WorldWideScience

Sample records for austere human missions

  1. Human exploration mission studies

    Science.gov (United States)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  2. Austerity for Whom?

    Directory of Open Access Journals (Sweden)

    Stephen McBride

    2011-09-01

    Full Text Available In contrast to the recent multi-billion dollar bailouts offered to leading sectors of capital, fiscal austerity is poised to make a comeback worldwide. Labour will be forced to pay for the public debt accumulated in the aftermath of the recent global financial and economic crisis. Notwithstanding change and evolution in the neoliberal model over time, this return to austerity is consistent with overall policy in the neoliberal period which can be considered an era of permanent restraint in most areas of social spending. This article examines a variety of trends that have emerged over the past thirty years of neoliberal rule: the various facets of neoliberal policy and their temporal dimensions; as well as the results of market-reliance and spending reforms: growing affluence for a minority of Canadians while the majority lose ground and inequalities are further entrenched. Asking 'austerity for whom' directs attention at the interconnections between affluence and austerity that exist in Canada.

  3. HUMAN MISSION OF EDUCATION

    Directory of Open Access Journals (Sweden)

    Suzana Miovska Spaseva

    2013-06-01

    Full Text Available The article examines the complex role and great responsibility of the education today in development of the moral strength and human values of the children and youth. At the beginning of the article the author reconsiders the pedagogical ideas of Maria Montessori and her concept of education for peace as an instrument for reconstruction of the society and for improvement of the human living. Than the analysis of the moral values in the contemporary society is made and several issues and dilemmas are discussed referring the value disorientation of the youth and the importance of the models of adult’s moral behavior in their search for personal identity. On the basis of this analysis, the human dimension of the education is elaborated enhancing the need for its understanding as support of development, which is based on several crucial elements: love, freedom and spirit of community.

  4. Hybridlitteratur: Paul Auster

    OpenAIRE

    Steensen Møller, Christoffer Jr.; Højmark-Jensen, Gustav Jr.; Hoeck, Caroline Mandrup Jr.; Gersbøll, Sigrid Dam Jr.; Schiødte Rasmussen, Simone Puk Jr.; Mølgaard, Katrine Jr.; Rove, Kristina Jr.; Sørensen, Katrin á Dul Jr.

    2013-01-01

    This study sets out to analyse and discuss the hybrid, postmodern detective novel City of Glass written by Paul Auster - both in terms of narrative form, but also in terms of examining the underlying postmodern features and elements which the novel continuously displays. All factors will be made evident throughout the dissertation by incorporating coherent analytic observations based on the accumulated theoretical material. In terms of analysing the postmodern features the study will primaril...

  5. Human Security Workers Deployed in Austere Environments: A Brief Guide to Self-Care, Sustainment, and Productivity

    OpenAIRE

    Thomas F. Ditzler; Abigail D. Hoeh; Patricia R. Hastings

    2015-01-01

    Since the early 1990s, the human security movement has sought to expand the concept of security beyond the traditional military defense of national borders to focus on the intra-state security needs of populations at the individual level. Specific initiatives frequently address problems of population health, ethnic conflict, religious extremism, human rights, environmental or natural disasters, and other critical issues. For expatriate human security workers in the field, the environment may ...

  6. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    Science.gov (United States)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  7. Will Exports Prevail over Austerity?

    OpenAIRE

    Vasily Astrov; Vladimir Gligorov; Peter Havlik; Mario Holzner; Gabor Hunya; Kazimierz Laski; Sebastian Leitner; Zdenek Lukas; Anton Mihailov; Olga Pindyuk; Leon Podkaminer; Josef Pöschl; Sandor Richter; Waltraut Urban; Hermine Vidovic

    2010-01-01

    The Central, East and Southeast European (CESEE) economies will experience on average a minor rebound of economic growth to 1% in 2010 which will speed up to 2.5% in 2011 and 3.5% in 2012. GDP growth will be higher in the CIS countries and in Turkey, about average in the Central European NMS and lower in the SEE countries and the Baltics. Growth is currently driven mostly by exports which should outweigh the dampening effects of the austerity measures. Whether the countries will actually bene...

  8. Keynesian stimulus versus classical austerity

    OpenAIRE

    Laurence Seidman

    2012-01-01

    Keynesians know that if US austerity advocates had received just a few more votes in the November 2008 election, there would have been no fiscal stimulus or financial rescue in 2009 and the Great Recession would have turned into a second great depression. ‘Keynesian’ means recognizing the crucial role of aggregate demand, grasping the paradox of saving, advocating fiscal stimulus (tax cuts as well as government spending) in a recession despite the temporary increase in debt that it genera...

  9. The Human Mars Mission: Transportation assessment

    International Nuclear Information System (INIS)

    If funding is available, and for NASA planning purposes, the Human Mars Mission (HMM) is baselined to take place during the 2011 and 2013/2014 Mars opportunities. Two cargo flights will leave for Mars during the first opportunity, one to Mars orbit and the second to the surface, in preparation for the crew during the following opportunity. Each trans-Mars injection (TMI) stack will consist of a cargo/payload portion (currently coming in at between 65 and 78 mt) and a nuclear thermal propulsion (NTP) stage (currently coming in at between 69 and 77 mt loaded with propellant) for performing the departure ΔVs to get on to the appropriate Mars trajectories. Three 66,700 N thrust NTP engines comprise the TMI stage for each stack and perform a ΔV ranging from 3580 to 3890 m/s as required by the trajectory (with gravity losses and various performance margins added to this for the total TMI ΔV performed). This paper will discuss the current application of this NTP stage to a Human Mars mission, and project what implications a nuclear trans-Earth injection (TEI) stage as well as a bi-modal NTP stage could mean to a human visit to Mars

  10. Human Behaviour in Long-Term Missions

    Science.gov (United States)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  11. Accountability in Times of Austerity

    DEFF Research Database (Denmark)

    Hansen, Hanne Foss; Kristiansen, Mads Bøge

    Like other countries Denmark has been hit by the global financial, economic and fiscal crisis. The pressure on the public finances has increased and public sector reforms such as new and/or changed accountability systems for budgetng, spending controls and financial management hav been launched...... in the form of a Budget Law and new requirements for financial management. This makes it interesting to assess how these initiatives introduced in times of austerity affect accountability in central government, and to discuss the potential effects of them. Based on a democratic, a constitutional...... and a learning perspective on public accountability, we assess the two initiatives through documentary material and interviews with civil servants who have designed or implemented the initiatives. The paper shows that the two initiatives strenthen and increase accountability from a democratic...

  12. Echoes of Sophocles's Antigone in Auster's Invisible

    OpenAIRE

    Waller, Kathleen

    2011-01-01

    In her article "Echoes of Sophocles's Antigone in Auster's Invisible" Kathleen Waller discusses Paul Auster's Invisible, a novel that explores Deleuze's and Guattari's ontological idea of becoming in a virtual world versus merely living in the actual, physical world. Sexual and immortal desires in the protagonist's virtual world show a near achieved nothingness, or "a space which is unlimited" and filled with the being's energy, and a being who is becoming, a "univocal being" as a "free spiri...

  13. The Myth of Expansionary Fiscal Austerity

    OpenAIRE

    Dean Baker

    2010-01-01

    Recently governments, economists, and international financial institutions have been debating the merits of further fiscal stimulus to combat the Great Recession versus fiscal austerity or “adjustment” – that is, higher taxes and/or lower government spending – to combat budget deficits. Some supporters of austerity have gone as far as arguing that fiscal adjustment could restore economic growth. These analyses are being touted to oppose increased stimulus to boost the economy. This paper exam...

  14. Shielding Structures for Interplanetary Human Mission

    Science.gov (United States)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the

  15. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  16. Austerity and health in Europe.

    Science.gov (United States)

    Quaglio, Gianluca; Karapiperis, Theodoros; Van Woensel, Lieve; Arnold, Elleke; McDaid, David

    2013-11-01

    Many European governments have abundantly cut down public expenditure on health during the financial crisis. Consequences of the financial downturn on health outcomes have begun to emerge. This recession has led to an increase in poor health status, raising rates of anxiety and depression among the economically vulnerable. In addition, the incidence of some communicable diseases along with the rate of suicide has increased significantly. The recession has also driven structural reforms, and affected the priority given to public policies. The purpose of this paper is to analyse how austerity impacts health in Europe and better understand the response of European health systems to the financial crisis. The current economic climate, while challenging, presents an opportunity for reforming and restructuring health promotion actions. More innovative approaches to health should be developed by health professionals and by those responsible for health management. In addition, scientists and experts in public health should promote evidence-based approaches to economic and public health recovery by analyzing the present economic downturn and previous crisis. However, it is governance and leadership that will mostly determine how well health systems are prepared to face the crisis and find ways to mitigate its effects. PMID:24176290

  17. ON SPACELIKE AUSTERE SUBMANIFOLDS IN PSEUDO-EUCLIDEAN SPACE

    Institute of Scientific and Technical Information of China (English)

    Dong Yuxin; Han Yingbo

    2011-01-01

    In this article, we construct some spacelike austere submanifolds in pseduo- Euclidean spaces. We also get some indefinite special Lagrangian submanifolds by con- structing twisted normal bundle of spacelike austere submanifolds in pseduo-Euclidean spaces.

  18. Do Austerity Measures Harm International Trade?

    Directory of Open Access Journals (Sweden)

    Dorin Iulian CHIRIŢOIU

    2015-06-01

    Full Text Available This paper focuses on the trade relations between Romania and the PIIGS (Portugal, Italy, Ireland, Greece, and Spain in order to verify whether the exports of Romania have been positively or negatively affected by the austerity measures adopted by these Eurozone periphery countries, thus diminishing Romania’s export performance in such markets. Hence, our main research question is whether austerity measures harm or affect in any way the inflows and outflows of international trade in the studied countries. To assess this hypothesis, we focused on the external trade relations, and their linkages with the macroeconomic environment, rather than the competitiveness of a state explained by a detailed sectoral analysis. In this respect, we use comparative and descriptive statistics in order to observe the consequences of the internal devaluation, and implicitly austerity measures, on the PIIGS-Romanian trade relations. Our findings suggest that the effects of austerity measures are not homogenous because they depend on the scale of trade exchanges and on the way in which the austerity measures were applied.

  19. Health inequalities after austerity in Greece.

    Science.gov (United States)

    Karanikolos, Marina; Kentikelenis, Alexander

    2016-01-01

    Since the beginning of economic crisis, Greece has been experiencing unprecedented levels of unemployment and profound cuts to public budgets. Health and welfare sectors were subject to severe austerity measures, which have endangered provision of as well as access to services, potentially widening health inequality gap. European Union Statistics on Income and Living Conditions data show that the proportion of individuals on low incomes reporting unmet medical need due to cost doubled from 7 % in 2008 to 13.9 % in 2013, while the relative gap in access to care between the richest and poorest population groups increased almost ten-fold. In addition, austerity cuts have affected other vulnerable groups, such as undocumented migrants and injecting drug users. Steps have been taken in attempt to mitigate the impact of the austerity, however addressing the growing health inequality gap will require persistent effort of the country's leadership for years to come. PMID:27245588

  20. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    Science.gov (United States)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  1. Openness, Technologies, Business Models and Austerity

    Science.gov (United States)

    Jones, Chris

    2015-01-01

    Open education emerged when the state had an active role in shaping and financing post-secondary education. In the twenty-first century, two pressures influence the way openness is conceived. The first is the compounding of neo-liberal economics with austerity following the financial crash of 2008. The second is the consolidation of networked and…

  2. An ESA precursor mission to human exploration of the Moon

    Science.gov (United States)

    Carpenter, James; Fisackerly, Richard; Houdou, Berengere; Pradier, Alain; de Rossa, Diego; Vanoutryve, Benjamin; Jojaghaian, Aliac; Espinasse, Sylvie; Gardini, Bruno

    2010-05-01

    The coming decades will once again see humans on the surface of the Moon. Unlike the Apollo missions of the 1960s this new lunar exploration will be an international effort, with long duration missions and a goal to pave the way for further human expansion into the solar system. Ensuring the success and sustainability of this exploration poses significant challenges for all involved. ESA is currently preparing its first contribution to this international lunar exploration effort; a lunar lander mission, which will be a precursor to a future, Ariane V launched, ESA cargo and logistics capability to the Moon. The precursor mission will demonstrate soft precision landing with hazard avoidance capabilities, which will be required by a future cargo lander. In addition the mission can be applied as a preparation for future human exploration activities and help to ensure the sustainability of future exploration efforts. Activities have included Phase A and B1 mission design studies and technology development activities (both reported in another paper) and the definition of mission objectives and a model payload. The mission objectives have been derived by the Lunar Exploration Definition Team, a group derived of European specialists in various areas of exploration related science and technology, supported by ESA. Major inputs to the definition process were the 195 responses received to a request for information for potential payload contributions to the mission. The group was tasked with establishing how such a mission could best prepare for future human exploration. It was determined that the mission's goal should be to enable sustainable exploration and objectives were identified within a number of themes: health, habitation, resources, mobility and scientific preparations for future human activities. Investigations seek to characterise the lunar environment (e.g. radiation, dust etc.) and its effects and the properties of a landing site (potential resources, geological

  3. The Evolution of Mission Architectures for Human Lunar Exploration

    Science.gov (United States)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  4. Fiscal Austerity, Unemployment and Suicide Rates in Greece

    OpenAIRE

    Antonakakis, Nikolaos

    2013-01-01

    This study examines the effects of fiscal austerity, among other socioeconomic variables, on suicide rates in Greece over the period 1968-2011. Our results suggest that fiscal austerity, higher unemployment rates, negative economic growth and reduced fertility rates, significantly increase suicide rates in Greece, while increased alcohol consumption and divorce rates do not exert any significant influence on suicide rates. Interestingly, the effects of fiscal austerity and economic growth are...

  5. Managing Under Austerity, Delivering Under Pressure

    OpenAIRE

    Wanna, John; Lee, Hsu-Ann; Yates, Sophie

    2015-01-01

    Contemporary public managers find themselves under pressure on many fronts. Coming off a sustained period of growth in their funding and some complacency about their performance, they now face an environment of ferocious competitiveness abroad and austerity at home. Public managers across Australia and New Zealand are finding themselves wrestling with expenditure reduction, a smaller public sector overall, sustained demands for productivity improvement, and the imperative to think differently...

  6. Financial crisis, austerity, and health in Europe.

    Science.gov (United States)

    Karanikolos, Marina; Mladovsky, Philipa; Cylus, Jonathan; Thomson, Sarah; Basu, Sanjay; Stuckler, David; Mackenbach, Johan P; McKee, Martin

    2013-04-13

    The financial crisis in Europe has posed major threats and opportunities to health. We trace the origins of the economic crisis in Europe and the responses of governments, examine the effect on health systems, and review the effects of previous economic downturns on health to predict the likely consequences for the present. We then compare our predictions with available evidence for the effects of the crisis on health. Whereas immediate rises in suicides and falls in road traffic deaths were anticipated, other consequences, such as HIV outbreaks, were not, and are better understood as products of state retrenchment. Greece, Spain, and Portugal adopted strict fiscal austerity; their economies continue to recede and strain on their health-care systems is growing. Suicides and outbreaks of infectious diseases are becoming more common in these countries, and budget cuts have restricted access to health care. By contrast, Iceland rejected austerity through a popular vote, and the financial crisis seems to have had few or no discernible effects on health. Although there are many potentially confounding differences between countries, our analysis suggests that, although recessions pose risks to health, the interaction of fiscal austerity with economic shocks and weak social protection is what ultimately seems to escalate health and social crises in Europe. Policy decisions about how to respond to economic crises have pronounced and unintended effects on public health, yet public health voices have remained largely silent during the economic crisis. PMID:23541059

  7. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  8. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    Science.gov (United States)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  9. Suzanne J. Konzelmann, The Economics of Austerity

    OpenAIRE

    Ban, Cornel

    2015-01-01

    Mark Blyth’s new book on austerity (Blyth, 2015) suggests that this dangerous idea has been at the very core of economic liberalism’s turbulent relationship with society. It is also an idea that reaches back in the dawn of “classical liberalism” and stretches into the various recalibrations that this idea has experienced in the post-Lehman era. This is a potent argument that cries out for a book that has in one place all the original key texts that detail economic liberalism’s internal and ex...

  10. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    Science.gov (United States)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  11. A Comparison of Transportation Systems for Human Missions to Mars

    Science.gov (United States)

    Thomas, Brent; Vaughan, Diane; Drake, Bret; Griffin, Brand; Woodcock, Gordon

    2004-01-01

    There are many ways to send humans to Mars. Credible technical reports can be traced to the 1950's. More recently, NASA has funded major studies that depict a broad variety of trajectories, technologies, stay times, and costs. Much of this data is still valid with direct application to today's exploration planning. This paper presents results comparing these studies with particular emphasis on the in-space transportation aspects of the mission. Specifically, comparisons are made on propulsion systems used for getting the crew and mission equipment from Earth orbit to Mars orbit, descending and ascending from the surface, and returning to Earth orbit. Areas of comparison for each of these phases include crew size, mission mass, propellant mass, delta v, specific impulse, transit time, surface stay time, aero-braking, and others. Data is analyzed to demonstrate either strong trends toward particular technologies or diverging solutions.

  12. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    Science.gov (United States)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.

  13. Exploration Atmospheres for Beyond-LEO Human Exploration Missions

    Science.gov (United States)

    Henninger, Donald, L.

    2013-01-01

    Atmospheric pressure and oxygen concentration of human-occupied space vehicles and habitats are an important life support parameter. The atmosphere is critical in terms of not only safety but also in terms of maximizing human capabilities at the point of scientific discovery. Human exploration missions beyond low earth orbit (LEO) will include extravehicular activity (EVA). EVAs are carried out in low pressure (4.3 psi/29.6 kilopascals) space suits running at 100 percent oxygen. New suits currently in development will be capable of running at a range of pressures between approximately 8.2 psi/56.5 kilopascals and 4.3 psi/29.6 kilopascals. In order to carry out high-frequency EVA phases of a mission safely and more efficiently, it is advantageous to have cabin or vehicle atmospheres at lower total pressure and higher oxygen concentrations. This allows for much reduced pre-breathe times for a fixed risk of decompression sickness and thus more efficient EVAs. The recommended oxygen concentration is 32% and represents a trade with respect to controlling the risk of decompression sickness and risk of fire. Work carried out by NASA in 2006 and continued in 2012 established an atmospheric pressure and oxygen concentration to optimize EVA. This paper will review previous work and describe current recommendations for beyond-LEO human exploration missions.

  14. Reducing the Risk of Human Missions to Mars Through Testing

    Science.gov (United States)

    Drake, Bret G.

    2007-01-01

    During the summer of 2002 the NASA Deputy Administrator charted an internal NASA planning group to develop the rationale for exploration beyond low-Earth orbit. This team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond Low-Earth Orbit through the human exploration of Mars. The previous NASA Exploration Team (NEXT) activities laid the foundation and framework for development of NASA s Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the Stepping Stone approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low- Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars. Following the results of the Exploration Blueprint study, the NASA Administrator has asked for a recommendation by June, 2003 on the next steps in human and robotic exploration in

  15. Austere kindness or mindless austerity: the efects of gift-giving to beggars in east London

    OpenAIRE

    Johannes Lenhard

    2014-01-01

    The current austerity policies in the United Kingdom are creating a precarious situation for many people on the margins of society. Employing micro-level ethnographic analysis, this article addresses how government decisions affect people living on the street. Observations of how local policies demonize gift-giving to street people led me to revisit arguments about the positive and negative effects of gifts. Four months of fieldwork amongst people who beg in the City of London confirmed the M...

  16. Austerity Surveillance” in Greece under the Austerity Regime (2010−2014

    Directory of Open Access Journals (Sweden)

    Minas Samatas

    2015-10-01

    Full Text Available In this article we have tried to analyze “austerity surveillance” (AS, its features, and its functions under the extreme austerity regime in Greece during 2010−2014, before the election of the leftist government. AS is a specific kind of coercive neoliberal surveillance, which in the name of fighting tax evasion and corruption is targeting the middle and lower economic strata and not the rich upper classes. It is based mainly on “coveillance,” i.e. citizen-informers’ grassing, public naming, and shaming. Functioning as a domination and disciplinary control mechanism of the entire population, it works within a post-democratic setting without accountability or democratic control. We provide empirical evidence of these features and functions, including some indicative personal testimonies of austerity surveillance subjects. After presenting some cases of electronic surveillance as an indispensable supplement to AS, we then briefly underline the negative personal, and socio-political impact of this surveillance. In conclusion, a tentative assessment is made of AS’ efficiency in the Greek case, comparing it with other types of past and present authoritarian surveillance in Greece and in other current surveillance societies, considering also the prospects for its abolition or its reproduction by the new leftist government.

  17. Mars Surface Systems Common Capabilities and Challenges for Human Missions

    Science.gov (United States)

    Toups, Larry; Hoffman, Stephen J.; Watts, Kevin

    2016-01-01

    This paper describes the current status of common systems and operations as they are applied to actual locations on Mars that are representative of Exploration Zones (EZ) - NASA's term for candidate locations where humans could land, live and work on the martian surface. Given NASA's current concepts for human missions to Mars, an EZ is a collection of Regions of Interest (ROIs) located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. An EZ also contains a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. The Evolvable Mars Campaign (EMC), a description of NASA's current approach to these human Mars missions, assumes that a single EZ will be identified within which NASA will establish a substantial and durable surface infrastructure that will be used by multiple human crews. The process of identifying and eventually selecting this single EZ will likely take many years to finalized. Because of this extended EZ selection process it becomes important to evaluate the current suite of surface systems and operations being evaluated for the EMC as they are likely to perform at a variety of proposed EZ locations and for the types of operations - both scientific and development - that are proposed for these candidate EZs. It is also important to evaluate proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC.

  18. [Mesenteric trauma: management in austere environments].

    Science.gov (United States)

    Peycru, T; Biance, N; Avaro, J P; Savoie, P H; Tardat, E; Balandraud, P

    2006-04-01

    Mesenteric trauma, i.e., injuries located in the bowel or organs supplied by the superior mesenteric artery, can be life-threatening. The incidence of these lesions is low. Most occur as result of blunt and penetrating abdominal trauma due mainly to gunshot wounds or road accidents. Management of these serious injuries can be challenging in the military field hospitals. The major problem in austere environment is the unavailabiity of computerized axial and other tools gene rally used for diagnosis. As an alternative to tomography diagnostic peritoneal lavage can be used with a high sensitivity for the detection of mesenteric trauma. The second difficulty is technical. General surgeons without vasular training or supplies must prepared to suspect and reonstuct lesions of the superior mesenteric available resources. PMID:16775948

  19. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    Science.gov (United States)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  20. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    Science.gov (United States)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Beaton, Kara H.; Abercromby, Andrew F. J.; Crues, Edwin Z.; Li, Zu Qun; Bielski, Paul; Howe, A. Scott

    2016-01-01

    Phobos is a scientifically significant destination and exploring it would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to fostering development of systems relevant to Mars surface missions, exploring Phobos offers engineering and operational opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low-latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection, and infrastructure development, which may include in situ resource utilization to provide liquid oxygen for the Mars ascent vehicle (MAV). A human mission to the moons of Mars would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion-based systems. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-to-Mars transit and to reach Phobos after insertion into Mars orbit. The crew would taxi from Mars orbit to Phobos in a spacecraft that is based on a MAV to join with the predeployed systems. A mostly static Phobos surface habitat was chosen as a baseline architecture. The habitat would have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat may use deployable EVA support structures that allow astronauts to work from portable foot restraints or body restraint tethers in the vicinity of the habitat. Prototype structures were tested as part of NASA Extreme Environment Mission Operations (NEEMO) 20. PEVs would contain closed-loop guidance and provide life support and

  1. Radiation Protection Challenges for a Human Mission to Mars

    Science.gov (United States)

    Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Schwadron, N.; Spence, H. E.

    2015-12-01

    A human mission to Mars presents many challenges, not least of which is the radiation exposure that crew members will certainly receive in all phases of the journey, but most critically during the transits to and from Mars. Measurements from the Radiation Assessment Detector (RAD) aboard the Mars Science Laboratory Curiosity rover, made both in flight and on the surface of Mars, confirm previous estimates that crew members under reasonable shielding would receive a dose equivalent of about 1 Sievert on a 1000-day mission. In standard radiation biology, an acute exposure to 1 Sievert would be expected to increase lifetime fatal cancer risk by about 5%. This is well beyond the currently allowed 3% risk increase limit used by NASA and JAXA. Perhaps more significantly, the nature of exposure in space differs greatly from the terrestrial exposures that lead to the 5% estimate -- in space, the exposure is received at a very low dose rate, and includes a significant component from heavy ions in the Galactic Cosmic Rays (GCRs). Acute exposures to Solar Energetic Particles are also possible, but the generally lower energies of SEPs (kinetic energies typically below 100 MeV/nuc) mean that modest amounts of shielding are effective against them. Thus the greater concern for long-duration deep-space missions is the GCR exposure. In this presentation, I will briefly review the MSL-RAD data and discuss current approaches to radiation risk estimation, including the NASA limit of 3% at the 95% confidence level. Recent results from the NASA radiation biology program indicate that cancer may not be the only risk that needs to be considered, with emerging concerns about cardiovascular and central nervous system health. These health effects are not accounted for in the current methodology and could potentially be threatening to mission success if they manifest in the course of the mission, rather than appearing many years after the exposure as radiation-induced cancer typically does.

  2. Entry, Descent, and Landing for Human Mars Missions

    Science.gov (United States)

    Munk, Michelle M.; DwyerCianciolo, Alicia M.

    2012-01-01

    One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.

  3. Development of Life Support System Technologies for Human Lunar Missions

    Science.gov (United States)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  4. Advanced Nuclear Power Concepts for Human Exploration Missions

    International Nuclear Information System (INIS)

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over ∼2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters

  5. Heptaoxygenated xanthones as anti-austerity agents from Securidaca longepedunculata.

    Science.gov (United States)

    Dibwe, Dya Fita; Awale, Suresh; Kadota, Shigetoshi; Morita, Hiroyuki; Tezuka, Yasuhiro

    2013-12-15

    In a course of our search for anticancer agent based on a novel anti-austerity strategy, we found that the CHCl3 extract of the roots of Securidaca longepedunculata (Polygalaceae), collected at Democratic Republic of Congo, killed PANC-1 human pancreatic cancer cells preferentially in nutrient-deprived medium (NDM). Phytochemical investigation on the CHCl3 extract led to the isolation of 28 compounds including five new polymethoxylated xanthones [1,6,8-trihydroxy-2,3,4,5-tetramethoxyxanthone (1), 1,6-dihydroxy-2,3,4,5,8-pentamethoxyxanthone (2), 8-hydroxy-1,4,5,6-tetramethoxy-2,3-methylenedioxyxanthone (3), 4,6,8-trihydroxy-1,2,3,5-tetramethoxyxanthone (4), 4,8-dihydroxy-1,2,3,5,6-pentamethoxyxanthone (5)] and a new benzyl benzoate [benzyl 3-hydroxy-2-methoxybenzoate (6)]. Among them, 1,6,8-trihydroxy-2,3,4,5-tetramethoxyxanthone (1) and 1,6-dihydroxy-2,3,4,5,8-pentamethoxyxanthone (2) displayed the potent preferential cytotoxicity with PC50 of 22.8 and 17.4 μM, respectively. They triggered apoptosis-like PANC-1 cell death in NDM with a glucose-sensitive mode. PMID:24216090

  6. Anti-Austerity Adult Education in Canada: A Survey of a Nascent Field

    Science.gov (United States)

    McGray, Robert

    2015-01-01

    As the realities of austerity agendas exert pressure on adult education around the globe, this paper attempts to map the developing, albeit small, field of anti-austerity adult education in Canada. In doing so, I attempt to trace the connections between anti-austerity education and existing fields of adult education. I argue that the cases we see…

  7. Mars Surface Systems Common Capabilities and Challenges for Human Missions

    Science.gov (United States)

    Toups, Larry; Hoffman, Stephen J.

    2016-01-01

    This paper describes the current status of common systems and operations as they are applied to actual locations on Mars that are representative of Exploration Zones (EZ) - NASA's term for candidate locations where humans could land, live and work on the Martian surface. Given NASA's current concepts for human missions to Mars, an EZ is a collection of Regions of Interest (ROIs) located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. An EZ also contains a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. The Evolvable Mars Campaign (EMC), a description of NASA's current approach to these human Mars missions, assumes that a single EZ will be identified within which NASA will establish a substantial and durable surface infrastructure that will be used by multiple human crews. The process of identifying and eventually selecting this single EZ will likely take many years to finalized. Because of this extended EZ selection process it becomes important to evaluate the current suite of surface systems and operations being evaluated for the EMC as they are likely to perform at a variety of proposed EZ locations and for the types of operations - both scientific and development - that are proposed for these candidate EZs. It is also important to evaluate proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC. Four locations identified in the Mars Exploration Program Analysis Group (MEPAG)'s Human Exploration of Mars Science Analysis Group (HEM-SAG) report are used in this paper as representative of candidate EZs that will emerge from the selection process that NASA has initiated. A field

  8. Physiological Health Challenges for Human Missions to Mars

    Science.gov (United States)

    Norsk, Peter

    2015-01-01

    During the next decades, manned space missions are expected to be aiming at the Lagrange points, near Earth asteroids, and Mars flyby and/or landing. The question is therefore: Are we ready to go? To answer this with a yes, we are currently using the International Space Station to develop an integrated human physiological countermeasure suite. The integrated countermeasure suite will most likely encounter: 1) Exercise devices for aerobic, dynamic and resistive exercise training; 2) sensory-motor computer training programs and anti-motion sickness medication for preparing EVAs and G-transitions; 3) lower limb bracelets for preventing and/or treating the VIIP (vision impairment and intracranial pressure) syndrome; 4) nutritional components for maintenance of bone, muscle, the cardiovascular system and preventing oxidative stress and damage and immune deficiencies (e. g. omega-3 fatty acids, PRO/K, anti-oxidants and less salt and iron); 5) bisphosphonates for preventing bone degradation.; 6) lower body compression garment and oral salt and fluid loading for landing on a planetary surface to combat orthostatic intolerance; 7) laboratory analysis equipment for individualized monitoring of biomarkers in blood, urine and saliva for estimation of health status in; 8) advanced ultrasound techniques for monitoring bone and cardiovascular health; and 9) computer modeling programs for individual health status assessments of efficiency and subsequent adjustments of countermeasures. In particular for future missions into deep space, we are concerned with the synergistic effects of weightlessness, radiation, operational constraints and other spaceflight environmental factors. Therefore, increased collaboration between physiological, behavioral, radiation and space vehicle design disciplines are strongly warranted. Another venue we are exploring in NASA's Human Research Program is the usefulness of artificial gravity for mitigating the health risks of long duration weightlessness.

  9. Mars Surface System Common Capabilities and Challenges for Human Missions

    Science.gov (United States)

    Hoffman, Stephen J.; Toups, Larry

    2016-01-01

    NASA has begun a process to identify and evaluate candidate locations where humans could land, live and work on the martian surface. These locations are referred to as Exploration Zones (EZs). Given current mission concepts, an EZ is a collection of Regions of Interest (ROIs) that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains a landing site and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. In parallel with this process, NASA continues to make progress on the Evolvable Mars Campaign examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. This involves ongoing assessments of surface systems and operations to enable a permanent, sustainable human presence. Because of the difficulty in getting equipment and supplies to the surface of Mars, part of these assessments involve identifying those systems and processes that can perform in multiple, sometimes completely unrelated, situations. These assessments have been performed in a very generic surface mission carried out at a very generic surface location. As specific candidate EZs are identified it becomes important to evaluate the current suite of surface systems and operations as they are likely to perform for the specific locations and for the types of operations - both scientific and development - that are proposed for these EZs. It is also important to evaluate the proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC. This means looking at setting up and operating a field station at a central location within the EZ as well as traversing to and

  10. Human Robotic Systems (HRS): Robotic Technologies for Asteroid Missions Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic Technologies for Asteroid Missions activity has four tasks:Asteroid Retrieval Capture Mechanism Development and Testbed;Mission Operations...

  11. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    2004-01-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  12. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    Finarelli, Margaret G.

    2004-04-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  13. Austere kindness or mindless austerity: the efects of gift-giving to beggars in east London

    Directory of Open Access Journals (Sweden)

    Johannes Lenhard

    2014-04-01

    Full Text Available The current austerity policies in the United Kingdom are creating a precarious situation for many people on the margins of society. Employing micro-level ethnographic analysis, this article addresses how government decisions affect people living on the street. Observations of how local policies demonize gift-giving to street people led me to revisit arguments about the positive and negative effects of gifts. Four months of fieldwork amongst people who beg in the City of London confirmed the Maussian ambiguity of gift exchange. The material benefit of monetary gifts is often accompanied by shared time and conversation; gifts to beggars can go beyond materiality and are hence able to create bonds of sociability.

  14. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    Science.gov (United States)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  15. Mission, migration and human development: A new approach

    Directory of Open Access Journals (Sweden)

    Akinyemi O. Alawode

    2015-03-01

    Full Text Available Migration has been a fact of Judaeo-Christian life since the days when Abram left Ur of the Chaldeans to find God’s promised land. It has become a far greater reality since the late 20th century, mainly as a result of wars, intranational conflicts, and natural disasters. As a result we have to deal with a larger number of internally or externally displaced persons (migrants in Africa at the beginning of the 21st century than ever before. At the same time Africa reports on record numbers in terms of church growth. It is therefore clear that migration and Christian mission to migrants are serious items on the agenda of Christian mission in Africa. The article argues that migration is largely a result of a growing phenomenon of dehumanisation in Africa and worldwide: people tend to regard other people no longer as fellow human beings, created in the image of God. For this reason a very important missionary responsibility is topromote humanisation according to the gospel proclaimed by the new human being, Jesus of Nazareth. This calls for human development of migrants as well as indigenous Christians. It is my contention that the Christian community in Africa has not yet grasped this missionary vocation as it should have. Therefore, the article argues that Christian mission in Africa faces the task of humanising relationships between indigenous Christians and other migrants, and that this can be done through a well-developed programme of human development in which both migrants and indigenous Christians should participate. Sending, migrasie en menslike ontwikkeling: ’n Nuwe benadering. Migrasie is ’n realiteit van die Judese-Christelike lewe sedert Abram Ur van die Galdeërs verlaat het om God se beloofde land te vind. Dit het egter ’n groter realiteit geword sedert die laat twintigste eeu hoofsaaklik as gevolg van oorloë, intranasionale konflik en natuurrampe. As gevolg hiervan moes daar na ’n groter getal migrante in Afrika omgesien

  16. Humex, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: Lunar missions

    Science.gov (United States)

    Horneck, G.; Facius, R.; Reichert, M.; Rettberg, P.; Seboldt, W.; Manzey, D.; Comet, B.; Maillet, A.; Preiss, H.; Schauer, L.; Dussap, C. G.; Poughon, L.; Belyavin, A.; Reitz, G.; Baumstark-Khan, C.; Gerzer, R.

    2003-06-01

    The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International

  17. HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: lunar missions.

    Science.gov (United States)

    Horneck, G; Facius, R; Reichert, M; Rettberg, P; Seboldt, W; Manzey, D; Comet, B; Maillet, A; Preiss, H; Schauer, L; Dussap, C G; Poughon, L; Belyavin, A; Reitz, G; Baumstark-Khan, C; Gerzer, R

    2003-01-01

    The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International

  18. Assessing Gale Crater as an Exploration Zone for the First Human Mission to Mars

    Science.gov (United States)

    Calef, A. F. J., III; Archer, D.; Clark, B.; Day, M.; Goetz, W.; Lasue, J.; Martin-Torres, J.; Zorzano-Mier, M.; Navarro-Gonzalez, R.

