T [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory

    2008-01-01

    Simian immunodeficiency virus infection of macaques may result in neuroAIDS, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. This is the first report of two conventional progressors (H631 and H636) with encephalitis in rhesus macaques inoculated with a derivative of SIVsmES43-3. Phylogenetic analyses of viruses isolated from the cerebral spinal fluid (CSF) and plasma from both animals demonstrated tissue compartmentalization. Additionally, virus from the central nervous system (CNS) was able to infect primary macaque monocyte-derived macrophages more efficiently than virus from plasma. Conversely, virus isolated from plasma was able to replicate better in peripheral blood mononuclear cells than virus from CNS. We speculate that these viruses were under different selective pressures in their separate compartments. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets. Analysis of the number of potential N-linked glycosylation sites (PNGS) in gp160 showed that there was a statistically significant loss of PNGS in viruses isolated from CNS in both macaques compared to SIVsmE543-3. Moreover, virus isolated from the brain in H631, had statistically significant loss of PNGS compared to virus isolated from CSF and plasma of the same animal. It is possible that the brain isolate may have adapted to decrease the number of PNGS given that humoral immune selection pressure is less likely to be encountered in the brain. These viruses provide a relevant model to study the adaptations required for SIV to induce encephalitis.

  17. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod.

    Science.gov (United States)

    Hut, R A; Beersma, D G M

    2011-07-27

    Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a 'clock') that is synchronized ('entrained') to the environmental cycle by receptor mechanisms responding to relevant environmental signals ('Zeitgeber', i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes.

  18. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization.

    Science.gov (United States)

    Islam, Sk Minhazul; Das, Swagatam; Ghosh, Saurav; Roy, Subhrajit; Suganthan, Ponnuthurai Nagaratnam

    2012-04-01

    Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, is a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.

  19. Gonadal transcriptomics elucidate patterns of adaptive evolution within marine rockfishes (Sebastes).

    Science.gov (United States)

    Heras, Joseph; McClintock, Kelly; Sunagawa, Shinichi; Aguilar, Andres

    2015-09-02

    The genetic mechanisms of speciation and adaptation in the marine environment are not well understood. The rockfish genus Sebastes provides a unique model system for studying adaptive evolution because of the extensive diversity found within this group, which includes morphology, ecology, and a broad range of life spans. Examples of adaptive radiations within marine ecosystems are considered an anomaly due to the absence of geographical barriers and the presence of gene flow. Using marine rockfishes, we identified signatures of natural selection from transcriptomes developed from gonadal tissue of two rockfish species (Sebastes goodei and S. saxicola). We predicted orthologous transcript pairs, and estimated their distributions of nonsynonymous (Ka) and synonymous (Ks) substitution rates. We identified 144 genes out of 1079 orthologous pairs under positive selection, of which 11 are functionally annotated to reproduction based on gene ontologies (GOs). One orthologous pair of the zona pellucida gene family, which is known for its role in the selection of sperm by oocytes, out of ten was identified to be evolving under positive selection. In addition to our results in the protein coding-regions of transcripts, we found substitution rates in 3' and 5' UTRs to be significantly lower than Ks substitution rates implying negative selection in these regions. We were able to identify a series of candidate genes that are useful for the assessment of the critical genes that diverged and are responsible for the radiation within this genus. Genes associated with longevity hold potential for understanding the molecular mechanisms that have contributed to the radiation within this genus.

  20. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-01-09

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2017-01-01

    Adaptive laboratory evolution (ALE) is a widely-used method for improving the fitness of microorganisms in selected environmental conditions. It has been applied previously to Escherichia coli K-12 MG1655 during aerobic exponential growth on glucose minimal media, a frequently used model organism...

  2. Future Scenarios as a Research Tool: Investigating Climate Change Impacts, Adaptation Options and Outcomes for the Great Barrier Reef, Australia.

    Science.gov (United States)

    Evans, Louisa S; Hicks, Christina C; Fidelman, Pedro; Tobin, Renae C; Perry, Allison L

    2013-01-01

    Climate change is a significant future driver of change in coastal social-ecological systems. Our knowledge of impacts, adaptation options, and possible outcomes for marine environments and coastal industries is expanding, but remains limited and uncertain. Alternative scenarios are a way to explore potential futures under a range of conditions. We developed four alternative future scenarios for the Great Barrier Reef and its fishing and tourism industries positing moderate and more extreme (2-3 °C above pre-industrial temperatures) warming for 2050 and contrasting 'limited' and 'ideal' ecological and social adaptation. We presented these scenarios to representatives of key stakeholder groups to assess the perceived viability of different social adaptation options to deliver desirable outcomes under varied contexts.

  3. Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms.

    Directory of Open Access Journals (Sweden)

    Minjun Yang

    Full Text Available Edwardsiella bacteria are leading fish pathogens causing huge losses to aquaculture industries worldwide. E. tarda is a broad-host range pathogen that infects more than 20 species of fish and other animals including humans while E. ictaluri is host-adapted to channel catfish causing enteric septicemia of catfish (ESC. Thus, these two species consist of a useful comparative system for studying the intricacies of pathogen evolution. Here we present for the first time the phylogenomic comparisons of 8 genomes of E. tarda and E. ictaluri isolates. Genome-based phylogenetic analysis revealed that E. tarda could be separate into two kinds of genotypes (genotype I, EdwGI and genotype II, EdwGII based on the sequence similarity. E. tarda strains of EdwGI were clustered together with the E. ictaluri lineage and showed low sequence conservation to E. tarda strains of EdwGII. Multilocus sequence analysis (MLSA of 48 distinct Edwardsiella strains also supports the new taxonomic relationship of the lineages. We identified the type III and VI secretion systems (T3SS and T6SS as well as iron scavenging related genes that fulfilled the criteria of a key evolutionary factor likely facilitating the virulence evolution and adaptation to a broad range of hosts in EdwGI E. tarda. The surface structure-related genes may underlie the adaptive evolution of E. ictaluri in the host specification processes. Virulence and competition assays of the null mutants of the representative genes experimentally confirmed their contributive roles in the evolution/niche adaptive processes. We also reconstructed the hypothetical evolutionary pathway to highlight the virulence evolution and niche adaptation mechanisms of Edwardsiella. This study may facilitate the development of diagnostics, vaccines, and therapeutics for this under-studied pathogen.

  4. The Evolution of Epigean and Stygobitic Species of Koonunga Sayce, 1907 (Syncarida: Anaspidacea in Southern Australia, with the Description of Three New Species.

    Directory of Open Access Journals (Sweden)

    Remko Leijs

    Full Text Available Three new species of Koonunga were discovered in surface and subterranean waters in southern Australia, and were defined using mtDNA analyses and morphology. The new species are: Koonunga hornei Leijs & King; K. tatiaraensis Leijs & King and K. allambiensis Leijs & King. Molecular clock analyses indicate that the divergence times of the species are older than the landscape that they currently inhabit. Different scenarios explaining this apparent discrepancy are discussed in the context of the palaeography of the area. A freshwater epigean origin for Koonunga is considered the most likely hypothesis, whereby some lineages made the transition to the subterranean environment within the last few million years influenced by significant climatic cooling/drying. We discuss the possibility that one stygobitic lineage secondarily regained some of its body pigmentation as adaptation to increased photic conditions after cave collapse and forming of cenotes during the last glacial maximum.

  5. Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches.

    Science.gov (United States)

    Saito, Shigeru; Ohkita, Masashi; Saito, Claire T; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2016-05-20

    Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO.

    Science.gov (United States)

    Studer, Romain A; Christin, Pascal-Antoine; Williams, Mark A; Orengo, Christine A

    2014-02-11

    A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.

  7. Two goose-type lysozymes in Mytilus galloprovincialis: possible function diversification and adaptive evolution.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available Two goose-type lysozymes (designated as MGgLYZ1 and MGgLYZ2 were identified from the mussel Mytilus galloprovincialis. MGgLYZ1 mRNA was widely expressed in the examined tissues and responded sensitively to bacterial challenge in hemocytes, while MGgLYZ2 mRNA was predominately expressed and performed its functions in hepatopancreas. However, immunolocalization analysis showed that both these lysozymes were expressed in all examined tissues with the exception of adductor muscle. Recombinant MGgLYZ1 and MGgLYZ2 could inhibit the growth of several Gram-positive and Gram-negative bacteria, and they both showed the highest activity against Pseudomonas putida with the minimum inhibitory concentration (MIC of 0.95-1.91 µM and 1.20-2.40 µM, respectively. Protein sequences analysis revealed that MGgLYZ2 had lower isoelectric point and less protease cutting sites than MGgLYZ1. Recombinant MGgLYZ2 exhibited relative high activity at acidic pH of 4-5, while MGgLYZ1 have an optimum pH of 6. These results indicated MGgLYZ2 adapted to acidic environment and perhaps play an important role in digestion. Genomic structure analysis suggested that both MGgLYZ1 and MGgLYZ2 genes are composed of six exons with same length and five introns, indicating these genes were conserved and might originate from gene duplication during the evolution. Selection pressure analysis showed that MGgLYZ1 was under nearly neutral selection while MGgLYZ2 evolved under positive selection pressure with three positively selected amino acid residues (Y(102, L(200 and S(202 detected in the mature peptide. All these findings suggested MGgLYZ2 perhaps served as a digestive lysozyme under positive selection pressure during the evolution while MGgLYZ1 was mainly involved in innate immune responses.

  8. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    Science.gov (United States)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  9. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy.

    Science.gov (United States)

    Kleijnen, Jean-Paul J E; van Asselen, Bram; Burbach, Johannes P M; Intven, Martijn; Philippens, Marielle E P; Reerink, Onne; Lagendijk, Jan J W; Raaymakers, Bas W

    2016-01-07

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  10. Adaptation of the pathogen, Pseudomonas syringae, during experimental evolution on a native vs. alternative host plant.

    Science.gov (United States)

    Meaden, Sean; Koskella, Britt

    2017-04-01

    The specialization and distribution of pathogens among species has substantial impact on disease spread, especially when reservoir hosts can maintain high pathogen densities or select for increased pathogen virulence. Theory predicts that optimal within-host growth rate will vary among host genotypes/species and therefore that pathogens infecting multiple hosts should experience different selection pressures depending on the host environment in which they are found. This should be true for pathogens with broad host ranges, but also those experiencing opportunistic infections on novel hosts or that spill over among host populations. There is very little empirical data, however, regarding how adaptation to one host might directly influence infectivity and growth on another. We took an experimental evolution approach to examine short-term adaptation of the plant pathogen, Pseudomonas syringae pathovar tomato, to its native tomato host compared with an alternative host, Arabidopsis, in either the presence or absence of bacteriophages. After four serial passages (20 days of selection in planta), we measured bacterial growth of selected lines in leaves of either the focal or alternative host. We found that passage through Arabidopsis led to greater within-host bacterial densities in both hosts than did passage through tomato. Whole genome resequencing of evolved isolates identified numerous single nucleotide polymorphisms based on our novel draft assembly for strain PT23. However, there was no clear pattern of clustering among plant selection lines at the genetic level despite the phenotypic differences observed. Together, the results emphasize that previous host associations can influence the within-host growth rate of pathogens. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  11. Niche evolution and thermal adaptation in the temperate species Drosophila americana.

    Science.gov (United States)

    Sillero, N; Reis, M; Vieira, C P; Vieira, J; Morales-Hojas, R

    2014-08-01

    The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  12. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Directory of Open Access Journals (Sweden)

    Lu Liang

    Full Text Available Bats and cetaceans (i.e., whales, dolphins, porpoises are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii and cetaceans (represented by Tursiops truncatus for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.

  13. Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH.

    Science.gov (United States)

    Overbeck, Tom J; Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2017-10-15

    This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the Δ mutS lesion was repaired in representative L. casei 12A and ATCC 334 Δ mutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted Δ mutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted Δ mutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A Δ mutS mutant derivative showed that NADH dehydrogenase ( ndh ), phosphate transport ATP-binding protein PstB ( pstB ), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase ( hpk ) genes act in combination to increase lactic acid resistance in L. casei 12A. IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA

  14. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.

    Science.gov (United States)

    Douglas, Madeline G; Kocher, Jacob F; Scobey, Trevor; Baric, Ralph S; Cockrell, Adam S

    2017-12-22

    We recently established a mouse model (288-330 +/+ ) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 10 6 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 10 3 and 10 5 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae).

    Science.gov (United States)

    Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L

    2017-03-01

    Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  17. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis

    Directory of Open Access Journals (Sweden)

    Barton Robert A

    2010-01-01

    Full Text Available Abstract Background Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question. Results We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of Homo floresiensis, we find a number of scenarios under which the proposed evolution of Homo floresiensis' small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position. Conclusions Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of Homo floresiensis and better body mass estimates are required to confirm the plausibility of the evolution of its small brain

  18. Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia

    Science.gov (United States)

    Foo, Shawna A; Dworjanyn, Symon A; Khatkar, Mehar S; Poore, Alistair G B; Byrne, Maria

    2014-01-01

    To predict the effects of global change on marine populations, it is important to measure the effects of climate stressors on performance and potential for adaptation. Adaptation depends on heritable genetic variance for stress tolerance being present in populations. We determined the effects of near-future ocean conditions on fertilization success of the sea urchin Pseudoboletia indiana. In 16 multiple dam-sire crosses, we quantified genetic variation in tolerance of warming (+3°C) and acidification (−0.3 to 0.5 pH units) at the gastrulation stage. Ocean acidification decreased fertilization across all dam-sire combinations with effects of pH significantly differing among the pairings. Decreased pH reduced the percentage of normal gastrulae with negative effects alleviated by increased temperature. Significant sire by environment interactions indicated the presence of heritable variation in tolerance of stressors at gastrulation and thus the potential for selection of resistant genotypes, which may enhance population persistence. A low genetic correlation indicated that genotypes that performed well at gastrulation in low pH did not necessarily perform well at higher temperatures. Furthermore, performance at fertilization was not necessarily a good predictor of performance at the later stage of gastrulation. Southern range edge populations of Pseudoboletia indiana may benefit from future warming with potential for extension of their distribution in south-east Australia. PMID:25558283

  19. Geodynamic evolution of the West and Central Pilbara Craton in Western Australia : a mid-Archaean active continental margin

    NARCIS (Netherlands)

    Beintema, K.A.

    2003-01-01

    The Archaean era lasted for about one third of the Earth's history, from ca 4.0 until 2.5 billion years ago. Because the Archaean spans such a long time, knowledge about this era is for understanding the evolution of the Earth until the present day, especially because it is the time

  20. Geodynamic evolution of the West and Central Pilbara Craton in Western Australia : a mid-Archaean active continental margin

    NARCIS (Netherlands)

    Beintema, K.A.

    2003-01-01

    The Archaean era lasted for about one third of the Earth's history, from ca 4.0 until 2.5 billion years ago. Because the Archaean spans such a long time, knowledge about this era is for understanding the evolution of the Earth until the present day, especially because it is the time offormation of

  1. A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach.

    Science.gov (United States)

    Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao

    2018-03-22

    The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    Science.gov (United States)

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  3. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies.

    Science.gov (United States)

    Horinouchi, Takaaki; Sakai, Aki; Kotani, Hazuki; Tanabe, Kumi; Furusawa, Chikara

    2017-08-10

    Isopropanol (IPA) is the secondary alcohol that can be dehydrated to yield propylene. To produce IPA using microorganisms, a significant issue is that the toxicity of IPA causes retardation or inhibition of cell growth, decreasing the yield. One possible strategy to overcome this problem is to improve IPA tolerance of production organisms. For the understanding of tolerance to IPA, we performed parallel adaptive laboratory evolution (ALE) of Escherichia coli under IPA stress. To identify the genotypic change during ALE, we performed genome re-sequencing analyses of obtained tolerant strains. To verify which mutations were contributed to IPA tolerance, we constructed the mutant strains and quantify the IPA tolerance of the constructed mutants. From these analyses, we found that five mutations (relA, marC, proQ, yfgO, and rraA) provided the increase of IPA tolerance. To understand the phenotypic change during ALE, we performed transcriptome analysis of tolerant strains. From transcriptome analysis, we found that expression levels of genes related to biosynthetic pathways of amino acids, iron ion homeostasis, and energy metabolisms were changed in the tolerant strains. Results from these experiments provide fundamental bases for designing IPA tolerant strains for industrial purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multiple-try differential evolution adaptive Metropolis for efficient solution of highly parameterized models

    Science.gov (United States)

    Eric, L.; Vrugt, J. A.

    2010-12-01

    Spatially distributed hydrologic models potentially contain hundreds of parameters that need to be derived by calibration against a historical record of input-output data. The quality of this calibration strongly determines the predictive capability of the model and thus its usefulness for science-based decision making and forecasting. Unfortunately, high-dimensional optimization problems are typically difficult to solve. Here we present our recent developments to the Differential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2009) to warrant efficient solution of high-dimensional parameter estimation problems. The algorithm samples from an archive of past states (Ter Braak and Vrugt, 2008), and uses multiple-try Metropolis sampling (Liu et al., 2000) to decrease the required burn-in time for each individual chain and increase efficiency of posterior sampling. This approach is hereafter referred to as MT-DREAM. We present results for 2 synthetic mathematical case studies, and 2 real-world examples involving from 10 to 240 parameters. Results for those cases show that our multiple-try sampler, MT-DREAM, can consistently find better solutions than other Bayesian MCMC methods. Moreover, MT-DREAM is admirably suited to be implemented and ran on a parallel machine and is therefore a powerful method for posterior inference.

  5. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typi...... in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots....... typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog - Shh; Indian hedgehog - Ihh; and Desert hedgehog - Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification....... In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive...

  6. Forecasting of currency exchange rates using an adaptive ARMA model with differential evolution based training

    Directory of Open Access Journals (Sweden)

    Minakhi Rout

    2014-01-01

    Full Text Available To alleviate the limitations of statistical based methods of forecasting of exchange rates, soft and evolutionary computing based techniques have been introduced in the literature. To further the research in this direction this paper proposes a simple but promising hybrid prediction model by suitably combining an adaptive autoregressive moving average (ARMA architecture and differential evolution (DE based training of its feed-forward and feed-back parameters. Simple statistical features are extracted for each exchange rate using a sliding window of past data and are employed as input to the prediction model for training its internal coefficients using DE optimization strategy. The prediction efficiency is validated using past exchange rates not used for training purpose. Simulation results using real life data are presented for three different exchange rates for one–fifteen months’ ahead predictions. The results of the developed model are compared with other four competitive methods such as ARMA-particle swarm optimization (PSO, ARMA-cat swarm optimization (CSO, ARMA-bacterial foraging optimization (BFO and ARMA-forward backward least mean square (FBLMS. The derivative based ARMA-FBLMS forecasting model exhibits worst prediction performance of the exchange rates. Comparisons of different performance measures including the training time of the all three evolutionary computing based models demonstrate that the proposed ARMA-DE exchange rate prediction model possesses superior short and long range prediction potentiality compared to others.

  7. Evolution of age-dependent sex-reversal under adaptive dynamics.

    Science.gov (United States)

    Calsina, Angel; Ripoll, Jordi

    2010-02-01

    We investigate the evolution of the age (or size) at sex-reversal in a model of sequential hermaphroditism, by means of the function-valued adaptive dynamics. The trait is the probability law of the age at sex-reversal considered as a random variable. Our analysis starts with the ecological model which was first introduced and analyzed by Calsina and Ripoll (Math Biosci 208(2), 393-418, 2007). The structure of the population is extended to a genotype class and a new model for an invading/mutant population is introduced. The invasion fitness functional is derived from the ecological setting, and it turns out to be controlled by a formula of Shaw-Mohler type. The problem of finding evolutionarily stable strategies is solved by means of infinite-dimensional linear optimization. We have found that these strategies correspond to sex-reversal at a single particular age (or size) even if the set of feasible strategies is considerably broader and allows for a probabilistic sex-reversal. Several examples, including in addition the population-dynamical stability, are illustrated. For a special case, we can show that an unbeatable size at sex-reversal must be larger than 69.3% of the expected size at death.

  8. Adaptive simplification and the evolution of gecko locomotion: Morphological and biomechanical consequences of losing adhesion

    Science.gov (United States)

    Higham, Timothy E.; Birn-Jeffery, Aleksandra V.; Collins, Clint E.; Hulsey, C. Darrin; Russell, Anthony P.

    2015-01-01

    Innovations permit the diversification of lineages, but they may also impose functional constraints on behaviors such as locomotion. Thus, it is not surprising that secondary simplification of novel locomotory traits has occurred several times among vertebrates and could potentially lead to exceptional divergence when constraints are relaxed. For example, the gecko adhesive system is a remarkable innovation that permits locomotion on surfaces unavailable to other animals, but has been lost or simplified in species that have reverted to a terrestrial lifestyle. We examined the functional and morphological consequences of this adaptive simplification in the Pachydactylus radiation of geckos, which exhibits multiple unambiguous losses or bouts of simplification of the adhesive system. We found that the rates of morphological and 3D locomotor kinematic evolution are elevated in those species that have simplified or lost adhesive capabilities. This finding suggests that the constraints associated with adhesion have been circumvented, permitting these species to either run faster or burrow. The association between a terrestrial lifestyle and the loss/reduction of adhesion suggests a direct link between morphology, biomechanics, and ecology. PMID:25548182

  9. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown.

    Science.gov (United States)

    McGowen, Michael R; Grossman, Lawrence I; Wildman, Derek E

    2012-09-22

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10,000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains.

  10. Recent Recombination Events in the Core Genome Are Associated with Adaptive Evolution in Enterococcus faecium

    Science.gov (United States)

    de Been, Mark; van Schaik, Willem; Cheng, Lu; Corander, Jukka; Willems, Rob J.

    2013-01-01

    Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species’ rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen. PMID:23882129

  11. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  12. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    Science.gov (United States)

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. © 2013.

  13. Evolution of static allometries: adaptive change in allometric slopes of eye span in stalk-eyed flies.

    Science.gov (United States)

    Voje, Kjetil L; Hansen, Thomas F

    2013-02-01

    Julian Huxley showed that within-species (static) allometric (power-law) relations can arise from proportional growth regulation with the exponent in the power law equaling the factor of proportionality. Allometric exponents may therefore be hard to change and act as constraints on the independent evolution of traits. In apparent contradiction to this, many empirical studies have concluded that static allometries are evolvable. Many of these studies have been based, however, on a broad definition of allometry that includes any monotonic shape change with size, and do not falsify the hypothesis of constrained narrow-sense allometry. Here, we present the first phylogenetic comparative study of narrow-sense allometric exponents based on a reanalysis of data on eye span and body size in stalk-eyed flies (Diopsidae). Consistent with a role in sexual selection, we found strong evidence that male slopes were tracking "optima" based on sexual dimorphism and relative male trait size. This tracking was slow, however, with estimated times of 2-3 million years for adaptation to exceed ancestral influence on the trait. Our results are therefore consistent with adaptive evolution on million-year time scales, but cannot rule out that static allometry may act as a constraint on eye-span adaptation at shorter time scales. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  14. Adaptation and convergent evolution within the Jamesonia-Eriosorus complex in high-elevation biodiverse Andean hotspots.

    Science.gov (United States)

    Sánchez-Baracaldo, Patricia; Thomas, Gavin H

    2014-01-01

    The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot.

  15. The roles of life-history selection and sexual selection in the adaptive evolution of mating behavior in a beetle.

    Science.gov (United States)

    Maklakov, Alexei A; Cayetano, Luis; Brooks, Robert C; Bonduriansky, Russell

    2010-05-01

    Although there is continuing debate about whether sexual selection promotes or impedes adaptation to novel environments, the role of mating behavior in such adaptation remains largely unexplored. We investigated the evolution of mating behavior (latency to mating, mating probability and duration) in replicate populations of seed beetles Callosobruchus maculatus subjected to selection on life-history ("Young" vs. "Old" reproduction) under contrasting regimes of sexual selection ("Monogamy" vs. "Polygamy"). Life-history selection is predicted to favor delayed mating in "Old" females, but sexual conflict under polygamy can potentially retard adaptive life-history evolution. We found that life-history selection yielded the predicted changes in mating behavior, but sexual selection regime had no net effect. In within-line crosses, populations selected for late reproduction showed equally reduced early-life mating probability regardless of mating system. In between-line crosses, however, the effect of life-history selection on early-life mating probability was stronger in polygamous lines than in monogamous ones. Thus, although mating system influenced male-female coevolution, removal of sexual selection did not affect the adaptive evolution of mating behavior. Importantly, our study shows that the interaction between sexual selection and life-history selection can result in either increased or decreased reproductive divergence depending on the ecological context.

  16. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  17. Models of reforestation productivity and carbon sequestration for land use and climate change adaptation planning in South Australia.

    Science.gov (United States)

    Hobbs, Trevor J; Neumann, Craig R; Meyer, Wayne S; Moon, Travis; Bryan, Brett A

    2016-10-01

    Environmental management and regional land use planning has become more complex in recent years as growing world population, climate change, carbon markets and government policies for sustainability have emerged. Reforestation and agroforestry options for environmental benefits, carbon sequestration, economic development and biodiversity conservation are now important considerations of land use planners. New information has been collected and regionally-calibrated models have been developed to facilitate better regional land use planning decisions and counter the limitations of currently available models of reforestation productivity and carbon sequestration. Surveys of above-ground biomass of 264 reforestation sites (132 woodlots, 132 environmental plantings) within the agricultural regions of South Australia were conducted, and combined with spatial information on climate and soils, to develop new spatial and temporal models of plant density and above-ground biomass productivity from reforestation. The models can be used to estimate productivity and total carbon sequestration (i.e. above-ground + below-ground biomass) under a continuous range of planting designs (e.g. variable proportions of trees and shrubs or plant densities), timeframes and future climate scenarios. Representative spatial models (1 ha resolution) for 3 reforestation designs (i.e. woodlots, typical environmental planting, biodiverse environmental plantings) × 3 timeframes (i.e. 25, 45, 65 years) × 4 possible climates (i.e. no change, mild, moderate, severe warming and drying) were generated (i.e. 36 scenarios) for use within land use planning tools. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures...

  19. Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Pedersen, Margit; LaCroix, Ryan A.

    2014-01-01

    Adaptive laboratory evolution (ALE) has emerged as a valuable method by which to investigate microbial adaptation to a desired environment. Here, we performed ALE to 42 °C of ten parallel populations of Escherichia coli K-12 MG1655 grown in glucose minimal media. Tightly controlled experimental...... a general feature of ALE experiments. The widespread evolved expression shifts were enabled by a comparatively scant number of regulatory mutations, providing a net fitness benefit but causing suboptimal expression levels for certain genes, such as those governing flagellar formation, which then became...

  20. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  1. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  2. Adaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus.

    Science.gov (United States)

    Monjane, Adérito L; Pande, Daniel; Lakay, Francisco; Shepherd, Dionne N; van der Walt, Eric; Lefeuvre, Pierre; Lett, Jean-Michel; Varsani, Arvind; Rybicki, Edward P; Martin, Darren P

    2012-12-27

    Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV and TYLCV we

  3. Adaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus

    Directory of Open Access Journals (Sweden)

    Monjane Adérito L

    2012-12-01

    Full Text Available Abstract Background Single-stranded (ss DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus, with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus. Results Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing

  4. Which Beak Fits the Bill? An Activity Examining Adaptation, Natural Selection and Evolution

    Science.gov (United States)

    Darling, Randi

    2014-01-01

    Evolution is a unifying concept within biology. In fact, Dobzhansky, a noted evolutionary biologist, argued, "Nothing in biology makes sense except in the light of evolution" (Dobzhansky, 1973). However, often students have misconceptions about evolution. There are a number of available activities where students use tools (representing…

  5. Ecological Divergence, Adaptive Diversification, and the Evolution of Social Signaling Traits: An Empirical Study in Arid Australian Lizards.

    Science.gov (United States)

    Edwards, Danielle L; Melville, Jane; Joseph, Leo; Keogh, J Scott

    2015-12-01

    Species diversification often results from divergent evolution of ecological or social signaling traits. Theoretically, a combination of the two may promote speciation, however, empirical examples studying how social signal and ecological divergence might be involved in diversification are rare in general and typically do not consider range overlap as a contributing factor. We show that ecologically distinct lineages within the Australian sand dragon species complex (including Ctenophorus maculatus, Ctenophorus fordi, and Ctenophorus femoralis) have diversified recently, diverging in ecologically relevant and social signaling phenotypic traits as arid habitats expanded and differentiated. Diversification has resulted in repeated and independent invasion of distinct habitat types, driving convergent evolution of similar phenotypes. Our results suggest that parapatry facilitates diversification in visual signals through reinforcement as a hybridization-avoidance mechanism. We show that particularly striking variation in visual social signaling traits is better explained by the extent of lineage parapatry relative to ecological or phylogenetic divergence, suggesting that these traits reinforce divergence among lineages initiated by ecologically adaptive evolution. This study provides a rare empirical example of a repeated, intricate relationship between ecological and social signal evolution during diversification driven by ecological divergence and the evolution of new habitats, thereby supporting emergent theories regarding the importance of both ecological and social trait evolution throughout speciation.

  6. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  7. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

    Science.gov (United States)

    Peris, David; Moriarty, Ryan V; Alexander, William G; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K; Libkind, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E; Fay, Justin C; Sato, Trey K; Hittinger, Chris Todd

    2017-01-01

    Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae . Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to

  8. The evolution of the capacity for language: the ecological context and adaptive value of a process of cognitive hijacking.

    Science.gov (United States)

    Kolodny, Oren; Edelman, Shimon

    2018-04-05

    Language plays a pivotal role in the evolution of human culture, yet the evolution of the capacity for language-uniquely within the hominin lineage-remains little understood. Bringing together insights from cognitive psychology, neuroscience, archaeology and behavioural ecology, we hypothesize that this singular occurrence was triggered by exaptation, or 'hijacking', of existing cognitive mechanisms related to sequential processing and motor execution. Observed coupling of the communication system with circuits related to complex action planning and control supports this proposition, but the prehistoric ecological contexts in which this coupling may have occurred and its adaptive value remain elusive. Evolutionary reasoning rules out most existing hypotheses regarding the ecological context of language evolution, which focus on ultimate explanations and ignore proximate mechanisms. Coupling of communication and motor systems, although possible in a short period on evolutionary timescales, required a multi-stepped adaptive process, involving multiple genes and gene networks. We suggest that the behavioural context that exerted the selective pressure to drive these sequential adaptations had to be one in which each of the systems undergoing coupling was independently necessary or highly beneficial, as well as frequent and recurring over evolutionary time. One such context could have been the teaching of tool production or tool use. In the present study, we propose the Cognitive Coupling hypothesis, which brings together these insights and outlines a unifying theory for the evolution of the capacity for language.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Authors.

  9. Complex adaptations can drive the evolution of the capacitor [PSI], even with realistic rates of yeast sex.

    Science.gov (United States)

    Griswold, Cortland K; Masel, Joanna

    2009-06-01

    The [PSI(+)] prion may enhance evolvability by revealing previously cryptic genetic variation, but it is unclear whether such evolvability properties could be favored by natural selection. Sex inhibits the evolution of other putative evolvability mechanisms, such as mutator alleles. This paper explores whether sex also prevents natural selection from favoring modifier alleles that facilitate [PSI(+)] formation. Sex may permit the spread of "cheater" alleles that acquire the benefits of [PSI(+)] through mating without incurring the cost of producing [PSI(+)] at times when it is not adaptive. Using recent quantitative estimates of the frequency of sex in Saccharomyces paradoxus, we calculate that natural selection for evolvability can drive the evolution of the [PSI(+)] system, so long as yeast populations occasionally require complex adaptations involving synergistic epistasis between two loci. If adaptations are always simple and require substitution at only a single locus, then the [PSI(+)] system is not favored by natural selection. Obligate sex might inhibit the evolution of [PSI(+)]-like systems in other species.

  10. Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean

    Science.gov (United States)

    Trull, Tom; Rintoul, Stephen R.; Hadfield, Mark; Abraham, Edward R.

    The Southern Ocean Iron Release Experiment (SOIREE) was carried out in late summer (February 1999) south of Australia (61°S, 140°E). This region of the southern Antarctic Zone (AZ-S), between the southern branch of the Polar Front (PF) and the southern front of the Antarctic Circumpolar Current (SAACF), is characterized by weak currents and is remote from the influence of sea-ice or coastal waters. The SOIREE site exhibits high nutrient concentrations year-round (phosphate, nitrate and silicate remain above 10 μM), low chlorophyll accumulations (production is complete. No increase in carbon export occurred during the SOIREE 13-day observation period. The seasonal cycles of mixed-layer development and low biomass accumulation at the SOIREE site are representative of most of the region between the PF and the SACCF, i.e. between ˜54 and ˜62°S, and to a lesser extent the Polar Frontal Zone. However, north of ˜59°S surface waters are depleted in silica by mid-summer (as occurs year-round north of the Subantarctic Front). A different response to iron fertilization is likely under these conditions, possibly the promotion of lightly silicified diatoms and non-siliceous organisms, whose ability to export carbon is uncertain. The SOIREE fertilized waters are likely to have remained at the surface in the AZ-S throughout the winter. In general, carbon sequestration by subduction of iron-enhanced biomass accumulations is unlikely south of the SAF, except in very limited regions. Moreover, intermediate water masses formed in the Southern Ocean sink with little pre-formed silicate, so that the "silica pump" is already working at close to maximal capacity. Therefore, in the absence of significant changes in community structure or algal physiology, which increase the ratio of carbon export to silicate export, increased iron supply is unlikely to increase the magnitude of carbon sequestration.

  11. High-throughput sequencing of transposable element insertions suggests adaptive evolution of the invasive Asian tiger mosquito towards temperate environments.

    Science.gov (United States)

    Goubert, Clement; Henri, Helene; Minard, Guillaume; Valiente Moro, Claire; Mavingui, Patrick; Vieira, Cristina; Boulesteix, Matthieu

    2017-08-01

    Invasive species represent unique opportunities to evaluate the role of local adaptation during colonization of new environments. Among these species, the Asian tiger mosquito, Aedes albopictus, is a threatening vector of several human viral diseases, including dengue and chikungunya, and raises concerns about the Zika fever. Its broad presence in both temperate and tropical environments has been considered the reflection of great "ecological plasticity." However, no study has been conducted to assess the role of adaptive evolution in the ecological success of Ae. albopictus at the molecular level. In the present study, we performed a genomic scan to search for potential signatures of selection leading to local adaptation in one-hundred-forty field-collected mosquitoes from native populations of Vietnam and temperate invasive populations of Europe. High-throughput genotyping of transposable element insertions led to the discovery of more than 120,000 polymorphic loci, which, in their great majority, revealed a virtual absence of structure between the biogeographic areas. Nevertheless, 92 outlier loci showed a high level of differentiation between temperate and tropical populations. The majority of these loci segregate at high insertion frequencies among European populations, indicating that this pattern could have been caused by recent adaptive evolution events in temperate areas. An analysis of the overlapping and neighbouring genes highlighted several candidates, including diapause, lipid and juvenile hormone pathways. © 2017 John Wiley & Sons Ltd.

  12. Cooperative Learning Groups and the Evolution of Human Adaptability : (Another Reason) Why Hermits Are Rare in Tonga and Elsewhere.

    Science.gov (United States)

    Bell, Adrian Viliami; Hernandez, Daniel

    2017-03-01

    Understanding the prevalence of adaptive culture in part requires understanding the dynamics of learning. Here we explore the adaptive value of social learning in groups and how formal social groups function as effective mediums of information exchange. We discuss the education literature on Cooperative Learning Groups (CLGs), which outlines the potential of group learning for enhancing learning outcomes. Four qualities appear essential for CLGs to enhance learning: (1) extended conversations, (2) regular interactions, (3) gathering of experts, and (4) incentives for sharing knowledge. We analyze these four qualities within the context of a small-scale agricultural society using data we collected in 2010 and 2012. Through an analysis of surveys, interviews, and observations in the Tongan islands, we describe the role CLGs likely plays in facilitating individuals' learning of adaptive information. Our analysis of group affiliation, membership, and topics of conversation suggest that the first three CLG qualities reflect conditions for adaptive learning in groups. We utilize ethnographic anecdotes to suggest the fourth quality is also conducive to adaptive group learning. Using an evolutionary model, we further explore the scope for CLGs outside the Tongan socioecological context. Model analysis shows that environmental volatility and migration rates among human groups mediate the scope for CLGs. We call for wider attention to how group structure facilitates learning in informal settings, which may be key to assessing the contribution of groups to the evolution of complex, adaptive culture.

  13. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  14. Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia

    Science.gov (United States)

    Dogramaci, Shawan; Skrzypek, Grzegorz; Dodson, Wade; Grierson, Pauline F.

    2012-12-01

    SummaryThe Hamersley Basin, in the semi-arid Pilbara region of northwest Australia, is currently subject to increasing pressure from altered hydrology associated with mining activities as well as water abstraction for regional development. Sustainable water management across the region must be underpinned by an understanding of the factors that constrain water supply in arid zones. We measured the amount and isotopic signature of individual rainfall events over three consecutive years (2009-2011) to determine the likely processes that control surface water pools in streams and groundwater recharge across the Hamersley Basin. We also measured concentrations of ions (in particular bromide and chloride) to define and quantify sources of major recharge. Stable isotope composition of precipitation across the basin forms a Local Meteoric Water Line (LMWL) defined by the equation: δ2H = 7.03 ± 0.17 × δ18O + 4.78 ± 1.45. Thus, the slope of the LMWL was similar to the Global Meteoric Water Line (GMWL). However, the intercept of the LMWL was significantly different to the GMWL, which is attributable to the amount or "rainout" effect. The stable isotope composition of rainfall events was highly variable and dependent on event size. However, the δ2H and δ18O values of fresh groundwater from the alluvium and fractured aquifers were similar and characterised by a very narrow range (alluvium aquifer δ18O -8.02 ± 0.83‰, δ2H -55.6 ± 6.0‰, n = 65; fractured aquifer δ18O -8.22 ± 0.70‰, δ2H -56.9 ± 5.0‰, n = 207). Our findings suggest that intense rainfall events of >20 mm with limited evaporation prior to infiltration contribute most to recharge. In contrast, the δ2H and δ18O values and chemical composition of the relatively saline groundwater in the terminal Fortescue Marsh suggest a combination of evaporation and cyclic drying and wetting of the marsh surface prior to recharge. Saline groundwater samples were more 18O enriched than fresh groundwater; δ2H

  15. Adaptive equipment use by people with motor neuron disease in Australia: a prospective, observational consecutive cohort study.

    Science.gov (United States)

    Connors, Karol A; Mahony, Lisa M; Morgan, Prue

    2017-10-28

    People with motor neuron sisease require adaptive equipment to enhance life quality. This study aimed to examine total and concurrent equipment items prescribed with phenotype consideration. A prospective, observational consecutive cohort study was undertaken. Data regarding Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised, phenotype, symptom onset and Functional Independence Measure (inpatients only) was recorded. Equipment utilized was coded by therapist as: speech devices; transfer devices; mobility devices (including power wheelchairs); orthoses; activities of daily living equipment; assisted technology and home modification equipment. Two hundred and seventy-three people with motor neuron disease participated, mean age 67 years, mean amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score 32, a moderate level of disability. Equipment items per participant ranged from 0 to 20, median 5. The electric lift recliner chair was the most commonly used equipment item, used by 51.2% of the cohort. There was a statistically significant difference in equipment use between flail leg and bulbar (Md 11, 3 items, respectively; p = .005), and flail leg and cervical phenotypes (Md 11, 3.5 items respectively; p = .009). People with motor neuron disease have high equipment needs to optimize quality of life. Information regarding phenotype relative to equipment requirement, and most frequently prescribed equipment items can assist health-care providers anticipate equipment needs, burden and intensity for those with motor neuron disease. Implications for rehabilitation People with motor neuron disease have high concurrent equipment needs. Electric recliner lift chairs are the most frequently prescribed equipment item by those with motor neuron disease. There is variation in concurrent equipment needs relative to motor neuron disease phenotype.

  16. Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity.

    Science.gov (United States)

    Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia

    2014-05-19

    The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi-piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available BACKGROUND: Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha, endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China and the leptin sequences of plateau pikas (O. curzonia from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase alpha and beta subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka and amino acid substitution (Aa, whereas altitude does not significantly affect synonymous substitution (Ks, Ka and Aa. CONCLUSIONS/SIGNIFICANCE: Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to

  18. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica.

    Science.gov (United States)

    Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina

    2016-01-01

    Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant

  19. Use of Adaptive Laboratory Evolution To Discover Key Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose Minimal Medium

    DEFF Research Database (Denmark)

    LaCroix, Ryan A.; Sandberg, Troy E.; O'Brien, Edward J.

    2015-01-01

    Adaptive laboratory evolution (ALE) has emerged as an effective tool for scientific discovery and addressing biotechnological needs. Much of ALE's utility is derived from reproducibly obtained fitness increases. Identifying causal genetic changes and their combinatorial effects is challenging and...

  20. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of tolerance in spatial and temporal gradients

    Science.gov (United States)

    Deng, J.; Sanford, R. A.; Dong, Y.; Shechtman, L. A.; Zhou, L.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2016-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients of temperature, pH, substrate availability and aqueous chemistry. While environmental stresses are considered to be the driving forces of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, the antibiotic Ciprofloxacin was used as a stressor and systematically applied to E. coli st. 307 cells via a spatial gradient in a microfluidic pore network and a temporal gradient in batch cultures. The microfluidic device facilitated in vitro real-time tracking of bacterial abundances and dynamic spatial distributions in response to the gradients of both the antibiotic and nutrients. Cells collected from the microfluidic device showed growth on plates containing up to 10-times the original minimum inhibition concentration (MIC). In batch systems, Ciprofloxacin was used to evaluate adaptive responses via temporal gradients, in which the stressor concentration was incrementally increased over time with each transfer of the culture after 24 hours of growth. Responses of E. coli 307 to these stress patterns were measured by quantifying changes in the MIC for Ciprofloxacin. Over a period of 18 days of step-wise concentration increments, bacterial cells were observed to acquire tolerance gradually and eventually adapt to a 28-fold increase in the original MIC. Samples at different stages within the temporal Ciprofloxacin gradient treatment show different extents of resistance. All samples exhibited resistance exceeding the highest exposure stress concentration. In combination with the spatial and temporal gradient systems, this work provides the first comprehensive measure of the dynamic resistance of E. coli in response to Ciprofloxacin concentration gradients. These will provide invaluable insights to understand the effects of antibiotic stresses on bacterial adaptive evolution in

  1. Restoring of Glucose Metabolism of Engineered Yarrowia lipolytica for Succinic Acid Production via a Simple and Efficient Adaptive Evolution Strategy.

    Science.gov (United States)

    Yang, Xiaofeng; Wang, Huaimin; Li, Chong; Lin, Carol Sze Ki

    2017-05-24

    Succinate dehydrogenase inactivation in Yarrowia lipolytica has been demonstrated for robust succinic acid production, whereas the inefficient glucose metabolism has hindered its practical application. In this study, a simple and efficient adaptive evolution strategy via cell immobilization was conducted in shake flasks, with an aim to restore the glucose metabolism of Y. lipolytica mutant PGC01003. After 21 days with 14 generations evolution, glucose consumption rate increased to 0.30 g/L/h in YPD medium consisting of 150 g/L initial glucose concentration, while poor yeast growth was observed in the same medium using the initial strain without adaptive evolution. Succinic acid productivity of the evolved strain also increased by 2.3-fold, with stable cell growth in YPD medium with high initial glucose concentration. Batch fermentations resulted in final succinic acid concentrations of 65.7 g/L and 87.9 g/L succinic acid using YPD medium and food waste hydrolysate, respectively. The experimental results in this study show that a simple and efficient strategy could facilitate the glucose uptake rate in succinic acid fermentation using glucose-rich substrates.

  2. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    . Dar es Salaam. Durban. Bloemfontein. Antananarivo. Cape Town. Ifrane ... program strategy. A number of CCAA-supported projects have relevance to other important adaptation-related themes such as disaster preparedness and climate.