    2016-01-01

    Mars is the "horizon goal" for human space flight [1]. Towards that endeavor, one must consider several factors in regards to choosing a landing site suitable for a human-rated mission including: entry, descent, and landing (EDL) characteristics, scientific diversity, and possible insitu resources [2]. Selecting any one place is a careful balance of reducing risks and increasing scientific return for the mission.

  19. Collaborative online knowledge base for human planetary mission simulation stations

    Science.gov (United States)

    Hargitai, H. I.

    2008-09-01

    Mars Society operates two Mars simulation research stations since 2001/2002: one in Devon Island (FMARS) and one in Utah (MDRS). The goal of these stations is to simulate human mission - work and life - on the Surface of Mars. FMARS receives one crew each year while at MDRS crews change every second week except for the summer season. In the last 7 years 71 crews worked at MDRS. Their results are published in various forums: in peer-reviewed papers, conference abstracts, books, private websites or other publications [3]. The actual work of all crews is documented as specialized daily reports together with images and are avaiable at the MDRS website [4] (Fig. 1, Fig. 2.). An important part of these reports are the "lessons learned" sections where crews describe what they have learned during field trips (EVAs) or other activities. Updated operation manuals and cartographic resources [1] are also available on the website. Some of crew members are visiting MDRS for the first time, others are "veterans".

  20. Following professional codes of practice and military orders in austere military environments: a controversial debate on ethical challenges.

    Science.gov (United States)

    Kelly, Janet

    2015-12-01

    In 2004, the World Medical Association's International Code of Ethics claimed that 'medical ethics in armed conflict is identical to medical ethics in times of peace'. This paper challenges this notion and suggests that the hostile, austere and diverse environments in which military doctors and nurses serve are significantly more problematic and different to a civilian healthcare environment. It debates that there may be some incompatibility and challenges between following military orders such as the protocols written down in a Medical Rules of Eligibility matrix and professional codes of practice in these environments. This is either where fighting takes place or where the mission is for humanitarian purposes. PMID:26621807

  1. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  2. An Overview of Mars Vicinity Transportation Concepts for a Human Mars Mission

    Science.gov (United States)

    Dexter, Carol E.; Kos, Larry

    1998-01-01

    To send a piloted mission to Mars, transportation systems must be developed for the Earth to Orbit, trans Mars injection (TMI), capture into Mars orbit, Mars descent, surface stay, Mars ascent, trans Earth injection (TEI), and Earth return phases. This paper presents a brief overview of the transportation systems for the Human Mars Mission (HMM) only in the vicinity of Mars. This includes: capture into Mars orbit, Mars descent, surface stay, and Mars ascent. Development of feasible mission scenarios now is important for identification of critical technology areas that must be developed to support future human missions. Although there is no funded human Mars mission today, architecture studies are focusing on missions traveling to Mars between 2011 and the early 2020's.

  3. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    Science.gov (United States)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  4. Examples of austere orbits of the isotropy representations for semisimple pseudo-Riemannian symmetric spaces

    OpenAIRE

    Baba, Kurando(Department of General Education, Fukushima National College of Technology, Fukushima, 970-8034, Japan)

    2015-01-01

    Harvey-Lawson and Anciaux introduced the notion of austere submanifolds in pseudo-Riemannian geometry. We give an equivalent condition for an orbit of the isotropy representations for semisimple pseudo-Riemannian symmetric space to be an austere submanifold in a pseudo-sphere in terms of restricted root system theory with respect to Cartan subspaces. By using the condition we give examples of austere orbits.

  5. The Success Story of the Eurozone Crisis? Ireland's Austerity Measures

    OpenAIRE

    Robbins, G; Lapsley, Irvine

    2014-01-01

    This paper examines the response of the Irish government to the Eurozone fiscal crisis. This paper discusses the external financial assistance programme sought and implemented, economic recovery to date, and the impacts of austerity in Ireland. As Ireland nears the end of the ‘Programme of Support’ from Europe the contention that Ireland is a success story is explored. The paper reveals the primacy of financial cutbacks in the Irish response and the limited efforts at public management reform...

  6. Thinking with 'White Dee': The Gender Politics of 'Austerity Porn'

    OpenAIRE

    Kim Allen; Imogen Tyler; Sara De Benedictis

    2014-01-01

    Focusing on Benefits Street, and specifically the figure of White Dee, this rapid response article offers a feminist analysis of the relationship between media portrayals of people living with poverty and the gender politics of austerity. To do this we locate and unpick the paradoxical desires coalescing in the making and remaking of the figure of 'White Dee' in the public sphere. We detail how Benefits Street operates through forms of classed and gendered shaming to generate public consent f...

  7. Austerity and Anti-Systemic Protest: Bringing Hardships Back In

    OpenAIRE

    Jon Shefner; Aaron Rowland; George Pasdirtz

    2015-01-01

    This article explores the relationship between hardships and protest in the world-system. Despite the history of discussion of anti-systemic protest, there has been little work that differentiates world-systems contributions to social movement research from others who examine social movements. We contribute to a theory of anti-systemic protest by re-introducing hardships as a crucial element that defines inequalities in the world-system; one consistent source of those hardships are austerity ...

  8. A Landing Site for Human Missions to Mars in Gusev Crater

    Science.gov (United States)

    Longo, A. Z.

    2015-10-01

    Gusev Crater is the ideal location for a manned mission to Mars because of Spirit ground truth, a rich diversity of targets for exploration, and resources to sustain a human presence on the surface of Mars without jeopardizing planetary protection.

  9. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  10. Mission Design Considerations for Mars Cargo of the Human Spaceflight Architecture Team's Evolvable Mars Campaign

    Science.gov (United States)

    Sjauw, Waldy K.; McGuire, Melissa L.; Freeh, Joshua E.

    2016-01-01

    Recent NASA interest in human missions to Mars has led to an Evolvable Mars Campaign by the agency's Human Architecture Team. Delivering the crew return propulsion stages and Mars surface landers, SEP based systems are employed because of their high specific impulse characteristics enabling missions requiring less propellant although with longer transfer times. The Earth departure trajectories start from an SLS launch vehicle delivery orbit and are spiral shaped because of the low SEP thrust. Previous studies have led to interest in assessing the divide in trip time between the Earth departure and interplanetary legs of the mission for a representative SEP cargo vehicle.

  11. New space vehicle archetypes for human planetary missions

    Science.gov (United States)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  12. Human factors research as part of a Mars exploration analogue mission on Devon Island

    Science.gov (United States)

    Binsted, Kim; Kobrick, Ryan L.; Griofa, Marc Ó.; Bishop, Sheryl; Lapierre, Judith

    2010-06-01

    Human factors research is a critical element of space exploration as it provides insight into a crew's performance, psychology and interpersonal relationships. Understanding the way humans work in space-exploration analogue environments permits the development and testing of countermeasures for and responses to potential hazardous situations, and can thus help improve mission efficiency and safety. Analogue missions, such as the one described here, have plausible mission constraints and operational scenarios, similar to those that a real Mars crew would experience. Long duration analogue studies, such as those being conducted at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada, offer an opportunity to study mission operations and human factors in a semi-realistic environment, and contribute to the design of missions to explore the Moon and Mars. The FMARS XI Long Duration Mission (F-XI LDM) was, at four months, the longest designed analogue Mars mission conducted to date, and thus provides a unique insight into human factors issues for long-duration space exploration. Here, we describe the six human factors studies that took place during F-XI LDM, and give a summary of their results, where available. We also present a meta-study, which examined the impact of the human-factors research itself on crew schedule and workload. Based on this experience, we offer some lessons learnt: some aspects (perceived risk and crew motivation, for example) of analogue missions must be realistic for study results to be valid; human factors studies are time-consuming, and should be fully integrated into crew schedules; and crew-ground communication and collaboration under long-term exploration conditions can present serious challenges.

  13. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Science.gov (United States)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  14. Austerity/Immiseration Capitalism and Islamophobia--or Twenty-First-Century Multicultural Socialism?

    Science.gov (United States)

    Cole, Mike

    2014-01-01

    This article is in three parts. In part one, the author begins by examining the onset of austerity/immiseration capitalism in the United Kingdom. Austerity/immiseration capitalism has witnessed the decline of state multiculturalism and increasing attempts to deflect attention away from the failures of capitalism by playing the "race…

  15. Not Learning in the Workplace: Austerity and the Shattering of "Illusio" in Public Service

    Science.gov (United States)

    Colley, Helen

    2012-01-01

    Purpose: This paper seeks to discuss the impact of UK government austerity policies on learning in public service work, specifically youth support work. It also aims to argue that austerity policies intensify "ethics work", create emotional suffering, and obstruct workplace learning in a variety of ways. Design/methodology/approach: The research…

  16. Does Fiscal Austerity Affect Decision Makers’ Use and Perception of Performance Information

    DEFF Research Database (Denmark)

    Bjørnholt, Bente; Bækgaard, Martin; Houlberg, Kurt

    2016-01-01

    of performance information is tested using survey and documentary data from Danish municipalities. The article concludes that politicians who face high fiscal austerity use performance information to a lesser extent than colleagues who face less fiscal austerity, thus indicating the use of performance...

  17. The human rights mission in an African context

    OpenAIRE

    B. de Gaay Fortman

    2004-01-01

    In the annual sessions of the United Nations Commission on Human Rights in Geneva, resolutions condemning African governments for gross and systematic violations of human rights are usually rejected with the whole African block against. Through such block voting even President Mugabe’s policies and actions against the rule of law in Zimbabwe have remained uncensored. Indeed, Africa’s record in the international venture for the realization of human rights looks rather dim. Whereas internationa...

  18. Radiation protection for human missions to the Moon and Mars

    Science.gov (United States)

    Simonsen, Lisa C.; Nealy, John E.

    1991-01-01

    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat.

  19. HUMEX. A study on the survivability and adaptation of humans to long-duration exploratory missions

    Science.gov (United States)

    Harris, Robert A.

    2003-11-01

    After the realisation of the International Space Station (ISS), human exploratory missions to the Moon or Mars, i.e. beyond low Earth orbit (LEO), are widely considered as the next logical step in worldwide peaceful cooperation in space. The HUMEX study has concentrated on human health related aspects: it provides a critical assessment of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been put on human health, well-being and performance care, such as radiation health issues, adaptation to microgravity and reduced gravity, psychology issues and health, well-being and performance care, such as radiation health issues, adaptation to microgravity and reduced gravity, psychology issues and health maintenance and on advanced life support developments. The overall study goals are: to define reference scenarios for European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; for selected mission scenarios, to critically assess the limiting factors for human health, well-being, and performance and to recommend relevant countermeasures; for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy for this field, including terrestrial applications; to critically assess the applicability of existing facilities and technologies on the ground and in space as test beds for human exploratory missions and to develop a test plan for ground and ISS campaigns; to develop a roadmap for future European activities, in preparation for human exploratory missions, including preparatory activities and terrestrial applications and benefits.

  20. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    Science.gov (United States)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  1. Human-in-the-Loop Operations over Time Delay: NASA Analog Missions Lessons Learned

    Science.gov (United States)

    Rader, Steven N.; Reagan, Marcum L.; Janoiko, Barbara; Johnson, James E.

    2013-01-01

    Teams at NASA have conducted studies of time-delayed communications as it effects human exploration. In October 2012, the Advanced Exploration Systems (AES) Analog Missions project conducted a Technical Interchange Meeting (TIM) with the primary stakeholders to share information and experiences of studying time delay, to build a coherent picture of how studies are covering the problem domain, and to determine possible forward plans (including how to best communicate study results and lessons learned, how to inform future studies and mission plans, and how to drive potential development efforts). This initial meeting s participants included personnel from multiple NASA centers (HQ, JSC, KSC, ARC, and JPL), academia, and ESA. It included all of the known studies, analog missions, and tests of time delayed communications dating back to the Apollo missions including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and Apollo experiences. Additionally, the meeting attempted to capture all of the various functional perspectives via presentations by disciplines including mission operations (flight director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity (EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education and Public Outreach (EPO), and data management. The paper summarizes the descriptions and results from each of the activities discussed at the TIM and includes several recommendations captured in the meeting for dealing with time delay in human exploration along with recommendations for future development and studies to address this issue.

  2. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  3. Human System Interactions in the Design of an Interplanetary Mission.

    OpenAIRE

    Salotti, Jean-Marc; Claverie, Bernard

    2012-01-01

    International audience It has been suggested that the design of the last NASA reference mission for the human exploration of Mars is lacking sufficient considerations for human factors and human machine interactions. The NASA team examined many different options, long or short stay, chemical or nuclear thermal propulsion, pre-deploy or all-up, in situ resource utilization (ISRU) or not, etc. The decision process was based on a bottom-up approach, which led to local optimizations but to unp...

  4. Human Health and Performance Aspects of Mars Design Reference Mission of July, 1997

    Science.gov (United States)

    Charles, John B.

    1999-01-01

    The human element is the most complex element of the mission design Mars missions will pose significant physiological and psychological challenges to crew members Some challenges (human engineering, life support) must be overcome (potential "non-starters") Some challenges (bone, radiation) may be show-stoppers ISS will only Indirectly address Mars questions before any "Go/No Go" decision Significant amount of ground-based and specialized flight research will be required -- Critical Path Roadmap project will direct HSLSPO's research toward Mars exploration objectives

  5. In-Situ Cryogenic Propellant Liquefaction and Storage for a Precursor to a Human Mars Mission

    Science.gov (United States)

    Mueller, Paul; Durrant, Tom

    The current mission plan for the first human mission to Mars is based on an in-situ propellant production (ISPP) approach to reduce the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Recent restructuring of the Mars Robotic Exploration Program has removed ISPP from the early sample return missions. A need still exists to demonstrate ISPP technologies on one or more robotic missions prior to the first human mission. This paper outlines a concept for an ISPP-based precursor mission as a technology demonstration prior to the first human mission. It will also return Martian soil samples to Earth for scientific analysis. The mission will primarily demonstrate cryogenic oxygen and fuel production, liquefaction, and storage for use as propellants for the return trip. Hydrogen will be brought from Earth as a feedstock to produce the hydrocarbon fuel (most likely methane). The analysis used to develop the mission concept includes several different thermal control and liquefaction options for the cryogens. Active cooling and liquefaction devices include Stirling, pulse tube, and Brayton-cycle cryocoolers. Insulation options include multilayer insulation, evacuated microspheres, aerogel blankets, and foam insulation. The cooling capacity and amount of insulation are traded off against each other for a minimum-mass system. In the case of hydrogen feedstock, the amount of hydrogen boiloff allowed during the trip to Mars is also included in the tradeoff. The spacecraft concept includes a Lander (including the propellant production plant) with a Mars Ascent Vehicle (MAV) mounted atop it. An option is explored where the engines on the MAV are also used for descent and landing on the Martian surface at the beginning of the mission. So the MAV propellant tanks would contain oxygen and methane during the trip from Earth. This propellant would be consumed in descent to the Martian surface, resulting in nearly-empty MAV tanks to be filled by the

  6. Asteroid Redirect Mission - Next Major stepping-stone to Human Exploration of NEOs and beyond

    Science.gov (United States)

    Sanchez, Natalia

    2016-07-01

    In response to NASA's Asteroid Initiative, an Asteroid Redirect and Robotic Mission (ARRM) is being studied by a NASA cohort, led by JPL, to enable the capture a multi-ton boulder from the surface of a Near-Earth Asteroid and return it to cislunar space for subsequent human and robotic exploration. The mission would boost our understanding of NEOs and develop technological capabilities for Planetary Defense, shall a NEO come up on a collision course. The benefits of this mission can extend our capabilities to explore farther into space, as well as create a new commercial sector in Space Mining, which would make materials in Space available for our use. ARRM would leverage and advance current knowledge of higher-efficiency propulsion systems with a new Solar Electric Propulsion demonstration (similar to that on the Dawn spacecraft) to be incorporated into future Mars Missions.

  7. HUMEX, a study on the survivability and adaptation of humans to long- duration exploratory missions

    Science.gov (United States)

    Horneck, G.

    ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. A lunar base at the south pole where constant sunlight and potential water ice deposits could be assumed was selected as the moon scenario. the impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground- based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was considered as a driver also

  8. critcial human health issues in connection with future human missions to mMars: the HUMEX study of ESA

    Science.gov (United States)

    Horneck, G.; Humex Team

    ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to pro-pose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as test-beds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. Two scenarios for a Mars mission were selected: (i) with a 30 days stay on Mars, and (ii) with about 500 days stay on Mars. The impact on human health, perform-ance and well being has been investigated from the view point of (i) the effects of microgravity (during space travel), reduced gravity (on Mars) and abrupt gravity changes (during launch and landing), (ii) the effects of cosmic radiation including solar particle events, (iii) psychological issues as well as general health care. Coun-termeasures as well as necessary research using ground-based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was emphasized. Advanced life support

  9. The Illinois White Paper: Improving the System for Protecting Human Subjects--Counteracting IRB "Mission Creep"

    Science.gov (United States)

    Gunsalus, C. K.; Bruner, Edward M.; Burbules, Nicholas C.; Dash, Leon; Finkin, Matthew; Goldberg, Joseph P.; Greenough, William T.; Miller, Gregory A.; Pratt, Michael G.; Iriye, Masumi; Aronson, Deb

    2007-01-01

    Our system of research self-regulation, designed to provide internal checks and balances for those who participate in research involving human subjects, is under considerable stress. Much of this crisis has been caused by what we call mission creep, in which the workload of IRBs has expanded beyond their ability to handle effectively. Mission…

  10. University-Firm Interactions in Brazil: Beyond Human Resources and Training Missions

    Science.gov (United States)

    Rapini, Marcia Siqueira; Chiarini, Tulio; Bittencourt, Pablo Felipe

    2015-01-01

    The motivation for this article comes from the proposition in the literature that Latin American universities are detached from the research needs of the productive sector and that they limit their role to the human resources and training missions. The authors investigated the Brazilian scenario, using data from a survey conducted in 2008-2009…

  11. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  12. By supporting pro-austerity parties in Greece the EU has forgotten its founding values

    OpenAIRE

    Tellidis, Ioannis

    2012-01-01

    Is the EU still a force for democracy? In the lead up to the recent elections in Greece, the EU has supported the pro-austerity PASOK and New Democracy parties, both well known for cronyism and corruption when in government. Ioannis Tellidis argues that rather than delegitimising anti-austerity parties in Greece, the EU should have had a more negotiated approach to Greece by supporting policies that would improve governance and governability.

  13. Not learning in the workplace: austerity and the shattering of illusio in public service

    OpenAIRE

    Colley, Helen

    2012-01-01

    Purpose – This paper seeks to discuss the impact of UK government austerity policies on learning in public service work, specifically youth support work. It also aims to argue that austerity policies intensify “ethics work”, create emotional suffering, and obstruct workplace learning in a variety of ways. Design/methodology/approach – The research adopts narrative methods and a critical interpretive paradigm to investigate practitioner perceptions within a broader analysis of neo-liberal...

  14. Critical issues in connection with human missions to Mars: protection of and from the Martian environment

    Science.gov (United States)

    Horneck, G.; Facius, R.; Reitz, G.; Rettberg, P.; Baumstark-Khan, C.; Gerzer, R.

    2003-01-01

    Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  15. Modular Growth NTR Space Transportation System for Future NASA Human Lunar, NEA and Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) is a proven, high thrust propulsion technology that has twice the specific impulse (I(sub sp) approx.900 s) of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - everything required for affordable human missions beyond LEO. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower IMLEO, versatile vehicle design, and growth potential. Furthermore, the NTR requires no large technology scale-ups since the smallest engine tested during the Rover program - the 25 klb(sub f) "Pewee" engine is sufficient for human Mars missions when used in a clustered engine configuration. The "Copernicus" crewed Mars transfer vehicle developed for DRA 5.0 was an expendable design sized for fast-conjunction, long surface stay Mars missions. It therefore has significant propellant capacity allowing a reusable "1-year" round trip human mission to a large, high energy near Earth asteroid (NEA) like Apophis in 2028. Using a "split mission" approach, Copernicus and its two key elements - a common propulsion stage and integrated "saddle truss" and LH2 drop tank assembly - configured as an Earth Return Vehicle / propellant tanker, can also support a short round trip (approx.18 month) / short orbital stay (60 days) Mars reconnaissance mission in the early 2030's before a landing is attempted. The same short stay orbital mission can be performed with an "all-up" vehicle by adding an "in-line" LH2 tank to Copernicus to supply the extra propellant needed for this higher energy, opposition-class mission. To transition to a

  16. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  17. [Medical Humanities--the Historical Significance and Mission in Medical Education].

    Science.gov (United States)

    Fujino, Akihiro

    2015-12-01

    In this paper we consider the significance and mission of medical humanities in medical education from the following six viewpoints: (1) misunderstanding of the medical humanities; (2) its historical development; (3) the criteria for the ideal physician; (4) the contents of current Medical Humanities education; (5) the basic philosophy; and (6) its relation to medical professionalism. Medical humanities consists of the three academic components of bioethics, clinical ethics and medical anthropology, and it is a philosophy and an art which penetrate to the fundamental essence of medicine. The purpose of medical humanities is to develop one's own humanity and spirituality through medical practice and contemplation by empathizing with patients' illness narratives through spiritual self-awakening and by understanding the mutual healing powers of human relations by way of the realization of primordial life. The basic philosophy is "the coincidence of contraries". The ultimate mission of medical humanities is to cultivate physicians to educate themselves and have a life-long philosophy of devotion to understanding, through experience, the coincidence of contraries. PMID:26667195

  18. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Science.gov (United States)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  19. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-01-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  20. Welfare Queens, Thrifty Housewives, and Do-It-All Mums: Celebrity motherhood and the cultural politics of austerity

    OpenAIRE

    Allen, K; Mendick, H; Harvey, L.; Ahmad, A.

    2015-01-01

    In this paper, we consider how the cultural politics of austerity within Britain plays out on the celebrity maternal body. We locate austerity as a discursive and disciplinary field and contribute to emerging feminist scholarship exploring how broader political and socio-economic shifts interact with cultural constructions of femininity and motherhood. To analyse the symbolic function of mediated celebrity maternity within austerity, the paper draws on a textual analysis of three celebrity mo...

  1. Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion

    Science.gov (United States)

    Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that

  2. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  3. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    Science.gov (United States)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not

  4. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance.

    Science.gov (United States)

    Mendell, W W; Heydorn, R P

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. PMID:15806749

  5. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance

    Science.gov (United States)

    Mendell, W. W.; Heydorn, R. P.

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  6. Requirements for a common nuclear propulsion and power reactor for human exploration missions to Mars

    Science.gov (United States)

    Cataldo, Robert L.; Borowski, Stanley K.

    1998-01-01

    Requirements for propulsion and power systems capable of achieving a safe, reliable, robust and affordable human Mars exploration mission have been identified. Nuclear systems have been identified that can meet the challenges of short trip times, reduced number of launch vehicles, potential for ``all propulsive'' maneuvers, abundant in-space power and low mass, volume and deployed area, and energy rich surface power. Reduced total systems cost will also be mandatory to achieve affordable human exploration of Mars. Hence, it is desirable to design a space propulsion and surface power reactor with the greatest degree of commonality as possible with the goal of reducing total system costs.

  7. Orbit selection and its impact on radiation warning architecture for a human mission to Mars.

    Science.gov (United States)

    Turner, R E; Levine, J M

    1998-01-01

    With the recent announcement of the discovery of the possibility of life on Mars, there is renewed interest in Mars missions, perhaps eventually in human missions. Astronauts on such missions are at risk to occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. These events can pose a substantial risk to the health of the astronauts and to the on-board electronics. Effective forecast and warning of these events could provide time to take steps to minimize the risk (retreating to a safe haven, shutting down sensitive equipment, etc.) Providing that forecast capability, will require additional monitoring capability. The extent of this architecture is sensitive to the orbit selected for the transfer to and from Mars. This paper looks at the major classes of Mars missions (Conjunction and Opposition) and sub-categories of these classes and draws conclusions on the number of monitoring satellites needed for each, with a goal to reducing total system cost through optimum orbit selection. PMID:11541624

  8. Launch and Assembly Reliability Analysis for Mars Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant R.; Stromgren, Chel; Cirillo, William M.; Goodliff, Kandyce E.

    2013-01-01

    NASA s long-range goal is focused upon human exploration of Mars. Missions to Mars will require campaigns of multiple launches to assemble Mars Transfer Vehicles in Earth orbit. Launch campaigns are subject to delays, launch vehicles can fail to place their payloads into the required orbit, and spacecraft may fail during the assembly process or while loitering prior to the Trans-Mars Injection (TMI) burn. Additionally, missions to Mars have constrained departure windows lasting approximately sixty days that repeat approximately every two years. Ensuring high reliability of launching and assembling all required elements in time to support the TMI window will be a key enabler to mission success. This paper describes an integrated methodology for analyzing and improving the reliability of the launch and assembly campaign phase. A discrete event simulation involves several pertinent risk factors including, but not limited to: manufacturing completion; transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to TMI. The model accommodates varying numbers of launches, including the potential for spare launches. Having a spare launch capability provides significant improvement to mission success.

  9. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Science.gov (United States)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  10. Human security in Sudan: The report of a Canadian Assessment Mission

    International Nuclear Information System (INIS)

    In October 1999 the Minister of Foreign Affairs and the Minister for International Co-operation announced the creation of an assessment mission to Sudan to examine allegations about human rights abuses, including the practice of slavery and to investigate and report on alleged link between oil development and human rights violations, particularly in respect of the forced removal of populations around oil fields and oil-related developments. The investigation was the result of allegations concerning the forced relocation of civilian populations in the vicinity of the oil field in the interest of a more secure environment for oil extraction by the Government of Sudan and its partners, which include Talisman Energy Inc., a Canadian oil company. In creating the Mission, the Department of Foreign Affairs declared that if it became evident that oil extraction is exacerbating the conflict in Sudan, or the the human rights violations, the Government of Canada may consider applying economic and trade sanctions. This report contains the results of the Mission's observations and meetings with members of the Government of Sudan, opposition leaders, human rights, civil society, and diplomatic representatives, as well as displaced Southern Sudanese and the UN officials trying to help them. The Mission also thoroughly examined Talisman Energy Inc.'s operations in Sudan and the extent to which oil extraction is exacerbating conflict in that country. The overall conclusion of the Mission's investigation is that while the on-going civil war in Sudan is not about oil, oil has become a key factor, and it is exacerbating the conflict. With regard to the role of Talisman, the conclusion was that the company did not do all that it could to keep itself fully informed as to what was happening, and while some progress has been made in curbing human rights violations, the oil operations in which Talisman is involved add to the conflict and suffering. Several recommendations are made to

  11. Human security in Sudan: The report of a Canadian Assessment Mission

    Energy Technology Data Exchange (ETDEWEB)

    Harker, J.

    2000-01-01

    In October 1999 the Minister of Foreign Affairs and the Minister for International Co-operation announced the creation of an assessment mission to Sudan to examine allegations about human rights abuses, including the practice of slavery and to investigate and report on alleged link between oil development and human rights violations, particularly in respect of the forced removal of populations around oil fields and oil-related developments. The investigation was the result of allegations concerning the forced relocation of civilian populations in the vicinity of the oil field in the interest of a more secure environment for oil extraction by the Government of Sudan and its partners, which include Talisman Energy Inc., a Canadian oil company. In creating the Mission, the Department of Foreign Affairs declared that if it became evident that oil extraction is exacerbating the conflict in Sudan, or the the human rights violations, the Government of Canada may consider applying economic and trade sanctions. This report contains the results of the Mission's observations and meetings with members of the Government of Sudan, opposition leaders, human rights, civil society, and diplomatic representatives, as well as displaced Southern Sudanese and the UN officials trying to help them. The Mission also thoroughly examined Talisman Energy Inc.'s operations in Sudan and the extent to which oil extraction is exacerbating conflict in that country. The overall conclusion of the Mission's investigation is that while the on-going civil war in Sudan is not about oil, oil has become a key factor, and it is exacerbating the conflict. With regard to the role of Talisman, the conclusion was that the company did not do all that it could to keep itself fully informed as to what was happening, and while some progress has been made in curbing human rights violations, the oil operations in which Talisman is involved add to the conflict and suffering. Several recommendations

  12. Examining Police Strategic Resource Allocation in a Time of Austerity

    Directory of Open Access Journals (Sweden)

    Garth den Heyer

    2014-03-01

    Full Text Available The increasing importance of proactive policing has highlighted the need to ensure that the police utilise their resources both efficiently and effectively. Traditionally, police agencies have allocated resources in response to their operational demands or requirements, with the majority of resources being distributed in response to political demands and public calls for service. In recent years there has been a greater emphasis by police to deliver services proactively, and to direct resources to specific geographic areas of high crime or to specific crimes, and to apply intelligence led targeted policing initiatives. The changing operating environment to a public service ethos of accountability and ‘do more with less’ means that historical methods of allocating police officers may not meet an agency's strategic goals. This paper examines if an economic approach to allocating police strategic resources is an appropriate and equitable method in a time of austerity. This greater emphasis on proactive, rather than reactive policing, which also represents a shift from centralised control, underlines the need to ensure the efficient and effective use of resources.

  13. Preparing for Humans at Mars, MPPG Updates to Strategic Knowledge Gaps and Collaboration with Science Missions

    Science.gov (United States)

    Baker, John; Wargo, Michael J.; Beaty, David

    2013-01-01

    The Mars Program Planning Group (MPPG) was an agency wide effort, chartered in March 2012 by the NASA Associate Administrator for Science, in collaboration with NASA's Associate Administrator for Human Exploration and Operations, the Chief Scientist, and the Chief Technologist. NASA tasked the MPPG to develop foundations for a program-level architecture for robotic exploration of Mars that is consistent with the President's challenge of sending humans to the Mars system in the decade of the 2030s and responsive to the primary scientific goals of the 2011 NRC Decadal Survey for Planetary Science. The Mars Exploration Program Analysis Group (MEPAG) also sponsored a Precursor measurement Strategy Analysis Group (P-SAG) to revisit prior assessments of required precursor measurements for the human exploration of Mars. This paper will discuss the key results of the MPPG and P-SAG efforts to update and refine our understanding of the Strategic Knowledge Gaps (SKGs) required to successfully conduct human Mars missions.

  14. Human Factors Principles in Design of Computer-Mediated Visualization for Robot Missions

    Energy Technology Data Exchange (ETDEWEB)

    David I Gertman; David J Bruemmer

    2008-12-01

    With increased use of robots as a resource in missions supporting countermine, improvised explosive devices (IEDs), and chemical, biological, radiological nuclear and conventional explosives (CBRNE), fully understanding the best means by which to complement the human operator’s underlying perceptual and cognitive processes could not be more important. Consistent with control and display integration practices in many other high technology computer-supported applications, current robotic design practices rely highly upon static guidelines and design heuristics that reflect the expertise and experience of the individual designer. In order to use what we know about human factors (HF) to drive human robot interaction (HRI) design, this paper reviews underlying human perception and cognition principles and shows how they were applied to a threat detection domain.

  15. 'Bimodal' NTR and LANTR propulsion for human missions to Mars/Phobos

    International Nuclear Information System (INIS)

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ∼850-1000 s) and attractive engine thrust-to-weight ratio (∼3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, 'power-rich' stage enabling propulsive Mars capture and reuse capability. A family of modular 'bimodal' NTR (BNTR) vehicles are described which utilize a common 'core' stage powered by three 66.7 kN (∼15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, 'zero-boiloff' liquid hydrogen (LH2) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the 'all LH2' BNTR stage. The use of ''LOX-augmented' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase 'bulk' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ∼80 t 'Magnum' heavy lift launch vehicles (HLLVs)

  16. The ‘Common Sense’ of Austerity in Europe’s Historic Bloc: A Gramscian Analysis

    Directory of Open Access Journals (Sweden)

    Ben LUONGO

    2015-05-01

    Full Text Available Euro-area efforts to address recession have moved Europe decisively into an era of harsh austerity despite budget cuts and other fiscal measures facing massive resistance from the public. Moreover, economists continue to express doubts concerning austerity and warn Euro-area officials that fiscal tightening only increases debt relative to GDP. Far from reflecting either popular or economic opinion, I argue that Europe’s pro-austerity discourse both reflects and is constructed by the hegemonic interests of transnational capital. Specifically, advocacy groups representing the business-finance community manufacture the ‘common sense’ of fiscal tightening within narratives of European profligacy and exploding debt. In reality, however, austerity only reinforces the neoliberal structure underlying Europe’s integration into the Single Market. Forces of transnational capital not only serve as the intellectual leaders behind this neoliberal integration but, as my research shows, work to maintain this structure by advancing pro-austerity discourses in a way that ensures their hegemonic position within the historic bloc.

  17. The 'Common Sense' of Austerity in Europe's Historic Bloc: A Gramscian Analysis

    Directory of Open Access Journals (Sweden)

    Ben Luongo

    2016-02-01

    Full Text Available Euro-area efforts to address recession have moved Europe decisively into an era of harsh austerity despite budget cuts and other fiscal measures facing massive resistance from the public. Moreover, economists continue to express doubts concerning austerity and warn Euro-area officials that fiscal tightening only increases debt relative to GDP. Far from reflecting either popular or economic opinion, I argue that Europe's pro-austerity discourse both reflects and is constructed by the hegemonic interests of transnational capital. Specifically, advocacy groups representing the business-finance community manufacture the 'common sense' of fiscal tightening within narratives of European profligacy and exploding debt. In reality, however, austerity only reinforces the neoliberal structure underlying Europe's integration into the Single Market. Forces of transnational capital not only serve as the intellectual leaders behind this neoliberal integration but, as my research shows, work to maintain this structure by advancing pro-austerity discourses in a way that ensures their hegemonic position within the historic bloc.

  18. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    Science.gov (United States)

    Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.

    2016-04-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as

  19. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    Science.gov (United States)

    Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas

    2016-07-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as

  20. Advancement of a 30K W Solar Electric Propulsion System Capability for NASA Human and Robotic Exploration Missions

    Science.gov (United States)

    Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.

    2012-01-01

    Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA

  1. Reporting on Strategic Considerations About the Role of Science in Initial Human Missions to Mars

    Science.gov (United States)

    Beaty, David; Bass, Deborah; Thronson, Harley; Hays, Lindsay; Carberry, Chris; Cassady, Joe; Craig, Mark; Duggan, Matt; Drake, Bret; Stern, Jennifer; Zucker, Rick

    2016-07-01

    mission prior to a Mars surface mission should be initiated. 3. A well-planned set of science objectives for a future human-landed mission to Mars is essential in order to sustain coordination among the science and human spaceflight communities. In particular, while it is clear how humans on the surface of Mars would significantly accelerate the pace of the search for past life, it is unclear how humans would play a role in (and not serve as a hindrance to) the search for extant life. Further study should be supported. 4. Sustained formal collaboration among Mars scientists, engineers, technologists, and teams developing scenarios for Mars exploration should be supported. The human and robotic sides of the Mars exploration community need to become further engaged with each other, particularly as we enter a potential period of dual-purpose (science + human precursor) missions. Central to this era is generating mutual support for a Mars sample return architecture as a goal that has crucial value to both the human preparatory program and planetary science.

  2. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  3. The Human Space Life Sciences Critical Path Roadmap Project: A Strategy for Human Space Flight through Exploration-Class Missions

    Science.gov (United States)

    Sawin, Charles F.

    1999-01-01

    The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.