  3. A brief history of adaptation: conceptual evolution across the IPCC reports (1990-2014)

    International Nuclear Information System (INIS)

    Simonet, Guillaume

    2015-01-01

    In the past decade, work on the concepts of vulnerability, resilience and adaptation became central in climate change literature. At the same time a growing number of studies have focussed on the influence of cognitive factors on decision-making processes, such as interpreting elusive concepts such as adaptation. Comprehension of adaptation has evolved considerably since its recognition as a response to climate change in the 90's by the Intergovernmental Panel on Climate Change (IPCC). Currently protecting systems from weather events (the 'adjustment adaptation' approach) is still the prevailing view in climate policies. Nevertheless, a shift toward a 'transformation adaptation' approach is being observed. This position would take better account of the complexity of existing systems and allow reexamining their mechanisms (institutional, technical, financial). This paper aims to analyze conceptual advances on adaptation across the five IPCC reports from 1990 to 2014. This contribution attempts to show that the prominence given to adaptation in the latest report (2014) reflects the cognitive difficulty of conceiving this concept, responds to the growing demand to facilitate its operationalization and confirms its relevance for a better understanding of the underlying complexity of climate change and the global environmental change issue. Pursuing reflection on the adaptation concept should certainly contribute to the emergence of a promising and interdisciplinary field of research

  4. Adaptive Management of Environmental Flows: Using Irrigation Infrastructure to Deliver Environmental Benefits During a Large Hypoxic Blackwater Event in the Southern Murray-Darling Basin, Australia

    Science.gov (United States)

    Watts, Robyn J.; Kopf, R. Keller; McCasker, Nicole; Howitt, Julia A.; Conallin, John; Wooden, Ian; Baumgartner, Lee

    2018-03-01

    Widespread flooding in south-eastern Australia in 2010 resulted in a hypoxic (low dissolved oxygen, DO) blackwater (high dissolved carbon) event affecting 1800 kilometres of the Murray-Darling Basin. There was concern that prolonged low DO would result in death of aquatic biota. Australian federal and state governments and local stakeholders collaborated to create refuge areas by releasing water with higher DO from irrigation canals via regulating structures (known as `irrigation canal escapes') into rivers in the Edward-Wakool system. To determine if these environmental flows resulted in good environmental outcomes in rivers affected by hypoxic blackwater, we evaluated (1) water chemistry data collected before, during and after the intervention, from river reaches upstream and downstream of the three irrigation canal escapes used to deliver the environmental flows, (2) fish assemblage surveys undertaken before and after the blackwater event, and (3) reports of fish kills from fisheries officers and local citizens. The environmental flows had positive outcomes; mean DO increased by 1-2 mg L-1 for at least 40 km downstream of two escapes, and there were fewer days when DO was below the sub-lethal threshold of 4 mg L-1 and the lethal threshold of 2 mg L-1 at which fish are known to become stressed or die, respectively. There were no fish deaths in reaches receiving environmental flows, whereas fish deaths were reported elsewhere throughout the system. This study demonstrates that adaptive management of environmental flows can occur through collaboration and the timely provision of monitoring results and local knowledge.

  5. Adaptive Laboratory Evolution of Antibiotic Resistance Using Different Selection Regimes Lead to Similar Phenotypes and Genotypes

    DEFF Research Database (Denmark)

    Jahn, Leonie Johanna; Munck, Christian; Ellabaan, Mostafa M Hashim

    2017-01-01

    compare the geno- and phenotypes of Escherichia coli after evolution to Amikacin, Piperacillin, and Tetracycline under four different selection regimes. Interestingly, key mutations that confer antibiotic resistance as well as phenotypic changes like collateral sensitivity and cross-resistance emerge...

  6. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    Science.gov (United States)

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-11-20

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.

  7. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate‐induced range shifts

    DEFF Research Database (Denmark)

    Hargreaves, Anna; Bailey, Susan; Laird, Robert

    2015-01-01

    Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contrac......Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution...... at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient...

  8. Relaxation of adaptive evolution during the HIV-1 infection owing to reduction of CD4+ T cell counts.

    Directory of Open Access Journals (Sweden)

    Élcio Leal

    Full Text Available The first stages of HIV-1 infection are essential to establish the diversity of virus population within host. It has been suggested that adaptation to host cells and antibody evasion are the leading forces driving HIV evolution at the initial stages of AIDS infection. In order to gain more insights on adaptive HIV-1 evolution, the genetic diversity was evaluated during the infection time in individuals contaminated by the same viral source in an epidemic cluster. Multiple sequences of V3 loop region of the HIV-1 were serially sampled from four individuals: comprising a single blood donor, two blood recipients, and another sexually infected by one of the blood recipients. The diversity of the viral population within each host was analyzed independently in distinct time points during HIV-1 infection.Phylogenetic analysis identified multiple HIV-1 variants transmitted through blood transfusion but the establishing of new infections was initiated by a limited number of viruses. Positive selection (d(N/d(S>1 was detected in the viruses within each host in all time points. In the intra-host viruses of the blood donor and of one blood recipient, X4 variants appeared respectively in 1993 and 1989. In both patients X4 variants never reached high frequencies during infection time. The recipient, who X4 variants appeared, developed AIDS but kept narrow and constant immune response against HIV-1 during the infection time.Slowing rates of adaptive evolution and increasing diversity in HIV-1 are consequences of the CD4+ T cells depletion. The dynamic of R5 to X4 shift is not associated with the initial amplitude of humoral immune response or intensity of positive selection.

  9. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  10. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    DEFF Research Database (Denmark)

    Utrilla, José; O'Brien, Edward J.; Chen, Ke

    2016-01-01

    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear se......, they share a common adaptive mechanism. In turn, these findings highlight the resource allocation trade-offs organisms face and suggest how the structure of the regulatory network enhances evolvability....... to stress and environmental fluctuations. We detail structural changes in the RNAP that rewire the transcriptional machinery to rebalance proteome and energy allocation toward growth and away from several hedging and stress functions. We find that while these mutations occur in diverse locations in the RNAP...

  11. Robot manipulator identification based on adaptive multiple-input and multiple-output neural model optimized by advanced differential evolution algorithm

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Son

    2016-12-01

    Full Text Available This article proposes a novel advanced differential evolution method which combines the differential evolution with the modified back-propagation algorithm. This new proposed approach is applied to train an adaptive enhanced neural model for approximating the inverse model of the industrial robot arm. Experimental results demonstrate that the proposed modeling procedure using the new identification approach obtains better convergence and more precision than the traditional back-propagation method or the lonely differential evolution approach. Furthermore, the inverse model of the industrial robot arm using the adaptive enhanced neural model performs outstanding results.

  12. The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia

    Science.gov (United States)

    Jehi, Lara; Friedman, Daniel; Carlson, Chad; Cascino, Gregory; Dewar, Sandra; Elger, Christian; Engel, Jerome; Knowlton, Robert; Kuzniecky, Ruben; McIntosh, Anne; O’Brien, Terence J.; Spencer, Dennis; Sperling, Michael R.; Worrell, Gregory; Bingaman, Bill; Gonzalez-Martinez, Jorge; Doyle, Werner; French, Jacqueline

    2016-01-01

    Summary Objective Epilepsy surgery is the most effective treatment for select patients with drug-resistant epilepsy. In this article, we aim to provide an accurate understanding of the current epidemiologic characteristics of this intervention, as this knowledge is critical for guiding educational, academic, and resource priorities. Methods We profile the practice of epilepsy surgery between 1991 and 2011 in nine major epilepsy surgery centers in the United States, Germany, and Australia. Clinical, imaging, surgical, and histopathologic data were derived from the surgical databases at various centers. Results Although five of the centers performed their highest number of surgeries for mesial temporal sclerosis (MTS) in 1991, and three had their highest number of MTS surgeries in 2001, only one center achieved its peak number of MTS surgeries in 2011. The most productive year for MTS surgeries varied then by center; overall, the nine centers surveyed performed 48% (95% confidence interval [CI] −27.3% to −67.4%) fewer such surgeries in 2011 compared to either 1991 or 2001, whichever was higher. There was a parallel increase in the performance of surgery for nonlesional epilepsy. Further analysis of 5/9 centers showed a yearly increase of 0.6 ± 0.07% in the performance of invasive electroencephalography (EEG) without subsequent resections. Overall, although MTS was the main surgical substrate in 1991 and 2001 (proportion of total surgeries in study centers ranging from 33.3% to 70.2%); it occupied only 33.6% of all resections in 2011 in the context of an overall stable total surgical volume. Significance These findings highlight the major aspects of the evolution of epilepsy surgery across the past two decades in a sample of well-established epilepsy surgery centers, and the critical current challenges of this treatment option in addressing complex epilepsy cases requiring detailed evaluations. Possible causes and implications of these findings are discussed

  13. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking.

    Science.gov (United States)

    Labra, Antonieta; Pienaar, Jason; Hansen, Thomas F

    2009-08-01

    Microevolutionary studies often find that complex quantitative characters are highly evolvable and adapted to the local environment, while macroevolutionary studies often show evidence of strong phylogenetic effects and stasis. In this contribution, we show how phylogenetic comparative methods can be used to test hypotheses that may help resolve this paradox. As a test case, we studied the interplay between adaptation and phylogenetic inertia on the thermobiology of 32 species of Liolaemus (Squamata: Liolaemidae), a genus of South American lizards living under diverse climatic conditions. Despite a strong phylogenetic effect in the preferred (selected) body temperature, we found clear evidence that this variable is adapted to local temperature and climate. After controlling for adaptation to the thermal environment, little influence of phylogeny was left. This indicates that the phylogenetic effect was not caused by a lag or slowness in adaptation but primarily by the distribution of the thermal environments on the phylogeny. This can be due to thermal niche tracking. In contrast, we found little or no evidence for adaptation to the thermal environment in either cooling or heating rates, critical thermal minimum, or body size.

  14. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nairobi, Kenya. 28 Adapting Fishing Policy to Climate Change with the Aid of Scientific and Endogenous Knowledge. Cap Verde, Gambia,. Guinea, Guinea Bissau,. Mauritania and Senegal. Environment and Development in the Third World. (ENDA-TM). Dakar, Senegal. 29 Integrating Indigenous Knowledge in Climate Risk ...

  15. Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose.

    Science.gov (United States)

    Wang, Yongze; Manow, Ryan; Finan, Christopher; Wang, Jinhua; Garza, Erin; Zhou, Shengde

    2011-09-01

    Due to its excellent capability to ferment five-carbon sugars, Escherichia coli has been considered one of the platform organisms to be engineered for production of cellulosic ethanol. Nevertheless, genetically engineered ethanologenic E. coli lacks the essential trait of alcohol tolerance. Development of ethanol tolerance is required for cost-effective ethanol fermentation. In this study, we improved alcohol tolerance of a nontransgenic E. coli KC01 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) through adaptive evolution. During ~350 generations of adaptive evolution, a gradually increased concentration of ethanol was used as a selection pressure to enrich ethanol-tolerant mutants. The evolved mutant, E. coli SZ470, was able to grow anaerobically at 40 g l(-1) ethanol, a twofold improvement over parent KC01. When compared with KC01 for small-scale (500 ml) xylose (50 g l(-1)) fermentation, SZ470 achieved 67% higher cell mass, 48% faster volumetric ethanol productivity, and 50% shorter time to complete fermentation with ethanol titer of 23.5 g l(-1) and yield of 94%. These results demonstrate that an industry-oriented nontransgenic E. coli strain could be developed through incremental improvements of desired traits by a combination of molecular biology and traditional microbiology techniques.

  16. Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents

    Science.gov (United States)

    Zepeda-Paulo, Francisca A; Ortiz-Martínez, Sebastián A; Figueroa, Christian C; Lavandero, Blas

    2013-01-01

    The use of alternative hosts imposes divergent selection pressures on parasitoid populations. In response to selective pressures, these populations may follow different evolutionary trajectories. Divergent natural selection could promote local host adaptation in populations, translating into direct benefits for biological control, thereby increasing their effectiveness on the target host. Alternatively, adaptive phenotypic plasticity could be favored over local adaptation in temporal and spatially heterogeneous environments. We investigated the existence of local host adaptation in Aphidius ervi, an important biological control agent, by examining different traits related to infectivity (preference) and virulence (a proxy of parasitoid fitness) on different aphid-host species. The results showed significant differences in parasitoid infectivity on their natal host compared with the non-natal hosts. However, parasitoids showed a similar high fitness on both natal and non-natal hosts, thus supporting a lack of host adaptation in these introduced parasitoid populations. Our results highlight the role of phenotypic plasticity in fitness-related traits of parasitoids, enabling them to maximize fitness on alternative hosts. This could be used to increase the effectiveness of biological control. In addition, A. ervi females showed significant differences in infectivity and virulence across the tested host range, thus suggesting a possible host phylogeny effect for those traits. PMID:24062806

  17. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Victoria Sosa

    2016-11-01

    Full Text Available Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from

  18. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  19. The evolution of sex is favoured during adaptation to new environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2012-01-01

    Both theory and experiments have demonstrated that sex can facilitate adaptation, potentially yielding a group-level advantage to sex. However, it is unclear whether this process can help solve the more difficult problem of the maintenance of sex within populations. Using experimental populations of the facultatively sexual rotifer Brachionus calyciflorus, we show that rates of sex evolve to higher levels during adaptation but then decline as fitness plateaus. To assess the fitness consequences of genetic mixing, we directly compare the fitnesses of sexually and asexually derived genotypes that naturally occur in our experimental populations. Sexually derived genotypes are more fit than asexually derived genotypes when adaptive pressures are strong, but this pattern reverses as the pace of adaptation slows, matching the pattern of evolutionary change in the rate of sex. These fitness assays test the net effect of sex but cannot be used to disentangle whether selection on sex arises because highly sexual lineages become associated with different allele combinations or with different allele frequencies than less sexual lineages (i.e., "short-" or "long-term" effects, respectively). We infer which of these mechanisms provides an advantage to sex by performing additional manipulations to obtain fitness distributions of sexual and asexual progeny arrays from unbiased parents (rather than from naturally occurring, and thereby evolutionarily biased, parents). We find evidence that sex breaks down adaptive gene combinations, resulting in lower average fitness of sexual progeny (i.e., a short-term disadvantage to sex). As predicted by theory, the advantage to sex arises because sexually derived progeny are more variable in fitness, allowing for faster adaptation. This "long-term advantage" builds over multiple generations, eventually resulting in higher fitness of sexual types.

  20. Environmental disruption of Host-Microbe co-adaptation as a potential driving force in evolution

    Directory of Open Access Journals (Sweden)

    Yoav eSoen

    2014-06-01

    Full Text Available The microbiome is known to have a profound effect on the development, physiology and health of its host. Whether and how it also contributes to evolutionary diversification of the host is, however, unclear. Here we hypothesize that disruption of the microbiome by new stressful environments interferes with host-microbe co-adaption, contributes to host destabilization, and can drive irreversible changes in the host prior to its genetic adaptation. This hypothesis is based on 3 presumptions: (1 The microbiome consists of heritable partners which contribute to the stability (canalization of host development and physiology in frequently encountered environments, (2 Upon encountering a stressful new environment, the microbiome adapts much faster than the host, and (3 This differential response disrupts cooperation, contributes to host destabilization and promotes reciprocal changes in the host and its microbiome. This dynamic imbalance relaxes as the host and its microbiome establish a new equilibrium state in which they are adapted to one another and to the altered environment. Over long time in this new environment, the changes in the microbiome contribute to the canalization of the altered state. This scenario supports stability of the adapted patterns, while promoting variability which may be beneficial in new stressful conditions, thus allowing the organism to balance stability and flexibility based on contextual demand. Additionally, interaction between heritable microbial (and/or epigenetic changes can promote new outcomes which persist over a wide range of timescales. A sufficiently persistent stress can further induce irreversible changes in the microbiome which may permanently alter the organism prior to genetic changes in the host. Epigenetic and microbial changes therefore provide a potential infrastructure for causal links between immediate responses to new environments and longer-term establishment of evolutionary adaptations.

  1. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty.

    Science.gov (United States)

    Zhang, Huifeng; Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.

  2. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    Directory of Open Access Journals (Sweden)

    Ronfort Joëlle

    2007-11-01

    Full Text Available Abstract Background The NODULATION RECEPTOR KINASE (NORK gene encodes a Leucine-Rich Repeat (LRR-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. Results We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. Conclusion Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race must be tested to explain the adaptive evolution of NORK.

  3. Biological invasion of oxeye daisy (Leucanthemum vulgare) in North America: Pre-adaptation, post-introduction evolution, or both?

    Science.gov (United States)

    Stutz, Sonja; Mráz, Patrik; Hinz, Hariet L; Müller-Schärer, Heinz; Schaffner, Urs

    2018-01-01

    Species may become invasive after introduction to a new range because phenotypic traits pre-adapt them to spread and become dominant. In addition, adaptation to novel selection pressures in the introduced range may further increase their potential to become invasive. The diploid Leucanthemum vulgare and the tetraploid L. ircutianum are native to Eurasia and have been introduced to North America, but only L. vulgare has become invasive. To investigate whether phenotypic differences between the two species in Eurasia could explain the higher abundance of L. vulgare in North America and whether rapid evolution in the introduced range may have contributed to its invasion success, we grew 20 L. vulgare and 21 L. ircutianum populations from Eurasia and 21 L. vulgare populations from North America under standardized conditions and recorded performance and functional traits. In addition, we recorded morphological traits to investigate whether the two closely related species can be clearly distinguished by morphological means and to what extent morphological traits have changed in L. vulgare post-introduction. We found pronounced phenotypic differences between L. vulgare and L. ircutianum from the native range as well as between L. vulgare from the native and introduced ranges. The two species differed significantly in morphology but only moderately in functional or performance traits that could have explained the higher invasion success of L. vulgare in North America. In contrast, leaf morphology was similar between L. vulgare from the native and introduced range, but plants from North America flowered later, were larger and had more and larger flower heads than those from Eurasia. In summary, we found litte evidence that specific traits of L. vulgare may have pre-adapted this species to become more invasive than L. ircutianum, but our results indicate that rapid evolution in the introduced range likely contributed to the invasion success of L. vulgare.

  4. Natural selection causes adaptive genetic resistance in wild emmer wheat against powdery mildew at "Evolution Canyon" microsite, Mt. Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Huayan Yin

    Full Text Available "Evolution Canyon" (ECI at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric "African" slope (AS and the temperate-mesic "European" slope (ES, separated on average by 250 m.We examined 278 single sequence repeats (SSRs and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races.In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23% amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES were highly resistant to Blumeria graminis at both seedling and adult stages.Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.

  5. Australia's uranium

    International Nuclear Information System (INIS)

    Hampson, D.C.

    1980-01-01

    The subject is discussed as follows: structure of the uranium industry in Australia (export policies; development of mining programme; table of export contracts approved by Australian government, 1972; government policy towards the industry 1972-75 and since 1975); reserves (table of Australia's major uranium deposits; estimated world resources of uranium, excluding USSR, Eastern Europe and China; comparison of exploration expenditures and discovery of uranium in Australia and the USA); enrichment; resource potential; future demand (table of nuclear power reactors above 30 MW in operation or under construction, mid-1979; projection of Australian uranium production to 1990); government and union action. (U.K.)

  6. Physiological and comparative evidence fails to confirm an adaptive role for aging in evolution.

    Science.gov (United States)

    Cohen, Alan A

    2015-01-01

    The longstanding debate about whether aging may have evolved for some adaptive reason is generally considered to pit evolutionary theory against empirical observations consistent with aging as a programmed aspect of organismal biology, in particular conserved aging genes. Here I argue that the empirical evidence on aging mechanisms does not support a view of aging as a programmed phenomenon, but rather supports a view of aging as the dysregulation of complex networks that maintain organismal homeostasis. The appearance of programming is due largely to the inadvertent activation of existing pathways during the process of dysregulation. It is argued that aging differs markedly from known programmed biological phenomena such as apoptosis in that it is (a) very heterogeneous in how it proceeds, and (b) much slower than it would need to be. Furthermore, the taxonomic distribution of aging across species does not support any proposed adaptive theories of aging, which would predict that aging rate would vary on a finer taxonomic scale depending on factors such as population density. Thus, while there are problems with the longstanding non-adaptive paradigm, current evidence does not support the notion that aging is programmed or that it may have evolved for adaptive reasons.

  7. The Predictive Adaptive Response: Modeling the Life-History Evolution of the Butterfly

    NARCIS (Netherlands)

    Heuvel, van den J.; Saastamoinen, M.; Brakefield, P.M.; Kirkwood, T.B.; Zwaan, B.J.; Shanley, D.P.

    2013-01-01

    A predictive adaptive response (PAR) is a type of developmental plasticity where the response to an environmental cue is not immediately advantageous but instead is later in life. The PAR is a way for organisms to maximize fitness in varying environments. Insects living in seasonal environments are

  8. Evolution of fitness trade-offs in locally adapted populations of Pseudomonas fluorescens

    DEFF Research Database (Denmark)

    Schick, Alana; Bailey, Susan; Kassen, Rees

    2015-01-01

    , consistent with a multioptima version of Fisher’s geometric model of adaptation. We also find that fitness of pairs of beneficial mutations are consistently less than additive in selection environments, producing a pattern of diminishing returns, but are more variable in alternative environments, being...

  9. Adaptive evolution of Toll-like receptors (TLRs) in the family Suidae

    NARCIS (Netherlands)

    Darfour-Oduro, K.A.; Megens, H.J.W.C.; Roca, A.L.; Groenen, M.A.M.; Schook, L.B.

    2015-01-01

    Members of the family Suidae have diverged over extended evolutionary periods in diverse environments, suggesting that adaptation in response to endemic infectious agents may have occurred. Toll-like receptors (TLRs) comprise a multigene family that acts as the first line of defense against

  10. Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection.

    Directory of Open Access Journals (Sweden)

    Jayna Raghwani

    2016-01-01

    Full Text Available Analysis of HIV-1 gene sequences sampled longitudinally from infected individuals can reveal the evolutionary dynamics that underlie associations between disease outcome and viral genetic diversity and divergence. Here we extend a statistical framework to estimate rates of viral molecular adaptation by considering sampling error when computing nucleotide site-frequencies. This is particularly beneficial when analyzing viral sequences from within-host viral infections if the number of sequences per time point is limited. To demonstrate the utility of this approach, we apply our method to a cohort of 24 patients infected with HIV-1 at birth. Our approach finds that viral adaptation arising from recurrent positive natural selection is associated with the rate of HIV-1 disease progression, in contrast to previous analyses of these data that found no significant association. Most surprisingly, we discover a strong negative correlation between viral population size and the rate of viral adaptation, the opposite of that predicted by standard molecular evolutionary theory. We argue that this observation is most likely due to the existence of a confounding third variable, namely variation in selective pressure among hosts. A conceptual non-linear model of virus adaptation that incorporates the two opposing effects of host immunity on the virus population can explain this counterintuitive result.

  11. A Theoretical Approach to Norm Ecosystems: Two Adaptive Architectures of Indirect Reciprocity Show Different Paths to the Evolution of Cooperation

    Directory of Open Access Journals (Sweden)

    Satoshi Uchida

    2018-02-01

    Full Text Available Indirect reciprocity is one of the basic mechanisms to sustain mutual cooperation, by which beneficial acts are returned, not by the recipient, but by third parties. This mechanism relies on the ability of individuals to know the past actions of others, and to assess those actions. There are many different systems of assessing others, which can be interpreted as rudimentary social norms (i.e., views on what is “good” or “bad”. In this paper, impacts of different adaptive architectures, i.e., ways for individuals to adapt to environments, on indirect reciprocity are investigated. We examine two representative architectures: one based on replicator dynamics and the other on genetic algorithm. Different from the replicator dynamics, the genetic algorithm requires describing the mixture of all possible norms in the norm space under consideration. Therefore, we also propose an analytic method to study norm ecosystems in which all possible second order social norms potentially exist and compete. The analysis reveals that the different adaptive architectures show different paths to the evolution of cooperation. Especially we find that so called Stern-Judging, one of the best studied norms in the literature, exhibits distinct behaviors in both architectures. On one hand, in the replicator dynamics, Stern-Judging remains alive and gets a majority steadily when the population reaches a cooperative state. On the other hand, in the genetic algorithm, it gets a majority only temporarily and becomes extinct in the end.

  12. Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios

    Science.gov (United States)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-08-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, such as mean duration, mean affected area and total magnitude. This paper addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to simulate spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century? (3) How to use standardized drought indices to represent theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-yr multilevel and multiscale drought reanalysis over France. Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index and the Standardized Soil Wetness Index, respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well simulated by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals, either retrospective or prospective. The perceived spatio-temporal characteristics of drought events derived from these theoretical adaptation scenarios show much reduced changes, but they call for more realistic scenarios at both the catchment and national scale in order to accurately assess the combined effect of

  13. Adaptive evolution of Hoxc13 genes in the origin and diversification of the vertebrate integument.

    Science.gov (United States)

    Wu, Jianghong; Husile; Sun, Hailian; Wang, Feng; Li, Yurong; Zhao, Cunfa; Zhang, Wenguang

    2013-11-01

    The problem of origination and diversification of integument derivatives in vertebrates is still a challenge. The homeobox (Hox) genes Hoxc13 control integument formation in vertebrate. Hoxc13 show strong expression in the integument development, are highly conserved across vertebrates, and show mutations that are associated with skin and appendages. To test whether the evolution of the integument is associated with positive selection or relaxation of Hoxc13, we obtained these genes in a wide range of vertebrates. In Hoxc13, we found evidence of diversifying selection after speciation during the origin of vertebrates. In addition, we found the glycine-rich regions in Hoxc13 protein in mammals, but not among non-mammalian taxa. Our results strongly implicate that Hoxc13 genes could have played an important role in the evolution of integument structure. © 2013 Wiley Periodicals, Inc.

  14. Predictability in evolution: Adaptation of the Bonaire anole (Anolis bonairensis) to an extreme environment.

    Science.gov (United States)

    Thorpe, Roger S

    2017-01-01

    The extent to which evolution is deterministic (predictable), or random, is a fundamental question in evolution. This case study attempts to determine the extent to which interspecific divergence can be predicted from intraspecific trends related species. The mountainous Lesser Antilles are occupied by one or two anole species with very substantial intraspecific differences in the quantitative traits between xeric and rainforest habitats. These ecologically determined differences tend to be in parallel in each island species. A related species (Anolis bonairensis) lives on the far more xeric island of Bonaire, and this study tests the extent to which its interspecific divergence in hue and pattern traits can be predicted from the parallel intraspecific variation exhibited in Lesser Antillean anoles. Regression against a multivariate climate variable suggests that the hue and pattern of the Bonaire anole are consistently predicted from the ecologically determined intraspecific variation of its Lesser Antillean relatives. However, this predictability may be less consistent with other character systems, for example, scalation.

  15. Evolution of Lower Brachyceran Flies (Diptera and Their Adaptive Radiation with Angiosperms

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-04-01

    Full Text Available The Diptera (true flies is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies.

  16. Evolution and adaptation of marine annelids in interstitial and cave habitats

    DEFF Research Database (Denmark)

    Martinez Garcia, Alejandro

    The origin of anchialine and marine cave fauna is still a highly debated topic in Evolutionary Biology. Restricted and disjunct distribution and uncertain affinities of some marine cave endemic lineages have favored their interpretation as living fossils, surviving the extinction of their coastal....... The results yielded new data on poorly understood groups of annelids, but also on some more general aspects of regarding colonization and speciation processes to submarine caves. From an annelid evolution perspective, we produced new phylogenetic studies for Protodrilidae (with the description of four new...... genera), Saccocirridae and Nerillidae, as well as novel results on the character evolution and diversity of these groups. From the more general prospective of the cave colonization, our results highlight the importance of shift of habitats is a crucial process to understand the morphological change...

  17. [Method of Entirely Parallel Differential Evolution for Model Adaptation in Systems Biology].

    Science.gov (United States)

    Kozlov, K N; Samsonov, A M; Samsonova, M G

    2015-01-01

    We developed a method of entirely parallel differential evolution for identification of unknown parameters of mathematical models by minimization of the objective function that describes the discrepancy of the model solution and the experimental data. The method is implemented in the free and open source software available on the Internet. The method demonstrated a good performance comparable to the top three methods from CEC-2014 and was successfully applied to several biological problems.

  18. Morphologies and depositional/erosional controls on evolution of Pliocene-Pleistocene carbonate platforms: Northern Carnarvon Basin, Northwest Shelf of Australia

    Science.gov (United States)

    Goktas, P.; Austin, J. A.; Fulthorpe, C. S.; Gallagher, S. J.

    2016-08-01

    The detailed morphologies, evolution and termination of latest Neogene tropical carbonate platforms in the Northern Carnarvon Basin (NCB), on the passive margin of the Northwest Shelf (NWS) of Australia, defined based upon mapping using 3D seismic images, reveal the history of local/regional oceanographic processes, fluctuations in relative sea-level and changing climate. Cool-water carbonate deposition, dominant during the early-middle Miocene, was followed by a siliciclastic influx, which prograded across the NWS beginning in the late-middle Miocene, during a period of long-term global sea-level fall. The resulting prograding clinoform sets, interpreted as delta lobes, created relict topographic highs following Pliocene termination of the siliciclastic influx. These highs constituted multiple favorable shallow-water environments for subsequent photozoan carbonate production. Resultant platform carbonate development, in addition to being a response to cessation of siliciclastic influx and the existence of suitable shallow-water substrate, was also influenced by development of the warm-water Leeuwin Current (LC), flowing southwestward along this margin. Four flat-topped platforms are mapped; each platform top is a sequence boundary defined by reflection onlap above and truncation below. Successive platforms migrated southwestward through time, along margin strike. All platforms exhibit predominantly progradational seismic geometries. Mapped tops are ≥10 km wide. Seismic evidence of karst on three of four platform tops, e.g., v-shaped troughs up to 50 m deep and ~1 km wide, and broader basins with areas up to 20 km2, suggests episodic subaerial exposure that may have contributed to platform demise. Platform 4, the most recent, is unique in having interpreted biohermal build-ups superimposed on the progradational platform base. The base of these interpreted patch reefs now lies at a water depth of ~153 m; therefore, we suggest that these reefs developed post

  19. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution

    Directory of Open Access Journals (Sweden)

    Monjane Adérito L

    2011-12-01

    Full Text Available Abstract Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae, the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots

  20. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution.

    Science.gov (United States)

    Monjane, Adérito L; van der Walt, Eric; Varsani, Arvind; Rybicki, Edward P; Martin, Darren P

    2011-12-02

    Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV

  1. Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator

    Directory of Open Access Journals (Sweden)

    Alexander Hošovský

    2012-07-01

    Full Text Available Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.

  2. Introduction to a Special Issue Dialectical Behavior Therapy: Evolution and Adaptations in the 21(st) Century.

    Science.gov (United States)

    Miller, Alec L

    2015-01-01

    Born from the randomized controlled trial by Linehan and colleagues in 1991, dialectical behavior therapy (DBT) has become the gold standard for treatment of individuals who are suicidal and have borderline personality disorder. In this special issue, we begin with a historical review of DBT provided by the treatment developer herself. We then introduce readers to new, 21(st) century adaptations developed of this treatment modality. In this issue we explore the use of DBT for suicidal adolescents with one paper focusing on Latina teens and their parents, and one focused on the more recently developed walking the middle path skills module. Other papers in this issue include unique adaptations of DBT for eating disorders, and disorders of over-control, as well as trauma in incarcerated male adolescents. We also look at transdiagnostic applications of DBT and finally a comparison of DBT with mentalization-based treatment.

  3. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    Directory of Open Access Journals (Sweden)

    Matteo Fumagalli

    2011-11-01

    Full Text Available Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the

  4. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    Science.gov (United States)

    Fumagalli, Matteo; Sironi, Manuela; Pozzoli, Uberto; Ferrer-Admetlla, Anna; Ferrer-Admettla, Anna; Pattini, Linda; Nielsen, Rasmus

    2011-11-01

    Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the hypothesis that some

  5. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    DEFF Research Database (Denmark)

    Luján, Adela M.; Maciá, María D.; Yang, Liang

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease......, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic...

  6. Convergent evolution of SWS2 opsin facilitates adaptive radiation of threespine stickleback into different light environments.

    Directory of Open Access Journals (Sweden)

    David A Marques

    2017-04-01

    Full Text Available Repeated adaptation to a new environment often leads to convergent phenotypic changes whose underlying genetic mechanisms are rarely known. Here, we study adaptation of color vision in threespine stickleback during the repeated postglacial colonization of clearwater and blackwater lakes in the Haida Gwaii archipelago. We use whole genomes from 16 clearwater and 12 blackwater populations, and a selection experiment, in which stickleback were transplanted from a blackwater lake into an uninhabited clearwater pond and resampled after 19 y to test for selection on cone opsin genes. Patterns of haplotype homozygosity, genetic diversity, site frequency spectra, and allele-frequency change support a selective sweep centered on the adjacent blue- and red-light sensitive opsins SWS2 and LWS. The haplotype under selection carries seven amino acid changes in SWS2, including two changes known to cause a red-shift in light absorption, and is favored in blackwater lakes but disfavored in the clearwater habitat of the transplant population. Remarkably, the same red-shifting amino acid changes occurred after the duplication of SWS2 198 million years ago, in the ancestor of most spiny-rayed fish. Two distantly related fish species, bluefin killifish and black bream, express these old paralogs divergently in black- and clearwater habitats, while sticklebacks lost one paralog. Our study thus shows that convergent adaptation to the same environment can involve the same genetic changes on very different evolutionary time scales by reevolving lost mutations and reusing them repeatedly from standing genetic variation.

  7. The evolution of Rare Pride: using evaluation to drive adaptive management in a biodiversity conservation organization.

    Science.gov (United States)

    Jenks, Brett; Vaughan, Peter W; Butler, Paul J

    2010-05-01

    Rare Pride is a social marketing program that stimulates human behavior change in order to promote biodiversity conservation in critically threatened regions in developing countries. A series of formal evaluation studies, networking strategies, and evaluative inquiries have driven a 20-year process of adaptive management that has resulted in extensive programmatic changes within Pride. This paper describes the types of evaluation that Rare used to drive adaptive management and the changes it caused in Pride's theory-of-change and programmatic structure. We argue that (a) qualitative data gathered from partners and staff through structured interviews is most effective at identifying problems with current programs and procedures, (b) networking with other organizations is the most effective strategy for learning of new management strategies, and (c) quantitative data gathered through surveys is effective at measuring program impact and quality. Adaptive management has allowed Rare to increase its Pride program from implementing about two campaigns per year in 2001 to more than 40 per year in 2009 while improving program quality and maintaining program impact. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Ultrastructure of spermatozoa of Bullacta exarata (philippi) and its significance on reproductive evolution and physio-ecological adaptation*

    Science.gov (United States)

    Ying, Xue-ping; Yang, Wan-xi; Jiang, Nai-cheng; Zhang, Yong-pu

    2004-01-01

    The morphology and ultrastructure of Bullacta exarata spermatozoa observed by light and transmission electron microscopy are presented in this paper. The spermatozoon is composed of head with a simple acrosomal complex and an elongated nucleus, and tail with a midpiece, principal piece and an end piece. The midpiece consists of a mitochondrial ring, and the principal piece is composed of axoneme and lateral fin. The structure of B. exarata spermatozoa differs significantly from that of other gastropods, especially in the lateral fin and the principal piece, which was described scarcely before. A comparison is made between B. exarata and other gastropods, and its significance on reproductive evolution and physio-ecological adaptation is preliminarily discussed. PMID:15362192

  9. Adaptation to enemy shifts: rapid resistance evolution to local Vibrio spp. in invasive Pacific oysters.

    Science.gov (United States)

    Wendling, Carolin C; Wegner, K Mathias

    2015-04-07

    One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness of invaders. Despite strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.), we demonstrate that within a few generations hosts adapted to newly encountered pathogen communities. However, local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore, we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Colloquium paper: adaptive specializations, social exchange, and the evolution of human intelligence.

    Science.gov (United States)

    Cosmides, Leda; Barrett, H Clark; Tooby, John

    2010-05-11

    Blank-slate theories of human intelligence propose that reasoning is carried out by general-purpose operations applied uniformly across contents. An evolutionary approach implies a radically different model of human intelligence. The task demands of different adaptive problems select for functionally specialized problem-solving strategies, unleashing massive increases in problem-solving power for ancestrally recurrent adaptive problems. Because exchange can evolve only if cooperators can detect cheaters, we hypothesized that the human mind would be equipped with a neurocognitive system specialized for reasoning about social exchange. Whereas humans perform poorly when asked to detect violations of most conditional rules, we predicted and found a dramatic spike in performance when the rule specifies an exchange and violations correspond to cheating. According to critics, people's uncanny accuracy at detecting violations of social exchange rules does not reflect a cheater detection mechanism, but extends instead to all rules regulating when actions are permitted (deontic conditionals). Here we report experimental tests that falsify these theories by demonstrating that deontic rules as a class do not elicit the search for violations. We show that the cheater detection system functions with pinpoint accuracy, searching for violations of social exchange rules only when these are likely to reveal the presence of someone who intends to cheat. It does not search for violations of social exchange rules when these are accidental, when they do not benefit the violator, or when the situation would make cheating difficult.

  11. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli.

    Science.gov (United States)

    Quan, Selwyn; Ray, J Christian J; Kwota, Zakari; Duong, Trang; Balázsi, Gábor; Cooper, Tim F; Monds, Russell D

    2012-01-01

    Adaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli. We found that lac operon regulation became strikingly variable, including changes in the mode of environmental response (bimodal, graded, and constitutive), sensitivity to inducer concentration, and maximum expression level. In addition, some classes of regulatory change were enriched in specific selective environments. Sequencing of evolved clones, combined with reconstruction of individual mutations in the ancestral background, identified mutations within the lac operon that recapitulate many of the evolved regulatory changes. These mutations conferred fitness benefits in environments containing lactose, indicating that the regulatory changes are adaptive. The same mutations conferred different fitness effects when present in an evolved clone, indicating that interactions between the lac operon and other evolved mutations also contribute to fitness. Similarly, changes in lac regulation not explained by lac operon mutations also point to important interactions with other evolved mutations. Together these results underline how dynamic regulatory interactions can be, in this case evolving through mutations both within and external to the canonical lactose utilization network.

  12. Adaptive Evolution of the Lactose Utilization Network in Experimentally Evolved Populations of Escherichia coli

    Science.gov (United States)

    Quan, Selwyn; Ray, J. Christian J.; Kwota, Zakari; Duong, Trang; Balázsi, Gábor; Cooper, Tim F.; Monds, Russell D.

    2012-01-01

    Adaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli. We found that lac operon regulation became strikingly variable, including changes in the mode of environmental response (bimodal, graded, and constitutive), sensitivity to inducer concentration, and maximum expression level. In addition, some classes of regulatory change were enriched in specific selective environments. Sequencing of evolved clones, combined with reconstruction of individual mutations in the ancestral background, identified mutations within the lac operon that recapitulate many of the evolved regulatory changes. These mutations conferred fitness benefits in environments containing lactose, indicating that the regulatory changes are adaptive. The same mutations conferred different fitness effects when present in an evolved clone, indicating that interactions between the lac operon and other evolved mutations also contribute to fitness. Similarly, changes in lac regulation not explained by lac operon mutations also point to important interactions with other evolved mutations. Together these results underline how dynamic regulatory interactions can be, in this case evolving through mutations both within and external to the canonical lactose utilization network. PMID:22253602

  13. Adaptation to enemy shifts: rapid resistance evolution to local Vibrio spp. in invasive Pacific oysters

    Science.gov (United States)

    Wendling, Carolin C.; Wegner, K. Mathias

    2015-01-01

    One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness of invaders. Despite strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.), we demonstrate that within a few generations hosts adapted to newly encountered pathogen communities. However, local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore, we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges. PMID:25716784

  14. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  15. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Selwyn Quan

    2012-01-01

    Full Text Available Adaptation to novel environments is often associated with changes in gene regulation. Nevertheless, few studies have been able both to identify the genetic basis of changes in regulation and to demonstrate why these changes are beneficial. To this end, we have focused on understanding both how and why the lactose utilization network has evolved in replicate populations of Escherichia coli. We found that lac operon regulation became strikingly variable, including changes in the mode of environmental response (bimodal, graded, and constitutive, sensitivity to inducer concentration, and maximum expression level. In addition, some classes of regulatory change were enriched in specific selective environments. Sequencing of evolved clones, combined with reconstruction of individual mutations in the ancestral background, identified mutations within the lac operon that recapitulate many of the evolved regulatory changes. These mutations conferred fitness benefits in environments containing lactose, indicating that the regulatory changes are adaptive. The same mutations conferred different fitness effects when present in an evolved clone, indicating that interactions between the lac operon and other evolved mutations also contribute to fitness. Similarly, changes in lac regulation not explained by lac operon mutations also point to important interactions with other evolved mutations. Together these results underline how dynamic regulatory interactions can be, in this case evolving through mutations both within and external to the canonical lactose utilization network.

  16. How to Survive the Anthropocene: Adaptive Atheism and the Evolution of Homo deiparensis

    Directory of Open Access Journals (Sweden)

    F. LeRon Shults

    2015-06-01

    Full Text Available Why is it so easy to ignore the ecological and economic crises of the Anthropocene? This article unveils some of the religious biases whose covert operation facilitates the repression or rejection of warnings about the consequences of extreme climate change and excessive capitalist consumption. The evolved defaults that are most relevant for our purposes here have to do with mental credulity toward religious content (beliefs about supernatural agents and with social congruity in religious contexts (behaviors shaped by supernatural rituals. Learning how to contest these phylogenetically inherited and culturally fortified biases may be a necessary condition for adapting to and altering our current natural and social environments in ways that will enhance the chances for the survival (and flourishing of Homo sapiens and other sentient species. I outline a conceptual framework, derived from empirical findings and theoretical developments in the bio-cultural sciences of religion, which can help clarify why and how gods are imaginatively conceived and nurtured by ritually engaged believers. Finally, I discuss the role that “adaptive atheism” might play in responding to the crises of the Anthropocene.

  17. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations.

    Science.gov (United States)

    Savage, Anna E; Zamudio, Kelly R

    2016-03-30

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. © 2016 The Authors.

  18. Adaptive co-evolution of strategies and network leading to optimal cooperation level in spatial prisoner's dilemma game

    International Nuclear Information System (INIS)

    Han-Shuang, Chen; Zhong-Huai, Hou; Hou-Wen, Xin; Ji-Qian, Zhang

    2010-01-01

    We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 – p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve. (general)

  19. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans.

    Science.gov (United States)

    Zhao, Man; Gu, Yongzhe; He, Lingli; Chen, Qingshan; He, Chaoying

    2015-05-15

    The DA1 gene family is plant-specific and Arabidopsis DA1 regulates seed and organ size, but the functions in soybeans are unknown. The cultivated soybean (Glycine max) is believed to be domesticated from the annual wild soybeans (Glycine soja). To evaluate whether DA1-like genes were involved in the evolution of soybeans, we compared variation at both sequence and expression levels of DA1-like genes from G. max (GmaDA1) and G. soja (GsoDA1). Sequence identities were extremely high between the orthologous pairs between soybeans, while the paralogous copies in a soybean species showed a relatively high divergence. Moreover, the expression variation of DA1-like paralogous genes in soybean was much greater than the orthologous gene pairs between the wild and cultivated soybeans during development and challenging abiotic stresses such as salinity. We further found that overexpressing GsoDA1 genes did not affect seed size. Nevertheless, overexpressing them reduced transgenic Arabidopsis seed germination sensitivity to salt stress. Moreover, most of these genes could improve salt tolerance of the transgenic Arabidopsis plants, corroborated by a detection of expression variation of several key genes in the salt-tolerance pathways. Our work suggested that expression diversification of DA1-like genes is functionally associated with adaptive radiation of soybeans, reinforcing that the plant-specific DA1 gene family might have contributed to the successful adaption to complex environments and radiation of the plants.

  20. Ecological adaptations and commensal evolution of the Polynoidae (Polychaeta) in the Southwest Indian Ocean Ridge: A phylogenetic approach

    Science.gov (United States)

    Serpetti, Natalia; Taylor, M. L.; Brennan, D.; Green, D. H.; Rogers, A. D.; Paterson, G. L. J.; Narayanaswamy, B. E.

    2017-03-01

    The polychaete family polynoid is very large and includes a high diversity of behaviours, including numerous examples of commensal species. The comparison between free-living and commensal behaviours and the evolution of the relationships between commensal species and their hosts are valuable case studies of ecological adaptations. Deep-sea species of Polynoidae were sampled at four seamounts in the Southwest Indian Ridge and twenty specimens from seven species were selected to be analysed. Among them, there were free-living species, living within the three-dimensional framework of cold-water coral reefs, on coral rubble and on mobile sediments, and commensal species, associated with octocorals, hydrocorals (stylasterids), antipatharians and echinoderms (holothurian and ophiuroids). We analysed two mitochondrial (COI, 16S) and two nuclear (18S, 28S) ribosomal genetic markers and their combined sequences were compared with other Genbank sequences to assess the taxonomic relationships within the species under study, and the potential role of hosts in speciation processes. Most basal species of the sub-family Polynoinae are obligate symbionts showing specific morphological adaptations. Obligate and facultative commensal species and free-living species have evolved a number of times, although, according to our results, the obligate coral commensal species appear to be monophyletic.