  4. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    NASA's Human Exploration Plans: A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to

  5. PURSUING HUMAN SECURITY IN AFRICA THROUGH DEVELOPMENTAL PEACE MISSIONS: AMBITIOUS CONSTRUCT OR FEASIBLE IDEAL?

    Directory of Open Access Journals (Sweden)

    Benjamin Mokoena

    2011-08-01

    Full Text Available Pursuing human security through Developmental Peace Missions: Ambitious construct or feasible ideal? appears at a time when the continent of Africa is wrought by conflict, internal unrest and not-so-civil war, compelling African leaders to grapple with the theory and reality of peacekeeping and conflict resolution in extremely difficult and challenging environments. Notions of Developmental Peace Missions (DPMs emanated from both the political debate and the study of African peace missions by university-based and NGO-employed researchers. This volume examines DPMs and assesses the utility of the concept itself as a means to pursue sustainable levels of human security through a combination of peacekeeping interventions. DPMs, which envisage a model of concurrent developmental efforts and security actions to turn back destructive internal African conflicts, is a noteworthy South African contribution to this debate. The editorial staff of Scientia Militaria: South African Journal of Military Studies are pleased to publish this third Supplementa, which is probably the most comprehensive work on DPMs to date and of immediate interest to the defence community. Pursuing human security developed under the supervision of Prof Theo Neethling and Maj Benjamin Mokoena and was submitted by Lt Col Laetitia Olivier as a thesis, presented in fulfilment of the requirements for the degree of Master of Military Science (MMil in Security and Africa Studies at the Faculty of Military Science, Stellenbosch University. It has been editorially altered and revised for this publication. The valuable inputs made by Prof DJ Kotze of Unisa as external examiner, as well as those proffered by the lecturing staff of the School for Security and Africa Studies during the initial research colloquium are acknowledged.

  6. Fuel cells, electrolyzers, and microalgae photobioreactors: technologies for long-duration missions in human spaceflight

    Science.gov (United States)

    Belz, Stefan; Bretschneider, Jens; Nathanson, Emil; Buchert, Melanie

    Long-duration and far-distant missions in human spaceflight have higher requirements on life support systems (LSS) technologies than for missions into low Earth orbit (LEO). LSS technologies have to ensure that humans can survive, live, and work in space. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. For these reasons, the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC), Polymer Electrolyte Membrane Electrolyzers (PEL) and Photobioreactors (PBR) for microalgae cultivation into the LSS is investigated. It is demonstrated in which mission scenarii the application of PEFC, PEL, and PBR are useful in terms of mass, reliability, and cycle closures. The paper represents the current status of research at the Institute of Space Systems (IRS) of University of Stuttgart on PEFC, PEL, and PBR development. A final configuration of a prototype of a PEFC system includes the gas, water, and thermal management. The PEL is a state-of-the-art technology for space application, but the specific requirements by a synergetic integration are focused. A prototype configuration of a PBR system, which was tested under microgravity conditions in a parabolic experiment, consists of a highly sophisticated cultivation chamber, adapted sensorics, pumps, nutrients supply and harvesting unit. Additionally, the latest results of the cultivation of the microalgae species Chlorella vulgaris and Scenedesmus obliquus in the laboratories of the IRS are represented. Both species are robust, nutrient-rich for human diet. An outlook of the next steps is given for in-orbit verification.

  7. Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Johanna H. Oxstrand

    2014-06-01

    The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks. We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.

  8. Mary Poppin's Approach to Human Mars Mission Entry, Descent and Landing

    Science.gov (United States)

    Venkatapathy, Ethiraj

    2014-01-01

    This is a talk on Human Mars Mission Challenges and the effort that is on-going at NASA ARC. The presentation will be used as part of the talk I will give at Purdue University on 8th April, 2016. This talk is based on the Director's colloquium I gave in 2014 at Ames, as part of the Center Director's Colloquium Series of the 75th Anniversary of Ames. Few additional charts have been added and these were from presentation made by Brandon Smith at the IEEE Aerospace Sciences 2016 meeting in Big Sky Montana, March, 2016.

  9. Human factors analysis of workstation design: Earth Radiation Budget Satellite Mission Operations Room

    Science.gov (United States)

    Stewart, L. J.; Murphy, E. D.; Mitchell, C. M.

    1982-01-01

    A human factors analysis addressed three related yet distinct issues within the area of workstation design for the Earth Radiation Budget Satellite (ERBS) mission operation room (MOR). The first issue, physical layout of the MOR, received the most intensive effort. It involved the positioning of clusters of equipment within the physical dimensions of the ERBS MOR. The second issue for analysis was comprised of several environmental concerns, such as lighting, furniture, and heating and ventilation systems. The third issue was component arrangement, involving the physical arrangement of individual components within clusters of consoles, e.g., a communications panel.

  10. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  11. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klbf engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH2) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  12. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  13. From trauma in austere environments to combat or medical school: how blended hyper-realism in the real and virtual worlds can better prepare surgeons.

    Science.gov (United States)

    Laporta, Anthony J; Hoang, Tuan; Moloff, Alan; Tieman, Michael; Schwartz, Brian D; Slack, Sean; Chalut, Carissa; Kang, Jeff; Unangst, Alicia

    2014-01-01

    Surgical and simulation development have always been closely associated with military activity. The last ten years have continued that trend, allowing for training in real time, under reality-based conditions, learning technical and clinical skills with the dynamic of true human factors and team training in the actual environment. We present data from diverse activities in three separate scenarios: second-year medical students in clinical scenarios; the U.S. Ski Team physicians training in austere conditions; the U.S. Navy Fleet Surgical Team training for sea and land deployment. PMID:24732513

  14. ISECG Mission Scenarios and Their Role in Informing Next Steps for Human Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Culbert, Christopher J.; Mongrard, Olivier; Satoh, Naoki; Goodliff, Kandyce; Seaman, Calvin H.; Troutman, Patrick; Martin, Eric

    2011-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy (GES): The Framework for Coordination developed by fourteen space agencies* and released in May 2007. This GES Framework Document recognizes that preparing for human space exploration is a stepwise process, starting with basic knowledge and culminating in a sustained human presence in deep space. ISECG has developed several optional global exploration mission scenarios enabling the phased transition from human operations in Low Earth Orbit (LEO) and utilization of the International Space Station (ISS) to human missions beyond LEO leading ultimately to human missions to cis-lunar space, the Moon, Near Earth Asteroids, Mars and its environs. Mission scenarios provide the opportunity for judging various exploration approaches in a manner consistent with agreed international goals and strategies. Each ISECG notional mission scenario reflects a series of coordinated human and robotic exploration missions over a 25-year horizon. Mission scenarios are intended to provide insights into next steps for agency investments, following on the success of the ISS. They also provide a framework for advancing the definition of Design Reference Missions (DRMs) and the concepts for capabilities contained within. Each of the human missions contained in the scenarios has been characterized by a DRM which is a top level definition of mission sequence and the capabilities needed to execute that mission. While DRMs are generally destination focused, they will comprise capabilities which are reused or evolved from capabilities used at other destinations. In this way, an evolutionary approach to developing a robust set of capabilities to sustainably explore our solar system is defined. Agencies also recognize that jointly planning for our next steps, building on the accomplishments of ISS, is important to ensuring the robustness and sustainability of any human

  15. Conformal Ablative Thermal Protection System for Small and Large Scale Missions: Approaching TRL 6 for Planetary and Human Exploration Missions and TRL 9 for Small Probe Missions

    Science.gov (United States)

    Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.

    2015-01-01

    In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the

  16. Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to Mars

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100

  17. The Relative Effects of Logistics, Coordination and Human Resource on Humanitarian Aid and Disaster Relief Mission Performance

    Directory of Open Access Journals (Sweden)

    Aida Idris

    2014-10-01

    Full Text Available Most studies on humanitarian aid and disaster relief (HADR missions suggest that the quality of logistics, coordination and human resource management will affect their performance. However, studies in developing countries are mainly conceptual and lack the necessary empirical evidence to support these contentions. The current paper thereby aimed to fill this knowledge gap by sta- tistically examining the effects of the abovementioned factors on such missions. Focusing on the Malaysian army due to its extensive experience in HADR operations, the paper opted for a quantita- tive approach to allow for a more objective analysis of the issues. The results show that there are other potential determinants of mission success which deserve due attention in future studies. They also suggest that human resource is not easily measured as a construct, and that this limitation in methodology must be overcome to derive more accurate conclusions regarding its effect on HADR mission performance.

  18. [The demographic consequences of austerity in Latin America: methodological aspects].

    Science.gov (United States)

    Hakkert, R

    1991-01-01

    This work reviews evidence in the literature of possible demographic effects of the austerity programs imposed on Latin American countries in the 1980s. The work focuses on methodological problems involved in assessing demographic changes and ascertaining that they were indeed attributable to the economic crisis. An introductory section describes the recession of the 1980s in Latin America, the declines in employment and living standards, and the health and social consequences of the deepening poverty. But the author argues that evaluation of health conditions, levels of nutrition, and especially factors such as infant mortality, fertility, marriage patterns, and migration as indicators of the impact of the economic depression is full of pitfalls that are not always obvious. Few Latin American countries have civil registration systems capable of providing accurate and up-to-date mortality and fertility data. Indirect methods currently in use were intended to analyze longterm levels and trends and are of little use for short-term fluctuations. Data on internal migration are scarce even in developed countries. Even when recent data are available it is often difficult or impossible to obtain data for comparison. Infant mortality and malnutrition levels, for example, are serious problems in many parts of Latin America, but series of data capable of demonstrating that they are truly consequences of the economic crisis are lacking. Another challenge is to separate the demographic effects of the debt crisis from longterm structural processes. The possibility of time lags and of different time frames may increase confusion. Almost a year must pass before effects on birth rates can be expected, for example. Neutralizing mechanisms may obscure the effects sought. Thus, the most impoverished urban sectors may return to the countryside to seek refuge in subsistence agriculture; their departure would in some measure diminish the consequences of recession in the urban economy

  19. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    Science.gov (United States)

    Doyle, Richard; Bergman, Larry; Some, Raphael; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and the mission; it can be aptly viewed as a "technology multiplier" in that advances in onboard computing provide dramatic improvements in flight functions and capabilities across the NASA mission classes, and will enable new flight capabilities and mission scenarios, increasing science and exploration return per mission-dollar.

  20. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    Science.gov (United States)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; Zarchi, Kerry A.

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  1. Abort Options for Human Missions to Earth-Moon Halo Orbits

    Science.gov (United States)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  2. Social Sciences and Humanities in the IPY 2007/08: An Integrating Mission

    Science.gov (United States)

    Krupnik, I.

    2004-12-01

    Our understanding of the human dimension of polar regions is immensely greater today than at the beginning of polar science. In the IPY 2007/2008, social sciences and humanities aspire to become fully engaged members of a new multidisciplinary effort. They are eager to address issues of partnership and public involvement, socio-economic development, governance, cultural viability and human rights of polar residents. These societal issues are among the top priorities of the IPY 2007/2008 mission to enhance the understanding of human-environmental interactions in the polar systems and to promote the value of polar science and global monitoring among the public at large. Other social issues-security, diplomacy, demography, health, education, communications-are also critical to polar research and to the scientific advance into the Arctic and Antarctica. The success of IPY 2007/08 requires the articulation of the common interest among scientists, polar peoples, economic actors, and sovereign nations, facing current global change. Experience from various regions present convincing evidence that lasting progress in the understanding and preservation of the environment can only be achieved if local populations are respected and involved. Research made at the "poles" is, thus, crucial for establishing models of equity and involvement, partnership and outreach. In this mission of the IPY 2007/2008 program social scientists and humanists are to make credible contributions. One of the key missions for social scientists under the IPY 2007/2008 program is to develop cooperative observation programs involving interested indigenous experts, subsistence users, and other polar residents. Through generations of life in the polar environment, polar people have developed long-standing knowledge and observation techniques in recording and interpreting a broad range of signals and phenomena in the polar systems. Efforts to integrate local experts into year-round circumpolar observing

  3. Cooperation and dialogical modeling for designing a safe Human space exploration mission to Mars

    Science.gov (United States)

    Grès, Stéphane; Tognini, Michel; Le Cardinal, Gilles; Zalila, Zyed; Gueydan, Guillaume

    2014-11-01

    This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.

  4. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    Science.gov (United States)

    Niles, P. B.; Eppler, D. B.; Kennedy, K. J.; Lewis, R.; Spann, J. F.; Sullivan, T. A.

    2016-01-01

    Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground.

  5. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  6. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    Science.gov (United States)

    Barta, Daniel J.; McQuillan, Jeffrey

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.

  7. An analysis of business phenomena and austerity narratives in the arts sector from a new materialist perspective

    OpenAIRE

    Oakes, H.; Oakes, S

    2015-01-01

    The paper adopts a lens of new materialism to analyse narratives of managers in the arts sector in response to the master narrative of austerity and proposed solutions using business models (including accounting). It explores the complex trajectories of the master narrative through the analysis of a diverse range of funding and arts organisations. Accounting, business models and austerity reveal rhizomatic characteristics as they diverge from their origin and are implicated in uncertainty abo...

  8. Comparing NASA and ESA Cost Estimating Methods for Human Missions to Mars

    Science.gov (United States)

    Hunt, Charles D.; vanPelt, Michel O.

    2004-01-01

    To compare working methodologies between the cost engineering functions in NASA Marshall Space Flight Center (MSFC) and ESA European Space Research and Technology Centre (ESTEC), as well as to set-up cost engineering capabilities for future manned Mars projects and other studies which involve similar subsystem technologies in MSFC and ESTEC, a demonstration cost estimate exercise was organized. This exercise was a direct way of enhancing not only cooperation between agencies but also both agencies commitment to credible cost analyses. Cost engineers in MSFC and ESTEC independently prepared life-cycle cost estimates for a reference human Mars project and subsequently compared the results and estimate methods in detail. As a non-sensitive, public domain reference case for human Mars projects, the Mars Direct concept was chosen. In this paper the results of the exercise are shown; the differences and similarities in estimate methodologies, philosophies, and databases between MSFC and ESTEC, as well as the estimate results for the Mars Direct concept. The most significant differences are explained and possible estimate improvements identified. In addition, the Mars Direct plan and the extensive cost breakdown structure jointly set-up by MSFC and ESTEC for this concept are presented. It was found that NASA applied estimate models mainly based on historic Apollo and Space Shuttle cost data, taking into account the changes in technology since then. ESA used models mostly based on European satellite and launcher cost data, taking into account the higher equipment and testing standards for human space flight. Most of NASA's and ESA s estimates for the Mars Direct case are comparable, but there are some important, consistent differences in the estimates for: 1) Large Structures and Thermal Control subsystems; 2) System Level Management, Engineering, Product Assurance and Assembly, Integration and Test/Verification activities; 3) Mission Control; 4) Space Agency Program Level

  9. INTRODUCTION: COMPARATIVE PERFORMANCE MANAGEMENT AND ACCOUNTABILITY IN THE AGE OF AUSTERITY

    DEFF Research Database (Denmark)

    Grossi, Giuseppe; Hansen, Morten Balle; Johanson, Jan-Erik;

    2016-01-01

    , Houlberg, and Bækgaard study the link between fiscal austerity and politicians’ use of performance information by using survey and documentary data from Danish municipalities. Grossi, Reichard, and Ruggiero examine the interest of politicians and public managers in the use of performance information......The five articles in this symposium examine the issues of comparative performance management and accountability in the age of austerity from different vantage points. Brusca and Montesinos carry out an international comparison of 17 countries studying key issues in the implementation of performance...... for decisionmaking and monitoring the budget cycle provided in the newly established performance budgets of municipalities in Germany and Italy. Poocharoen examines performance management in different types of interagency collaborations, presenting six case studies of management projects in the field of natural...

  10. The Latin American state and the austerity policies: Peru 1980-1985

    OpenAIRE

    Scurrah, Martín J.

    2015-01-01

    The main obfective of this paper is to establish a relationship between the consolidation of the Peruvian democracy and the attempts of the Belaunde regime (1980-1985) to apply programmes of economic austerity.The author therefore describes the main poticies applied by the four Ministers of Economy and Finance who where in charge of the country's economy in the period analized. Finally, the paper makes an appraisal of the increasing loss of legitimacy experienced by the Belaunde regime as a r...

  11. El ilusionista de las palabras: Paul Auster y su universo creativo

    Directory of Open Access Journals (Sweden)

    Álvarez López, Esther

    2010-02-01

    Full Text Available Paul Auster is one of the greatest writers of our time. Since 1994, to his work as novelist, poet and essayist he has added scriptwriting and film directing. Both literature and cinema appear closely linked in his creative production, so that one feeds the other and vice versa, by means of themes, common characters as well as self-referential and metafictional allusions. In novels, short stories and films, Auster reveals himself, in essence, as a great storyteller. They are stories that overlap at different narrative levels following the technique of the Chinese boxes. His work is also part of a large net of internal and external references in dialogue with each other, posing and pondering on questions that have to do with identity, writing or the intersections between fiction and reality, which appear recurrently both in its literary as in its filmic form.

    Paul Auster es uno de los grandes escritores de nuestro tiempo. Desde 1994, a su labor de novelista, poeta, traductor y ensayista ha añadido la de guionista y director de cine. Ambos medios, literatura y cine, aparecen estrechamente ligados en su producción creativa, de manera que uno nutre al otro y viceversa, a través de temas y personajes comunes, de guiños autorreferenciales y metaficcionales. En novelas, relatos y películas Auster se revela, en esencia, como un gran contador de historias. Se trata de historias múltiples que se superponen a distintos niveles narrativos siguiendo la técnica de cajas chinas. Su obra forma parte de una amplia red de referencias internas y externas que dialogan entre sí, al tiempo que plantean cuestiones en torno a la identidad, la escritura o las intersecciones entre ficción y realidad, que aparecen de manera recurrente tanto en forma literaria como fílmica.

  12. The austerity bargain and the social self: conceptual clarity surrounding health cutbacks.

    Science.gov (United States)

    Buchanan, David A

    2013-01-01

    As necessary austerity measures make major inroads into western health services, this paper investigates the philology of austerity and finds that there are two subtly similar yet importantly different derivations from the Latin and the Greek. The Latin austerus is an abstract term meaning dry, harsh, sour; whereas the Greek austeros has a more embodied and literal meaning of making the tongue dry. What seems an initially subtle difference between the metaphorical and the metonymic plays out as involving seriously different outcomes between harsh economic measures and the literal effects on the people suffering under measures that actually make the tongue dry. The paper argues that between the trope and the literal that which Wittgenstein described as 'a language game' ensues wherein the metaphorical through a sleight of grammar is passed off as being real while, the literal effects on real people is downplayed as metaphorical 'collateral damage'. The paper further argues that within this grammar that forces itself upon us, the game of capital is played out through what the author terms an austerity bargain that is levelled by the financial elites: healthy capitalism equals a healthy society. The paper then examines the six elements of the social determinants of health and what actually contributes to a healthy society. Rather than being under an individual threat of exclusion from what Marx termed a superabundance, the paper considers the irreducible differences between the game of capital's individualism, and, the social determinants of health's social inclusion, legitimization and that which Habermas termed public authentication. The paper concludes that not only do necessary austerity measures need to be critiqued but that they radically undermine what determines a healthy society. It follows also that the social determinants of health, radically undermine the bargain inherent for the privileged few within the game of capital. PMID:23279582

  13. Health, economic crisis, and austerity: A comparison of Greece, Finland and Iceland.

    Science.gov (United States)

    Tapia Granados, José A; Rodriguez, Javier M

    2015-07-01

    Reports have attributed a public health tragedy in Greece to the Great Recession and the subsequent application of austerity programs. It is also claimed that the comparison of Greece with Iceland and Finland-where austerity policies were not applied-reveals the harmful effect of austerity on health and that by protecting spending in health and social budgets, governments can offset the harmful effects of economic crises on health. We use data on life expectancy, mortality rates, incidence of infectious diseases, rates of vaccination, self-reported health and other measures to examine the evolution of population health and health services performance in Greece, Finland and Iceland since 1990-2011 or 2012-the most recent years for which data are available. We find that in the three countries most indicators of population health continued improving after the Great Recession started. In terms of population health and performance of the health care system, in the period after 2007 for which data are available, Greece did as good as Iceland and Finland. The evidence does not support the claim that there is a health crisis in Greece. On the basis of the extant evidence, claims of a public health tragedy in Greece seem overly exaggerated. PMID:25979416

  14. The impact of fiscal austerity on suicide: on the empirics of a modern Greek tragedy.

    Science.gov (United States)

    Antonakakis, Nikolaos; Collins, Alan

    2014-07-01

    Suicide rates in Greece (and other European countries) have been on a remarkable upward trend following the global recession of 2008 and the European sovereign debt crisis of 2009. However, recent investigations of the impact on Greek suicide rates from the 2008 financial crisis have restricted themselves to simple descriptive or correlation analyses. Controlling for various socio-economic effects, this study presents a statistically robust model to explain the influence on realised suicidality of the application of fiscal austerity measures and variations in macroeconomic performance over the period 1968-2011. The responsiveness of suicide to levels of fiscal austerity is established as a means of providing policy guidance on the extent of suicide behaviour associated with different fiscal austerity measures. The results suggest (i) significant age and gender specificity in these effects on suicide rates and that (ii) remittances have suicide-reducing effects on the youth and female population. These empirical regularities potentially offer some guidance on the demographic targeting of suicide prevention measures and the case for 'economic' migration. PMID:24788115

  15. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  16. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; Drake, B. G.; Friedensen, V. P.

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

  17. Improving crew support methods in human-machine teams for long-durations missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Cohen, I.; Neerincx, M.A.; Brinkman, W.P.; Diggelen, J.

    2012-01-01

    We evaluated Mission Execution Crew Assistant's (MECA) crew support methods during the MARS-500 experiment (520 days). MARS-500 provided a unique test platform, because of its setting, where a small crew is isolated for a long duration simulating a manned Mars mission. Thus more prolonged or repeate

  18. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    Science.gov (United States)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of

  19. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  20. From Diagnosis to Action: An Automated Failure Advisor for Human Deep Space Missions

    Science.gov (United States)

    Colombano, Silvano; Spirkovska, Lilly; Baskaran, Vijayakumar; Morris, Paul; Mcdermott, William; Ossenfort, John; Bajwa, Anupa

    2015-01-01

    The major goal of current space system development at NASA is to enable human travel to deep space locations such as Mars and asteroids. At that distance, round trip communication with ground operators may take close to an hour, thus it becomes unfeasible to seek ground operator advice for problems that require immediate attention, either for crew safety or for activities that need to be performed at specific times for the attainment of scientific results. To achieve this goal, major reliance will need to be placed on automation systems capable of aiding the crew in detecting and diagnosing failures, assessing consequences of these failures, and providing guidance in repair activities that may be required. We report here on the most current step in the continuing development of such a system, and that is the addition of a Failure Response Advisor. In simple terms, we have a system in place the Advanced Caution and Warning System (ACAWS) to tell us what happened (failure diagnosis) and what happened because that happened (failure effects). The Failure Response Advisor will tell us what to do about it, how long until something must be done and why its important that something be done and will begin to approach the complex reasoning that is generally required for an optimal approach to automated system health management. This advice is based on the criticality and various timing elements, such as durations of activities and of component repairs, failure effects delay, and other factors. The failure advice is provided to operators (crew and mission controllers) together with the diagnostic and effects information. The operators also have the option to drill down for more information about the failure and the reasons for any suggested priorities.

  1. Compact Tissue-equivalent Proportional Counter for Deep Space Human Missions.

    Science.gov (United States)

    Straume, T; Braby, L A; Borak, T B; Lusby, T; Warner, D W; Perez-Nunez, D

    2015-10-01

    Effects on human health from the complex radiation environment in deep space have not been measured and can only be simulated here on Earth using experimental systems and beams of radiations produced by accelerators, usually one beam at a time. This makes it particularly important to develop instruments that can be used on deep-space missions to measure quantities that are known to be relatable to the biological effectiveness of space radiation. Tissue-equivalent proportional counters (TEPCs) are such instruments. Unfortunately, present TEPCs are too large and power intensive to be used beyond low Earth orbit (LEO). Here, the authors describe a prototype of a compact TEPC designed for deep space applications with the capability to detect both ambient galactic cosmic rays and intense solar particle event radiation. The device employs an approach that permits real-time determination of yD (and thus quality factor) using a single detector. This was accomplished by assigning sequential sampling intervals as detectors “1” and “2” and requiring the intervals to be brief compared to the change in dose rate. Tests with g rays show that the prototype instrument maintains linear response over the wide dose-rate range expected in space with an accuracy of better than 5% for dose rates above 3 mGy h(-1). Measurements of yD for 200 MeV n(-1) carbon ions were better than 10%. Limited tests with fission spectrum neutrons show absorbed dose-rate accuracy better than 15%. PMID:26313585

  2. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  3. Identification of new orbits to enable future mission opportunities for the human exploration of the Martian moon Phobos

    Science.gov (United States)

    Zamaro, Mattia; Biggs, James D.

    2016-02-01

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BP-GH). In this paper, a showcase of various classes of non-keplerian orbits is identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk

  4. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  5. The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics

    International Nuclear Information System (INIS)

    The boundary of a boundary principle has been suggested by J. A. Wheeler as a realization of the austerity idea in field theories. This principle is described in three basic field theories---electrodynamics, Yang--Mills theory, and general relativity. It is demonstrated that it supplies a unified geometric interpretation of the source current in each of the three theories in terms of a generalized E. Cartan moment of rotation. The extent to which the boundary of a boundary principle represents the austerity principle is discussed. It is concluded that it works in a way analogous to thermodynamic relations and it is argued that deeper principles might be needed to comprehend the nature of austerity

  6. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    Science.gov (United States)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M. K.; McComas, D. J.; Raouafi, N. E.; Szabo, A.

    2015-11-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASA's Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPP's perihelion from 35 solar radii ( RS) for the first orbit to {<}10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions

  7. Under the mission steps : an 800 year-old human burial from south Tanna, Vanuatu

    International Nuclear Information System (INIS)

    Archaeological excavations at the late-19th century mission house at Kwamera, south Tanna Island, Vanuatu uncovered an inhumation directly underneath the mission step. Radiocarbon dating of the context revealed this burial to date to the 12th or 13th century AD. In addition to providing new information about the deeper past on Tanna, this finding provides some interesting material for thinking about long-term relationships to ancestors and sacred places on the island and how these related to interactions with missionaries in the 1800s.

  8. NASA's Asteroid Redirect Mission: A Robotic Boulder Capture Option for Science, Human Exploration, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar electric propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (4 - 10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (1 - 5 m) via robotic manipulators from the surface of a larger (100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well- characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense. Science: The RBC option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting

  9. Austerity, Competitiveness and Neoliberalism Redux: Ontario Responds to the Great Recession

    Directory of Open Access Journals (Sweden)

    Carlo Fanelli

    2011-09-01

    Full Text Available This article examines the deepening integration of market imperatives throughout the province of Ontario. We do this by, first, examining neoliberalism’s theoretical underpinnings, second, reviewing Ontario’s historical context, and third, scrutinizing the Open Ontario Plan, with a focus on proposed changes to employment standards legislation. We argue that contrary to claims of shared restraint and the pressing need for public austerity, Premier McGuinty’s Liberal’s have re-branded and re-packaged core neoliberal policies in such a manner that costs are socialized and profits privatized, thereby intensifying class polarization along with its racialized and gendered diversities.

  10. Ethics in an age of austerity: Social work and the evolving New Public Management

    OpenAIRE

    Sarah Banks

    2011-01-01

    Ethics in an age of austerity: Social work and the evolving New Public Management This article examines the growth of interest in social work ethics in the context of neo-liberal policies and the growth of managerialism in public service professions. Taking the United Kingdom as an example, while drawing links with trends across Europe and other countries in the global North, the article traces the development of the “New Public Management” (NPM) since the 1990s. NPM is characterized as...

  11. Can public managers make their welfare organizations adapt to the new performance landscape shaped by the current austerity?

    DEFF Research Database (Denmark)

    Aagaard, Peter; Pedersen, John Storm

    2014-01-01

    How has the current austerity changed the public welfare organizations’ performance landscape in modern welfare states? Can public managers make their organizations adapt to the new performance landscape shaped by the austerity? These questions are answered on the basis of the Danish case of the...... provision of the services to the citizens with disabilities and/or social disadvantages. The result has implications, especially for public management in praxis. The case study shows that the managers’ most important managerial tool to make their organizations adapt to the new landscape is the challenging...... and decision-oriented dialogue....

  12. Exploration life support technology challenges for the Crew Exploration Vehicle and future human missions

    Science.gov (United States)

    Jones, Harry W.; Kliss, Mark H.

    2010-04-01

    As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.

  13. Human-in-the-Loop (HITL: Probabilistic Predictive Modeling (PPM of an Aerospace Mission/Situation Outcome

    Directory of Open Access Journals (Sweden)

    Ephraim Suhir

    2014-12-01

    Full Text Available Improvements in safety in the air and in space can be achieved through better ergonomics, better work environment, and other efforts of the traditional avionic psychology that directly affect human behaviors and performance. There is also a significant potential, however, for further reduction in aerospace accidents and casualties through better understanding the role that various uncertainties play in the planner’s and operator’s worlds of work, when never-perfect human, never failure-free navigation equipment and instrumentation, never hundred-percent-predictable response of the object of control (air- or space-craft, and uncertain-and-often-harsh environments contribute jointly to the likelihood of a mishap. By employing quantifiable and measurable ways of assessing the role and significance of such uncertainties and treating a human-in-the-loop (HITL as a part, often the most crucial part, of a complex man–instrumentation–equipment–vehicle–environment system, one could improve dramatically the state-of-the-art in assuring aerospace operational safety. This can be done by predicting, quantifying and, if necessary, even specifying an adequate (low enough probability of a possible accident. Nothing and nobody is perfect, of course, and the difference between a highly reliable object, product, performance or a mission and an insufficiently reliable one is “merely” in the level of the never-zero probability of failure. Application of the probabilistic predictive modeling (PPM concept provides a natural and an effective means for reduction of vehicular casualties. When success and safety are imperative, ability to predict and quantify the outcome of an HITL related mission or a situation is a must. This is not the current practice though. The application of the PPM concept can improve therefore the state-of-the-art in understanding and accounting for the human performance in a vehicular mission or a situation. While the traditional

  14. Ultrasound in the austere environment: a review of the history, indications, and specifications.

    Science.gov (United States)

    Russell, Travis C; Crawford, Paul F

    2013-01-01

    In the last 10 years, the use of ultrasound has expanded because of its portability, safety, real-time image display, and rapid data collection. Simultaneously, more people are going into the backcountry for enjoyment and employment. Increased deployment for the military and demand for remote medicine services have led to innovative use and study of ultrasound in extreme and austere environments. Ultrasound is effective to rapidly assess patients during triage and evacuation decision making. It is clinically useful for assessment of pneumothorax, pericardial effusion, blunt abdominal trauma, musculoskeletal trauma, high-altitude pulmonary edema, ocular injury, and obstetrics, whereas acute mountain sickness and stroke are perhaps still best evaluated on clinical grounds. Ultrasound performs well in the diverse environments of space, swamp, jungle, mountain, and desert. Although some training is necessary to capture and interpret images, real-time evaluation with video streaming is expected to get easier and cheaper as global communications improve. Although ultrasound is not useful in every situation, it can be a worthwhile tool in the austere or deployed environment. PMID:23356114

  15. Ares V Utilization in Support of a Human Mission to Mars

    Science.gov (United States)

    Holladay, J. B.; Jaap, J. P.; Pinson, R. M.; Creech, S. D.; Ryan, R. M.; Monk, T. S.; Baggett. K. E.; Runager, M. D.; Dux, I. J.; Hack, K. J.; Hopkins, J. M.; Brown, C. E.; Manning, T. A.

    2010-01-01

    During the analysis cycles of Phase A-Cycle 3 (PA-C3) and the follow-on 8-wk minicycle of PA-C3', the Ares V team assessed the Ares V PA-C3D configuration to the Mars Design Reference Mission as defined in the Constellation Architecture Requirements Document and further described in Mars Design Reference Architecture 5.0 (DRA 5.0) that was publicly released in July 2009. The ability to support the reference approach for the crewed Mars mission was confirmed through this analysis (7-launch nuclear thermal propulsion (NTP) architecture) and the reference chemical approach as defined in DRA 5.0 (11- or 12-launch chemical propulsion module approach). Additional chemical propulsion options were defined that utilized additional technology investments (primarily in-space cryogenic propellant transfer) that allowed for the same mission to be accomplished with 9 launches rather than the 11 or 12, as documented in DRA 5.0 and associated follow-on activities. This nine-launch chemical propulsion approach showed a unique ability to decouple the architecture from major technological developments (such as zero-boiloff technology or the development of NTP stages) and allowed for a relaxing of the infrastructure investments required to support a very rapid launch rate (30-day launch spacing as documented in DRA 5.0). As an enhancing capability, it also shows promise in allowing for and incorporating the development of a commercial market for cryogenic propellant delivery on orbit, without placing such development on the critical path of beyond low-Earth orbit exploration. The ability of Ares V to support all of the aforementioned options and discussion of key forward work that is required to fully understand the complexities and challenges presented by the Mars mission is further documented herein.

  16. How safe is safe enough? Radiation risk for a human mission to Mars.

    Directory of Open Access Journals (Sweden)

    Francis A Cucinotta

    Full Text Available Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR--made up of high-energy protons and high charge (Z and energy (E (HZE nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID at the upper 95% confidence interval (CI of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.

  17. Safety Characteristics in System Application of Software for Human Rated Exploration Missions for the 8th IAASS Conference

    Science.gov (United States)

    Mango, Edward J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development. The GFAS system integrates the flight software packages of the Orion and SLS with the ground systems and launch countdown sequencers through the 'agile' software development process. A unique approach is needed to develop the GFAS project capabilities within this agile process. NASA has defined the software development process through a set of standards. The standards were written during the infancy of the so-called industry 'agile development' movement and must be tailored to adapt to the highly integrated environment of human exploration systems. Safety of the space systems and the eventual crew on board is paramount during the preparation of the exploration flight systems. A series of software safety characteristics have been incorporated into the development and certification efforts to ensure readiness for use and compatibility with the space systems. Three underlining factors in the exploration architecture require the GFAS system to be unique in its approach to ensure safety for the space systems, both the flight as well as the ground systems. The first are the missions themselves, which are exploration in nature, and go far beyond the comfort of low Earth orbit operations. The second is the current exploration

  18. Local government austerity policies in the Netherlands : the effectiveness of social dialogue in preserving public service employment

    NARCIS (Netherlands)

    Weske, Ulrike; Leisink, Peter; Knies, Eva

    2014-01-01

    The financial and economic crisis has led to fiscal austerity measures and reform policies in the Netherlands that have had a direct impact on municipalities. Decreased municipal budgets have forced municipalities to cut public services and lower the employment conditions of municipal employees. It

  19. Innovations in Times of Austerity: Thinking outside the Box to Maintain Programs during Periods of Financial Exigency

    Science.gov (United States)

    Dryden, Joe

    2013-01-01

    This case represents a multitude of leadership dilemmas created by financial exigencies and the difficult decisions that must be made during times of economic austerity. Under the best of circumstances, deciding between programmatic elimination and/or employee termination is agonizing, onerous, and filled with political and social ramifications.…

  20. Human factor observations of the Biosphere 2, 1991-1993, closed life support human experiment and its application to a long-term manned mission to Mars.