  1. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Baofa Sun

    2016-08-01

    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  2. Linearized Flux Evolution (LiFE): A technique for rapidly adapting fluxes from full-physics radiative transfer models

    Science.gov (United States)

    Robinson, Tyler D.; Crisp, David

    2018-05-01

    Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.

  3. Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response.

    Science.gov (United States)

    Webb, Andrew E; Gerek, Z Nevin; Morgan, Claire C; Walsh, Thomas A; Loscher, Christine E; Edwards, Scott V; O'Connell, Mary J

    2015-07-01

    It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments

    Directory of Open Access Journals (Sweden)

    Wuxia Guo

    2017-05-01

    Full Text Available Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936–48,845 unigenes with N50 values of 982–1,185 bp and 61.42–69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya, suggesting that the transgression during the Paleocene–Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous–Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of

  5. Genomic fossils reveal adaptation of non-autonomous pararetroviruses driven by concerted evolution of noncoding regulatory sequences.

    Science.gov (United States)

    Chen, Sunlu; Zheng, Huizhen; Kishima, Yuji

    2017-06-01

    The interplay of different virus species in a host cell after infection can affect the adaptation of each virus. Endogenous viral elements, such as endogenous pararetroviruses (PRVs), have arisen from vertical inheritance of viral sequences integrated into host germline genomes. As viral genomic fossils, these sequences can thus serve as valuable paleogenomic data to study the long-term evolutionary dynamics of virus-virus interactions, but they have rarely been applied for this purpose. All extant PRVs have been considered autonomous species in their parasitic life cycle in host cells. Here, we provide evidence for multiple non-autonomous PRV species with structural defects in viral activity that have frequently infected ancient grass hosts and adapted through interplay between viruses. Our paleogenomic analyses using endogenous PRVs in grass genomes revealed that these non-autonomous PRV species have participated in interplay with autonomous PRVs in a possible commensal partnership, or, alternatively, with one another in a possible mutualistic partnership. These partnerships, which have been established by the sharing of noncoding regulatory sequences (NRSs) in intergenic regions between two partner viruses, have been further maintained and altered by the sequence homogenization of NRSs between partners. Strikingly, we found that frequent region-specific recombination, rather than mutation selection, is the main causative mechanism of NRS homogenization. Our results, obtained from ancient DNA records of viruses, suggest that adaptation of PRVs has occurred by concerted evolution of NRSs between different virus species in the same host. Our findings further imply that evaluation of within-host NRS interactions within and between populations of viral pathogens may be important.

  6. Adaptive response to DNA-damaging agents in natural Saccharomyces cerevisiae populations from "Evolution Canyon", Mt. Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Gabriel A Lidzbarsky

    2009-06-01

    Full Text Available Natural populations of most organisms, especially unicellular microorganisms, are constantly exposed to harsh environmental factors which affect their growth. UV radiation is one of the most important physical parameters which influences yeast growth in nature. Here we used 46 natural strains of Saccharomyces cerevisiae isolated from several natural populations at the "Evolution Canyon" microsite (Nahal Oren, Mt. Carmel, Israel. The opposing slopes of this canyon share the same geology, soil, and macroclimate, but they differ in microclimatic conditions. The interslope differences in solar radiation (200%-800% more on the "African" slope caused the development of two distinct biomes. The south-facing slope is sunnier and has xeric, savannoid "African" environment while the north-facing slope is represented by temperate, "European" forested environment. Here we studied the phenotypic response of the S. cerevisiae strains to UVA and UVC radiations and to methyl methanesulfonate (MMS in order to evaluate the interslope effect on the strains' ability to withstand DNA-damaging agents.We exposed our strains to the different DNA-damaging agents and measured survival by counting colony forming units. The strains from the "African" slope were more resilient to both UVA and MMS than the strains from the "European" slope. In contrast, we found that there was almost no difference between strains (with similar ploidy from the opposite slopes, in their sensitivity to UVC radiation. These results suggest that the "African" strains are more adapted to higher solar radiation than the "European" strains. We also found that the tetraploids strains were more tolerant to all DNA-damaging agents than their neighboring diploid strains, which suggest that high ploidy level might be a mechanism of adaptation to high solar radiation.Our results and the results of parallel studies with several other organisms, suggest that natural selection appears to select, at a

  7. Adaptative evolution of metallothionein 3 in the Cd/Zn hyperaccumulator Thlaspi caerulescens

    Energy Technology Data Exchange (ETDEWEB)

    Roosens, N.H.; Bernard, C.; Verbruggen, N. [Lab. de Physiologie et Genetique Moleculaire des Plantes, Univ. Libre de Bruxelles, Brussels (Belgium); Leplae, R. [Service de Conformation des Macromolecules Biologiques et Bioinformatique, Univ. Libre de Bruxelles, Brussels (Belgium)

    2005-04-01

    A functional screening in yeast allowed to identify various cDNAs from the Cd/Zn hyper-accumulator Thlaspi caerulescens. TcMT3 displayed high identity with its closest homologue in Arabidopsis thaliana but variation in its Cys residues. Functional analysis in yeast supported a higher binding capacity for Cu, but not for Cd or Zn, of TcMT3 compared to AtMT3. Expression analysis in plants indicated that metallothionein 3 (MT3) like all the other T. caerulescens genes from the screen studied is overexpressed in all studied populations of T. caerulescens compared to A. thaliana. TcMT3 was induced by Cu, but not by Cd. Moreover significant variation in expression within T. caerulescens populations that have contrasting tolerance and accumulation capacities indicated a possible local adaptation of MT3. (orig.)

  8. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    Science.gov (United States)

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  9. Recovery of Phenotypes Obtained by Adaptive Evolution through Inverse Metabolic Engineering

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-01-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one...... of the mutations RAS2Lys77, RAS2Tyr112, and ERG5Pro370 were constructed and evaluated. The mutants were also combined with overexpression of PGM2, earlier proved as a beneficial target for galactose utilization. The constructed strains were analyzed for their gross phenotype, transcriptome and targeted metabolites......, and the results were compared to those obtained from reference strains and the evolved strains. The RAS2Lys77 mutation resulted in the highest specific galactose uptake rate among all of the strains with an increased maximum specific growth rate on galactose. The RAS2Tyr112 mutation also improved the specific...

  10. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance.

    Science.gov (United States)

    Alyokhin, Andrei; Chen, Yolanda H

    2017-06-01

    Insecticide resistance is a serious economic problem that jeopardizes sustainability of chemical control of herbivorous insects and related arthropods. It can be viewed as a specific case of adaptation to toxic chemicals, which has been driven in large part, but not exclusively, by the necessity for insect pests to tolerate defensive compounds produced by their host plants. Synthetic insecticides may simply change expression of specific sets of detoxification genes that have evolved due to ancestral associations with host plants. Feeding on host plants with more abundant or novel secondary metabolites has even been shown to prime insect herbivores to tolerate pesticides. Clear understanding of basic evolutionary processes is important for achieving lasting success in managing herbivorous arthropods. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali; Garrett, Roger Antony

    2011-01-01

    CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located...... in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily between...... the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons...

  12. Sequestration of plant-derived glycosides by leaf beetles: A model system for evolution and adaptation

    Directory of Open Access Journals (Sweden)

    Wilhelm Boland

    2015-12-01

    Full Text Available Leaf beetles have developed an impressive repertoire of toxins and repellents to defend themselves against predators. Upon attack, the larvae discharge small droplets from glandular reservoirs on their back. The reservoirs are “bioreactors” performing the late reactions of the toxin-production from plant-derived or de novo synthesised glucosides. The import of the glucosides into the bioreactor relies on a complex transport system. Physiological studies revealed a functional network of transporters guiding the glucosides through the larval body into the defensive system. The first of the involved transporters has been identified and characterised concerning selectivity, tissue distribution, and regulation. The development of a well-tuned transport system, perfectly adjusted to the compounds provided by the food plants, provides the functional basis for the leaf beetle defenses and their local adaptation to their host plants.

  13. Divergence and adaptive evolution of the gibberellin oxidase genes in plants.

    Science.gov (United States)

    Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan

    2015-09-29

    The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.

  14. Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation.

    Science.gov (United States)

    Engelstädter, Jan; Moradigaravand, Danesh

    2014-01-22

    Natural transformation is a process whereby bacteria actively take up DNA from the surrounding environment and incorporate it into their genome. Natural transformation is widespread in bacteria, but its evolutionary significance is still debated. Here, we hypothesize that transformation may confer a fitness advantage in changing environments through a process we term 'genetic time travel': by taking up old genes that were retained in the environment, the bacteria may revert to a past genotypic state that proves advantageous in the present or a future environment. We scrutinize our hypothesis by means of a mathematical model involving two bacterial types (transforming and non-transforming), a single locus under natural selection and a free DNA pool. The two bacterial types were competed in environments with changing selection regimes. We demonstrate that for a wide range of parameter values for the DNA turnover rate, the transformation rate and the frequency of environmental change, the transforming type outcompetes the non-transforming type. We discuss the empirical plausibility of our hypothesis, as well as its relationship to other hypotheses for the evolution of transformation in bacteria and sex more generally, speculating that 'genetic time travel' may also be relevant in eukaryotes that undergo horizontal gene transfer.

  15. Convergent adaptation of cellular machineries in the evolution of large body masses and long life spans.

    Science.gov (United States)

    Croco, Eleonora; Marchionni, Silvia; Storci, Gianluca; Bonafè, Massimiliano; Franceschi, Claudio; Stamato, Thomas D; Sell, Christian; Lorenzini, Antonello

    2017-08-01

    In evolutionary terms, life on the planet has taken the form of independently living cells for the majority of time. In comparison, the mammalian radiation is a relatively recent event. The common mammalian ancestor was probably small and short-lived. The "recent" acquisition of an extended longevity and large body mass of some species of mammals present on the earth today suggests the possibility that similar cellular mechanisms have been influenced by the forces of natural selection to create a convergent evolution of longevity. Many cellular mechanisms are potentially relevant for extending longevity; in this assay, we review the literature focusing primarily on two cellular features: (1) the capacity for extensive cellular proliferation of differentiated cells, while maintaining genome stability; and (2) the capacity to detect DNA damage. We have observed that longevity and body mass are both positively linked to these cellular mechanisms and then used statistical tools to evaluate their relative importance. Our analysis suggest that the capacity for extensive cellular proliferation while maintaining sufficient genome stability, correlates to species body mass while the capacity to correctly identify the presence of DNA damage seems more an attribute of long-lived species. Finally, our data are in support of the idea that a slower development, allowing for better DNA damage detection and handling, should associate with longer life span.

  16. Many-Objective Optimization Using Adaptive Differential Evolution with a New Ranking Method

    Directory of Open Access Journals (Sweden)

    Xiaoguang He

    2014-01-01

    Full Text Available Pareto dominance is an important concept and is usually used in multiobjective evolutionary algorithms (MOEAs to determine the nondominated solutions. However, for many-objective problems, using Pareto dominance to rank the solutions even in the early generation, most obtained solutions are often the nondominated solutions, which results in a little selection pressure of MOEAs toward the optimal solutions. In this paper, a new ranking method is proposed for many-objective optimization problems to verify a relatively smaller number of representative nondominated solutions with a uniform and wide distribution and improve the selection pressure of MOEAs. After that, a many-objective differential evolution with the new ranking method (MODER for handling many-objective optimization problems is designed. At last, the experiments are conducted and the proposed algorithm is compared with several well-known algorithms. The experimental results show that the proposed algorithm can guide the search to converge to the true PF and maintain the diversity of solutions for many-objective problems.

  17. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas

    Energy Technology Data Exchange (ETDEWEB)

    Worden, Alexandra Z.; Lee, Jae-Hyeok; Mock, Thomas; Rouze, Pierre; Simmons, Melinda P.; Aerts, Andrea L.; Allen, Andrew E.; Cuvelier, Marie L.; Derelle, Evelyne; Everett, Meredieht V.; Foulon, Elodie; Grimwood, Jane; Gundlach, Heidrun; Henrissat, Bernard; Napoli, Carolyn; McDonald, Sarah M.; Parker, Micaela S.; Rombauts, Stephane; Salamov, Asaf; von Dassow, Peter; Badger, Jonathan G,; Coutinho, Pedro M.; Demir, Elif; Dubchak, Inna; Gentemann, Chelle; Eikrem, Wenche; Gready, Jill E.; John, Uwe; Lanier, William; Lindquist, Erika A.; Lucas, Susan; Mayer, Kluas F. X.; Moreau, Herve; Not, Fabrice; Otillar, Robert; Panaud, Olivier; Pangilinan, Jasmyn; Paulsen, Ian; Piegu, Benoit; Poliakov, Aaron; Robbens, Steven; Schmutz, Jeremy; Roulza, Eve; Wyss, Tania; Zelensky, Alexander; Zhou, Kemin; Armbrust, E. Virginia; Bhattacharya, Debashish; Goodenough, Ursula W.; Van de Peer, Yves; Grigoriev, Igor V.

    2009-10-14

    Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90percent of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.

  18. Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Joseph

    2010-03-26

    Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

  19. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem

    Science.gov (United States)

    Luo, Zhe-Xi; Meng, Qing-Jin; Grossnickle, David M.; Liu, Di; Neander, April I.; Zhang, Yu-Guang; Ji, Qiang

    2017-08-01

    Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar-pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.

  20. The evolution of alternative adaptive strategies for effective communication in noisy environments.

    Science.gov (United States)

    Ord, Terry J; Charles, Grace K; Hofer, Rebecca K

    2011-01-01

    Animals communicating socially are expected to produce signals that are conspicuous within the habitats in which they live. The particular way in which a species adapts to its environment will depend on its ancestral condition and evolutionary history. At this point, it is unclear how properties of the environment and historical factors interact to shape communication. Tropical Anolis lizards advertise territorial ownership using visual displays in habitats where visual motion or "noise" from windblown vegetation poses an acute problem for the detection of display movements. We studied eight Anolis species that live in similar noise environments but belong to separate island radiations with divergent evolutionary histories. We found that species on Puerto Rico displayed at times when their signals were more likely to be detected by neighboring males and females (during periods of low noise). In contrast, species on Jamaica displayed irrespective of the level of environmental motion, apparently because these species have a display that is effective in a range of viewing conditions. Our findings appear to reflect a case of species originating from different evolutionary starting points evolving different signal strategies for effective communication in noisy environments.

  1. Archaeogenetic evidence of ancient nubian barley evolution from six to two-row indicates local adaptation.

    Directory of Open Access Journals (Sweden)

    Sarah A Palmer

    Full Text Available BACKGROUND: Archaeobotanical samples of barley (Hordeum vulgare L. found at Qasr Ibrim display a two-row phenotype that is unique to the region of archaeological sites upriver of the first cataract of the Nile, characterised by the development of distinctive lateral bracts. The phenotype occurs throughout all strata at Qasr Ibrim, which range in age from 3000 to a few hundred years. METHODOLOGY AND FINDINGS: We extracted ancient DNA from barley samples from the entire range of occupancy of the site, and studied the Vrs1 gene responsible for row number in extant barley. Surprisingly, we found a discord between the genotype and phenotype in all samples; all the barley had a genotype consistent with the six-row condition. These results indicate a six-row ancestry for the Qasr Ibrim barley, followed by a reassertion of the two-row condition. Modelling demonstrates that this sequence of evolutionary events requires a strong selection pressure. CONCLUSIONS: The two-row phenotype at Qasr Ibrim is caused by a different mechanism to that in extant barley. The strength of selection required for this mechanism to prevail indicates that the barley became locally adapted in the region in response to a local selection pressure. The consistency of the genotype/phenotype discord over time supports a scenario of adoption of this barley type by successive cultures, rather than the importation of new barley varieties associated with individual cultures.

  2. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem.

    Science.gov (United States)

    Luo, Zhe-Xi; Meng, Qing-Jin; Grossnickle, David M; Liu, Di; Neander, April I; Zhang, Yu-Guang; Ji, Qiang

    2017-08-17

    Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar-pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.

  3. Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders.

    Science.gov (United States)

    Blackledge, Todd A; Gillespie, Rosemary G

    2004-11-16

    Species in ecologically similar habitats often display patterns of divergence that are strikingly comparable, suggesting that natural selection can lead to predictable evolutionary change in communities. However, the relative importance of selection as an agent mediating in situ diversification, versus dispersal between habitats, cannot be addressed without knowledge of phylogenetic history. We used an adaptive radiation of spiders within the Hawaiian Islands to test the prediction that species of spiders on different islands would independently evolve webs with similar architectures. Tetragnatha spiders are the only nocturnal orb-weaving spiders endemic to the Hawaiian archipelago, and multiple species of orb-weaving Tetragnatha co-occur within mesic and wet forest habitats on each of the main islands. Therefore, comparison of web architectures spun by spiders on different islands allowed study of replicated evolutionary events of past behavioral diversification. We found that species within each island construct webs with architectures that differ from one another. However, pairs of species on different islands, "ethotypes," share remarkable similarities in web architectures. Phylogenetic analysis demonstrated that the species comprising these ethotypes evolved independent of one another. Our study illustrates the high degree of predictability that can be exhibited by the evolutionary diversification of complex behaviors. However, not all web architectures were shared between islands, demonstrating that unique effects also have played an important role in the historical diversification of behavior.

  4. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at "Evolution Canyon", Mount Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Natarajan Singaravelan

    Full Text Available BACKGROUND: Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s that evolve in direct response to selection, enhancing the organism's fitness. "Evolution Canyon" (EC in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric "African" slope (AS receives 200%-800% higher solar radiation than the north-facing, temperate, shady and mesic "European" slope (ES, 200 meters apart. Thus, solar ultraviolet radiation (UVR is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance. METHODOLOGY/PRINCIPAL FINDINGS: We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin

  5. A place to call home: study protocol for a longitudinal, mixed methods evaluation of two housing first adaptations in Sydney, Australia

    OpenAIRE

    Whittaker, Elizabeth; Swift, Wendy; Flatau, Paul; Dobbins, Timothy; Schollar-Root, Olivia; Burns, Lucinda

    2015-01-01

    Background This protocol describes a study evaluating two ?Housing First? programs, Platform 70 and Common Ground, presently being implemented in the inner-city region of Sydney, Australia. The Housing First approach prioritises housing individuals who are homeless in standard lease agreement tenancies as rapidly as possible to lock in the benefits from long-term accommodation, even where the person may not be seen as ?housing ready?. Methods/Design The longitudinal, mixed methods evaluation ...

  6. Unsettling Australia

    DEFF Research Database (Denmark)

    Jensen, Lars

    This book is a critical intervention into debates on Australia's cultural history. The book demonstrates the interconnectedness of themes commonly seen as separate discursive formations, and shows the fruitfulness of bringing a combined cultural studies and postcolonial approach to bear on a number...

  7. Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains.

    Science.gov (United States)

    Bidokhti, Mehdi R M; Tråvén, Madeleine; Krishna, Neel K; Munir, Muhammad; Belák, Sándor; Alenius, Stefan; Cortey, Martí

    2013-09-01

    Coronaviruses demonstrate great potential for interspecies transmission, including zoonotic outbreaks. Although bovine coronavirus (BCoV) strains are frequently circulating in cattle farms worldwide, causing both enteric and respiratory disease, little is known about their genomic evolution. We sequenced and analysed the full-length spike (S) protein gene of 33 BCoV strains from dairy and feedlot farms collected during outbreaks that occurred from 2002 to 2010 in Sweden and Denmark. Amino acid identities were >97 % for the BCoV strains analysed in this work. These strains formed a clade together with Italian BCoV strains and were highly similar to human enteric coronavirus HECV-4408/US/94. A high similarity was observed between BCoV, canine respiratory coronavirus (CRCoV) and human coronavirus OC43 (HCoV-OC43). Molecular clock analysis of the S gene sequences estimated BCoV and CRCoV diverged from a common ancestor in 1951, while the time of divergence from a common ancestor of BCoV and HCoV-OC43 was estimated to be 1899. BCoV strains showed the lowest similarity to equine coronavirus, placing the date of divergence at the end of the eighteenth century. Two strongly positive selection sites were detected along the receptor-binding subunit of the S protein gene: spanning amino acid residues 109-131 and 495-527. By contrast, the fusion subunit was observed to be under negative selection. The selection pattern along the S glycoprotein implies adaptive evolution of BCoVs, suggesting a successful mechanism for BCoV to continuously circulate among cattle and other ruminants without disappearance.

  8. [Population: evolution of Rwandan attitudes or the adaptation of the Rwanda population to population growth].

    Science.gov (United States)

    Ngendakumana, M

    1988-04-01

    A consequence of the increasing pressure on Rwanda's ecosystem resulting from population growth has been that demographic factors have played a significant role in modifying attitudes and beliefs of the population. The history of Rwanda demonstrates a constant struggle for survival in the face of increasing population pressure. Migration, colonization of new agricultural lands, adoption of new crops and new forms of animal husbandry have been responses to population pressures. Recent unprecedented population growth has exceeded the capacity of older systems of cultivation and combinations of agricultural and animal husbandry to support the population. Smaller animals have largely replaced the cattle that once roamed freely in extensive pastures, and new techniques of stabling animals, use of organic or chemical fertilizers, and new tools adapted to the shrinking size of farm plots have represented responses to the new demographic realities. The concept of the family is likewise undergoing modification in the face of population growth and modernization. Children, who once were valued as a source of labor and constrained to conform to the wishes of the parents in return for the eventual inheritance of the goods and livelihood, now increasingly look beyond the household for education and employment. Family land holdings have become too small to support all the members with a claim on them. The greater distances between family members inevitably mean that relations between them lose closeness. The choice of a marriage partner is increasingly assumed by the young people themselves and not by their families. Old traditions of food sharing and hospitality have been curtailed because of the increasing scarcity of food. Despite the changes engendered by increasing population pressure, pronatalist sentiments are still widespread. But the desire to assure the future of each child rather than to await his services, a new conception of women less dependent on their reproductive

  9. Molecular epidemiology of Rabbit Haemorrhagic Disease Virus in Australia: when one became many.

    Science.gov (United States)

    Kovaliski, John; Sinclair, Ron; Mutze, Greg; Peacock, David; Strive, Tanja; Abrantes, Joana; Esteves, Pedro J; Holmes, Edward C

    2014-02-01

    Rabbit Haemorrhagic Disease Virus (RHDV) was introduced into Australia in 1995 as a biological control agent against the wild European rabbit (Oryctolagus cuniculus). We evaluated its evolution over a 16-year period (1995-2011) by examining 50 isolates collected throughout Australia, as well as the original inoculum strains. Phylogenetic analysis of capsid protein VP60 sequences of the Australian isolates, compared with those sampled globally, revealed that they form a monophyletic group with the inoculum strains (CAPM V-351 and RHDV351INOC). Strikingly, despite more than 3000 rereleases of RHDV351INOC since 1995, only a single viral lineage has sustained its transmission in the long-term, indicative of a major competitive advantage. In addition, we find evidence for widespread viral gene flow, in which multiple lineages entered individual geographic locations, resulting in a marked turnover of viral lineages with time, as well as a continual increase in viral genetic diversity. The rate of RHDV evolution recorded in Australia -4.0 (3.3-4.7) × 10(-3) nucleotide substitutions per site per year - was higher than previously observed in RHDV, and evidence for adaptive evolution was obtained at two VP60 residues. Finally, more intensive study of a single rabbit population (Turretfield) in South Australia provided no evidence for viral persistence between outbreaks, with genetic diversity instead generated by continual strain importation. © 2013 John Wiley & Sons Ltd.