    Science.gov (United States)

    Alling, Abigail; Nelson, Mark; Silverstone, Sally; Van Thillo, Mark

    2002-01-01

    Human factors are a key component to the success of long-term space missions such as those necessitated by the human exploration of Mars and the development of bioregenerative and eventually self-sufficient life support systems for permanent space outposts. Observations by participants living inside the 1991-1993 Biosphere 2 closed system experiment provide the following insights. (1) Crew members should be involved in the design and construction of their life support systems to gain maximum knowledge about the systems. (2) Individuals living in closed life support systems should expect a process of physiological and psychological adaptation to their new environment. (3) Far from simply being a workplace, the participants in such extended missions will discover the importance of creating a cohesive and satisfying life style. (4) The crew will be dependent on the use of varied crops to create satisfying cuisine, a social life with sufficient outlets of expression such as art and music, and to have down-time from purely task-driven work. (5) The success of the Biosphere 2 first 2-year mission suggests that crews with high cultural diversity, high commitment to task, and work democracy principles for individual responsibility may increase the probability of both mission success and personal satisfaction. (6) Remaining challenges are many, including the need for far more comprehensive real-time modeling and information systems (a "cybersphere") operating to provide real-time data necessary for decision-making in a complex life support system. (7) And, the aim will be to create a noosphere, or sphere of intelligence, where the people and their living systems are in sustainable balance. PMID:11987306

  1. Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 Space mission.

    Science.gov (United States)

    Pietsch, Jessica; Ma, Xiao; Wehland, Markus; Aleshcheva, Ganna; Schwarzwälder, Achim; Segerer, Jürgen; Birlem, Maria; Horn, Astrid; Bauer, Johann; Infanger, Manfred; Grimm, Daniela

    2013-10-01

    Human follicular thyroid cancer cells were cultured in Space to investigate the impact of microgravity on 3D growth. For this purpose, we designed and constructed a cell container that can endure enhanced physical forces, is connected to fluid storage chambers, performs media changes and cell harvesting automatically and supports cell viability. The container consists of a cell suspension chamber, two reserve tanks for medium and fixative and a pump for fluid exchange. The selected materials proved durable, non-cytotoxic, and did not inactivate RNAlater. This container was operated automatically during the unmanned Shenzhou-8 Space mission. FTC-133 human follicular thyroid cancer cells were cultured in Space for 10 days. Culture medium was exchanged after 5 days in Space and the cells were fixed after 10 days. The experiment revealed a scaffold-free formation of extraordinary large three-dimensional aggregates by thyroid cancer cells with altered expression of EGF and CTGF genes under real microgravity. PMID:23866977

  2. Has Austerity Succeeded in Ameliorating the Economic Climate? The Cases of Ireland, Cyprus and Greece

    Directory of Open Access Journals (Sweden)

    Marcell Zoltán Végh

    2014-06-01

    Full Text Available The Great Recession that began in 2008 hit the economy of the European Union extremely hard. The year 2009 brought decline to the majority of the member states, inducing a desperate crisis management process. The few common EU-level crisis management measures that were implemented have brought about little success due to the modest volume of the common budget and the inertia of decision making attempting to harmonize often contradicting interests. As there was no credible crisis management at the EU level, most member states introduced their own set of measures. The efficiency of these was influenced by the economic performance of primary trading and investing partners, and by the volatility of the bond markets. In terms of economic performance, member states of the EU followed various paths and experienced various levels of recession in 2009, then various levels of upswing in 2010–2011, only to be hit by a second wave of recession of various extents after 2011. Although many member states took their own measures, general tendencies in crisis management can be defined. At first, the restoration of the functioning of the markets was targeted by generating additional demand through fiscal stimulus, but was then gradually replaced by imperative fiscal consolidation and austerity measures. The effectiveness of austerity programs is questionable: while the bond markets’ volatility called for the correction of fiscal balances, tax hikes and governmental spending cuts tendentiously pushed back economic performance and postponed recovery, making economic growth possible only by increasing public debts. In this study, I present arguments in favour of the view that, in the current economic climate of the EU, prosperity could not be restored exclusively by austerity. Accordingly, I present case studies of the three member states with the largest increases in public debts: Ireland, Cyprus and Greece. My aim is to assess the efficiency of these member

  3. Consumers, Creators or Commentators? Problems of Audience and Mission in the Digital Humanities

    Science.gov (United States)

    Prescott, Andrew

    2012-01-01

    A 2008 article by Patrick Juola describes the digital humanities community as marginal to mainstream academic discussions and suggests that its work has little scholarly impact. At the same time, mainstream humanities scholars are using digital resources more and more, but these resources are chiefly produced by libraries and commercial…

  4. Subterranean Currents: Research and the Radical Imagination in the Age of Austerity

    Directory of Open Access Journals (Sweden)

    Alex Khasnabish

    2014-04-01

    Full Text Available Against a backdrop of austerity, securitization, and the rampant enclosure of public spaces and democratic processes including the university and scholarship, this article critically explores what prefigurative engaged research – research capable of not simply documenting what is but contributing to struggles for social justice and social change – might look like, what it can contribute, and what its limitations are. Beyond familiar calls for a “public” or “applied” social science and drawing on a two-year-long project focused on radical social movements and the radical imagination in Halifax, Nova Scotia, Canada, this article explores what politically-engaged social science research might offer to social justice struggles aiming to construct a more just, democratic, dignified, liberated, and peaceful world.

  5. SOCIAL ENTREPRENEURSHIP IN TIMES OF ECONOMIC AUSTERITY: A SPARKLE OF LIGHT FOR THE ECONOMIES IN CRISIS?

    Directory of Open Access Journals (Sweden)

    Aikaterini SARRI

    2012-09-01

    Full Text Available Even though Social entrepreneurship as a concept dates back to the second half of the 18th, it is still poorly defined. It has been defined via the use of terms such as social enterprise, social innovation, nonprofit ventures and social responsibility. Its boundaries to the other fields are unclear and its practice is in low level. However, social entrepreneurship is an emerging area of entrepreneurship, and literature on this field, has grown the last two decades. It attracts attention mainly to its high importance for the economies in terms of social and economic value creation. This paper studies social entrepreneurship and its role in economies of austerity, with emphasis placed on European countries and it provides a mapping of the situation. “When we will stop thinking the poor people as victims and instead recognize them as creative and future entrepreneurs the sparkle of light will be the sun”.

  6. A Resource-Rich, Scientifically Compelling Exploration Zone for Human Missions at Deuteronilus Mensae, Mars

    Science.gov (United States)

    Plaut, J. J.

    2015-10-01

    The Deuteronilus Mensae region of Mars is promising as a potential landing site for human exploration because it contains vast, readily accessible deposits of water ice in a setting of key scientific importance.

  7. Redistribution, recognition, power: Austerity or an alternative Kaleckian feminist macroeconomic model in the EU?

    Directory of Open Access Journals (Sweden)

    Gabriella Paulì

    2014-07-01

    Full Text Available The aim of this paper is twofold. The first is to highlight the regressive impacts on gender equality in Europe of the EU’s macroeconomic model and governance, despite the claims in official EU do­cuments that the intention is to close the gender gap, with reference to research into gender and gender-blind austerity policies and feminist commentary on the social content of macroeconomic policies. The second aim is to assess these processes from both a political-philosophical and an economic perspective. From a political-philosophical perspective this paper aims to update Nancy Fraser’s focus on “redistribu­tion/recognition”, in order to show how the austerity paradigm – by increasing economic disadvantages for women – prevents women’s equal participation in the public sphere and fosters political practices of “institu­tio­na­lized misrecognition”. The review of Fraser’s analytical perspective serves to highlight the com­­plici­ty between economic injustice and maldistribution (exploitation, female economic marginaliza­tion, insecurity, female unemployment and cultural injustice and misrecognition, and to focus attention on the fundamental need for gender-aware distributional policies. In a Feminist-Post-Keynesian/Kaleckian eco­no­­mic paradigm, new research emphasizes the economic relevance of gender-aware redistribution, star­ting from a range of hypotheses. At the same time, in this theoretical perspective, the inherently confron­tational nature of gender-aware distribution policies is shown. The interdisciplinary approach propo­sed in this paper provides an analytical framework for debating women’s political claims in Europe

  8. Inequality and Austerity after the Global Financial Crisis: Law, Gender and Sexuality

    Directory of Open Access Journals (Sweden)

    Nan Seuffert

    2016-03-01

    Full Text Available This special issue of the Onati Socio-legal Series analyses legal and economic inequality, and policies of austerity after the global financial crisis (GFC at the intersections of gender and sexuality. Each of the articles included in this issue speak to one or more of these themes. Collectively, the articles place questions of gender and sexuality at the centre of an analysis of reforms motivated by ‘economic rationalisation’ and austerity measures. They highlight the political economy of policies that differentially impact women, indigenous populations and socially or economically marginalised groups. Este número especial de la Oñati Socio-legal Series analiza la desigualdad legal y económica, y las políticas de austeridad después de la crisis financiera global (CFG en las intersecciones entre género y sexualidad. Cada uno de los artículos de este número tratan sobre uno o más de estos temas. De forma colectiva, los artículos plantean cuestiones sobre género y sexualidad en el centro de un análisis de las reformas motivadas por la “racionalización económica” y las medidas de austeridad. Destacan la política economía de las políticas que impactan de forma diferente en mujeres, población indígena y grupos marginados social o económicamente. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=2736309

  9. Beppe Grillo’s success is not a rejection of austerity, but a protest against the corruption and inefficiency of the Italian political system

    OpenAIRE

    Simoni, Marco

    2013-01-01

    The success of Beppe Grillo’s ‘5 Stars Movement’ in Italy’s elections on the 24-25 February has been regarded by some commentators as a rejection of austerity by the Italian electorate. Marco Simoni argues that rather than rejecting austerity, Italian voters were primarily protesting against decades of economic stagnation, and a political system which is prone to corruption and clientelism. He concludes that unless mainstream politics can reorganise around a credible reform agenda, populist m...

  10. Martian and Asteroid Dusts as Toxicological Risks for Human Exploration Missions

    Science.gov (United States)

    James, John T.

    2012-01-01

    As the lunar dust toxicity project winds down, our attention is drawn to the potential toxicity of dust present at the surface of more distant celestial objects. Lunar dust has proven to be surprisingly toxic to the respiratory systems of test animals, so one might expect dust from other celestial bodies to hold toxicological surprises for us. At this point all one can do is consider what should be known about these dusts to characterize their toxicity, and then ask to what extent that information is known. In an ideal world it might be possible to suggest an exposure standard based on the known properties of a celestial dust without direct testing of the dust in laboratory animals. Factors known to affect the toxicity of mineral dusts under some conditions include the following: particle size distribution, particle shape/porosity, mineralogical properties (crystalline vs. amorphous), chemical properties and composition, and surface reactivity. Data from a recent Japanese mission to the S-type asteroid Itokawa revealed some surprises about the dust found there, given that there is only a very week gravitational field to hold the dust on the surface. On Mars the reddish-brown dust is widely distributed by global dust storms and by local clusters of dust devils. Past surface probes have revealed some of the properties of dust found there. Contemporary data from Curiosity and other surface probes will be weighed against the data needed to set a defensible safe exposure limit. Gaps will emerge.

  11. Developments in passive shielding for human explorations missions: the ROSSINI study

    Science.gov (United States)

    Giraudo, Martina; Lobascio, Cesare

    The aim of the “ROSSINI” (RadiatiOn Shielding by ISRU and INnovative materIals for EVA, vehicles and habitats) project, funded by the European Space Agency, is to investigate shielding materials to be used in deep space and planetary exploration. Simulants of materials that can be found on Moon and Mars planetary surfaces (e.g., regolith) and innovative materials rich in Hydrogen have been selected and tested with high energy (2.5 GeV) protons and 1 GeV/n Fe-56 ions (taken as representative of the whole GCR spectrum). Dose reduction, Bragg peak and neutron yield have been calculated on a subset of the irradiated targets. Geant4 Monte Carlo simulations through Geant4 Radiation Analysis for Space (GRAS) tools have been performed and compared to the obtained experimental data, to benchmark the computer codes. A simplified inflatable habitat for exploration missions has been defined choosing the innovative materials evaluated in the ROSSINI study. Monte Carlo simulations are ongoing (the project is to be concluded in early spring 2014) with the codes investigated, to compare the dose reduction resulting inside the simplified habitat with different shielding solutions.

  12. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    Science.gov (United States)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  13. Assessing Gale Crater as a Landing Site for the First Human Mission to Mars

    Science.gov (United States)

    Calef, F. J.; Archer, D.; Clark, B.; Day, M.; Goertz, W.; Martin-Torres, J.; Zorzano Mier, M.

    2015-10-01

    We've assessed Gale crater's potential as the first human landing site. Besides being a well-characterized and benign landing site for EDL, it contains many science ROIs and identifiable ISRU ROIs meeting most if not all requirements proposed.

  14. Effects of Space Missions on the Human Immune System: A Meta-Analysis

    Science.gov (United States)

    Greenleaf, J. E.; Barger, L. K.; Baldini, F.; Huff, D.

    1995-01-01

    Future spaceflight will require travelers to spend ever-increasing periods of time in microgravity. Optimal functioning of the immune system is of paramount importance for the health and performance of these travelers. A meta-analysis statistical procedure was used to analyze immune system data from crew members in United States and Soviet space missions from 8.5 to 140 days duration between 1968 and 1985. Ten immunological parameters (immunoglobulins A, G, M, D, white blood cell (WBC) count, number of lymphocytes, percent total lymphocytes, percent B lymphocytes, percent T lymphocytes, and lymphocyte reactivity to mitogen) were investigated using multifactorial, repeated measure analysis of variance. With the preflight level set at 100, WBC count increased to 154 +/- 14% (mean +/- SE; p less than or equal to 0.05) immediately after flight; there was a decrease in lymphocyte count (83 +/- 4%; p less than or equal to 0.05) and percent of total lymphocytes (69 +/- 1%; p less than or equal to 0.05) immediately after flight, with reduction in RNA synthesis to phytohemagglutinin (PHA) to 51 +/- 21% (p less than or equal to 0.05) and DNA synthesis to PHA to 61 +/- 8% (p less than or equal to 0.05) at the first postflight measurement. Thus, some cellular immunological functions are decreased significantly following spaceflight. More data are needed on astronauts' age, aerobic power output, and parameters of their exercise training program to determine if these immune system responses are due solely to microgravity exposure or perhaps to some other aspect of spaceflight.

  15. Issues of exploration: human health and wellbeing during a mission to Mars

    Science.gov (United States)

    White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.

    2003-01-01

    Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  16. A Balancing Act at Times of Austerity: Matching the Supply and Demand for Skills in the Greek Labour Market

    OpenAIRE

    Pouliakas, Konstantinos

    2014-01-01

    This paper provides an evidence-based assessment of the current situation prevailing in the Greek market for skills and jobs. The synthesis of available skills intelligence for Greece, the country most severely affected by the global economic crisis of 2008, is crucial as it is currently faced with tough decisions regarding the allocation of limited resources in the face of economic austerity. The paper engages in a comparative overview of Greece's performance on flagship Europe 2020 indicato...

  17. Economic nationalism and the cultural politics of consumption under austerity: the rise of ethnocentric consumption in Greece

    OpenAIRE

    Lekakis, Eleftheria J

    2015-01-01

    By nuancing the politics of consumption in the context of austerity, this article highlights the rise of economic nationalism and the reconfiguration of consumer cultures at the aftermath of the global financial crisis. As it argues, in the context of Greece, three types of consumer culture have manifested; these are evoking consumption as resilience, resistance or reinforcement. This work focuses on the latter through the phenomenon of ethnocentric consumption, which is part and parcel of ec...

  18. The evolution of bargaining under austerity: Political change in contemporary French and German labor-market reform

    OpenAIRE

    Vail, Mark I.

    2007-01-01

    This paper examines the relationship among economic context, political institutions, and the political dynamics of adjustment within national models of capitalism through an analysis of recent labor-market reform in France and Germany. It argues that a climate of economic austerity since the 1970s, combined with the political legacies of earlier policy-making models and their failure to confront the challenges of slow economic growth and high rates of unemployment, have led to qualitative ...

  19. Austerity, Cyclical Adjustment and How to use the Remaining Leeway for Expansionary Fiscal Policies Within the Current EU Fiscal Framework

    OpenAIRE

    Truger, Achim; Nagel, Michael

    2016-01-01

    Abstract. Fiscal policy in the Euro area has been dominated by austerity measures implemented under the institutional setting of the 'reformed' stability and growth pact, and the even stricter 'fiscal compact' for some years. Since mid-2014 calls for a more expansionary fiscal policy to overcome the economic crisis have become more frequent.  The EU-Commission in this spirit has launched the Juncker-Plan to stimulate (public) investment and is using a less strict interpretation of the Stabili...

  20. Effects of the financial crisis and Troika austerity measures on health and health care access in Portugal.

    Science.gov (United States)

    Legido-Quigley, Helena; Karanikolos, Marina; Hernandez-Plaza, Sonia; de Freitas, Cláudia; Bernardo, Luís; Padilla, Beatriz; Sá Machado, Rita; Diaz-Ordaz, Karla; Stuckler, David; McKee, Martin

    2016-07-01

    Although Portugal has been deeply affected by the global financial crisis, the impact of the recession and subsequent austerity on health and to health care has attracted relatively little attention. We used several sources of data including the European Union Statistics for Income and Living Conditions (EU-SILC) which tracks unmet medical need during the recession and before and after the Troika's austerity package. Our results show that the odds of respondents reporting having an unmet medical need more than doubled between 2010 and 2012 (OR=2.41, 95% CI 2.01-2.89), with the greatest impact on those in employment, followed by the unemployed, retired, and other economically inactive groups. The reasons for not seeking care involved a combination of factors, with a 68% higher odds of citing financial barriers (OR=1.68, 95% CI 1.32-2.12), more than twice the odds of citing waiting times and inability to take time off work or family responsibilities (OR 2.18, 95% CI 1.20-3.98), and a large increase of reporting delaying care in the hope that the problem would resolve on its own (OR=13.98, 95% CI 6.51-30.02). Individual-level studies from Portugal also suggest that co-payments at primary and hospital level are having a negative effect on the most vulnerable living in disadvantaged areas, and that health care professionals have concerns about the impact of recession and subsequent austerity measures on the quality of care provided. The Portuguese government no longer needs external assistance, but these findings suggest that measures are now needed to mitigate the damage incurred by the crisis and austerity. PMID:27263063

  1. A mission of climatological and human biometeorological studies in high mountain: Jungfraujoch, Switzerland

    Science.gov (United States)

    Escourrou, Pierre

    1990-09-01

    Eight days of September 1985 were spent in a Swiss high-altitude meteorological station. The main facts apparent in this study at the end of summer are a great cold, with a long duration of below zero; sometimes, a severe dryness, decreasing to 1% of relstive humidity but also nearing 99%; a very high wind, blowing to 17 m/s at the maximum; and a considerable variability of these parameters in a very short time. A comparison is made with two nearby, lower altitude stations. The consequences for human confort are also considered.

  2. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  3. Evaluation of Lunar Dark Mantle Deposits as Key to Future Human Missions

    Science.gov (United States)

    Coombs, Cassandra

    1997-01-01

    I proposed to continue detailed mapping, analysis and assessment of the lunar pyroclastic dark mantle deposits in support of the Human Exploration and Development of Space (HEDS) initiative. Specifically: (1) I continued gathering data via the Internet and mailable media, and a variety of other digital lunar images including; high resolution digital images of the new Apollo masters from JSC, images from Clementine and Galileo, and recent telescopic images from Hawaii; (2) continued analyses on these images using sophisticated hardware and software at JSC and the College of Charleston to determine and map composition using returned sample data for calibration; (3) worked closely with Dr. David McKay and others at JSC to relate sample data to image data using laboratory spectra from JSC and Brown University; (4) mapped the extent, thickness, and composition of important dark mantle deposits in selected study areas; and (5) began composing a geographically referenced database of lunar pyroclastic materials in the Apollo 17 area. The results have been used to identify and evaluate several candidate landing sites in dark mantle terrains. Additional work spawned from this effort includes the development of an educational CD-Rom on exploring the Moon: Contact Light. Throughout the whole process I have been in contact with the JSC HEDS personnel.

  4. Clinical Holistic Medicine: Induction of Spontaneous Remission of Cancer by Recovery of the Human Character and the Purpose of Life (the Life Mission)

    OpenAIRE

    Søren Ventegodt; Mohammed Morad; Eytan Hyam; Joav Merrick

    2004-01-01

    The recovery of the human character and purpose of life with consciousness-based medicine seems to be able to induce spontaneous remissions in several diseases. On two different occasions, we observed breast tumors reduced to less than half their original diameters (clinically judged) during a holistic session, when working with the patients in accordance with the holistic process theory of healing, the life mission theory, and the theory of human character. One tumor was histologically diagn...

  5. German and English corporate mission statements as hybrid internal/external communication: The expression of competence and Human Resources competencies

    OpenAIRE

    Verplaetse, Heidi; Meex, Birgitta

    2010-01-01

    German and English corporate mission statements as hybrid internal/external communication: the expression of competence and HR competencies Heidi Verplaetse and Birgitta Meex – Lessius University College Many different participants are involved in the text type of mission statements, both as referred parties as well as addressees (cf. Stallworth Williams 2008). In these terms the question concerning intended readership arises: are mission statement texts to be interpreted as externa...

  6. Autonomous Mission Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future human spaceflight missions will occur with crews and spacecraft at large distances, with long communication delays, to the Earth. The one-way light-time...

  7. Précarité alimentaire, austérité / Food insecurity and austerity

    Directory of Open Access Journals (Sweden)

    Catherina Perianu

    2009-04-01

    Full Text Available Cet article vise à examiner les pratiques alimentaires quotidiennes dans le contexte des contraintes normatives exercées par la politique d’Etat dans les années quatre-vingt en Roumanie. A partir d’une démarche basée sur l’analyse micro anthropologique (observation des pratiques quotidiennes des habitants, entretiens, recueil de témoignages accrédités du point de vue scientifique sur le ravitaillement pendant la période historique en discussion, nous nous proposons d’examiner la manière dont l’accès aux aliments a structuré l’expérience sociale et nutritionnelle de l’individu, dans le cas de la société roumaine pendant sa dernière décennie communiste.This paper explores everyday food practices in the context of austerity measures, through normative constraints imposed by the Romanian government in the 1980s, as applied by State policies. Based on a micro-anthropological approach (observation of everyday food practices, focused interviews and accounts concerning the historical period above-mentioned, this work proposes to examine how food accessibility structured the social and nutritional experience of individuals, in the case of the Romanian society during the last decade of the Romanian Communist regime.

  8. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  9. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense. PMID:10983153

  10. The Social Tenant, the Law and the UK’s Politics of Austerity

    Directory of Open Access Journals (Sweden)

    Helen P Carr

    2015-03-01

    Full Text Available This paper considers current cuts to social housing provision in the UK made in the name of austerity. It focuses particularly on the ‘bedroom tax’ —the cut to housing benefit for working-age social housing tenants whose property is deemed to provide more bedrooms than they need. It begins by explaining the long-standing political project of social housing in the UK. This background is important to explain the emergence of a discursively ghettoized population within social housing. We then turn to the ‘bedroom tax’ itself. We consider the two quite separate rationales underpinning its introduction. One rationale —fairness— is the focus of the politicians; the other —under-occupation— provides the focus for policy analysts. Both offer different versions of truth about the social in social housing and both are unconvincing. For us, this is significant because the politics of austerity require the support of public opinion. We then consider some strategies of resistance to the ‘bedroom tax’ which harness the disruptive potential of fairness before concluding that the bedroom tax requires relatively little unpacking to reveal it as an ideological device which operates to increase inequality whilst deploying a rhetoric of fairness. Este artículo analiza los recortes en las prestaciones de viviendas sociales que se realizan actualmente en el Reino Unido en nombre de la austeridad. Se centra particularmente en el 'impuesto dormitorio' -el recorte en el subsidio de vivienda para inquilinos en edad de trabajar, cuya vivienda se considera que tiene más dormitorios de los que necesitan. Comienza explicando el proyecto político de viviendas sociales, de larga tradición en el Reino Unido. Estos antecedentes son importantes para explicar el surgimiento de guetos en las viviendas sociales. A continuación se centra en el "impuesto dormitorio” en sí mismo. Se analizan los dos diferentes motivos que sustentan su promulgación. Una es

  11. Capitalism, the state and health care in the age of austerity: a Marxist analysis.

    Science.gov (United States)

    Porter, Sam

    2013-01-01

    The capacity to provide satisfactory nursing care is being increasingly compromised by current trajectories of healthcare funding and governance. The purpose of this paper is to examine how well Marxist theories of the state and its relationship with capital can explain these trajectories in this period of ever-increasing austerity. Following a brief history of the current crisis, it examines empirically the effects of the crisis, and of the current trajectory of capitalism in general, upon the funding and organization of the UK and US healthcare systems. The deleterious effect of growing income inequalities to the health of the population is also addressed. Marx's writings on the state and its relation to the capitalist class were fragmentary and historically and geographically specific. From them, we can extract three theoretical variants: the instrumentalist theory of the state, where the state has no autonomy from capital; the abdication theory, whereby capital abstains from direct political power and relies on the state to serve its interests; and the class-balance theory, whereby the struggle between two opposed classes allows the state to assert itself. Discussion of modern Marxist interpretations includes Poulantzas's abdication theory and Miliband's instrumentalist theory. It is concluded that, despite the pluralism of electoral democracies, the bourgeoisie do have an overweening influence upon the state. The bourgeoisie's ownership of the means of production provides the foundation for its influence because the state is obliged to rely on it to manage the supply of goods and services and the creation of wealth. That power is further reinforced by the infiltration of the bourgeoisie into the organs of state. The level of influence has accelerated rapidly over recent decades. One of the consequences of this has been that healthcare systems have become rich pickings for the evermore confident bourgeoisie. PMID:23279579

  12. Polar Engineering and Research to Address Operational Challenges in Austere Environments

    Science.gov (United States)

    Mercer, J. L.; Richter-Menge, J.; Weale, J. C.; Lever, J. H.; Knuth, M. A.; Shoop, S. A.; Haehnel, R.; Arcone, S. A.; Bjella, K.; Finnegan, D. C.; Courville, Z.; Tracy, B. T.

    2009-12-01

    Logistics constraints and operational challenges in the austere environs of the polar regions present unique technological and engineering problems. Working closely with universities, government agencies and industry, the U.S. Army Corps of Engineers Cold Regions Research and Engineering Lab (CRREL) routinely conducts scientific research and engineering in the Arctic, sub-Arctic and Antarctic covering a wide range of topics and applications. Current areas of focus include: improved mobility techniques for overland traverses; robotic vehicles for traversing, sampling and data collection; snow road and transportation characterization; integrated operational systems including airfield consolidation proof-of-concept studies; infrastructure technology such as firn air cooling, building design, snow foundations and sewage handling; remote/renewable autonomous power solutions for data collection; subsurface radar for crevasse detection and cryosphere characterization; ground-based lidar topographic scanning and near-real-time climate/environmental monitoring linked to AIS infrastructure. While these research and engineering efforts provide solutions and improved technology for specific problems, the impacts are many and wide-reaching and the results are often applicable to other challenging environments. Here, an overview of current research foci and projects is presented along with in-the-field applications, effects and future implications. The results and solutions of these efforts typically lead to technological improvements in operations and logistics which are cost-beneficial, thus freeing up funding dollars for fundamental scientific research. The links between basic research and applied solutions delivering far-reaching impacts (both large- and small-scale) on society, the environment, industry and scientific research are also demonstrated.

  13. El reto de Sísifo o cómo está hecha la Trilogía de Nueva York de Paul Auster

    Directory of Open Access Journals (Sweden)

    Pau Sanmartín Ortí

    2007-02-01

    Full Text Available Ecrire le présent représente un défi pour le genre narratif qui, par définition, s’occupe des faits du passé. Or, le roman contemporain s’est proposé de surmonter cette difficulté par plusieurs voies. Dans sa Trilogie de New York, Paul Auster s’accorde trois opportunités de réussite, trois romans ou un seul récit écrit trois fois, qui reste inachevé. À la place d’une histoire close, Auster nous propose un roman qui se réécrit et se déplace constamment, prolongeant ainsi l’expérience présente et durative de sa lecture.Writing about the present can be a challenge for the narrative genre which, by definition, deals with facts that are in the past. Yet the contemporary novel offers several ways to overcome this difficulty. Paul Auster adopts three strategies in his Trilogy of New York, three novels or just one story written three times, which remains unfinished. Instead of a closed story, Auster proposes a novel which rewrites and shifts itself constantly, turning reading into a long-lasting experience.Escribir el presente plantea un reto para un género como la narrativa que, por definición, se ocupa de hechos del pasado. La novela contemporánea se ha propuesto, sin embargo, salvar esta dificultad por varios caminos. Paul Auster se concede tres intentos para lograrlo en su Trilogía de Nueva York, tres novelas o un único relato escrito tres veces, que permanece inconcluso. En lugar de una historia cerrada, Auster nos propone una novela que se rescribe y se desplaza constantemente, prolongando la experiencia presente y durativa de su lectura.

  14. STS-69 Mission Insignia

    Science.gov (United States)

    1995-01-01

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  15. Analyses of robotic traverses and sample sites in the Schrödinger basin for the HERACLES human-assisted sample return mission concept

    Science.gov (United States)

    Steenstra, Edgar S.; Martin, Dayl J. P.; McDonald, Francesca E.; Paisarnsombat, Sarinya; Venturino, Christian; O'Hara, Sean; Calzada-Diaz, Abigail; Bottoms, Shelby; Leader, Mark K.; Klaus, Kurt K.; van Westrenen, Wim; Needham, Debra H.; Kring, David A.

    2016-09-01

    The International Space Exploration Coordination Group (ISECG) developed an integrated Global Exploration Roadmap (GER) that outlines plans for human-assisted sample return from the lunar surface in ∼2024 and for human presence on the lunar surface in ∼2028. Previous studies have identified the Schrödinger basin, situated on the far side of the Moon, as a prime target for lunar science and exploration where a significant number of the scientific concepts reviewed by the National Research Council (NRC, 2007) can be addressed. In this study, two robotic mission traverses within the Schrödinger basin are proposed based on a 3 year mission plan in support of the HERACLES human-assisted sample return mission concept. A comprehensive set of modern remote sensing data (LROC imagery, LOLA topography, M3 and Clementine spectral data) has been integrated to provide high-resolution coverage of the traverses and to facilitate identification of specific sample localities. We also present a preliminary Concept of Operations (ConOps) study based on a set of notional rover capabilities and instrumental payload. An extended robotic mission to the Schrödinger basin will allow for significant sample return opportunities from multiple distinct geologic terrains and will address multiple high-priority NRC (2007) scientific objectives. Both traverses will offer the first opportunity to (i) sample pyroclastic material from the lunar farside, (ii) sample Schrödinger impact melt and test the lunar cataclysm hypothesis, (iii) sample deep crustal lithologies in an uplifted peak ring and test the lunar magma ocean hypothesis and (iv) explore the top of an impact melt sheet, enhancing our ability to interpret Apollo samples. The shorter traverse will provide the first opportunity to sample farside mare deposits, whereas the longer traverse has significant potential to collect SPA impact melt, which can be used to constrain the basin-forming epoch. These robotic missions will revalidate

  16. In-situ resource utilization for the human exploration of Mars : a Bayesian approach to valuation of precursor missions

    Science.gov (United States)

    Smith, Jeffrey H.

    2006-01-01

    The need for sufficient quantities of oxygen, water, and fuel resources to support a crew on the surface of Mars presents a critical logistical issue of whether to transport such resources from Earth or manufacture them on Mars. An approach based on the classical Wildcat Drilling Problem of Bayesian decision theory was applied to the problem of finding water in order to compute the expected value of precursor mission sample information. An implicit (required) probability of finding water on Mars was derived from the value of sample information using the expected mass savings of alternative precursor missions.

  17. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    Science.gov (United States)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  18. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    Science.gov (United States)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    preliminary indications of their potential use in civil engineering activities that involve regolith moving and hauling, while further study is needed to assess traverse-ability challenges. The widespread distribution of sulfates is also of interest as a resource for the use of sulfur as a binding compound in regolith-based concrete for constructions. The terrain depressions caused by the rock fracturing events may challenge surface mobility but also suggest the possibility of using such natural features for additional shielding from space radiation and as emplacement of nuclear surface power reactors for the same reason. The high concentration of hematite (up to 16 percent) in some of the smoother recent terrains of the central part of Aram Chaos [2] is a favorable attribute for metal extraction ISRU to create iron-based feedstock for in-situ fabrication of replacement parts or their repairs. Preliminary data on Aram Chaos indicate that it offers a combination of many critical criteria for human missions to the surface of Mars: equatorial region at low Mars Orbiter Laser Altimeter (MOLA), evidence of hydrated minerals over large areas and at high concentrations tied to historic evidence of liquid water over long periods.

  19. Effects of rectilinear acceleration, caloric and optokinetic stimulation of human subjects in the Spacelab D-1 mission

    Science.gov (United States)

    Wetzig, J.; von Baumgarten, R.

    A set of vestibular experiments was performed during the course of the German Spacelab D-1 mission from 30 October to 6 November 1985 by a consortium of experimenters from various european countries. Similar to the Spacelab SL-1 mission all of the scientific crew members were theoretically and practically trained for the experiments. Baseline measurements for all tests were collected 113, 86, 44, 30 and 18 days prior to the mission and compared with data taken inflight, on the landing day and the consecutive 7 to 14 days. The hardware comprised mainly a motordriven accelerating platform, the SPACE SLED, and the vestibular helmet, a multi-purpose instrument in support of a variety of vestibular experiments including air-calorisation of the ears, optokinetic stimulation pattern presentation and optical and nystagmographic recording of eye movements. Measurements of the threshold for the perception of detection of whole body movement did not reveal any dramatic changes in the 2 measured axes inflight when compared to preflight values. Early postflight values show a significantly elevated threshold for all axes in 3 out of 4 subjects. The caloric nystagmus, already found during the SL-1 mission, was confirmed on all three tested subjects during the D-1 mission. It's amplitude and in some instances it's direction were influenced by horizontal acceleration on the SLED. The amplitude of optokinetic nystagmus increased when subjects were allowed to free-float over that seen when subjects were fixed. Stimulation of the neck receptors by roll movements of the body against the fixated head resulted in illusory object motion to the contralateral side. Torsional movements of the eyes during such neck receptor stimulation was present inflight and postflight, while it had not been observed preflight. Most results point to a reduction of otolithic effects in favour of visual and proprioceptive influences for spatial orientation.

  20. Simulated Mission

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ On June 3,27-year-old Chinese astronaut trainer Wang Yue walked into a mock spaceship at a Moscow research institute with five other foreign space enthusiasts in an unprecedented simulation of a manned mission to Mars.

  1. NEEMO 7 undersea mission

    Science.gov (United States)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  2. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    Science.gov (United States)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket

  3. Peer advocacy in a personalized landscape: The role of peer support in a context of individualized support and austerity.

    Science.gov (United States)

    Power, Andrew; Bartlett, Ruth; Hall, Edward

    2016-06-01

    Whilst personalization offers the promise of more choice and control and wider participation in the community, the reality in the United Kingdom has been hampered by local council cuts and a decline in formal services. This has left many people with intellectual disabilities feeling dislocated from collective forms of support (Needham, 2015). What fills this gap and does peer advocacy have a role to play? Drawing on a co-researched study undertaken with and by persons with intellectual disabilities, we examined what role peer advocacy can play in a context of reduced day services, austerity and individualized support. The findings reveal that peer advocacy can help people reconnect in the face of declining services, problem-solve issues and informally learn knowledge and skills needed to participate in the community. We argue that peer advocacy thus offers a vital role in enabling people to take up many of the opportunities afforded by personalization. PMID:26920751

  4. Trends in mental health inequalities in England during a period of recession, austerity and welfare reform 2004 to 2013.