  10. Molecular epidemiology of Rabbit Haemorrhagic Disease Virus (RHDV) in Australia: when one became many

    Science.gov (United States)

    Kovaliski, John; Sinclair, Ron; Mutze, Greg; Peacock, David; Strive, Tanja; Abrantes, Joana; Esteves, Pedro J.; Holmes, Edward C.

    2015-01-01

    Rabbit Haemorrhagic Disease Virus (RHDV) was introduced into Australia in 1995 as a biological control agent against the wild European rabbit (Oryctolagus cuniculus). We evaluated its evolution over a 16 year period (1995–2011) by examining 50 isolates collected throughout Australia, as well as the original inoculum strains. Phylogenetic analysis of capsid protein VP60 sequences of the Australian isolates, compared to those sampled globally, revealed that they form a monophyletic group with the inoculum strains (CAPM V-351 and RHDV351INOC). Strikingly, despite more than 3000 re-releases of RHDV351INOC since 1995, only a single viral lineage has sustained its transmission in the long-term, indicative of a major competitive advantage. In addition, we find evidence for widespread viral gene flow, in which multiple lineages entered individual geographic locations, resulting in a marked turnover of viral lineages with time, as well as a continual increase in viral genetic diversity. The rate of RHDV evolution recorded in Australia – 4.0 (3.3 – 4.7) × 10−3 nucleotide substitutions per site per year – was higher than previously observed in RHDV, and evidence for adaptive evolution was obtained at two VP60 residues. Finally, more intensive study of a single rabbit population (Turretfield) in South Australia provided no evidence for viral persistence between outbreaks, with genetic diversity instead generated by continual strain importation. PMID:24251353

  11. TH-A-BRF-02: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Modeling Tumor Evolution for Adaptive Radiation Therapy

    International Nuclear Information System (INIS)

    Liu, Y; Lee, CG; Chan, TCY; Cho, YB; Islam, MK

    2014-01-01

    Purpose: To develop mathematical models of tumor geometry changes under radiotherapy that may support future adaptive paradigms. Methods: A total of 29 cervical patients were scanned using MRI, once for planning and weekly thereafter for treatment monitoring. Using the tumor volumes contoured by a radiologist, three mathematical models were investigated based on the assumption of a stochastic process of tumor evolution. The “weekly MRI” model predicts tumor geometry for the following week from the last two consecutive MRI scans, based on the voxel transition probability. The other two models use only the first pair of consecutive MRI scans, and the transition probabilities were estimated via tumor type classified from the entire data set. The classification is based on either measuring the tumor volume (the “weekly volume” model), or implementing an auxiliary “Markov chain” model. These models were compared to a constant volume approach that represents the current clinical practice, using various model parameters; e.g., the threshold probability β converts the probability map into a tumor shape (larger threshold implies smaller tumor). Model performance was measured using volume conformity index (VCI), i.e., the union of the actual target and modeled target volume squared divided by product of these two volumes. Results: The “weekly MRI” model outperforms the constant volume model by 26% on average, and by 103% for the worst 10% of cases in terms of VCI under a wide range of β. The “weekly volume” and “Markov chain” models outperform the constant volume model by 20% and 16% on average, respectively. They also perform better than the “weekly MRI” model when β is large. Conclusion: It has been demonstrated that mathematical models can be developed to predict tumor geometry changes for cervical cancer undergoing radiotherapy. The models can potentially support adaptive radiotherapy paradigm by reducing normal tissue dose. This research

  12. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Science.gov (United States)

    Kieslich, Chris A; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the

  13. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  14. Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive differential evolution and modified game theory

    Science.gov (United States)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios; Chai, Senchun

    2017-07-01

    Highly constrained trajectory optimization for Space Manoeuvre Vehicles (SMV) is a challenging problem. In practice, this problem becomes more difficult when multiple mission requirements are taken into account. Because of the nonlinearity in the dynamic model and even the objectives, it is usually hard for designers to generate a compromised trajectory without violating strict path and box constraints. In this paper, a new multi-objective SMV optimal control model is formulated and parameterized using combined shooting-collocation technique. A modified game theory approach, coupled with an adaptive differential evolution algorithm, is designed in order to generate the pareto front of the multi-objective trajectory optimization problem. In addition, to improve the quality of obtained solutions, a control logic is embedded in the framework of the proposed approach. Several existing multi-objective evolutionary algorithms are studied and compared with the proposed method. Simulation results indicate that without driving the solution out of the feasible region, the proposed method can perform better in terms of convergence ability and convergence speed than its counterparts. Moreover, the quality of the pareto set generated using the proposed method is higher than other multi-objective evolutionary algorithms, which means the newly proposed algorithm is more attractive for solving multi-criteria SMV trajectory planning problem.

  15. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution.

    Science.gov (United States)

    Fu, Weiqi; Guðmundsson, Olafur; Paglia, Giuseppe; Herjólfsson, Gísli; Andrésson, Olafur S; Palsson, Bernhard O; Brynjólfsson, Sigurður

    2013-03-01

    There is a particularly high interest to derive carotenoids such as β-carotene and lutein from higher plants and algae for the global market. It is well known that β-carotene can be overproduced in the green microalga Dunaliella salina in response to stressful light conditions. However, little is known about the effects of light quality on carotenoid metabolism, e.g., narrow spectrum red light. In this study, we present UPLC-UV-MS data from D. salina consistent with the pathway proposed for carotenoid metabolism in the green microalga Chlamydomonas reinhardtii. We have studied the effect of red light-emitting diode (LED) lighting on growth rate and biomass yield and identified the optimal photon flux for D. salina growth. We found that the major carotenoids changed in parallel to the chlorophyll b content and that red light photon stress alone at high level was not capable of upregulating carotenoid accumulation presumably due to serious photodamage. We have found that combining red LED (75 %) with blue LED (25 %) allowed growth at a higher total photon flux. Additional blue light instead of red light led to increased β-carotene and lutein accumulation, and the application of long-term iterative stress (adaptive laboratory evolution) yielded strains of D. salina with increased accumulation of carotenoids under combined blue and red light.

  16. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yu; Chen, Xiao; Peng, Bingyin; Chen, Liyuan; Hou, Jin; Bao, Xiaoming [Shandong Univ., Jinan (China). State Key Lab. of Microbial Technology

    2012-11-15

    Factors related to ethanol production from xylose in engineered Saccharomyces cerevisiae that contain an exogenous initial metabolic pathway are still to be elucidated. In the present study, a strain that expresses the xylose isomerase gene of Piromyces sp. Pi-xylA and overexpresses XKS1, RPE1, RKI1, TAL1, and TKL1, with deleted GRE3 and COX4 genes was constructed. The xylose utilization capacity of the respiratory deficiency strain was poor but improved via adaptive evolution in xylose. The {mu}{sub max} of the evolved strain in 20 gl{sup -1} xylose is 0.11 {+-} 0.00 h{sup -1}, and the evolved strain consumed 17.83 gl{sup -1} xylose within 72 h, with an ethanol yield of 0.43 gg{sup -1} total consumed sugars during glucose-xylose cofermentation. Global transcriptional changes and effect of several specific genes were studied. The result revealed that the increased xylose isomerase activity, the upregulation of enzymes involved in glycolysis and glutamate synthesis, and the downregulation of trehalose and glycogen synthesis, may have contributed to the improved xylose utilization of the strain. Furthermore, the deletion of PHO13 decreased the xylose growth in the respiration deficiency strain although deleting PHO13 can improve the xylose metabolism in other strains. (orig.)

  17. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Science.gov (United States)

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-01-01

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress. PMID:26426027

  18. Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles.

    Science.gov (United States)

    Shang, Shuai; Zhong, Huaming; Wu, Xiaoyang; Wei, Qinguo; Zhang, Huanxin; Chen, Jun; Chen, Yao; Tang, Xuexi; Zhang, Honghai

    2018-04-01

    Toll-like receptors (TLRs) encoded by the TLR multigene family play an important role in initial pathogen recognition in vertebrates. Among the TLRs, TLR2 and TLR4 may be of particular importance to reptiles. In order to study the evolutionary patterns and structural characteristics of TLRs, we explored the available genomes of several representative members of reptiles. 25 TLR2 genes and 19 TLR4 genes from reptiles were obtained in this study. Phylogenetic results showed that the TLR2 gene duplication occurred in several species. Evolutionary analysis by at least two methods identified 30 and 13 common positively selected codons in TLR2 and TLR4, respectively. Most positively selected sites of TLR2 and TLR4 were located in the Leucine-rich repeat (LRRs). Branch model analysis showed that TLR2 genes were under different evolutionary forces in reptiles, while the TLR4 genes showed no significant selection pressure. The different evolutionary adaptation of TLR2 and TLR4 among the reptiles might be due to their different function in recognizing bacteria. Overall, we explored the structure and evolution of TLR2 and TLR4 genes in reptiles for the first time. Our study revealed valuable information regarding TLR2 and TLR4 in reptiles, and provided novel insights into the conservation concern of natural populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Directory of Open Access Journals (Sweden)

    Zhiqian Yi

    2015-09-01

    Full Text Available Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  20. pSum-SaDE: A Modified p-Median Problem and Self-Adaptive Differential Evolution Algorithm for Text Summarization

    Directory of Open Access Journals (Sweden)

    Rasim M. Alguliev

    2011-01-01

    Full Text Available Extractive multidocument summarization is modeled as a modified p-median problem. The problem is formulated with taking into account four basic requirements, namely, relevance, information coverage, diversity, and length limit that should satisfy summaries. To solve the optimization problem a self-adaptive differential evolution algorithm is created. Differential evolution has been proven to be an efficient and robust algorithm for many real optimization problems. However, it still may converge toward local optimum solutions, need to manually adjust the parameters, and finding the best values for the control parameters is a consuming task. In the paper is proposed a self-adaptive scaling factor in original DE to increase the exploration and exploitation ability. This paper has found that self-adaptive differential evolution can efficiently find the best solution in comparison with the canonical differential evolution. We implemented our model on multi-document summarization task. Experiments have shown that the proposed model is competitive on the DUC2006 dataset.

  1. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosacystic fibrosis bacterial isolates

    DEFF Research Database (Denmark)

    Friman, Ville-Petri; Soanes-Brown, Daniel; Sierocinski, Pawel

    2016-01-01

    and then compared the efficacy of pre-adapted and non-adapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages......, while all bacteria were able to evolve some level of resistance to ancestral phages. While the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely...

  2. A place to call home: study protocol for a longitudinal, mixed methods evaluation of two housing first adaptations in Sydney, Australia.

    Science.gov (United States)

    Whittaker, Elizabeth; Swift, Wendy; Flatau, Paul; Dobbins, Timothy; Schollar-Root, Olivia; Burns, Lucinda

    2015-04-09

    This protocol describes a study evaluating two 'Housing First' programs, Platform 70 and Common Ground, presently being implemented in the inner-city region of Sydney, Australia. The Housing First approach prioritises housing individuals who are homeless in standard lease agreement tenancies as rapidly as possible to lock in the benefits from long-term accommodation, even where the person may not be seen as 'housing ready'. The longitudinal, mixed methods evaluation utilises both quantitative and qualitative data collected at baseline and 12-month follow-up time points. For the quantitative component, clients of each program were invited to complete client surveys that reported on several factors associated with chronic homelessness and were hypothesised to improve under stable housing, including physical and mental health status and treatment rates, quality of life, substance use patterns, and contact with the health and criminal justice systems. Semi-structured interviews with clients and stakeholders comprised the qualitative component and focused on individual experiences with, and perceptions of, the two programs. In addition, program data on housing stability, rental subsidies and support levels provided to clients by agencies was collected and will be used in conjunction with the client survey data to undertake an economic evaluation of the two programs. This study will systematically evaluate the efficacy of a scatter site model (Platform 70) and a congregated model (Common Ground) of the Housing First approach; an examination that has not yet been made either in Australia or internationally. A clear strength of the study is its timing. It was designed and implemented as the programs in question themselves were introduced. Moreover, the programs were introduced when the Australian Government, with State and Territory support, began a more focused, coordinated response to homelessness and funded rapid expansion of innovative homelessness programs across the

  3. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried

    2016-07-28

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  4. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae)

    OpenAIRE

    Congrains, Carlos; Campanini, Emeline B; Torres, Felipe R; Rezende, Víctor B; Nakamura, Aline M; de Oliveira, Janaína L; Lima, André L A; Chahad-Ehlers, Samira; Sobrinho, Iderval S; de Brito, Reinaldo A

    2018-01-01

    Abstract Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with s...

  5. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    Directory of Open Access Journals (Sweden)

    David F Gruber

    Full Text Available We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs. Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp., two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II. We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  6. Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group.

    Directory of Open Access Journals (Sweden)

    Tiago R Simões

    Full Text Available Mosasauroids were a successful lineage of squamate reptiles (lizards and snakes that radiated during the Late Cretaceous (95-66 million years ago. They can be considered one of the few lineages in the evolutionary history of tetrapods to have acquired a fully aquatic lifestyle, similarly to whales, ichthyosaurs and plesiosaurs. Despite a long history of research on this group, their phylogenetic relationships have only been tested so far using traditional (unweighted maximum parsimony. However, hypotheses of mosasauroid relationships and the recently proposed multiple origins of aquatically adapted pelvic and pedal features in this group can be more thoroughly tested by methods that take into account variation in branch lengths and evolutionary rates. In this study, we present the first mosasauroid phylogenetic analysis performed under different analytical methods, including maximum likelihood, Bayesian inference, and implied weighting maximum parsimony. The results indicate a lack of congruence in the topological position of halisaurines and Dallasaurus. Additionally, the genus Prognathodon is paraphyletic under all hypotheses. Interestingly, a number of traditional mosasauroid clades become weakly supported, or unresolved, under Bayesian analyses. The reduced resolutions in some consensus trees create ambiguities concerning the evolution of fully aquatic pelvic/pedal conditions under many analyses. However, when enough resolution was obtained, reversals of the pelvic/pedal conditions were favoured by parsimony and likelihood ancestral state reconstructions instead of independent origins of aquatic features in mosasauroids. It is concluded that most of the observed discrepancies among the results can be associated with different analytical procedures, but also due to limited postcranial data on halisaurines, yaguarasaurines and Dallasaurus.

  7. Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group

    Science.gov (United States)

    Vernygora, Oksana; Paparella, Ilaria; Jimenez-Huidobro, Paulina; Caldwell, Michael W.

    2017-01-01

    Mosasauroids were a successful lineage of squamate reptiles (lizards and snakes) that radiated during the Late Cretaceous (95–66 million years ago). They can be considered one of the few lineages in the evolutionary history of tetrapods to have acquired a fully aquatic lifestyle, similarly to whales, ichthyosaurs and plesiosaurs. Despite a long history of research on this group, their phylogenetic relationships have only been tested so far using traditional (unweighted) maximum parsimony. However, hypotheses of mosasauroid relationships and the recently proposed multiple origins of aquatically adapted pelvic and pedal features in this group can be more thoroughly tested by methods that take into account variation in branch lengths and evolutionary rates. In this study, we present the first mosasauroid phylogenetic analysis performed under different analytical methods, including maximum likelihood, Bayesian inference, and implied weighting maximum parsimony. The results indicate a lack of congruence in the topological position of halisaurines and Dallasaurus. Additionally, the genus Prognathodon is paraphyletic under all hypotheses. Interestingly, a number of traditional mosasauroid clades become weakly supported, or unresolved, under Bayesian analyses. The reduced resolutions in some consensus trees create ambiguities concerning the evolution of fully aquatic pelvic/pedal conditions under many analyses. However, when enough resolution was obtained, reversals of the pelvic/pedal conditions were favoured by parsimony and likelihood ancestral state reconstructions instead of independent origins of aquatic features in mosasauroids. It is concluded that most of the observed discrepancies among the results can be associated with different analytical procedures, but also due to limited postcranial data on halisaurines, yaguarasaurines and Dallasaurus. PMID:28467456

  8. Testing biological hypotheses with embodied robots: adaptations, accidents, and by-products in the evolution of vertebrates

    Directory of Open Access Journals (Sweden)

    Sonia F Roberts

    2014-11-01

    Full Text Available Evolutionary robotics allows biologists to test hypotheses about extinct animals. We modeled some of the first vertebrates, jawless fishes, in order to study the evolution of the trait after which vertebrates are named: vertebrae. We tested the hypothesis that vertebrae are an adaptation for enhanced feeding and fleeing performance. We created a population of autonomous embodied robots, Preyro, in which the number of vertebrae, N, were free to evolve. In addition, two other traits, the span of the caudal fin, b, and the predator detection threshold, ζ, a proxy for the lateral line sensory system, were also allowed to evolve. These three traits were chosen because they evolved early in vertebrates, are all potentially important in feeding and fleeing, and vary in form among species. Preyro took on individual identities in a given generation as defined by the population’s six diploid genotypes, Gi. Each Gi was a 3-tuple, with each element an integer specifying N, b, and, ζ. The small size of the population allowed for genetic drift to operate in concert with random mutation and mating; the presence of these mechanisms of chance provided an opportunity for N to evolve by accident. The presence of three evolvable traits provided an opportunity for direct selection on b and/or ζ to evolve N as a by-product linked trait correlation. In selection trials, different Gi embodied in Preyro attempted to feed at a light source and then flee to avoid a predator robot in pursuit. The fitness of each Gi was calculated from five different types of performance: speed, acceleration, distance to the light, distance to the predator, and the number of predator escapes initiated. In each generation, we measured the selection differential, the selection gradient, the strength of chance, and the indirect correlation selection gradient. These metrics allowed us to understand the relative contributions of the three mechanisms: direct selection, chance, and indirect

  9. Last Glacial Maximum to Holocene climate evolution controlled by sea-level change, Leeuwin Current, and Australian Monsoon in the Northwestern Australia

    Science.gov (United States)

    Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.

    2017-12-01

    The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.

  10. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene.

    Science.gov (United States)

    Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C

    2015-02-01

    The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification Based on Adaptive Differential Evolution Using Hyperspectral and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yanfei Zhong

    2017-08-01

    Full Text Available Hyperspectral images and light detection and ranging (LiDAR data have, respectively, the high spectral resolution and accurate elevation information required for urban land-use/land-cover (LULC classification. To combine the respective advantages of hyperspectral and LiDAR data, this paper proposes an optimal decision fusion method based on adaptive differential evolution, namely ODF-ADE, for urban LULC classification. In the ODF-ADE framework the normalized difference vegetation index (NDVI, gray-level co-occurrence matrix (GLCM and digital surface model (DSM are extracted to form the feature map. The three different classifiers of the maximum likelihood classifier (MLC, support vector machine (SVM and multinomial logistic regression (MLR are used to classify the extracted features. To find the optimal weights for the different classification maps, weighted voting is used to obtain the classification result and the weights of each classification map are optimized by the differential evolution algorithm which uses a self-adaptive strategy to obtain the parameter adaptively. The final classification map is obtained after post-processing based on conditional random fields (CRF. The experimental results confirm that the proposed algorithm is very effective in urban LULC classification.

  12. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations.

    Science.gov (United States)

    Whitehead, Andrew; Clark, Bryan W; Reid, Noah M; Hahn, Mark E; Nacci, Diane

    2017-09-01

    For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human-mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well-studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution-adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful "solution to pollution" because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.

  13. Oxygen isotopic composition of carbonate concretions from the lower Cretaceous of Victoria, Australia: Implications for the evolution of meteoric waters on the Australian continent in a paleopolar environment

    International Nuclear Information System (INIS)

    Gregory, R.T.

    1989-01-01

    Oxygen isotopic data from carbonate cements in concretions have been used to infer the isotopic composition of meteoric fluids present at the time of concretion growth in terrestrial sediments that were deposited within the early Cretaceous South Polar Circle at 75-80 0 S. Carbon and oxygen isotope compositions have been determined on over 135 samples of carbonate from 45 concretions taken from 24 localities (Aptian-Albian in age) in the terrestrial sedimentary basins associated with the Otway and Strzelecki groups, southeastern Australia. The carbonate cements include calcite having -26.4≤δ 13 C≤19.6 and 3.6≤δ 18 O≤29.6 or siderite having 17.6≤δ 18 O≤30.8. Calcite-cemented concretions are more abundant and are interpreted to represent early near-surface cementation events on the basis of textural evidence such as high (>30%) porosities at the time of cementation and mineralogical evidence such as the preferential preservation within concretions of labile detrital grains including plagioclase, pyroxene, and amphibole. The oxygen isotopic data indicate that meteoric fluids with very low δ 18 O, certainly less than -15per mille and probably on the order of -20per mille, were involved in the precipitation of the early calcites. The extremely low δ 18 O values of the fluids involved in the early diagenesis of both the Otway and Strzelecki groups suggest that the catchment area of the river system that carried sediments to these basins had a cold high-latitude climate (with mean annual temperatures less than 5 0 C and quite possibly below freezing). By analogy with the relationship between modern 18 O distribution of meteoric fluids and climate, these new data suggest that the early Cretaceous polar regions may not have been ice-free. (orig.)

  14. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    Science.gov (United States)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  15. Adaptation of a cyanobacterium to a biochemically rich environment in experimental evolution as an initial step toward a chloroplast-like state.

    Science.gov (United States)

    Hosoda, Kazufumi; Habuchi, Masumi; Suzuki, Shingo; Miyazaki, Mikako; Takikawa, Go; Sakurai, Takahiro; Kashiwagi, Akiko; Sueyoshi, Makoto; Matsumoto, Yusuke; Kiuchi, Ayako; Mori, Kotaro; Yomo, Tetsuya

    2014-01-01

    Chloroplasts originated from cyanobacteria through endosymbiosis. The original cyanobacterial endosymbiont evolved to adapt to the biochemically rich intracellular environment of the host cell while maintaining its photosynthetic function; however, no such process has been experimentally demonstrated. Here, we show the adaptation of a model cyanobacterium, Synechocystis sp. PCC 6803, to a biochemically rich environment by experimental evolution. Synechocystis sp. PCC 6803 does not grow in a biochemically rich, chemically defined medium because several amino acids are toxic to the cells at approximately 1 mM. We cultured the cyanobacteria in media with the toxic amino acids at 0.1 mM, then serially transferred the culture, gradually increasing the concentration of the toxic amino acids. The cells evolved to show approximately the same specific growth rate in media with 0 and 1 mM of the toxic amino acid in approximately 84 generations and evolved to grow faster in the media with 1 mM than in the media with 0 mM in approximately 181 generations. We did not detect a statistically significant decrease in the autotrophic growth of the evolved strain in an inorganic medium, indicating the maintenance of the photosynthetic function. Whole-genome resequencing revealed changes in the genes related to the cell membrane and the carboxysome. Moreover, we quantitatively analyzed the evolutionary changes by using simple mathematical models, which evaluated the evolution as an increase in the half-maximal inhibitory concentration (IC50) and estimated quantitative characteristics of the evolutionary process. Our results clearly demonstrate not only the potential of a model cyanobacterium to adapt to a biochemically rich environment without a significant decrease in photosynthetic function but also the properties of its evolutionary process, which sheds light of the evolution of chloroplasts at the initial stage.

  16. Adaptive Laboratory Evolution Of Escherichia Coli Reveals Arduous Resistance Development To A Combination Of Three Novel Antimicrobial Compounds And To The Short Amp P9-4

    DEFF Research Database (Denmark)

    Citterio, Linda; Franzyk, Henrik; Gram, Lone

    2015-01-01

    Antimicrobial peptides (AMPs) were for long considered as promising new antimicrobials since resistance was not expected. However, adaptive evolution experiments have demonstrated that bacteria may indeed develop resistance also to AMPs. However, we and others hypothesize that the risk...... of resistance development decreases when two or more compounds are combined as compared to single-drug treatments. The purpose of this study was to determine if resistance could develop in Escherichia coli ATCC 25922 to the peptidomimetic HF-1002 2 and the AMPs novicidin and P9-4. The mentioned compounds were...

  17. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).

    Science.gov (United States)

    Rix, Michael G; Cooper, Steven J B; Meusemann, Karen; Klopfstein, Seraina; Harrison, Sophie E; Harvey, Mark S; Austin, Andrew D

    2017-04-01

    The formation and spread of the Australian arid zone during the Neogene was a profoundly transformative event in the biogeographic history of Australia, resulting in extinction or range contraction in lineages adapted to mesic habitats, as well as diversification and range expansion in arid-adapted taxa (most of which evolved from mesic ancestors). However, the geographic origins of the arid zone biota are still relatively poorly understood, especially among highly diverse invertebrate lineages, many of which are themselves poorly documented at the species level. Spiny trapdoor spiders (Idiopidae: Arbanitinae) are one such lineage, having mesic 'on-the-continent' Gondwanan origins, while also having experienced major arid zone radiations in select clades. In this study, we present new orthologous nuclear markers for the phylogenetic inference of mygalomorph spiders, and use them to infer the phylogeny of Australasian Idiopidae with a 12-gene parallel tagged amplicon next-generation sequencing approach. We use these data to test the mode and timing of diversification of arid-adapted idiopid lineages across mainland Australia, and employ a continent-wide sampling of the fauna's phylogenetic and geographic diversity to facilitate ancestral area inference. We further explore the evolution of phenotypic and behavioural characters associated with both arid and mesic environments, and test an 'out of south-western Australia' hypothesis for the origin of arid zone clades. Three lineages of Idiopidae are shown to have diversified in the arid zone during the Miocene, one (genus Euoplos) exclusively in Western Australia. Arid zone Blakistonia likely had their origins in South Australia, whereas in the most widespread genus Aganippe, a more complex scenario is evident, with likely range expansion from southern Western Australia to southern South Australia, from where the bulk of the arid zone fauna then originated. In Aganippe, remarkable adaptations to phragmotic burrow

  18. High-K granites of the Rum Jungle Complex, N-Australia: Insights into the Late Archean crustal evolution of the North Australian Craton

    Science.gov (United States)

    Drüppel, K.; McCready, A. J.; Stumpfl, E. F.

    2009-08-01

    The Late Archean (c. 2.54-2.52 Ga) high-K granitoids of the Rum Jungle Complex, Northern Australia, display the igneous mineral assemblage of K-feldspar, quartz, plagioclase, biotite, and magnetite, and accessories such as zircon, monazite, titanite, allanite, apatite, and ilmenite. The granites underwent a variably severe greenschist facies alteration and associated deformation during the Barramundi Orogeny (1.88-1.85 Ga). The K-rich granitoids have variable compositions, mainly comprising syenogranite and quartz-monzonite. They can be subdivided into two major groups, (1) felsic granites and (2) intermediate to felsic granites, quartz-monzonites, and diorite. The felsic group (69-76 wt.% SiO 2) shares many features with typical Late Archean potassic granites. They are K- and LILE-rich and show marked depletion in Sr and Eu and the high field strength elements (HFSE), particularly Nb and Ti, relative to LILE and LREE. Compared to the average upper crust they have anomalously high Th (up to 123 ppm) and U (up to 40 ppm). The intermediate to felsic group (56-69 wt.% SiO 2) differs from the felsic group in having weakly lower Th and U but higher Mg#, Ti, Ba, Sr, Ni, Cr and REE, with a less pronounced negative Eu anomaly. This group displays well-defined trends in Harker diagrams, involving a negative correlation of Si with Sr, Ca, Na, and P whereas K, Rb, and Ba increase in the same direction, suggesting fractional crystallization of feldspar was more prominent than in the felsic suite. The mineralogical and geochemical characteristics of the felsic group are consistent with granite formation by intracrustal melting of plagioclase-rich igneous protoliths, probably of tonaltic to granodioritic composition, at moderate crustal levels. The intermediate to felsic granites, on the other hand, appear to be the products of mantle-crust interaction, possibly by melting of or mixing with more mafic igneous rocks. As evidenced by the presence of older inherited zircons crustal

  19. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    OpenAIRE

    Gao Lei; Liang Bo; Fares Mario A; Sen Lin; Wang Bo; Wang Ting; Su Ying-Juan

    2011-01-01

    Abstract Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield c...

  20. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China.

    Science.gov (United States)

    Jia, Yun; Liu, Mi-Li; Yue, Ming; Zhao, Zhe; Zhao, Gui-Fang; Li, Zhong-Hu

    2017-07-11

    The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation) of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygium franchetii ( Notopterygium , Apiaceae) are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq) to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii . In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant-pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR) were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence of N. incisum

  1. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China

    Directory of Open Access Journals (Sweden)

    Yun Jia

    2017-07-01

    Full Text Available The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygium franchetii (Notopterygium, Apiaceae are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii. In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant–pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence

  2. What kind of memory has evolution wrought? Introductory article for the special issue of memory: adaptive memory: the emergence and nature of proximate mechanisms.

    Science.gov (United States)

    Otgaar, Henry; Howe, Mark L

    2014-01-01

    It is without question that our memory system evolved through a process of natural selection. However, basic research into the evolutionary foundations of memory has begun in earnest only recently. This is quite peculiar as the majority, perhaps even all, of memory research relates to whether memory is adaptive or not. In this Special Issue of Memory we have assembled a variety of papers that represent the cutting edge in research on the evolution of memory. These papers are centred on issues about the ultimate and proximate explanations of memory, the development of the adaptive functions of memory, as well as the positive consequences that arise from the current evolutionary form that our memory has taken. In this introductory article we briefly outline these different areas and indicate why they are vital for a more complete theory of memory. Further we argue that, by adopting a more applied stance in the area of the evolution of memory, one of the many future directions in this field could be a new branch of psychology that addresses questions in evolutionary legal psychology.

  3. Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin, Capricorn Orogen, Western Australia: Implications for tectonic setting and geodynamic evolution

    Directory of Open Access Journals (Sweden)

    Franco Pirajno

    2016-05-01

    Full Text Available In this contribution we use VMS mineral systems in the Bryah rift-basin to constrain the tectonic setting of the widespread mafic and ultramafic magmatism that characterises the rift-basin in question. Two distinct, but temporally closely associated, lithostratigraphic sequences, Narracoota and Karalundi Formations, are discussed. The Karalundi Formation is the main host of VMS mineral systems in the region. The Karalundi Formation consists of turbiditic and immature clastic sediments, which are locally intercalated with basaltic hyaloclastites, dolerites and banded jaspilites. We propose that the basaltic hyaloclastites, dolerites and clastics and jaspilites rocks, form a distinct unit of the Karalundi Formation, named Noonyereena Member. The VMS mineral systems occur near the north-east trending Jenkin Fault and comprise the giant and world-class DeGrussa and the Red Bore deposits. The nature of these deposits and their intimate association with terrigenous clastic rocks and dominantly marine mafic volcanic and subvolcanic rocks, as well as the common development of peperitic margins, are considered indicative of a Besshi-type environment, similar to that of present-day Gulf of California. Our Re-Os age data from a primary pyrite yielded a mean model age of 2012 ± 48 Ma, which coincides (within error with recent published Re-Os data (Hawke et al., 2015 and confirms the timing of the proposed geodynamic evolution. We propose a geodynamic model that attempts to explain the presence of the Narracoota and Karalundi Formations as the result of mantle plume activity, which began with early uplift of continental crust with intraplate volcanism, followed by early stages of rifting with the deposition of the Karalundi Formation (and Noonyereena Member, which led to the formation of Besshi-type VMS deposits. With on-going mantle plume activity and early stages of continental separation, an oceanic plateau was formed and is now represented by mafic

  4. The evolution and adaptation of clinical Pseudomonas aeruginosa isolates from early cystic fibrosis infections

    DEFF Research Database (Denmark)

    Lindegaard, Mikkel

    system (T3SS). This suggests that the current dogma of this regulatory system does not adequately explain the biological significance of this system, as the opposite mutation pattern would be expected if this dogma were true. Furthermore, we show that the residual evolution caused by other mutations also...

  5. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    Directory of Open Access Journals (Sweden)

    Giuseppina Rea

    2011-01-01

    Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues

  6. Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change.

    Science.gov (United States)

    Ensslin, Andreas; Fischer, Markus

    2015-08-01

    • Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments.• We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain's slope and measured performance, reproductive, and phenological traits.• Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values.• We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability. © 2015 Botanical Society of America, Inc.

  7. Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus)

    Science.gov (United States)

    Andrew J. Eckert; Andrew D. Bower; Kathleen D. Jermstad; Jill L. Wegrzyn; Brian J. Knaus; John V. Syring; David B. Neale

    2013-01-01

    Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne). Ample variation for these estimates, however, remains even when...

  8. Can a genetic correlation with seed mass constrain adaptive evolution of seedling desiccation tolerance in wild barley?

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Biere, A.; Nevo, E.; Van Damme, J.M.M.

    2004-01-01

    Very young seedlings of wild barley Hordeum spontaneum have the ability to survive extended periods of severe drought. This desiccation tolerance is considered an adaptation to the rain-limited and unpredictable habitats that the species occupies. Genetic variation has been observed for this trait,

  9. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire.

    Science.gov (United States)

    Simon, Marcelo F; Grether, Rosaura; de Queiroz, Luciano P; Skema, Cynthia; Pennington, R Toby; Hughes, Colin E

    2009-12-01

    The relative importance of local ecological and larger-scale historical processes in causing differences in species richness across the globe remains keenly debated. To gain insight into these questions, we investigated the assembly of plant diversity in the Cerrado in South America, the world's most species-rich tropical savanna. Time-calibrated phylogenies suggest that Cerrado lineages started to diversify less than 10 Mya, with most lineages diversifying at 4 Mya or less, coinciding with the rise to dominance of flammable C4 grasses and expansion of the savanna biome worldwide. These plant phylogenies show that Cerrado lineages are strongly associated with adaptations to fire and have sister groups in largely fire-free nearby wet forest, seasonally dry forest, subtropical grassland, or wetland vegetation. These findings imply that the Cerrado formed in situ via recent and frequent adaptive shifts to resist fire, rather than via dispersal of lineages already adapted to fire. The location of the Cerrado surrounded by a diverse array of species-rich biomes, and the apparently modest adaptive barrier posed by fire, are likely to have contributed to its striking species richness. These findings add to growing evidence that the origins and historical assembly of species-rich biomes have been idiosyncratic, driven in large part by unique features of regional- and continental-scale geohistory and that different historical processes can lead to similar levels of modern species richness.

  10. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire

    Science.gov (United States)

    Simon, Marcelo F.; Grether, Rosaura; de Queiroz, Luciano P.; Skema, Cynthia; Pennington, R. Toby; Hughes, Colin E.

    2009-01-01

    The relative importance of local ecological and larger-scale historical processes in causing differences in species richness across the globe remains keenly debated. To gain insight into these questions, we investigated the assembly of plant diversity in the Cerrado in South America, the world's most species-rich tropical savanna. Time-calibrated phylogenies suggest that Cerrado lineages started to diversify less than 10 Mya, with most lineages diversifying at 4 Mya or less, coinciding with the rise to dominance of flammable C4 grasses and expansion of the savanna biome worldwide. These plant phylogenies show that Cerrado lineages are strongly associated with adaptations to fire and have sister groups in largely fire-free nearby wet forest, seasonally dry forest, subtropical grassland, or wetland vegetation. These findings imply that the Cerrado formed in situ via recent and frequent adaptive shifts to resist fire, rather than via dispersal of lineages already adapted to fire. The location of the Cerrado surrounded by a diverse array of species-rich biomes, and the apparently modest adaptive barrier posed by fire, are likely to have contributed to its striking species richness. These findings add to growing evidence that the origins and historical assembly of species-rich biomes have been idiosyncratic, driven in large part by unique features of regional- and continental-scale geohistory and that different historical processes can lead to similar levels of modern species richness. PMID:19918050

  11. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations

    Science.gov (United States)

    For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human-mediated environmental changes. Yet large persistent populations of small bodied fish residing in some of the most contaminated estuaries of the US have provided some...

  12. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The mining of uranium in Australia is criticised in relation to it's environmental impact, economics and effects on mine workers and Aborigines. A brief report is given on each of the operating and proposed uranium mines in Australia

  13. Climate Change Policies in Australia: Gender Equality, Power and Knowledge

    OpenAIRE

    Thomas K. Wanner

    2009-01-01

    This paper examines the link between gender equality and climate change policies in Australia. It critically analyses the extent to which gender mainstreaming and gender dimensions have been taken into account in the national policy processes for climate change in Australia. The paper argues that climate change adaptation and mitigation policies in Australia neglect gender dimensions. This endangers the advances made in gender equality and works against socially equitable...

  14. Laser Hydrography in Australia.

    Science.gov (United States)

    1982-02-01

    r#00-Ails 584 ELECTRONICS RESEARCH LAO ADELAIDE IAUSTRALIA) F/S B/10 LASER HYDfiORAPHY IN AUSTRALIA . (U) FEB 82 M F PENNYJIJNCLASSIFIED ERLO Z B 9...RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ERL-0229-TR LASER HYDROGRAPHY IN AUSTRALIA M.F. PENNY LJ--.I LA. Approved for Public Releae...ERL-0229-TR LASER HYDROGRAPHY IN AUSTRALIA M.F. Penny SUMMARY In response to a Royal Australian Navy requirement, the Electronics Research Laboratory

  15. The Genome Sequence of the psychrophilic archaeon, Methanococcoides burtonii: the Role of Genome Evolution in Cold-adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.; Burg, Dominic; Siddiqui, Khawar S.; De Francisci, David; Chong, Kevin W.Y.; Pilak, Oliver; Chew, Hwee H.; De Maere, Matthew Z.; Ting, Lily; Katrib, Marilyn; Ng, Charmaine; Sowers, Kevin R.; Galperin, Michael Y.; Anderson, Iain J.; Ivanova, Natalia; Dalin, Eileen; Martinez, Michelle; Lapidus, Alla; Hauser, Loren; Land, Miriam; Thomas, Torsten; Cavicchioli, Ricardo

    2009-04-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have

  16. Bioethanol Production Using Waste Seaweed Obtained from Gwangalli Beach, Busan, Korea by Co-culture of Yeasts with Adaptive Evolution.

    Science.gov (United States)

    Sunwoo, In Yung; Kwon, Jung Eun; Nguyen, Trung Hau; Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-11-01

    Conditions for ethanol production were evaluated using waste seaweed obtained from Gwangalli beach, Busan, Korea, after strong winds on January 15, 2015. Eleven types of seaweed were identified, and the proportions of red, brown, and green seaweed wastes were 26, 46, and 28%, respectively. Optimal pretreatment conditions were determined as 8% slurry content, 286 mM H 2 SO 4 for 90 min at 121 °C. Enzymatic saccharification with 16 units/mL Celluclast 1.5L and Viscozyme L mixture at 45 °C for 48 h was carried out as optimal condition. A maximum monosaccharide concentration of 30.2 g/L was obtained and used to produce ethanol. Fermentation was performed with single or mixed yeasts of non-adapted and adapted Saccharomyces cerevisiae KCTC 1126 and Pichia angophorae KCTC 17574 to galactose and mannitol, respectively. The maximum ethanol concentration and yield of 13.5 g/L and Y EtOH of 0.45 were obtained using co-culture of adapted S. cerevisiae and P. angophorae.

  17. Enhancing the Adaptability of the Deep-Sea Bacterium Shewanella piezotolerans WP3 to High Pressure and Low Temperature by Experimental Evolution under H2O2Stress.

    Science.gov (United States)

    Xie, Zhe; Jian, Huahua; Jin, Zheng; Xiao, Xiang

    2018-03-01

    Oxidative stresses commonly exist in natural environments, and microbes have developed a variety of defensive systems to counteract such events. Although increasing evidence has shown that high hydrostatic pressure (HHP) and low temperature (LT) induce antioxidant defense responses in cells, there is no direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT. In this study, using the wild-type (WT) strain of a deep-sea bacterium, Shewanella piezotolerans WP3, as an ancestor, we obtained a mutant, OE100, with an enhanced antioxidant defense capacity by experimental evolution under H 2 O 2 stress. Notably, OE100 exhibited better tolerance not only to H 2 O 2 stress but also to HHP and LT (20 MPa and 4°C, respectively). Whole-genome sequencing identified a deletion mutation in the oxyR gene, which encodes the transcription factor that controls the oxidative stress response. Comparative transcriptome analysis showed that the genes associated with oxidative stress defense, anaerobic respiration, DNA repair, and the synthesis of flagella and bacteriophage were differentially expressed in OE100 compared with the WT at 20 MPa and 4°C. Genetic analysis of oxyR and ccpA2 indicated that the OxyR-regulated cytochrome c peroxidase CcpA2 significantly contributed to the adaptation of WP3 to HHP and LT. Taken together, these results confirmed the inherent relationship between antioxidant defense mechanisms and the adaptation of a benthic microorganism to HHP and LT. IMPORTANCE Oxidative stress exists in various niches, including the deep-sea ecosystem, which is an extreme environment with conditions of HHP and predominantly LT. Although previous studies have shown that HHP and LT induce antioxidant defense responses in cells, direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT is lacking. In this work, using the deep-sea bacterium

  18. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats

    Science.gov (United States)

    Zhang, Nan; Yang, Dongqing; Kendall, Joshua R. A.; Borriss, Rainer; Druzhinina, Irina S.; Kubicek, Christian P.; Shen, Qirong; Zhang, Ruifu

    2016-01-01

    Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens—B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production. PMID:28066362

  19. Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes

    Directory of Open Access Journals (Sweden)

    Braasch Ingo

    2007-11-01

    Full Text Available Abstract Background The exceptionally diverse species flocks of cichlid fishes in East Africa are prime examples of parallel adaptive radiations. About 80% of East Africa's more than 1 800 endemic cichlid species, and all species of the flocks of Lakes Victoria and Malawi, belong to a particularly rapidly evolving lineage, the haplochromines. One characteristic feature of the haplochromines is their possession of egg-dummies on the males' anal fins. These egg-spots mimic real eggs and play an important role in the mating system of these maternal mouthbrooding fish. Results Here, we show that the egg-spots of haplochromines are made up of yellow pigment cells, xanthophores, and that a gene coding for a type III receptor tyrosine kinase, colony-stimulating factor 1 receptor a (csf1ra, is expressed in egg-spot tissue. Molecular evolutionary analyses reveal that the extracellular ligand-binding and receptor-interacting domain of csf1ra underwent adaptive sequence evolution in the ancestral lineage of the haplochromines, coinciding with the emergence of egg-dummies. We also find that csf1ra is expressed in the egg-dummies of a distantly related cichlid species, the ectodine cichlid Ophthalmotilapia ventralis, in which markings with similar functions evolved on the pelvic fin in convergence to those of the haplochromines. Conclusion We conclude that modifications of existing signal transduction mechanisms might have evolved in the haplochromine lineage in association with the origination of anal fin egg-dummies. That positive selection has acted during the evolution of a color gene that seems to be involved in the morphogenesis of a sexually selected trait, the egg-dummies, highlights the importance of further investigations of the comparative genomic basis of the phenotypic diversification of cichlid fishes.

  20. Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica: Non-adaptive forces such as elevated mutation rates may influence the evolution of genome architecture.