    Science.gov (United States)

    Barr, Ben; Kinderman, Peter; Whitehead, Margaret

    2015-12-01

    Several indicators of population mental health in the UK have deteriorated since the financial crisis, during a period when a number of welfare reforms and austerity measures have been implemented. We do not know which groups have been most affected by these trends or the extent to which recent economic trends or recent policies have contributed to them. We use data from the Quarterly Labour Force Survey to investigate trends in self reported mental health problems by socioeconomic group and employment status in England between 2004 and 2013. We then use panel regression models to investigate the association between local trends in mental health problems and local trends in unemployment and wages to investigate the extent to which these explain increases in mental health problems during this time. We found that the trend in the prevalence of people reporting mental health problems increased significantly more between 2009 and 2013 compared to the previous trends. This increase was greatest amongst people with low levels of education and inequalities widened. The gap in prevalence between low and high educated groups widened by 1.29 percentage points for women (95% CI: 0.50 to 2.08) and 1.36 percentage points for men (95% CI: 0.31 to 2.42) between 2009 and 2013. Trends in unemployment and wages only partly explained these recent increases in mental health problems. The trend in reported mental health problems across England broadly mirrored the pattern of increases in suicides and antidepressant prescribing. Welfare policies and austerity measures implemented since 2010 may have contributed to recent increases in mental health problems and widening inequalities. This has led to rising numbers of people with low levels of education out of work with mental health problems. These trends are likely to increase social exclusion as well as demand for and reliance on social welfare systems. PMID:26623942

  5. Mission planning for autonomous systems

    Science.gov (United States)

    Pearson, G.

    1987-01-01

    Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.

  6. The Effects of Reducing the Structural Mass of the Transit Habitat on the Cryogenic Propellant Required for a Human Phobos Mission

    Science.gov (United States)

    Zipay, John J.

    2016-01-01

    A technique for rapidly determining the relationship between the pressurized volume, structural mass and the cryogenic propellant required to be delivered to Earth orbit for a Mars Transit Habitat is provided. This technique is based on assumptions for the required delta-V's, the Exploration Upper Stage performance and the historical structural masses for human spacecraft from Mercury Program through the International Space Station. If the Mars Transit Habitat is constructed from aluminum, structural mass estimates based on the habitat pressurized volume are accurate to within 15 percent. Other structural material options for the Mars Transit Habitat are also evaluated. The results show that small, achievable reductions in the structural mass of the Transit Habitat can save tens of thousands of pounds of cryogenic propellant that need to be delivered to Earth orbit for a human Phobos Mission.

  7. The Life Mission Theory VI. A Theory for the Human Character: Healing with Holistic Medicine Through Recovery of Character and Purpose of Life

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2004-01-01

    Full Text Available The human character can be understood as an extension of the life mission or purpose of life, and explained as the primary tool of a person to impact others and express the purpose of life. Repression of the human character makes it impossible for a person to realize his personal mission in life and, therefore, is one of the primary causes of self-repression resulting in poor quality of life, health, and ability. From Hippocrates to Hahnemann, repression of physical, mental, and spiritual character can be seen as the prime cause of disease, while recovery of character has been the primary intention of the treatment. In this paper, human character is explained as an intersubjective aspect of consciousness with the ability to influence the consciousness of another person directly. To understand consciousness, we reintroduce the seven-ray theory of consciousness explaining consciousness in accordance with a fractal ontology with a bifurcation number of seven (the numbers four to ten work almost as well. A case report on a female, aged 35 years, with severe hormonal disturbances, diagnosed with extremely early menopause, is presented and treated according to the theory of holistic existential healing (the holistic process theory of healing. After recovery of her character and purpose of life, her quality of life dramatically improved and hormonal status normalized. We believe that the recovery of human character and purpose of life was the central intention of Hippocrates and thus the original essence of western medicine. Interestingly, there are strong parallels to the peyote medicine of the Native Americans, the African Sangomas, the Australian Aboriginal healers, and the old Nordic medicine. The recovery of human character was also the intention of Hahnemann's homeopathy. We believe that we are at the core of consciousness-based medicine, as recovery of purpose of life and human character has been practiced as medicine in most human cultures

  8. Feasibility Study of Inexpensive Thermal Sensors and Small Uas Deployment for Living Human Detection in Rescue Missions Application Scenarios

    Science.gov (United States)

    Levin, E.; Zarnowski, A.; McCarty, J. L.; Bialas, J.; Banaszek, A.; Banaszek, S.

    2016-06-01

    Significant efforts are invested by rescue agencies worldwide to save human lives during natural and man-made emergency situations including those that happen in wilderness locations. These emergency situations include but not limited to: accidents with alpinists, mountainous skiers, people hiking and lost in remote areas. Sometimes in a rescue operation hundreds of first responders are involved to save a single human life. There are two critical issues where geospatial imaging can be a very useful asset in rescue operations support: 1) human detection and 2) confirming a fact that detected a human being is alive. International group of researchers from the Unites States and Poland collaborated on a pilot research project devoted to identify a feasibility of use for the human detection and alive-human state confirmation small unmanned aerial vehicles (SUAVs) and inexpensive forward looking infrared (FLIR) sensors. Equipment price for both research teams was below 8,000 including 3DR quadrotor UAV and Lepton longwave infrared (LWIR) imager which costs around 250 (for the US team); DJI Inspire 1 UAS with commercial Tamarisc-320 thermal camera (for the Polish team). Specifically both collaborating groups performed independent experiments in the USA and Poland and shared imaging data of on the ground and airborne electro-optical and FLIR sensor imaging collected. In these experiments dead bodies were emulated by use of medical training dummies. Real humans were placed nearby as live human subjects. Electro-optical imagery was used for the research in optimal human detection algorithms. Furthermore, given the fact that a dead human body after several hours has a temperature of the surrounding environment our experiments were challenged by the SUAS data optimization, i.e., distance from SUAV to object so that the FLIR sensor is still capable to distinguish temperature differences between a dummy and a real human. Our experiments indicated feasibility of use SUAVs and

  9. NASA's Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin

    2015-11-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  10. Taking to the Streets in the Shadow of Austerity: A Chronology of the Cycle of Protests In Spain, 2007-2015

    Directory of Open Access Journals (Sweden)

    Martín Portos

    2016-04-01

    Full Text Available Based on theories of cycles of collective behavior, this piece establishes a periodization of the cycle of anti-austerity and anti-political status quo protests in the shadow of the Great Recession that Spain faced between 2007 and 2015. More specifically, it tries to explain why the peak of protests persisted for so long: radicalization was contained, institutionalization postponed and protesters’ divisions avoided. The crucial argument here, an innovation with regards to the classic theories of cycles, is that the high standards of mobilization persisted for a long time as the result of the issue specialization of a more gen-eral anti-austerity fight and the strategic alliances ––with varying degrees of formality–– that new civil organizations forged with the unions. For illustrating the longitudinal dynamics of the cycle of protests, we use original protest event data

  11. BrahmVE platform for design and test of Large Scale Multi-agent Human-centric Mission Concepts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I proposal seeks support to extend the BrahmsVE architecture to support a multi-agent human-centric simulation of a hypothetical future ISS which is...

  12. STS-95 Mission Insignia

    Science.gov (United States)

    1998-01-01

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  13. Autonomous Mission Operations Roadmap

    Science.gov (United States)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  14. Austerity, precariousness, and the health status of Greek labour market participants: Retrospective cohort analysis of employed and unemployed persons in 2008-2009 and 2010-2011.

    Science.gov (United States)

    Barlow, Pepita; Reeves, Aaron; McKee, Martin; Stuckler, David

    2015-11-01

    Greece implemented the deepest austerity package in Europe during the Great Recession (from 2008), including reductions in severance pay and redundancy notice periods. To evaluate whether these measures worsened labour market participants' health status, we compared changes in self-reported health using two cohorts of employed individuals in Greece from the European Union Statistics on Income and Living Conditions. During the initial recession (2008-2009) we found that self-reported health worsened both for those remaining in employment and those who lost jobs. Similarly, during the austerity programme (2010-2011) people who lost jobs experienced greater health declines. Importantly, individuals who remained employed in 2011 were also 25 per cent more likely to experience a health decline than in 2009. These harms appeared concentrated in people aged 45-54 who lost jobs. Our study moves beyond existing findings by demonstrating that austerity both exacerbates the negative health consequences of job loss and worsens the health of those still employed. PMID:26290470

  15. Human performance profiles for planetary analog extra-vehicular activities: 120 day and 30 day analog missions

    Science.gov (United States)

    Swarmer, Tiffany M.

    Understanding performance factors for future planetary missions is critical for ensuring safe and successful planetary extra-vehicular activities (EVAs). The goal of this study was to gain operational knowledge of analog EVAs and develop biometric profiles for specific EVA types. Data was collected for a 120 and 30 day analog planetary exploration simulation focusing on EVA type, pre and post EVA conditions, and performance ratings. From this five main types of EVAs were performed: maintenance, science, survey/exploratory, public relations, and emergency. Each EVA type has unique characteristics and performance ratings showing specific factors in chronological components, environmental conditions, and EVA systems that have an impact on performance. Pre and post biometrics were collected to heart rate, blood pressure, and SpO2. Additional data about issues and specific EVA difficulties provide some EVA trends illustrating how tasks and suit comfort can negatively affect performance ratings. Performance decreases were noted for 1st quarter and 3rd quarter EVAs, survey/exploratory type EVAs, and EVAs requiring increased fine and gross motor function. Stress during the simulation is typically higher before the EVA and decreases once the crew has returned to the habitat. Stress also decreases as the simulation nears the end with the 3rd and 4th quarters showing a decrease in stress levels. Operational components and studies have numerous variable and components that effect overall performance, by increasing the knowledge available we may be able to better prepare future crews for the extreme environments and exploration of another planet.

  16. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project

    Science.gov (United States)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Smith, Myra D.; Rice, Barbara L.; Zwart, Sara R.

    2004-01-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  17. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project.

    Science.gov (United States)

    Smith, Scott M; Davis-Street, Janis E; Fesperman, J Vernell; Smith, Myra D; Rice, Barbara L; Zwart, Sara R

    2004-07-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures. PMID:15226467

  18. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex

    Science.gov (United States)

    Watt, D. G.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.

  19. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. III - Effects of prolonged weightlessness on a human otolith-spinal reflex

    Science.gov (United States)

    Watt, D. G. D.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.

  20. An exploration of the effectiveness of artificial mini-magnetospheres as a potential Solar Storm shelter for long term human space missions

    CERN Document Server

    Bamford, Ruth; Bradford, John; Todd, Tom N; Stafford-Allen, Robin; Alves, E Paulo; Silva, Luis; Collingwood, Cheryl; Crawford, Ian A; Bingham, Robert

    2014-01-01

    In this paper we explore the effectiveness of an artificial mini-magnetosphere as a potential radiation shelter for long term human space missions. Our study includes the differences that the plasma environment makes to the efficiency of the shielding from the high energy charged particle component of solar and cosmic rays, which radically alters the power requirements. The incoming electrostatic charges are shielded by fields supported by the self captured environmental plasma of the solar wind, potentially augmented with additional density. The artificial magnetic field generated on board acts as the means of confinement and control. Evidence for similar behaviour of electromagnetic fields and ionised particles in interplanetary space can be gained by the example of the enhanced shielding effectiveness of naturally occurring "mini-magnetospheres" on the moon. The shielding effect of surface magnetic fields of the order of ~100s nanoTesla is sufficient to provide effective shielding from solar proton bombard...

  1. STS-80 Mission Insignia

    Science.gov (United States)

    1996-01-01

    This mission patch for mission STS-80 depicts the Space Shuttle Columbia and the two research satellites its crew deployed into the blue field of space. The uppermost satellite is the Orbiting Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS), a telescope aimed at unraveling the life cycles of stars and understanding the gases that drift between them. The lower satellite is the Wake Shield Facility (WSF), flying for the third time. It will use the vacuum of space to create advanced semiconductors for the nation's electronics industry. ORFEUS and WSF are joined by the symbol of the Astronaut Corps, representing the human contribution to scientific progress in space. The two bright blue stars represent the mission's Extravehicular Activities (EVA), final rehearsals for techniques and tools to be used in assembly of the International Space Station (ISS). Surrounding Columbia is a constellation of 16 stars, one for each day of the mission, representing the stellar talents of the ground and flight teams that share the goal of expanding knowledge through a permanent human presence in space.

  2. Aram Chaos: A Long Lived Subsurface Aqueous Environment with Strong Water Resource Potential for Human Missions on Mars

    Science.gov (United States)

    Sibille, L.; Mueller, R. P.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-10-01

    Aram Chaos is a 280-km-wide near-circular structure near the outflow channel Ares Vallis and Aureum Chaos. It is a compelling landing site for human explorers featuring multiple science ROIs with a compelling resource ROI with polyhydrated sulfates.

  3. This is the time of Tension: Collective Action and Subjective Power in the Greek Anti-Austerity Movement

    Directory of Open Access Journals (Sweden)

    Atalanti Evripidou

    2013-10-01

    Full Text Available Greece has been one of the countries which most severely suffered the consequences of the global economic crisis during the past two years. It has also been a country with a long tradition of protest. The present paper reports a study in which we examined the ways in which people talk about subjective power and deal with the outcome of collective action in the context of defeat. Subjective power has recently become a prominent field of research and its link to collective action has been studied mainly through the concept of collective efficacy. The current study explored questions based on recent social identity accounts of subjective power in collective action. We examined participants’ experiences of subjective power before and after Mayday 2012, in Greece. Two different collective action events took place: a demonstration against austerity and a demonstration to support steel workers who were on strike. In total, 19 people were interviewed, 9 before the demonstrations and 10 after. Thematic analysis was carried out. Protest participants talked about power in terms of five first-order themes: the necessity of building power, unity, emotional effects, effects of (disorganization, and support as success. The steel workers we spoke to experienced the events more positively than the other interviewees and had different criteria for success. Theories of collective action need to take account of the fact that subjective power has important emotional as well as cognitive dimensions, and that definitions of success depend on definitions of identity.

  4. Workers Versus Austerity: The Origins of Ontario’s 1995-1998 ‘Days of Action’

    Directory of Open Access Journals (Sweden)

    Paul Kellogg

    2011-09-01

    Full Text Available The Great Recession has left in its wake an expected “age of austerity” where deficits accumulated to stave off economic collapse, are being addressed through steep cuts to government spending, with profound implications for social services and public sector employment. In an earlier era of austerity, eleven mass strikes and enormous demonstrations swept through the major cities of Ontario. This Days of Action movement – which has real relevance for the current period – began in the fall of 1995, continued through all of 1996 and 1997, and came to an end in 1998. This article, part of a larger research project, focuses on the movement’s origins. Two themes shape the overall project: the relation between social movements “outside” the workplace and union struggles themselves; and the relationship between the energetic inexperience of newly-active union members, and the pessimistic institutional experience embodied in a quite developed layer of full-time union officials. It is the former – the dialectic between social movements and trade unions in the Days of Action, that will be the focus of this article.

  5. Social Exclusion and Austerity Policies in England: The Role of Sports in a New Area of Social Polarisation and Inequality?

    Directory of Open Access Journals (Sweden)

    Mike Collins

    2015-06-01

    Full Text Available Poverty still counts as the core of social exclusion from sport and many other domains of people’s lives. In the first part of this paper, we shortly describe the recent poverty trends in England, and identify groups that are more at-risk of being poor and socially excluded. We then focus on the relationship between poverty, social exclusion and leisure/sports participation, and describe a case study that addresses young people’s social exclusion through the use of sports (i.e., Positive Futures. Although further analysis is warranted, it would seem that growing structural inequalities (including sport participation—with their concomitant effects on health and quality of life—are further widened and deepened by the policy measures taken by the Conservative-Liberal Democrat coalition in the UK. In addition, within a climate of austerity, sport-based social inclusion schemes are likely to become wholly inadequate in the face of exclusionary forces such schemes envision to combat.

  6. Midlatitude Ice-Rich Ground on Mars: An Important Target for Science and In Situ Resource Utilization on Human Missions

    Science.gov (United States)

    Stoker, Carol; Heldmann, Jennifer

    2015-01-01

    The region of ROI is characterized by proven presence of near surface ground ice and numerous periglacial features. Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars, the impact that changes in insolation produced by variations in Mars’ orbital parameters has on the regions climate, and could provide human exploration with a reliable and plentiful in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. Heldmann et al. (2014) studied locations on Mars in the Amazonis Planitia region where near surface ground ice was exposed by new impact craters (Byrne et al. 2009). The study examined whether sites in this region were suitable for human exploration including reviewing the evidence for midlatitude ground ice, discussing the possible explanations for its occurrence, assessing its potential habitability for modern life, and evaluating the resource potential. They systematically analyzed remote-sensing data sets to identify a viable landing site. Five sites where ground ice was exposed were examined with HiRise imaging and were classified according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. A suitable landing site was found having ground ice at only 0.15m depth, and no landing site hazards within a 25 km landing ellipse. This paper presents results of that study and examines the relevance of this ROI to the workshop goals.

  7. On the track to adulthood: the missions of the young human being, dodging the risks and gaining the tools.

    Science.gov (United States)

    Urkin, Jacob; Porter, Basil; Bar-David, Yair

    2016-05-01

    Medical staff are expected to cooperate with other professions and agencies in helping the young human in achieving the goal of becoming a healthy, well- functioning adult that expresses her/his maximal potential. Achieving this goal should be cost-effective. Cost includes not just the economic burden but also psychosocial determinants such as emotional disruption, stress, living at risk, malfunctioning, and dependency. Acknowledging the risks and the expected achievements at each age are useful in analyzing the failure of community health programs and in planning preventive modalities and needed remedies. PMID:25968428

  8. Midlatitude ice-rich ground on mars as a target in the search for evidence of life and for in situ resource utilization on human missions.

    Science.gov (United States)

    Heldmann, J L; Schurmeier, L; McKay, C; Davila, A; Stoker, C; Marinova, M; Wilhelm, M B

    2014-02-01

    Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars and is relevant for human exploration as a possible in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. In the present study, we review the evidence for midlatitude ground ice on Mars, discuss the possible explanations for its occurrence, and assess its potential habitability. During the course of study, we systematically analyzed remote-sensing data sets to determine whether a viable landing site exists in the northern midlatitudes to enable a robotic mission that conducts in situ characterization and searches for evidence of life in the ice. We classified each site according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. We found that a suitable landing site exists within Amazonis Planitia near ground ice that was recently excavated by a meteorite impact. PMID:24506507

  9. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: An Update of the Technology Maturation Effort

    Science.gov (United States)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.

    2014-01-01

    This presentation will update the community on the development of conformal ablative TPS. As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved downselecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt.In FY13, more advanced testing and modeling of the downselected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to

  10. Study on Difficulties and Development Directions of Current Human Resource Management in China

    OpenAIRE

    Faping He

    2009-01-01

    With the implementing of Labor Contract Law of the PRC in 2008, the development of China human resource management will face very austere challenge and encounter unexpected difficulties. The human resource management of China is developed under the backgrounds without the pressure of labor union and legal restriction, which makes enterprises adopt the single and employer-oriented development mode of the human resource management and rarely consider employees’ benefits. The current human resou...

  11. Evaluation of a Human Modeling Software Tool in the Prediction of Extra Vehicular Activity Tasks for an International Space Station Assembly Mission

    Science.gov (United States)

    Dischinger, H. Charles; Loughead, Tomas E.

    1997-01-01

    The difficulty of accomplishing work in extravehicular activity (EVA) is well documented. It arises as a result of motion constraints imposed by a pressurized spacesuit in a near-vacuum and of the frictionless environment induced in microgravity. The appropriate placement of foot restraints is crucial to ensuring that astronauts can remove and drive bolts, mate and demate connectors, and actuate levers. The location on structural members of the foot restraint sockets, to which the portable foot restraint is attached, must provide for an orientation of the restraint that affords the astronaut adequate visual and reach envelopes. Previously, the initial location of these sockets was dependent upon the experienced designer's ability to estimate placement. The design was tested in a simulated zero-gravity environment; spacesuited astronauts performed the tasks with mockups while submerged in water. Crew evaluation of the tasks based on these designs often indicated the bolt or other structure to which force needed to be applied was not within an acceptable work envelope, resulting in redesign. The development of improved methods for location of crew aids prior to testing would result in savings to the design effort for EVA hardware. Such an effort to streamline EVA design is especially relevant to International Space Station construction and maintenance. Assembly operations alone are expected to require in excess of four hundred hours of EVA. Thus, techniques which conserve design resources for assembly missions can have significant impact. We describe an effort to implement a human modelling application in the design effort for an International Space Station Assembly Mission. On Assembly Flight 6A, the Canadian-built Space Station Remote Manipulator System will be delivered to the U.S. Laboratory. It will be released from its launch restraints by astronauts in EVA. The design of the placement of foot restraint sockets was carried out using the human model Jack, and

  12. Welfare Cuts and Insecurity under the Rule of Austerity: the Impact of the Crisis on Portuguese Social Services

    Directory of Open Access Journals (Sweden)

    Pedro Hespanha

    2015-12-01

    Full Text Available TThis paper discusses the impact of austerity on social services in Portugal. The highly complex process of changes to public services launched by anti-crisis programmes needs to be analysed from different perspectives. On the supply side, the impacts are associated with reducing expenditure in social areas in different ways: reducing benefits by axing services, cutting staff costs, dismissing public sector workers and centralizing procurement; privatizing public management; blind cuts to the current expenses budget. On the demand side, the impacts are associated with reductions to the disposable income of families by cutting entitlements to healthcare, education, housing, social security and other benefits, cutting public sector pay, taxing pensions, and introducing or increasing restrictions on access to public services. Este artículo analiza el impacto de la austeridad en los servicios sociales de Portugal. El proceso de cambio en las políticas públicas tan complejo que se produjo como consecuencia de los programas anti-crisis requieren un análisis desde diferentes perspectivas. En el lado de la oferta, los impactos se asocian con la reducción del gasto social de diferentes formas: reduciendo beneficios por el recorte en servicios, recortando los costes de personal, despidiendo a trabajadores del sector público y centralizando las adquisiciones; privatizando la gestión pública; recortes ocultos en el presupuesto de gastos vigente. En el lado de la demanda, los impactos se asocian con la reducción de la renta de las familias mediante la reducción de derechos sanitarios, educación, vivienda, seguridad social y otros beneficios, recortando los salarios del sector público, gravando las pensiones e introduciendo o aumentando las restricciones en el acceso a servicios públicos. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=2683350

  13. Simulated Mission

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A Chinese astronaut trainer is selected for an endurance trial to prepare humans for a real landing on the Red Planet on June 3, 27-year-old Chinese astronaut trainer Wang Yue walked into a mock spaceship at a Moscow research institute with

  14. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  15. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    Science.gov (United States)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the

  16. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  17. Anti-austeric activity of phenolic constituents of seeds of Arctium lappa.

    Science.gov (United States)

    Tezuka, Yasuhiro; Yamamoto, Keiichi; Awale, Suresh; Lia, Feng; Yomoda, Satoshi; Kadota, Shigetoshi

    2013-04-01

    From seeds of Arctium lappa L. (Asteraceae) we obtained arctigenin (1), arctiin (2), chlorogenic acid (3), 4,5-dicaffeoylquinic acid (4), 3,5-dicaffeoylquinic acid (5), 3,4-dicaffeoylquinic acid (6), matairesinol (11), isolappaol A (12), lappaol F (14), and lappaol B (15), together with 1:1 mixtures of isolappaol C (7) and lappaol C (8), arctignan E (9) and arctignan D (10), and 12 and lappaol A (13), while 3,3',4'-tri-O-demethylarctigenin (16), 3,3'-di-O-demethyl-4'-dehydroxyarctigenin (17), and 3-O-demethylarctigenin (18) were obtained by anaerobic microbiological metabolism of 1. Then, we evaluated the in vitro preferential cytotoxic activity of these pure compounds and 1:1 mixtures, together with enterodiol (19) and enterolactone (20), against human pancreatic cancer PANC-1 cells in nutrient-deprived medium (NDM). Among them, 1 and 18 showed potent activity, with PC50 values of 1.75 and 4.38 microM, respectively, while 11, 15, and 17 showed mild activity with PC50 values of 31.1, 30.9, and 38.7 microM, respectively. By comparing their structures and PC50 values, the following structural moieties could be concluded to be important for the preferential cytotoxicity of 1: 1) the 3-hydroxy-4-methoxyphenyl group at the 2-position on the gamma-butyrolactone ring, 2) the less polar substituent at the 3-position on the gamma-butyrolactone ring, and 3) the gamma-butyrolactone ring. PMID:23738454

  18. Clinical holistic medicine: induction of spontaneous remission of cancer by recovery of the human character and the purpose of life (the life mission).

    Science.gov (United States)

    Ventegodt, Soren; Morad, Mohammed; Hyam, Eytan; Merrick, Joav

    2004-05-26

    The recovery of the human character and purpose of life with consciousness-based medicine seems to be able to induce spontaneous remissions in several diseases. On two different occasions, we observed breast tumors reduced to less than half their original diameters (clinically judged) during a holistic session, when working with the patients in accordance with the holistic process theory of healing, the life mission theory, and the theory of human character. One tumor was histologically diagnosed as malign breast cancer prior to the session, while the other was under examination. As both patients had the affected regions of the breast surgically removed immediately after the session, we are unable to determine if they were actually healed by the holistic treatment. We find it extremely interesting that the size of a tumor can be reduced dramatically within a few hours of holistic treatment, when the patient is highly motivated for personal development. The reduction of tumor size is in accordance with the holistic view that many types of cancer are caused by emotional and existential disturbances. From a holistic perspective, cancer can be understood as a simple disturbance of the cells, arising from the tissue holding on to a trauma with strong emotional content. This is called "a blockage", where the function of the cells is changed from their original function in the tissue to a function of holding emotions. The reduction of the tumor in the two cases happened when old painful emotions were identified in the tissues, in and around the tumor, and processed into understanding; when the patients finally did let go of negative beliefs and attitudes that had kept the feeling(s) repressed to that part of the body, the tumor first softened and then disappeared, presumably by apoptosis. We believe that the consciousness-based/holistic medical toolbox has a serious additional offer to cancer patients, and we will therefore strongly encourage the scientific society to

  19. Human Factor Investigation of Waste Processing System During the HI-SEAS 4-month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul E.; Miles, John D.

    2014-01-01

    NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  20. Human Factor Investigation of Waste Processing System During the HI-SEAS 4 Month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul; Miles, John D.

    2014-01-01

    NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  1. Apollo 11 Mission Commemorated

    Science.gov (United States)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  2. STS 125 Samples: the Hubble Servicing Mission

    Science.gov (United States)

    James, John T.

    2010-01-01

    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported in a table. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration.

  3. NASA Laboratory Analysis for Manned Exploration Missions

    Science.gov (United States)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  4. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  5. Dukovany ASSET mission preparation

    International Nuclear Information System (INIS)

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future

  6. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

    2015-01-01

    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  7. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Horz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  8. IAEA International Missions in Lithuania

    International Nuclear Information System (INIS)

    Description of international missions during the period of 1999-2001 is presented. At that period three IAEA international missions took place: Mission of International Physical Protection Advisor Service in 1999, Mission of International Probabilistic Safety Assessment Review Team in 2000 and Mission of International Regulatory Review Team in 2001. Topics addressed during the missions are presented

  9. JPL Mission Bibliometrics

    Science.gov (United States)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  10. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  11. The STEREO Mission

    CERN Document Server

    2008-01-01

    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  12. Extreme health sensing: the challenges, technologies, and strategies for active health sustainment of military personnel during training and combat missions

    Science.gov (United States)

    Buller, Mark; Welles, Alexander; Chadwicke Jenkins, Odest; Hoyt, Reed

    2010-04-01

    Military personnel are often asked to accomplish rigorous missions in extremes of climate, terrain, and terrestrial altitude. Personal protective clothing and individual equipment such as body armor or chemical biological suits and excessive equipment loads, exacerbate the physiological strain. Health, over even short mission durations, can easily be compromised. Measuring and acting upon health information can provide a means to dynamically manage both health and mission goals. However, the measurement of health state in austere military environments is challenging; (1) body worn sensors must be of minimal weight and size, consume little power, and be comfortable and unobtrusive enough for prolonged wear; (2) health states are not directly measureable and must be estimated; (3) sensor measurements are prone to noise, artifact, and failure. Given these constraints we examine current successful ambulatory physiological status monitoring technologies, review maturing sensors that may provide key health state insights in the future, and discuss unconventional analytical techniques that optimize health, mission goals, and doctrine from the perspective of thermal work strain assessment and management.

  13. Juno Mission Simulation

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  14. Lunar Missions and Datasets

    Science.gov (United States)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  15. [Interior] Configuration options, habitability and architectural aspects of the transfer habitat module (THM) and the surface habitat on Mars (SHM)/ESA's AURORA human mission to Mars (HMM) study

    Science.gov (United States)

    Imhof, Barbara

    2007-02-01

    This paper discusses the findings for [Interior] configuration options, habitability and architectural aspects of a first human spacecraft to Mars. In 2003 the space architecture office LIQUIFER was invited by the European Space Agency's (ESA) AURORA Program committee to consult the scientists and engineers from the European Space and Technology Center (ESTEC) and other European industrial communities with developing the first human mission to Mars, which will take place in 2030, regarding the architectural issues of crewed habitats. The task was to develop an interior configuration for a transfer vehicle (TV) to Mars, especially a transfer habitation module (THM) and a surface habitat module (SHM) on Mars. The total travel time Earth—Mars and back for a crew of six amounts to approximately 900 days. After a 200-day-flight three crewmembers will land on Mars in the Mars excursion vehicle (MEV) and will live and work in the SHM for 30 days. For 500 days before the 200-day journey back the spacecraft continues to circle the Martian orbit for further exploration. The entire mission program is based on our present knowledge of technology. The project was compiled during a constant feedback-design process and trans-disciplinary collaboration sessions in the ESA-ESTEC concurrent design facility. Long-term human space flight sets new spatial conditions and requirements to the design concept. The guidelines were developed from relevant numbers and facts of recognized standards, interviews with astronauts/cosmonauts and from analyses about habitability, sociology, psychology and configuration concepts of earlier space stations in combination with the topics of the individual's perception and relation of space. Result of this study is the development of a prototype concept for the THM and SHM with detailed information and complete plans of the interior configuration, including mass calculations. In addition the study contains a detailed explanation of the development of

  16. The Community College Mission.

    Science.gov (United States)

    Vaughan, George B.

    1988-01-01

    Argues that the community college's mission has been and will be constant with respect to its social role to educate; its responsiveness to community needs; its focus on teaching; its open access philosophy; and its commitment to a comprehensive curriculum. Examines social tensions affecting the mission. (DMM)

  17. Bering Mission Navigation Method

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn;

    2003-01-01

    "Bering", after the name of the famous Danish explorer, is a near Earth object (NEO) and main belt asteroids mapping mission envisaged by a consortium of Danish universities and research institutes. To achieve the ambitious goals set forth by this mission, while containing the costs and risks...

  18. The Pioneer Venus Missions.

    Science.gov (United States)

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  19. Mission Medical Information System

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  20. Haughton-Mars Project: Lessons for the Selection of Landing Site/Exploration Zone for Human Missions to the Surface of Mars

    Science.gov (United States)

    Lee, P.; Braham, S.; Fong, T.; Glass, B.; Hoffman, S. J.; Hoftun, C.; Huffman, S.; Johansen, B. W.; Lorber, K.; McKay, C. P.; Mueller, R.; Schutt, J. W.; Schwartz, K.; Weaver, J. T.

    2015-10-01

    Important lessons for designing, planning and implementing future human Mars surface activities have been learned from science and exploration investigations at the Haughton-Mars Project (HMP) on Devon Island, High Arctic.

  1. Patient mobility in the context of austerity and an enlarged EU: The European Court of Justice's ruling in the Petru Case.

    Science.gov (United States)

    Frischhut, Markus; Levaggi, Rosella

    2015-10-01

    Since 1998, the European Court of Justice (EUCJ) has established a set of principles concerning patient mobility across Member States. At present, these principles are challenged against a new background, i.e., an enlarged EU and austerity-driven measures in the field of healthcare. This is even more relevant in view of the significant differences between countries and between services on healthcare access. In the Petru case, a Romanian woman sought healthcare in Germany due to an alleged lack of basic infrastructure in her local Romanian hospital. A crucial question arises in this context of whether the patient's interests (i.e., right to cross-border healthcare) or the Member State's interests (i.e., financial stability of the healthcare system) prevail. We analyse this case and its implications for future patient mobility. From the point of view of patients, the EUCJ's decision implies that also a lack of medication and basic medical supplies can be claimed as "undue delay", however for Member States it is sufficient to provide quality treatments in at least one hospital. Although the Court has provided a solution for the Petru case, we argue that major challenges remain, such as the definition of the international state-of-the-art or other limitations to reductions of the health basket. PMID:26208965

  2. Concepts For An EO Land Convoy Mission

    Science.gov (United States)

    Cutter, M. A.; Eves, S.; Remedios, J.; Humpage, N.; Hall, D.; Regan, A.

    2013-12-01

    ESA are undertaking three studies investigating possible synergistic satellite missions flying in formation with the operational Copernicus Sentinel missions and/or the METOP satellites. These three studies are focussed on:- a) ocean and ice b) land c) atmosphere Surrey Satellite Technology Ltd (SSTL), the University of Leicester and Astrium Ltd are undertaking the second of these studies into the synergetic observation by missions flying in formation with European operational missions, focusing on the land theme. The aim of the study is to identify and develop, (through systematic analysis), potential innovative Earth science objectives and novel applications and services that could be made possible by flying additional satellites, (possibly of small-class type), in constellation or formation with one or more already deployed or firmly planned European operational missions, with an emphasis on the Sentinel missions, but without excluding other possibilities. In the long-term, the project aims at stimulating the development of novel, (smaller), mission concepts in Europe that may exploit new and existing European operational capacity in order to address in a cost effective manner new scientific objectives and applications. One possible route of exploitation would be via the proposed Small Mission Initiative (SMI) that may be initiated under the ESA Earth Explorer Observation Programme (EOEP). The following ESA science priority areas have been highlighted during the study [1]:- - The water cycle - The carbon cycle - Terrestrial ecosystems - Biodiversity - Land use and land use cover - Human population dynamics The study team have identified the science gaps that might be addressed by a "convoy" mission flying with the Copernicus Sentinel satellites, identified the candidate mission concepts and provided recommendations regarding the most promising concepts from a list of candidates. These recommendations provided the basis of a selection process performed by ESA

  3. Simulation of Mission Phases

    Science.gov (United States)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  4. IPPAS Mission to Hungary

    International Nuclear Information System (INIS)

    At the request of the Government of Hungary (received from the Hungarian Atomic Energy Authority HAEA by IAEA on 20 June 2012), the IAEA agreed to conduct an IPPAS mission to Hungary in May – June 2013. Initial discussions were held in September 2012, within the scope of GC56 meetings in Vienna, during which a general issues related to the conduct of the mission were discussed. In order to continue preparation for the mission, formal preparatory meeting was convened at HAEA from 22 to 23 January 2013. The scope of the mission included the review of the Hungarian nuclear security legislative and regulatory framework for nuclear and other radioactive material and associated facilities, regulatory practices (licensing, inspections and enforcement) and coordination between organizations involved in physical protection. The scope of the mission also covered a review and evaluation of the physical protection systems in place at Budapest Research Reactor and the Central Isotope Storage Facility, at Paks NPP and Spent Fuel Interim Storage Facility, as well as the assessment of the physical protection arrangements for transport of nuclear and other radioactive material. The interface with nuclear material accountancy procedures and cyber security related issues were addressed during the mission. The paper aims at provide information on the preparation for the mission and the content of the Advance Information Package describing the Hungarian physical protection regime, while the presentation provides certain conclusions drawn by the IPPAS team. (author)

  5. NASA Earth science missions

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2013-10-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  6. Severe disruption of the cytoskeleton and immunologically relevant surface molecules in a human macrophageal cell line in microgravity-Results of an in vitro experiment on board of the Shenzhou-8 space mission

    Science.gov (United States)

    Paulsen, Katrin; Tauber, Svantje; Goelz, Nadine; Simmet, Dana Michaela; Engeli, Stephanie; Birlem, Maria; Dumrese, Claudia; Karer, Anissja; Hunziker, Sandra; Biskup, Josefine; Konopasek, Shalimar; Suh, Durie; Hürlimann, Eva; Signer, Christoph; Wang, Anna; Sang, Chen; Grote, Karl-Heinrich; Zhuang, Fengyuan; Ullrich, Oliver

    2014-01-01

    During spaceflight the immune system is one of the most affected systems of the human body. During the SIMBOX (Science in Microgravity Box) mission on Shenzhou-8, we investigated microgravity-associated long-term alterations in macrophageal cells, the most important effector cells of the immune system. We analyzed the effect of long-term microgravity on the cytoskeleton and immunologically relevant surface molecules. Human U937 cells were differentiated into a macrophageal phenotype and exposed to microgravity or 1g on a reference centrifuge on-orbit for 5 days. After on-orbit fixation, the samples were analyzed with immunocytochemical staining and confocal microscopy after landing. The unmanned Shenzhou-8 spacecraft was launched on board a Long March 2F (CZ-2F) rocket from the Jiuquan Satellite Launch Center (JSLC) and landed after a 17-day-mission. We found a severely disturbed actin cytoskeleton, disorganized tubulin and distinctly reduced expression of CD18, CD36 and MHC-II after the 5 days in microgravity. The disturbed cytoskeleton, the loss of surface receptors for bacteria recognition, the activation of T lymphocytes, the loss of an important scavenger receptor and of antigen-presenting molecules could represent a dysfunctional macrophage phenotype. This phenotype in microgravity would be not capable of migrating or recognizing and attacking pathogens, and it would no longer activate the specific immune system, which could be investigated in functional assays. Obviously, the results have to be interpreted with caution as the model system has some limitations and due to numerous technical and biological restrictions (e.g. 23 °C and no CO2 supply during in-flight incubation). All parameter were carefully pre-tested on ground. Therefore, the experiment could be adapted to the experimental conditions available on Shenzhou-8.

  7. The LISA Pathfinder mission

    International Nuclear Information System (INIS)

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band. (paper)

  8. Apollo 11 Lunar Mission Logo

    Science.gov (United States)

    1969-01-01

    This is the flight insignia, or logo, for the Apollo 11 mission, the first manned lunar landing mission. Descending on the lunar surface, the eagle in the logo depicts the Lunar Module (LM), named 'Eagle''. Carrying astronauts Neil Armstrong and Edwin Aldrin, the 'Eagle' was the first crewed vehicle to land on the Moon. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. Aboard a Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. Armstrong was the first human to ever stand upon the lunar surface, followed by Edwin (Buzz) Aldrin. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V launch vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  9. Integrated Network Architecture for NASA's Orion Missions

    Science.gov (United States)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  10. Software Innovation in a Mission Critical Environment

    Science.gov (United States)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  11. Psychological Support Operations and the ISS One-Year Mission

    Science.gov (United States)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  12. Exobiology and Future Mars Missions

    Science.gov (United States)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  13. NEP missions to Pluto

    International Nuclear Information System (INIS)

    Nuclear Electric Propulsion (NEP) has the potential to deliver fast trips to the distant outer planets and to be enabling for orbiter missions to Pluto, the moons of the distant outer planets, and Kuiper belt objects. This paper summarizes results of a mission study for a Pluto Flyby and a Pluto Orbiter. It was concluded that the flyby mission trip time would be about 6-10 years, depending on how lightweight the power system could be made for a given power level. The trip time was not too sensitive to whether the initial condition was earth escape or earth orbit if a larger power system could be assumed for the earth-orbit option because of the larger launch mass that could be used in that case. The trip time for the orbiter mission was projected to be about 9-14 years

  14. Cassini's Solstice Mission

    Science.gov (United States)

    Seal, David; Mitchell, Robert

    2010-01-01

    With the recent approval of NASA's flagship Cassini mission for seven more years of continued operations, dozens more Titan, Enceladus and other icy moon flybys await, as well as many occultations and multiple close passages to Saturn. Seasonal change is the principal scientific theme as Cassini extends its survey of the target-rich system over one full half-season, from just after northern winter solstice at arrival back in 2004, to northern summer solstice at the end of mission in 2017. The new seven-year mission extension requires careful propellant management as well as streamlined operations strategies with smaller spacecraft, sequencing and science teams. Cassini's never-before-envisioned end of mission scenario also includes nearly two dozen high-inclination orbits which pass between the rings and the planet allowing thrilling and unique science opportunities before entry into Saturn's atmosphere.

  15. Pakistan Mission System

    Data.gov (United States)

    US Agency for International Development — Pak Info was designed by OAPA to fill in the knowledge and reporting gaps in existing agency systems for the Pakistan Mission. It tracks the program approval...

  16. Uganda Mission PRS

    Data.gov (United States)

    US Agency for International Development — A web-based performance reporting system that is managed by IBI that interfaces with the Mission's GIS database that supports USAID/Uganda and its implementing...

  17. Mars Observer mission

    OpenAIRE

    Albee, A. L.; Arvidson, R.E.; Palluconi, F. D.

    1992-01-01

    The Mars Observer mission will extend the exploration and characterization of Mars by providing new and systematic measurements of the atmosphere, surface, and interior of the planet. These measurements will be made from a low-altitude polar orbiter over a period of 1 Martian year, permitting repetitive observations of the surface and of the seasonal variations of the atmosphere. The mission will be conducted in a manner that will provide new and valuable scientific data using a distributed d...

  18. Future Titan Missions

    Science.gov (United States)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  19. Robotic Mission Simulation Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes a software tool to predict robotic mission performance and support supervision of robotic missions even when environments and...

  20. An integrated mission planning approach for the Space Exploration Initiative

    International Nuclear Information System (INIS)

    This report discusses a fully integrated energy-based approach to mission planning which is needed if the Space Exploration Initiative (SEI) is to succeed. Such an approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI and provide an economic benefit by greatly enhancing our international technical competitiveness through technology spin-offs and through the resulting early return on investment. Integrated planning and close interagency cooperation must occur if the SEI is to achieve its goal of expanding the human presence into the solar system and be an affordable endeavor. An energy-based mission planning approach gives each mission planner the needed power, yet preserves the individuality of mission requirements and objectives while reducing the concessions mission planners must make. This approach may even expand the mission options available and enhance mission activities

  1. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  2. KuaFu Mission

    Institute of Scientific and Technical Information of China (English)

    XIA Lidong; TU Chuanyi; Schwenn Rainer; Donovan Eric; Marsch Eckart; WANG Jingsong; ZHANG Yongwei; XIAO Zuo

    2006-01-01

    The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.

  3. Logistics Reduction Technologies for Exploration Missions

    Science.gov (United States)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  4. The Hinode Mission

    CERN Document Server

    Sakurai, Takashi

    2009-01-01

    The Solar-B satellite was launched in 2006 by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), and was renamed Hinode ('sunrise' in Japanese). Hinode carries three instruments: the X-ray telescope (XRT), the EUV imaging spectrometer (EIS), and the Solar Optical Telescope (SOT). These instruments were developed by ISAS/JAXA in cooperation with the National Astronomical Observatory of Japan as domestic partner, and NASA and the Science and Technology Facilities Council (UK) as international partners. ESA and the Norwegian Space Center have been providing a downlink station. The Hinode (Solar-B) Mission gives a comprehensive description of the Hinode mission and its instruments onboard. This book is most useful for researchers, professionals, and graduate students working in the field of solar physics, astronomy, and space instrumentation. This is the only book that carefully describes the details of the Hinode mission; it is richly illustrated with full-color ima...

  5. Country programming mission. Namibia

    International Nuclear Information System (INIS)

    In response to a request from the Government of Namibia conveyed in a letter dated 29 November 1990 IAEA provided a multi-disciplinary Programming Mission which visited Namibia from 15 - 19 July 1991. The terms of reference of the Mission were: 1. To assess the possibilities and benefits of nuclear energy applications in Namibia's development; 2. To advise on the infrastructure required for nuclear energy projects; 3. To assist in the formulation of project proposals which could be submitted for Agency assistance. This report is based on the findings of the Mission and falls into 3 sections with 8 appendices. The first section is a country profile providing background information, the second section deals with sectorial needs and institutional review of the sectors of agriculture including animal production, life sciences (nuclear medicine and radiotherapy) and radiation protection. The third section includes possible future technical co-operation activities

  6. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  7. The Asteroid Impact Mission

    Science.gov (United States)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  8. Mission Critical Networking

    Energy Technology Data Exchange (ETDEWEB)

    Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

    2010-06-01

    Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

  9. The Gaia mission

    CERN Document Server

    Eyer, L; Pourbaix, D; Mowlavi, N; Siopis, C; Barblan, F; Evans, D W; North, P

    2013-01-01

    Gaia is a very ambitious mission of the European Space Agency. At the heart of Gaia lie the measurements of the positions, distances, space motions, brightnesses and astrophysical parameters of stars, which represent fundamental pillars of modern astronomical knowledge. We provide a brief description of the Gaia mission with an emphasis on binary stars. In particular, we summarize results of simulations, which estimate the number of binary stars to be processed to several tens of millions. We also report on the catalogue release scenarios. In the current proposal, the first results for binary stars will be available in 2017 (for a launch in 2013).

  10. The ALEXIS mission recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B. [Los Alamos National Lab., NM (United States); Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R. [AeroAstro, Inc., Herndon, VA (United States)

    1994-03-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  11. Communication strategies for colonization mission to Mars

    OpenAIRE

    Machuca Varela, Pablo Antonio

    2015-01-01

    Earth-Mars cycler trajectories could be used as a periodic and cost-efficient human transportation system from Earth to Mars in a future mission to colonize Mars. Continuous and reliable communication between Mars and the Earth will be required in such a mission. In a circular-coplanar model, the existance of a particularly interesting cycler trajectory (ballistic outbound Earth-Mars S1L1 cycler trajectory) is proven, which has relatively short Earth-Mars transfer times, low relative velociti...

  12. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    Science.gov (United States)

    Schuerger, Andrew C.; Lee, Pascal

    2015-01-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20C to -1C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection-Contamination-Habitability-Haughton Crater-Mars. Astrobiology

  13. Mission Operations Assurance

    Science.gov (United States)

    Faris, Grant

    2012-01-01

    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  14. Interpreting the Mission.

    Science.gov (United States)

    Yarrington, Roger

    1980-01-01

    Underscores the importance of increasing public understanding and support of the community college mission in the 1980s. Suggests increased public relations efforts, community forums, the use of television advertisements, and efforts to gain the support of state legislators and officials. (AYC)

  15. The LISA Pathfinder Mission

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  16. The Swift GRB Mission

    Science.gov (United States)

    Gehrels, Neil; Chincarini, Guido

    2004-01-01

    Swift is a MIDEX mission that is in development for launch in October 2004. It is a multiwavelength transient observatory for GRB astronomy. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. A wide-field gamma-ray camera will detect mare than 100 GRBs per year to -3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 75 sec by an autonomously controlled spacecraft. Far each burst, aresec positions will be determined and optical/UV/X-ray/gamma-say spectrophotometry performed. Measurements of redshift will be made for many burstes. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approx. 0.5 square meter) CdZnTe detector array. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift. The talk vi11 describe the mission statue and give a summary of plans for GRB operations. It is likely that Swift will have just been launched at the time of the conference.

  17. Planetary cubesats - mission architectures

    Science.gov (United States)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  18. Mission and Assets Database

    Science.gov (United States)

    Baldwin, John; Zendejas, Silvino; Gutheinz, Sandy; Borden, Chester; Wang, Yeou-Fang

    2009-01-01

    Mission and Assets Database (MADB) Version 1.0 is an SQL database system with a Web user interface to centralize information. The database stores flight project support resource requirements, view periods, antenna information, schedule, and forecast results for use in mid-range and long-term planning of Deep Space Network (DSN) assets.

  19. Mission from Mars:

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer;

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  20. 全球经济紧缩形势下企业市场营销策略研究%A Research on Enterprise Marketing Strategies under the Situation of the Global Economic Austerity

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2015-01-01

    Based on the analysis of negative impacts on Chinese enterprises caused by economic austerity, de-ficiencies in enterprise marketing strategies are analyzed from the perspective of concept, means, applicability, etc. Many effective measures, such as adjusting the marketing concepts, boldly opening up new markets, lay-ing emphasis on brand awareness, and expanding the market share by adopting multi-channel distribution modes are proposed, which provides references for Chinese enterprises to cope with the global economic aus-terity so as to go through the difficulties.%在阐述经济紧缩给中国企业带来负面影响的基础上,从观念、手段以及适用性等多方面分析了当前企业营销策略中存在的不足,进而提出了调整营销观念、大胆开拓新市场、以客户价值为中心调整产品结构、提升品牌形象、采用多渠道销售模式扩大市场份额等一系列措施,以期为企业市场营销决策提供参考。

  1. The Virtual Mission Operations Center

    Science.gov (United States)

    Moore, Mike; Fox, Jeffrey

    1994-01-01

    Spacecraft management is becoming more human intensive as spacecraft become more complex and as operations costs are growing accordingly. Several automation approaches have been proposed to lower these costs. However, most of these approaches are not flexible enough in the operations processes and levels of automation that they support. This paper presents a concept called the Virtual Mission Operations Center (VMOC) that provides highly flexible support for dynamic spacecraft management processes and automation. In a VMOC, operations personnel can be shared among missions, the operations team can change personnel and their locations, and automation can be added and removed as appropriate. The VMOC employs a form of on-demand supervisory control called management by exception to free operators from having to actively monitor their system. The VMOC extends management by exception, however, so that distributed, dynamic teams can work together. The VMOC uses work-group computing concepts and groupware tools to provide a team infrastructure, and it employs user agents to allow operators to define and control system automation.

  2. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  3. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  4. Operational Lessons Learned from NASA Analog Missions

    Science.gov (United States)

    Arnold, Larissa S.

    2010-01-01

    National Aeronautics and Space Administration s (NASA) efforts in human space flight are currently focused on the Space Shuttle and International Space Station (ISS) programs, with efforts beginning on the future exploration opportunities. Both the Space Shuttle and ISS programs are important to the development of a capability for human exploration beyond Low Earth Orbit (LEO). The ISS provides extensive research capabilities to determine how the human body reacts to long duration stays in space. Also, the ISS and Shuttle can serve as a limited testbed for equipment or entire systems that may be used on missions to the Moon, Mars, or to a near-Earth asteroid. It has been nearly 35 years since the Apollo astronauts visited the Moon. Future space explorers will have to re-learn how to work and live on planetary surfaces, and how to do that for extended periods of time. Exploration crews will perform a wide assortment of scientific tasks, including material sampling and emplacement of automated instruments. Surface mission operations include the activities of the crew living and working, mission support from the Earth, and the operation of robotic and other remotely commanded equipment on the surface and in planetary orbit. Other surface activities will include the following: exploring areas surrounding a habitat; using rovers to collect rock and soil samples; setting up experiments on the surface to monitor the radiation environment and any seismic or thermal activity; and conducting scientific analyses and experiments inside a habitat laboratory. Of course, the astronauts will also have to spend some of their surface time "doing chores" and maintaining their habitat and other systems. In preparation for future planetary exploration, NASA must design the answers to many operational questions. What will the astronauts do on the surface? How will they accomplish this? What tools will they require for their tasks? How will robots and astronauts work together? What

  5. 构建中国人体器官捐献社会宣教系统的策略%Construction strategy of human organ donation social mission system in China

    Institute of Scientific and Technical Information of China (English)

    曹翠萍; 黄海

    2015-01-01

    背景:分析中国目前人体器官移植所面临的困境及导致器官移植供体短缺的社会影响因素,发现民众对器官移植及捐献流程相关知识普遍缺乏。目的:从器官捐献宣教系统构建的重大意义、现状总结、应遵循的伦理原则以及建议对策等4个方面进行了尝试性探索,为科学地进行器官捐献的宣传教育提供建议与参考。方法:在CNKI和PubMed通过关键词“器官捐献、器官移植、伦理学原则、宣传教育”查阅相关文献,对来源于核心期刊的文章进行综合分析。以“器官捐献,器官移植,伦理原则,供体短缺,遗体捐献,宣传教育”为中文捡索词,以“organ donation,organ transplantation,shortage of donor,body donation,education system”为英文检索词,检索维普和中国知网(CNKI)期刊全文数据库万方、Pubmed,Medline,2005年1月至2014年11月有关器官捐献报告中主要涉及器官捐献宣传教育及协调员的相关报道。通过对文献归纳,总结分析目前中国器官捐献宣教的现况,提出构建器官捐献宣教系统的对策。结果与结论:详细阐述了器官捐献宣教系统的必要性,系统分析了国内目前器官捐献宣传教育存在的问题及应该遵循的伦理原则,探索了国内器官捐献宣教系统建设应采取的路径和方法。缓解器官移植供体紧张,扩大供体来源,必须要赢得公民的广泛支持与理解,才能保证器官捐献工作的可持续发展。因此构建人体器官捐献社会宣教体系具有重要意义。%BACKGROUND:By analyzing the current difficulties faced by human organ transplantation and social factors which lead to organ transplant donor shortage in China, people are found to be generaly lack of knowledge about organ transplant and donation process. OBJECTIVE: To make a tentative probe into the construction of organ donation social mission system on four

  6. B plant mission analysis report

    International Nuclear Information System (INIS)

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ''System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.'' The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline

  7. Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition

    Science.gov (United States)

    Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie

    2007-01-01

    This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.

  8. Human Behavior and Performance Support for ISS Operations and Astronaut Selections: NASA Operational Psychology for Six-Crew Operations

    Science.gov (United States)

    VanderArk, Steve; Sipes, Walter; Holland, Albert; Cockrell, Gabrielle

    2010-01-01

    The Behavioral Health and Performance group at NASA Johnson Space Center provides psychological support services and behavioral health monitoring for ISS astronauts and their families. The ISS began as an austere outpost with minimal comforts of home and minimal communication capabilities with family, friends, and colleagues outside of the Mission Control Center. Since 1998, the work of international partners involved in the Space Flight Human Behavior and Performance Working Group has prepared high-level requirements for behavioral monitoring and support. The "buffet" of services from which crewmembers can choose has increased substantially. Through the process of development, implementation, reviewing effectiveness and modifying as needed, the NASA and Wyle team have proven successful in managing the psychological health and well being of the crews and families with which they work. Increasing the crew size from three to six brought additional challenges. For the first time, all partners had to collaborate at the planning and implementation level, and the U.S. served as mentor to extrapolate their experiences to the others. Parity in available resources, upmass, and stowage had to be worked out. Steady progress was made in improving off-hours living and making provisions for new technologies within a system that has difficulty moving quickly on certifications. In some respect, the BHP support team fell victim to its previous successes. With increasing numbers of crewmembers in training, requests to engage our services spiraled upward. With finite people and funds, a cap had to placed on many services to ensure that parity could be maintained. The evolution of NASA BHP services as the ISS progressed from three- to six-crew composition will be reviewed, and future challenges that may be encountered as the ISS matures in its assembly-complete state will be discussed.

  9. Sentinel-2 Mission status

    Science.gov (United States)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin

    2016-04-01

    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  10. Evolution of Training in NASA's Mission Operations Directorate

    Science.gov (United States)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  11. The THEMIS Mission

    CERN Document Server

    Burch, J. L

    2009-01-01

    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  12. Towards A Shared Mission

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen; Orth Gaarn-Larsen, Carsten

    A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome of the...... the context of universities. Although the economic aspects of value are important and cannot be ignored, we argue for a much richer interpretation of value that captures the many and varied results from universities. A shared mission is a prerequisite for university management and leadership. It makes...... it possible to lead through processes that engage and excite while creating transparency and accountability. The paper will be illustrated with examples from Denmark and the Helios initiative taken by the Danish Academy of Technical Sciences (ATV) under the headline “The value creating university...

  13. Deep Blue Mission

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese Navy dispatches ships to the Gulf of Aden on a second escort mission, marking its growing strength in the face of more diverse challenges Elarly in the morning of April 23, crew- imembers from the Chinese Navy’s second escort fleet in the Gulf of Aden Igathered on deck and saluted to the east, paying their respects to the motherland in celebration of the 60th anniversary of the Chinese Navy. This fleet,

  14. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  15. Heat Capacity Mapping Mission

    Science.gov (United States)

    Nilsson, C. S.; Andrews, J. C.; Scully-Power, P.; Ball, S.; Speechley, G.; Latham, A. R. (Principal Investigator)

    1980-01-01

    The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover.

  16. Human Capital Constraints in South Africa: A Firm-Level Analysis

    Directory of Open Access Journals (Sweden)

    Ewert P. J. Kleynhans

    2012-03-01

    Full Text Available This paper examines human capital constraints in the South Africaneconomy, and the austerity of these constraints on firms in the country.The two key human capital constraints explored in this article arethe inadequately educated workforce and labour market distortions.Regression analysis was applied to examine determinants of increasedlabour productivity in manufacturing firms. Education and labourmarket distortions were found to have a varying influence on outputper worker. Principal Component Analysis (pca of the explanatoryvariables achieved similar results. This study found that the highest percentageof the total variance is explained by latent variables that incorporateeducation, training, compensation, region and Sector EducationTraining Authority (seta support and effectiveness.

  17. Multi-Mission SDR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless transceivers used for NASA space missions have traditionally been highly custom and mission specific. Programs such as the GRC Space Transceiver Radio...

  18. Mission Critical Occupation (MCO) Charts

    Data.gov (United States)

    Office of Personnel Management — Agencies report resource data and targets for government-wide mission critical occupations and agency specific mission critical and/or high risk occupations. These...

  19. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  20. NASA's Terrestrial Planet Finder Missions

    Science.gov (United States)

    Coulter, Daniel R.

    2004-01-01

    NASA has decided to move forward with two complementary Terrestrial Planet Finder (TPF) missions, a visible coronagraph and an infrared formation flying interferometer. These missions are major missions in the NASA Office of Space Science Origins Theme. The primary science objectives of the TPF missions are to search for, detect, and characterize planets and planetary systems beyond our own Solar System, including specifically Earth-like planets.

  1. MNSM - A Future Mars Network Science Mission

    Science.gov (United States)

    Chicarro, A. F.

    2012-04-01

    partners have expressed an interest to participate (e.g., Japan, Russia, China). Also, NASA' s 2016 GEMS one-station mission could be a very valuable precursor for MNSM, if selected as NASA' s next Discovery mission. The proposed Mars Network Science Mission would focus on the early Mars, providing essential constraints on geophysical, geochemical, and geological models of Mars' evolution and a better understanding of SNC meteorites and future returned Martian samples. Measurements on the seismology, geodesy, magnetic field and surface heat flow would reveal the internal structure, activity and composition of Mars, its thermal structure and its magnetic evolution. Meteorological surface measurements would allow monitoring the atmospheric dynamics at the boundary layer (coupled with orbital measurements) to infer the climate patterns. Such mission can also provide important insights into the astrobiological conditions of Mars, in particular its magnetic field, heat flow and climate evolution. The Mars Network Science Mission represents a unique tool to perform new investigations of Mars, which could not be addressed by any other means. It would fill a longstanding gap in the scientific exploration of the Solar System by performing in-situ investigations of the interior of an Earth-like planet other than our own and provide unique and critical information about the fundamental processes of terrestrial planetary formation and evolution. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans explore Mars, but the Mars Network would provide the context in which returned samples should be interpreted.

  2. The Sunrise Mission

    OpenAIRE

    Barthol, P.; Gandorfer, A.; Solanki, S. K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W. (Walter); Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.

    2010-01-01

    The first science flight of the balloon-borne \\Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribut...

  3. The PICARD mission

    Science.gov (United States)

    Thuillier, G.; Prado, J.-Y.

    The understanding of the physical processes taking place in the Sun allows construction of solar models. These models are validated by comparison between predictions and observations. Most of the observations are total and spectral solar irradiance, temperature, frequencies of oscillation, diameter, and asphericity, as well as their variations as a function of time. By 2006 and beyond, several missions dedicated to solar observations will be operated in particular PICARD and Solar Dynamics Observer which have complementary measurements and a strong scientific synergy for the study of the solar variability and its consequence for the Earth's climate.

  4. Bone Metabolism on ISS Missions

    Science.gov (United States)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  5. Investing in times of austerity

    OpenAIRE

    Roels, Frank

    2015-01-01

    European Member States that have signed the treaties on fiscal consolidation are now experiencing difficulties to finance infrastructure and social services. Following the treaties, governments must urgently reduce their loans since their annual budget deficit should not exceed 0.5% of GDP and total sovereign debt should be lowered to 60% of GDP. Moreover Eurostat recently expanded its definition of sovereign debt to include public-private collaboration and financial guarantees by public auth...

  6. The Gaia mission

    CERN Document Server

    ,

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We...

  7. Instrumentation and new missions

    Science.gov (United States)

    Nicastro, Fabrizio; Cash, W.; Bautz, M.; Elvis, M.

    2012-09-01

    A Soft X-Ray Grating Mission: Missing Baryons, AGN Outflows, Cosmic Feedback, Coronae Doppler Tomography, and much more | I will review the parameters of the new generation of high efficiency high resolution X-ray grating spectrometers, and present possible mission configurations, which would allow soft X-ray spectrometry to be performed on a large variety of astrophysical sources, with high diagnostic power. Resolving powers of R~4000 at 0.5 keV correspond to velocity accuracies of only few tens of km per second, sufficient to separate physical and dynamical phases of the low red shift photo-ionized and shock-heated inter-galactic medium (IGM), investigate mechanical and metal-feedback from galaxies to their surrounding circum- galactic medium (CGM) and IGM, study the physics and kinematics of AGN outflows, probing the dynamics of hot X-ray gas in clusters from their center to their virial radius and beyond, Doppler-mapping X-ray coronae of active stars.

  8. The FAME mission

    Science.gov (United States)

    Johnston, Kenneth J.

    2003-02-01

    The Full-sky Astrometric Mapping Explorer (FAME) space mission will perform an all sky astrometric survey with unprecedented accuracy. FAME will produce an astrometric catalog of 40 million stars between 5th and 15th visual magnitude. For the bright stars (5th to 9th magnitude), FAME will determine the positions and parallaxes to better than 50 μas, with proper motion errors of 70 μas per year. For the fainter stars (between l0th and 15th magnitude), FAME will determine positions and parallaxes accurate to better than 500 μas with proper motions errors less than 500 μas per year. FAME will also collect photometric data on the 40 million stars. The accuracy of a single observation of a 9th magnitude star will be 1 mmag. The FAME mission will impact almost all areas of astrophysics. It will find planets revolving around nearby stars, further studies of stellar evolution, determine the location of dark matter in the Milky Way galaxy, and measure the size and age of the universe. It will also establish a celestial reference frame with an accuracy better than a microarcsecond.

  9. STS-78 Mission Insignia

    Science.gov (United States)

    1996-01-01

    The STS-78 patch links past with present to tell the story of its mission and science through a design imbued with the strength and vitality of the 2-dimensional art of North America's northwest coast Indians. Central to the design is the space Shuttle whose bold lines and curves evoke the Indian image for the eagle, a native American symbol of power and prestige as well as the national symbol of the United States. The wings of the Shuttle suggest the wings of the eagle whose feathers, indicative of peace and friendship in Indian tradition, are captured by the U forms, a characteristic feature of Northwest coast Indian art. The nose of the Shuttle is the strong downward curve of the eagle's beak, and the Shuttle's forward windows, the eagle's eyes, represented through the tapered S forms again typical of this Indian art form. The basic black and red atoms orbiting the mission number recall the original NASA emblem while beneath, utilizing Indian ovoid forms, the major mission scientific experiment package LMS (Life and Materials Sciences) housed in the Shuttle's cargo bay is depicted in a manner reminiscent of totem-pole art. This image of a bird poised for flight, so common to Indian art, is counterpointed by an equally familiar Tsimshian Indian symbol, a pulsating sun with long hyperbolic rays, the symbol of life. Within each of these rays are now encased crystals, the products of this mission's 3 major, high-temperature materials processing furnaces. And as the sky in Indian lore is a lovely open country, home of the Sun Chief and accessible to travelers through a hole in the western horizon, so too, space is a vast and beckoning landscape for explorers launched beyond the horizon. Beneath the Tsimshian sun, the colors of the earth limb are appropriately enclosed by a red border representing life to the Northwest coast Indians. The Indian colors of red, navy blue, white, and black pervade the STS-78 path. To the right of the Shuttle-eagle, the constellation

  10. General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case

    Science.gov (United States)

    Hughes, Steven P.

    2007-01-01

    The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.

  11. Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions

    Science.gov (United States)

    Getchius, Joel; Kukitschek, Daniel; Crain, Timothy

    2008-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.

  12. Developing Experimental Models for NASA Missions with ASSL

    Directory of Open Access Journals (Sweden)

    Emil Vassev

    2010-03-01

    Full Text Available NASA's new age of space exploration augurs great promise for deep space exploration missions whereby spacecraft should be independent, autonomous, and smart. Nowadays NASA increasingly relies on the concepts of autonomic computing, exploiting these to increase the survivability of remote missions, particularly when human tending is not feasible. Autonomic computing has been recognized as a promising approach for the development of self-managing spacecraft systems that employ onboard intelligence and rely less on control links. The Autonomic System Specification Language (ASSL is a framework for formally specifying and generating autonomic systems. As part of long-term research targeted at the development of models for space exploration missions that rely on principles of autonomic computing, we have employed ASSL to develop formal models and generate functional prototypes for NASA missions. This helps to validate features and perform experiments through simulation. Here, we discuss our work on developing such missions with ASSL.

  13. Mission requirements: Skylab rescue mission SL-R

    Science.gov (United States)

    1973-01-01

    The Skylab Program includes three low earth orbit missions. These missions are designated SL-1/SL-2,SL-3 and SL-4. In addition to the three nominal Skylab missions, the program includes the Skylab Rescue Mission (SL-R). The SL-R mission is designed to provide a safe return of the Skylab crew in the event the Command Service Module (CSM) becomes disabled while docked to the Saturn Workshop (SWS). Mission requirements for the SL-R mission only are presented. SL-R mission configuration will be a CSM (modified with a field installed kit) manned by two crewmen launched on a Saturn IB Launch Vechicle. The SL-R CSM will rendezvous and dock with the SWS (or Orbital Assembly (OA), consisting of the SWS and disabled CSM, if the disabled CSM has not previously been jettisoned). The SWS configuration includes a Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Airlock Module (AM), and an S-IVB stage (modified as an Orbital Workshop (OWS), previously launched and inserted into orbit on a two-stage Saturn V Launch Vehicle for the SL-1/SL-2 mission.

  14. Phobos Sample Return mission

    Science.gov (United States)

    Zelenyi, Lev; Zakharov, A.; Martynov, M.; Polischuk, G.

    Very mysterious objects of the Solar system are the Martian satellites, Phobos and Deimos. Attempt to study Phobos in situ from an orbiter and from landers have been done by the Russian mission FOBOS in 1988. However, due to a malfunction of the onboard control system the landers have not been delivered to the Phobos surface. A new robotics mission to Phobos is under development now in Russia. Its main goal is the delivery of samples of the Phobos surface material to the Earth for laboratory studies of its chemical, isotopic, mineral composition, age etc. Other goals are in situ studies of Phobos (regolith, internal structure, peculiarities in orbital and proper rotation), studies of Martian environment (dust, plasma, fields). The payload includes a number of scientific instruments: gamma and neutron spectrometers, gaschromatograph, mass spectrometers, IR spectrometer, seismometer, panoramic camera, dust sensor, plasma package. To implement the tasks of this mission a cruise-transfer spacecraft after the launch and the Earth-Mars interplanetary flight will be inserted into the first elliptical orbit around Mars, then after several corrections the spacecraft orbit will be formed very close to the Phobos orbit to keep the synchronous orbiting with Phobos. Then the spacecraft will encounter with Phobos and will land at the surface. After the landing the sampling device of the spacecraft will collect several samples of the Phobos regolith and will load these samples into the return capsule mounted at the returned vehicle. This returned vehicle will be launched from the mother spacecraft and after the Mars-Earth interplanetary flight after 11 monthes with reach the terrestrial atmosphere. Before entering into the atmosphere the returned capsule will be separated from the returned vehicle and will hopefully land at the Earth surface. The mother spacecraft at the Phobos surface carrying onboard scientific instruments will implement the "in situ" experiments during an year

  15. Manned Mars mission cost estimate

    Science.gov (United States)

    Hamaker, Joseph; Smith, Keith

    1986-01-01

    The potential costs of several options of a manned Mars mission are examined. A cost estimating methodology based primarily on existing Marshall Space Flight Center (MSFC) parametric cost models is summarized. These models include the MSFC Space Station Cost Model and the MSFC Launch Vehicle Cost Model as well as other modes and techniques. The ground rules and assumptions of the cost estimating methodology are discussed and cost estimates presented for six potential mission options which were studied. The estimated manned Mars mission costs are compared to the cost of the somewhat analogous Apollo Program cost after normalizing the Apollo cost to the environment and ground rules of the manned Mars missions. It is concluded that a manned Mars mission, as currently defined, could be accomplished for under $30 billion in 1985 dollars excluding launch vehicle development and mission operations.

  16. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  17. Descope of the ALIA mission

    CERN Document Server

    Gong, Xuefei; Xu, Shengnian; Amaro-Seoane, Pau; Bai, Shan; Bian, Xing; Cao, Zhoujian; Chen, Gerui; Chen, Xian; Ding, Yanwei; Dong, Peng; Gao, Wei; Heinzel, Gerhard; Li, Ming; Li, Shuo; Liu, Fukun; Luo, Ziren; Shao, Mingxue; Spurzem, Rainer; Sun, Baosan; Tang, Wenlin; Wang, Yan; Xu, Peng; Yu, Pin; Yuan, Yefei; Zhang, Xiaomin; Zhou, Zebing

    2014-01-01

    The present work reports on a feasibility study commissioned by the Chinese Academy of Sciences of China to explore various possible mission options to detect gravitational waves in space alternative to that of the eLISA/LISA mission concept. Based on the relative merits assigned to science and technological viability, a few representative mission options descoped from the ALIA mission are considered. A semi-analytic Monte Carlo simulation is carried out to understand the cosmic black hole merger histories starting from intermediate mass black holes at high redshift as well as the possible scientific merits of the mission options considered in probing the light seed black holes and their coevolution with galaxies in early Universe. The study indicates that, by choosing the armlength of the interferometer to be three million kilometers and shifting the sensitivity floor to around one-hundredth Hz, together with a very moderate improvement on the position noise budget, there are certain mission options capable ...

  18. Andra's remediation missions - 59210

    International Nuclear Information System (INIS)

    Document available in abstract form only. Full text of publication follows: For many years now, the French National Radioactive Waste Management Agency (Agence nationale pour la gestion des dechets radioactifs Andra) has been cleaning up several sites contaminated with radioactivity, bearing in mind that all such remediation missions share the unique peculiarity of being performed entirely outside the nuclear-power-generation field. Thanks to the 2006 Planning Act and the new corporate circular in the legal field, to the implementation of the CNAR for organisational purposes, to the public technical subsidy for dedicated storage facilities and the disposal facility for VLL waste (Centre TFA) from a financial standpoint, Andra's new structure is now in place to ensure a proactive approach to manage the environmental liabilities arising from the sites polluted by radioactive materials, which, although scarce in number, each confront us with a specific challenge. (authors)

  19. The Planck mission

    CERN Document Server

    Bouchet, François R

    2014-01-01

    These lecture from the 100th Les Houches summer school on "Post-planck cosmology" of July 2013 discuss some aspects of the Planck mission, whose prime objective was a very accurate measurement of the temperature anisotropies of the Cosmic Microwave Background (CMB). We announced our findings a few months ago, on March 21$^{st}$, 2013. I describe some of the relevant steps we took to obtain these results, sketching the measurement process, how we processed the data to obtain full sky maps at 9 different frequencies, and how we extracted the CMB temperature anisotropies map and angular power spectrum. I conclude by describing some of the main cosmological implications of the statistical characteristics of the CMB we found. Of course, this is a very much shortened and somewhat biased view of the \\Planck\\ 2013 results, written with the hope that it may lead some of the students to consult the original papers.

  20. The Sunrise Mission

    CERN Document Server

    Barthol, Peter; Solanki, Sami K; Schüssler, Manfred; Chares, Bernd; Curdt, Werner; Deutsch, Werner; Feller, Alex; Germerott, Dietmar; Grauf, Bianca; Heerlein, Klaus; Hirzberger, Johann; Kolleck, Martin; Meller, Reinhard; Müller, Reinhard; Riethmüller, Tino L; Tomasch, Georg; Knölker, Michael; Lites, Bruce W; Card, Greg; Elmore, David; Fox, Jack; Lecinski, Alice; Nelson, Peter; Summers, Richard; Watt, Andrew; Pillet, Valentin Martínez; Bonet, Jose Antonio; Schmidt, Wolfgang; Berkefeld, Thomas; Title, Alan M; Domingo, Vicente; Blesa, Jose Luis Gasent; Iniesta, Jose Carlos del Toro; Jiménez, Antonio López; Álvarez-Herrero, Alberto; Sabau-Graziati, Lola; Widani, Christoph; Haberler, Peter; Härtel, Klaus; Kampf, Dirk; Levin, Thorsten; Grande, Isabel Pérez; Sanz-Andrés, Angel; Schmidt, Elke

    2010-01-01

    The first science flight of the balloon-borne \\Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery...

  1. The Space Technology 8 Mission

    OpenAIRE

    Franklin, Stephen; Ku, Jentung; Spence, Brian; McEachen, Mike; White, Steve; Samson, John; Some, Rafael; Zsoldos, Jennifer

    2006-01-01

    The Space Technology 8 (ST8) mission is the latest in NASA’s New Millennium Program technology demonstration missions. ST8 includes a spacecraft bus built by industry, flying four new technology payloads in low- Earth orbit. This paper will describe each payload, along with a brief description of the mission and spacecraft. The payloads include a miniature loop heat pipe intended to save mass and power on future small satellites, designed and built by NASA’s Goddard Sp...

  2. The CATSAT Student Explorer Mission

    OpenAIRE

    Forrest, D. J.; Levenson, K.; Vestrand, W. T.; Reister, K.; J. Smith; Wood, C.; Williams, C.; Whitford, C.; Watcon, D.; Owens, A.

    1996-01-01

    CATSAT (Cooperative Astrophysical and Technology SATellite) is one of three missions being developed under NASA/USRA's Student Explorer Demonstration Initiative (STEDI) for launch in 1997-98. STEDI is a pilot program to "assess the efficacy of smaller, low-cost spaceflight missions ... that is matched to the traditional process of research and development at universities". This program allows $4 million and 2-3 years for all aspects of the mission, i.e. instrument and satellite development, i...

  3. Materials trade study for lunar/gateway missions.

    Science.gov (United States)

    Tripathi, R K; Wilson, J W; Cucinotta, F A; Anderson, B M; Simonsen, L C

    2003-01-01

    The National Aeronautics and Space Administration (NASA) administrator has identified protection from radiation hazards as one of the two biggest problems of the agency with respect to human deep space missions. The intensity and strength of cosmic radiation in deep space makes this a 'must solve' problem for space missions. The Moon and two Earth-Moon Lagrange points near Moon are being proposed as hubs for deep space missions. The focus of this study is to identify approaches to protecting astronauts and habitats from adverse effects from space radiation both for single missions and multiple missions for career astronauts to these destinations. As the great cost of added radiation shielding is a potential limiting factor in deep space missions, reduction of mass, without compromising safety, is of paramount importance. The choice of material and selection of the crew profile play major roles in design and mission operations. Material trade studies in shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space mission's to two Earth-Moon co-linear Lagrange points (L1) between Earth and the Moon and (L2) on back side of the moon as seen from Earth, and to the Moon have been studied. It is found that, for single missions, current state-of-the-art knowledge of material provides adequate shielding. On the other hand, the choice of shield material is absolutely critical for career astronauts and revolutionary materials need to be developed for these missions. This study also provides a guide to the effectiveness of multifunctional materials in preparation for more detailed geometry studies in progress. PMID:14696588

  4. Do trade missions increase trade?

    OpenAIRE

    Head, Keith; Ries, John

    2010-01-01

    In an effort to stimulate trade, Canada has conducted regular trade missions starting in 1994, often led by the Prime Minister. According to the Canadian government, these missions generated tens of billions of dollars in new business deals. This paper uses bilateral trade data to assess this claim. We find that Canada exports and imports above-normal amounts to the countries to which it sent trade missions. However, the missions do not seem to have caused an increase in trade. In the preferr...

  5. Overview of NASA’s Asteroid Redirect Mission Concept

    Science.gov (United States)

    Chodas, Paul W.; Muirhead, Brian; Gates, Michele

    2015-08-01

    The Asteroid Redirect Mission (ARM) is a proposed mission to develop an advanced Solar Electric Propulsion spacecraft, and test it by capturing a large mass of asteroidal material in interplanetary space and returning it to a Lunar Distant Retrograde Orbit where it can be explored by a crew of astronauts visiting in an Orion spacecraft. This paper provides a summary of the ARM concept development, including the mission architecture, flight system concepts, the advanced solar electric propulsion system, and the asteroid capture system concepts. Extensibility to future human exploration of the Solar System will also be discussed.

  6. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations. PMID:24823799

  7. Challenges for digitisation – learning from analogue mission planning teams

    OpenAIRE

    Stanton, Neville A.; Walker, Guy H.; Salmon, Paul M.; Jenkins, Daniel P.; Rafferty, Laura A.

    2009-01-01

    This paper aims to consider the conventional, analogue, mission planning process with the objective of identifying the decision making constraints and challenges for digitisation. Prototypes of digital mission planning systems are beginning to be devised and demonstrated, but there has been concern expressed over the design of such systems which fail to understand and incorporate the human aspects of socio-technical systems design. Previous research has identified many of the potential pitfal...

  8. MISSION OF BUSINESS ORGANIZATIONS AND THE SOCIAL-ECONOMIC ENTREPRENEURSHIP

    Directory of Open Access Journals (Sweden)

    Marius EŞI

    2014-02-01

    Full Text Available Spontaneity within Business Mission represents a form of manifestation for entrepreneurial domanin. The strategies formulated by reference to the business organization's mission assertion illustrate a dynamic particular for the intentions of economic actors, but also for the required behavior. The expressed strategic assembly also represents the main determinant for action modalities within business organization. Therefore, capitalizing human and material potential at the level of a business organization involves a series of finalities of entrepreneurial nature.

  9. MISSION OF BUSINESS ORGANIZATIONS AND THE SOCIAL-ECONOMIC ENTREPRENEURSHIP

    OpenAIRE

    Marius EŞI; Alexandru Mircea NEDELEA

    2014-01-01

    Spontaneity within Business Mission represents a form of manifestation for entrepreneurial domanin. The strategies formulated by reference to the business organization's mission assertion illustrate a dynamic particular for the intentions of economic actors, but also for the required behavior. The expressed strategic assembly also represents the main determinant for action modalities within business organization. Therefore, capitalizing human and material potential at the level of a business ...

  10. Systems Architecture for Fully Autonomous Space Missions

    Science.gov (United States)

    Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)

    2002-01-01

    development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.

  11. Validation of Mission Plans Through Simulation

    Science.gov (United States)

    St-Pierre, J.; Melanson, P.; Brunet, C.; Crabtree, D.

    2002-01-01

    The purpose of a spacecraft mission planning system is to automatically generate safe and optimized mission plans for a single spacecraft, or more functioning in unison. The system verifies user input syntax, conformance to commanding constraints, absence of duty cycle violations, timing conflicts, state conflicts, etc. Present day constraint-based systems with state-based predictive models use verification rules derived from expert knowledge. A familiar solution found in Mission Operations Centers, is to complement the planning system with a high fidelity spacecraft simulator. Often a dedicated workstation, the simulator is frequently used for operator training and procedure validation, and may be interfaced to actual control stations with command and telemetry links. While there are distinct advantages to having a planning system offer realistic operator training using the actual flight control console, physical verification of data transfer across layers and procedure validation, experience has revealed some drawbacks and inefficiencies in ground segment operations: With these considerations, two simulation-based mission plan validation projects are under way at the Canadian Space Agency (CSA): RVMP and ViSION. The tools proposed in these projects will automatically run scenarios and provide execution reports to operations planning personnel, prior to actual command upload. This can provide an important safeguard for system or human errors that can only be detected with high fidelity, interdependent spacecraft models running concurrently. The core element common to these projects is a spacecraft simulator, built with off-the- shelf components such as CAE's Real-Time Object-Based Simulation Environment (ROSE) technology, MathWork's MATLAB/Simulink, and Analytical Graphics' Satellite Tool Kit (STK). To complement these tools, additional components were developed, such as an emulated Spacecraft Test and Operations Language (STOL) interpreter and CCSDS TM

  12. International partnership in lunar missions: Inaugural address

    Indian Academy of Sciences (India)

    Dr A P J Abdul Kalam

    2005-12-01

    I am delighted to participate in the 6th International Conference on Exploration and Utilization of the Moon organized by the Physical Research Laboratory,Ahmedabad.I greet the organizers, eminent planetary exploration and space scientists from India and abroad,academicians,industrialists,engineers,entrepreneurs and distinguished guests.I understand that the International Lunar Conference is a forum to discuss scienti fic results of the ongoing and future space missions related to lunar exploration.This conference will also be utilized to develop understanding on various strategies,initiatives and missions leading to a permanent human presence on our Moon as the future objective.I am happy to note that interactions that took place in the earlier conferences have been bene ficial to participating countries through the intense sharing of scientific knowledge,data and hands-on mission experiences of various space agencies pursuing lunar exploration programmes.I find that nearly 100 scientific papers are being presented in this conference and that the Moon missions being planned and conducted by all the space faring nations of the world are being presented,reviewed and discussed.I note with excitement that many key issues related to space science and Moon missions are being addressed in this conference.These deliberations are important for the world space science community.This will enable you to obtain a comprehensive picture of the goals and policies of all nations striving towards a common vision of space research,being made available for the bene fit of all mankind.Indeed this augurs well for progress towards universal peace and harmony that is a cherished goal of the people of the world as a whole.

  13. Combatting Managerial Complacency in Space Missions

    Science.gov (United States)

    Johnson, C. W.

    2012-01-01

    Human factors techniques have made significant contributions to the safety of space missions. Physiological models help to monitor crew workload and performance. Empirical studies inform the design of operator interfaces to maximize finite cognitive and perceptual resources. Further progress has been made in supporting distributed situation awareness across multi-national teams and in promoting the resilience of complex, time critical missions. Most of this work has focused on operational performance. In contrast, most space-based mishaps stem from organizational problems and miss-management. In particular, this paper focuses on the dangers of complacency when previous successes are wrongly interpreted as guarantees of future safety. The argument is illustrated by the recent loss of NASA's Nuclear Compton Telescope Balloon; during a launch phase that 'no-one considered to be a potential hazard'. The closing sections argue that all senior executives should read at least one mishap report every year in order to better understand the hazards of complacency.

  14. The mission of a philosophical discourse

    Directory of Open Access Journals (Sweden)

    José Ricardo Perfecto Sánchez

    2013-07-01

    Full Text Available Attending to the inivitation for participating into the First International Seminary on Conflict Resolution and Peace Construction, we decided to inquire and write on “The mission of philosophical speech about Peace Construction, because we think that is more important to talk about social phenomenon of peace than about social phenomenon of violence, in spite of the tendency of investigating is to study violent facts. In our case, we have preferred to choose for examination and support the proposal of Alfono Fernández Herrería and Mary del Carmen López López on System-Complex Epistemology to built peace. At the same time we follow the Antropic Philosophy of Tomaso Bugossi in order to describe next points: an integral concept of human being like subject-person, distinction among Philosophy and philosophies, mission of a philosophical speech and construction of peace.

  15. Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992

    Science.gov (United States)

    Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.

    1992-01-01

    A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

  16. Digital communication constraints in prior space missions

    Science.gov (United States)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  17. Disruptive Propulsive Technologies for European Space Missions

    OpenAIRE

    Koppel, Christophe; Valentin, Dominique; Blott, Richard; Jansen, Frank; Ferrari, Claudio; Bruno, Claudio; Herdrich, Georg; Gabrielli, Roland

    2013-01-01

    Advanced space technologies have been reviewed and analysed in view of heavy interplanetary missions of interest for Europe and European industry capabilities. Among the missions of interest: o Heavy robotic missions to outer planets, o Asteroid deflection missions, o Interplanetary manned mission (at longer term). These missions involve high speed increments, generally beyond the capability of chemical propulsion (except if gravitational swing-by can be used). For missions bey...

  18. Life at Mission Creep U

    Science.gov (United States)

    Dubrow, Greg; Moseley, Bryan; Dustin, Daniel

    2006-01-01

    The term "mission creep" was originally coined nearly a hundred years ago to describe the gradual process by which a military mission's stated methods and goals change, and recently the term has been applied to incremental organizational changes. In this article, the term is used to describe what happens when a teaching-oriented college or…

  19. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  20. Draft Mission Plan Amendment

    International Nuclear Information System (INIS)

    The Department of Energy's Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation's spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs

  1. The Sunrise Mission

    Science.gov (United States)

    Barthol, P.; Gandorfer, A.; Solanki, S. K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Riethmüller, T. L.; Tomasch, G.; Knölker, M.; Lites, B. W.; Card, G.; Elmore, D.; Fox, J.; Lecinski, A.; Nelson, P.; Summers, R.; Watt, A.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Title, A. M.; Domingo, V.; Gasent Blesa, J. L.; Del Toro Iniesta, J. C.; López Jiménez, A.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Widani, C.; Haberler, P.; Härtel, K.; Kampf, D.; Levin, T.; Pérez Grande, I.; Sanz-Andrés, A.; Schmidt, E.

    2011-01-01

    The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed.

  2. Draft Mission Plan Amendment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-01

    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  3. COSMOS 2044 Mission: Overview

    Science.gov (United States)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  4. An update on the MoonLite Lunar mission

    Science.gov (United States)

    Gowen, R.

    2009-04-01

    In December 2008 the UK BNSC/STFC announced that it would undertake a phase-A study of the proposed 4 penetrator lunar mission, MoonLITE. A status report will be given which includes: a brief science overview; technological assessment (including some results of the first impact trials) and identification of critical areas; organisation and plans for the phase A; longer term plans given a successful phase A; and role of international collaborations. Background: The MoonLITE mission involves implanting 4 penetrators globally spaced at impact speeds of ~300m/s and is aimed for launch in 2014 and operate for 1 year. Each penetrator is designed to come to rest a few metres under the lunar surface to provide a solid emplacement for an effective seismic network and for geochemical and heat flow investigations. Polar emplacement will also allow an exciting ability to characterize the presence of water-ice currently indirectly inferred in the permanently shaded craters. They will also allow investigation of the presence of other volatiles, possibly including organics of astrobiologic interest. MoonLITE can also provide strong support for future human lunar missions including seismic detection of large quakes of surface regions which may dangerous to the construction of lunar habitation or observation facilities; and the possible presence and concentration of water which is important to support future human missions. Potential International Collaboration: The timing of this mission may allow arrangement of coincident impacts of other spacecraft which are at the end of their natural mission lifetime, to provide strong artificial seismic signals to allow probing the deep interior of the Moon. Perhaps no better way to end an otherwise very successful mission ? In addition, the presence of multiple Lunar orbiting spacecraft may allow the possibility of inter-communication between different missions to enhance telemetry rates from the lunar surface and provide mission fault

  5. Odyssey: a Solar System Mission

    CERN Document Server

    Christophe, B; Anderson, J D; Asmar, S; Bério, Ph; Bertolami, O; Bingham, R; Bondu, F; Bouyer, Ph; Bremer, S; Brillet, A; Courty, J-M; Dittus, H; Foulon, B; Gil, P; Johann, U; Jordan, J F; Kent, B; Lämmerzahl, C; Lévy, A; Métris, G; Nock, K T; Olsen, Ø; Páramos, J; Prestage, J D; Progrebenko, S V; Rasel, E; Rathke, A; Reynaud, S; Rievers, B; Samain, E; Sumner, T J; Theil, S; Touboul, P; Turyshev, S; Vrancken, P; Wolf, P; Yu, N

    2007-01-01

    The Solar System Odyssey mission uses modern-day high-precision experimental techniques to answer some of the important questions on the laws of fundamental physics which determine dynamics in the solar system. It could lead to a major discovery by using readily available technologies and could be flown early within the Cosmic Vision time frame. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the deep Solar System far beyond the orbit of known planets: verification of gravity in the deep Solar System, measurement of Eddington's parameter, investigation on fly-by anomaly, mapping of gravity field in the outer solar system. The Odyssey mission focuses its efforts on the challenge of designing a deep space mission within the cost of 300Meuros. This challenge restricts the main mission design choices (launcher, energy and payload options) and trade-offs in science goals. The payload definition emphasises demonstrated technology, with non gravitational force...

  6. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    Science.gov (United States)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  7. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  8. Contextual Reference of Gandhian Philosophy in Human Resources Management Practices

    Directory of Open Access Journals (Sweden)

    Kuppannagari Venkata Suryanarayana Patnaik

    2014-02-01

    Full Text Available India is a land of philosophers; Gandhi is a reformer and a modern philosopher who invented tools to inspire the masses. These tools find relevance in present day, Gandhian Philosophy is based on the four pillars; Truth, Non-Violence or Ahimsa, Self-Respect and Satyagraha. He practiced and preached the life of austerity, humbleness and truth. His philosophy of simple living and high thinking attracted the peasants, humbled the mighty and the rich. The present paper analyses the application of the principles in the present context with respect to human resources practices. The present global context requires inspirational leadership style with appropriate strategy; Gandhiji is the best strategist with follower centric approach. The human resource management practices were linked with human factor theory and defined as a bundle of practices. The strike as a right, collective bargaining, arbitration and self-introspection were some of his contributions.

  9. The Magnetospheric Multiscale Mission

    Science.gov (United States)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  10. Mission Control Technologies: A New Way of Designing and Evolving Mission Systems

    Science.gov (United States)

    Trimble, Jay; Walton, Joan; Saddler, Harry

    2006-01-01

    Current mission operations systems are built as a collection of monolithic software applications. Each application serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish specific tasks, each application embodies specialized functional knowledge and has its own data storage, data models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities across a set of monolithic applications. These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions. Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to build mission control systems that overcome the problems inherent in systems of monolithic applications. The keys to the solution are modularity and interoperability. Modularity will increase extensibility (evolution), reusability, and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components. Modularity and interoperability together contribute to flexibility. The Mission Control Technologies (MCT) Project, a collaboration of

  11. STS-99 / Endeavour Mission Overview

    Science.gov (United States)

    2000-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.

  12. Interstellar rendezvous missions employing fission propulsion systems

    Science.gov (United States)

    Lenard, Roger X.; Lipinski, Ronald J.

    2000-01-01

    There has been a conventionally held nostrum that fission system specific power and energy content is insufficient to provide the requisite high accelerations and velocities to enable interstellar rendezvous missions within a reasonable fraction of a human lifetime. As a consequence, all forms of alternative mechanisms that are not yet, and may never be technologically feasible, have been proposed, including laser light sails, fusion and antimatter propulsion systems. In previous efforts, [Lenard and Lipinski, 1999] the authors developed an architecture that employs fission power to propel two different concepts: one, an unmanned probe, the other a crewed vehicle to Alpha Centauri within mission times of 47 to 60 years. The first portion of this paper discusses employing a variant of the ``Forward Resupply Runway'' utilizing fission systems to enable both high accelerations and high final velocities necessary for this type of travel. The authors argue that such an architecture, while expensive, is considerably less expensive and technologically risky than other technologically advanced concepts, and, further, provides the ability to explore near-Earth stellar systems out to distances of 8 light years or so. This enables the ability to establish independent human societies which can later expand the domain of human exploration in roughly eight light-year increments even presuming that no further physics or technology breakthroughs or advances occur. In the second portion of the paper, a technology requirement assessment is performed. The authors argue that reasonable to extensive extensions to known technology could enable this revolutionary capability. .

  13. Atmosphere composition monitor for space station and advanced missions application

    International Nuclear Information System (INIS)

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions

  14. The Science of Mission Assurance

    Directory of Open Access Journals (Sweden)

    Kamal Jabbour

    2011-01-01

    Full Text Available The intent of this article is to describe—and prescribe—a scientific framework for assuring mission essential functions in a contested cyber environment. Such a framework has profound national security implications as the American military increasingly depends on cyberspace to execute critical mission sets. In setting forth this prescribed course of action, the article will first decompose information systems into atomic processes that manipulate information at all six phases of the information lifecycle, then systematically define the mathematical rules that govern mission assurance.

  15. NASA/ESMD Analogue Mission Plans

    Science.gov (United States)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  16. The TPF Mission at L2

    Science.gov (United States)

    Lo, Martin; Romans, Larry; Masdemont, Josep; Gomez, Gerard

    2001-01-01

    The Terrestrial Planet Finder (TPF) is one of the center pieces of NASA's Origins Program. The goal of TPF is to identify terrestrial planets around stars nearby the Sun. For this purpose, a space-based interferometer with a baseline of approximately 100 m is required. To achieve such a large baseline, a distributed system of five spacecraft flying in formation is an efficient approach. Since the TPF instruments need a cold and stable environment, a halo orbit about 4 is ideal. First, we describe formation flight near the Lagrange point is feasible for the TPF mission. Second, we propose a novel approach for human servicing of Lagrange point missions by placing a Lunar service station in an Lunar L1 orbit. The TPF spacecraft can be transferred to a Lunar L1 orbit in a few days and requires relatively little delta-V. This efficient transfer results from the system of low energy pathways connecting the entire Solar System generated by the Lagrange points. The halo orbits are the portals of this Interplanetary . A Lunar Station at the L,portal, in addition to servicing missions from the Sun-Earth Lagrange points, may play an even more important role in the future development of space.

  17. Mission Benefits Analysis of Logistics Reduction Technologies

    Science.gov (United States)

    Ewert, Michael K.; Broyan, James Lee, Jr.

    2013-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  18. Space missions to the exoplanets: Will they ever be possible

    Science.gov (United States)

    Genta, Giancarlo

    There is no doubt that the discovery of exoplanets has made interstellar space mission much more interesting than they were in the past. The possible discovery of a terrestrial type plane at a reasonable distance will give a strong impulse in this direction. However, there are doubts that such long range space mission will ever become feasible at all and, in case they will be, it is impossible to forecast a timeframe for them. At present, precursor interstellar missions are planned, but they fall way short from yielding interesting information about exoplanets, except perhaps in the case of missions to the focal line of the Sun’s gravitational lens, whose usefulness in this context is still to be demonstrated. They are anyway an essential step in the roadmap toward interstellar missions. Often the difficulties linked with interstellar missions are considered as related with the huge quantity of energy required for reaching the target star system within a reasonable timeframe. While this may well be a showstopper, it is not the only problem to be solved to make them possible. Two other issues are those linked with the probe’s autonomy and the telecommunications required to transmit large quantities of information at those distances. Missions to the exoplanets may be subdivided in the following categories: 1) robotic missions to the destination system, including flybys; 2) robotic missions including landing on an exoplanet; 3) robotic sample return missions; 4) human missions. The main problem to be solved for missions of type 1 is linked with propulsion and with energy availability, while autonomy (artificial intelligence) and telecommunication problems are more or less manageable with predictable technologies. Missions of type 2 are more demanding for what propulsion is concerned, but above all require a much larger artificial intelligence and also will generate a large amount of data, whose transmission back to Earth may become a problem. The suggestion of

  19. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  20. Developing Experimental Models for NASA Missions with ASSL

    CERN Document Server

    Vassev, Emil

    2010-01-01

    NASA's new age of space exploration augurs great promise for deep space exploration missions whereby spacecraft should be independent, autonomous, and smart. Nowadays NASA increasingly relies on the concepts of autonomic computing, exploiting these to increase the survivability of remote missions, particularly when human tending is not feasible. Autonomic computing has been recognized as a promising approach to the development of self-managing spacecraft systems that employ onboard intelligence and rely less on control links. The Autonomic System Specification Language (ASSL) is a framework for formally specifying and generating autonomic systems. As part of long-term research targeted at the development of models for space exploration missions that rely on principles of autonomic computing, we have employed ASSL to develop formal models and generate functional prototypes for NASA missions. This helps to validate features and perform experiments through simulation. Here, we discuss our work on developing such...

  1. Tropical Rainfall Measuring Mission

    Science.gov (United States)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  2. Executive Summary - Our mission

    International Nuclear Information System (INIS)

    On September 1st 2003, the Henryk Niewodniczanski Institute of Nuclear Physics in Cracow joined the Polish Academy of Sciences. The Polish Academy of Sciences (PAN), founded in 1952, is a state-sponsored scientific institution acting through an elected corporation of leading scholars, their research organizations and through numerous scientific establishments. PAN is a major national scientific advisory body acting via its scientific committees which represent all disciplines of science. There are currently 79 PAN research establishments (institutes and research centers, research stations, botanical gardens and other research units) and a number of auxiliary scientific units (such as archives, libraries, museums, and PAN stations abroad). Our Institute is currently one of the largest research institutions of the Polish Academy of Sciences. The research activity of the Academy is financed mainly from the State budget via the Ministry of Scientific Research and Information Technology. The mission of the Institute of Nuclear Physics, IFJ is stated in its Charter. According to Paragraphs 5, 6, and 7 of the 2004 Charter, the Institute's duty is to carry out research activities in the following areas:1. High energy and elementary particle physics (including astrophysics), 2. Nuclear physics and physics of mechanisms of nuclear interaction, 3. Condensed matter physics, 4. Interdisciplinary research, and in particular: in radiation and environmental biology, environmental physics, medical physics, dosimetry, nuclear geophysics, radiochemistry and material engineering. The main tasks of the Institute are: 1. To perform research in the above disciplines, 2. To promote the development of scientists and of specialists qualified to carry out research in these disciplines, 3. To organize a Post-Doctoral Study Course, 4. To permit, through agreements with national and foreign research institutions, external scholars to train and gain academic qualifications in the Institute

  3. Mission X: Train Like an Astronaut Challenge

    Science.gov (United States)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  4. General Mission Analysis Tool (GMAT)

    Science.gov (United States)

    Hughes, Steven P. (Compiler)

    2016-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  5. KEPLER Mission: development and overview.

    Science.gov (United States)

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. PMID:26863223

  6. SpinSat Mission Overview

    OpenAIRE

    Nicholas, Andrew; Finne, Ted; Galysh, Ivan; Mai, Anthony; Yen, Jim; Sawka, Wayne; Ransdell, Jeff; Williams, Shae

    2013-01-01

    The SpinSat flight is a small satellite mission proposed by the Naval Research Laboratory and Digital Solid State Propulsion (DSSP) LLC to demonstrate and characterize the on-orbit performance of electrically controlled solid propellant technology in space. This is an enabling technology for the small satellite community that will allow small satellites to perform maneuvers. The mission consists of a 22-inch diameter spherical spacecraft fitted with Electrically Controlled Solid Propellant th...

  7. Surgery in a mission hospital.

    OpenAIRE

    Hankins, G. W.

    1980-01-01

    The western-trained surgeon working in a mission hospital in a developing country finds that in spite of the heavy demands placed upon him the work can be most absorbing, challenging, and satisfying. Some impressions gained during 31/2 years working in the department of surgery of a mission hospital in Kathmandu, Nepal, are recorded. Particular reference is made to the striking differences in disease incidence, as brought out in a review of operative surgery for 1977.

  8. Rosetta mission operations for landing

    Science.gov (United States)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  9. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina;

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  10. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, Michael; Clifford, S.; Lawrence, S.; Klaus, K.; Smith, D.

    2013-10-01

    Introduction: The time has come to leverage technology advances to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes. Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Mission Concept: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Our concept involves using a Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power 5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both

  11. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    Science.gov (United States)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.

    2012-01-01

    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  12. Executive Summary - Our mission

    International Nuclear Information System (INIS)

    Full text: The Henryk Niewodniczanski Institute of Nuclear Physics (Instytut Fizyki Jadrowej im. Henryka Niewodniczanskiego, IFJ PAN) is currently the largest research institution of the Polish Academy of Sciences (Polska Akademia Nauk). The research activity of the Academy is financed mainly from the State budget via the Ministry of Science and Higher Education. The mission of IFJ PAN is stated in its Charter. According to Paragraphs 5, 6, and 7 of the 2004 Charter, the Institute's duty is to carry out research activities in the following areas: 1. High energy and elementary particle physics (including astrophysics), 2. Nuclear physics and strong interaction, 3. Condensed matter physics, 4. Interdisciplinary research, in particular: in radiation and environmental biology, environmental physics, medical physics, dosimetry, nuclear geophysics, radiochemistry and material engineering. The main tasks of the Institute are: 1. To perform research in the above disciplines, 2. To promote the development of scientists and of specialists qualified to carry out research in these disciplines, 3. To organize a Post-Graduate Study Course, 4. To permit, through agreements with national and foreign research institutions, external scholars to train and gain academic qualifications in the Institute's laboratories, 5. To collaborate with national and local authorities in providing them with expertise in the Institute's research topics, especially concerning radiation protection. These tasks are fulfilled by: 1. Performing individual and coordinated research through individual and collective research grant projects, 2. Initiating and maintaining cooperation with laboratories, organizations and institutions performing similar activities, in Poland and abroad, 3. Conferring scientific degrees and titles, 4. Distributing research results obtained, through peer-reviewed publications and other public media, 5. Organizing scientific meetings, conferences, symposia, training workshops, etc

  13. Solar Power System Analyses for Electric Propulsion Missions

    Science.gov (United States)

    Kerslake, Thomas W.; Gefert, Leon P.

    1999-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 sq m. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 sq m.

  14. Contentious precarious generation in anti-austerity movements in Spain and Italy (La protesta de la generación precaria en los movimientos antiausteridad en España e Italia

    Directory of Open Access Journals (Sweden)

    Massimiliano Andretta

    2015-07-01

    Full Text Available This article focuses on the precarious generation protesting in Spain and Italy in times of crisis and austerity (2010-2012. Their many similarities notwithstanding, the two countries have experienced different types of mobilization against austerity measures. In Spain, a relatively autonomous mobilization –characterized by new collective actors and new forms of action– has made possible the building of a political actor, Podemos, able to seriously challenge the established political parties. In Italy, instead, the mobilization was dominated by established political actors, especially trade unions, did not produce innovative forms of action and has not been able to overcome (so far the fragmentation of the social movement sector. In both countries, however, the anti-austerity protests have been characterized by a strong presence of what we call hear the “precarious generation”, particularly exposed to the economic crisis and the austerity measures. By relying on data from several surveys conducted in demonstrations on social, economic and labor issues in the two countries from 2010 to 2011, in this article we single out differences and the similarities in terms of presence, social composition, grievances and emotion, collective identity and network embeddedness of the precarious generation. Our findings show that the precarious generation was almost equally present in the selected demonstrations in the two countries, share similar socio-graphic features and similar types of grievance and emotions. Nonetheless, in Spain it seems to have built a more cohesive and radical collective identity based upon a more informal and internet based network integration while in Italy it seems embedded in a more traditional and formal network, which prevented the formation of a strong collective identity. Moreover, while in Spain the differences between the older and the precarious generation reveal that, both have a strong identity based on different

  15. Mission Design Overview for the Phoenix Mars Scout Mission

    Science.gov (United States)

    Garcia, Mark D.; Fujii, Kenneth K.

    2007-01-01

    The Phoenix mission "follows the water" by landing in a region where NASA's Mars Odyssey orbiter has discovered evidence of ice-rich soil very near the Martian surface. For three months after landing, the fixed Lander will perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, sub-surface, and atmosphere, and will identify potential provenance of key indicator elements of significance to the biological potential of Mars, including potential organics and any accessible water ice. The Lander will employ a robotic arm to dig to the ice layer, and will analyze the acquired samples using a suite of deck-mounted, science instruments. The development of the baseline strategy to achieve the objectives of this mission involves the integration of a variety of elements into a coherent mission plan.

  16. The “ageing” experiment in the spanish soyuz mission to the international space station

    OpenAIRE

    de Juan, E; Benguria, Alberto; Villa, Aida; Leandro, L.J.; Herranz, Raúl; Duque, Pedro; Horn, Eberhard; Medina, F. Javier; van Loon, J; de Marco, Roberto

    2007-01-01

    Human exploration of outer space will eventually take place. In preparation for this endeavour, it is important to establish the nature of the biological response to a prolonged exposure to the space environment. In one of the recent Soyuz Missions to serve the International Space Station (ISS), the Spanish Soyuz mission in October 2003, we exposed four groups of Drosophila male imagoes to microgravity during the almost eleven days of the Cervantes mission to study their motility behavi...

  17. Physiological and psychological stress limits for astronautics Observations during the Skylab I-III missions

    Science.gov (United States)

    Burchard, E. C.

    1975-01-01

    The physiological and psychological factors of manned space flight had a particular significance in the Skylab missions during which astronauts were subjected to a life in a space environment for longer periods of time than on previous space missions. The Skylab missions demonstrated again the great adaptability of human physiology to the environment of man. The results of Skylab have indicated also approaches for enhancing the capability of man to tolerate the physiological and psychological stresses of space flight.

  18. Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions

    Science.gov (United States)

    Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2004-01-01

    NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.

  19. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  20. Developing Advanced Support Technologies for Planetary Exploration Missions

    Science.gov (United States)

    Berdich, Debra P.; Campbel, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth s moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a systems engineering process and risk management methods, ExSD s Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. these products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  1. Modeling cognitive and tactical aspects in hunter-killer missions

    OpenAIRE

    Berman, Ohad

    2006-01-01

    Approved for public release; distribution is unlimited In this thesis, we present a Markov-based probability model for a human operated system of aerial hunter-killers attacking time-sensitive targets. We explore the effect of two resources -- time and supply of munitions -- and some cognitive aspects of the human operator on the performance of the system in different operational scenarios. We model the combat mission as a sequence of engagements; each of which includes a classificati...

  2. Near-Earth Asteroid Retrieval Mission (ARM) study

    OpenAIRE

    Brophy, John R.; Muirhead, Brian

    2013-01-01

    The Asteroid Redirect Mission (ARM) concept brings together the capabilities of the science, technology, and the human exploration communities on a grand challenge combining robotic and human space exploration beyond low Earth orbit. This paper addresses the key aspects of this concept and the options studied to assess its technical feasibility. Included are evaluations of the expected number of potential targets, their expected discovery rate, the necessity to adequately chara...

  3. Future Missions to Study Signposts of Planets

    Science.gov (United States)

    Traub, Wesley A.

    2011-01-01

    This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.

  4. 309 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    This report presents the results of the 309 Building (Plutonium Fuels Utilization Program) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  5. Initiating Exponential Growth in NEA Exploration with NEA Science Missions

    Science.gov (United States)

    Dahlstrom, Eric L.

    2000-01-01

    Development of asteroid and cometary resources, interplanetary human settlements, and protection against impact threats (including long period comets) will all involve large-scale activities in the inner solar system. Each of these activities require answers to specific scientific questions - some of which can be addressed by future Near Earth Asteroid (NEA) sample return missions, as will be identified at this workshop. This paper addresses the question of how to initiate the exponential growth required to create these large-scale activities, and the role of near-term NEA sample return missions in triggering this growth. It is now recognized that NEA science will play a central role in future human activities in the inner solar system. In addition to the technical issues, how the NEA missions are conducted will also affect how quickly these activities are initiated. Historically, interplanetary missions have been conducted with the assumption that only governments and government/contractor teams could accomplish these complex tasks. Recently, the Discovery Mission model has established new roles for the Principle Investigator and contractor teams. Currently there are proposals for data purchase arrangements and other mechanisms to further separate the roles of purchasers and providers. This paper will examine these proposals in the context of NEA science, development, and exploration. The paper will report on a project currently underway to identify cross-cultural solutions to maximize science return within resource constraints while initiating exponential growth in exploration and development of NEAs.

  6. Mission Operations of LISA Pathfinder

    Science.gov (United States)

    Hewitson, Martin

    The mission operations of LISA Pathfinder will focus on extracting the maximum science from the mission. In order to do that, the operational timeline must remain flexible and be able to adapt to new information about the system as it comes in. At the end of the science operations phase, the goal is to have optimised the system to produce the quietest free-fall of the test-masses possible, as well as to have built up a comprehensive noise model of the system to allow robust performance projections of future LISA-like missions. This talk will discuss some of the details of the operational scenarios and talk about the approach to optimising performance and establishing a system noise budget.

  7. The inner magnetosphere imager mission

    International Nuclear Information System (INIS)

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (RE) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  8. Small Explorer for Advanced Missions - cubesat for scientific mission

    Science.gov (United States)

    Pronenko, Vira; Ivchenko, Nickolay

    2015-04-01

    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  9. The virtual mission approach: Empowering earth and space science missions

    Science.gov (United States)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  10. Psychology and culture during long-duration space missions

    Science.gov (United States)

    Kanas, N.; Sandal, G.; Boyd, J. E.; Gushin, V. I.; Manzey, D.; North, R.; Leon, G. R.; Suedfeld, P.; Bishop, S.; Fiedler, E. R.; Inoue, N.; Johannes, B.; Kealey, D. J.; Kraft, N.; Matsuzaki, I.; Musson, D.; Palinkas, L. A.; Salnitskiy, V. P.; Sipes, W.; Stuster, J.; Wang, J.

    2009-04-01

    The objective of this paper is twofold: (a) to review the current knowledge of cultural, psychological, psychiatric, cognitive, interpersonal, and organizational issues that are relevant to the behavior and performance of astronaut crews and ground support personnel and (b) to make recommendations for future human space missions, including both transit and planetary surface operations involving the Moon or Mars. The focus will be on long-duration missions lasting at least six weeks, when important psychological and interpersonal factors begin to take their toll on crewmembers. This information is designed to provide guidelines for astronaut selection and training, in-flight monitoring and support, and post-flight recovery and re-adaptation.

  11. Life sciences - On the critical path for missions of exploration

    Science.gov (United States)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  12. Radiation protection issues and techniques concerning extended manned space missions

    International Nuclear Information System (INIS)

    The natural radiation environment in outer space, as well as manmade radiation sources in support of future space missions (such as fission reactors for space power and propulsion applications) could severely limit the duration and types of manned space missions now being considered for the next century. These extended human space missions include: permanent space stations in low Earth orbit (LEO) and at geostationary Earth orbit (GEO), lunar bases, and human expeditions to and settlement of the planet Mars. One very important issue influencing a permanent human presence in space is that of space radiation protection. Astronauts and cosmonauts are, in effect, ''special radiation workers'' who require an extensive radiation protection program. An examination of the space radiation environment, natural and manmade, in association with ambitious 21st Century space activities clearly identifies the need for an advanced, innovative space radiation protection program that includes: effective radiation monitoring devices suitable for a variety of extraterrestrial work locations (e.g. LEO, lunar surface, interplanetary space, etc.), an improved ability to model and predict crew doses for sophisticated and long-duration missions, and the development of in-situ space radiation protection laboratories as an integral part of future space station complexes, lunar surface bases, and Mars expedition spacecraft and surface settlements. (author). 16 refs, 10 figs, 3 tabs

  13. New Horizons Mission to Pluto

    Science.gov (United States)

    Delgado, Luis G.

    2011-01-01

    This slide presentation reviews the trajectory that will take the New Horizons Mission to Pluto. Included are photographs of the spacecraft, the launch vehicle, the assembled vehicle as it is being moved to the launch pad and the launch. Also shown are diagrams of the assembled parts with identifying part names.

  14. Pluto Express: Mission to Pluto

    Science.gov (United States)

    Giuliano, J. A.

    1996-01-01

    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  15. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...

  16. Mission Statements: One More Time.

    Science.gov (United States)

    Detomasi, Don

    1995-01-01

    It is argued that well-conceived college and university mission statements can be useful in setting objectives for planning and for public information dissemination and marketing. The experience of the University of Calgary (Alberta) illustrates a successful process of drafting and reaching agreement on such a document. (MSE)

  17. Catholic Higher Education as Mission

    Science.gov (United States)

    Lowery, Daniel

    2012-01-01

    This article uses the work of Anthony J. Gittins to reframe our understanding of Catholic higher education as mission. The broad adoption of this framework would require a common intellectual foundation, the possibility of which is dismissed by many. An accessible ontology is implied, however, in the existential analysis and theology of Karl…

  18. Gravitational-wave Mission Study

    Science.gov (United States)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  19. LISA Pathfinder: mission and status

    International Nuclear Information System (INIS)

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  20. The DEMETER Science Mission Centre

    Czech Academy of Sciences Publication Activity Database

    Lagoutte, D.; Brochot, J.; Y.; de Carvalho, D.; Elie, F.; Harivelo, F.; Hobara, Y.; Madrias, L.; Parrot, M.; Pincon, J. L.; Berthelier, J. J.; Peschard, D.; Seran, E.; Gangloff, M.; Sauvaud, J. A.; Lebreton, J. P.; Štverák, Štěpán; Trávníček, Pavel M.; Grygorczuk, J.; Slominski, J.; Wronowski, R.; Barbier, S.; Bernard, P.; Gaboriaud, A.; Wallut, J. M.

    2006-01-01

    Roč. 54, č. 5 (2006), s. 428-440. ISSN 0032-0633 Institutional research plan: CEZ:AV0Z30420517 Keywords : Mission Centre * Data processing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.509, year: 2006

  1. The Imminent Swift MIDEX Mission

    Science.gov (United States)

    Gehrels, Neil

    2004-01-01

    Swift is a NASA MIDEX mission that is in development for launch in Fall 2004. It is a multiwavelength observatory for transient astronomy. The goals of the mission are to determine the origin of gamma-ray bursts and their afterglows and use bursts to probe the early Universe. The mission will also perform a hard x-ray survey at the 1 milliCrab level and will continuously monitor the sky for transients. A wide-field gamma-ray camera will detect more than a hundred GRBs per year to 3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst. location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions will be determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. The instrumentation is a combination of existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approximately 0.5 square meter) CdZnTe detector array. The ground station in Malindi is contributed by the Italian Space Agency. The instruments have now completed their fabrication phase and are currently being integrated on the observatory for final testing. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift.

  2. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  3. Planned CMB Satellite Mission Overview

    Science.gov (United States)

    Lee, Adrian

    2016-03-01

    I will summarize space missions that are in the planning stage to measure the polarized spatial fluctuations of the cosmic microwave background (CMB). Space missions are complementary to ground-based observatories. First, the absence of atmospheric emission results in a wider range of frequencies that can be observed, which in turn improves removal of galactic foreground emission. Second, the stable observations possible from space give high-fidelity measurements at angular scales of tens of degrees where inflation theory predicts a peak in the B-mode angular power spectrum. Robust detection of both this ``reionization'' peak and the ``recombination'' peak at degree angular scales will give the most convincing case that the fingerprints of inflation have been detected. CMB polarization space missions in the planning stage include CORE+, LiteBIRD, and PIXIE. Science goals for all these missions include the detection and characterization of inflation and the characterization of the reionization epoch. CORE+ and LiteBIRD are imaging telescopes with sub-Kelvin superconducting focal-plane detector arrays with several thousand detectors. PIXIE is a two-beam differential spectrometer that will measure the Planck spectrum of the CMB in addition to searching for inflation.

  4. An overview of the risk uncertainty assessment process for the Cassini space mission

    International Nuclear Information System (INIS)

    The Cassini spacecraft is a deep space probe whose mission is to explore the planet Saturn and its moons. Since the spacecraft's electrical requirements will be supplied by radioisotope thermoelectric generators (RTGs), the spacecraft designers and mission planners must assure that potential accidents involving the spacecraft do not pose significant human risk. The Cassini risk analysis team is seeking to perform a quantitative uncertainty analysis as a part of the overall mission risk assessment program. This paper describes the uncertainty analysis methodology to be used for the Cassini mission and compares it to the methods that were originally developed for evaluation of commercial nuclear power reactors

  5. Education and Public Outreach and Engagement at NASA's Analog Missions in 2012

    Science.gov (United States)

    Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.

    2013-01-01

    Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate

  6. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  7. Science Activity Planner for the MER Mission

    Science.gov (United States)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  8. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    M. Fehringer

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  9. Geomagnetism mission concepts after Swarm

    International Nuclear Information System (INIS)

    Complete text of publication follows. While planning for the ESA Swarm mission has been a primary focus of geomagnetism over the past decade, the long time lags necessary for satellite missions dictate that planning for the next mission begin even before the launch of Swarm. Swarm will measure, for the first time, the E-W gradient of the magnetic field. In 2006, NASA launched a minisatellite magnetometer constellation mission (ST-5) to test technologies and software. The ST-5 constellation made the first along-track gradient measurements. One of the concepts under consideration for missions after Swarm is to systematically measure spatial gradients. The radial gradient could be measured using either an 'uncontrolled' fleet of satellites at different altitudes and local times, or by two or more satellites in a cartwheel configuration. Small-scale static features (degrees > 13) of the core field remain unknown because of their overlap with the crustal field, but they are of critical importance in core flow modeling. To what extent can small-scale features of the core field be separated from longer-wavelength crustal fields using radial gradients? We discuss this question in the context of a model study in which we attempt to recover separate core and crustal fields. The long wavelength crustal field model input is based on the seismic 3SMAC model, updated using MF-6. The core field model input is based on CHAOS-2. We will discuss the extent to which such a separation is ill-posed, and dependent on details of the parameterization. We will also discuss the extent to which such a separation is affected by the presence of annihilators.

  10. The Lunar Prospector Discovery mission: Mission and measurement description

    International Nuclear Information System (INIS)

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon's composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided

  11. Multiple Space Debris Collecting Mission -- Optimal Mission Planning

    CERN Document Server

    Cerf, Max

    2014-01-01

    This paper addresses the problem of planning successive Space Debris Collecting missions so that they can be achieved at minimal cost by a generic vehicle. The problem mixes combinatorial optimization to select and order the debris among a list of candidates, and continuous optimization to fix the rendezvous dates and to define the minimum fuel orbital maneuvers. The solution method proposed consists in three stages. Firstly the orbital transfer problem is simplified by considering a generic transfer strategy suited either to a high thrust or a low thrust vehicle. A response surface modelling is built by solving the reduced problem for all pairs of debris and for discretized dates, and storing the results in cost matrices. Secondly a simulated annealing algorithm is applied to find the optimal mission planning. The cost function is assessed by interpolation on the response surface based on the cost matrices. This allows the convergence of the simulated algorithm in a limited computation time, yielding an opti...

  12. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  13. Spitzer Observatory Operations -- Increasing Efficiency in Mission Operations

    Science.gov (United States)

    Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.

    2006-01-01

    This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element.

  14. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    Science.gov (United States)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  15. Multiple Space Debris Collecting Mission -- Optimal Mission Planning

    OpenAIRE

    Cerf, Max

    2014-01-01

    This paper addresses the problem of planning successive Space Debris Collecting missions so that they can be achieved at minimal cost by a generic vehicle. The problem mixes combinatorial optimization to select and order the debris among a list of candidates, and continuous optimization to fix the rendezvous dates and to define the minimum fuel orbital maneuvers. The solution method proposed consists in three stages. Firstly the orbital transfer problem is simplified by considering a generic ...

  16. Spacelab life sciences 2 post mission report

    Science.gov (United States)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  17. Psychological considerations in future space missions

    Science.gov (United States)

    Helmreich, R. L.; Wilhelm, J. A.; Runge, T. E.

    1980-01-01

    Issues affecting human psychological adjustments to long space missions are discussed. Noting that the Shuttle flight crewmembers will not have extensive flight qualification requirements, the effects of a more heterogeneous crew mixture than in early space flights is considered to create possibilities of social conflicts. Routine space flight will decrease the novelty of a formerly unique experience, and the necessity of providing personal space or other mechanisms for coping with crowded, permanently occupied space habitats is stressed. Women are noted to display more permeable personal space requirements. The desirability of planning leisure activities is reviewed, and psychological test results for female and male characteristics are cited to show that individuals with high scores in both traditionally male and female attributes are most capable of effective goal-oriented behavior and interpersonal relationships. Finally, it is shown that competitiveness is negatively correlated with the success of collaborative work and the social climate of an environment.

  18. An efficient phased mission reliability analysis for autonomous vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Remenyte-Prescott, R., E-mail: R.Remenyte-Prescott@nottingham.ac.u [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Andrews, J.D. [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Chung, P.W.H. [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  19. NASA's asteroid redirect mission: Robotic boulder capture option

    Science.gov (United States)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-07-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.

  20. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  1. Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate

    Science.gov (United States)

    Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

  2. An Overview of NASA's Asteroid Redirect Mission (ARM) Concept

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is developing the Asteroid Redirect Mission (ARM) as a capability demonstration for future human exploration, including use of high-power solar electric propulsion, which allows for the efficient movement of large masses through deep space. The ARM will also demonstrate the capability to conduct proximity operations with natural space objects and crewed operations beyond the security of quick Earth return. The Asteroid Redirect Robotic Mission (ARRM), currently in formulation, will visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, conduct a demonstration of a slow push planetary defense technique, and redirect the multi-ton boulder into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts aboard an Orion spacecraft will dock with the robotic vehicle to explore the boulder and return samples to Earth. The ARM is part of NASA's plan to advance technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. The ARM and subsequent availability of the asteroidal material in cis-lunar space, provide significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, and in-situ resource utilization (ISRU). NASA established the Formulation Assessment and Support Team (FAST), comprised of scientists, engineers, and technologists, which supported ARRM mission requirements formulation, answered specific questions concerning potential target asteroid physical properties, and produced a publically available report. The ARM Investigation Team is being organized to support ARM implementation and execution. NASA is also open to collaboration with its international partners and welcomes further discussions. An overview of the ARM robotic and crewed segments, including mission requirements, NEA targets, and mission operations, and a discussion

  3. Mission Risk Reduction Regulatory Change Management

    Science.gov (United States)

    Scroggins, Sharon

    2007-01-01

    NASA Headquarters Environmental Management Division supports NASA's mission to pioneer the future in space exploration, scientific discovery, and aeronautics research by integrating environmental considerations into programs and projects early-on, thereby proactively reducing NASA's exposure to institutional, programmatic and operational risk. As part of this effort, NASA established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) as a resource for detecting, analyzing, and communicating environmental regulatory risks to the NASA stakeholder community. The RRAC PC focuses on detecting emerging environmental regulations and other operational change drivers that may pose risks to NASA programs and facilities, and effectively communicating the potential risks. For example, regulatory change may restrict how and where certain activities or operations may be conducted. Regulatory change can also directly affect the ability to use certain materials by mandating a production phase-out or restricting usage applications of certain materials. Regulatory change can result in significant adverse impacts to NASA programs and facilities due to NASA's stringent performance requirements for materials and components related to human-rated space vehicles. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented a system for proactively managing regulatory change to minimize potential adverse impacts to NASA programs and facilities. This presentation highlights the process utilized by the RRACPC to communicate regulatory change and the associated

  4. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    Science.gov (United States)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  5. The Mercury dual orbiter mission

    International Nuclear Information System (INIS)

    The Mercury Orbiter (MeO) will carry out a full range of particles, fields, and planetary imaging science at Mercury. Present mission plans call for a launch in 1999 with a flight time of about 4.5 years. By means of multiple Venus and Mercury gravitational assists, the mission can be accomplished with present U.S. launch vehicles and a very large payload can be placed in orbit around Mercury. The dual-spacecraft concept will permit outstanding scientific study of solar cosmic rays and the solar wind throughout the inner heliosphere from 0.3 AU to 1.0 AU. Modest enhancements to the planned magnetospheric instruments and utilization of onboard solar instruments will permit unique investigation of solar particle acceleration and transport with the MeO spacecraft

  6. Status of the DIOS mission

    Science.gov (United States)

    Tawara, Y.; Sakurai, I.; Furuzawa, A.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Hoshino, A.; Akamatsu, H.; Ishikawa, K.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Shinozaki, K.; Masui, K.; Yoshino, T.; Hagihara, T.; Kimura, S.; Yoshitake, H.

    2008-07-01

    We present the current status of a small X-ray mission DIOS (Diffuse Intergalactic Oxygen Surveyor), consisting of a 4-stage X-ray telescope and an array of TES microcalorimeters, cooled with mechanical coolers, with a total weight of about 400 kg. The mission will perform survey observations of warm-hot intergalactic medium using OVII and OVIII emission lines, with the energy coverage up to 1.5 keV. The wide field of view of about 50' diameter, superior energy resolution close to 2 eV FWHM, and very low background will together enable us a wide range of science for diffuse X-ray sources. We briefly describe the current status of the development of the satellite, and the subsystems.

  7. Java Mission Evaluation Workstation System

    Science.gov (United States)

    Pettinger, Ross; Watlington, Tim; Ryley, Richard; Harbour, Jeff

    2006-01-01

    The Java Mission Evaluation Workstation System (JMEWS) is a collection of applications designed to retrieve, display, and analyze both real-time and recorded telemetry data. This software is currently being used by both the Space Shuttle Program (SSP) and the International Space Station (ISS) program. JMEWS was written in the Java programming language to satisfy the requirement of platform independence. An object-oriented design was used to satisfy additional requirements and to make the software easily extendable. By virtue of its platform independence, JMEWS can be used on the UNIX workstations in the Mission Control Center (MCC) and on office computers. JMEWS includes an interactive editor that allows users to easily develop displays that meet their specific needs. The displays can be developed and modified while viewing data. By simply selecting a data source, the user can view real-time, recorded, or test data.

  8. The GAMMA-400 Space Mission

    CERN Document Server

    Cumani, P; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    GAMMA-400 is a new space mission which will be installed on board the Russian space platform Navigator. It is scheduled to be launched at the beginning of the next decade. GAMMA-400 is designed to study simultaneously gamma rays (up to 3 TeV) and cosmic rays (electrons and positrons from 1 GeV to 20 TeV, nuclei up to 10$^{15}$-10$^{16}$ eV). Being a dual-purpose mission, GAMMA-400 will be able to address some of the most impelling science topics, such as search for signatures of dark matter, cosmic-rays origin and propagation, and the nature of transients. GAMMA-400 will try to solve the unanswered questions on these topics by high-precision measurements of the Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission and the spectra of cosmic-ray electrons + positrons and nuclei, thanks to excellent energy and angular resolutions.

  9. The Solar Spectroscopy Explorer Mission

    CERN Document Server

    Bookbinder, Jay

    2010-01-01

    The Solar Spectroscopy Explorer (SSE) concept is conceived as a scalable mission, with two to four instruments and a strong focus on coronal spectroscopy. In its core configuration it is a small strategic mission ($250-500M) built around a microcalorimeter (an imaging X-ray spectrometer) and a high spatial resolution (0.2 arcsec) EUV imager. SSE puts a strong focus on the plasma spectroscopy, balanced with high resolution imaging - providing for break-through imaging science as well as providing the necessary context for the spectroscopy suite. Even in its smallest configuration SSE provides observatory class science, with significant science contributions ranging from basic plasma and radiative processes to the onset of space weather events. The basic configuration can carry an expanded instrument suite with the addition of a hard X-ray imaging spectrometer and/or a high spectral resolution EUV instrument - significantly expanding the science capabilities. In this configuration, it will fall at the small end...

  10. Mission design for LISA Pathfinder

    International Nuclear Information System (INIS)

    Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first collinear Lagrange point of the Sun-Earth system (L1), 1.5 x 106 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment

  11. LISA Pathfinder: mission and status

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra, Barcelona (Spain); Cruise, M, E-mail: Paul.McNamara@esa.int [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  12. Space Technology Mission Directorate Briefing

    OpenAIRE

    Gazarik, Dr. Michael

    2013-01-01

    As Associate Administrator, Dr. Gazarik manages and executes the Space Technology programs, focusing on infusion into the Agency’s exploration and science mission needs, proving the capabilities needed by the greater aerospace community, and developing the Nation’s innovation economy. Prior to this appointment, Gazarik was deputy chief technologist and director for space technology, focusing on enabling effective implementation of the Space Technology programs. At NASA's Langley Researc...

  13. Mars Observer's Global Mapping Mission

    OpenAIRE

    Albee, A. L.; Palluconi, D. F.

    1990-01-01

    The Mars Observer mission, scheduled for launch in September 1992, will provide an orbital platform at Mars from which the entire Martian surface and atmosphere will be observed beginning in late 1993. Mars Observer will extend the exploration and characterization of Mars by providing new and systematic measurements of the surface and atmosphere of the planet. These measurements will be made from a low-altitude polar orbiter over a period of one Martian year (687 Earth days), permitting repet...

  14. An Integrated Human System Interaction (HSI) Framework for Human-Agent Team Collaboration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As space missions become more complex and as mission demands increase, robots, human-robot mixed initiative teams and software autonomy applications are needed to...

  15. Low Energy Mission Planning Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low Energy Mission Planning Toolbox is designed to significantly reduce the resources and time spent on designing missions in multi-body gravitational...

  16. Adaptive planning of emergency aerial photogrammetric mission

    Science.gov (United States)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu

    2015-12-01

    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  17. The ASTRO-H Mission

    CERN Document Server

    Takahashi, Tadayuki; Kelley, Richard; Aharonian, Felix; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Awaki, Hisamitsu; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Chernyakova, Maria; Coppi, Paolo; Costantini, Elisa; Cottam, Jean; Crow, John; de Plaa, Jelle; de Vries, Cor; Herder, Jan-Willem den; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hughes, John; Hwang, Una; Iizuka, Ryo; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Isobe, Naoki; Ito, Masayuki; Iwata, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Katagiri, Hideaki; Kataoka, Jun; Katsuda, Satoru; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Kotani, Taro; Koyama, Katsuji; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; Miller, Jon; Mineshige, Shin; Minesugi, Kenji; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nakagawa, Yujin; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Nomachi, Masaharu; Dell, Steve O'; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Parmer, Arvind; Petre, Robert; Pohl, Martin; Porter, Scott; Ramsey, Brian; Reynolds, Christopher; Sakai, Shin-ichiro; Sambruna, Rita; Sato, Goro; Sato, Yoichi; Serlemitsos, Peter; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugita, Hiroyuki; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tozuka, Miyako; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Uno, Shinichiro; Urry, Meg; Watanabe, Shin; White, Nicholas; Yamada, Takahiro; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa

    2010-01-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral reso...

  18. Prospects for Future Helioseismology Missions

    Science.gov (United States)

    Scherrer, Philip H.

    The progress afforded by present and past helioseismology missions has been the topic of this and numerous previous conferences. The primary conclusion of the 1983 NASA study on prospects for solar oscillations have been basically confirmed. That is, part of the job can be done on the ground but a significant part can only be done from space. While we have made significant progress, it is also clear that additional opportunities to use helioseismic techniques to better understand stellar interiors remain. Recent advances in local helioseismology in particular point to additional observing requirements. These include larger field of view at high resolution in order to follow magnetic region development, longer baselines in longitude to probe the bottom of the convection zone and below, and a high latitude vantage point to examine processes near the rotation axis. Several possible missions have been discussed recently to address these issues. They include SONAR, Farside Observer, Solar Polar Imager, and Solar Probe. The basic concepts of these missions will be discussed along with the continuing role for enhanced ground based observations.

  19. Science Mission Definition Studies for TROPIX

    Science.gov (United States)

    Fennell, J. F.

    1997-01-01

    This document summarizes the results of mission definition studies for solar electric propulsion missions that have been carried out over the last approximately three years. The major output from the studies has been two proposals which were submitted to NASA in response to Announcements of Opportunity for missions and an ongoing Global Magnetospheric Dynamics mission study. The bulk of this report consists of copies of the proposals and preliminary materials from the GMD study that will be completed in the coming months.

  20. COMS normal operation for Earth Observation mission

    Science.gov (United States)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  1. Mechanical design of the Mars Pathfinder mission

    Science.gov (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  2. CHEOPS: A transit photometry mission for ESA's small mission programme

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2013-04-01

    Full Text Available Ground based radial velocity (RV searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

  3. 75 FR 9578 - Executive-Led Trade Mission to Colombia and Panama; Change to Mission Dates

    Science.gov (United States)

    2010-03-03

    ... International Trade Administration Executive-Led Trade Mission to Colombia and Panama; Change to Mission Dates..., September 20-24, 2010, to be led by a senior Commerce official. The mission will focus on helping U.S... participating in the Executive-led Trade Mission to Colombia and Panama must complete and submit an...

  4. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  5. Development of a scheduling algorithm and GUI for autonomous satellite missions

    Science.gov (United States)

    Baek, Seung-woo; Han, Sun-mi; Cho, Kyeum-rae; Lee, Dae-woo; Yang, Jang-sik; Bainum, Peter M.; Kim, Hae-dong

    2011-04-01

    In this paper, a scheduling optimization algorithm is developed and verified for autonomous satellite mission operations. As satellite control and operational techniques continue to develop, satellite missions become more complicated and the overall quantity of tasks within the missions also increases. These changes require more specific consideration and a huge amount of computational resources, for scheduling the satellite missions. In addition, there is a certain level of repetition in satellite mission scheduling activities, and hence it is highly recommended that the operation manager carefully considers and builds some appropriate strategy for performing the operations autonomously. A good strategy to adopt is to develop scheduling optimization algorithms, because it is difficult for humans to consider the many mission parameters and constraints simultaneously. In this paper, a new genetic algorithm is applied to simulations of an actual satellite mission scheduling problem, and an appropriate GUI design is considered for an autonomous satellite mission operation. It is expected that the scheduling optimization algorithm and the GUI can improve the overall efficiency in practical satellite mission operations.

  6. NASA Mars 2020 Rover Mission: New Frontiers in Science

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  7. Space transfer concepts and analysis for exploration missions

    Science.gov (United States)

    Woodcock, Gordon R.

    1992-01-01

    The current technical effort is part of the third phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addressed the technical issues relating to the First Lunar Outpost (FLO) habitation vehicle with emphasis on the structure, power, life support system, and radiation environment for a baseline habitat with specific alternatives for the baseline.

  8. The BRITE Nanosatellite Constellation Mission

    Science.gov (United States)

    Schwarzenberg-Czerny, Alexander; Weiss, Werner; Moffat, Anthony; Zee, Robert E.; Rucinski, Slavek; Mochnacki, Stefan; Matthews, Jaymie; Breger, Michel; Kuschnig, Rainer; Koudelka, Otto; Orleanski, Piotr; Pamyatnykh, Alexei; Pigulski, Andrzej; Grant, Cordell

    BRITE Constellation, short for "BRIght Target Explorer Constellation," is a group of six seven-kilogram nanosatellites from Austria, Poland and Canada carrying three-centimeter aperture optical telescopes. The purpose of the mission is to photometrically measure low-level oscilla-tions and temperature variations in the sky's 286 stars brighter than visual magnitude 3.5, with unprecedented precision and time sampling not achievable through terrestrial-based methods. These stars turn out, for the most part, to be among the most luminous -either massive stars during their whole lifetimes or medium-mass stars at the very end of their nuclear burning phases. Such stars dominate the ecology of the Universe and the current massive ones are believed to represent the lower mass-range of the first stars ever formed (although long gone from the local Universe). Astronomers are eager to measure the variable behavior of lumi-nous stars in order to explore their inner workings in a unique way. BRITE Constellation will investigate the role that stellar winds play in setting up future stellar life cycles, and will measure pulsations to probe the histories and ages of luminous stars through asteroseismology. The three-axis pointing performance (1 arcminute RMS stability) of each BRITE satellite is a significant advancement by the University of Toronto's Space Flight Laboratory over any-thing that has ever flown before on a nanosatellite, and is a critical element that enables the high precision photometry mission. The University of Vienna and FFG/ALR (Austria's space agency) are financing the development of two satellites and development is nearing completion. The Polish Academy of Sciences is preparing two additional satellites. The Canadian Space Agency is also expected to fund two satellites in the constellation. This paper will summarize the science objectives of the mission and describe the progress to date.

  9. Overview of the Neurolab Spacelab mission

    Science.gov (United States)

    Homick, J. L.; Delaney, P.; Rodda, K.

    1998-01-01

    Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth.

  10. "Flexible Path” and Future Astronomical Missions

    Science.gov (United States)

    Lester, Daniel F.; Thronson, H.

    2010-01-01

    The Review of U.S. Human Space Flight Plans Committee, led by Norm Augustine, which was chartered by the White House to consider options for human space flight, has focused on a "flexible path” scenario for trips beyond LEO to carry out a range of tasks. This scenario has strong implications for possible servicing and deployment of future astronomical facilities, especially at Lagrange points, as well as visits to small bodies in the inner solar system. While the viability of that option as an priority agency goal will be under study by the Administration, NASA has been already directed by Congress to consider at least such servicing and deployment opportunities that could bear on it. The scientific and mission ramifications of such opportunities will be reviewed, along with the suitability of the conceptual space transportation architecture to carry it out, an architecture that could involves a lunar return program. Well studied astrodynamical considerations make both Earth-Sun L2 and Earth-Moon L1/L2 points of particular interest for such work. The relevance to this flexible path scenario to the NASA Decadal Planning Team (DPT) study will be reviewed. This study, completed in 2000, but largely eclipsed by the emphasis on lunar return, anticipated many of the challenges and opportunities and major technology investments now being considered.

  11. Overview of the Neurolab spacelab mission

    Science.gov (United States)

    Homick, Jerry L.; Delaney, Peggy; Rodda, Kristen

    Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth.

  12. Small power plant reverse trade mission

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-06

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  13. Asteroid Redirect Mission concept: A bold approach for utilizing space resources

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Brophy, John R.; Mueller, Robert P.

    2015-12-01

    The utilization of natural resources from asteroids is an idea that is older than the Space Age. The technologies are now available to transform this endeavor from an idea into reality. The Asteroid Redirect Mission (ARM) is a mission concept which includes the goal of robotically returning a small Near-Earth Asteroid (NEA) or a multi-ton boulder from a large NEA to cislunar space in the mid-2020s using an advanced Solar Electric Propulsion (SEP) vehicle and currently available technologies. The paradigm shift enabled by the ARM concept would allow in-situ resource utilization (ISRU) to be used at the human mission departure location (i.e., cislunar space) versus exclusively at the deep-space mission destination. This approach drastically reduces the barriers associated with utilizing ISRU for human deep-space missions. The successful testing of ISRU techniques and associated equipment could enable large-scale commercial ISRU operations to become a reality and enable a future space-based economy utilizing processed asteroidal materials. This paper provides an overview of the ARM concept and discusses the mission objectives, key technologies, and capabilities associated with the mission, as well as how the ARM and associated operations would benefit humanity's quest for the exploration and settlement of space.

  14. Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios

    Science.gov (United States)

    Sanders, Gerald B.

    2010-01-01

    The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. While lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. This paper will outline the role of ISRU in future lunar missions, and define the approach and possible experiments to increase confidence in ISRU applications for future human lunar exploration

  15. Draft 1988 mission plan amendment

    International Nuclear Information System (INIS)

    This draft 1988 amendment to the Mission Plan for the Civilian Radioactive Waste Management Program has been prepared by the US Department of Energy (DOE). The purpose is to inform the Congress of the DOE's plans for implementing the provisions of the Nuclear Waste Policy Amendments Act of 1987 (P.L. 100-203) for the Civilian Radioactive Waste Management Program. This document is being submitted in draft form to Federal agencies, states, previously affected Indian Tribes, affected units of local government, and the public. After the consideration of comments, this amendment will be revised as appropriate and submitted to the Congress. 39 refs., 7 figs., 4 tabs

  16. Reconfigurable Software for Mission Operations

    Science.gov (United States)

    Trimble, Jay

    2014-01-01

    We developed software that provides flexibility to mission organizations through modularity and composability. Modularity enables removal and addition of functionality through the installation of plug-ins. Composability enables users to assemble software from pre-built reusable objects, thus reducing or eliminating the walls associated with traditional application architectures and enabling unique combinations of functionality. We have used composable objects to reduce display build time, create workflows, and build scenarios to test concepts for lunar roving operations. The software is open source, and may be downloaded from https:github.comnasamct.

  17. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities for...... exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  18. Low Cost Mission to Deimos

    OpenAIRE

    Quantius, Dominik; Päsler, Hartmut; Braukhane, Andy; Gülzow, Peter; Bauer, Waldemar; Vollhardt, Achim; Schubert, Daniel; Romberg, Oliver; Scheibe, Karsten; Hoffmann, Harald; Börner, Anko

    2010-01-01

    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully designed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind...

  19. Artificial intelligence for the EChO mission planning tool

    Science.gov (United States)

    Garcia-Piquer, Alvaro; Ribas, Ignasi; Colomé, Josep

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) has as its main goal the measurement of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. In order to yield measurements of sufficient Signal-to-Noise Ratio to fulfil the mission objectives, the events of each exoplanet have to be observed several times. In addition, several criteria have to be considered to carry out each observation, such as the exoplanet visibility, its event duration, and no overlapping with other tasks. It is expected that a suitable mission plan increases the efficiency of telescope operation, which will represent an important benefit in terms of scientific return and operational costs. Nevertheless, to obtain a long term mission plan becomes unaffordable for human planners due to the complexity of computing the huge number of possible combinations for finding an optimum solution. In this contribution we present a long term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the defined objectives, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of exoplanets to be observed. Specifically, the results show that, with the proposed tool, EChO uses 94% of the available time of the mission, so the amount of downtime is small, and it completes 98% of the targets.

  20. Mission Analysis of Robotic Low Thrust Missions to the Martian Moons Deimos And Phobos

    OpenAIRE

    Derz, Uwe; Ohndorf, Andreas; Bischof, Bernd

    2011-01-01

    The Martian moons Deimos and Phobos are interesting targets for exploration missions, especially within the frame of a crewed Mars orbit mission. To minimize the risk to a crew and also to support EVA site selection, a robotic precursor mission should investigate both moons in advance. The focus of this study is on mission analysis of such a precursor mission that utilizes low-thrust propulsion, in particular Electric Propulsion, for the transfer to the Martian system. We assum...