    Science.gov (United States)

    Chavali, Sreenivas; Morais, David A de Lima; Gough, Julian; Babu, M Madan

    2011-08-01

    Recent sequencing of the metazoan Oikopleura dioica genome has provided important insights, which challenges the current understanding of eukaryotic genome evolution. Many genomic features of O. dioica show deviation from the commonly observed trends in other eukaryotic genomes. For instance, O. dioica has a rapidly evolving, highly compact genome with a divergent intron-exon organization. Additionally, O. dioica lacks the minor spliceosome and key DNA repair pathway genes. Even with a compact genome, O. dioica contains tandem repeats, comparable to other eukaryotes, and shows lineage-specific expansion of certain protein domains. Here, we review its genomic features in the context of current knowledge, discuss implications for contemporary biology and identify areas for further research. Analysis of the O. dioica genome suggests that non-adaptive forces such as elevated mutation rates might influence the evolution of genome architecture. The knowledge of unique genomic features and splicing mechanisms in O. dioica may be exploited for synthetic biology applications, such as generation of orthogonal splicing systems. Copyright © 2011 WILEY Periodicals, Inc.

  1. Depression in Aboriginal men in central Australia

    DEFF Research Database (Denmark)

    Brown, Alex D.H.; Mentha, Ricky; Rowley, Kevin G.

    2013-01-01

    groups comprising of members from primary Indigenous language groups in central Australia. First, focus group participants were asked to review and select a screening measure for adaptation. Bi-lingual experts then translated and back translated the language within the selected measure. Focus group...

  2. Did vicariance and adaptation drive cryptic speciation and evolution of brooding in Ophioderma longicauda (Echinodermata: Ophiuroidea), a common Atlanto-Mediterranean ophiuroid?

    Science.gov (United States)

    Boissin, E; Stöhr, S; Chenuil, A

    2011-11-01

    Over the last decade, cryptic speciation has been discovered in an increasing number of taxa. Species complexes are useful models for the understanding of speciation processes. Motivated by the discovery of brooding specimens in the common Atlanto-Mediterranean broadcast spawning brittle star, Ophioderma longicauda, a recent study revealed the occurrence of divergent mitochondrial lineages. We analysed 218 specimens from 23 locations spread over the geographic range of the species with partial Cytochrome c Oxidase subunit I (COI) sequences. A subset of this sample was also surveyed with the internal transcribed spacer of the ribosomal DNA cluster (nuclear ITS-1). Our study revealed six highly divergent mitochondrial lineages, and the ITS-1 data confirmed that they most likely represent a species complex. Geographic ranges, abundances and genetic structures are contrasted among the putative cryptic species. Lineages in which brooding specimens have been found form a monophyletic group and are restricted to the Eastern Mediterranean basin, an oligotrophic zone. A phylogeny-trait association analysis revealed a phylogenetic signal for low 'chlorophyll a' values (our proxy for oligotrophy). An ecological shift related to the hyper oligotrophy of the Eastern Mediterranean region is therefore likely to have played a role in the evolution of brooding. This study revealed that a complex mixture of vicariance, population expansion, adaptive divergence and possibly high local diversification rates resulting from brooding has shaped the evolution of this species complex. The dating analysis showed that these events probably occurred in the Pleistocene epoch. © 2011 Blackwell Publishing Ltd.

  3. Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri.

    Science.gov (United States)

    Suryawanshi, Vasantika; Talke, Ina N; Weber, Michael; Eils, Roland; Brors, Benedikt; Clemens, Stephan; Krämer, Ute

    2016-12-22

    Gene copy number divergence between species is a form of genetic polymorphism that contributes significantly to both genome size and phenotypic variation. In plants, copy number expansions of single genes were implicated in cultivar- or species-specific tolerance of high levels of soil boron, aluminium or calamine-type heavy metals, respectively. Arabidopsis halleri is a zinc- and cadmium-hyperaccumulating extremophile species capable of growing on heavy-metal contaminated, toxic soils. In contrast, its non-accumulating sister species A. lyrata and the closely related reference model species A. thaliana exhibit merely basal metal tolerance. For a genome-wide assessment of the role of copy number divergence (CND) in lineage-specific environmental adaptation, we conducted cross-species array comparative genome hybridizations of three plant species and developed a global signal scaling procedure to adjust for sequence divergence. In A. halleri, transition metal homeostasis functions are enriched twofold among the genes detected as copy number expanded. Moreover, biotic stress functions including mostly disease Resistance (R) gene-related genes are enriched twofold among genes detected as copy number reduced, when compared to the abundance of these functions among all genes. Our results provide genome-wide support for a link between evolutionary adaptation and CND in A. halleri as shown previously for Heavy metal ATPase4. Moreover our results support the hypothesis that elemental defences, which result from the hyperaccumulation of toxic metals, allow the reduction of classical defences against biotic stress as a trade-off.

  4. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues.

    Science.gov (United States)

    Gu, Hanqi; Zhang, Jian; Bao, Jie

    2014-04-01

    Industrial waste corncob residues (CCR) are rich in cellulose and can be hydrolyzed directly without pretreatment. However, a poor fermentation performance was frequently observed in the simultaneous saccharification and ethanol fermentation (SSF) of CCR, although the furans and organic acid inhibitors were very low. In this study, the high level of water-insoluble phenolic compounds such as 2-furoic acid, ferulic acid, p-coumaric acid, guaiacol, and p-hydroxybenzoic acid were detected in CCR and inhibited the growth and metabolism of Saccharomyces cerevisiae DQ1. An evolutionary adaptation strategy was developed by culturing the S. cerevisiae DQ1 strain in a series of media with the gradual increase of CCR hydrolysate. The high ethanol concentration (62.68g/L) and the yield (55.7%) were achieved in the SSF of CCR using the adapted S. cerevisiae DQ1. The results provided a practical method for improving performance of simultaneous saccharification and ethanol production from CCR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection.

    Directory of Open Access Journals (Sweden)

    Eun-Young Kim

    2014-07-01

    Full Text Available Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1 cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection.

  6. Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles.

    Science.gov (United States)

    Greenwold, Matthew J; Bao, Weier; Jarvis, Erich D; Hu, Haofu; Li, Cai; Gilbert, M Thomas P; Zhang, Guojie; Sawyer, Roger H

    2014-12-12

    Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (β) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken. We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The β-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather β-keratins comprise a large majority of the total number of β-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather β-keratin genes and larger proportions of keratinocyte β-keratin genes. Additionally, birds of prey have a larger proportion of claw β-keratins. Analysis of α- and β-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed β-keratin genes far exceeds that of α-keratins. These results support the view that the number of α- and β-keratin genes expressed, the proportion of the β-keratin subfamily genes expressed and the diversification of the β-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.

  7. Plastid phylogenomics and adaptive evolution of Gaultheria series Trichophyllae (Ericaceae), a clade from sky islands of the Himalaya-Hengduan Mountains.

    Science.gov (United States)

    Zhang, Ming-Ying; Fritsch, Peter W; Ma, Peng-Fei; Wang, Hong; Lu, Lu; Li, De-Zhu

    2017-05-01

    Gaultheria series Trichophyllae Airy Shaw is an angiosperm clade of high-alpine shrublets endemic to the Himalaya-Hengduan Mountains and characterized by recent species divergence and convergent character evolution that has until recently caused much confusion in species circumscription. Although multiple DNA sequence regions have been employed previously, phylogenetic relationships among species in the group have remained largely unresolved. Here we examined the effectiveness of the plastid genome for improving phylogenetic resolution within the G. series Trichophyllae clade. Plastid genomes of 31 samples representing all 19 recognized species of the series and three outgroup species were sequenced with Illumina Sequencing technology. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) phylogenetic analyses were performed with various datasets, i.e., that from the whole plastid genome, coding regions, noncoding regions, large single-copy region (LSC) and inverted-repeat region a (IRa). The partitioned whole plastid genome with inverted-repeat region b (IRb) excluded was also analyzed with ML and BI. Tree topologies based on the whole plastid genome, noncoding regions, and LSC region datasets across all analyses, and that based on the partitioned dataset with ML and BI analyses, are identical and generally strongly supported. Gaultheria series Trichophyllae form a clade with three species and one variety that is sister to a clade of the remaining 16 species; the latter comprises seven main subclades. Interspecific relationships within the series are strongly supported except for those based on the coding-region and IRa-region datasets. Eight divergence hotspot regions, each possessing >5% percent variable sites, were screened across the whole plastid genome of the 28 individuals sampled in the series. Results of morphological character evolution reconstruction diagnose several clades, and a hypothesis of adaptive evolution for plant habit is

  8. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M. Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-04-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.).

  9. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  10. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae)

    Science.gov (United States)

    Campanini, Emeline B; Torres, Felipe R; Rezende, Víctor B; Nakamura, Aline M; de Oliveira, Janaína L; Lima, André L A; Chahad-Ehlers, Samira; Sobrinho, Iderval S; de Brito, Reinaldo A

    2018-01-01

    Abstract Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation. PMID:29346618

  11. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  12. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of resistance in continuous and step-wise gradients

    Science.gov (United States)

    Deng, J.; Zhou, L.; Dong, Y.; Sanford, R. A.; Shechtman, L. A.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2017-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients in pH, flow and chemistry. While environmental stresses are generally considered to be the driving force of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, a microfluidic diffusion chamber (MDC) and a batch culturing system were used to systematically study the effects of continuous versus step-wise stress increments on adaptation of E. coli to the antibiotic ciprofloxacin. In the MDC, a diffusion gradient of ciprofloxacin was established across a microfluidic well array to microscopically observe changes in Escherichia coli strain 307 replication and migration patterns that would indicate emergence of resistance due to genetic mutations. Cells recovered from the MDC only had resistance of 50-times the original minimum inhibition concentration (MICoriginal) of ciprofloxacin, although minimum exposure concentrations were over 80 × MICoriginal by the end of the experiment. In complementary batch experiments, E. coli 307 were exposed to step-wise daily increases of ciprofloxacin at rates equivalent to 0.1×, 0.2×, 0.4× or 0.8× times MICoriginal/day. Over a period of 18 days, E. coli cells were able to acquire resistance of up to 225 × MICoriginal, with exposure to ciprofloxacin concentration up to only 14.9 × MIC­original. The different levels of acquired resistance in the continuous MDC versus step-wise batch increment experiments suggests that the intrinsic rate of E. coli adaptation was exceeded in the MDC, while the step-wise experiments favor adaptation to the highest ciprofloxacin experiments. Genomic analyses of E. coli DNA extracted from the microfluidic cell and batch cultures indicated four single nucleotide polymorphism (SNP) mutations of amino acid 82, 83 and 87 in the gyrA gene. The progression of adaptation in the step-wise increments of

  13. Is the Success of Plant Invasions the Result of Rapid Adaptive Evolution in Seed Traits? Evidence from a Latitudinal Rainfall Gradient.

    Science.gov (United States)

    Molina-Montenegro, Marco A; Acuña-Rodríguez, Ian S; Flores, Tomás S M; Hereme, Rasme; Lafon, Alejandra; Atala, Cristian; Torres-Díaz, Cristian

    2018-01-01

    It has been widely suggested that invasion success along broad environmental gradients may be partially due to phenotypic plasticity, but rapid evolution could also be a relevant factor for invasions. Seed and fruit traits can be relevant for plant invasiveness since they are related to dispersal, germination, and fitness. Some seed traits vary along environmental gradients and can be heritable, with the potential to evolve by means of natural selection. Utilizing cross-latitude and reciprocal-transplant experiments, we evaluated the adaptive value of seed thickness as assessed by survival and biomass accumulation in Taraxacum officinale plants. In addition, thickness of a seed and Endosperm to Seed Coat Proportion (ESCP) in a second generation ( F 2 ) was measured to evaluate the heritability of this seed trait. On the other hand, we characterized the genetic variability of the sampled individuals with amplified fragment length polymorphism (AFLP) markers, analyzing its spatial distribution and population structure. Overall, thickness of seed coat (plus wall achene) decreases with latitude, indicating that individuals of T. officinale from northern populations have a thicker seed coat than those from southern populations. Germination increased with greater addition of water and seeds from southern localities germinated significantly more than those from the north. Additionally, reciprocal transplants showed significant differences in survival percentage and biomass accumulation among individuals from different localities and moreover, the high correlation between maternal plants and their offspring can be suggesting a high grade of heritability of this trait. Although genetic differentiation was found when was considered all populations, there was no significant differentiation when only was compared the northernmost populations which inhabit in the driest climate conditions. Our results suggest that climatic conditions could affect both, the ESCP and the genetic

  14. Detection and analysis of methicillin-resistant human-adapted sequence type 398 allows insight into community-associated methicillin-resistant Staphylococcus aureus evolution.

    Science.gov (United States)

    He, Lei; Zheng, Hong-Xiang; Wang, Yanan; Le, Katherine Y; Liu, Qian; Shang, Jun; Dai, Yingxin; Meng, Hongwei; Wang, Xing; Li, Tianming; Gao, Qianqian; Qin, Juanxiu; Lu, Huiying; Otto, Michael; Li, Min

    2018-01-29

    Severe infections with highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are a global problem. However, the molecular events defining the evolution of CA-MRSA are still poorly understood. MRSA of sequence type (ST) 398 is known to frequently infect livestock, while ST398 isolates infecting humans are commonly methicillin-susceptible or represent MRSA originating from livestock-associated (LA)-MRSA. We used whole genome sequencing of newly detected CA-MRSA ST398 isolates, in comparison to geographically matched LA-MRSA and methicillin-sensitive ST398, to determine their evolutionary history. Furthermore, we used phenotypic analyses including animal infection models to gain insight into the evolution of virulence in these CA-MRSA isolates. Finally, we determined methicillin resistance and expression of the methicillin resistance-conferring gene mecA and its penicillin-binding protein product, PBP2a, in a large series of CA-MRSA strains of divergent STs. We report several cases of severe and fatal infections due to ST398 CA-MRSA. The responsible isolates showed the typical genetic characteristics reported for human-adapted methicillin-sensitive ST398. Whole genome sequencing demonstrated that they evolved from human-adapted, methicillin-susceptible clones on several different occasions. Importantly, the isolates had not undergone consistent genetic alterations or changes in virulence as compared to their methicillin-susceptible predecessors. Finally, we observed dramatically and consistently lower methicillin resistance and expression of the resistance gene mecA, as compared to hospital-associated MRSA strains, in a diverse selection of CA-MRSA strains. Our study presents evidence for the development of highly virulent human-adapted ST398 CA-MRSA isolates from methicillin-susceptible predecessors. Notably, our investigation indicates that, in contrast to widespread notions, the development of CA-MRSA is not necessarily

  15. Modified Covariance Matrix AdaptationEvolution Strategy algorithm for constrained optimization under uncertainty, application to rocket design

    Directory of Open Access Journals (Sweden)

    Chocat Rudy

    2015-01-01

    Full Text Available The design of complex systems often induces a constrained optimization problem under uncertainty. An adaptation of CMA-ES(λ, μ optimization algorithm is proposed in order to efficiently handle the constraints in the presence of noise. The update mechanisms of the parametrized distribution used to generate the candidate solutions are modified. The constraint handling method allows to reduce the semi-principal axes of the probable research ellipsoid in the directions violating the constraints. The proposed approach is compared to existing approaches on three analytic optimization problems to highlight the efficiency and the robustness of the algorithm. The proposed method is used to design a two stage solid propulsion launch vehicle.

  16. Energy in Australia 2011

    International Nuclear Information System (INIS)

    Cuevas-Cubria, C.; Schultz, A.; Petchey, R.; Beaini, F.; New, R.

    2011-04-01

    Securing access to affordable, reliable and clean energy is one of the great challenges facing governments around the world. The Australian Government is committed to ensuring the security of Australia's domestic energy systems as a fundamental part of Australia's social and economic prosperity. Energy in Australia 2011 is a key reference for anyone with an interest in Australian energy issues. It provides a detailed overview of energy in Australia from production to consumption, and serves as a useful resource to inform industry, government and the community.

  17. Computational analysis reveals a successive adaptation of multiple inositol polyphosphate phosphatase 1 in higher organisms through evolution.

    Science.gov (United States)

    Kilaparty, Surya P; Singh, Awantika; Baltosser, William H; Ali, Nawab

    2014-01-01

    Multiple inositol polyphosphate phosphatase 1 (Minpp1) in higher organisms dephosphorylates InsP6, the most abundant inositol phosphate. It also dephosphorylates less phosphorylated InsP5 and InsP4 and more phosphorylated InsP7 or InsP8. Minpp1 is classified as a member of the histidine acid phosphatase super family of proteins with functional resemblance to phytases found in lower organisms. This study took a bioinformatics approach to explore the extent of evolutionary diversification in Minpp1 structure and function in order to understand its physiological relevance in higher organisms. The human Minpp1 amino acid (AA) sequence was BLAST searched against available national protein databases. Phylogenetic analysis revealed that Minpp1 was widely distributed from lower to higher organisms. Further, we have identified that there exist four isoforms of Minpp1. Multiple computational tools were used to identify key functional motifs and their conservation among various species. Analyses showed that certain motifs predominant in higher organisms were absent in lower organisms. Variation in AA sequences within motifs was also analyzed. We found that there is diversification of key motifs and thus their functions present in Minpp1 from lower organisms to higher organisms. Another interesting result of this analysis was the presence of a glucose-1-phosphate interaction site in Minpp1; the functional significance of which has yet to be determined experimentally. The overall findings of our study point to an evolutionary adaptability of Minpp1 functions from lower to higher life forms.

  18. Preliminary results from digestive adaptation: a new surgical proposal for treating obesity, based on physiology and evolution

    Directory of Open Access Journals (Sweden)

    Sérgio Santoro

    Full Text Available CONTEXT AND OBJECTIVE: Most bariatric surgical techniques include essentially non-physiological features like narrowing anastomoses or bands, or digestive segment exclusion, especially the duodenum. This potentially causes symptoms or complications. The aim here was to report on the preliminary results from a new surgical technique for treating morbid obesity that takes a physiological and evolutionary approach. DESIGN AND SETTING: Case series description, in Hospital Israelita Albert Einstein and Hospital da Polícia Militar, São Paulo, and Hospital Vicentino, Ponta Grossa, Paraná. METHODS: The technique included vertical (sleeve gastrectomy, omentectomy and enterectomy that retained three meters of small bowel (initial jejunum and most of the ileum, i.e. the lower limit for normal adults. The operations on 100 patients are described. RESULTS: The mean follow-up was nine months (range: one to 29 months. The mean reductions in body mass index were 4.3, 6.1, 8.1, 10.1 and 10.7 kg/m², respectively at 1, 2, 4, 6 and 12 months. All patients reported early satiety. There was major improvement in comorbidities, especially diabetes. Operative complications occurred in 7% of patients, all of them resolved without sequelae. There was no mortality. CONCLUSIONS: This procedure creates a proportionally reduced gastrointestinal tract, leaving its basic functions unharmed and producing adaptation of the gastric chamber size to hypercaloric diet. It removes the sources of ghrelin, plasminogen activator inhibitor-1 (PAI-1 and resistin production and leads more nutrients to the distal bowel, with desirable metabolic consequences. Patients do not need nutritional support or drug medication. The procedure is straightforward and safe.

  19. Evolution at 'Sutures' and 'Centers': Recombination Can Aid Adaptation of Spatially Structured Populations on Rugged Fitness Landscapes.

    Directory of Open Access Journals (Sweden)

    Jacob D Cooper

    2016-12-01

    Full Text Available Epistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple "peaks" of high-fitness allele combinations are separated by "valleys" of low-fitness genotypes. How populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. Sexual reproduction may affect how a population moves within a rugged fitness landscape. Sex may generate new high-fitness genotypes by recombination, but it may also destroy high-fitness genotypes by shuffling the genes of a fit parent with a genetically distinct mate, creating low-fitness offspring. Either of these opposing aspects of sex require genotypic diversity in the population. Spatially structured populations may harbor more diversity than well-mixed populations, potentially amplifying both positive and negative effects of sex. On the other hand, spatial structure leads to clumping in which mating is more likely to occur between like types, diminishing the effects of recombination. In this study, we use computer simulations to investigate the combined effects of recombination and spatial structure on adaptation in rugged fitness landscapes. We find that spatially restricted mating and offspring dispersal may allow multiple genotypes inhabiting suboptimal peaks to coexist, and recombination at the "sutures" between the clusters of these genotypes can create genetically novel offspring. Sometimes such an offspring genotype inhabits a new peak on the fitness landscape. In such a case, spatially restricted mating allows this fledgling subpopulation to avoid recombination with distinct genotypes, as mates are more likely to be the same genotype. Such population "centers" can allow nascent peaks to establish despite recombination. Spatial structure may therefore allow an evolving population to enjoy the creative side of sexual recombination while avoiding its destructive side.

  20. Evolution of surface-based deformable image registration for adaptive radiotherapy of non-small cell lung cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2009-12-01

    Full Text Available Abstract Background To evaluate the performance of surface-based deformable image registration (DR for adaptive radiotherapy of non-small cell lung cancer (NSCLC. Methods Based on 13 patients with locally advanced NSCLC, CT images acquired at treatment planning, midway and the end of the radio- (n = 1 or radiochemotherapy (n = 12 course were used for evaluation of DR. All CT images were manually [gross tumor volume (GTV] and automatically [organs-at-risk (OAR lung, spinal cord, vertebral spine, trachea, aorta, outline] segmented. Contours were transformed into 3D meshes using the Pinnacle treatment planning system and corresponding mesh points defined control points for DR with interpolation within the structures. Using these deformation maps, follow-up CT images were transformed into the planning images and compared with the original planning CT images. Results A progressive tumor shrinkage was observed with median GTV volumes of 170 cm3 (range 42 cm3 - 353 cm3, 124 cm3 (19 cm3 - 325 cm3 and 100 cm3 (10 cm3 - 270 cm3 at treatment planning, mid-way and at the end of treatment. Without DR, correlation coefficients (CC were 0.76 ± 0.11 and 0.74 ± 0.10 for comparison of the planning CT and the CT images acquired mid-way and at the end of treatment, respectively; DR significantly improved the CC to 0.88 ± 0.03 and 0.86 ± 0.05 (p = 0.001, respectively. With manual landmark registration as reference, DR reduced uncertainties on the GTV surface from 11.8 mm ± 5.1 mm to 2.9 mm ± 1.2 mm. Regarding the carina and intrapulmonary vessel bifurcations, DR reduced uncertainties by about 40% with residual errors of 4 mm to 6 mm on average. Severe deformation artefacts were observed in patients with resolving atelectasis and pleural effusion, in one patient, where the tumor was located around large bronchi and separate segmentation of the GTV and OARs was not possible, and in one patient, where no clear shrinkage but more a decay of the tumor was observed

  1. Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive Metropolis (DREAM) and K-means clustering

    Science.gov (United States)

    Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara

    2015-09-01

    Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure,