WorldWideScience

Sample records for austenitic steels

  1. High Mn austenitic stainless steel

    Science.gov (United States)

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  2. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades

    International Nuclear Information System (INIS)

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  3. Recycle of radiologically contaminated austenitic stainless steels

    International Nuclear Information System (INIS)

    The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides

  4. Austenitic Oxide Dispersion Strengthened Steels : A Review

    Directory of Open Access Journals (Sweden)

    Lavanya Raman

    2016-06-01

    Full Text Available Materials play an important role in the fast breeder reactors.  Materials used in cladding tube and fuel pins should have better creep and void swelling resistance. To overcome these difficulties, a new class of material known as oxide dispersion strengthened (ODS steels are used. There are two groups of ODS steels, the ferritic and the austenitic ODS steels based on the matrix. The present paper reviews the current status of research in austenitic ODS steels. The interaction of dislocations with finely dispersed incoherent, hard particles that governs the strength and high temperature properties of ODS materials is briefly reviewed. The synthesis route adopted for these ODS steels, which is mostly through powder metallurgy route is also discussed. The role of various oxides such as Y2O3, ZrO2and TiO2and the clusters formed in these ODS steels on the mechanical properties and void swelling characteristics is also discussed.

  5. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  6. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  7. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  8. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  9. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  10. Electropolishing and chemical passivation of austenitic steel

    Directory of Open Access Journals (Sweden)

    A. Baron

    2008-12-01

    Full Text Available Purpose: The aim of the paper is investigations a dependence between the parameters of the electrochemical treatment of austenitic steel and their electrochemical behavior in Tyrod solution.Design/methodology/approach: Specimens (rode 30 mm × ø1 mm were to give in to the surface treatment – mechanically polishing, electrolytic polishing and passivation with various parameter. Electrochemical investigations concerning the corrosion resistance of austenitic steel samples were carried out by means of the potentiodynamic and electrochemical impedance spectroscopy method.Findings: The analysis of the obtained results leads to the conclusion that chemical passivation affects also the chemical composition of the passive layer of steel and changes its resistance to corrosion. Electrolytic polishing improves corrosion resistance, as can be proved by the shift of the value of the corrosion potential and break-down potential of the passive layer and the initiation of pittings.Research limitations/implications: The obtained results are the basis for the optimization of anodic passivation parameters of the austenitic steel as a metallic biomaterial. The future research should be focused on selected more suitable parameters of the electrochemical impedance spectroscopy test to better describe process on the solid/ liquid interface.Practical implications: In result of the presented investigations it has been found that the best corrosion resistance can be achieved thanks to the application of electrolytic polishing of the steel in a special bath and chemical passivation in nitric (V acid with an addition of chromic (VI acid temperature t = 60°C for one hour.Originality/value: The enormous demand for metal implants has given rise to a search for cheap materials with a good biotolerance and resistance to corrosion. Most commonly used are steel implants assigned to remain in the organism for some limited time only. It was compare two electrochemical methods

  11. Embrittlement of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties

  12. Fabrication and ageing of cast austenitic steels

    International Nuclear Information System (INIS)

    An investigation has been undertaken to determine the magnitude of any reduction in properties which may occur in cast duplex stainless steels and weldments during long term exposure to reactor operating conditions. Test panels were fabricated in CF3 stainless steel by a manual metal arc (MMA) process using 19.9.L (Type 308L) consumables. The mechanical properties and intergranular corrosion resistance of parent material and weldments were measured following accelerated ageing at 3750 and 4000C for up to 10,000 hours. Both the impact energy and J/sub R/ fracture toughness properties of the cast austenitic/ferritic stainless steel were reduced following aging at 4000C for 10,000 hours, whereas austenitic stainless steel MMA weld metals exhibited a reduction in J/sub R/ fracture toughness but no change in impact energy. Even in the unaged state, MMA weld metals were shown to have a much lower resistance to stable crack growth than the parent cast steel, and, following aging, there is a further reduction in the ductile tearing resistance of such weld metals. Therefore, in any assessment of the structural integrity of the reactor coolant pump bowl for a pressurized water reactor (PWR), the weld metal fracture properties during service are likely to be of considerable importance

  13. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    Boogaard, van den A.H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress tr

  14. Embrittlement of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Vitek, J.M. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  15. Grain boundary strengthening in austenitic nitrogen steels

    International Nuclear Information System (INIS)

    The effect of nitrogen and carbon on the strengthening of the austenitic steel Cr18Ni16Mn10 by grain boundaries is studied. It is established in accordance with previous results that contrary to carbon nitrogen increases the coefficient k in the Hall-Petch equation markedly. Because of a pronounced planar slip induced by nitrogen and the absence of any noticeable segregation of nitrogen atoms at the grain boundaries, nitrogen austenite presents an excellent object for testing different existing models of grain boundary strengthening (pile-up, grain boundary dislocation sources, work hardening theories). Based on the analysis of available data and measurements of interaction between nitrogen (carbon) atoms and dislocations it is shown that the nitrogen effect can be attributed to a strong blocking of dislocation sources in grains adjacent to those where the slip started. (orig.)

  16. Nickel-free austenitic stainless steels for medical applications

    OpenAIRE

    Ke Yang and Yibin Ren

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainl...

  17. Microstructural studies of advanced austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Todd, J. A.; Ren, Jyh-Ching [University of Southern California, Los Angeles, CA (USA). Dept. of Materials Science

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  18. Flow lines and microscopic elemental inhomogeneities in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Jr, W C

    1982-01-01

    Flow lines in mechanically formed austenitic stainless steels are known to influence fracture behavior. Enhancement of flow lines by chemical etching is evidence of elemental inhomogeneity. This paper presents the results of electron microprobe analyses to determine the nature of flow lines in three austenitic stainless steels: 21Cr-6Ni-9Mn, 304L, and 19Ni-18Cr.

  19. Wear behavior of austenite containing plate steels

    Science.gov (United States)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  20. Nickel-free austenitic stainless steels for medical applications

    Directory of Open Access Journals (Sweden)

    Ke Yang and Yibin Ren

    2010-01-01

    Full Text Available The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  1. Austenite Recrystallization and Controlled Rolling of Low Carbon Steels

    Institute of Scientific and Technical Information of China (English)

    DU Lin-xiu; ZHANG Zhong-ping; SHE Guang-fu; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    The dynamic recrystallization and static recrystallization in a low carbon steel were investigated through single-pass and double-pass experiments. The results indicate that as the deformation temperature increases and the strain rate decreases, the shape of the stress-strain curve is changed from dynamic recovery shape to dynamic recrystallization shape. The austenite could not recrystallize within a few seconds after deformation at temperature below 900 ℃. According to the change in microstructure during deformation, the controlled rolling of low carbon steel can be divided into four stages: dynamic recrystallization, dynamic recovery, strain-induced ferrite transformation, and rolling in two-phase region. According to the microstructure after deformation, the controlled rolling of low carbon steel can be divided into five regions: non-recrystallized austenite, partly-recrystallized austenite, fully-recrystallized austenite, austenite to ferrite transformation, and dual phase.

  2. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels. Th

  3. X-ray fractography studies on austenitic stainless steels

    NARCIS (Netherlands)

    Rajanna, K.; Pathiraj, B.; Kolster, B.H.

    1996-01-01

    In this investigation, the fracture surfaces of SS 304 and SS 316 austenitic steels were analysed using the X-ray fractography technique. In both cases, a decrease in the austenite content was observed at the fracture surface as a result of deformation induced martensite, indicating a linear relatio

  4. Nanostructured Bainite-Austenite Steel for Armours Construction

    Directory of Open Access Journals (Sweden)

    Burian W.

    2014-10-01

    Full Text Available Nanostructured bainite-austenite steels are applied in the armours construction due to their excellent combination of strength and ductility which enables to lower the armour weight and to improve the protection efficiency. Mechanical properties of the bainite-austenite steels can be controlled in the wide range by chemical composition and heat treatment. In the paper the results of investigation comprising measuring of quasi - static mechanical properties, dynamic yield stress and firing tests of bainite-austenite steel NANOS-BA® are presented. Reported results show that the investigated bainite-austenite steel can be used for constructing add-on armour and that the armour fulfils requirements of protection level 2 of STANAG 4569. Obtained reduction in weight of the tested NANOS-BA® plates in comparison with the present solutions is about 30%.

  5. Effects of austenitizing temperature in quenched niobium steels

    International Nuclear Information System (INIS)

    Three steel compositions with varying Nb content were austenitized at different temperatures and quenched in cold water. Metallographic examination and hardness measurements provided a basis for explaining the hardening mechanism and the role of Nb on the process. (Author)

  6. MODULATED STRUCTURES AND ORDERING STRUCTURES IN ALLOYING AUSTENITIC MANGANESE STEEL

    Institute of Scientific and Technical Information of China (English)

    L. He; Z.H. Jin; J.D. Lu

    2001-01-01

    The microstructure of Fe-10Mn-2Cr-1.5C alloy has been investigated with transmission electron microscopy and X-ray diffractometer. The superlattice diffraction spots and satellite reflection pattrens have been observed in the present alloy, which means the appearence of the ordering structure and modulated structure in the alloy. It is also proved by X-ray diffraction analysis that the austenite in the alloy is more stable than that in traditional austenitic manganese steel. On the basis of this investigation,it is suggested that the C-Mn ordering clusters exist in austenitic manganese steel and the chromium can strengthen this effect by linking the weaker C-Mn couples together,which may play an important role in work hardening of austenitic manganese steel.

  7. Austenite grain growth calculation of 0.028% Nb steel

    Directory of Open Access Journals (Sweden)

    Priadi D.

    2011-01-01

    Full Text Available Modeling of microstructural evolution has become a powerful tool for materials and process design by providing quantitative relationships for microstructure, composition and processing. Insufficient attention has been paid to predicting the austenite grain growth of microalloyed steel and the effect of undissolved microalloys. In this research, we attempted to calculate a mathematical model for austenite grain growth of 0.028% Nb steel, which can account for abnormal grain growth. The quantitative calculation of austenite grain growth generated from this model fit well with the experimental grain growth data obtained during reheating of niobium steels. The results of this study showed that increasing the temperature increases the austenite grain size, with a sharp gradient observed at higher temperatures.

  8. The influence of fabricating conditions and stability of austenite on forming behaviour of austenitic stainless steels

    International Nuclear Information System (INIS)

    The object of the investigation is the effect of various conditions of cold rolling austenitic stainless steels on the mechanical and technological properties and on the behaviour during forming with requirements in stretching and deep drawing. Fabricating 3 coils of various stability of austenite the degree of cold forming between the annealing processes is varied by cold rolling from the thickness of hot rolled coil to final thickness without or with one or two intermediate annealings. The most important results for cold forming sheets are: most favourable stretch forming behaviour is gained with instable austenitic steels, becomes better with increasing sheet thickness most favourable deep drawing behaviour is gained with highest degrees of cold rolling before final annealing, is undependent from the stability of austenite. Favourable is cold rolling to the highest degree before intermediate annealing, whilst the deformation before final annealing is of greater importance. According to the results conditions can be given for cold rolling to get best forming behaviour. (orig.)

  9. Reverted austenite in PH 13-8 Mo maraging steels

    Energy Technology Data Exchange (ETDEWEB)

    Schnitzer, Ronald, E-mail: ronald.schnitzer@unileoben.ac.at [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Radis, Rene [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria); Institute for Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24, A-8010 Graz (Austria); Noehrer, Matthias [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Schober, Michael [Department of Physical Metallurgy and Materials Testing, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Hochfellner, Rainer [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Zinner, Silvia [Boehler Edelstahl GmbH and Co KG, Mariazeller Strasse 25, A-8605 Kapfenberg (Austria); Povoden-Karadeniz, E.; Kozeschnik, Ernst [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria); Leitner, Harald [Christian Doppler Laboratory for Early Stages of Precipitation, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Department of Physical Metallurgy and Materials Testing, University of Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

    2010-07-01

    The mechanical properties of maraging steels are strongly influenced by the presence of reverted austenite. In this study, the morphology and chemical composition of reverted austenite in a corrosion resistant maraging steel was characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Two types of austenite, i.e. granular and elongated, are present after aging at 575 {sup o}C, whereby the content of the latter increases during aging. The investigations revealed that the austenite phase is enriched in Ni, which prevents the transformation to martensite during cooling. Inside and next to the austenitc areas, Mo and Cr-rich carbides, which form during the aging treatment, were found. Various aging treatments were performed to obtain the activation energy for the formation of reverted austenite. Additionally, the experimental data are compared with thermodynamic and kinetic simulations. Based on these results and the chemical composition changes of the phases, a model for the formation of reverted austenite is presented. It is concluded that precipitation of B2-ordered NiAl and formation of reverted austenite take place simultaneously during aging and that dissolution of precipitates is not essential for the initial formation of reverted austenite.

  10. Magnetic State of Deformed Austenite Before and After Martensite Nucleation in Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    GennadiiVSnizhnoi; MariyaSRasshchupkyna’

    2012-01-01

    The effect of the increase in the paramagnetic susceptibility of austenite up to the true value of the deformation-induced martensite transition point es has been experimentally established in steels X6CrNiTil8-10 (correspon& ing to AISI 321 steels). At this point nucleation and accumulation of martensite with the increase in the extent of de- formation but at a constant magnetic state of austenite takes place.

  11. Breakdown of protective oxide films on ferritic and austenitic steels

    International Nuclear Information System (INIS)

    The kinetics and morphology of scale formation on a 9% Cr ferritic and an 18% Cr austenitic steel in high pressure CO2 are discussed. For the ferritic steel, the normal protective oxidation mode is growth of a duplex scale with an Fe3O4 outer layer and an (Fe, Cr) spinel inner layer. After long times at elevated temperatures, the protective scale may break down. The more rapid attack that follows requires conjoint oxidation and carbon deposition. The austenitic steel is not susceptible to this kind of breakaway attack, but a 'breakaway' transition from M2O3 to duplex spinel growth can be induced by temperature cycling. (author)

  12. EFFECT OF CHEMICAL COMPOSITION ON RETAINED AUSTENITE IN TRIP STEEL

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; Q.F. Wang; G.L. Yuan; C.Y. Li; X.Y. Li; Y.X. Wang

    2002-01-01

    The systematic chemical compositions including common C, Si, Mn, Al, and micro- alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.

  13. Hot-working behaviour of high-manganese austenitic steels

    OpenAIRE

    L.A. Dobrzański; A. Grajcar; W. Borek

    2008-01-01

    Purpose: The work consisted in investigation of newly elaborated high-manganese austenitic steels with Nb and Ti microadditions in variable conditions of hot-working.Design/methodology/approach: Determination of processes controlling strain hardening was carried out in continuous compression test using Gleeble 3800 thermo-mechanical simulator.Findings: It was found that they have austenite microstructure with numerous annealing twins in the initial state. Continuous compression tests ...

  14. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    OpenAIRE

    Mehanna, Maha; Basséguy, Régine; Délia, Marie-Line; Bergel, Alain

    2009-01-01

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended ess...

  15. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    Science.gov (United States)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  16. Structure and mechanical properties of austenitic steel after cold rolling

    Directory of Open Access Journals (Sweden)

    A. Kurc-Lisiecka

    2011-02-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of the cold plastic deformation within the range 18-79% and heat treatment in a temperature range of 500 to 700°C on the microstructure and mechanical properties of austenitic stainless steel grade X5CrNi18-8.Design/methodology/approach: The investigations included observations of the microstructure on a light microscope, researches of mechanical properties in a static tensile test and hardness measurements made by Vickers’s method. The analysis of the phase composition was carried out on the basis of X-ray researches. Whereas, X-ray quantitative phase analysis was carried out by the Averbach Cohen method.Findings: Heat treatment of X5CrNi18-8 stainless steel in the range 500-700°C causes a significant decrease of the mechanical properties (Rm, Rp0.2 and increase of elongation (A. Hardness of investigated steel drops with decrease of cold working degree and increase of heat treatment temperature.Research limitations/implications: The analysis of the obtained results permits to state that the heat treatment causes an essential changes of the microstructure connected with fading of cold deformation. Heating of cold rolled austenitic stainless steels can cause a reverse transformation α’ → γ.Practical implications: Two-phase structure α’+γ of austenitic Cr-Ni steel in deformed state working at elevated temperature undergo a transformation. It significantly influences mechanical properties of steel. Austenite phase undergoes a recrystallization, while martensite α’ phase undergoes reverse transformation.Originality/value: The analytic dependence of the yield point of the investigated steel on the cold working degree in cold rolling process has been confirmed. Revealing this relation is of essential practical importance for the technology of sheetmetal forming of austenitic steel.

  17. Failure of austenitic stainless steel tubes during steam generator operation

    OpenAIRE

    M. Głowacka; J. Łabanowski; S. Topolska

    2012-01-01

    Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawa...

  18. Failure of austenitic stainless steel tubes during steam generator operation

    Directory of Open Access Journals (Sweden)

    M. Głowacka

    2012-12-01

    Full Text Available Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawal of the generator from the operation was leaks in the coil tube caused by corrosion damage. The metallographic investigations were performed with the use of light microscope and scanning electron microscope equipped with the EDX analysis attachment.Findings: Examinations of coil tubes indicated severe corrosion damages as pitting corrosion, stress corrosion cracking, and intergranular corrosion within base material and welded joints. Causes of corrosion was defined as wrong choice of austenitic steel grade, improper welding technology, lack of quality control of water supply and lack of surface treatment of stainless steel pipes.Research limitations/implications: It was not known the quality of water supply of steam generator and this was the reason for some problems in the identification of corrosion processes.Practical implications: Based on the obtained research results and literature studies some recommendations were formulated in order to avoid failures in the application of austenitic steels in the steam generators. These recommendations relate to the selection of materials, processing technology and working environment.Originality/value: Article clearly shows that attempts to increase the life time of evaporator tubes and steam coils by replacing non-alloy or low alloy structural steel by austenitic steel, without regard to restrictions on its use, in practice often fail.

  19. Austenite decomposition in carbon steel under dynamic deformation conditions

    Directory of Open Access Journals (Sweden)

    A. Nowotnik

    2007-01-01

    Full Text Available Purpose: The main purpose of this paper was to estimate the effect of the dynamic conditions resulting fromdeformation process on the austenite decomposition into ferrite and pearlite (A→F+P in the commercial carbon steel.Design/methodology/approach: In the paper flow stress curves and microstructure of deformed steel within therange of discontinuous (austenite to pearlite and austenite to ferrite transformation at different strain rates andcooling rates were presented. The microstructure of hot deformed samples was tested by means of an opticaland electron microscopy.Findings: It was shown that the flow localization during hot deformation and preferred growth of the pearlitecolonies at shear bands was very limited. The most characteristic feature of the microstructure observed for hotdeformed samples was the development of carbides that nucleated along elongated ferrite grains.Research limitations/implications: In spite of intense strain hardening due to deformation and phasetransformation overlapping, microstructural observation of deformed samples did not reveal significant flowlocalization effects or heterogeneous distribution of the eutectoid components. Therefore, complementary testsshould be carried out on the steel with higher strain above the 0.5 value.Originality/value: There was no data referred to particular features of the dynamic processes, such as dynamicrecrystallization and recovery, dynamic precipitation, that can occur during austenite decomposition into ferrite,and especially during discontinuous transformation of austenite to pearlite.

  20. Thermal fatigue of austenitic and duplex stainless steels

    OpenAIRE

    Virkkunen, Iikka

    2001-01-01

    Thermal fatigue behavior of AISI 304L, AISI 316, AISI 321, and AISI 347 austenitic stainless steels as well as 3RE60 and ACX-100 duplex stainless steels was studied. Test samples were subjected to cyclic thermal transients in the temperature range 20 - 600°C. The resulting thermal strains were analyzed with measurements and numerical calculations. The evolution of thermal fatigue damage was monitored with periodic residual stress measurements and replica-assisted microscopy. The elastic strai...

  1. Martensite Formation in Partially and Fully Austenitic Plain Carbon Steels

    NARCIS (Netherlands)

    Van Bohemen, S.M.C.; Sietsma, J.

    2009-01-01

    The progress of martensite formation in plain carbon steels Fe-0.46C, Fe-0.66C, and Fe-0.80C has been investigated by dilatometry. It is demonstrated that carbon enrichment of the remaining austenite due to intercritical annealing of Fe-0.46C and Fe-0.66C does not only depress the start temperature

  2. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NARCIS (Netherlands)

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stage

  3. Changes of structure of austenitic steel caused by hot deformation

    International Nuclear Information System (INIS)

    The phenomena taking place during hot deformation and reconstruction of the microstructure of chromium-manganese and chromium-nickel austenitic steels of low SFE were analyzed. In particular, the problems of recovery of dynamic recrystallization as well as changes of the microstructure after deformation were analyzed. The research of hot deformation carried out by means of the torsion test on a torsional plastometer allowed to determine the impact of the deformation conditions (ε, ε', T) on austenitic steel workability and to capture basic differences in strengthening and softening of manganese in relation to the austenite more extensively tested austenite in Cr-Ni steel. The differences in deformation of both materials up to maximal yield stress εm result from various dislocation splitting and association ability during deformation process. Manganese austenite is generally susceptible to splitting of dislocation in initial phases of deformation - that is why the strengthening intensity is so high. Carbon is additional factor strongly strengthening solid solution. The process of dynamic recrystallization of Cr-Mn steel (SFE approx. 50 mJ/m2) deformed at 900oC takes place through dislocation climbing within boundaries of adjacent subgrains and their coalescence. Nucleation of new grains and growth in the process of dynamic recrystallization of Cr-Ni steel (SFE approx. 20 mJ/m2) takes place through migration of high-angle grain boundaries as well as through the mechanism of subgrain coalescence. In the whole range of the steady plastic flow of samples of both steel grades, the size of grain formed in the result of dynamic recrystallization practically does not depend on the ε deformation size, but only on deformation conditions (T, ε'). Regardless the initial grain size of the tested austenitic steel grades practically the same grain sizes were obtained during dynamic recrystallization at the temperature of 1000-1100oC. No considerable influence of other

  4. An alternative to the crystallographic reconstruction of austenite in steels

    International Nuclear Information System (INIS)

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: • An alternative crystallographic austenite reconstruction program is developed. • The method combines a local analysis and a nuclei identification/spreading strategy. • The validity of the calculated orientation relationship is verified on a Q and P steel. • The accuracy of the reconstructed microtexture is investigated on a martensite steel

  5. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  6. Hot-working of advanced high-manganese austenitic steels

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-12-01

    Full Text Available Purpose: The work consisted in investigation of newly elaborated high-manganese austenitic steels with Nb and Ti microadditions in variable conditions of hot-working.Design/methodology/approach: The force-energetic parameters of hot-working were determined in continuous and multi-stage compression test performed in temperature range of 850 to 1100°C using the Gleeble 3800 thermomechanical simulator. Evaluation of processes controlling work-hardening were identified by microstructure observations of the specimens compresses to the various amount of deformation (4x0.29, 4x0.23 and 4x0.19. The microstructure evolution in successive stages of deformation was determined in metallographic investigations using light, scanning and electron microscopy as well as X-ray diffraction.Findings: The investigated steels are characterized by high values of flow stresses from 230 to 450 MPa. The flow stresses are much higher in comparison with austenitic Cr-Ni and Cr-Mn steels and slightly higher compared to Fe-(15-25Mn alloys. Increase of flow stress along with decrease of compression temperature is accompanied by translation of εmax strain in the direction of higher deformation. Results of the multi-stage compression proved that applying the true strain 4x0.29 gives the possibility to refine the austenite microstructure as a result of dynamic recrystallization. In case of applying the lower deformations 4x0.23 and 4x0.19, the process controlling work hardening is dynamic recovery and a deciding influence on a gradual microstructure refinement has statical recrystallization. The steel 27Mn-4Si-2Al-Nb-Ti has austenite microstructure with annealing twins and some fraction of ε martensite plates in the initial state. After the grain refinement due to recrystallization, the steel is characterized by uniform structure of γ phase without ε martensite plates.Research limitations/implications: To determine in detail the microstructure evolution during industrial

  7. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    Science.gov (United States)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  8. Nitrogen bearing austenitic stainless steels for surgical implants

    Energy Technology Data Exchange (ETDEWEB)

    Tschiptschin, A.P.; Aidar, C.H.; Alonso-Falleiros, N. [Sao Paulo Univ. (Brazil). Escola Politecnica; Neto, F.B. [Instituto de Pesquisas Tecnologicas, Sao Paulo (Brazil)

    1999-07-01

    Nitrogen addition promotes substantial improvements on general and localized corrosion performance of stainless steels. In recent times high nitrogen (up to 0.6 wt%) and Mn bearing super austenitic stainless steel has been studied for medical applications due to its low Ni content, the so called body friendly alloys. 18%Cr, 0.4%N and 15%Mn stainless steels were cast either from electrolytic or commercial master alloys in induction furnace, forged, solubilized at 1423K for 3 hours and water quenched. Delta ferrite and carbide precipitate free structures were observed. (orig.)

  9. Production of Austenitic Steel for the LHC Superconducting Dipole Magnets

    CERN Document Server

    Bertinelli, F; Komori, T; Peiro, G; Rossi, L

    2006-01-01

    The austenitic-steel collars are an important component of the LHC dipole magnets, operating at cryogenic temperature under high mechanical stress. The required steel, known as YUS 130S, has been specifically developed for this application by Nippon Steel Corporation (NSC), who was awarded a CERN contract in 1999 for the supply of 11 500 tonnes. In 2005 - after six years of work - the contract is being successfully completed, with final production being ensured since October 2003 by Nippon Steel & Sumikin Stainless Steel Corporation (NSSC). The paper describes the steel properties, its manufacturing and quality control process, organization of production, logistics and contract follow-up. Extensive statistics have been collected relating to mechanical, physical and technological parameters. Specific attention is dedicated to measurements of magnetic permeability performed at cryogenic temperatures by CERN, the equipment used and statistical results. Reference is also made to the resulting precision of the...

  10. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    OpenAIRE

    Ayo Samuel AFOLABI; Alaneme, K.K.; Samson Oluwaseyi BADA

    2009-01-01

    The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in th...

  11. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  12. Modeling of Austenite Grain Growth During Austenitization in a Low Alloy Steel

    Science.gov (United States)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2016-01-01

    The main purpose of this work is to develop a pragmatic model to predict austenite grain growth in a nuclear reactor pressure vessel steel. Austenite grain growth kinetics has been investigated under different heating conditions, involving heating temperature, holding time, as well as heating rate. Based on the experimental results, the mathematical model was established by regression analysis. The model predictions present a good agreement with the experimental data. Meanwhile, grain boundary precipitates and pinning effects on grain growth were studied by transmission electron microscopy. It is found that with the increasing of the temperature, the second-phase particles tend to be dissolved and the pinning effects become smaller, which results in a rapid growth of certain large grains with favorable orientation. The results from this study provide the basis for the establishment of large-sized ingot heating specification for SA508-III steel.

  13. INFLUENCE OF ABNORMAL AUSTENITE GRAIN GRAIN GROWTH IN QUENCHED ABNT 5135 STEEL

    Directory of Open Access Journals (Sweden)

    Camila de Brito Ferreira

    2015-03-01

    Full Text Available Grain size in the steels is a relevant aspect in quenching and tempering heat treatments. It is known that high austenitizing temperature and long time provide an increase in austenitic grain sizes. Likewise, after hardening of low alloy steel, the microstructure consists of martensite and a volume fraction of retained austenite. This paper evaluates the influence of austenite grain size on the volume fraction of retained austenite measured by metallographic analyses and X-ray diffraction. The Mi and Mf temperatures were calculated using an empirical equation and experimentally determined by differential thermal analysis. The mechanical behavior of the steel was evaluated by Vickers microhardness testing. Differently from other results published in the literature that steel hardenability increases with the austenite grain size, it was observed that the increase in austenite grain promotes greater volume fraction of retained austenite after water quenching.

  14. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  15. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  16. Diagnostic experimental results on the hydrogen embrittlement of austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V.G.; Shivanyuk, V.N.; Foct, J

    2003-03-14

    Three main available hypotheses of hydrogen embrittlement are analysed in relation to austenitic steels based on the studies of the hydrogen effect on the interatomic bonds, phase transformations and microplastic behaviour. It is shown that hydrogen increases the concentration of free electrons, i.e. enhances the metallic character of atomic interactions, although such a decrease in the interatomic bonding cannot be a reason for brittleness and rather assists an increased plasticity. The hypothesis of the critical role of the hydrogen-induced {epsilon} martensite was tested in the experiment with the hydrogen-charged Si-containing austenitic steel. Both the fraction of the {epsilon} martensite and resistance to hydrogen embrittlement were increased due to Si alloying, which is at variance with the pseudo-hydride hypothesis. The hydrogen-caused early start of the microplastic deformation and an increased mobility of dislocations, which are usually not observed in the common mechanical tests, are revealed by the measurements of the strain-dependent internal friction, which is consistent with the hypothesis of the hydrogen-enhanced localised plasticity. An influence of alloying elements on the enthalpy E{sub H} of hydrogen migration in austenitic steels is studied using the temperature-dependent internal friction and a correlation is found between the values of E{sub H} and hydrogen-caused decrease in plasticity. A mechanism for the transition from the hydrogen-caused microplasticity to the apparent macrobrittle fracture is proposed based on the similarity of the fracture of hydrogenated austenitic steels to that of high nitrogen steels.

  17. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  18. Effect of shot peening on metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor

  19. Thermal stability of ultrafine-grained austenitic stainless steels

    International Nuclear Information System (INIS)

    Ultrafine-grained 316 and 304 austenitic stainless steel samples have been produced by high pressure torsion. Their microstructure, after deformation and annealing at a temperature in the 350-900 deg. C range, has been characterized using several techniques (transmission electron microscopy, X-ray diffraction, Moessbauer spectroscopy). The average grain size in the ultrafine-grained 316 is about 40 nm while it is larger in the ultrafine-grained 304 due to a smaller deformation. Results show the formation of α'-martensite during deformation in both steels while ε-martensite is formed only in the 304 steel. Annealing at 350 deg. C induces the decrease of α'-martensite content in the 316 steel. The trend is different in the 304 steel, in which the α'-martensite content increases. Recrystallization of grains is observed from 700 deg. C. Moessbauer spectroscopy shows a reduction of the level of solute atoms in α'-martensite during annealing.

  20. COLD ROLLING ORTHODONTIC WIRES OF AUSTENITIC STAINLESS STEEL AISI 304

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Messner

    2013-03-01

    Full Text Available Austenitic stainless steels wires are widely used in the final stages of orthodontic treatment. The objective of this paper is to study the process of conformation of rectangular wires from round wires commercial austenitic stainless steel AISI 304 by the process of cold rolling. The wire quality is evaluated by means of dimensional analysis, microhardness measurements, tensile strength and fractographic analysis of the wires subjected to tensile tests. Also a study on the application of finite element method to simulate the process, comparing the force and rolling stress obtained in the rolling is done. The simulation results are consistent with those obtained in the actual process and the rolled wires show ductile fracture, tensile strength and dimensional variations appropriate to orthodontic standards. The fracture morphology shows the model cup-cone type besides the high deformation and hardness inherent in the cold rolling process.

  1. Manifestations of DSA in austenitic stainless steels and inconel alloys

    International Nuclear Information System (INIS)

    The aim of the investigation was to examine and compare different types of DSA (Dynamic Strain Aging) manifestations in AISI 316 austenitic stainless steel (SS) and Inconel 600 and Inconel 690 alloys by means of slow strain rate tensile testing, mechanical loss spectrometry (internal friction) and transmission electron microscopy (TEM). Another aim was to determine differences in the resulting dislocation structures and internal friction response of materials showing and not showing DSA behaviour

  2. Hot-working of advanced high-manganese austenitic steels

    OpenAIRE

    L.A. Dobrzański; W. Borek

    2010-01-01

    Purpose: The work consisted in investigation of newly elaborated high-manganese austenitic steels with Nb and Ti microadditions in variable conditions of hot-working.Design/methodology/approach: The force-energetic parameters of hot-working were determined in continuous and multi-stage compression test performed in temperature range of 850 to 1100°C using the Gleeble 3800 thermomechanical simulator. Evaluation of processes controlling work-hardening were identified by microstructure observati...

  3. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    Science.gov (United States)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  4. Researches upon the cavitation erosion behaviour of austenite steels

    Science.gov (United States)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Salcianu, L. C.; Bordeasu, D.; Duma, S. T.; Iosif, A.

    2016-02-01

    Paper analyzes the cavitation erosion behavior of two stainless steels with 100% austenitic structure but differing by the chemical composition and the values of mechanical properties. The research is based on the MDE(t) and MDER(t) characteristic curves. We studied supplementary the aspect of the eroded areas by other to different means: observations with performing optical microscopes and roughness measurements. The tests were done in the T2 vibratory facility in the Cavitation Laboratory of the Timisoara Polytechnic University. The principal purpose of the study is the identification of the elements influencing significantly the cavitation erosion resistance. It was established the effect of the principal chemical components (determining the proportion of the structural components in conformity the Schaffler diagram) upon the cavitation erosion resistance. The results of the researches present the influence of the proportion of unstable austenite upon cavitation erosion resistance. The stainless steel with the great proportion of unstable austenite has the best behavior. The obtained conclusion are important for the metallurgists which realizes the stainless steels used for manufacturing the runners of hydraulic machineries (turbines and pumps) with increased resistance to cavitation attack.

  5. Fatigue behavior of welded austenitic stainless steel in different environments

    OpenAIRE

    D. S. Yawas; S.Y. Aku; S.O. Aluko

    2014-01-01

    The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat...

  6. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades; Analise da austenita expandida em camadas nitretadas em acos inoxidaveis austeniticos e superaustenitico

    Energy Technology Data Exchange (ETDEWEB)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica; Oliveira, A.M. [Instituto de Educacao, Ciencia e Tecnologia do Maranhao (IFMA), Sao Luis, MA (Brazil); Gallego, J., E-mail: gallego@dem.feis.unesp.b [UNESP, Ilha Solteira, SP (Brazil). Dept. Engenharia Mecanica

    2010-07-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  7. Development of Cast Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-09-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  8. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author)

  9. Phase stability of high manganese austenitic steels for cryogenic applications

    CERN Document Server

    Couturier, K

    2000-01-01

    The aim of this work is to study the austenitic stability against a' martensitic transformation of three non-magnetic austenitic steels : a new stainless steel X2CrMnNiMoN 19-12-11-1 grade, a traditional X8CrMnNiN 19-11-6 grade and a high manganese X8MnCrNi 28-7-1 grade. Measurements of relative magnetic susceptibility at room temperature are performed on strained tensile specimens at 4.2 K. A special extensometer for high precision strain measurements at low temperature has been developed at CERN to test specimens up to various levels of plastic strain. Moreover, the high precision strain recording of the extensometer enables a detailed study of the serrated yield phenomena associated with 4.2 K tensile testing and their influence on the evolution of magnetic susceptibility. The results show that high Mn contents increase the stability of the austenitic structure against a' martensitic transformation, while keeping high strength at cryogenic temperature. Moreover, proper elaboration through primary and possi...

  10. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mehanna, Maha [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)], E-mail: mum34@psu.edu; Basseguy, Regine; Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)

    2009-11-15

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (E{sub oc}) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of E{sub oc} ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  11. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    International Nuclear Information System (INIS)

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (Eoc) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of Eoc ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  12. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  13. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  14. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    OpenAIRE

    Bojack, A.; Zhao, L; Morris, P. F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dis...

  15. Austenitic steel piping testing exercises in PISC

    International Nuclear Information System (INIS)

    In this paper capability and reliability studies of NDT procedures for the inspection of wrought and cast stainless steel piping used in nuclear power plants will be presented. The capability study was designed to identify procedures that have the potential to detect and size defects and to discriminate between flawed and unflawed material. The reliability study was undertaken to quantify on real and realistic flaws in-service inspection performance (detection and false call capability) under realistic field conditions. Furthermore parametric studes were performed to complement the capability and reliability studies by evaluating the effect of important material and flaw variables.The specimens used in these studies were cast-to-cast, cast-to-wrought, and wrought-to-wrought pipework welds. The evaluation methods used to quantify the inspection performance were selected to be as comparable as possible to the PISC II methods. These were adapted to allow also the evaluation of the effect of false calls. During the PISC II screening exercise for the cast-to-cast stainless steel round robin test and other piping round robin studies, it was indeed found that false call probabilities were large and could not be ignored in the evaluation of the inspection performance. The matrix of samples has also been designed to allow the implementation of specific statistical analysis procedures for the evaluation of results such as for example the relative operative characteristics analysis. (orig.)

  16. High temperature irradiation creep in austenitic steels

    International Nuclear Information System (INIS)

    An analysis has been made of the in-reactor and ex-reactor creep at 700 - 7500C of various Ti - and Nb - stabilised steels. Above a critical transition stress that depended on steel composition and thermomechanical treatment, the stress dependence of the creep rate was high but there was little influence of irradiation on the kinetics. At lower stresses the stress dependence was small and the creep rate varied as the inverse cube of the grain size. In-reactor creep rates were about ten times faster than those ex-reactor, the in-reactor rates approaching the magnitude of the Coble grain boundary diffusion creep process. A mechanism is proposed to explain the enhanced creep rates in-reactor based on the idea that SIPA irradiation creep of carbide particles occurs at the grain boundary vacancy sinks during diffusion creep. This limits the stress redistribution at the grain boundary and the generation of high stresses at the particles which, in the ex-reactor tests, can markedly inhibit the diffusion creep process. (author)

  17. Hot-working behaviour of high-manganese austenitic steels

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-11-01

    Full Text Available Purpose: The work consisted in investigation of newly elaborated high-manganese austenitic steels with Nb and Ti microadditions in variable conditions of hot-working.Design/methodology/approach: Determination of processes controlling strain hardening was carried out in continuous compression test using Gleeble 3800 thermo-mechanical simulator.Findings: It was found that they have austenite microstructure with numerous annealing twins in the initial state. Continuous compression tests realized in the temperature range from 850 to 1050°C with the strain rate of 10s-1 enabled determination of yield stress values and values of εmax deformations – corresponding to maximum flow stress. It was found that initiation of dynamic recrystallization requires true strain equal at least 0.29. Holding of steel after plastic deformation allowed determining the progress of recrystallization in the function of isothermal holding time. Determined half-times of recrystallization at 900°C after deformation with 25% of reduction are equal 32 and 17s for 27Mn-4Si-2Al-Nb-Ti and 26Mn-3Si-3Al-Nb-Ti steel, respectively. Several-stage compression tests with true strain of 0.29 permit to use dynamic recrystallization for shaping fine-grained microstructure of steel in the whole range of deformation temperature. Decreasing true strain to 0.23 limits the course of dynamic recrystallization to two first deformation cycles. In two final cycles of deformation, as well as in the whole range of hot-working realized with true strain of 0.19 – dynamic recovery is the process controlling strain hardening.Practical implications: The obtained microstructure – hot-working conditions relationships and stress-strain curves can be useful in determination of power-force parameters of hot-rolling for sheets with fine-grained austenitic structures.Originality/value: The hot-working behaviour and microstructure evolution in various conditions of plastic deformation for new

  18. Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties

    Institute of Scientific and Technical Information of China (English)

    Hua-bing Li; Zhou-hua Jiang; Yang Cao; Zu-rui Zhang

    2009-01-01

    18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical duc-tile-brittle transition behavior and excellent pitting corrosion resistance properties.

  19. The model of prediction of the microstructure austenite C-Mn steel

    OpenAIRE

    B. Koczurkiewicz

    2007-01-01

    Purpose: The subject of the work is analysis of author’s model for prediction of austenite microstructure of C-Mn steel based on Sellar’s solution.Design/methodology/approach: The present study adopts the Sellar’s solution for C-Mn steel to the prediction of phenomena occurring in the steel and the grain size of austeniteFindings: The developed model for the evolution of the austenite microstructure enables the correct determination of the grain size of austenite formed by multi-stage hot de...

  20. Kinetics of austenite grain growth in medium-carbon niobium-bearing steel

    Institute of Scientific and Technical Information of China (English)

    Ying-li ZHAO; Jie SHI; Wen-quan CAO; Mao-qiu WANG; Gang XIE

    2011-01-01

    In order to locate a reasonable heating system, the austenite grain growth behavior of Nb microalloyed medium carbon steel has been experimentally studied at various austenitizing temperatures and for different holding times. It is indicated that austenite grain growth increases with increasing austenitizing temperatures and holding times. Particularly when the austenitizing temperature was above 1100 ℃, austenite grains grew rapidly, and an abnormal austenite grain growth was observed. When the austenitizing temperature was lower than 1100 ℃, austenite grain size and growth rate were small. The activation energy of grain growth in the tested steel is 397 679.5 J/mol. To ensure an absence of coarse grains in microstructures, the heating technology of the tested steel should be controlled for 1 h at 1100 ℃. The relationships of austenite average grain size with soaking temperature and time of tested steel were obtained by mathematical calculation, and austenite average grain size was found to be in agreement with the measured size for different holding times.

  1. On the Development of the Brass-Type Texture in Austenitic Stainless Steel

    OpenAIRE

    Singh, C. D.

    1993-01-01

    It has been clarified and demonstrated that the conclusions drawn by Singh, Ramaswamy and Suryanarayana (1992) in an investigation of development of rolling textures in an austenitic stainless steel are correct. The observations and reinterpretations drawn by Leffers (1993) are without any proper scientific basis and do not hold good at least in austenitic stainless steel.

  2. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    OpenAIRE

    Stolecki M.; Bijok H.; Kowal Ł.; Adamiec J.

    2015-01-01

    This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, ...

  3. Creep properties and microstructure of the new wrought austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, T.; Hakl, J.; Novak, P. [SVUM a.s., Prague (Czech Republic); Vyrostkova, A. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Materials Research

    2010-07-01

    The contribution is oriented on the new wrought austenitic steel BGA4 (Cr23Ni15Mn6Cu3W1.5NbVMo) developed by the British Corus Company. Our main aim is to present creep properties studied in SVUM a.s. Prague during COST 536 programme. The dependencies of the creep strength, strength for specific creep strain and minimum creep strain rate were evaluated on the basis of long term creep tests carried out at temperature interval (625; 725) C. Important part of a paper is metallographic analysis. (orig.)

  4. Retained austenite thermal stability in a nanostructured bainitic steel

    International Nuclear Information System (INIS)

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T0 criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization

  5. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  6. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail

  7. Influence of austenitizing temperature on apparent morphologies of as-quenched microstructures of steels

    Institute of Scientific and Technical Information of China (English)

    LIU Yue-jun; LI Yi-min; HUANG Bai-yun

    2006-01-01

    The effects of austenitizing temperature on the morphologies and substructures of as-quenched microstructure were investigated by using 13 medium and high carbon steels. The formation reasons of various morphologies of martensite quenched at different austenitizing temperatures were also studied. The results show that the packet martensite in medium and high carbon steels quenched at higher austenitizing temperature is entirely different from that in as-quenched low carbon steels, which is still plate martensite, and not lath martensite. All the change laws of as-quenched microstructures in medium and high carbon steels are identical with an increase in austenitizing temperature, and the austenitizing temperature can merely change the combined morphology of martensitic platelets,but cannot alter the type of product of martensitic transformation in commercial steels.

  8. Thermal stability of ultrafine-grained austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A.; Radiguet, B.; Genevois, C.; Le Breton, J.-M. [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France); Valiev, R. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12K. Marx Street, 450000 Ufa (Russian Federation); Pareige, P., E-mail: philippe.pareige@univ-rouen.fr [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France)

    2010-08-20

    Ultrafine-grained 316 and 304 austenitic stainless steel samples have been produced by high pressure torsion. Their microstructure, after deformation and annealing at a temperature in the 350-900 deg. C range, has been characterized using several techniques (transmission electron microscopy, X-ray diffraction, Moessbauer spectroscopy). The average grain size in the ultrafine-grained 316 is about 40 nm while it is larger in the ultrafine-grained 304 due to a smaller deformation. Results show the formation of {alpha}'-martensite during deformation in both steels while {epsilon}-martensite is formed only in the 304 steel. Annealing at 350 deg. C induces the decrease of {alpha}'-martensite content in the 316 steel. The trend is different in the 304 steel, in which the {alpha}'-martensite content increases. Recrystallization of grains is observed from 700 deg. C. Moessbauer spectroscopy shows a reduction of the level of solute atoms in {alpha}'-martensite during annealing.

  9. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  10. Small punch creep test in a 316 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Munoz, M. L.; Komazaki, S. I.; Hashida, T.; Lopez-Hirata, V. M.

    2015-03-30

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  11. Research on Retained Austenite for Advanced Aluminum-containing Hot-rolled TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    Guoyi TANG; Fangyu CHEN; Pinghe LI; Sunbing ZHOU

    2005-01-01

    A new type of hot-rolled transformation induced plasticity (TRIP) steel with 2.3%Al was developed to replace conventional Si-bearing TRIP steel to improve surface quality of the steel sheet. The relationship between retained austenite volume fraction and hot-rolling processing was researched by Gleeble-2000 thermo-dynamic test for the Al-bearing steel. The experimental result showed that aluminum played an important role on retaining austenite and the volume fraction increased from 4.4% to 7.5% as coiling temperature increased from 350℃ to 450℃, while coiling temperature had a stronger effect on retaining austenite than finishing rolling temperature.

  12. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  13. EBSD study of a hot deformed austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, H., E-mail: h-m@gmx.com [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. Bases de Manresa 1, 08242 Manresa (Spain); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Calvillo, P.R. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. Bases de Manresa 1, 08242 Manresa (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Microstructural characterization of an austenitic stainless steel by EBSD. Black-Right-Pointing-Pointer The role of twins in the nucleation and growth of dynamic recrystallization. Black-Right-Pointing-Pointer Grain refinement through the discontinuous dynamic recrystallization. Black-Right-Pointing-Pointer Determination of recrystallized fraction using the grain average misorientation. Black-Right-Pointing-Pointer Relationship between recrystallization and the frequency of high angle boundaries. - Abstract: The microstructural evolution of a 304 H austenitic stainless steel subjected to hot compression was studied by the electron backscattered diffraction (EBSD) technique. Detailed data about the boundaries, coincidence site lattice (CSL) relationships and grain size were acquired from the orientation imaging microscopy (OIM) maps. It was found that twins play an important role in the nucleation and growth of dynamic recrystallization (DRX) during hot deformation. Moreover, the conventional discontinuous DRX (DDRX) was found to be in charge of grain refinement reached under the testing conditions studied. Furthermore, the recrystallized fraction (X) was determined from the grain average misorientation (GAM) distribution based on the threshold value of 1.55 Degree-Sign . The frequency of high angle boundaries showed a direct relationship with X. A time exponent of 1.11 was determined from Avrami analysis, which was related to the observed single-peak behavior in the stress-strain flow curves.

  14. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel

    Institute of Scientific and Technical Information of China (English)

    Feng Liu; Guang Xu; Yu-long Zhang; Hai-jiang Hu; Lin-xin Zhou; Zheng-liang Xue

    2013-01-01

    In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100◦C for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100◦C, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the eff ect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.

  15. Austenite Grain Growth and the Surface Quality of Continuously Cast Steel

    Science.gov (United States)

    Dippenaar, Rian; Bernhard, Christian; Schider, Siegfried; Wieser, Gerhard

    2014-04-01

    Austenite grain growth does not only play an important role in determining the mechanical properties of steel, but certain surface defects encountered in the continuous casting industry have also been attributed to the formation of large austenite grains. Earlier research has seen innovative experimentation, the development of metallographic techniques to determine austenite grain size and the building of mathematical models to simulate the conditions pertaining to austenite grain growth during the continuous casting of steel. Oscillation marks and depressions in the meniscus region of the continuously casting mold lead to retarded cooling of the strand surface, which in turn results in the formation of coarse austenite grains, but little is known about the mechanism and rate of formation of these large austenite grains. Relevant earlier research will be briefly reviewed to put into context our recent in situ observations of the delta-ferrite to austenite phase transition. We have confirmed earlier evidence that very large delta-ferrite grains are formed very quickly in the single-phase region and that these large delta-ferrite grains are transformed to large austenite grains at low cooling rates. At the higher cooling rates relevant to the early stages of the solidification of steel in a continuously cast mold, delta-ferrite transforms to austenite by an apparently massive type of transformation mechanism. Large austenite grains then form very quickly from this massive type of microstructure and on further cooling, austenite transforms to thin ferrite allotriomorphs on austenite grain boundaries, followed by Widmanstätten plate growth, with almost no regard to the cooling rate. This observation is important because it is now well established that the presence of a thin ferrite film on austenite grain boundaries is the main cause of reduction in hot ductility. Moreover, this reduction in ductility is exacerbated by the presence of large austenite grains.

  16. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  17. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  18. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    International Nuclear Information System (INIS)

    Highlights: ► A new DARA effect in the bainitic steel is proposed. ► The conditions of DARA effect are proposed. ► The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  19. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    Directory of Open Access Journals (Sweden)

    Ayo Samuel AFOLABI

    2009-07-01

    Full Text Available The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in the structure of duplex stainless steel coupled with higher content of chromium in its composition. Both steels produced electrochemical noise at increased concentrations of lithium bromide due to continuous film breakdown and repair caused by reduction in medium concentration by the alkaline corrosion product while surface passivity observed in duplex stainless steel is attributed to film stability on this steel.

  20. Austenitization Behaviors of X80 Pipeline Steel With High Nb and Trace Ti Treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-you; SUN Xin-jun; JIA Shu-jun; ZHANG Lu-lin; HUANG Guo-jian; REN Yi

    2009-01-01

    The austenitization behaviors of two high niobium-containing X80 pipeline steels with different titanium contents, including the dissolution of microalloying precipitates and the austenite grain growth, were investigated by using physical-chemical phase analysis method and microstructural observation. The results illustrated that most niobium could be dissolved into austenite during soaking at 1180℃, whereas little amount of titanium could be dissolved. It was found that during soaking, the austenite grain growth rate was initially high, and then decreased after soaking for 1 h; moreover, the austenite grains grew up more rapidly at temperatures above 1180℃ than below 1180℃. The results show that the steel with titanium content of 0.016% has a larger austenite grain size than that with titanium content of 0.012% under the same soaking conditions, which is explained by considering the particle size distribution.

  1. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2016-07-01

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details.

  2. Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    LI Hua-bing; JIANG Zhou-hua; ZHANG Zu-rui; YANG Yan

    2009-01-01

    The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing.The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined.High strength and good ductility of the steel were found.In the grain size range,the Hall-Petch dependency for yield stress,tensile strength,and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel.In the present study,the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined.The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.

  3. Influence of austenite grain size on overaging treatment of continuous annealed dual phase steels

    OpenAIRE

    García-Junceda, A; García Caballero, Francisca; Iung, T; Capdevila, Carlos; García de Andrés, Carlos

    2007-01-01

    A dual phase steel with an initial coarse microstructure was refined, by means of a thermal treatment, to study the influence of the austenite grain size reached during an intercritical annealing treatment on the martensite start temperature. Thus, the effect of the austenite grain size on a subsequent overaging treatment was also investigated. It was found that a coarser austenite grain size leads to a higher martensite start temperature and a lower amount of nontempered marte...

  4. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  5. Modified Monkman-Grant relationship for austenitic stainless steel foils

    Science.gov (United States)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  6. Residual stresses of water-jet peened austenitic stainless steel

    International Nuclear Information System (INIS)

    The specimen material was austenitic stainless steel, SUS316L. The residual stress was induced by water-jet peening. The residual stress was measured using the 311 diffraction with conventional X-rays. The measured residual stress showed the equi-biaxial stress state. To investigate thermal stability of the residual stress, the specimen was aged thermally at 773K in air to 1000h. The residual stress kept the equi-biaxial stress state against the thermal aging. Lattice plane dependency of the residual stress induced by water-jet peening was evaluated using hard synchrotron X-rays. The residual stress measured by the soft lattice plane showed the equi-biaxial stress state, but the residual stress measured by the hard lattice plane did not. In addition, the distributions of the residual stress in the depth direction were measured using a strain scanning method with hard synchrotron X-rays and neutrons. (author)

  7. Fracture formation in austenitic cast steel during thermal fatigue

    Directory of Open Access Journals (Sweden)

    J. Tuleja

    2008-04-01

    Full Text Available In the paper are presented the results of numerical analyses of carburisation and thermal shock effect on fracture formation in stable austenitic cast steel of Fe–Ni–Cr–C type used in the charge–carrying elements of carburising furnaces. Using the method of finite element method, the distribution of stresses developing in carbides and their surrounding matrix were determined during rapid temperature changes. It was showed that very large tensile stresses developed in the carbides “out–coming” onto the alloy surface, regardless of the volume, type and anisotropy of properties, which could have led to their cracking as early as in the first cycles of heating and rapid cooling.

  8. Thermal deformation behavior and microstructure of nuclear austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Gleeble-1500D thermal simulation tester was employed in the hot-compression investigation of as-cast nuclear 304 austenitic stainless steel under conditions: deformation temperature 950―1200℃; deformations 30% and 50%; deformation rates 0.01 and 0.1 s?1. The results show that the flow stress decreases with temperature rise under the same strain rate and deformation, that the flow stress increases with deformation under the same temperature and strain rate, and that the flow stress increases with strain rate under the same temperature condition, i.e., work hardening becomes distinct. Materials exhibit better strength-toughness when the strain rate is 0.01 s-1, the deformation is 50%, and the temperature is 1050℃.

  9. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Directory of Open Access Journals (Sweden)

    Stolecki M.

    2015-09-01

    Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.

  10. Austenite Formation Kinetics During Rapid Heating in a Microalloyed Steel

    Energy Technology Data Exchange (ETDEWEB)

    BURNETT,M.E.; DYKHUIZEN,RONALD C.; KELLEY,J. BRUCE; PUSKAR,JOSEPH D.; ROBINO,CHARLES V.

    1999-09-07

    The model parameters for the normalized 1054V1 material were compared to parameters previously generated for 1026 steel, and the transformation behavior was relatively consistent. Validation of the model predictions by heating into the austenite plus undissolved ferrite phase field and rapidly quenching resulted in reasonable predictions when compared to the measured volume fractions from optical metallography. The hot rolled 1054V1 material, which had a much coarser grain size and a non-equilibrium volume fraction of pearlite, had significantly different model parameters and the on heating transformation behavior of this material was less predictable with the established model. The differences in behavior is consistent with conventional wisdom that normalized micro-structure produce a more consistent response to processing, and it reinforces the need for additional work in this area.

  11. Mechanized welding of austenitic precision stainless steel tubes

    International Nuclear Information System (INIS)

    Austenitic stainless steel tubes of material no. 1,4541 and 1,4550 are used for the tube systems to transport active and inactive gases in reactor experiments. A fully mechanical method was developed for the joining of these tubes by welding which makes use of an electrode holder with surrounding W electrode. This method, whose application is described here, enables the joining of the tubes in all welding positions. A pulsating direct current is used as welding current. Breaking tests on the welded samples gave values corresponding to the strength of the materials mentioned. The welded seams are subjected to the helium leak test and to the X-ray test. (GSCH/LH)

  12. Fatigue crack growth in metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Z.; Chang, G.; Morris, J.W. Jr.

    1988-06-01

    The research reported here is an investigation of the influence of the mechanically induced martensitic transformation on the fatigue crack growth rate in 304-type steels. The alloys 304L and 304LN were used to test the influence of composition, the testing temperatures 298 K and 77 K were used to study the influence of test temperature, and various load ratios (R) were used to determine the influence of the load ratio. It was found that decreasing the mechanical stability of the austenite by changing composition or lowering temperature decreases the fatigue crack growth rate. The R-ratio effect is more subtle. The fatigue crack growth rate increases with increasing R-ratio, even though this change increases the martensite transformation. Transformation-induced crack closure can explain the results in the threshold regime, but cannot explain the R-ratio effect at higher cyclic stress intensities. 26 refs., 6 figs.

  13. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  14. Steam generator local water chemistry and SCC of austenitic steel

    International Nuclear Information System (INIS)

    The titanium stabilized austenitic steel similar to the type of 321 is sensitive to the stress corrosion cracking under horizontal steam generator operating condition. SCC was observed under crevice corrosion parameters and has resulted in the transgranular or intergranular cracking at the both, components primary collectors and heat exchange tubes. The crevice environment is characterized by aggressive impurities and 'non aggressive' compounds. Sulfates and chlorides as aggressive species and silicates and alumino-silicates as 'non aggressive' species on the other hand are present in significant amount in the crevice environment under operating condition. Local water chemistry parameters were evaluated with MULTEQ Code. As input data the measured operational values of local and bulk environments have been used. The determined parameters were compared with the results of thread hole environment analyses and tube surface investigations respectively. Results of the hideout return profiles measurement showed an increase of sulfate concentration by one order of magnitude. Increase of the chloride content was not been observed, its value remains at operation levels. Examination of surface layers showed the preferential accumulation of sulfates, silicates and alumino-silicates in the deposit at tube support plates and in thread holes comparing relative to free span surfaces. The content of species in the water and deposits and the crystallographic structure of deposits correspond to MULTEQ results. Rising displacement tests were carried out with 0.5T CT specimens at a temperature 275 degrees C in the model water environment which simulated the crevice conditions. The experimental values are presented for crack growth rate versus stress intensity factor. Corrosion damage of the titanium stabilized austenitic steel is likely to be determined by the presence of sulfates and chlorides and other aggressive agents, as Cu. It is supposed that other decisive factor is the

  15. Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel

    International Nuclear Information System (INIS)

    The effect of thermomechanical processing conditions on Nb clustering and precipitation in both austenite and ferrite in a Nb–Ti microalloyed steel was studied using electron microscopy and atom probe tomography. A decrease in the deformation temperature increased the Nb-rich precipitation in austenite and decreased the extent of precipitation in ferrite. Microstructural mechanisms that explain this variation are discussed

  16. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  17. Structure and properties of high-temperature austenitic steels for superheater tubes

    Science.gov (United States)

    Blinov, V. M.

    2009-12-01

    The structure and properties of high-temperature austenitic steels intended for superheater tubes are analyzed. Widely used Kh18N10T (AISI 304) and Kh16N13M3 (AISI 316) steels are found not to ensure a stable austenitic structure and stable properties during long-term thermal holding under stresses. The hardening of austenitic steels by fine particles of vanadium and niobium carbides and nitrides and γ'-phase and Fe2W and Fe2Mo Laves phase intermetallics is considered. The role of Cr23C6 chromium carbides, the σ phase, and coarse precipitates of an M 3B2 phase and a boron-containing eutectic in decreasing the time to failure and the stress-rupture strength of austenitic steels is established. The mechanism of increasing the stress-rupture strength of steels by boron additions is described. The chemical compositions, mechanical properties, stress-rupture strength, and creep characteristics of Russian and foreign austenitic steels used or designed for superheater tubes intended for operation under stress conditions at temperatures above 600°C are presented. The conditions are found for increasing the strength, plasticity, and thermodeformation stability of austenite in steels intended for superheater tubes operating at 700°C under high stresses for a long time.

  18. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhe

  19. The influence of texture on phase transformation in metastable austenitic stainless steel

    NARCIS (Netherlands)

    Hilkhuijsen, P.

    2013-01-01

    Metastable austenitic stainless steels are used in many applications, from shavers and kitchen sinks to various applications in the food industry. The diversity in applications of this type of steels is possible due to the many positive properties of the steel. It is not only esthetically pleasing,

  20. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels

    Institute of Scientific and Technical Information of China (English)

    Edgar Lpez-Martnez; Octavio Vzquez-Gmez; Hctor Javier Vergara-Hernndez; Bernardo Campillo

    2015-01-01

    Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures compris-ing bainite–martensite and ferrite–martensite/austenite microconstituents was studied during continuous heating by dilatometric analysis. Austenite formation occurred in two steps:(1) carbide dissolution and precipitation and (2) transformation of residual ferrite to austenite. Di-latometric analysis was used to determine the critical temperatures of austenite formation and continuous heating transformation diagrams for heating rates ranging from 0.03°C×s−1 to 0.67°C×s−1. The austenite volume fraction was fitted using the Johnson–Mehl–Avrami–Kolmogorov equation to determine the kinetic parameters k and n as functions of the heating rate. Both n and k parameters increased with increasing heat-ing rate, which suggests an increase in the nucleation and growth rates of austenite. The activation energy of austenite formation was deter-mined by the Kissinger method. Two activation energies were associated with each of the two austenite formation steps. In the first step, the austenite growth rate was controlled by carbon diffusion from carbide dissolution and precipitation;in the second step, it was controlled by the dissolution of residual ferrite to austenite.

  1. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels

    Science.gov (United States)

    López-Martínez, Edgar; Vázquez-Gómez, Octavio; Vergara-Hernández, Héctor Javier; Campillo, Bernardo

    2015-12-01

    Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied during continuous heating by dilatometric analysis. Austenite formation occurred in two steps: (1) carbide dissolution and precipitation and (2) transformation of residual ferrite to austenite. Dilatometric analysis was used to determine the critical temperatures of austenite formation and continuous heating transformation diagrams for heating rates ranging from 0.03°C•s-1 to 0.67°C•s-1. The austenite volume fraction was fitted using the Johnson-Mehl-Avrami-Kolmogorov equation to determine the kinetic parameters k and n as functions of the heating rate. Both n and k parameters increased with increasing heating rate, which suggests an increase in the nucleation and growth rates of austenite. The activation energy of austenite formation was determined by the Kissinger method. Two activation energies were associated with each of the two austenite formation steps. In the first step, the austenite growth rate was controlled by carbon diffusion from carbide dissolution and precipitation; in the second step, it was controlled by the dissolution of residual ferrite to austenite.

  2. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    Science.gov (United States)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  3. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  4. Static Recrystallization Behavior of Hot Deformed Austenite for Micro-Alloyed Steel

    Institute of Scientific and Technical Information of China (English)

    Jie HUANG; Zhou XU; Xin XING

    2003-01-01

    Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austen

  5. Characteristics of the Austenitic Steels Used in the LHC Main Dipoles

    CERN Document Server

    Lanza, C

    2002-01-01

    The LHC dipole structure is assembled using austenitic steel collars and austenitic steel end-laminations. The collars will be fine-blanked starting from 11'000 tonnes of steel; the end-laminations require 1'700 tonnes of steel. The procurement of the austenitic steels was divided in two phases: first we qualified different grades from different producers then we made the call for tender, adjudicated the contract and started the series production. The first part of this paper summarises the results of the first qualification phase when extensive checks and measurements were carried out on five different grades. The second part describes the approach used to control the series production and the results obtained. At the time of writing about 19% of the steel for collars and end-laminations has been manufactured and delivered.

  6. Effect of Austenite Deformation on Continuous Cooling Transformation Microstructures for 22CrSH Gear Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-xin; JIANG Ying-tian; XU Xu-dong; LIU Xiang-hua; WANG Guo-dong

    2007-01-01

    The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.

  7. Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints

    OpenAIRE

    M. Vinoth Kumar; Balasubramanian, V.; S. RAJAKUMAR; Shaju K. Albert

    2015-01-01

    Super 304H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of t...

  8. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    OpenAIRE

    Z. Brytan; M. Bonek; L.A. Dobrzański

    2010-01-01

    Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404).Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL). The influence of laser alloying conditions, both laser beam power (between 0.7 ...

  9. Numerical modelling and validation of precipitation kinetics in advanced creep resistant austenitic steel

    OpenAIRE

    Vujic, Stojan; Farooq, Muhammad; Sonderegger, Bermjard; Sandström, Rolf; Sommitsch, Christof

    2012-01-01

    The austenitic steel Sanicro 25 is one of the most promising austenitic steels for the application in superheater tubes in coal fired thermal power plants. In this work, the microstructural evolution of this material during heat treatment and thermal ageing has been investigated. The investigations were carried out by light microscopy (LIMI), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Scheil calculations were carried ou...

  10. Plasma Nitriding of Austenitic Stainless Steel with Severe Surface Deformation Layer

    Institute of Scientific and Technical Information of China (English)

    JI Shi-jun; GAO Yu-zhou; WANG Liang; SUN Jun-cai; HEI Zu-kun

    2004-01-01

    The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.

  11. Stress corrosion cracking of austenitic stainless steel core internal welds.

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

    1999-04-14

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

  12. Deformation behavior of duplex austenite and ε-martensite high-Mn steel

    Directory of Open Access Journals (Sweden)

    Ki Hyuk Kwon, Byeong-Chan Suh, Sung-Il Baik, Young-Woon Kim, Jong-Kyo Choi and Nack J Kim

    2013-01-01

    Full Text Available Deformation and work hardening behavior of Fe–17Mn–0.02C steel containing ε-martensite within the austenite matrix have been investigated by means of in situ microstructural observations and x-ray diffraction analysis. During deformation, the steel shows the deformation-induced transformation of austenite → ε-martensite → α'-martensite as well as the direct transformation of austenite → α'-martensite. Based on the calculation of changes in the fraction of each constituent phase, we found that the phase transformation of austenite → ε-martensite is more effective in work hardening than that of ε-martensite → α'-martensite. Moreover, reverse transformation of ε-martensite → austenite has also been observed during deformation. It originates from the formation of stacking faults within the deformed ε-martensite, resulting in the formation of 6H-long periodic ordered structure.

  13. Austenite layer and precipitation in high Co-Ni maraging steel.

    Science.gov (United States)

    Wang, Chenchong; Zhang, Chi; Yang, Zhigang

    2014-12-01

    In high Co-Ni maraging steel, austenite has a great effect on the fracture toughness of the steel and the precipitated carbides are the main strengthening phase. In this study, both austenite layers and precipitation were observed and their formation theory was analyzed by Thermo-Calc simulation and several reported results. TEM and HRTEM observation results showed that the thickness of the austenite layers was about 5-10 nm and the length of the needle-like precipitated carbides was less than 10nm. The carbides maintained coherent or semi-coherent relation with the matrix.

  14. EFFECTS OF CARBON CONTENT AND ROLLING PROCESSING ON RETAINED AUSTENITE FOR HOT-ROLLED TRIP STEELS

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; Z.X. Yuan; B.F. Xu; A.M. Guo; P.H. Li; S.K. Pu

    2002-01-01

    The effects of finishing rolling temperature and coiling temperature on retained austen-ire were studied for hot-rolled transformation induced plasticity (TRIP) steels withdifferent carbon content. The experimental results showed that an appropriate volumefraction of retained austenite from 6% to 11% could be obtained according to the dif-ferent carbon content less than 0.20% by controlled finishing rolling and coiling forthe hot-rolled TRIP steels. It can be concluded that carbon content has a significanteffect on the fraction of retained austenite and coiling processing plays stronger roleon retaining austenite than fishing rolling processing.

  15. Influence of phase transformation on the hardening of austenitic stainless steels

    International Nuclear Information System (INIS)

    The influence of phase transformation on the true stress-true strain curves of austenitic stainless steels was studied. This investigation was carried on one type of AISI 302 steel and one AISI 316 steel. The temperature range varied from -1960C to room temperature. A model for the workhardening of metaestable austenitic stainless steel is proposed. It was concluded that stress induced martensite epsilon may be responsible for the lowering of yield strength as well as the initial plateau on workhardening in these materials. (Author)

  16. Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI 420

    Science.gov (United States)

    Barlow, L. D.; Du Toit, M.

    2012-07-01

    The effect of austenitizing on the microstructure and hardness of two martensitic stainless steels was examined with the aim of supplying heat-treatment guidelines to the user that will ensure a martensitic structure with minimal retained austenite, evenly dispersed carbides and a hardness of between 610 and 740 HV (Vickers hardness) after quenching and tempering. The steels examined during the course of this examination conform in composition to medium-carbon AISI 420 martensitic stainless steel, except for the addition of 0.13% vanadium and 0.62% molybdenum to one of the alloys. Steel samples were austenitized at temperatures between 1000 and 1200 °C, followed by oil quenching. The as-quenched microstructures were found to range from almost fully martensitic structures to martensite with up to 35% retained austenite after quenching, with varying amounts of carbides. Optical and scanning electron microscopy was used to characterize the microstructures, and X-ray diffraction was employed to identify the carbide present in the as-quenched structures and to quantify the retained austenite contents. Hardness tests were performed to determine the effect of heat treatment on mechanical properties. As-quenched hardness values ranged from 700 to 270 HV, depending on the amount of retained austenite. Thermodynamic predictions (using the CALPHAD™ model) were employed to explain these microstructures based on the solubility of the carbide particles at various austenitizing temperatures.

  17. Influence of reverted austenite on the texture and magnetic properties of 350 maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Hamilton F.G., E-mail: hamilton@ufc.br [Universidade Federal do Ceará, Campus do Pici-Bloco 729, CEP 60440-554 Fortaleza, CE (Brazil); Silva, Jean J. [Universidade Federal do Ceará, Campus do Pici-Bloco 729, CEP 60440-554 Fortaleza, CE (Brazil); Silva, Manoel R. [Universidade Federal de Itajubá, Campus Sede Itajubá/IFQ- Instituto de Física e Química, Itajubá, MG (Brazil); Gomes da Silva, Marcelo J., E-mail: mgsilva@ufc.br [Universidade Federal do Ceará, Campus do Pici-Bloco 729, CEP 60440-554 Fortaleza, CE (Brazil)

    2015-11-01

    The aging temperature to improve magnetic properties in Maraging-350 steel (Mar-350) is limited by the onset of austenite reversion. The traditional process of cooling after aging is to remove the piece from the oven and then to air cool it. The purpose of this research was to characterize the reverted austenite and to investigate the effect of cooling below the martensite start temperature (M{sub s}) on the magnetic properties. The Mar350 samples aged at temperatures above 550 °C, and subsequently cooled in liquid nitrogen presented less austenite than samples cooled in air, resulting in higher magnetization saturation and a lower coercive force. A combination of optical microscopy (OM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) techniques were used to characterize the presence of reverted austenite. The crystallographic texture of both martensite and reverted austenite were analyzed. The texture of the reverted austenite coincides with the texture of the parent austenite indicating that a phenomenon of texture memory is present. - Highlights: • Cooling maraging samples in liquid nitrogen reduces reverted austenite fraction. • Retained austenite increases coercive force and decreases saturation magnetization. • Reverted and parent austenites have the same crystallographic texture. • Memory effect found during reversion transformation.

  18. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, K.; Gao, X. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden); Lofaj, F. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 916 24 Trnava (Slovakia); Kvetková, L. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Shen, Z.J. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-06-05

    Highlights: • Mechanical properties, phase and microstructure stability of laser melted steel was studied. • Duplex austenite-ferrite assembly with improved mechanical properties was formed. • Dissolution of Mo in the steel matrix resulted in ferrite stabilization and stress relief. • Enhanced mechanical properties were achieved compared to conventionally casted and annealed steel. - Abstract: Laser melting (LM), with a focused Nd:YAG laser beam, was used to form solid bodies from 316L austenite stainless steel powder and the laser melted samples were heat treated at various temperatures. The phase changes in heat treated samples were characterized using X-ray diffraction (XRD). Samples heat treated at 800 °C and 900 °C remained single austenite while in samples heat treated at 1100 °C and 1400 °C a dual austenite-ferrite phase assembly was formed. The ferrite formation was further verified by electron back scattering diffraction (EBSD) and selective area diffraction (SAD). Microstructural changes were studied by scanning and transmission electron microscopy (SEM, TEM). In samples heat treated up to 900 °C, coalescence of the cellular-sub grains was noticed, whereas in sample heat treated at and above 1100 °C the formation of ferrite phase was observed. The correlation between the microstructure/phase assembly and the measured strength/microhardness were investigated, which indicated that the tensile strength of the laser melted material was significantly higher than that of the conventional 316L steel even after heat treatment whereas caution has to be taken when laser melted material will be exposed to an application temperature above 900 °C.

  19. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting

    International Nuclear Information System (INIS)

    Highlights: • Mechanical properties, phase and microstructure stability of laser melted steel was studied. • Duplex austenite-ferrite assembly with improved mechanical properties was formed. • Dissolution of Mo in the steel matrix resulted in ferrite stabilization and stress relief. • Enhanced mechanical properties were achieved compared to conventionally casted and annealed steel. - Abstract: Laser melting (LM), with a focused Nd:YAG laser beam, was used to form solid bodies from 316L austenite stainless steel powder and the laser melted samples were heat treated at various temperatures. The phase changes in heat treated samples were characterized using X-ray diffraction (XRD). Samples heat treated at 800 °C and 900 °C remained single austenite while in samples heat treated at 1100 °C and 1400 °C a dual austenite-ferrite phase assembly was formed. The ferrite formation was further verified by electron back scattering diffraction (EBSD) and selective area diffraction (SAD). Microstructural changes were studied by scanning and transmission electron microscopy (SEM, TEM). In samples heat treated up to 900 °C, coalescence of the cellular-sub grains was noticed, whereas in sample heat treated at and above 1100 °C the formation of ferrite phase was observed. The correlation between the microstructure/phase assembly and the measured strength/microhardness were investigated, which indicated that the tensile strength of the laser melted material was significantly higher than that of the conventional 316L steel even after heat treatment whereas caution has to be taken when laser melted material will be exposed to an application temperature above 900 °C

  20. The model of prediction of the microstructure austenite C-Mn steel

    Directory of Open Access Journals (Sweden)

    B. Koczurkiewicz

    2007-07-01

    Full Text Available Purpose: The subject of the work is analysis of author’s model for prediction of austenite microstructure of C-Mn steel based on Sellar’s solution.Design/methodology/approach: The present study adopts the Sellar’s solution for C-Mn steel to the prediction of phenomena occurring in the steel and the grain size of austeniteFindings: The developed model for the evolution of the austenite microstructure enables the correct determination of the grain size of austenite formed by multi-stage hot deformation.Research limitations/implications: The model is limitated only for selected steel groupPractical implications: The results obtained on the basis of this model will be utilized in the study for the determination of the distribution and state of microstructure in sections with complicated shapes after the rolling process.Originality/value: The modelling of microstructure is very importante problem. There are a lot of general models in literature, which can be used for predicting evolution of microstructure after rolling proces of steel, but the results obtained from them are different. There is a need for adapting the general model for a selected steel group to the prediction of phenomena occurring in the steel and the grain size of austenite formed by means of multi-stage deformation.

  1. Antibacterial Properties of an Austenitic Antibacterial Stainless Steel and Its Security for Human Body

    Institute of Scientific and Technical Information of China (English)

    Ke YANG; Manqi L(U)

    2007-01-01

    An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with antibacterial function. The antibacterial function is strong, long-term and broad-spectrum, and can be maintained even after repeated wear and long time dipping in water. The steel is safe for human body and could be used widely in daily application.

  2. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  3. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel

    International Nuclear Information System (INIS)

    Restrictions on fuel consumption and safety in the automotive industry have stimulated the development of quenching and partitioning (Q and P) steel. This steel is expected to have very high strength in combination with acceptable ductility owing to its microstructure consisting of martensite with a considerable amount of retained austenite. The effect of retained austenite on the mechanical properties and its transformation stability were determined by stepwise uniaxial micro-tensile testing and subsequent electron backscatter diffraction (EBSD) study of a pre-selected region. The austenite fraction evolution with increasing plastic deformation and the influence of fresh martensite on the local strain distribution were quantified based on the orientation data. The decrease of the retained austenite as a function of the applied strain was described by an exponential function with the pre-exponential and exponential factors related to the starting austenite fraction and its transformation stability respectively. It was proven that the presence of fresh martensite has a negative influence on this austenite transformation stability due to its constraining effect on the strain distribution. This effects the mechanical properties manifested by changes in the strain hardening behavior and total elongation. The results suggest that the ductility of the Q and P steels can be improved by an appropriate design of the heat treatment schedule in order to ensure high retained austenite fractions without the presence of fresh martensite in the final microstructure

  4. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    Science.gov (United States)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  5. Austenite steel transformations under the influence of fatigue loading

    Directory of Open Access Journals (Sweden)

    D. Skibicki

    2008-10-01

    Full Text Available Behavior of materials and structures in fatigue non-proportional loading conditions, characterized by the principal axes rotation during fatigue cycles, is an important issue because of its impact on fatigue properties. The article presents results of an analysis ofmicrostructural steel X5CrNi18-10, subjected to proportional fatigue loadings: torsion and push-pull, as well as non-proportional ones.Variability of the principal axes positions of non-proportional loadings was obtained by using a loading program with alternately realized torsion and tension-compression blocks. The work includes an analysis of one-phase microstructure and microhardness tests of fatigue samples were carried out. The cyclic loading value accepted for the tests caused an martensite transformation induced by plastic strain and occurrence of slip bands in the grains of austenite. A comparative analysis revealed differences in the transformation intensity, depending on the type of applied loading and on the degree of its non-proportionality.

  6. Antibacterial and corrosive properties of copper implanted austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    Juan Xiong; Bo-fan Xu; Hong-wei Ni

    2009-01-01

    Copper ions were implanted into austenitic stainless steel (SS) by metal vapor vacuum arc with a energy of 100 keV and an ions dose range of (0.5-8.0)x 1017 cm-2. The Cu-implanted SS was annealed in an Ar atmosphere furnace. Glancing X-ray diffraction (GXRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) were used to reveal the phase com-positions, microstructures, and concentration profiles of copper ions in the implanted layer. The results show that the antibacterialproperty of Cu-implanted SS is attributed to Cu9.9Fe0.1 which precipitated as needles. The depth of copper in Cu-implanted SS with annealing treatment is greater than that in Cu-implanted SS without annealing treatment, which improves the antibacterial property against S. Aureus. The salt wetting-drying combined cyclic test was used to evaluate the corrosion-resistance of antibacterial SS, and the results reveal that the antibacterial SS has a level of corrosion-resistance equivalent to that of un-implanted SS.

  7. Dislocation loop evolution under ion irradiation in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A., E-mail: auriane.etienne@etu.univ-rouen.f [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France); Hernandez-Mayoral, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Genevois, C.; Radiguet, B.; Pareige, P. [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France)

    2010-05-01

    A solution annealed 304 and a cold worked 316 austenitic stainless steels were irradiated from 0.36 to 5 dpa at 350 deg. C using 160 keV Fe ions. Irradiated microstructures were characterized by transmission electron microscopy (TEM). Observations after irradiation revealed the presence of a high number density of Frank loops. Size and number density of Frank loops have been measured. Results are in good agreement with those observed in the literature and show that ion irradiation is able to simulate dislocation loop microstructure obtained after neutron irradiation. Experimental results and data from literature were compared with predictions from the cluster dynamic model, MFVIC (Mean Field Vacancy and Interstitial Clustering). It is able to reproduce dislocation loop population for neutron irradiation. Effects of dose rate and temperature on the loop number density are simulated by the model. Calculations for ion irradiations show that simulation results are consistent with experimental observations. However, results also show the model limitations due to the lack of accurate parameters.

  8. Dislocation loop evolution under ion irradiation in austenitic stainless steels

    Science.gov (United States)

    Etienne, A.; Hernández-Mayoral, M.; Genevois, C.; Radiguet, B.; Pareige, P.

    2010-05-01

    A solution annealed 304 and a cold worked 316 austenitic stainless steels were irradiated from 0.36 to 5 dpa at 350 °C using 160 keV Fe ions. Irradiated microstructures were characterized by transmission electron microscopy (TEM). Observations after irradiation revealed the presence of a high number density of Frank loops. Size and number density of Frank loops have been measured. Results are in good agreement with those observed in the literature and show that ion irradiation is able to simulate dislocation loop microstructure obtained after neutron irradiation. Experimental results and data from literature were compared with predictions from the cluster dynamic model, MFVIC (Mean Field Vacancy and Interstitial Clustering). It is able to reproduce dislocation loop population for neutron irradiation. Effects of dose rate and temperature on the loop number density are simulated by the model. Calculations for ion irradiations show that simulation results are consistent with experimental observations. However, results also show the model limitations due to the lack of accurate parameters.

  9. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    Science.gov (United States)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  10. Compatibility of Austenitic Steel With Molten Lead-Bismuth-Tin Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LI Yan; WANG Xiao-min

    2011-01-01

    The compatibility of the austenitic AISI 304 steel with Pb-Bi-Sn alloy was analyzed. The AISI 304 steels were immersed in stagnant molten Pb-33.3Bi-33. 3Sn alloy at 400, 500 and 600℃ for different exposure times (100-2 000 h) respectively. XRay diffractio

  11. Thermal Stability of Retained Austenite in TRIP Steel After Different Treatments

    Institute of Scientific and Technical Information of China (English)

    SHI Wen; LI Lin; Bruno C De Cooman; Patrick Wollants; YANG Chun-xia

    2008-01-01

    Thermal decomposition of retained austenite in TRIP steel was investigated by means of differential scanning calorimetry (DSC). The decomposition curve was abnormal, and the decomposition temperature and the activation energy were measured by the Kissinger method, which were all higher than those in quenched steel. The thermal decomposition data of samples soaked in liquid nitrogen after TRIP treatment were all similar to those without additional low temperature treatment. It indicated that there is a high thermal stability in retained austenite of the TRIP steel at low temperature, which was also proved by XRD analysis.

  12. The structure and corrosion behavior of electron beam treated austenitic stainless steels

    International Nuclear Information System (INIS)

    The influence of electron beam surface melting of austenitic AISI 304 stainless steel on its microstructure and anodic potentiostatic behavior in 1N sulphuric acid at 25 C has been studied. Delta ferrite formed in the surface melted layer and was found to vary with electron beam current and stainless steel plate thickness. The structure and anodic behavior of AISI 304 specimens conventionally heat treated to provoke ferrite formation were also studied. The length of active region in the anodic potentiostatic curves for both the surface melted and heat treated specimens decreased with increasing ferrite in the austenitic steel. Overall, surface melting using high energy sources has been found to significantly improve the aqueous corrosion resistance of austenitic stainless steel by provoking the formation of duplex microstructures. (author)

  13. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  14. The sub-zero Celsius treatment of precipitation hardenable semi-austenitic stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2015-01-01

    A precipitation hardenable semi-austenitic stainless steel AISI 632 grade was austenitized according to industrial specifications and thereafter subjected to isothermal treatment at sub-zero Celsius temperatures. During treatment, austenite transformed to martensite. The isothermal austenite-to-martensite...... treatment. Magnetometry showed that the additional thermal step in boiling nitrogen yields a minor increment of the fraction of martensite, but has a noteworthy accelerating effect on the transformation kinetics, which more pronounced when the isothermal holding is performed at a higher temperature. Data...... transformation was monitored in situ by magnetometry and data was used to sketch a TTT diagram for transformation. As an alternative treatment, after austenitization the material was immersed in boiling nitrogen and up-quenched to room temperature by immersion in water prior to be subjected to isothermal...

  15. MODELING OF AUSTENITE GRAIN SIZE IN LOW-ALLOY STEEL WELD METAL

    Institute of Scientific and Technical Information of China (English)

    A.G.Huang; Y.S.Wang; Z.Y.Li; J.G.Xiong; Q.Hu

    2004-01-01

    The size of austenite grain hassignificant effects on components and proportions of various ferrites in low-alloy steel weld metal.Therefore,it is important to determine the size of austenite grain in the weld metal.In this paper,a model based upon the carbon diffusion rate is developed for computing austenite grain size in low-alloy steel weld metal during continuous cooling.The model takes into account the effects of the weld thermal cycles,inclusion particles and various alloy elements on the austenite grain growth.The calculating results agree reasonably with those reported experimental observations.The model demonstrates a significant promise to understand the weld microstructure and properties based on the welding science.

  16. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    Science.gov (United States)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger

  17. The role of ferrite in Type 316H austenitic stainless steels on the susceptibility to creep cavitation

    OpenAIRE

    Warren, A. D.; Griffiths, Ian J; Harniman, Robert L.; Flewitt, Peter E J; Scott, Thomas Bligh

    2015-01-01

    An ex-service Type 316H stainless steel which was subsequently aged at 500°C for ~22×103h was found to contain approximately 2% mixed (δ and α) ferrite distributed in localised regions of the microstructure. Preferred creep cavitation at boundaries was associated with these ferrite regions. Creep cavities associated with the austenite-austenite-ferrite boundary junctions, showed a lenticular morphology while austenite-austenite grain boundary creep cavities had a more spherical morphology. De...

  18. The influence of chemical composition on structure and mechanical properties of austenitic Cr-Ni steels

    Directory of Open Access Journals (Sweden)

    A. Kurc-Lisiecka

    2013-12-01

    Full Text Available Purpose: The aim of the paper is to investigated the influence of the chemical composition on the structure and mechanical properties of austenitic Cr-Ni steels. Special attention was put on the effect of solution heat treatment on mechanical properties of examined steels. Design/methodology/approach: The examinations of static tensile tests were conducted on ZWICK 100N5A. Hardness measurements were made by Vickers method. The X-ray analyzes were realized with the use of Dron 2.0 diffractometer equipped with the lamp of the cobalt anode. The metallographic observations were carried out on LEICA MEF 4A light microscope. Findings: Results shown that after solution heat treatment the values of strength properties (UTS, YS0.2 and hardness (HV of both investigated steels decrease and their elongation (EL increases. The X5CrNi18-8 steel in delivery state shown austenitic microstructure with twins and numerous non-metallic inclusions, while in steel X10CrNi18-8 revealed a austenitic microstructure with numerous slip bands in areas with deformation martensite α’. The examined steels after solution heat treatment followed by water-cooling has the structure of austenite. Research limitations/implications: To investigate in more detail the influence of chemical composition on structure and mechanical properties the examinations of substructure by TEM should be conducted. Originality/value: The relationship between the solution heat treatment, structure and mechanical properties of investigated steels was specified.

  19. Hot ductility of austenitic and duplex stainless steels under hot rolling conditions

    OpenAIRE

    Kömi, J. (Jenni)

    2001-01-01

    Abstract The effects of restoration and certain elements, nitrogen, sulphur, calcium and Misch metal, on the hot ductility of austenitic, high-alloyed austenitic and duplex stainless steels have been investigated by means of hot rolling, hot tensile, hot bending and stress relaxation tests. The results of these different testing methods indicated that hot rolling experiments using stepped specimens is the most effective way to investigate the relationship between the s...

  20. Effect of Silicon Content on Thermodynamics of Austenite Decomposition in C-Si-Mn TRIP Steels

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-juan; WU Di; ZHAO Xian-ming

    2006-01-01

    Some numerical models such as central atoms model (CAM) and superelement model were used to simulate the thermodynamics of austenite decomposition in the Fe-C-Mn-Si TRIP (transformation induced plasticity) steels. Thermodynamic calculations were carried out under a para-equilibrium (PE) condition. The results show that certain silicon content can accelerate the polygonal ferritic transformation and increase the volume fraction and stability of retained austenite by retarding the precipitation of carbides during the bainitic transformation.

  1. Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel

    OpenAIRE

    Tirumalasetty, G.K.; van Huis, M.A.; Kwakernaak, C.; Sietsma, J.; Sloof, W.G.; Zandbergen, H. W.

    2012-01-01

    Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation behavior of individual metastable austenite grains was studied both at the surface and inside the bulk of the material using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD) by de...

  2. Grain refinement of a nickel and manganese free austenitic stainless steel produced by pressurized solution nitriding

    International Nuclear Information System (INIS)

    Prolonged exposure at high temperatures during solution nitriding induces grain coarsening which deteriorates the mechanical properties of high nitrogen austenitic stainless steels. In this study, grain refinement of nickel and manganese free Fe–22.75Cr–2.42Mo–1.17N high nitrogen austenitic stainless steel plates was investigated via a two-stage heat treatment procedure. Initially, the coarse-grained austenitic stainless steel samples were subjected to an isothermal heating at 700 °C to be decomposed into the ferrite + Cr2N eutectoid structure and then re-austenitized at 1200 °C followed by water quenching. Microstructure and hardness of samples were characterized using X-ray diffraction, optical and scanning electron microscopy, and micro-hardness testing. The results showed that the as-solution-nitrided steel decomposes non-uniformly to the colonies of ferrite and Cr2N nitrides with strip like morphology after isothermal heat treatment at 700 °C. Additionally, the complete dissolution of the Cr2N precipitates located in the sample edges during re-austenitizing requires longer times than 1 h. In order to avoid this problem an intermediate nitrogen homogenizing heat treatment cycle at 1200 °C for 10 h was applied before grain refinement process. As a result, the initial austenite was uniformly decomposed during the first stage, and a fine grained austenitic structure with average grain size of about 20 μm was successfully obtained by re-austenitizing for 10 min. - Highlights: • Successful grain refinement of Fe–22.75Cr–2.42Mo–1.17N steel by heat treatment • Using the γ → α + Cr2N reaction for grain refinement of a Ni and Mn free HNASS • Obtaining a single phase austenitic structure with average grain size of ∼ 20 μm • Incomplete dissolution of Cr2N during re-austenitizing at 1200 °C for long times • Reducing re-austenitizing time by homogenizing treatment before grain refinement

  3. Grain refinement of a nickel and manganese free austenitic stainless steel produced by pressurized solution nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Roghayeh, E-mail: r_mohammadzadeh@sut.ac.ir; Akbari, Alireza, E-mail: akbari@sut.ac.ir

    2014-07-01

    Prolonged exposure at high temperatures during solution nitriding induces grain coarsening which deteriorates the mechanical properties of high nitrogen austenitic stainless steels. In this study, grain refinement of nickel and manganese free Fe–22.75Cr–2.42Mo–1.17N high nitrogen austenitic stainless steel plates was investigated via a two-stage heat treatment procedure. Initially, the coarse-grained austenitic stainless steel samples were subjected to an isothermal heating at 700 °C to be decomposed into the ferrite + Cr{sub 2}N eutectoid structure and then re-austenitized at 1200 °C followed by water quenching. Microstructure and hardness of samples were characterized using X-ray diffraction, optical and scanning electron microscopy, and micro-hardness testing. The results showed that the as-solution-nitrided steel decomposes non-uniformly to the colonies of ferrite and Cr{sub 2}N nitrides with strip like morphology after isothermal heat treatment at 700 °C. Additionally, the complete dissolution of the Cr{sub 2}N precipitates located in the sample edges during re-austenitizing requires longer times than 1 h. In order to avoid this problem an intermediate nitrogen homogenizing heat treatment cycle at 1200 °C for 10 h was applied before grain refinement process. As a result, the initial austenite was uniformly decomposed during the first stage, and a fine grained austenitic structure with average grain size of about 20 μm was successfully obtained by re-austenitizing for 10 min. - Highlights: • Successful grain refinement of Fe–22.75Cr–2.42Mo–1.17N steel by heat treatment • Using the γ → α + Cr{sub 2}N reaction for grain refinement of a Ni and Mn free HNASS • Obtaining a single phase austenitic structure with average grain size of ∼ 20 μm • Incomplete dissolution of Cr{sub 2}N during re-austenitizing at 1200 °C for long times • Reducing re-austenitizing time by homogenizing treatment before grain refinement.

  4. Crack growth in an austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C*s. Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors)

  5. The effects of fast-neutron irradiation on the mechanical properties of austenitic stainless steel

    International Nuclear Information System (INIS)

    The paper reviews the effects of fast-neutron irradiation on the tensile properties of austenitic stainless steels at irradiation temperatures of less than 400 degrees Celcius, using as an example, work carried out at Pelindaba on an AISI 316 type steel produced in South Africa. Damage produced in these steels at higher irradiation temperatures and fluences is also briefly discussed. The paper concludes with a discussion of some methods of overcoming or decreasing the effects of irradiation damage

  6. The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel

    Science.gov (United States)

    Kulakov, M.; Poole, W. J.; Militzer, M.

    2013-08-01

    The effects of initial microstructure and thermal cycle on recrystallization, austenite formation, and their interaction were studied for intercritical annealing of a low-carbon steel that is suitable for industrial production of DP600 grade. The initial microstructures included 50 pct cold-rolled ferrite-pearlite, ferrite-bainite-pearlite and martensite. The latter two materials recrystallized at similar rates, while slower recrystallization was observed for ferrite-pearlite. If heating to an intercritical temperature was sufficiently slow, then recrystallization was completed before austenite formation, otherwise austenite formed in a partially recrystallized microstructure. The same trends as for recrystallization were found for the effect of initial microstructure on kinetics of austenite formation. The recrystallization-austenite formation interaction accelerated austenization in all the three starting microstructures by providing additional nucleation sites and enhancing growth rates, and drastically altered morphology and distribution of austenite. In particular, for ferrite-bainite-pearlite and martensite, the recrystallization-austenite formation interaction resulted in substantial microstructural refinement. Recrystallization and austenite formation from a fully recrystallized state were successfully modeled using the Johnson-Mehl-Avrami-Kolmogorov approach.

  7. Austenite formation during intercritical annealing in C-Mn cold-rolled dual phase steel

    Institute of Scientific and Technical Information of China (English)

    李声慈; 康永林; 朱国明; 邝霜

    2015-01-01

    Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite. Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.

  8. Evaluation of the retained austenite mechanical stability in the medium-carbon TRIP steel

    Directory of Open Access Journals (Sweden)

    A. Kokosza

    2012-12-01

    Full Text Available Purpose: The aim of this study was to evaluate the inclination to mechanical destabilization of retained austenite in the microstructure of the TRIP steel containing 0.4% C, 1.5% Mn and 1.2% Si.Design/methodology/approach: The new, simple method for evaluating the mechanical stability of retained austenite was proposed, which is based on the bending test and the measurement of volume fraction of retained austenite by X-ray quantitative phase analysis. The relationship between stress and local strain as well as local volume fraction of this phase in selected locations on the surface of the bending sample were revealed.Findings: The applied heat treatment, modified with respect to the classic one, allowed remain approximately 25 vol.% of the retained austenite in the microstructure of the investigated TRIP steel. It was pointed that retained austenite has high mechanical stability if stress is low. Under influence of the higher stress a partial destabilization this phase occurred. It was found that in the examined steel such mechanical destabilization of retained austenite has two - or three-stage nature.Research limitations/implications: Results of this study indicate a significant stability of retained austenite in the investigated TRIP steel. It is advisable to check how will change the stability of this phase when the stress or strain will be higher than those that occurred in this research.Practical implications: The new method of the evaluation of the retained austenite mechanical stability provides the possibility of an easy and effective estimation of this phase tendency to mechanical destabilisation and to martensite transformation in the steel. In addition, this method allows analysing the influence of the stress as well as the strain on changes in this phase volume fraction, which occur during three-point bending.Originality/value: The proposed method may be used for evaluation of susceptibility of retained austenite on transformation

  9. Small punch creep test in a 316 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, Maribel L.

    2015-03-01

    Full Text Available The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.El ensayo de termofluencia por indentación se utilizó para evaluar el comportamiento a la termofluencia en un acero inoxidable austenítico 316. Este ensayo se realizó en una máquina de indentación con muestras de 10×10×0,3 mm a temperaturas de 650, 675 y 700 °C con cargas de 199 a 512 N. Las curvas de termofluencia del ensayo mostraron las tres etapas características observadas en el ensayo convencional de tensión. Asimismo, las principales relaciones de termofluencia entre parámetros como velocidad de termofluencia, esfuerzo, tiempo de ruptura y temperatura se observaron en los parámetros correspondientes al ensayo de indentación, lo que permitió caracterizar el comportamiento de termofluencia en este acero. El mecanismo y la energía de activación del proceso de deformación en la termofluencia corresponden al deslizamiento de los límites de grano y la difusión a través de los mismos, respectivamente, lo cual causó la fractura intergranular en las muestras ensayadas.

  10. Modifying microstructure and property of 30CrMnSi steel by subcritical austenite reverse transformation quenching

    OpenAIRE

    Li, Anming

    2015-01-01

    Subcritical austenite reverse transformation quenching was used to improve the mechanical properties of 30CrMnSi steel, and the microstructure and mechanical properties of the samples were analyzed by subcritical austenite reverse transformation quenching. Experimental results show that subcritical reverse transformation quenching can refine the austenite grains of the 30CrMnSi steel. Lath-shaped martensite can be obtained after quenching. Ferrite is exited in the martensite lath when quenchi...

  11. Effects of Nitrogen Content and Austenitization Temperature on Precipitation in Niobium Micro-alloyed Steels

    Institute of Scientific and Technical Information of China (English)

    Lei CAO; Zhong-min YANG; Ying CHEN; Hui-min WANG; Xiao-li ZHAO

    2015-01-01

    The influences of nitrogen content and austenitization temperature on Nb(C,N)precipitation in niobium micro-alloyed steels were studied by different methods:optical microscopy,tensile tests,scanning electron mi-croscopy,transmission electron microscopy,physicochemical phase analysis,and small-angle X-ray scattering. The results show that the strength of the steel with high nitrogen content is slightly higher than that of the steel with low nitrogen content.The increase in the nitrogen content does not result in the increase in the amount of Nb(C,N) precipitates,which mainly depends on the niobium content in the steel.The mass fraction of small-sized Nb(C,N) precipitates (1-10 nm)in the steel with high nitrogen content is less than that in the steel with low nitrogen con-tent.After austenitized at 1 150 ℃,a number of large cuboidal and needle-shaped particles are detected in the steel with high nitrogen content,whereas they dissolve after austenitized at 1 200 ℃ and the Nb(C,N)precipitates become finer in both steels.Furthermore,the results also show that part of the nitrogen in steel involves the formation of al-loyed cementite.

  12. Characteristics of Retained Austenite in TRIP Steels with Bainitie Ferrite Matrix

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mingya; ZHU Fuxian; DUAN Zhengtao; MA Shieheng

    2011-01-01

    Heat treatment process for producing cold rolled transformation induced plasticity-aided (TRIP-aided) steels with bainitic ferrite matrix was adopted.Characteristics of retained austenite (RA) in such TRIP steels were investigated.SEM and OM determination results showed that the stable austenite retained at room temperature were mainly located between laths and some of them inside the coarse ferrite.The grains were uniformly distributed in heat treated steel matrix and the regularly dispersed RA represented to be triangular morphology.XRD analysis indicated that RA content in matrix was not less than 10%,and TEM testified that RA inside the matrix were formed at the prior austenite boundaries and represented to be single or twin crystals.The ductile fracture originated from the boundaries of martensite islands from RA and ferrite.The cracks propagated along grain boundaries and some passed through the large ferrite grains and induced transgranular fracture.

  13. Effects of milling process and alloying additions on oxide particle dispersion in austenitic stainless steel

    International Nuclear Information System (INIS)

    An oxide dispersion strengthened (ODS) austenitic stainless steel was developed by mechanical alloying (MA) of advanced SUS316 stainless steel. A nano-characterization was performed to understand details of the effect of minor alloying elements in the distribution of dispersoids. It is shown that Y2O3 particles dissolve into the austenitic matrix after the MA for 6 h. Annealing at 1073 K or higher temperatures result in a distribution of fine oxide particles in the recrystallized grains in the ODS austenitic stainless steel. Additions of Hafnium or Zirconium led to the distribution of finer oxide particles than in samples without these elements, resulting in an increase in the hardness of the samples. The most effective concentration of Hf and Zr to increase the hardness was 0.6 and 0.2–0.3 wt%, respectively

  14. Laser Shock Processing of an Austenitic Stainless Steel and a Nickel-base Superalloy

    Institute of Scientific and Technical Information of China (English)

    Huaming WANG; Xijun SUN; Xiaoxuan LI

    2003-01-01

    An austenitic stainless steel 1Cr18Ni9Ti and a solid solution-strengthened Ni-base superalloy GH30 were shock processed usinga Q-switched pulsed Nd-glass laser. Microstructure, hardness and residual stress of the laser shock processed surface wereinvestigated as functions of laser processing parameters. Results show that high density of dislocations and fine deformationtwins are produced in the laser shock processed surface layers in both the austenitic stainless steel and the nickel-base superalloy.Extensive strain-induced martensite was also observed in the laser shock processed zone of the austenitic steel. The hardnessof the laser shock processed surface was significantly enhanced and compressive stress as high as 400 MPa was produced inthe laser shock processed surface.

  15. Corrosion fatigue behaviour of 317LN austenitic stainless steel in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Onoro, J. [Ingenieria y Ciencia de los Materiales, ETSI Industriales, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)], E-mail: javier.onoro@upm.es

    2009-10-15

    The corrosion fatigue crack-growth behaviour of AISI 317LN stainless steel was evaluated in air and in 85% phosphoric acid at 20 deg. C. Austenitic stainless steels with high molybdenum content have high corrosion resistance and good mechanical properties. However, this increase in the molybdenum content and other elements such as nitrogen can also modify the microstructure. This leads to a modification of its mechanical properties. The corrosion fatigue crack-growth rate was higher in phosphoric acid immersion than in air. Austenitic stainless steels with a fully austenitic microstructure were more ductile, tough, and behave better against corrosion fatigue. The higher resistance to corrosion fatigue was directly associated to its higher resistance to corrosion.

  16. Diagrams of supercooled austenite transformations of low-carbon and medium-carbon TRIP-steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2008-07-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of cooling conditions on a structure and a shape of CCT-diagrams of TRIP-aided steels.Design/methodology/approach: The diagrams of undeformed supercooled austenite transformations for low-carbon and medium-carbon steels were determined. The specimens were austenitized at a temperature of 1100°C and cooled from a temperature of 900°C with a rate in a range from 1 to 300°Cs-1. The dilatometric tests were carried out by the use of the DIL805A/D dilatometer with a LVDT-type measuring head.Findings: It was found that obtained CCT-diagrams of low-carbon and medium-carbon steels are favourable for manufacturing TRIP-type steels with multiphase structures. The steels are characterized by large ferritic and bainitic fields and a right-displaced pearlitic range. However, a ferrite fraction obtained after cooling with an optimum rate from a temperature of 900°C is low. Increasing the fraction of the α phase requires two-stage cooling after austenitizing.Research limitations/implications: To obtain the optimum ferrite fraction, it is necessary to modify a cooling course in a range of γ→α transformation. It should result in an effective utilization of the time for the transformation of austenite into the fine-grained ferrite.Practical implications: The obtained diagrams of supercooled austenite transformations can be useful in a determination of a cooling course from a finishing rolling temperature for sheets with a multiphase structure.Originality/value: The diagrams of the undeformed supercooled austenite for the low-carbon and medium-carbon steels containing Nb and Ti microadditions were obtained.

  17. Ferrite and austenite phase identification in duplex stainless steel using SPM techniques

    Science.gov (United States)

    Guo, L. Q.; Lin, M. C.; Qiao, L. J.; Volinsky, Alex A.

    2013-12-01

    It can be challenging to properly identify the phases in electro-polished duplex stainless steel using optical microscopy or other characterization techniques. This letter describes magnetic force microscopy to properly identify the phases in electropolished duplex stainless steel. The results are also confirmed with the current sensing atomic force and scanning Kelvin probe force microscopy. The difference in topography heights between the ferrite and austenite phases is attributed to the different etching rates during electropolishing, although these phases have different mechanical properties. The current in the austenite is much higher compared with the ferrite, thus current sensing atomic force microscopy can also be used to properly identify the phases.

  18. Structure Evolution and Solidification Behavior of Austenitic Stainless Steel in Pulsed Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LI Qiu-shu; LI Hai-bin; ZHAI Qi-jie

    2006-01-01

    To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity.

  19. Key Technique of Austenitic Stainless Steel on-line Solution Treatment

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-li; LI Wei-juan; LIU Shuang; LI Ying; ZHAO Fei

    2004-01-01

    Generally the methods of solution treatment of austenitic stainless steel are bifurcated on-line solution and off-line solution . For a founded enterprise, it is necessary to find out how to get across alterations and search a measure of on -line solution disposal with less investment and higher efficiency. By studying and analysingin laboratory, several key points and the methods settle them are presented, which offers a new route to realize austenitic stainless steel on-line solution. By reducing the cost greatly, it makes the enterprise larger benefits.

  20. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    Directory of Open Access Journals (Sweden)

    T. Frączek

    2011-07-01

    Full Text Available The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application of a booster screen effects in a nitrogen diffusion depth increment into the 316L austenitic steel surface, what results in the surface layer thickness escalation.

  1. Measurement techniques of magnetic properties for evaluation of neutron irradiation damage on austenitic stainless steels

    International Nuclear Information System (INIS)

    The remote-controlled equipment for measurement of magnetic flux density has been developed in order to evaluate the irradiation damage of austenitic stainless steels. Magnetic flux densities by neutron irradiation in austenitic stainless steels, SUS304 and Fast Breeder Reactor grade type 316 (316FR), have been measured by the equipment. The results show that irradiation damage affected to magnetic flux density, and indicate the measuring method of magnetic flux density using a small magnetizer with a permanent magnet of 2 mm in diameter is less affected by specimen shape. (author)

  2. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  3. On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction

    International Nuclear Information System (INIS)

    Sections of a 13Cr supermartensitic stainless steel were investigated to determine the optimum sample preparation for measurement of the austenite content by X-ray diffraction. The surface of several samples was mechanically ground or polished using media of grit sizes in the range 1–120 μm. The strained surface layer was afterwards removed stepwise by electropolishing, and the austenite content measured at each step. It was found that any level of mechanical grinding or polishing results in a reduction of the measured austenite fraction relative to the true bulk value, and that coarser grinding media impart greater damage and greater reduction in the measured austenite content. The results thus highlight the importance of the electropolishing step in preparation of such samples, but suggest that the American Society for Testing and Materials standard E975-03 substantially overestimates the amount of material which needs to be removed to recover the true “bulk” content. - Highlights: • Quantitative Rietveld analysis of austenite/martensite ratio in supermartensitic stainless steels • Critical evaluation of sample preparation for residual austenite measurements by X-ray diffraction • Highlighting of the importance of electropolishing as a final preparation step

  4. On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tolchard, Julian Richard, E-mail: tolchard@material.ntnu.no [Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim (Norway); Sømme, Astri; Solberg, Jan Ketil [Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim (Norway); Solheim, Karl Gunnar [Statoil, Stavanger (Norway)

    2015-01-15

    Sections of a 13Cr supermartensitic stainless steel were investigated to determine the optimum sample preparation for measurement of the austenite content by X-ray diffraction. The surface of several samples was mechanically ground or polished using media of grit sizes in the range 1–120 μm. The strained surface layer was afterwards removed stepwise by electropolishing, and the austenite content measured at each step. It was found that any level of mechanical grinding or polishing results in a reduction of the measured austenite fraction relative to the true bulk value, and that coarser grinding media impart greater damage and greater reduction in the measured austenite content. The results thus highlight the importance of the electropolishing step in preparation of such samples, but suggest that the American Society for Testing and Materials standard E975-03 substantially overestimates the amount of material which needs to be removed to recover the true “bulk” content. - Highlights: • Quantitative Rietveld analysis of austenite/martensite ratio in supermartensitic stainless steels • Critical evaluation of sample preparation for residual austenite measurements by X-ray diffraction • Highlighting of the importance of electropolishing as a final preparation step.

  5. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  6. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer

  7. Improvement of austenitic Hadfield Mn-steel properties by thermomechanical processing

    International Nuclear Information System (INIS)

    A thermomechanical processing technique is used to improve austenitic Hadfield Mn-steel wear properties. ASTM A128 grade C steel billets were sized and multi-pass hot rolled. Rolling has been successfully carried out up to an 80% reduction in thickness on four passes in the temperature range 1200 to 800 oC. The inter-pass time ranged between 9 to 13 seconds. The steel was then solution treated at 900, 1000 and 1100 oC for 30 min. at temperature. Austenite grain size was measured and the carbide volume fraction was evaluated. The austenitic grains of the as-cast structure are surrounded by a network of carbides. The carbides have a lamellar structure and are richer in Cr and Mn than the austenitic grains. Austenitizing at 1100 oC was the optimum to dissolve the network of carbides. However, solution treatment at the higher temperature coarsens the austenite grains while decreasing the carbide volume fraction. By contrast, hot rolling creates finer grains and significantly reduces the carbide content. Furthermore, hot rolling followed by solution treatment further decreases the carbide content and distributes them homogeneously. This process has a positive effect on both the mechanical and wear properties. High reductions by hot rolling of the Hadfield steel creates both deformation bands and a twinned structure. These twinning boundaries are considered as slip obstacles to provide strengthening. A thick sheet martensitic structure is created accompanying twinning. Moreover, solution treatment of the hot deformed steel leads to the formation of a thin martensitic structure. (author)

  8. Hot deformation behavior of austenite in HSLA-100 microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, A., E-mail: ammomeni@aut.ac.ir [Mining and Metallurgical Engineering Department, Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of); Arabi, H. [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Rezaei, A.; Badri, H.; Abbasi, S.M. [KNT University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} The flow stress is well fitted by the exponential constitutive equation. {yields} The average value of apparent activation energy for hot deformation is 377 kJ mol{sup -1}. {yields} A yield point phenomenon is observed on flow curves at high temperatures. {yields} The Avrami exponent is determined around unity for dynamic recrystallization. - Abstract: Dynamic recrystallization of austenite in the Cu-bearing HSLA-100 steel was investigated by hot compression testing at a temperature range of 850-1150 deg. C and a strain rate of 0.001-1 s{sup -1}. The obtained flow curves at temperatures higher than 950 deg. C were typical of DRX while at lower temperatures the flow curves were associated with work hardening without any indication of DRX. At high temperatures, flow stress exhibited a linear relation with temperature while at temperatures below 950 deg. C the behavior changed to non-linear. Hence, the temperature of 950 deg. C was introduced as the T{sub nr} of the alloy. All the flow curves showed a yield point elongation like phenomenon which was attributed to the interaction of solute atoms, notably carbon, and moving dislocations. The maximum elongation associated with the yield point phenomenon was observed at about 950 deg. C. Since the maximum yield point elongation was observed about the calculated T{sub nr}, it was concluded that carbon atoms were responsible for it. It was also concluded that the temperature at which the yield point elongation reaches the maximum value increases as strain rate rises. The stress and strain of the characteristic points of DRX flow curves were successfully correlated to the Zener-Hollomon parameter, Z, by power-law equations. The constitutive exponential equation was found more precise than the hyperbolic sine equation for modeling the dependence of flow stress on Z. The apparent activation energy for DRX was determined as 377 kJ mol{sup -1}. The kinetics of DRX was modeled by an Avrami

  9. Interaction of Hydrogen and Retained Austenite in Bainite/Martensite Dual-Phase High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    GU Jia-lin; CHANG Kai-di; FANG Hong-sheng; YANG Zhi-gang; BAI Bing-zhe

    2004-01-01

    The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels (U20Si and U20DSi) were investigated by electrochemical permeation technique. The hydrogen diffusivity was calculated from data of permeation delay time, and the diffusion coefficient in U20Si is far less than that in U20DSi. Moreover, the hydrogen diffusivity decreases as the volume percent of retained austenite increases. The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20Si and U20DSi. The retained austenite is precipitated as films. The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4 kJ·mol-1.

  10. Effect of Niobium on Isothermal Transformation of Austenite to Ferrite in HSLA Low-Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    CAO Jian-chun; LIU Qing-you; YONG Qi-long; SUN Xin-jun

    2007-01-01

    Using thermomechanical simulation experiment, the kinetics of the isothermal transformation of austenite to ferrite in two HSLA low-carbon steels containing different amounts of niobium was investigated under the conditions of both deformation and undeformation. The results of optical microstructure observation and quantitative metallography analysis showed that the kinetics of the isothermal transformation of austenite to ferrite in lower niobium steel with and without deformation suggests a stage mechanism, wherein there exists a linear relationship between the logarithms of holding time and ferrite volume fraction according to Avrami equation, whereas the isothermal transformation of austenite to ferrite in high niobium steel proceeds via a two stage mechanism according to micrographs, wherein, the nucleation rate of ferrite in the initial stage of transformation is low, and in the second stage,the rate of transformation is high and the transformation of residual austenite to ferrite is rapidly complete. Using carbon extraction replica TEM, niobium carbide precipitation for different holding time was investigated and the results suggested that NbC precipitation and the presence of solute niobium would influence the transformation of austenite to ferrite. The mechanism of the effect of niobium on the isothermal transformation was discussed.

  11. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-09-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  12. Dynamic Recrystallization Behavior of a Fe-Cr-Ni Super-Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    A. Hoseini Asli; A. Zarei-Hanzaki

    2009-01-01

    The super-austenitic stainless steels are extensively utilized in the seamless tubes production for oil extraction industries. Due to the importance of thermo-mechanical processing in the production of these tubes, the dynamic recrystallization (DRX) characteristics of a Cr-Ni super austenitic stainless steel (1.4563) were investigated in the present study. This was performed using the hot compression testing method in the temperature range of 950-1150℃ and the strain rate of 10~(-3)-10~(-1)s~(-1). The initiation and evolution of DRX were examined through microstructural analysis. The results indicated that the recrystallized grain formed a necklace type structure at the prior austenite grain boundaries at higher strain rates. In addition, DRX nucleation occurs by bulging and successive strain induced boundary migration (SIBM).

  13. Degradation of superheater tubes made of austenitic T321H steel after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Hernas, Adam [Silesian Technical Univ., Katowice (Poland). Faculty of Material Science; Augustyniak, Boleslaw; Chmielewski, Marek [Gdansk Univ. of Technology (Poland). Mechanical Dept.; Sablik, M.J. [Applied Magnetic and Physical Modeling, LLC, San Antonio, TX (United States)

    2010-07-01

    There are presented results of complementary tests performed for the evaluation of creep damage in austenitic steel grade T321H exploited over 200,000 hours in the secondary superheater part of a power plant boiler. The following techniques have been applied: SEM microscopy, X-ray diffraction, tensile tests, hardness measurements and novel eddy current inspection. The novel eddy current inspection is proposed as a non-destructive method of estimating the creep damage stage of austenite steel boiler tubes after long-term service in power plants. We compare the results provided by the different techniques and discuss the correlations and also point out the problems which need to be addressed in order to elaborate the remaining life assessment of austenitic boiler tubes. (orig.)

  14. Analytical Investigation of Prior Austenite Grain Size Dependence of Low Temperature Toughness in Steel Weld Metal

    Institute of Scientific and Technical Information of China (English)

    X.F. Zhang; P. Hall; H. Terasak; M. Sato; Y. Komizo

    2012-01-01

    Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.

  15. Review of environmental effects on fatigue crack growth of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Shack, W.J.; Kassner, T.F. [Argonne National Lab., IL (United States)

    1994-05-01

    Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and core components in light water reactors are potential concerns to the nuclear industry and regulatory agencies. The degradation processes include intergranular stress corrosion cracking of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under US Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled into a data base along with similar data obtained from the open literature. The data were analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments corresponding to normal BWR water chemistries, for BWRs that add hydrogen to the feedwater, and for pressurized water reactor primary-system-coolant chemistry.

  16. Reheating Austenitizing Temperature of Spring Steel 60Si2MnA for Railway

    Institute of Scientific and Technical Information of China (English)

    CUI Juan; LIU Ya-zheng; PAN Hui; GAO Li-feng

    2008-01-01

    The microsturctural transformation of austenite grain,pearlite interlamellar spacing,and lamellar cementite thickness of spring steel 60Si2MnA for railway were studied in the hot-rolled and reheated states.Furthermore,the effect of microstructural characterization on its final mechanical properties was discussed.The results showed that as far as 60Si2MnA,the pearlite interlamellar spacing determined the hardness,whereas,the austenite grain determined the toughness.Compared with microstructure and mechanical properties in the hot-rolled state,after reheating treatment at 950℃,its average grain sizes are apparently fine and the pearlite interlamellar spacing and lamellar cementite thickness coarsen to some extent,but both hardness and impact toughness increase to HRC 48 and 8.5 J.respectively.In the course of making spring,the optimum reheating austenitizing temperature for the 60Si2MnA steel is 950℃.

  17. Microstructures of Austenitic Stainless Steel Produced by Twin-Roll Strip Caster

    Institute of Scientific and Technical Information of China (English)

    HUANG Fu-xiang; WANG Xin-hua; WANG Wan-jun

    2012-01-01

    The microstructures of austenitic stainless steel strip were studied using color metallographic method and electron probe micro analysis (EPMA). In the cast strips, there are three kinds of solidification structures: fine cel- lular dendrite in the surface layer, equiaxed grains in the center and fine dendrite between them. The solidification mode in the surface layer is the primary austenite AF mode because of extremely high cooling rate, with the retained ferrite located around the primary cellular austenite. In the fine dendrite zone, the solidification mode of molten stainless steel changes to FA mode and the residual ferrite with fish-bone morphology is located at the core of the dendrite. The retained ferrite of equiaxed grains in the center is located in the center of broken primary ferrite dendrite with vermicular morphology.

  18. Corrosion resistance of modern austenitic-ferritic (duplex) stainless steel. Corrosion of special types. (Review)

    International Nuclear Information System (INIS)

    Recent data on resistance of modern corrosion-resistant austenitic-ferritic steels to different types of corrosion are generalized. It is shown that these steels are characterized by high resistance to general corrosion in acid, alkali, chloride and other solutions, are not inclined to intercrystalline, pitting and crevice corrosion and are noted for high resistance to corrosion cracking and corrosion fatigue. All this is combined with technological and economical effectiveness. It is advisible to use these steels instead of highly-alloyed and expensive steels and alloys in chemical, power and other industries. 59 refs.; 2 tabs

  19. Effects of Cr - Ni 18/9 Austenitic Cast Steel Modification by Mischmetal

    OpenAIRE

    Gajewski, M; J. Kasińska

    2012-01-01

    This paper presents the results of Cr - Ni 18/9 austenitic cast steel modifications by mischmetal. The study was conducted on industrial melts. Cast steel was melted in an electric induction furnace with a capacity of 2000 kg and a basic lining crucible. .The mischmetal was introduced into the ladle during tapping of the cast steel from the furnace. The effectiveness of modification was examined with the carbon content of 0.1% and the presence of δ ferrite in the structure of cast steel stabi...

  20. The effect of hydrogen on strain hardening and fracture mechanism of high-nitrogen austenitic steel

    Science.gov (United States)

    Maier, G. G.; Astafurova, E. G.; Melnikov, E. V.; Moskvina, V. A.; Vojtsik, V. F.; Galchenko, N. K.; Zakharov, G. N.

    2016-07-01

    High-nitrogen austenitic steels are perspective materials for an electron-beam welding and for producing of wear-resistant coatings, which can be used for application in aggressive atmospheres. The tensile behavior and fracture mechanism of high-nitrogen austenitic steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt.%) after electrochemical hydrogen charging for 2, 10 and 40 hours have been investigated. Hydrogenation of steel provides a loss of yield strength, uniform elongation and tensile strength. The degradation of tensile properties becomes stronger with increase in charging duration - it occurs more intensive in specimens hydrogenated for 40 hours as compared to ones charged for 2-10 hours. Fracture analysis reveals a hydrogen-induced formation of brittle surface layers up to 6 μm thick after 40 hours of saturation. Hydrogenation changes fracture mode of steel from mixed intergranular-transgranular to mainly transgranular one.

  1. Secondary Hardening, Austenite Grain Coarsening and Surface Decarburization Phenomenon in Nb-Bearing Spring Steel

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The secondary hardening, the austenite grain coarsening and the surface decarburization phenomenon of Nb-bearing spring steel were investigated, and the effects of niobium on tempered microstructure was studied using scanning electron microscope. The results show that the micro-addition of niobium increases the tempering resistance and produces secondary hardening. The effect of niobium on the size and distribution of cementite particles is one of the primary reasons to increase the hardness after tempering. The grain-coarsening temperature of the spring steel is raised 150 ~C due to Nb-addition. Furthermore, both the secondary hardening and the austenite grain coarsening phenomenon congruously demonstrate niobium begins observably dissolving above 1 100 ℃ in the spring steel. Be- sides, niobium microalloying is an effective and economy means to decrease the decarburization sensitivity of the spring steels.

  2. Laser welding of butt joints of austenitic stainless steel AISI 321

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2007-11-01

    Full Text Available Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters which ensures high quality joints of mechanical strength not lower than the strength of the base material (BM. The butt joints of austenitic steel AISI 321 sheets welded by the HPDL diode laser at optimal parameters are very high quality, without any internal imperfections and the structure and grain size of weld metal and HAZ is very small and also the HAZ is very narrow and the fusion zone is very regular.Research limitations/implications: Studies of the weldability of stainless steels indicate that the basic influence on the quality of welded joints and reduction of thermal distortions has the heat input of welding, moreover the highest quality of welded joints of austenitic stainless steel sheets are ensured only by laser welding.Practical implications: The technology of laser welding can be directly applied for welding of butt joints of austenitic steel AISI 321 sheets 0.5 and 1.0 [mm] thick.Originality/value: Application of high power diode laser for welding of austenitic stainless steel AISI 321.

  3. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    Energy Technology Data Exchange (ETDEWEB)

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  4. A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance

    Directory of Open Access Journals (Sweden)

    Ronald Lesley Plaut

    2007-12-01

    Full Text Available Wrought austenitic stainless steels are widely used in high temperature applications. This short review discusses initially the processing of this class of steels, with emphasis on solidification and hot working behavior. Following, a brief summary is made on the precipitation behavior and the numerous phases that may appear in their microstructures. Creep and oxidation resistance are, then, briefly discussed, and finalizing their performance is compared with other high temperature metallic materials.

  5. The welding of austenitic-ferritic Mo-alloyed Cr-Ni-Steel

    International Nuclear Information System (INIS)

    This paper provides general information and guidance on the welding of austenitic-ferritic Mo-alloyed Cr-Ni stainless steel. Information is given on the various chemical compositions and on resistance to corrosion and on the mechanical and physical properties of commercially available steels. The effect of welding on the base metal and the selection of welding processes and welding consumables are described

  6. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    Science.gov (United States)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  7. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel

    DEFF Research Database (Denmark)

    Carstensen, J.V.; Mayer, H.; Brøndsted, P.

    2002-01-01

    Fatigue life data of cold worked tubes (diameter 4 mm, wall thicknesses 0.25 and 0.30 mm) of an austenitic stainless steel, AISI 904 L, were measured in the regime ranging from 2 × 105 to 1010 cycles to failure. The influence of the loading frequency was investigated as data were obtained...

  8. The structure of austenitic steel AISI 316 after ECAP and low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    L. Kander

    2008-06-01

    Full Text Available Purpose: The article presents results of investigation of structure and properties of austenitic steel grade AISI 316 after application of Equal Channel Angular Pressing (ECAP at the temperature of approx. 290ºC.Design/methodology/approach: The ECAP method led to significant improvement of strength of investigated material. Experiments were planned and realised at the temperature ranging from room temperature up to above mentioned temperature.Findings: It was established with use of the EBSD technique that after 8 passes through the ECAP die the sub-grains with an angle of disorientation smaller than 10º formed less than 20% of resulting structure. Average size of austenitic grains with high angle boundary after 8 passes was approx. 0.32 µm. It was proven that the ECAP method enables obtaining of ultra fine-grained austenitic structure formed by recrystallised grains with very low density of dislocations.Practical implications: The Technology ECAP was applied on austenitic steel AISI 316. It was verification of ECAP application possibility on steel AISI 316 importantly for following applying on similar kinds of steel, because ECAP technology influence on fatigue properties was confirmed.Originality/value: It can be predicted on the basis of obtained results that, contrary to low-cycle fatigue the ultra-fine grained material will manifest at fatigue load in the mode of constant amplitude of stress higher fatigue characteristics, particularly fatigue limit.

  9. Influence of surface texture on the galling characteristics of lean duplex and austenitic stainless steels

    DEFF Research Database (Denmark)

    Wadman, Boel; Eriksen, J.; Olsson, M.;

    2010-01-01

    Two simulative test methods were used to study galling in sheet forming of two types of stainless steel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. The pin-on-disc test was used to analyse the galling resistance of different combinations...

  10. Welding of super austenitic stainless steels with very high nitrogen contents

    International Nuclear Information System (INIS)

    Results of studies performed on the weld of different super austenitic stainless steels show that nitrogen additions as high as 0.5% does not deteriorate the weldability but on the contrary improves the mechanical and corrosion properties of the weld. (A.B.). 5 refs., 5 figs., 6 tabs

  11. Experimental determination of the constitutive behaviour of a metastable austenitic stainless steel

    NARCIS (Netherlands)

    Post, J.; Nolles, H.; Datta, K.; Geijselaers, H.J.M.

    2008-01-01

    This article presents measurements to describe the constitutive behaviour of a semi-austenitic precipitation hardenable stainless steel called Sandvik Nanoflex™, during metal forming and hardening. The material is metastable, which causes strain-induced transformation during forming. Depending on th

  12. Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steels

    NARCIS (Netherlands)

    Geijselaers, H.J.M.; Hilkhuijsen, P.; Bor, T.C.; Perdahcioglu, E.S.; Boogaard, van den A.H.; Zhang, S.-H.; Liu, X.-H.; Gheng, M.; Li, J.

    2013-01-01

    The transformation of austenite to martensite is a dominant factor in the description of the constitutive behavior during forming of TRIP assisted steels. To predict this transformation different models are currently available. In this paper the transformation is regarded as a stress induced process

  13. The efficiency of ion nitriding of austenitic stainless steel 304 using the “active screen”

    Directory of Open Access Journals (Sweden)

    M. Ogórek

    2015-01-01

    Full Text Available The study examined layers were formed on the outer surface of austenitic stainless steel 304 under glow discharge conditions in the low-temperature and short-term ion nitriding. The outer layers analyzed in the work produced in parallel in the classical process of cathode and a novel method of “active screen”, intensifying the process of nitriding.

  14. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite...

  15. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    M.Jafarzadegan; A.Abdollah-zadeh; A.H.Feng; T.Saeid; J.Shen; H.Assadi

    2013-01-01

    Dissimilar fusion welding of austenitic stainless steels to carbon steels has some metallurgical and technical problems.It was suggested that the solid-state nature of friction stir welding (FSW) can overcome these problems and produce a sound weld with reliable mechanical properties.In this study,plates of 304 stainless steel and st37 steel were welded together by FSW at tool rotational speed of 600 r/min and welding speed of 50 mm/min.In the stir zone (SZ) of 304 stainless steel,the results showed a refined grain structure with some features of metadynamic recrystallization.In the SZ of st37 steel,the hot deformation of material in the austenite region produced small austenite grains.These grains transformed to fine ferrite and pearlite by cooling the material after FSW.The production of fine grains increased the hardness and tensile strength in the SZ of both sides with respect to their base metals (BMs).

  16. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    International Nuclear Information System (INIS)

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing

  17. Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yagodzinskyy, Y.; Todoshchenko, O.; Papula, S.; Haenninen, H. [Laboratory of Engineering Materials, School of Science and Technology, Aalto University, Espoo (Finland)

    2011-01-15

    Hydrogen solubility and diffusion in austenitic stainless steels, namely AISI 310, AISI 301LN and AISI 201, are studied with thermal desorption spectroscopy (TDS) after electrochemical potentiostatic hydrogen pre-charging. Temperature dependencies of hydrogen desorption for all studied steels manifest a complex main peak caused by hydrogen releasing from the steel lattice by diffusion. Depending on the steel and heating rate the peak is situated from 350 to 500 K and its shape reflects a specific of hydrogen diffusion in stainless steels, which are multicomponent alloys. Analysis of the TDS curves is based on the hydrogen diffusion model taking into account trapping of hydrogen atoms in the energetically deep interstitial positions in the steel crystal lattice. Diffusion coefficient of hydrogen and its total content after the same charging procedure are obtained from the TDS curves and compared for the studied steels. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Spinodal decomposition of austenite in long-term-aged duplex stainless steel

    International Nuclear Information System (INIS)

    Spinodal decomposition of austenite phase in the cast duplex stainless steels CF-8 and -8M grades has been observed after long- term thermal aging at 400 and 350/degree/C for 30,000 h (3.4 yr). At 320/degree/C, the reaction was observed only at the limited region near the austenite grain boundaries. Ni segregation and ''worm-holes'' corresponding to the spatial microchemical fluctuations have been confirmed. The decomposition was observed only for heats containing relatively high overall Ni content (9.6--12.0 wt %) but not in low-Ni (8.0--9.4 wt %) heats. In some specimens showing a relatively advanced stage of decomposition, localized regions of austenite with a Vickers hardness of 340--430 were observed. However, the effect of austenite decomposition on the overall material toughness appears secondary for aging up to 3--5 yr in comparison with the effect of the faster spinodal decomposition in ferrite phase. The observation of the thermally driven spinodal decomposition of the austenite phase in cast duplex stainless steels validates the proposition that a miscibility gap occurs in Fe-Ni and ancillary systems. 16 refs., 7 figs., 1 tab

  19. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  20. Austenite Grain Growth and Precipitate Evolution in a Carburizing Steel with Combined Niobium and Molybdenum Additions

    Science.gov (United States)

    Enloe, Charles M.; Findley, Kip O.; Speer, John G.

    2015-11-01

    Austenite grain growth and microalloy precipitate size and composition evolution during thermal processing were investigated in a carburizing steel containing various additions of niobium and molybdenum. Molybdenum delayed the onset of abnormal austenite grain growth and reduced the coarsening of niobium-rich precipitates during isothermal soaking at 1323 K, 1373 K, and 1423 K (1050 °C, 1100 °C, and 1150 °C). Possible mechanisms for the retardation of niobium-rich precipitate coarsening in austenite due to molybdenum are considered. The amount of Nb in solution and in precipitates at 1373 K (1100 °C) did not vary over the holding times evaluated. In contrast, the amount of molybdenum in (Nb,Mo)C precipitates decreased with time, due to rejection of Mo into austenite and/or dissolution of fine Mo-rich precipitates. In hot-rolled alloys, soaking in the austenite regime resulted in coarsening of the niobium-rich precipitates at a rate that exceeded that predicted by the Lifshitz-Slyozov-Wagner relation for volume-diffusion-controlled coarsening. This behavior is attributed to an initial bimodal precipitate size distribution in hot-rolled alloys that results in accelerated coarsening rates during soaking. Modification of the initial precipitate size distribution by thermal processing significantly lowered precipitate coarsening rates during soaking and delayed the associated onset of abnormal austenite grain growth.

  1. Theoretical and experimental study of carburisation and decarburisation of a meta-stable austenitic steel

    Directory of Open Access Journals (Sweden)

    Charles West

    2005-12-01

    Full Text Available Metastable austenitic stainless steels are known to undergo a partial transformation of austenite to martensite as a consequence of plastic deformation. In the case of cyclic loading, a certain level of plastic strain must be exceeded, and phase formation takes place after an incubation period, during which the necessary amount of plastic deformation is accumulated. The susceptibility of the austenitic phase to deformation-induced martensite formation is strongly affected by the temperature of loading and the stability of austenite, which itself depends on the chemical composition. A key element in this regard is carbon which stabilizes the austenitic phase. It is shown in this study that the carbon concentration can be analysed systematically and reproducible by means of annealing treatments, if the parameters of these treatments are carefully defined on the basis of advanced theoretical thermodynamic and kinetic considerations. First results on the effect of carbon concentration and temperature of fatigue testing on the austenite/martensite transformation are presented, in order to illustrate the significance of these parameters on the martensite formation rate.

  2. Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD study

    DEFF Research Database (Denmark)

    Lomholt, Trine Nybo; Adachi, Y.; da Silva Fanta, Alice Bastos;

    2013-01-01

    The transformation of austenite to martensite in an Al–Mn–Si transformation-induced plasticity steel was investigated with in situ electron backscatter diffraction (EBSD) measurements under tensile straining. The visualisation of the microstructure upon straining allows for an investigation...... of the stability of austenite grains against strain-induced transformation, with particular focus on the grain size and the location of the austenite grains. The findings confirm that size and location of austenite grains are significant parameters for their stability. Small austenite grains were observed...... to be more stable than large grains, while austenite grains located beside bainitic ferrite are the most stable. Moreover, it is demonstrated that austenite grains transform gradually...

  3. Role of Austenite in Brittle Fracture of Bond Region of Super Duplex Stainless Steel

    Science.gov (United States)

    Kitagawa, Yoshihiko; Ikeuchi, Kenji; Kuroda, Toshio

    Weld simulation of heat-affected zone (HAZ) was performed to investigate the mechanism by which austenite affects the toughness of super duplex stainless steel. Thermal cycles of various peak temperatures in the range from 1373 K to 1673 K corresponding to the HAZ were applied to SAF2507 super duplex stainless steel specimens. Charpy impact test was carried out using the specimens after the weld simulation, and the fracture surfaces were observed by SEM using three-dimensionally reconstruction technique. Austenite content decreased with increasing the peak temperature when the peak temperature exceeded 1473 K and the impact value decreased with increasing the peak temperature and decreasing the austenite content. The thermal cycle of the peak temperature of 1673 K corresponding to weld bond region caused decreasing of austenite content which was 22% lower than that of the base metal. The ductile-brittle transition temperature was measured. As a result the temperature increased rapidly in the weld bond region, the peak temperature of which exceeded 1623 K by the grain growth of ferrite matrix occurring subsequently to the completely dissolution of austenite. The morphology of the fracture surfaces after impact testing at 77 K showed cleavage fracture of ferrite. The {100} orientations of cleavage fracture facets were measured using three-dimensional images of the fracture surfaces and the results were visualized as the orientation color maps. The results showed that there were cleavage fractures consisting of a few facets parallel to each other. It was considered that a few facets existed in one ferrite grain. It was concluded that Widmanstätten austenite divided the large fracture into smaller cleavage facets in a ferrite grain and then suppressed the degradation of bond toughness of duplex stainless steel.

  4. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin;

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  5. Phase Equilibrium and Austenite Decomposition in Advanced High-Strength Medium-Mn Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2016-10-01

    Full Text Available The work addresses the phase equilibrium analysis and austenite decomposition of two Nb-microalloyed medium-Mn steels containing 3% and 5% Mn. The pseudobinary Fe-C diagrams of the steels were calculated using Thermo-Calc. Thermodynamic calculations of the volume fraction evolution of microstructural constituents vs. temperature were carried out. The study comprised the determination of the time-temperature-transformation (TTT diagrams and continuous cooling transformation (CCT diagrams of the investigated steels. The diagrams were used to determine continuous and isothermal cooling paths suitable for production of bainite-based steels. It was found that the various Mn content strongly influences the hardenability of the steels and hence the austenite decomposition during cooling. The knowledge of CCT diagrams and the analysis of experimental dilatometric curves enabled to produce bainite-austenite mixtures in the thermomechanical simulator. Light microscopy (LM, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to assess the effect of heat treatment on morphological details of produced multiphase microstructures.

  6. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

    Science.gov (United States)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2004-08-01

    Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

  7. Influence of delta ferrite on corrosion susceptibility of AISI 304 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Lawrence O. Osoba

    2016-12-01

    Full Text Available In the current study, the influence of delta (δ ferrite on the corrosion susceptibility of AISI 304 austenitic stainless steel was evaluated in 1Molar concentration of sulphuric acid (H2SO4 and 1Molar concentration of sodium chloride (NaCl. The study was performed at ambient temperature using electrochemical technique—Tafel plots to evaluate the corrosive tendencies of the austenitic stainless steel sample. The as-received (stainless steel specimen and 60% cold-worked (stainless steel specimens were isothermally annealed at 1,100°C for 2 h and 1 h, respectively, and quenched in water. The results obtained show that the heat-treated specimen and the 60% cold-worked plus heat-treated specimen exhibited higher corrosion susceptibility than the as-received specimen, which invariably contained the highest fraction of δ ferrite particles. The finding shows that the presence of δ ferrite, in which chromium (Cr, the main corrosion inhibitor segregates, does not degrade and or reduces the resistance to aqueous corrosion of the austenitic stainless steel material.

  8. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Shack, W. J.

    2008-01-21

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

  9. The effect of porosity on the austenite to ferrite transformation in powder metallurgy steels

    International Nuclear Information System (INIS)

    Research highlights: → Presence of porosity in samples reduces overall stability of austenite phase. → Nucleation rate of ferrite increases with increase in porosity in the samples. → Measurements showed reduction in incubation time with increasing porosity. → Avrami exponent, n, found to be independent of temperature and pore fraction. → Avrami constant, b(T), found to be dependent on porosity. - Abstract: The effect of porosity on the kinetics of the austenite to ferrite isothermal transformation in powder metallurgy steels was characterized using high-speed quench dilatometery. The measurements reveal that the presence of porosity in these steels reduces the stability of austenite and hence shortens the incubation time of the transformation. An Avrami-type equation was fitted to the measured data in order to quantify the effect of porosity on the Avrami constants. In addition, samples with varying levels of porosity were interruptedly quenched after holding them at 650 deg. C for 900 s. Quantitative microscopic measurements performed on these samples showed an increase in the number and a decrease in the average diameter of the ferrite grains with increasing porosity. It is hypothesized that pores in powder metallurgy steels increase the rate of nucleation of ferrite from austenite by providing high diffusivity paths for carbon atoms that help accelerate their partitioning during the transformation.

  10. Modelling of Nb influence on phase transformation behaviours from austenite to ferrite in low carbon steels

    Science.gov (United States)

    Wang, L.; Parker, S. V.; Rose, A. J.; West, G. D.; Thomson, R. C.

    2016-03-01

    In this paper, a new model has been developed to predict the phase transformation behaviours from austenite to ferrite in Nb-containing low carbon steels. The new model is based on some previous work and incorporates the effects of Nb on phase transformation behaviours, in order to make it applicable for Nb-containing steels. Dissolved Nb atoms segregated at prior austenite grain boundaries increase the critical energy for ferrite nucleation, and thus the ferrite nucleation rate is decreased. Dissolved Nb atoms also apply a solute drag effect to the moving transformation interface, and the ferrite grain growth rate is also decreased. The overall transformation kinetics is then calculated according to the classic Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. The new model predictions are quite consistent with experimental results for various steels during isothermal transformations or continuous cooling.

  11. Numerical Simulation of Austenite Recrystallization in CSP Hot Rolled C-Mn Steel Strip

    Institute of Scientific and Technical Information of China (English)

    TANG Guang-bo; LIU Zheng-dong; DONG Han; GAN Yong; KANG Yong-lin; LI Lie-jun; MAO Xin-ping

    2007-01-01

    An integrated mathematical model is developed to predict the microstructure evolution of C-Mn steel during multipass hot rolling on the CSP production line, and the thermal evolution, the temperature distribution, the deformation, and the austenite recrystallization are simulated. The characteristics of austenite recrystallization of hot rolled C-Mn steel in the CSP process are also discussed. The simulation of the microstructure evolution of C-Mn steel ZJ510L during CSP multipass hot rolling indicates that dynamic recrystallization and metadynamic recrystallization may easily occur in the first few passes, where nonuniform recrystallization and inhomogeneous grain size microstructure may readily occur; during the last few passes, static recrystallization may occur dominantly, and the microstructure will become more homogeneous and partial recrystallization may occur at relatively low temperature.

  12. Effect of Austenite Recrystallization on Microstructure and Properties of Q345 Steel

    Institute of Scientific and Technical Information of China (English)

    ZHU Fu-xian; LI Yan-mei; LIU Yan-chun; WANG Guo-dong

    2005-01-01

    The Q345 plate steel austenite recrystallization behavior and strain accumulation during rolling were investigated through thermal simulation and rolling. The effect of the recrystallization behavior on the microstructure and properties of the steel was discussed and analyzed. The control principles of the pass reduction in the austenite recrystallization region and partial recrystallization region were established. It is found that to increase the thickness of intermediate billet in the finish temperature interval of 880-820 ℃ is favorable to grain refinement.The result has been applied to the industrial production of the 3 500 mm plate mill of Shougang Group. The average grain size of the steel plate conforms to ASTM No. 10-12, and the grade of band structure has been reduced to below 1.5.

  13. Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels

    Science.gov (United States)

    Miao, Yinbin; Mo, Kun; Zhou, Zhangjian; Liu, Xiang; Lan, Kuan-Che; Zhang, Guangming; Miller, Michael K.; Powers, Kathy A.; Stubbins, James F.

    2016-11-01

    Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high-resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y2Ti2-xO7-2x stoichiometry were found to have a pyrochlore structure, whereas smaller YxTiyOz nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODS steels.

  14. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    Science.gov (United States)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-07-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  15. Modeling of Austenite Decomposition in Low Si-Mn TRIP Steel During Cooling

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-juan; WU Di; ZHAO Xian-ming

    2008-01-01

    Transformation behavior in low carbon Si-Mn TRIP steel was investigated by means of microstructural observation and computer modelling. A transformation model in which transformation is controlled by carbon diffusion was suggested,which well described the volume fractional change of ferrite,pearlite,and bainite during continuous cooling.The influence of Si content and austenite grain size was thoroughly investigated.The calculated results indicated that Si retards pearlite transformation,accelerates polygonal ferrite transformation,refines the austenite grain,and increases the ferrite transformation rate.

  16. Microstructure Changes during Cavitation Erosion for a Steel with Metastable Austenite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The characteristics of microstructure changes during cavitation erosion (CE) were investigatedby the use of XRD and TEM analyses for steel (ZG0Cr13Mn8N) with metastable austenite.The results show that the microstructure of the surface layer of the specimens consists of α'-martensite, metastable austenite and a few ε-martensite before CE. CE obviously increases dislocation density and straight or planar dislocations on the surface, and induces γ → ε, ε → α'and γ → α'-martensitic transformation.

  17. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin;

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... tension. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at 703 K. Microstructural characterization of the as-deformed states and the nitrided case produced included X-ray diffraction analysis, reflected light microscopy, microhardness testing. The results...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  18. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    Science.gov (United States)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  19. Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution

    Directory of Open Access Journals (Sweden)

    W. Krukiewicz

    2009-04-01

    Full Text Available Purpose: The aim of the paper is to investigate the corrosion behaviour of the new-developed high-manganese austenitic steel in 0.5n NaCl solution.Design/methodology/approach: The steel used for the investigation was thermomechanically rolled and solution heat-treated from a temperature of 850°C. Corrosion resistance of investigated steel was examined using weight and potentiodynamic methods. In the weight method, the specimens were immersed in the prepared solution for 24h. In the potentiodynamic method, anodic polarization curves with a rate of potential changes of 1 mV/s in the anodic direction were registered. After the current density being equal 1 mA/cm2 was achieved, the direction of polarization has been changed. Basing on the registered curves, the pitting potential, repassivation potential, polarization resistance and corrosion current were determined.Findings: It was found that the steel is characterized by a partially recrystallized austenitic microstructure with numerous annealing twins and slip bands. According to the results of potentiodynamic analyses it was found that the samples of examined steel show poor corrosion resistance in the NaCl solution. The observed corrosion pits are related to the chemical composition. It is connected with the high dissolution rate of Mn and Fe atoms in NaCl solution. Fractographic analyses of samples revealed corrosion products on their surface in a form of pits with diversified size.Research limitations/implications: To investigate in more detail the corrosion behaviour of high-manganese steel, the investigations should include steels with a wider Al concentration.Practical implications: The obtained results can be used for searching the appropriate way of improving the corrosion resistance of a modern group of high-manganese austenitic steels.Originality/value: The corrosion behaviour in chloride solution of a new-developed Fe-Mn-Si-Al steel was investigated.

  20. Influence of hot-working conditions on a structure of high-manganese austenitic steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2008-08-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of hot deformation conditions on σ-ε curves and structure changes of new-developed high-manganese austenitic steels.Design/methodology/approach: The force-energetic parameters of hot-working were determined in hot-compression tests performed in a temperature range of 850 to 1050°C by the use of the Gleeble 3800 thermomechanical simulator. Evaluation of processes controlling work hardening at 850°C were identified by microstructure observations of the specimens water-quenched after plastic deformation to a true strain equal 0.22, 0.51 and 0.92.Findings: At initial state the steel containing 3% of Si and Al possesses homogeneous austenite structure with many annealing twins. Increased up to 4% Si concentration and decreased to 2% Al concentration result in a presence of some fraction of ε martensite plates. For applied deformation conditions, the values of flow stress vary from 250 to 450MPa – increasing with decreasing deformation temperature. A relatively small values ofε max deformation at temperatures of 1050 and 950°C allow to suppose that in this range of temperature, to form a fine-grained microstructure of steels, dynamic recrystallization can be used. At a temperature of 850°C, the dynamic recrystallization leads to structure refinement after true strain of about 0.51.Research limitations/implications: To determine in detail the hot-working behaviour of developed steels, a progress of recrystallization as a function of time at deformation temperature should be investigated.Practical implications: The obtained stress-strain curves can be useful in determination of power-force parameters of hot-rolling of high-manganese austenitic steels.Originality/value: The hot-working behaviour of new-devoloped high-manganese austenitic steels containing Nb and Ti microadditions was investigated.

  1. Thermo-mechanical processing and microstructure evolution of highmanganese austenitic TRIP-type steels

    Directory of Open Access Journals (Sweden)

    M. Ondrula

    2012-08-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of hot-working conditions on microstructure evolution and phase composition of new-developed high-manganese austenitic TRIP-type steels.Design/methodology/approach: The hot-working behaviour was determined in continuous and multistage compression tests performed in a temperature range of 850 to 1100°C by the use of the Gleeble 3800 thermo-mechanical simulator. The processes controlling work hardening and removing it were identified by microstructure evolution observations in different stages of compression with the amount of true strain 4x0.23. Phase composition of steels was confirmed by X-ray diffraction analysis.Findings: It was found that they have austenite microstructure with numerous annealing twins in the initial state. Continuous compression tests realized in the temperature range from 850 to 1050°C with the strain rate of 0.1, 1 and 10 s-1 enabled determination of yield stress values and values of εmax deformations - corresponding to maximum flow stress. The investigated steels are characterized by high values of flow stress from 120 to 380 MPa. Results of the multi-stage compression proved that applying the true strain 4x0.23 gives the possibility to refine the austenite microstructure.Research limitations/implications: To determine in detail the microstructure evolution during industrial rolling, the hot-working schedule should take into account real number of passes and higher strain rates.Practical implications: The obtained microstructure - hot-working conditions relationships and stress-strain curves can be useful in determination of power-force parameters of hot-rolling for sheets with fine-grained austenitic structures.Originality/value: The hot-working behaviour and microstructure evolution in various conditions of plastic deformation for new-developed high-manganese austenitic TRIP-type steels with Nb and Ti microadditions were investigated.

  2. Anodic polarization curves of austenitic steel Super304H in sulphuric acid solution

    OpenAIRE

    Chmela T.

    2016-01-01

    Polarization curves measured in a sufficiently aggressive environment (e.g. 0.5 mol dm−3 of H2SO4) may help to assess corrosion resistance of stainless steels. New phases precipitate in steel exposed long-term to high temperatures, which may affect the corrosion resistance. Potentiostatic polarization curves were measured on austenitic steel Super304H in a solution annealed state (from the producer) and in a state aged for 15 000 hours at temperatures of 650, 675 and 700 °C. The higher level ...

  3. Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution

    OpenAIRE

    W. Krukiewicz; A. Grajcar; M. Opiela

    2009-01-01

    Purpose: The aim of the paper is to investigate the corrosion behaviour of the new-developed high-manganese austenitic steel in 0.5n NaCl solution.Design/methodology/approach: The steel used for the investigation was thermomechanically rolled and solution heat-treated from a temperature of 850°C. Corrosion resistance of investigated steel was examined using weight and potentiodynamic methods. In the weight method, the specimens were immersed in the prepared solution for 24h. In the potentiody...

  4. Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-05-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of hot-rolling conditions on structure of new-developed high-manganese austenitic steels.Design/methodology/approach: Flow stresses during continuous and multi-stage compression tests were measured using the Gleeble 3800 thermo-mechanical simulator. To describe the hot-working behaviour, the steels were compressed to the various amount of deformation (4x0.29, 4x0.23 and 4x0.19. The microstructure evolution in different stages of hot-rolling was determined in metallographic investigations using light microscopy as well as X-ray diffraction.Findings: The steels are characterized by different microstructure in the initial state. Steel with higher Al concentration has stable microstructure of austenite with annealing twins, while steel with higher Si concentration consists of certain portion of ε martensite in form of plates. The flow stresses are in the range of 200-430 MPa for the applied conditions of hot-working and are up to 40 MPa lower compared to continuous compressions. Results of the multi-stage compression proved that applying the true strain 4x0.29 gives the possibility to refine the austenite microstructure as a result of dynamic recrystallization. In case of applying the lower deformations 4x0.23 and 4x0.19, the process controlling work hardening is dynamic recovery. On the basis of analysis of thermo-mechanical treatment carried out in continuous axisymetrical compression test and multi-stage compression test using the Gleeble 3800 simulator allowed to work out a schedule of three different variants of hot-rolling for each of investigated steels 26Mn-3Si-3Al-Nb-Ti and 27Mn-4Si-2Al-Nb-Ti.Research limitations/implications: To fully describe the hot-rolling behaviour of the new-developed steels, further investigations in wider temperature and strain rate ranges are required.Practical implications: Various conditions of hot-rolling for advanced high-manganese austenitic steels

  5. Microstructure evolution and phase composition of high-manganese austenitic steels

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of hot-working conditions on microstructure evolution and phase composition of new-developed high-manganese austenitic steels.Design/methodology/approach: Determination of processes controlling strain hardening was carried out in continuous compression test using Gleeble 3800 thermo-mechanical simulator. Evaluation of processes controlling work hardening and occurring after deformation at 900°C were identified by microstructure observations of the specimens solution heat-treated after plastic deformation to a true strain equal 0.23, 0.50 and 0.91. Phase composition of steels was confirmed by X-ray diffraction analysis.Findings: The steels have a fine-grained austenite microstructure with many annealing twins to a temperature of about 1000°C. The initiation of dynamic recrystallization occurs already after true deformation equal 0.29. Participation of fine grains arranged in a matrix of dynamically recovered grains essentially increases after increasing true strain to 0.5. Fully dynamically recrystallized microstructure of steel can be obtained after the true strain equal 0.9. The conditions of hot-working influence phase state of investigated steels. Steel no. 1 keeps stable austenite microstructure independently from conditions of plastic deformation. Steel with initial bi-phase microstructure keeps a certain portion of εmartensite, yet dependant on conditions of hot-working.Research limitations/implications: To determine in detail the hot-working behaviour of developed steels, a progress of microstructure evolution in subsequent stages of multi-stage compression test should be investigated.Practical implications: The obtained microstructure – hot-working conditions relationships and stress-strain curves can be useful in determination of power-force parameters of hot-rolling for sheets with fine-grained austenitic structures.Originality/value: The hot-working behaviour and

  6. Super austenitic stainless steels - a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, N.; Rajeswari, S. [University of Madras, Madras (India). Dept. of Analytical Chemistry

    1996-12-15

    Potentiodynamic anodic cyclic polarization experiments on type 316L stainless steel and 6Mo super austenitic stainless steels were carried out in simulated flue-gas desulphurization (FGD) environment in order to assess the localized corrosion resistance. The pitting corrosion resistance was higher in the case of the super austenitic stainless steel containing 6Mo and a higher amount of nitrogen. The accelerated leaching study conducted for the alloys showed that the super austenitic stainless steels have a little tendency for leaching of metal ions such as iron, chromium and nickel at different impressed potentials. This may be due to surface segregation of nitrogen as CrN, which would, in turn, enrich a chromium and molybdenum mixed oxide film and thus impede the release of metal ions. The present study indicates that the 6Mo super austenitics can be adopted as a promising replacement for the currently used type 316L stainless steel as the construction material for FGD plants.

  7. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  8. Development of high strength austenitic stainless steel for conduit of Nb3Al conductor

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) started developing new austenitic stainless steel for a conduit (1 - 2 mm) of a Nb3Al conductor in collaboration with Nippon Steel Corporation (NSC). A high strength austenitic stainless steel is required for a conduit of a Nb3Al conductor to make the best use of superconducting properties of a Nb3Al conductor. JAERI and NSC successfully developed the high strength austenitic stainless steel, JN1 (YS ≥ 1,300 MPa, KIc ≥ 200 MPa√m at 4K) for magnet structures having thick section. However, JN1 is not suitable for a conduit material because elongation of JN1 decreases to less than 10 % due to sensitization during reaction heat treatment for Nb3Al. Therefore, modification of JN1 was performed as a first step to develop a new conduit material which withstands Nb3Al reaction heating. Small trial lots heat-treated at 973 - 1173 K for 2 - 200 hours were prepared and evaluated by Charpy impact test and tensile test at 77 K and 4K. A material having yield strength of 1,390 MPa and elongation of 34 % after aging at 973 K x 200 h are developed up to now. This paper describes requirements on the mechanical properties and status of the development work. In addition, empirical equations to predict 4K yield strength, elongation, and Charpy absorbed energy from 77K data are proposed in this paper

  9. Microstructure and tensile properties of friction welded SUS 304HCu austenitic stainless steel tubes

    International Nuclear Information System (INIS)

    Austenitic stainless steels are used in superheater/reheater tubing for their oxidation resistance and fireside corrosion resistance, in addition to their creep strength. The addition of 3 wt. % Cu to SUS 304HCu austenitic stainless steel to reduce the corrosion, has found to increase the creep performance in temperature range of 650°–750 °C. The addition of Cu to steels can have adverse effects on the mechanical properties of the fusion welded joints. During fusion welding, Cu can form low temperature eutectic phases that preferentially segregate to the grain boundaries and embrittle the alloy. There is a need for a better welding procedure/technique to fabricate this alloy. Friction welding is a solid state welding process which nullifies the adverse effects of low temperature eutectics segregation. Hence, in this investigation an attempt has been made to study the microstructural and tensile properties of the friction welded SUS 304HCu austenitic stainless steel tube joints fabricated using optimized parameters. -- Highlights: • Friction welding of SUS 304HCu tubes is reported. • Microstructures of friction welded SUS 304HCu tubes were reported. • Fracture surface of the tensile samples is characterized using SEM. • XRD analysis of the SUS 304HCu tube is reported

  10. Application Feasibility of PRE 50 grade Super Austenitic Stainless Steel as a Steam Generator Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo [Yonsei University, Seoul (Korea, Republic of); Kim, Young sik [Andong National University, Andong (Korea, Republic of); Kim, Taek Jun; Kim, Sun Tae; Park, Hui Sang [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    The aim of this study is to evaluate the properties of the super austenitic stainless steel, SR-50A for application as steam generator tubing material. The microstructure, mechanical properties, corrosion properties, were analyzed and the results were compared between super austenitic stainless steel and Alloy 600 and Alloy 690. Super austenitic stainless steel, SR-50A is superior to Alloy 600, Alloy 690 and Alloy 800 in the mechanical properties(tensile strength, yield strength, and elongation). It was investigated that thermal conductivity of SR-50A was higher than Alloy 600. As a result of thermal treatment on super stainless steel, SR-50A, caustic SCC resistance was increased and its resistance was as much as Alloy 600TT and Alloy 690TT. In this study, optimum thermal treatment condition to improve the caustic corrosion properties was considered as 650 deg C or 550 deg C 15 hours. However, it is necessary to verify the corrosion mechanism and to prove the above results in the various corrosive environments. 27 refs., 6 tabs., 59 figs. (author)

  11. Z phase stability in AISI 316LN + Nb austenitic steels during creep at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Vodarek, Vlastimil [Technical Univ. Ostrava (Czech Republic)

    2010-07-01

    The creep resistance of austenitic CrNi(Mo) steels strongly depends on microstructural stability during creep exposure. Nitrogen additions to CrNi(Mo) austenitic steels can significantly improve the creep strength. One of the most successful methods of improving the long-term creep resistance of austenitic steels is based on increasing the extent of precipitation strengthening during creep exposure. The role of precipitates in the achievements of good creep properties has been extensively studied for a long time. Although many minor phases are now well documented there are still contractions and missing thermodynamic data about some minor phases. This contribution deals with results of microstructural studies on the minor phase evolution in wrought AISI 316LN niobium stabilised steels during long-term creep exposure at 650 C. Microstructural investigations were carried out on specimens taken from both heads and gauge lengths of ruptured test-pieces by means of optical metallography, transmission and scanning electron microscopy. The attention has been paid to evaluation of thermodynamic and dimensional stability of Z phase and other nitrogen bearing minor phases. Only two nitrogen-bearing minor phases formed in the casts investigated: Z phase and M{sub 6}X. The dimensional stability of Z phase particles was very high. (orig.)

  12. Austenite stability in TRIP steels studied by synchrotron radiation

    NARCIS (Netherlands)

    Blondé, R.

    2014-01-01

    TRIP steel is a material providing great mechanical properties. Such steels show a good balance between high-strength and ductility, not only as a result of the fine microstructure, but also because of the well-known TRIP effect. The Transformation Induced-Plasticity (TRIP) phenomenon is the transfo

  13. RESULTS OF CHARACTERIZATION TESTS OF THE SURFACES OF A COMMERCIALLY CARBURIZED AUSTENITIC STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K

    2004-01-07

    A commercial surface carburization treatment that shows promise for hardening the surfaces of the stainless steel target vessel of the Spallation Neutron Source against cavitation erosion and pitting caused by the action of pulsed pressure waves in the liquid mercury target has been investigated. To verify promotional claims for the treatment and to uncover any factors that might be of concern for the integrity of a carburized target vessel, some characterization tests of the nature of the surface layers of carburized austenitic 316LN stainless steel were conducted. The findings support most of the claims. The carburized layer is about 35 {micro}m thick. Its indentation hardness is about five times larger than that of the substrate steel and declines rapidly with depth into the layer. The surface is distorted by the treatment, and the austenite lattice is enlarged. The corrosion resistance of the carburized layer in an acid medium is greater than that for untreated austenite. The layer is not brittle; it is plastically deformable and is quite resistant to cracking during straining. Contrary to the provider's assertations, the maximum carbon content of the layer is much less than 6-7 wt% carbon, and the carbon is not simply contained in supersaturated solid solution; some of it is present in a previously unreported iron carbide phase located at the very surface. Large variations were found in the thickness of the layer, and they signify that controls may be needed to ensure a uniform thickness for treatment of the SNS target vessel. Inclusion stringers and {delta}-ferrite phase embraced in the treated layer are less resistant to chemical attack than the treated austenite. From a cavitation pitting perspective under SNS bombardment, such non-austenitic phases may provide preferential sites for pitting. The shallow depth of the hardened layer will require use of protection measures to avoid mishandling damage to the layer during assembly and installation of a

  14. Study of structural modifications induced by ion implantation in austenitic stainless steel

    International Nuclear Information System (INIS)

    Ion implantation in steels, although largely used to improve the properties of use, involves structural modifications of the surface layer, which remain still prone to controversies. Within this context, various elements (N, Ar, Cr, Mo, Ag, Xe and Pb) were implanted (with energies varying from 28 to 280 keV) in a 316LVM austenitic stainless steel. The implanted layer has a thickness limited to 80 nm and a maximum implanted element concentration lower than 10 % at. The analysis of the implanted layer by grazing incidence X ray diffraction highlights deformations of austenite lines, appearance of ferrite and amorphization of the layer. Ferritic phase which appears at the grain boundaries, whatever the implanted element, is formed above a given 'threshold' of energy (produced of fluency by the energy of an ion). The formation of ferrite as well as the amorphization of the implanted layer depends only on energy. In order to understand the deformations of austenite diffraction lines, a simulation model of these lines was elaborated. The model correctly describes the observed deformations (broadening, shift, splitting) with the assumption that the expansion of the austenitic lattice is due to the presence of implanted element and is proportional to the element concentration through a coefficient k'. This coefficient only depends on the element and varies linearly with its radius. (author)

  15. Research on High-Speed Drilling Performances of Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    J.W.Zhong; Y.P.Ma; F.H.Sun; M.Chen

    2004-01-01

    Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels becomes the machining difficulty for their serious work-hardening and abrasion of tools. In this paper, the austenitic stainless steel is used as the work-piece to perform the contrastive experiments with the TiN coated and TiAlN-coated high-speed steel drills. The cutting force, torque, cutting temperature, and the abrasion of drills and tool life are tested and analyzed in the process of high-speed drilling. Experiment results show the effect of drilling speed on cutting force, cutting temperature, and drill wear. TiAlN-coated drills demonstrate better performances in high speed drilling. The research results will be of great benefit in the selection of drills and in the control of tool wear in high speed drilling of stainless steels.

  16. Effects of austenite grain size and cooling rate on Widmanstaetten ferrite formation in low-alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, R.L.; Hansen, S.S. (Bethlehem Steel Corp., PA (United States). Hot Rolled Products Div.)

    1994-04-01

    Deformation dilatometry is used to simulate the hot rolling of 0.20 pct C-1.10 pct Mn steels over a product thickness range of 6 to 170 mm. In addition to a base steel, steels with additions of 0.02 pct Ti, 0.06 pct V, or 0.02 pct Nb are included in the study. The transformation behavior of each steel is explored for three different austenite grain sizes, nominally 30, 55, and 100 [mu]m. In general, the volume fraction of Widmanstaetten ferrite increases in all four steels with increasing austenite grain size and cooling rate, with austenite grain size having the more significant effect. The Nb steel has the lowest transformation temperature range and the greatest propensity for Widmanstaetten ferrite formation, while the amount of Widmanstaetten ferrite is minimized in the Ti steel (as a result of intragranular nucleation of polygonal ferrite on coarse TiN particles). The data emphasize the importance of a refined austenite grain size in minimizing the formation of a coarse Widmanstaetten structure. With a sufficiently fine prior austenite grain size (e.g., [le]30 [mu]m), significant amounts of Widmanstaetten structure can be avoided, even in a Nb-alloyed steel.

  17. Mechanism and estimation of fatigue crack initiation in austenitic stainless steels in LWR environments.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Energy Technology

    2002-08-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of fatigue crack initiation in austenitic stainless steels in LWR coolant environments. The existing fatigue {var_epsilon}-N data have been evaluated to establish the effects of key material, loading, and environmental parameters (such as steel type, strain range, strain rate, temperature, dissolved-oxygen level in water, and flow rate) on the fatigue lives of these steels. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic stainless steels as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are presented. The influence of reactor environments on the mechanism of fatigue crack initiation in these steels is also discussed.

  18. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition

    International Nuclear Information System (INIS)

    Dependence of the dislocation glide mode and mechanical twinning on the stacking fault energy (SFE) in fully austenitic high manganese steels was investigated. Fully austenitic Fe-22Mn-xAl-0.6C (x = 0, 3, and 6) steels with the SFE in the range of 20-50 mJ/m2 were tensile tested at room temperature, and their deformed microstructures were examined at the different strain levels by optical microscopy and transmission electron microscopy. Deformation of all steels was dominated by planar glide before occurrence of mechanical twinning, and its tendency became more evident with increasing the SFE. No dislocation cell formation associated with wavy glide was observed in any steels up to failure. Dominance of planar glide regardless of the SFE is to be attributed to the glide plane softening phenomenon associated with short range ordering in the solid solution state of the present steels. Regarding mechanical twinning, the higher the SFE is, the higher the stress for mechanical twinning becomes. However, in the present steels, mechanical twinning was observed at the stresses lower than those predicted by the previous model in which the partial dislocation separation is considered to be a function of not only the SFE but also the applied stress. An analysis revealed that, of the various dislocation-defect interactions in the solid solution alloy, the Fisher interaction tied to short range ordering is qualitatively shown to lower the critical stress for mechanical twinning.

  19. Hydrogen-induced defects in austenite and ferrite of a duplex steel.

    Science.gov (United States)

    Głowacka, A; Swiatnicki, W A; Jezierska, E

    2006-09-01

    The influence of hydrogen on the microstructure of two types of austeno-ferritic duplex stainless steel (Cr26-Ni6 model steel and Cr22-Ni5-Mo3 commercial steel), each of them after two thermo-mechanical treatments, was investigated. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific microstructural changes in the ferrite (alpha) and austenite (gamma) of both types of steel were observed. A strong increase of dislocation density was noticed in the alpha phase. In the case of model steel, longer hydrogen charging times led to significant ferrite grain refinement. In the commercial steel, the strips and twin plates appeared in the ferrite after hydrogenation. The appearance of stacking faults was revealed in the gamma phase. The martensite laths appeared in austenite after longer hydrogenation times. It seems that the microstructural changes gave rise to the formation of microcracks in the alpha and gamma phases as well as on the alpha/gamma interphase boundaries. PMID:17059551

  20. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σy(XγCγ)1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  1. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O.; Ponge, D.; Inden, G.; Millan, J.; Choi, P. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Sietsma, J. [Delft University of Technology, Faculty 3mE, Dept. MSE, 2628 CD Delft (Netherlands); Raabe, D., E-mail: d.raabe@mpie.de [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-01-15

    Partitioning at phase boundaries of complex steels is important for their properties. We present atom probe tomography results across martensite/austenite interfaces in a precipitation-hardened maraging-TRIP steel (12.2 Mn, 1.9 Ni, 0.6 Mo, 1.2 Ti, 0.3 Al; at.%). The system reveals compositional changes at the phase boundaries: Mn and Ni are enriched while Ti, Al, Mo and Fe are depleted. More specific, we observe up to 27 at.% Mn in a 20 nm layer at the phase boundary. This is explained by the large difference in diffusivity between martensite and austenite. The high diffusivity in martensite leads to a Mn flux towards the retained austenite. The low diffusivity in the austenite does not allow accommodation of this flux. Consequently, the austenite grows with a Mn composition given by local equilibrium. The interpretation is based on DICTRA and mixed-mode diffusion calculations (using a finite interface mobility).

  2. An integrated computer model with applications for austenite-to-ferrite transformation during hot deformation of Nb-microalloyed steels

    Science.gov (United States)

    Majta, Janusz; Pietrzyk, Maciej; Zurek, Anna K.; Cola, Mark; Hochanadel, Pat

    2002-05-01

    This work presents an austenite decomposition model, based on the thermodynamics of the system and diffusion-controlled nucleation theory, to predict the evolution of microstructure during hot working of niobium-microalloyed steels. The differences in microstructural development of hotdeformed microalloyed steel in the single-phase austenite and two-phase (austenite + ferrite) regions have been effectively described using an integrated computer modeling process. The complete model presented here takes into account the kinetics of recrystallization, recrystallized austenite grain size, precipitation, phase transformation, and the resulting ferrite structure. After considering existing austenite decomposition models, we decided that the method adopted in the present work relies on isothermal transformation kinetics and the principle-of-additivity rule. The thermomechanical part of the modeling process was carried out using the finite-element method. Experimental results at different temperatures, strain rates, and strain levels were obtained using a Gleeble thermomechanical simulator. A comparison of results of the model with experiments shows good agreement.

  3. Experimental Determination of the Primary Solidification Phase dependency on the solidification velocity for 17 different austenitic stainless steel compositions

    DEFF Research Database (Denmark)

    Laursen, Birthe Nørgaard; Olsen, Flemming Ove; Yardy, John;

    1997-01-01

    to the austenite phase.Most stainless steels are weldable by conventional welding techniques. However, during laser weldng the solidification velocities can be very much higher than by conventional welding techniques. By increasing the solidification velocity to a critical value known as the transition velocity......, the primary solidification phase is found to change from ferrite to austenite.A novel laser remelting technique has been modified to enable the transition velocity for laser welded austenitic stainless steels to be deermined experimentally and on the basis of results from 17 different alloy compositions...... an equation for the calculation of the transition velocity from alloy composition is proposed....

  4. On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels – A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Schibli, Raluca, E-mail: raluca.stoenescu@gmail.com; Schäublin, Robin

    2013-11-15

    Irradiated austenitic stainless steels, because of their low stacking fault energy and high shear modulus, should exhibit a high ratio of stacking fault tetrahedra relative to the overall population of radiation induced nanometric defects. Experimental observations of stacking fault tetrahedra by transmission electron microscopy in commercial-purity stainless steels are however scarce, while they abundantly occur in high-purity or model austenitic alloys irradiated at both low and high temperatures, but not at around 673 K. In commercial alloys, the little evidence of stacking fault tetrahedra does not follow such a trend. These contradictions are reviewed and discussed. Reviewing the three possible formation mechanisms identified in the literature, namely the Silcox and Hirsch Frank loop dissociation, the void collapse and the stacking fault tetrahedra growth, it seems that the later dominates under irradiation.

  5. Material for hot rolling of high boron content austenite stainless steel, and hot rolling method

    International Nuclear Information System (INIS)

    A hot rolling material made of a high boron content austenite stainless steel of the present invention comprises a slab made of an austenite stainless steel containing from 0.6 to 2.0% by weight of B and a pad-welded metal layer formed on the side surface of the slab. The pad-welded metal layer has δ ferrite amount of from 3 to 12% by volume, B content up to 0.3% by weight, a thickness of 3mm or greater, and is subjected to hot rolling after heated to a temperature of from 1100 to 1200degC. This can prevent occurrence of peripheral cracking and the material can be industrially manufactured stably at a low cost. (T.M.)

  6. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking

    Science.gov (United States)

    Mahesh, S.; Alur, K. C.; Mathew, M. D.

    2011-01-01

    A model of damage evolution in austenitic stainless steels under creep loading at elevated temperatures is proposed. The initial microstructure is idealized as a space-tiling aggregate of identical rhombic dodecahedral grains, which undergo power-law creep deformation. Damage evolution in the form of cavitation and wedge cracking on grain-boundary facets is considered. Both diffusion- and deformation-driven grain-boundary cavity growth are treated. Cavity and wedge-crack length evolution are derived from an energy balance argument that combines and extends the models of Cottrell (1961 Trans. AIME 212 191-203), Williams (1967 Phil. Mag. 15 1289-91) and Evans (1971 Phil Mag. 23 1101-12). The time to rupture predicted by the model is in good agreement with published experimental data for a type 316 austenitic stainless steel under uniaxial creep loading. Deformation and damage evolution at the microscale predicted by the present model are also discussed.

  7. Effect of silicon and prior deformation of austenite on isothermal transformation in low carbon steels

    Institute of Scientific and Technical Information of China (English)

    Minghui CAI; Hun DING; Jiansu ZHANG; Long LI

    2009-01-01

    Isothermal transformation (TTT) behavior of the low carbon steels with two Si con-tents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more ho-mogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calcu-lation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.

  8. Diffusion of nitrogen in austenitic phase: Application to nitriding of stainless steels

    Directory of Open Access Journals (Sweden)

    Torchane Lazhar

    2014-04-01

    Full Text Available The nitriding treatment of the martensitic stainless steels aims to harden and to introduce compressive stresses on the surface of steel. Hardening is resulting of the martensitic transformation of the austenitic matrix enriched into nitrogen during cooling and of the germination and the nitride growth. In order to preserve the stainless character of the nitrided layer, it is imperative to control precipitation within the zone affected by the treatment. Our task consists in showing that is possible to control the composition of the gas atmosphere containing ammonia and argon and to carry out on the surface of nitrided samples at 1050°C two types of configuration of layers : a single phase layer made up by martensite enriched in nitrogen α’N and or a two phase layer made up by austenite γN and martensite α’N enriched in nitrogen.

  9. Effect of the delta ferrite solidification morphology of austenitic steels weld metal on the joint properties

    International Nuclear Information System (INIS)

    The properties of austenitic stainless steel weld metals are largely influenced by the appearance in the microstructure of delta ferrite of a given morphology. The susceptibility to hot cracks and low temperature toughness are deeply conditioned by the mixed complex austenitic-ferritic structures which depending on the steel chemical composition and on the cooling rate may be developed. The latest research on this issue points out the importance of the sodification mode as regards to the influence in the appearance of delta ferrite of a certain morphology. In fact, it is very important to understand the solidification sequences, the primary solidification modes which are possible and the subsequent solid state transformations to correlate the structural elements of the weld metal with the parameters of the welding process on the one had, and the weld joint properties on the other. (Author) 19 refs

  10. Prevision of in-service aging of molded austenitic-ferritic stainless steels components

    International Nuclear Information System (INIS)

    After having recalled the service conditions of the nuclear PWR boilers, the austenitic-ferritic molded stainless steels and their uses in the primary coolant circuit are described. The main consequences of the thermal aging on the rupture mechanisms and the mechanical properties are recalled too. Then are described the laboratory studies carried out in France and abroad which have allowed the development of an extensive knowledge of the aging reaction kinetics and then of embrittlement anticipation formulae. Measures and sampling carried out on down-rated components or even on in service components are used to verify the quality of the in-service aging anticipation. At last are identified the subjects on which it will be important to advance to improve our knowledge of the behaviour of the austenitic-ferritic stainless steels components. (O.M.)

  11. Effects Of The Combined Heat And Cryogenic Treatment On The Stability Of Austenite In A High Co-Ni Steel

    Directory of Open Access Journals (Sweden)

    Gruber M.

    2015-09-01

    Full Text Available The stability of austenite is one of the most dominant factors affecting the toughness properties of high Co-Ni steels such as Aermet 100 and AF1410. Thus, the aim of this work was to get a deeper understanding on the impact of combined heat and cryogenic treatment on the stability of retained and reverted austenite. In order to characterize the evolution of the phase fraction of austenite during tempering at different temperatures and times, X-ray diffraction analyses were carried out. The stability of austenite, which was formed during tempering, was analyzed with dilatometric investigations by studying the transformation behavior of the austenite during cooling from tempering temperature down to −100°C. Additionally, transmission electron microscopy investigations were performed to characterize the chemical composition and phase distribution of austenite and martensite before and after tempering.

  12. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  13. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels

    International Nuclear Information System (INIS)

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  14. Formation of a submicrocrystalline structure in metastable austenitic steels during severe plastic deformation and subsequent heating

    Science.gov (United States)

    Mal'tseva, L. A.; Mal'tseva, T. V.; Yurovskikh, A. S.; Raab, G. I.; Sharapova, V. A.; Vakhonina, K. D.

    2016-03-01

    The structure and the mechanical properties of metastable austenitic steels after severe plastic deformation by four or six passes of equal-channel angular pressing (ECAP) at a temperature of 400°C are studied. It is shown that ECAP results in strain hardening mainly due to the formation of a submicrocrystalline structure, which is retained after subsequent heating to 500°C.

  15. DIFFUSIONAL PROPERTIES OF INTERPHASE BOUNDARIES IN TWO-PHASE FERRITIC-AUSTENITIC STEEL

    OpenAIRE

    Światnicki, W.; Świderski, J.; Grabski, M.

    1990-01-01

    Thermal stability of trapped lattice dislocations in ferritic austenitic steel have been studied in order to determine the diffusional properties of internal interfaces. It was found that interphase boundaries with low diffusivity are characterised by the ordered semicoherent structure, formed in Kurdjumov-Sachs or Nishiyama-Wassermann orientation relationship. The fraction of these "special" interfaces varies considerably with the thermomechanical treatment employed as it acts on the process...

  16. Preparation and characterization of electrolytic alumina deposit on austenitic stainless steel

    OpenAIRE

    El Hajjaji, Souad; El Alaoui, Sidi Mohammed; Simon, Patrice; Guenbour, Abdellah; Ben Bachir, Ali; Puech-Costes, Edith; Maurette, Marie-Thérèse; Aries, Lucien

    2005-01-01

    Conversion coating modified by alumina has been studied as a way for improving the resistance to thermal oxidation of an austenitic stainless steel. Conversion coating, characterized by a particular morphology and strong interfacial adhesion with the substrate, facilitate the electrochemical deposition of ceramic layers and enhance their adhesion to the substrate. The influence of the current density and treatment time on alumina deposit was studied using statistical experimental designs like...

  17. A new high nitrogen super austenitic stainless steel with improved structure stability and corrosion resistance properties

    International Nuclear Information System (INIS)

    A new highly alloyed (Cr, Mo, W, N) super austenitic grade has been developed. This grade offers high mechanical properties combined with excellent corrosion resistance in chloride acid media. This grade is particularly designed for applications in chloride, oxidizing acid media encountered in the chemical, transportation, pollution control, offshore and pulp and paper industries. Mechanical properties, corrosion resistance and weldability of this grade are presented and compared to that of other stainless steels and nickel base alloys

  18. A new high nitrogen super austenitic stainless steel with improved structure stability and corrosion resistance properties

    Energy Technology Data Exchange (ETDEWEB)

    Gagnepain, J.C.; Charles, J.; Coudreuse, L.; Bonnefois, B. [Creusot-Loire Industrie, Le Creusot (France)

    1996-11-01

    A new highly alloyed (Cr, Mo, W, N) super austenitic grade has been developed. This grade offers high mechanical properties combined with excellent corrosion resistance in chloride acid media. This grade is particularly designed for applications in chloride, oxidizing acid media encountered in the chemical, transportation, pollution control, offshore and pulp and paper industries. Mechanical properties, corrosion resistance and weldability of this grade are presented and compared to that of other stainless steels and nickel base alloys.

  19. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel.

    Science.gov (United States)

    Chen, B; Flewitt, P E J; Smith, D J; Jones, C P

    2011-04-01

    Inter-granular creep cavitation damage has been observed in an ex-service 316H austenitic stainless steel thick section weldment. Focused ion beam cross-section milling combined with ion channelling contrast imaging is used to identify the cavitation damage, which is usually associated with the grain boundary carbide precipitates in this material. The results demonstrate that this technique can identify, in particular, the early stage of grain boundary creep cavitation unambiguously in materials with complex phase constituents. PMID:21396524

  20. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2010-05-01

    Full Text Available Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404.Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL. The influence of laser alloying conditions, both laser beam power (between 0.7 and 2.0 kW and powder feed rate (1.0-4.5 g/min at constant scanning rate of 0.5m/min on the width of alloyed surface layer, penetration depth, microstructure evaluated by LOM, SEM x-ray analysis, surface roughness and microhardness were presented.Findings: The microstructures of Cr laser alloyed surface consist of different zones, starting from the superficial zone rich in alloying powder particles embedded in the surface; these particles protrude from the surface and thus considerably increase the surface roughness. Next is alloyed zone enriched in alloying element where ferrite and austenite coexists. The following transient zone is located between properly alloyed material and the base metal and can be considered as a very narrow HAZ zone. The optimal microstructure homogeneity of Cr alloyed austenitic stainless steel was obtained for powder feed rate of 2.0 and 4.5 g/min and laser beam power of 1.4 kW and 2 kW.Practical implications: Laser surface alloying can be an efficient method of surface layer modification of sintered stainless steel and by this way the surface chromium enrichment can produce microstructural changes affecting mechanical properties.Originality/value: Application of high power diode laser can guarantee uniform heating of treated surface, thus uniform thermal cycle across treated area and uniform penetration depth of chromium alloyed surface layer.

  1. Solid solution strengthening effect on creep strength of austenitic stainless steel

    OpenAIRE

    Abouzari, Sara

    2012-01-01

    Sanicro 25 is a newly developed austenitic stainless steel, designed for the next generation of Ultrasupercritical coal-fired boilers in electrical power plants. This material is applicable in reheater and superheater tubes, where the material temperature is up to 700 °C. One of the main strengthening mechanisms in high temperature materials is solid solution strengthening. A combination of this mechanism and precipitation hardening, promotes creep strength of heat resistance materials. The a...

  2. Weld bead center line shift during laser welding of austenitic stainless steels with different sulfur content

    International Nuclear Information System (INIS)

    The magnitude of the shift in position of the maximum depth of penetration, the center line shift (CLS), for a laser weld produced between two heats of austenitic stainless steels with large differences in S content was smaller relative to gas tungsten arc (GTA) welds made with both higher and lower heat inputs. The results of this study suggest that both surface tension driven fluid (Marangoni) flow effects and arc shift effects may contribute to the CLS in GTA welding

  3. Multi-response optimization of CO2 laser welding process of austenitic stainless steel

    OpenAIRE

    Benyounis, Khaled; Olabi, Abdul-Ghani; Hashmi, Saleem

    2008-01-01

    Recently, laser welding of austenitic stainless steel has received great attention in industry, due to its wide spread application in petroleum refinement stations, power plant, pharmaceutical industry and households. Therefore, mechanical properties should be controlled to obtain good welded joints. The welding process should be optimized by the proper mathematical models. In this research, the tensile strength and impact strength along with the joint operating cost of laser welded butt join...

  4. Microstructural and Texture Development in Two Austenitic Steels with High-Manganese Content

    DEFF Research Database (Denmark)

    Bhattacharya, Basudev; Ray, Ranjit Kumar; Leffers, Torben

    2015-01-01

    Two austenitic steels, Fe-21.3Mn-3.44Si-3.74Al-0.5C and Fe-29.8Mn-2.96Si-2.73Al-0.52C, were subjected to cold rolling with 30 to 80 pct reduction with an increment of 10 pct and subsequently the development of their microstructures and textures were studied. The overall texture after 80 pct cold...

  5. Microstructure evolution and phase composition of high-manganese austenitic steels

    OpenAIRE

    L.A. Dobrzański; A. Grajcar; W. Borek

    2008-01-01

    Purpose: The aim of the paper is to determine the influence of hot-working conditions on microstructure evolution and phase composition of new-developed high-manganese austenitic steels.Design/methodology/approach: Determination of processes controlling strain hardening was carried out in continuous compression test using Gleeble 3800 thermo-mechanical simulator. Evaluation of processes controlling work hardening and occurring after deformation at 900°C were identified by microstructure obser...

  6. Wear mechanisms in austenitic stainless steel drilling : A comprehensive wear study

    OpenAIRE

    Dahlström, Alexander

    2015-01-01

    This thesis is meant to serve as part of a competence platform for future product development projects at Sandvik Coromant AB, Solid Round Tools Department, Västberga, Sweden. The project objective is to gain generic knowledge of the wear mechanisms that restrict tool lifetime when drilling austenitic stainless steel. Thus, identifying if the weakest link of the tool is located within the coating, the coating adherence or in the strength of the substrate. A theoretical review of the work-pie...

  7. Modeling Recrystallization of Austenite for C-Mn Steels during Hot Deformation by Cellular Automaton

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using a cellular automaton method, microstructure evolution of recrystallization in austenite during hot deformation was simulated for C-Mn steels. A model takes into account the influence of deformation temperature, strain, and strain rate on the dynamic recrystallization fraction, and the effect of the keeping time on the static recrystallization fraction based on a hot deformation test on a Gleeble-1500 simulator. In addition, the size changing of γ grains during continuous hot deformation was simulated by applying the model.

  8. Variation of carbon concentration in proeutectoid ferrite during austenitization in hypoeutectoid steel

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minsu; Cho, Wontae; Park, Jihye; Jung, Jae-Gil; Lee, Young-Kook, E-mail: yklee@yonsei.ac.kr

    2014-08-15

    The variation of the C concentration in proeutectoid ferrite (α{sub PF}) during austenitization in hypoeutectoid steels was quantitatively investigated using the massive transformation start temperature (T{sub m}) of α{sub PF} to austenite (γ) measured by high-temperature confocal laser scanning microscopy and hardness of α{sub PF}. The C concentration in α{sub PF} at T{sub m} in hypoeutectoid steels increased with increasing total C concentration up to approximately 0.2 wt.% during heating. The hardness of α{sub PF} with isothermal holding time at 775 °C in S20C steel revealed C enrichment in α{sub PF} at the early stage of isothermal holding and its reduction with further holding. These results explain the redistribution of the C in α{sub PF} during austenitization as follows: free C atoms released from cementite during pearlite decomposition diffuse excessively into neighboring α{sub PF} as well as pearlitic ferrite. The supersaturated C concentration in α{sub PF} is reduced during the long-range diffusive transformation of α{sub PF} to γ. However, some of the excess C atoms still remain in α{sub PF} until α{sub PF} starts to massively transform to γ. - Highlights: • Massive transformation of αPF to γ in hypoeutectoid steels was observed using CLSM. • C content in αPF during austenitization was analyzed by measured Tm and hardness. • Tm decreases and C content in αPF at Tm increases with increasing total C. • C atoms released from θ during formation of P to γ diffuse excessively into αPF. • Supersaturated C content in αPF is reduced during transformation of αPF to γ.

  9. Variation of carbon concentration in proeutectoid ferrite during austenitization in hypoeutectoid steel

    International Nuclear Information System (INIS)

    The variation of the C concentration in proeutectoid ferrite (αPF) during austenitization in hypoeutectoid steels was quantitatively investigated using the massive transformation start temperature (Tm) of αPF to austenite (γ) measured by high-temperature confocal laser scanning microscopy and hardness of αPF. The C concentration in αPF at Tm in hypoeutectoid steels increased with increasing total C concentration up to approximately 0.2 wt.% during heating. The hardness of αPF with isothermal holding time at 775 °C in S20C steel revealed C enrichment in αPF at the early stage of isothermal holding and its reduction with further holding. These results explain the redistribution of the C in αPF during austenitization as follows: free C atoms released from cementite during pearlite decomposition diffuse excessively into neighboring αPF as well as pearlitic ferrite. The supersaturated C concentration in αPF is reduced during the long-range diffusive transformation of αPF to γ. However, some of the excess C atoms still remain in αPF until αPF starts to massively transform to γ. - Highlights: • Massive transformation of αPF to γ in hypoeutectoid steels was observed using CLSM. • C content in αPF during austenitization was analyzed by measured Tm and hardness. • Tm decreases and C content in αPF at Tm increases with increasing total C. • C atoms released from θ during formation of P to γ diffuse excessively into αPF. • Supersaturated C content in αPF is reduced during transformation of αPF to γ

  10. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    Science.gov (United States)

    Rozenak, Paul

    2014-01-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  11. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    Science.gov (United States)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  12. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  13. On-line model for control of hot rolling of austenitic steel strips

    International Nuclear Information System (INIS)

    The on-line model of strip rolling for austenitic steels is described in the paper. Three components are included in the model. The first is a new thermal model, which is based on an analytical solution of the Fourier equation. Thermophysical properties of the austenitic steels are introduced in the model. The numerical procedure, which designs a rolling schedule, is the second part of the model. The rolling velocities and the reductions in subsequent passes are determined by a solution of a set of non-linear equations, which compose continuity condition and energy balance for all stands. The problem is solved using optimisation techniques with constraints, that allows imposing of the technological limitations on the solution. The adaptive procedure is applied to adjust coefficient in the flow stress equation during the on-line work of the model. Microstructure evolution model is the third part of the system. This model is based on semi-empirical equations describing microstructural phenomena for austenitic steels. The microstructural model is included in the temperature calculations, but it does not take part in the control of the rolling process directly. Its task is to supply information regarding the microstructure and mechanical properties predicted for the current rolling technology, designed by the system. Description of all the developed models is given in the paper. Results of numerical experiments including calculations of rolling schedules are presented. (author)

  14. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    International Nuclear Information System (INIS)

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials

  15. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite α' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  16. Investigation of shot-peened austenitic stainless steel 304L by means of magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Kleber, X., E-mail: xavier.kleber@insa-lyon.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Barroso, S. Pirfo [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)

    2010-08-20

    Research highlights: The results and the conclusions drawn in this paper are important for the scientific community and especially for scientist who are looking for method to characterize phase transformations in metallic materials. We show that Barkhausen noise measurements can be successfully used to monitor strain-induced martensite in austenitic stainless steels. - Abstract: Different shot peening conditions were applied to an austenitic stainless steel AISI 304L in order to transform austenite to martensite {alpha}' at different depths. Magnetic Barkhausen noise measurements performed on this steel reveal a correlation between the strength of the signal and the depth of the treatment. The combined effect of the volume fraction of martensite and the residual stress in martensite determined using X-ray diffraction analysis were found to be responsible for the evolution of the Barkhausen noise response. Using tensile plastic deformation, the residual stress in martensite was changed, giving rise to a strong increase of the Barkhausen noise activity. This variation was correlated to a modification of the sign and amplitude of the residual stress in the martensite phase. Directional measurements of the Barkhausen noise revealed the anisotropy of the residual stresses induced by the tensile plastic deformation. It is concluded that the Barkhausen noise activity recording could lead to the determination of the residual stresses in martensite induced by shot peening processes.

  17. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Todd R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Busby, Jeremy T [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.

  18. Dynamic tensile tests on ferritic and austenitic steels with improved testing and measuring technique

    OpenAIRE

    Kussmaul, K.; Schuele, M.

    1994-01-01

    For analysing dynamically loaded structures by means of the finite element method a dynamic constitutive material model is necessary to obtain reliable results. For this purpose dynamic tensile tests were performed with the fine grained steel 20 MnMoNi 5 5 (A 508 Cl. 3) and the austenitic steel X 6 CrNi 18 11 at different velocities. Smooth round bar specimens of different geometries were used. Displacement at the lower end of the specimen as well as force and strain were measured. The whole ...

  19. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    International Nuclear Information System (INIS)

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger that the level of damage per atomic displacement may be larger in the pressurized water environment

  20. Surface stability and conductivity of a high Cr and Ni austenitic stainless steel plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    TIAN Rujin; SUN Juncai; WANG Jianli

    2006-01-01

    In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.

  1. The Formation of Multipoles during the High-Temperature Creep of Austenitic Stainless Steels

    DEFF Research Database (Denmark)

    Howell, J.; Nielsson, O.; Horsewell, Andy;

    1981-01-01

    It is shown that multipole dislocation configurations can arise during power-law creep of certain austenitic stainless steels. These multipoles have been analysed in some detail for two particular steels (Alloy 800 and a modified AISI 316L) and it is suggested that they arise either during...... instantaneous loading or during the primary creep stage. Trace analysis has shown that the multipoles are confined to {1 1 1} planes during primary creep but are not necessarily confined to these planes during steady-state creep unless they are pinned by interstitials....

  2. Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels

    OpenAIRE

    L.A. Dobrzański; W. Borek

    2011-01-01

    Purpose: The aim of the paper is to determine the influence of hot-rolling conditions on structure of new-developed high-manganese austenitic steels.Design/methodology/approach: Flow stresses during continuous and multi-stage compression tests were measured using the Gleeble 3800 thermo-mechanical simulator. To describe the hot-working behaviour, the steels were compressed to the various amount of deformation (4x0.29, 4x0.23 and 4x0.19). The microstructure evolution in different stages of hot...

  3. Utilization of Non-Destructive Thermoelectric Power Measurements for Determination of Interstitial Nitrogen Content in Nitrogen-Strengthened Austenitic Stainless Steel Welds

    International Nuclear Information System (INIS)

    Through utilization of modern physics concepts, a new non-destructive, portable thermoelectric power device has been designed for the use of rapid material characterization in nitrogen-strengthened austenitic stainless steel weldments. Nitrogen is used as an interstitial strengthener in austenitic stainless steel offering enhancement in mechanical properties and corrosion resistance. A direct correlation exists between the thermoelectric power coefficient as a function of interstitial nitrogen content, revealing microstructural characteristics of the austenitic stainless steel weldment

  4. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    Science.gov (United States)

    Vijayanand, V. D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M. D.

    2013-07-01

    Prior cold worked (PCW) titanium-modified 14Cr-15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16-24% on creep properties of IFAC-1 SS, a titanium modified 14Cr-15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K. Creep rupture life of the steel increased with the increase in PCW at 923 K. This has been attributed to the partial retention of prior cold work induced dislocations which facilitated the extensive precipitation of secondary Ti(C,N) particles on the stable dislocation substructure. Creep rupture life of the steel did not vary with PCW at 973 K due to softening by recrystallization and absence of secondary Ti(C,N).

  5. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    International Nuclear Information System (INIS)

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results

  6. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Microstructural data on the evolution of the dislocation loop, cavity, and precipitate populations in neutron-irradiated austenitic stainless steels are reviewed in order to estimate the displacement damage levels needed to achieve the 'steady state' condition. The microstructural data can be conveniently divided into two temperature regimes. In the low temperature regime (below about 200 degrees C) the microstructure of austenitic stainless steel is dominated by 'black spot' defect clusters and faulted interstitial dislocation loops. The dose needed to approach saturation of the loop and defect cluster densities is generally on the order of 1 displacement per atom (dpa) in this regime. In the high temperature regime (∼300 to 700 degrees C), cavities, precipitates, loops and network dislocations are all produced during irradiation; doses in excess of 10 dpa are generally required to approach a 'steady state' microstructural condition. Due to complex interactions between the various microstructural components that form during irradiation, a secondary transient regime is typically observed in commercial stainless steels during irradiation at elevated temperatures. This slowly evolving secondary transient may extend to damage levels in excess of 50 dpa in typical 300-series stainless steels, and to >100 dpa in radiation-resistant developmental steels. The detailed evolution of any given microstructural component in the high-temperature regime is sensitive to slight variations in numerous experimental variables, including heat-to-heat composition changes and neutron spectrum

  7. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Machine Tools and Factory Management, Technical University of Berlin, Pascalstraße 8 – 9, 10587, Berlin (Germany); Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Kannengiesser, Thomas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Institute of Materials and Joining Technology, Otto von Guericke University Magdeburg, Universitetsplatz 2, 39106, Magdeburg (Germany)

    2014-09-08

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results.

  8. Influence of thermal treatment on the caustic SCC of super austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y.R.; Park, Y.B.; Chung, T.J.; Kim, Y.S. [School of Advanced Materials Engineering, Andong National Univ. (Korea); Chang, H.Y. [Korea Power Engineering Co. (Korea); Park, Y.S. [Dept. of Metallurgical Engineering, Yonsei Univ. (Korea)

    2005-07-01

    In general, thermal treatment at 500 C {proportional_to} 900 C ranges depending upon alloy composition of stainless steels can sensitize the steels and promote the intergranular cracking, and their intergranular corrosion resistance is decreased. These behaviors seem to be related to the change of microstructures. So, heat treatment at that temperature range should be avoided in fabrication, especially welding of stainless steels. In this work, it is focused on the effect of thermal treatment on caustic stress corrosion cracking of super austenitic stainless steel - S32050 The low temperature thermal treatment increased greatly the resistance to caustic SCC than those of annealed specimen. This enhancement might be closely related to the reduction of residual stress and slightly large grain, but its resistance was not affected by the anodic polarization behavior. (orig.)

  9. On the Plasma (ion) Carburized Layer of High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Y. Ueda; N. Kanayama; K. Ichii; T. Oishi; H. Miyake

    2004-01-01

    The manganese concentration of austenitic stainless steel decreases from the inner layer towards the surface of the plasma (ion) carburized layer due to the evaporation of manganese from the specimen surface. The carbon concentration in the carburized layer is influenced by alloyed elements such as Ct, Ni, Si, and Mo, as well as Nitrogen. This study examined the effects of nitrogen on the properties of the carburized layer of high nitrogen stainless steel. Plasma (ion)carburizing was carried out for 14.4 ks at 1303 K in an atmosphere of CH4+H2 gas mixtures under a pressure of 350 Pa. The plasma carburized layer of the high nitrogen stainless steel was thinner than that of an austentric stainless steel containing no nitrogen. This suggested that the nitrogen raised the activity of carbon in the plasma carburized layer, GDOES measurement indicated that the nitrogen level in the layer did not vary after plasma (ion) carburizing.

  10. Stochastic aspects of evolution of creep damage in austenitic stainless steel

    International Nuclear Information System (INIS)

    A stochastic model for the creep damage evolution and associated scatter in austenitic stainless steel has been developed in terms of a discontinuous Markov process. The magnitude of damage has been described in the form of a probability distribution function whose evolution in time characterizes the nondeterministic nature of the damage accumulation process. The long-term creep behavior on samples obtained from different locations of a thick walled SS304 LN steel pipe are studied under an identical stress and temperature condition so as to observe the scatter in creep deformation and failure data. Also the occurrences of damage and its accumulation due to creep deformation were evaluated through microstructural assessment using light optical microscope and scanning electron microscope. The validity of the model has been established by repeat data of SS304 LN steel and 316 stainless steel .

  11. Eddy current testing of longitudinal welds in austenitic steel pipes

    International Nuclear Information System (INIS)

    The existing steel-iron test sheet 1914 'Nondestructive Testing of Fusion Welded Joints in Tubes of Stainless Steels' (SEP 1914) had to be revised. The physical correlation between test frequency, phase position, amplitude and defect size for different pipe dimensions were pointed out and discussed on the basis of numerous measurement series. The influence of coil-specific parameters, filtration and electromagnetic magnetization on the eddy current signal were clarified. Additionally, the transferability of the amplitude and phase behaviour of simulated defects on naturally occurring defects was investigated in order to guarantee that the determined test parameters for the revision of existing test regulations are practice-oriented. As the most important result, it is stated that the definition of the test sensitivity in the steel-iron test sheet 1914 is too insensitive for a great number of pipe dimensions. Therefore, the existing steel-iron test sheet 1914 was revised with regard to the definition of the test sensitivity on the basis of the required detection sensitivity of a 20% internal groove. (orig./HP)

  12. Microstructural changes within similar coronary stents produced from two different austenitic steels.

    Science.gov (United States)

    Weiss, Sabine; Meissner, Andreas; Fischer, Alfons

    2009-04-01

    Coronary heart disease has become the most common source for death in western industrial countries. Since 1986, a metal vessel scaffold (stent) is inserted to prevent the vessel wall from collapsing [Puel, J., Joffre, F., Rousseau, H., Guermonprez, B., Lancelin, B., Valeix, B., Imbert, G., Bounhoure, J.P, 1987. Endo-prothéses coronariennes autoexpansives dans la Préevention des resténoses apés angioplastie transluminale. Archives des Maladies du Coeur et des Vaisseaux, 1311--1312]. Most of these coronary stents are made from CrNiMo-steel (AISI 316L). Due to its austenitic structure, the material shows strength and ductility combined with corrosion resistance and a satisfactory biocompatibility. However, recent studies indicate that Nickel is under discussion as to its allergenic potential. Other typically used materials like Co-Base L605 or Tantalum alloys are relatively expensive and are not used so often. Newly developed austenitic high-nitrogen CrMnMoN-steels (AHNS) may offer an alternative. Traditional material tests revealed that strength and ductility, as well as corrosion resistance and biocompatibility, are as good as or even better than those of 316L [Vogt, J.B., Degallaix, S., Foct J., 1984. Low cycle fatigue life enhancement of 316L stainless steel by nitrogen alloying. International Journal of Fatigue 6 (4), 211-215, Menzel, J., Stein, G., 1996. High nitrogen containing Ni-free austenitic steels for medical applications. ISIJ Intern 36 (7), 893-900, Gavriljuk, V.G., Berns, H., 1999. High nitrogen steels, Springer Verlag, Berlin, Heidelberg]. However, because of a strut diameter of about 100 microm, the cross section consists of about five to ten crystal grains (oligo-crystalline). Thus very few, or even just one, grain can be responsible for the success or failure of the whole stent. During implantation, the structure of coronary artery stents is subjected to distinct inhomogeneous plastic deformation due to crimping and dilation. PMID:19627825

  13. The Effect of Welding Method on the Electrochemical Behavior of Austenitic Stainless Steel Sheet

    International Nuclear Information System (INIS)

    The corrosion of the flexible tube in the automobile exhaust system is caused by the ambient water and chloride ions. Since welding is one of the key processes of the flexible tube manufacturing, it is required to select a proper welding method to prevent the flexible tube corrosion and to increase its lifetime. There are many studies about the efficiency of the welding method, but no systematic study is performed for the effect of welding method on the corrosion property of the austenitic stainless weldment. The aim of the present study is to provide information on the effect of two different welding methods of TIGW (tungsten inert gas welding) and PAW (plasma arc welding) on the corrosion property of austenitic stainless steel weldment. Materials used in this study were two types of the commercial austenitic stainless steel, STS321 and XMI5JI, which were used for flexible tube material for the automotive exhaust system. Microstructure was observed by using optical microscopy (OM) and scanning electron microscopy (SEM). To evaluate the corrosion behavior, potentiodynamic and potentiostatic tests were performed. The chemical state of the passive film was analyzed in terms of XPS depth profile. Metallurgical analysis show that the ferrite content in fusion zone of both STS321 and XMI5JI is higher when welded by PAW than by TIGW. The potentiodynamic and potentiostatic test results show that both STS321 and XMI5JI have higher transpassive potential and lower passive current density when welded by PAW than by TIGW. XPS analysis indicates that the stable Cr2O3 layer at the outermost layer of the passive film is formed when welded by PAW. The result recommends that PAW is more desirable than TIGW to secure corrosion resistance of the flex tube which is usually made of austenitic stainless steel

  14. Effect of Multi-Step Tempering on Retained Austenite and Mechanical Properties of Low Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    Hamid Reza Bakhsheshi-Rad; Ahmad Monshi; Hossain Monajatizadeh; Mohd Hasbullah Idris; Mohammed Rafiq Abdul Kadir; Hassan Jafari

    2011-01-01

    The effect of multi-step tempering on retained austenite content and mechanical properties of low alloy steel used in the forged cold back-up roll was investigated.Microstructural evolutions were characterized by optical microscope,X-ray diffraction,scanning electron microscope and Feritscope,while the mechanical properties were determined by hardness and tensile tests.The results revealed that the content of retained austenite decreased by about 2% after multi-step tempering.However,the content of retained austenite increased from 3.6% to 5.1% by increasing multi-step tempering temperature.The hardness and tensile strength increased as the austenitization temperature changed from 800 to 920 ℃,while above 920 ℃,hardness and tensile strength decreased.In addition,the maximum values of hardness,ultimate and yield strength were obtained via triple tempering at 520 ℃,while beyond 520 ℃,the hardness,ultimate and yield strength decreased sharply.

  15. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    Energy Technology Data Exchange (ETDEWEB)

    Nowers, O.; Duxbury, D. J. [NDE Research, Support and Development, Rolls-Royce Marine, Derby, PO BOX 2000, DE21 7XX (United Kingdom); Velichko, A.; Drinkwater, B. W. [Department of Mechanical Engineering, University Walk, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2015-03-31

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  16. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    Science.gov (United States)

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2016-04-01

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (∼3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. This difference is attributed to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.

  17. Phase equilibria in the UO 2-austenitic steel system up to 3000°C

    Science.gov (United States)

    Kleykamp, Heiko

    1997-08-01

    The pseudobinary UO 2-austenitic steel system was investigated by DTA up to 1500°C, by isothermal annealing up to 2000°C, by induction heating up to 2850°C and by arc melting up to about 3000°C. The system is characterized by a degenerate eutectic at 1433°C on the steel side and a monotectic at 2830°C and about 1 mol% steel. The maximum solubility of steel in solid U0 2 is 0.6 mol%, that in liquid U0 2 at 3000°C is about 4 mol%. U0 2 and steel form (Fe, Mn, Cr) 2O 3 precipitates between 1300 and 2600°C as U02 becomes hypostoichiometric. Liquid steel is stabilized to higher temperatures above its boiling point at 2790°C by dissolution of uranium and decomposes peritectically to liquid UO 2-χ and gas at estimated 3200°C. The critical data of the single-phase U0 2-steel melt based on the application of the Redlich-Kister model are Tc = 4900°C, Pc = 300 bar and χ c, steel = 0.41.

  18. Improved superheater tubing material - Ti and Nb bearing austenitic steel

    International Nuclear Information System (INIS)

    A newly developed 18 Cr-8 Ni stainless steel modified with small amounts of Ti and Nb has considerably high stress-rupture strength and is considered to be suitable for superheater material for power boilers. Data for stress-rupture and creep for long times, the strength of welded joints, the changes of characteristics due to exposure to high temperatures, etc., are presented and discussed. Some investigations after trial services indicate that the experimental data are applicable to actual applications. (author)

  19. Corrosion of an austenite and ferrite stainless steel weld

    OpenAIRE

    BRANIMIR N. GRGUR; VLADANA N. RAJAKOVIĆ-OGNJANOVIĆ

    2011-01-01

    Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding proce...

  20. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    NARCIS (Netherlands)

    Chernov, [No Value; Kalashnikov, AN; Kahn, BA; Binyukova, SY

    2003-01-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion it. radiation up to a fluence of 5 x 10(20) m(-2) at the temperature of 920 K. It

  1. Weldability of corrosion-resistant high-nitrogen austenitic Kh22AG16N8M-type steels

    Science.gov (United States)

    Bannykh, O. A.; Blinov, V. M.; Kostina, M. V.; Blinov, E. V.; Zvereva, T. N.

    2007-10-01

    The influence of thermal treatment on the structures and mechanical properties of welds of corrosion-resistant high-nitrogen austenitic 05Kh22AG16N8M-type steels is studied. In these steels, austenite is found to be highly resistant to discontinuous precipitation and the formation of σ phase and δ ferrite upon cooling regardless of the temperature of heating for quenching (from 900 to 1250°C) and the cooling conditions (water, air, furnace). Welding of these steels can produce high-strength welds with an enhanced impact toughness.

  2. Cyclic deformation behaviour of austenitic steels at ambient and elevated temperatures

    Indian Academy of Sciences (India)

    Th Nebel; D Eifler

    2003-02-01

    The aim of the present investigation is to characterise cyclic deformation behaviour and plasticity-induced martensite formation of metastable austenitic stainless steels at ambient and elevated temperatures, taking into account the influence of the alloying elements titanium and niobium. Titanium and niobium are ferrite-stabilising elements which influence the ferrite crystallisation. Furthermore, They form carbides and/or carbonitrides and thus limit the austenite-stabilising effect of carbon and nitrogen. Several specimen batches of titanium and niobium alloyed austenite and of a pure Cr-Ni-steel for comparison were tested under stress and total strain control at a frequency of 5 Hz and triangular load-time waveforms. Stress-strain-hysteresis and temperature measurements were used at ambient temperature to characterise cyclic deformation behaviour. Plasticity-induced martensite content was detected with non-destructive magnetic measuring techniques. The experiments yield characteristic cyclic deformation curves and corresponding magnetic signals according to the actual fatigue state and the amount of martensite. Fatigue behaviour of X6CrNiTi1810 (AISI 321), X10CrNiCb189 (AISI 348) and X5CrNi1810 (AISI 304) is characterised by cyclic hardening and softening effects which are strongly influenced by specific loading conditions. Martensite formation varies with the composition, loading conditions, temperature and number of cycles.

  3. Review of environmental effects on fatigue crack growth of austenitic stainless steels.

    Energy Technology Data Exchange (ETDEWEB)

    Shack, W. J.; Kassner, T. F.; Energy Technology

    1994-07-11

    Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and core components in light water reactors are potential concerns to the nuclear industry and regulatory agencies. The degradation processes include intergranular stress corrosion cracking of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under US Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled into a data base along with similar data obtained from the open literature. The data were analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments corresponding to normal BWR water chemistries, for BWRs that add hydrogen to the feedwater, and for pressurized water reactor primary-system-coolant chemistry. The corrosion-fatigue data and curves in water were compared with the air line in Section XI of the ASME Code.

  4. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels

    CERN Document Server

    Zwaag, S; Kruijver, S O; Sietsma, J

    2002-01-01

    Stability of retained austenite is the key issue to understand transformation-induced plasticity (TRIP) effect. In this work, both thermal stability and mechanical stability are investigated by thermo-magnetic as well as in situ conventional X-ray diffraction and micro synchrotron radiation diffraction measurements. The thermal stability in a 0.20C-1.52Mn-0.25Si-0.96Al (wt%) TRIP steel is studied in the temperature range between 5 and 300 K under a constant magnetic field of 5T. It is found that almost all austenite transforms thermally to martensite upon cooling to 5K and M sub s and M sub f temperatures are analyzed to be 355 and 115 K. Transformation kinetics on the fraction versus temperature relation are well described by a model based on thermodynamics. From the in situ conventional X-ray and synchrotron diffraction measurements in a 0.17C-1.46Mn-0.26Si-1.81Al (wt%) steel, the volume fraction of retained austenite is found to decrease as the strain increases according to Ludwigson and Berger relation. T...

  5. Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment

    International Nuclear Information System (INIS)

    Highlights: ► Embrittlement study of austenitic stainless steel welds after ageing up to 20,000 h. ► Spinodal decomposition and G-phase precipitation in ferrite at 400 °C. ► Spinodal decomposition of ferrite at 335 and 365 °C. ► Large decrease in corrosion resistance due to G-phase precipitation. ► Good correlation between electrochemical properties and the degree of embrittlement. - Abstract: The low temperature thermal ageing embrittlement of austenitic stainless steel welds is investigated after ageing up to 20,000 h at 335, 365 and 400 °C. Spinodal decomposition and G-phase precipitation after thermal ageing were identified by transmission electron microscopy. Ageing led to increase in hardness of the ferrite phase while there was no change in the hardness of austenite. The degree of embrittlement was evaluated by non-destructive methods, e.g., double-loop and single-loop electrochemical potentiokinetic reactivation tests. A good correlation was obtained between the electrochemical properties and hardening of the ferrite phase of the aged materials.

  6. Predicting the toughness of SMA austenitic stainless steel welds at 77 K

    International Nuclear Information System (INIS)

    Austenitic stainless steels often provide the best combination of strength and toughness for cryogenic applications: however, the weld toughness is frequently much lower than that of the base metal. This study proposes a more accurate and simpler model for developing improved filler metal compositions. Several previous studies of the weld toughness were analyzed separately and in combination using a stepwise regression method and an expanded variable list. The total data base consisted of chemical composition, ferrite number (FN), and the Charpy V-notch (CVN) toughness at 77 K of 79 austenitic stainless steel welds deposited by the shielded metal arc process. Analysis of the complete data base revealed that the FN calculated from the Schaeffler diagram was the most significant variable for predicting the CVN toughness. The predictive equation produced a better correlation between the measured and predicted values of weld toughness than the previously published predictive equations. The group of 36 fully austenitic welds and the group of 21 type 316 welds in the data base were analyzed by the same procedure. In both cases the ferrite number was found to be the most significant predictor of toughness

  7. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  8. Surface hardening of austenitic stainless steels via low-temperature colossal supersaturation

    Science.gov (United States)

    Cao, Yan

    The Swagelok Company has recently developed a low-temperature (470°C) carburization technology for austenitic stainless steels, that increases the surface hardness from 200 to 1200 HV25 without sacrificing corrosion resistance. In order to investigate the microstructural changes responsible for these outstanding properties, bulk specimens, thin foils, and powder specimens of several different low-temperature carburized 316 stainless steels have been studied. XRD studies revealed that the low-temperature carburization of 316 austenitic stainless steels lead to a colossal supersaturation of interstitial carbon in the austenite. While the equilibrium solubility of carbon is 0.03 at% at the carburization temperature of 470°C, high-precision XRD determination of the lattice parameter after carburization indicated a carbon concentration of >10at% in solid solution---a colossal supersaturation! This astonishing result was confirmed by a completely independent experimental method, X-ray photoelectron spectrometry (XPS). Residual stress measurements indicated that low-temperature carburization caused an enormous compressive residual stress of 2 GPa at the surface. The enormous compressive residual stress and a high density of stacking faults caused broadening and shifting of the austenite peaks in X-ray diffraction scans. Analysis of the underlying thermodynamics and kinetics indicate that the key to colossal supersaturation is to kinetically suppress the formation of M23C6. The colossal supersaturation of carbon in the austenite is the dominant feature responsible for the unusual hardness. Only during the extended (>40h) carburization times, M5C 2 carbide (Hagg carbide), instead of M23C6, was observed to form. In addition, TEM studies indicated the presence of a small amount of a second carbide phase, M7C3. The particles of both carbides have the shape of long needles, containing a high density of planar defects normal to the long axis of the needles. The concept of "low

  9. Effect of deformation temperature on niobium clustering, precipitation and austenite recrystallisation in a Nb–Ti microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Kostryzhev, Andrii G., E-mail: andrii@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, The University of Wollongong, NSW 2522 (Australia); Al Shahrani, Abdullah, E-mail: amfa065@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, The University of Wollongong, NSW 2522 (Australia); Zhu, Chen, E-mail: chen.zhu@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Ringer, Simon P., E-mail: simon.ringer@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Pereloma, Elena V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, The University of Wollongong, NSW 2522 (Australia)

    2013-10-01

    The effect of deformation temperature on Nb solute clustering, precipitation and the kinetics of austenite recrystallisation were studied in a steel containing 0.081C–0.021Ti–0.064 Nb (wt%). Thermo-mechanical processing was carried out using a Gleeble 3500 simulator. The austenite microstructure was studied using a combination of optical microscopy, transmission electron microscopy, and atom probe microscopy, enabling a careful characterisation of grain size, as well as Nb-rich clustering and precipitation processes. A correlation between the austenite recrystallisation kinetics and the chemistry, size and number density of Nb-rich solute atom clusters, and NbTi(C,N) precipitates was established via the austenite deformation temperature. Specifically, we have determined thresholds for the onset of recrystallisation: for deformation levels above 75% and temperatures above 825 °C, Nb atom clusters <8 nm effectively suppressed austenite recrystallisation.

  10. Effect of deformation temperature on niobium clustering, precipitation and austenite recrystallisation in a Nb–Ti microalloyed steel

    International Nuclear Information System (INIS)

    The effect of deformation temperature on Nb solute clustering, precipitation and the kinetics of austenite recrystallisation were studied in a steel containing 0.081C–0.021Ti–0.064 Nb (wt%). Thermo-mechanical processing was carried out using a Gleeble 3500 simulator. The austenite microstructure was studied using a combination of optical microscopy, transmission electron microscopy, and atom probe microscopy, enabling a careful characterisation of grain size, as well as Nb-rich clustering and precipitation processes. A correlation between the austenite recrystallisation kinetics and the chemistry, size and number density of Nb-rich solute atom clusters, and NbTi(C,N) precipitates was established via the austenite deformation temperature. Specifically, we have determined thresholds for the onset of recrystallisation: for deformation levels above 75% and temperatures above 825 °C, Nb atom clusters <8 nm effectively suppressed austenite recrystallisation

  11. Thermal property characterization of a titanium modified austenitic stainless steel (alloy D9)

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Aritra [Physical Metallurgy Section, Materials Characterisation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Raju, S. [Physical Metallurgy Section, Materials Characterisation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: sraju@igcar.ernet.in; Divakar, R. [Physical Metallurgy Section, Materials Characterisation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mohandas, E. [Physical Metallurgy Section, Materials Characterisation Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Panneerselvam, G. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Antony, M.P. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2005-12-01

    The temperature dependence of lattice parameter and enthalpy increment of alloy D9, a titanium modified nuclear grade austenitic stainless steel were studied using high temperature X-ray diffraction and inverse drop calorimetry techniques, respectively. A smooth variation of the lattice parameter of the austenite with temperature was found. The instantaneous and mean linear thermal expansion coefficients at 1350 K were estimated to be 2.12 x 10{sup -5} K{sup -1} and 1.72 x 10{sup -5} K{sup -1}, respectively. The measured enthalpy data were made use of in estimating heat capacity, entropy and Gibbs energy values. The estimated isobaric heat capacity C {sub p} at 298 K was found to be 406 J kg{sup -1} K{sup -1}. An integrated theoretical analysis of the thermal expansion and enthalpy data was performed to obtain approximate values of bulk modulus as a function of temperature.

  12. HEALING OF HYDROGEN ATTACK CRACK IN AUSTENITE STAINLESS STEEL UNDER HEAT TREATMENT

    Institute of Scientific and Technical Information of China (English)

    X.G. Li; C.F. Dong; H. Chen

    2002-01-01

    The specimens of 304 austenite stainless steel with the hydrogen attack bubbles orcracks were heat treated at 600℃ for 6h. The SEM and TEM observations on thespecimens before and after the heat treatment showed that the bubbles or cracks could behealed completely by heat treatment. The healing of hydrogen attack bubbles or cracksis closely related to heat diffusion of Fe and C atoms in austenite. The driving forceof crack healing results fram the plastic deforming energy Es induced by the growthof hydrogen attack bubbles or cracks. The critical condition of healing of bubbles orcracks is Es ≥ 2γ/r (where γγ is the surface tension, r is the radius of bubbles or halflength of crack). During healing of the hydrogen attack bubbles or cracks, the recovery,polygonization and recrystallization of the sub-grain also occured.

  13. Prediction of Austenitization and Homogenization of Q235 Plain Carbon Steel during Reheating Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, the austenitization and homogenization process of Q235 plain carbon steel during reheating is predictedusing a two-dimensional model which has been developed for the prediction of diffusive phase transformation (e.g.α to γ). The diffusion equations are solved within each phase (α and γ) and an explicit finite volume techniqueformulated for a regular hexagonal grid are used. The discrete interface is represented by special volume elementsα/γ, an volume element α undergoes a transition to an interface state before it becomes γ. The procedure allowsus to handle the displacement of the interface while respecting the flux condition at the interface. The simulatedmicrostructure shows the dissolution of ferrite particles in the austenite matrix is presented at different stages ofthe phase transformation. Specifically, the influence of the microstructure scale and the heating rate on the phasetransformation kinetics has been investigated. The experimental results agree well with the simulated ones.

  14. Characterization of Austenite Dynamic Recrystallization under Different Z Parameters in a Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    M. Shaban; B. Eghbali

    2011-01-01

    A low carbon Nb-Ti microalloyed steel was subjected to hot torsion testing over the temperature range 850-1100℃ and strain rates 0.01-1 s-1 to study the influence of deformation conditions on the dynamic recrystallization characteristics of austenite. The results show that dynamic recrystallization occurs more easily with the decrease of strain rate and the increase of deformation temperature. The complete dynamically recrystallized grain size as a function of Zener-Hollomon parameter was established. It was found that dynamically recrystallized grain sizes decrease with increasing strain rate and decreasing deformation temperature. The effect of microalloying elements on peak strain was investigated and the solute drag corrected peak strain was determined. Also, the dynamic recrystallization map of austenite was obtained by using recrystallization critical parameters.

  15. A powder metallurgy austenitic stainless steel for application at very low temperatures

    CERN Document Server

    Sgobba, Stefano; Liimatainen, J; Kumpula, M

    2000-01-01

    The Large Hadron Collider to be built at CERN will require 1232 superconducting dipole magnets operating at 1.9 K. By virtue of their mechanical properties, weldability and improved austenite stability, nitrogen enriched austenitic stainless steels have been chosen as the material for several of the structural components of these magnets. Powder Metallurgy (PM) could represent an attractive production technique for components of complex shape for which dimension tolerances, dimensional stability, weldability are key issues during fabrication, and mechanical properties, ductility and leak tightness have to be guaranteed during operation. PM Hot Isostatic Pressed test plates and prototype components of 316LN-type grade have been produced by Santasalo Powdermet Oy. They have been fully characterized and mechanically tested down to 4.2 K at CERN. The fine grained structure, the absence of residual stresses, the full isotropy of mechanical properties associated to the low level of Prior Particle Boundaries oxides ...

  16. Static Recrystallized Grain Size of Coarse-Grained Austenite in an API-X70 Pipeline Steel

    Science.gov (United States)

    Sha, Qingyun; Li, Guiyan; Li, Dahang

    2013-12-01

    The effects of initial grain size and strain on the static recrystallized grain size of coarse-grained austenite in an API-X70 steel microalloyed with Nb, V, and Ti were investigated using a Gleeble-3800 thermomechanical simulator. The results indicate that the static recrystallized grain size of coarse-grained austenite decreases with decreasing initial grain size and increasing applied strain. The addition of microalloying elements can lead to a smaller initial grain size for hot deformation due to the grain growth inhibition during reheating, resulting in decreasing of static recrystallized grain size. Based on the experimental data, an equation for the static recrystallized grain size was derived using the least square method. The grain sizes calculated using this equation fit well with the measured ones compared with the equations for fine-grained austenite and for coarse-grained austenite of Nb-V microalloyed steel.

  17. In-Situ Austenite Steel Matrix Composite Reinforced by Granular γ+(Fe,Mn)3C Eutectic

    Institute of Scientific and Technical Information of China (English)

    LIANG Gao-fei; XU Zhen-ming; JIANG Qi-chuan; LI Jian-guo

    2004-01-01

    A new in-situ austenite matrix composite reinforced by granular γ+(Fe, Mn)3C binary eutectics (abbreviated to in-situ AMGE) was prepared in as-cast state, in which the modifier, yttrium-based heavy rare earth alloy, was used to influence carbon segregation, manganese segregation and phase formation. The eutectics are formed in the molten pools among austenite dendrites at the later stage of non-equilibrium solidification because the modifier enhances carbon segregation and manganese segregation greatly. Pin-on-disc dry wear tests show that the wear resistance of in-situ AMGE is 1-3 times higher than that of austenite medium manganese steel under low and medium loads, and the loads under which serious wear of in-situ AMGE occurs are much higher than that of austenite medium manganese steel.

  18. Development of a System to Measure Austenite Grain Size of Plate Steel Using Laser-Based Ultrasonics

    International Nuclear Information System (INIS)

    A measurement system for austenite grain size of plate steel using laser-based ultrasonics has been developed. At first, the relationship between the ultrasonic attenuation coefficients using longitudinal waves and austenite grain size of samples was investigated in the laboratory experiments. According to the experimental results, the ultrasonic attenuation coefficients showed a good correlation with actual austenite grain sizes. For the next step, the system was installed in a hot rolling pilot plant of plate steel, and it was verified that the austenite grain size could be measured even in the environment of a hot rolling pilot plant. In the experiments, it was also confirmed that the fiber delivery system could deliver Nd:YAG laser beam of 810 mJ/pulse and ultrasonic signals could be obtained successfully

  19. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  20. Effects of Cr - Ni 18/9 Austenitic Cast Steel Modification by Mischmetal

    Directory of Open Access Journals (Sweden)

    M. Gajewski

    2012-12-01

    Full Text Available This paper presents the results of Cr - Ni 18/9 austenitic cast steel modifications by mischmetal. The study was conducted on industrial melts. Cast steel was melted in an electric induction furnace with a capacity of 2000 kg and a basic lining crucible. .The mischmetal was introduced into the ladle during tapping of the cast steel from the furnace. The effectiveness of modification was examined with the carbon content of 0.1% and the presence of δ ferrite in the structure of cast steel stabilized with titanium. The changes in the structure of cast steel and their effect on mechanical properties and intergranular corrosion were studied. It was found that rare earth metals decrease the sulfurcontent in cast steel and above all, they cause a distinct change in morphology of the δ ferrite and non-metallic inclusions. These changes have improved mechanical properties. R02, Rm, and A5 and toughness increased significantly. There was a great increase of the resistance to intergranular corrosion in the Huey test. The study confirmed the high efficiency of cast steel modification by mischmetal in industrial environments. The final effect of modification depends on the form and manner of placing mischmetal into the liquid metal and the melting technology, ie the degree of deoxidation and desulfurization of the metal in the furnace.

  1. Hydrogen embrittlement of super austenitic stainless steel welded joints; Fragilizacao por hidrogenio em juntas soldadas de acos inoxidaveis superausteniticos

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Ramon S. Cortes [Parana Univ., Curitiba, PR (Brazil). Centro Politecnico. Inst. de Tecnologia para o Desenvolvimento (LACTEC); Berthier, Thiana; Kuromoto, Neide K. [Parana Univ., Curitiba, PR (Brazil). Lab. de Materiais e Tratamento de Superficies. Lab. de Nanopropriedades Mecanicas

    2004-09-15

    The austenitic stainless steel embrittlement is usually present on sulphurous medium due to the hydrogen presence, resulting on cracks and corrosion on acid medium. Several researches carried out on the behaviour of hydrogenated stainless steel structures, had shown that the hydrogen induces superficial phase transformation during hydrogenation period and cracks formation after this period. These are due to the permeation of the hydrogen into the material, which is apprehended on preferential site, resulting on high pressure zones of molecular hydrogen. These zones may lead the crack formation, compromising the mechanical properties. There are few results on austenitic and super austenitic stainless steel, considering the transformations induced on welded unions. This work evaluates the cracks nucleation on welded unions of super austenitic stainless steel AISI 904L exposed to hydrogen rich environments and its relation to the reduction of material ductility. The samples were welded by the Mig/Mag process, followed by hydrogenation which were cathodic on sulfuric acid solution at room temperature. The results showed that the tested super austenitic stainless steel has a significant amount of cracks and no phase transformation has occurred after hydronization. (author)

  2. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    International Nuclear Information System (INIS)

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels is known to be a critical issue for structural components of nuclear reactor cores. The deformation of irradiated austenitic stainless steels is extremely heterogeneous and localized in deformation bands that may play a significant role in IASCC. In this study, an original approach is proposed to determine the influence of localized deformation on austenitic stainless steels SCC in simulated PWR primary water. The approach consists in (i) performing low cycle fatigue tests on austenitic stainless steel A-286 strengthened by γ' precipitates Ni3(Ti,Al) in order to shear and dissolve the precipitates in intense slip bands, leading to a localization of the deformation within and in (ii) assessing the influence of these γ'-free localized deformation bands on A-286 SCC by means of comparative CERT tests performed on specimens with similar yield strength, containing or not γ'-free localized deformation bands. Results show that strain localization significantly promotes A-286 SCC in simulated PWR primary water at 320 and 360 C. Moreover, A-286 is a precipitation-hardening austenitic stainless steel used for applications in light water reactors. The second objective of this work is to gain insights into the influence of heat treatment and metallurgical structure on A-286 SCC susceptibility in PWR primary water. The results obtained demonstrate a strong correlation between yield strength and SCC susceptibility of A-286 in PWR primary water at 320 and 360 C. (author)

  3. Tearing resistance of aged cast austenitic stainless steels

    International Nuclear Information System (INIS)

    CF8 and CF8M type cast stainless steels containing about 10 to 25 % ferrite are used in the primary piping of light water reactors (PWRs and BWRs). It is now recognized that these materials are embrittled by thermal aging at the operating temperature (between 2900C and 3300C), mainly due to precipitation hardening of the ferrite by α', and other phases. Extensive research programs are under way in several countries to better understand the mechanisms of embrittlement and to determine the mechanical properties of components as a function of aging time and temperature. In earlier studies thermal aging embrittlement was mainly characterized by the evolutions of the tensile and Charpy impact properties. However the evaluation of reactor coolant circuit integrity through mechanical analyses requires the knowledge of fracture toughness properties. The first measurements of the tearing resistance of a CF8M type severely aged material were presented in 1983 by SLAMA, PETREQUIN and MAGER. Other contributions to the knowledge of the fracture toughness of aged materials were published, but were relative to medium or high toughness materials. The objective of this paper is to present the results of tearing resistance measurements made on a large spectrum of severely embrittled materials, which allow to give lower bound properties for aged CF8 and CF8M type cast stainless steels

  4. Quantitative prediction of deformed austenite and transformed ferrite texture in hot-rolled steel sheet

    Science.gov (United States)

    Tanaka, Y.; Tomida, T.; Mohles, V.

    2015-04-01

    A model to quantitatively predict ferrite (α) textures in hot-rolled steel sheets has been developed. In this model, the crystal plasticity model, called “Grain Interaction model (GIA)”, and the transformation texture model, called “Double K-S relation (DKS)”, are linked together. The deformed austenite (γ) texture is predicted by GIA with taking not only the standard {111} slip system but also non-octahedral slip systems into account. Then the transformed a texture is calculated by DKS, in which a nucleated α prefers to have orientation relationship near the Kurdjumov-Sachs relation with both of two neighboring γ grains. For validation, single pass hot-rolling tests on a C-Si-Mn steel were carried out. The comparison between the predicted and the experimental textures shows that the linked model (GIA & DKS) can lead to a remarkable reproduction of the texture of hot-rolled steel sheets.

  5. Study of austenitic stainless steel creep between 5500C and 6500C

    International Nuclear Information System (INIS)

    This work is a contribution to identification and analysis of microscopic mechanisms of creep damages in austenitic stainless steels used for steam generators of fast neutron reactors. Statistical analysis of slip at the grain boundaries and tests on polycrystalline of alloy 800 grade II indicate the role of structural parameters: matrix reinforcement and boundary slip. Microstructure analysis shows the deformation mechanisms and the differences between steel 316 and alloy 800. In situ tests on bicrystalline samples of steel ZCN17/13 show the event chronology. Characteristic data on damaging at the nanometer scale (cavity size, crack dimensions) are determined. From these results a beginning of simulation is attempted for the two types of damage. 67 refs

  6. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2010-07-06

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  7. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2011-08-23

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  8. ESD morphology deposition with WZr8 electrode on austenitic stainless steel support

    Science.gov (United States)

    Perju, M. C.; Ţugui, C. A.; Nejneru, C.; Axinte, M.; Vizureanu, P.

    2016-06-01

    Stainless steels are used to obtain mechanical parts, working in severe conditions with high dynamic loads in wet, chemically active environments. For this reason, these materials have good corrosion resistance in acidic or basic chemical agents. The main drawback is the relatively low wear and resistance to mechanical stress. This paper proposes a remedy by deposition of the hard thin films of tungsten electrode by spark electro-deposition method (ESD). Tungsten is an alfagen element and causes an increase for the mechanical properties at high and low temperatures for the austenitic stainless steels. Tungsten does not alter the corrosion resistance of stainless steels. The morphology for the obtained layers was analyzed using SEM, in 3D images, and profilographs.

  9. Effects of Austenite Stabilization on the Onset of Martensite Transformation in T91 Steel

    Institute of Scientific and Technical Information of China (English)

    Baoqun NING; Yongchang LIU; Qingzhi SHI; Zhiming GAO; Liushuan YANG

    2008-01-01

    The influences of thermal stabilization of austenitic on the onset temperature for a martensite transformation in T91 ferritic heat-resistant steel were studied by high-resolution differential dilatometer. The phase trans-formation kinetic information was obtained by adopting lever rule from the recorded dilatometric curves. The results show that an inverse stabilization, featured by the damage of "the atmosphere of carbon atoms" and the increase of the starting temperature for martensite transformation takes place when the T91 ferritic steel is isothermally treated above the Ms point, and it becomes strong with increasing the holding time. While the continued temperature for martensite transformation decreases gradually when isothermally holding at a temperature below Ms point. The observed inverse stabilization behavior could be attributed to the relatively high temperature of Ms point in the explored T91 ferritic heat-resistant steel.

  10. Extended X-Ray Absorption Fine Structure Investigation of Carbon Stabilized Expanded Austenite and Carbides in Stainless Steel AISI 316

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2011-01-01

    Low temperature carburized AISI 316 stainless steel - carbon expanded austenite - was investigated with EXAFS and synchrotron diffraction together with synthesized carbides of the type M3C2, M7C3 and M23C6. It was found that the chemical environment of carbon expanded austenite is not associated...... with any of the investigated carbides, that carbon has a strong affinity for chromium, i.e. short range order, and that carbon is in solid solution....

  11. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  12. Energy absorption behaviour of austenitic and duplex stainless steels in a crash box geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ratte, E.; Bleck, W. [Dept. of Ferrous Metallurgy, RWTH Aachen Univ., Aachen (Germany); Leonhardt, S. [Honda R und D Europe (Deutschland), Offenbach/ Main (Germany); Franzen, M.; Urban, P. [Inst. fuer Kraftfahrwesen, RWTH Aachen Univ., Aachen (Germany)

    2006-09-15

    The improvement of the passive safety plays an important role in the development of new steels for automotive parts. At the same time aspects of weight reduction as well as the industrial feasibility have to be considered. Powered by these objectives, the development and application of new steel concepts for various purposes is promoted. For the present investigation especially weight reduction combined with an improvement of the passive safety are emphasised. As example one representative part of the body structure, the crash box, is considered. At the moment different steel grades (dual phase-, TRIP-and HSLA-steels) as well as fibre reinforced materials are applied. New materials for this special purpose have to exhibit outstanding formability, a high capacity to absorb energy during a possible crash and should be cost effective compared to already existing material concepts. During this project different grades of austenitic stainless steels with varying stability were compared to duplex stainless steels and a TRIP grade with regard to their possible application as crash-box material. The austenitic grades show excellent gradual formability according to their strength level. All of them exhibit an extraordinary strain hardening behaviour. The duplex grades show a lower formability but on a much higher yield level. Besides the determination of classical material data such as uni- and multi-axial flow curves, dynamic tensile tests and forming tests for the determination of forming limit curves were performed. The material data were used in the simulation of a drop tower test which is commonly used to evaluate the performance of different materials in car components. The results were then evaluated with regard to the absorbed energy, the folding behaviour and the resulting forces. (orig.)

  13. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  14. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels

    Science.gov (United States)

    Song, Hyejin; Sohn, Seok Su; Kwak, Jai-Hyun; Lee, Byeong-Joo; Lee, Sunghak

    2016-06-01

    The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn ( α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α'-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.

  15. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    Science.gov (United States)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  16. Microstructure in the Weld Metal of Austenitic-Pearlitic Dissimilar Steels and Diffusion of Element in the Fusion Zone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microstructure and alloy element distribution in the welded joint between austenitic stainless steel(1Cr18Ni9Ti)and pearlitic heat-resistant steel (1Cr5Mo)were researched by means of light microscopy, scanning electron microscopy(SEM)and electron probe microanalysis(EPMA).Microstructure, divisions of the fusion zone and elemental diffusion distributions in the welded joints were investigated. Furthermore, solidification microstructure and δ-ferrite distribution in the weld metal of these steels are also discussed.

  17. Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization

    Institute of Scientific and Technical Information of China (English)

    Wan-song Li; Hong-ye Gao; Hideharu Nakashima; Satoshi Hata; Wen-huai Tian

    2016-01-01

    In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron micros-copy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austeni-tized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.

  18. Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization

    Science.gov (United States)

    Li, Wan-song; Gao, Hong-ye; Nakashima, Hideharu; Hata, Satoshi; Tian, Wen-huai

    2016-08-01

    In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.

  19. Effects of the Process Parameters on Austenitic Stainless Steel by TIG-Flux Welding

    Institute of Scientific and Technical Information of China (English)

    Heryueh HUANG; Shengwen SHYU; Kuanghung TSENG; Changpin CHOU

    2006-01-01

    The effects of the process parameters of TIG (tungsten inset gas)-flux welding on the welds morphology,angular distortion, ferrite content and hot cracking in austenitic stainless steel were investigated. Autogenous TIG welding process was applied to the type 304 stainless steel through a thin layer of activating flux to produce a bead on plate welded joint. TiO2, SiO2, Fe2O3, Cr2O3, ZnO and MnO2 were used as the activating fluxes. The experimental results indicated that the TIG-flux welding can increase the weld depth/width ratio and reduce the HAZ (heat affected zone) range, and therefore the angular distortion of the weldment can be reduced. It was also found that the retained ferrite content within the TIG-flux welds is increased, and has a beneficial effect in reducing hot cracking tendency for stainless steels of the austenitic type weld metals. A plasma column constriction increases the current density at the anode spot and then a substantial increase in penetration of the TIG-flux welds can be obtained.

  20. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    Science.gov (United States)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-09-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  1. Development of nickel-free austenitic stainless steels for ambient and cryogenic applications

    Energy Technology Data Exchange (ETDEWEB)

    Haddick, G.T.; Thompson, L.D.; Parker, E.R.; Zackay, V.F.

    1978-02-01

    A series of alloys have been developed as possible replacements for some austenitic stainless steels. These alloys utilized a Mn substitution for Ni and a reduced Cr concentration from the 18% ordinarily found in the AISI 300 series stainless steels to a concentration of 13%. The base system studied was an alloy containing Fe-16%Mn-13%Cr while other elements added included small additions of N, Si and Mo. A range of microstructures was produced from the alloying additions. The base composition had a triplex (fcc, hcp, bcc) structure while the most highly modified compositions were fully austenitic. Mechanical testing included tensile testing and Charpy V-notch testing conducted at various temperatures between -196/sup 0/C to 23/sup 0/C. Excellent combinations of strength and ductility were obtained (40--65 ksi yield strength, 100--125 ksi ultimate strength, 45--75% elongation and 60--80% reduction of area) at room temperature. Upper shelf energies in Charpy V-notch testing were as high as 185 ft-lbs with a ductile-brittle transition temperature (DBTT) of -160/sup 0/C. Analysis of fracture surfaces determined that alloys without interstitials had no transition in the mode of failure between room temperature and liquid nitrogen temperature. Results of an ASTM sensitization corrosion test, where the experimental alloys were compared to 347 stainless steel, indicated that the alloys were not susceptible to intergranular attack.

  2. Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints

    Directory of Open Access Journals (Sweden)

    M. Vinoth Kumar

    2015-09-01

    Full Text Available Super 304H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304H parent metal and gas tungsten arc (GTA welded joints were studied by constant load tests in 45% boiling MgCl2 solution. Stress corrosion cracking resistance of Super 304H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.

  3. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  4. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, A.K. E-mail: bhaduri@igcar.ernet.in; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R

    2001-06-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines.

  5. Titanium diffusion coatings on austenitic steel obtained by the pack cementation method

    Directory of Open Access Journals (Sweden)

    MIRELA BRITCHI

    2009-02-01

    Full Text Available The surface of specimens made of 316L austenitic steel was modified by titanium diffusion. The diffusion coatings were obtained by packing in a powder mixture consisting of titanium powder, NH4Cl and Al2O3 powder. The procedure required high temperatures, over 900 °C, and long durations. Atomic titanium was formed in the muffle during the process. Titanium atoms from the metallic part surfaces diffuse towards the interior and a diffusion layer is formed as a function of the steel composition. Titanium diffusion into the surface of 316L austenitic steel determines the formation of a complex coating: a thin layer of TiN at the exterior and a layer consisting of compounds containing Ti, Ni and Fe in the interior of the coating. The obtained coatings were continuous, adherent and had a hardness higher than that of the substrate material. The diffusion coatings were investigated by optical and electron microscopy, X-ray diffraction and Vickers microhardness tests.

  6. Notch tensile measurements and fracture toughness correlations for austenitic stainless steels

    International Nuclear Information System (INIS)

    Thirty-two alloys were included in a study of conventional notch tensile testing as a method of fracture toughness characterization for austenitic stainless steels at liquid helium temperature, 4 K. For the same austenitic stainless steels, tensile and J-integral fracture toughness (K/sub Ic/(J)) measurements have also been conducted. For these materials the notch tensile strength (sigma/sub NTS) generally increases with yield strength (sigma/sub y/), and the contains/sub NTS//sigma/sub y/ ratios are typically much greater than 1.0. Correlations between sigma/sub NTS/, K/sub Ic/(J), and sigma/sub y/ were assessed. The best data fit was found between the ratio, sigma/NTS/K/sub Ic/(J), and the toughness, K/sub Ic/(J). Unfortunately, from this relation there is not uniqueness of K/sub Ic/ from sigma/sub NTS/. Therefore at this time it is not considered practical to obtain estimates of K/sub Ic/ from notch tensile tests for austenitic steels at 4 K. However, one may compare the J-integral fracture toughness and cylindrical bar notch tensile measurements. There are three regions: (1) linear elastic (sigma/sub NTS/ increases as K/sub Ic/(J) increases); (2) elastic-plastic (sigma/sub NTS/ is essentially independent of K/sub Ic/(J); (3) plastic (sigma/sub NTS/ decreases as K/sub Ic/(J) increases. The elastic-plastic (transition) region is associated with a plastic zone that extends completely through the notched cross-sectional area

  7. Laser etching of austenitic stainless steels for micro-structural evaluation

    Science.gov (United States)

    Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd

    2015-06-01

    Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.

  8. The effect of austenitizing temperature in C.O.D. initial values of Niocor 2 steel of two different niobium contents

    International Nuclear Information System (INIS)

    The effect of the austenitizing temperature on the fracture toughness of Niocar 2 steel of two different niobium contents (0,04 and 0,16%) was studied by means of C.O.D. testing. Except for very elevated austenitizing temperatures (12500C), C.O.D. values for initiation were shown to be higher for the high niobium steel. The decrease in toughness associated with elevated austenitizing temperatures is attributed to the presence of acicular phase transformation products. (Author)

  9. Effect of Silicon on the Microstructures and Tensile Properties of Austenitic ODS Stainless Steels for Fast Reactor Cladding

    International Nuclear Information System (INIS)

    Oxide dispersion strengthened (ODS) steels have excellent high temperature mechanical properties due to the presence of thermally stable nano-scale oxides distributed in their matrix. Therefore, ODS steels are being used for high temperature structural applications and ODS ferritic martensitic steels (FMS) have been considered as candidate cladding and. Generally, fabrication processes of ODS steels have incorporated a mechanical alloying (MA) process, in which repeated fracture and welding of mixed powders occur by a high energy impact of steel balls. Although MA has many advantages in forming a nano-scale microstructure, it is a very long-time expensive process and vulnerable to impurities contamination. High oxygen and carbon contents degrade the high temperature strength and creep strength of ODS steels. To overcome the problem of MA process, AISI 316Lbased austenitic ODS steels were fabricated by a wet mixing of metallic salts. This method dispersed oxide particles by thermal decomposition of metallic salt during fabrication process. Austenitic ODS steel could be fabricated successfully by a wet-mixing process of 316L stainless steel powder in yttrium containing salt solution. Wet-mixed ODS steel had lower carbon and oxygen contents than that of MAODs steel, because minimum inflow of carbon and oxygen during the manufacture process was kept in wet-mixed ODS steel. Ryu. et. al was reported that yttrium silicates were formed by reaction of silicon and yttrium oxide during the fabrication process. In this study, we made simulated 316 stainless steel powder without adding silicon by using MA and then fabricated ODS steel by using a wet process in order to analyze the effect of silicon on the microstructures and tensile properties of the austenitic ODS stainless steels

  10. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Science.gov (United States)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  11. The effect of phosphorus on the radiation induced microstructure of stabilized austenitic stainless steels

    International Nuclear Information System (INIS)

    This paper deals with the correlation of irradiation behavior and microstructural evolution of mono-(Ti) and multi-(Ti,Nb,V) stabilized type 316 stainless steels with different phosphorus levels. These steels, in the 20% cold worked condition, were irradiated between 400 and 5000C up to 100 dpa in Phenix reactor as stressed and unstressed samples. Phosphorus decreases strongly the swelling of stabilized austenitic steels. This effect is due to a large increase of the swelling incubation dose. The best swelling resistance is observed for the multistabilized (Nb, V, Ti) steel. Phosphorus decreases also the irradiation creep strain, but only because of the decrease in swelling. The transmission electron microscopy (TEM) examinations show that the improvement of swelling resistance by phosphorus addition comes from a decrease in void density, that occurs mainly when a uniform distribution of needle-shaped phosphides appears. In titanium stabilized steels, the phosphides are FeTiP whereas in the phosphides of the multistabilized steel, titanium is replaced by niobium, leaving the titanium in solution to play its role of swelling inhibitor for long irradiations

  12. The role of nitrogen in improving pitting corrosion resistance of high-alloy austenitic and duplex stainless steel welds

    International Nuclear Information System (INIS)

    The effects of nitrogen alloyed shielding gas on weld nitrogen content and pitting corrosion resistance of super austenitic (6%Mo) and super duplex stainless steels have been studied with special emphasis on microsegregation behaviour of Cr, Mo and N. The measurements performed with the 6%Mo steel indicate that all these elements segregate interdendritically in the fully austenitic weld metal. With nitrogen addition to the shielding gas the enrichment of nitrogen to the interdendritic regions is more pronounced than to the dendrite cores due to which the pitting corrosion resistance of the dendrite cores increases only marginally. In the super duplex steel welds nitrogen enriches in austenite increasing its pitting corrosion resistance more effectively. In these welds the pitting corrosion resistance of the ferrite phase remains lower. (orig.)

  13. The role of nitrogen in improving pitting corrosion resistance of high-alloy austenitic and duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manuf. Technol. (Finland); Haenninen, H. [Helsinki Univ. of Technol., Espoo (Finland). Lab. of Eng. Mater.

    1999-07-01

    The effects of nitrogen alloyed shielding gas on weld nitrogen content and pitting corrosion resistance of super austenitic (6%Mo) and super duplex stainless steels have been studied with special emphasis on microsegregation behaviour of Cr, Mo and N. The measurements performed with the 6%Mo steel indicate that all these elements segregate interdendritically in the fully austenitic weld metal. With nitrogen addition to the shielding gas the enrichment of nitrogen to the interdendritic regions is more pronounced than to the dendrite cores due to which the pitting corrosion resistance of the dendrite cores increases only marginally. In the super duplex steel welds nitrogen enriches in austenite increasing its pitting corrosion resistance more effectively. In these welds the pitting corrosion resistance of the ferrite phase remains lower. (orig.)

  14. OPTIMIZATION OF SURFACE ROUGHNESS OF AISI 304 AUSTENITIC STAINLESS STEEL IN DRY TURNING OPERATION USING TAGUCHI DESIGN METHOD

    Directory of Open Access Journals (Sweden)

    D. PHILIP SELVARAJ

    2010-09-01

    Full Text Available The present work is concentrated with the dry turning of AISI 304 Austenitic Stainless Steel (ASS. This paper presents the influence of cutting parameters like cutting speed, feed rate and depth of cut on the surface roughness of austenitic stainless steel during dry turning. A plan of experiments based on Taguchi’s technique has been used to acquire the data. An orthogonal array, the signal to noise (S/N ratio and the analysis of variance (ANOVA are employed to investigate the cutting characteristics of AISI 304 austenitic stainless steel bars using TiC and TiCN coated tungsten carbide cutting tool. Finally the confirmation tests that have been carried out to compare the predicted values with the experimental values confirm its effectiveness in the analysis of surface roughness.

  15. Basic creep models for 25Cr20NiNbN austenitic stainless steels

    OpenAIRE

    Sandström, Rolf; Farooq, Muhammad; Zurek, Joanna

    2013-01-01

    Basic models for solid solution and precipitation hardening during creep are presented for the austenitic stainless steels 25Cr20NiNbN (TP310HNbN, HR3C, DMV310N). The solid solution hardening is a result of the formation of Cottrell clouds of solutes around the dislocations. In addition to slowing down the creep, the solutes increase the activation energy for creep. The increase in activation energy corresponds to the maximum binding energy between the solutes and the dislocations. The format...

  16. Caustic stress corrosion cracking of austenitic stainless steels with thermal treatment(TT)

    International Nuclear Information System (INIS)

    This paper dealt with the effects of TT(Thermal Treatment) and nitrogen content on caustic stress corrosion cracking of austenitic stainless steels. Nitrogen content and grain size had affected on the caustic SCC resistance. Increasing nitrogen content, SCC resistance was increased due to the enhanced repassivation rate, but at high nitrogen content, the resistance was decreased because of the dual effects between mechanical and repassivation behavior. Regardless of nitrogen content, TT improved the caustic SCC resistance and this behavior was reviewed on the points of residual stress, grain size, and dislocation array

  17. Joining silicon carbide to austenitic stainless steel through diffusion welding; Stellingen behorende bij het proefschrift

    Energy Technology Data Exchange (ETDEWEB)

    Krugers, Jan-Paul

    1993-01-19

    In this thesis, the results are presented of a study dealing with joining silicon carbide to austenitic stainless steel AIS316 by means of diffusion welding. Welding experiments were carried out without and with the use of a metallic intermediate, like copper, nickel and copper-nickel alloys at various conditions of process temperature, process time, mechanical pressure and interlayer thickness. Most experiments were carried out in high vacuum. For reasons of comparison, however, some experiments were also carried out in a gas shielded environment of 95 vol.% Ar and 5 vol.% H2.

  18. Loading rate effect on phase transformations in metastable chromium-nickel-manganese austenitic steels

    International Nuclear Information System (INIS)

    Investigation results are compared for metastable austenitic stainless steels tested on bending under static and dynamic conditions. The absence of qualitative difference in kinetics of phase transformations at various loading rates is shown. The observed decrease of martensite amount under dynamic bending is explained by the action of two factors: the intensity of phase transformations decreases due to a temperature increase in a deformation zone; an area of phase transformation is narrowed down due to deformation concentration in the vicinity of the point of load application. 3 refs., 1 fig., 3 tabs

  19. A study of corrosion electrochemical properties of martensite-austenite steel Cr15Ni6Mo

    Energy Technology Data Exchange (ETDEWEB)

    Cihal, V.; Hubackova, J.; Kubelka, J.; Mezanec, K.

    1985-11-01

    The steel Cr15Ni6Mo (UHB 119) exhibits a very satisfactory corrosion resistance. However, its superior passivating ability depends on the heat treatment method used. The use of two-step tempering leads primarily to an improved resistance to reactivation and optimum properties are achieved when the basic matrix contains about 40% stable austenite in fine form. This structural state requires the use of tempering temperatures from 625 to 650/sup 0/C in Step 1, and 525/sup 0/C in Step 2 of tempering.

  20. The evolution of cluster of grains with Σ3n relationship in austenitic stainless steel

    International Nuclear Information System (INIS)

    The evolution of cluster of grains with Σ3n relationship (Σ3n CG) in austenitic stainless steel was investigated by in situ microstructural observations using electron backscatter diffraction (EBSD). The results showed that, after cold rolling with thickness reduction of 6%, Σ3n CG developed from several existing grains during annealing at 1173 K. As annealing proceeded, Σ3n CG was growing larger with the so-called strain induced boundary migration (SIBM), and in the meantime, the connectivity of random high angle grain boundaries (HABs) network was interrupted by low Σ-coincidence site lattice boundaries (ΣCSLBs) effectively.

  1. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling

    International Nuclear Information System (INIS)

    An oxidation-assisted martensitic phase transformation was observed in an austenitic stainless steel after thermal cycling up to 970 °C in air in a solar thermal steam reformer. The intergranular corrosion areas were investigated by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The structural-and-chemical maps revealed that within intergranular corrosion areas this martensitic transformation primarily occurs in oxidation-induced chromium-depleted zones, rather than due to only sensitization. This displacive transformation may also play a significant role in the rate at which intergranular corrosion takes place

  2. Microstructural evolution and change in hardness during creep of NF709 austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    Yan ZHAO; Jie ZHAO; Xiaona LI

    2011-01-01

    Microstructural evolution and the change in hardness during creep deformation of NF709 austenitic stainless steel were investigated. Creep tests were carried out at 650 ℃ for 2932 h under a load of 210 MPa for comparison with aging specimen at 650 ℃ for 3000 h. The hardness results indicated that applied stress during creep process induced hardness increase. Analysis of longitudinal section microstructure showed that the creep damage caused by pores and the grain boundary hardening caused by elongated grains could be the factors leading to hardness differences. The G phase dispersedly precipitated in intragranular and interacted with dislocations during creep process, indicating strain hardening.

  3. Transition in Failure Mechanism Under Cyclic Creep in 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Mathew, M. D.

    2014-06-01

    Cyclic creep behavior of a type 316LN austenitic stainless steel was investigated in the temperature range from 823 K to 923 K (550 °C to 650 °C). A transition from fatigue-dominated to creep-dominated failure mode was observed with an increase in the mean stress. The threshold value of mean stress for the transition was seen to be a strong function of the test temperature. Occurrence of dynamic strain aging proved beneficial owing to a substantial reduction in the strain accumulation during cyclic loading.

  4. Effects of helium and hydrogen on radiation-induced microstructural changes in austenitic stainless steel

    International Nuclear Information System (INIS)

    Microstructural changes in austenitic stainless steel by helium, hydrogen, and iron ion irradiation were investigated with transmission electron microscopy. Typical radiation-induced changes, such as the formation of Frank loops in the matrix and radiation-induced segregation (RIS) or depletion at grain boundaries, were observed after ion irradiation. The helium ion irradiation led to the formation of cavities both at grain boundaries and in the matrix, as well as the development of smaller Frank loops. The hydrogen ion irradiation generated stronger RIS behavior at the grain boundaries compared to irradiation with helium and iron ions. The effects of helium and hydrogen on radiation-induced microstructural changes were discussed

  5. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    Science.gov (United States)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  6. Laser welding of butt joints of austenitic stainless steel AISI 321

    OpenAIRE

    A. Klimpel; A. Lisiecki

    2007-01-01

    Purpose: of this paper: A study of an automated laser autogenous welding process of butt joints of austenitic stainless steel AISI 321 sheets 0.5 [mm] and 1.0 [mm] thick using a high power diode laser HPDL has been carried out.Design/methodology/approach: Influence of basic parameters of laser welding on shape and quality of the butt joints and the range of optimal parameters of welding were determined.Findings: It was showed that there is a wide range of laser autogenous welding parameters w...

  7. Pitting corrosion in austenitic stainless steel water tanks of hotel trains

    International Nuclear Information System (INIS)

    The water storage tanks of hotel trains suffered pitting corrosion. To identify the cause, the tanks were subjected to a detailed metallographic study and the chemical composition of the austenitic stainless steels used in their construction was determined. Both the tank water and the corrosion products were further examined by physicochemical and microbiological testing. Corrosion was shown to be related to an incompatibility between the chloride content of the water and the base and filler metals of the tanks. These findings formed the basis of recommendations aimed at the prevention and control of corrosion in such tanks. (Author) 18 refs.

  8. Influence of hot-working conditions on a structure of high-manganese austenitic steels

    OpenAIRE

    A. Grajcar; L.A. Dobrzański; W. Borek

    2008-01-01

    Purpose: The aim of the paper is to determine the influence of hot deformation conditions on σ-ε curves and structure changes of new-developed high-manganese austenitic steels.Design/methodology/approach: The force-energetic parameters of hot-working were determined in hot-compression tests performed in a temperature range of 850 to 1050°C by the use of the Gleeble 3800 thermomechanical simulator. Evaluation of processes controlling work hardening at 850°C were identified by microstructure ob...

  9. Effects of Strain Rate and Plastic Work on Martensitic Transformation Kinetics of Austenitic Stainless Steel 304

    Institute of Scientific and Technical Information of China (English)

    Fang PENG; Xiang-huai DONG; Kai LIU; Huan-yang XIE

    2015-01-01

    The martensitic transformation behavior and mechanical properties of austenitic stainless steel 304 were studied by both experiments and numerical simulation. Room temperature tensile tests were carried out at various strain rates to investigate the effect on volume fraction of martensite, temperature increase and flow stress. The results show that with increasing strain rate, the local temperature increases, which suppresses the transformation of martensite. To take into account the dependence on strain level, strain rate sensitivity and thermal effects, a kinetic model of martensitic transformation was proposed and constitutive modeling on stress-strain response was conducted. The validity of the proposed model has been proved by comparisons between simulation results and experimental ones.

  10. Reconstruction of size and depth of simulated defects in austenitic steel plate using pulsed infrared thermography

    Science.gov (United States)

    Wysocka-Fotek, Olga; Oliferuk, Wiera; Maj, Michał

    2012-07-01

    In this paper the size and depth (distance from the tested surface) of defects in austenitic steel were estimated using pulse infrared thermography. The thermal contrast calculated from the surface distribution of the temperature is dependent on both these parameters. Thus, two independent experimental methods of defect size and depth determination were proposed. The defect size was estimated on the basis of surface distribution of the time derivative of the temperature, whereas the defect depth was assessed from the dependence of surface thermal contrast vs. cooling time.

  11. Influence on corrosion resistance of superficial strain hardening of parts made of austenitic stainless steels

    International Nuclear Information System (INIS)

    Reactivity of strain hardened stainless steel 18-10 and 18-10 Mo in oxidizing media is very different at the surface and in the metal core. Surface corrosion or protection is very sensitive to superficial strain hardening resulting of mechanical treatments. Three physical phenomena are directly strain hardening dependent and have important consequences on corrosion resistance: 1) increase of diffusion rate of the different alloy elements, especially chromium; 2) residual superficial strain influence on stress corrosion and 3) structural transformation of metastable austenite

  12. Effect of aging on mechanical properties of austenitic stainless steel castings and welds

    International Nuclear Information System (INIS)

    Study of the influence of long time aging on the properties of the cast austenitic steel and associated welds or cladding in the components of the primary loop of nuclear plants: embrittlement by precipitation of α'(chromium rich) in ferrite islands (mostly for castings); precipitation hardens the ferrite wich breaks by cleavage. The impact energy and Isub(IC) value are lowered by this phenomenon. Low cycle fatigue properties and fatigue crack growth rates are not modified by aging. Study of correlation between KCU impact toughness at the end of the life of a component, chemical composition and ferrite content

  13. Electrochemical Mechanisms for Radiation Corrosion Processes of 316 Austenitic Stainless Steel in Chloride Environment

    International Nuclear Information System (INIS)

    The effects of gamma radiation (Ce137, 1.5x105 rad/hr) on the electrochemical mechanisms of 316 austenitic stainless steel in 1.5M NaCl solution (pH: 2) at 25 .deg. C have been investigated. When gamma irradiation is initiated, corrosion potential shifts in the positive direction are observed for 316 SS. These potential shifts are associated with the irradiation-induced production of hydrogen peroxide. The electrochemical mechanisms involved in the corrosion potential shifts, as well as the subsequent effect on pitting resistance, are considered

  14. Precipitation kinetics in austenitic 18Cr-30Ni-Nb cast steel

    OpenAIRE

    M. Garbiak; R. Chylińska

    2008-01-01

    The study presents the results of investigations on the precipitation kinetics in austenitic 18%Cr-30%Ni cast steel stabilised with an addition of 1.84 wt% niobium. Phase analysis of isolates extracted from the alloy subjected to annealing within the temperature range of 600–1000oC during 10–1000 h was made. The phase constitution of the isolates mainly comprised niobium carbides of the NbC type and complex chromium carbides of the Cr23C6 type. In specimens annealed within the temperature ran...

  15. Micromagnetic and Mössbauer spectroscopic investigation of strain-induced martensite in austenitic stainless steel

    Science.gov (United States)

    Mészáros, L.; Kéldor, M.; Hidasi, B.; Vértes, A.; Czakó-Nagy, I.

    1996-08-01

    Strain-induced martensite in 18/8 austenitic stainless steel was studied. Magnetic measurements and Mössbauer spectroscopic investigations were performed to characterize the amount of α’-martensite due to room-temperature plastic tensile loading. The effects of cold work and annealing heat treatment were explored using magnetic Barkhausen noise, saturation polarization, coercive force, hardness, and conversion electron Mössbauer spectra measurements. The results of the magnetic measurements were compared to results obtained by Mössbauer spectroscopy. The suggested Barkhausen noise measurement technique proved to be a useful quantitative and nondestructive method for determining the ferromagnetic phase ratio of the studied alloy.

  16. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  17. A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel

    International Nuclear Information System (INIS)

    Highlights: → Origin of TRIP effect occurring in Q-P-T steel but in Q and T steel is revealed by XRD. → Abnormal variation of dislocation density in martensite is revealed by XLPA. → Dislocation absorption by the retained austenite (DARA) effect is proposed. → TEM observation related to DARA effect is carried out. - Abstract: A high-strength martensitic steel treated by a quenching-partitioning-tempering process is presented to examine the effect of retained austenite on ductility enhancement in martensitic steels. Results from X-ray diffraction line profile analysis (XLPA) indicate that the average dislocation density in martensite during uniform deformation is lower than before deformation, which effectively intensifies the deformation ability. The average dislocation density in retained austenite rapidly increases with increased strain and exceeds that in martensite. Based on the XLPA results, a new effect of austenite on the ductility enhancement is proposed: the austenite phase can continuously absorb ample dislocations from neighbouring martensite laths. This effect is indirectly verified by transmission electron microscopy.

  18. Verification of cutting zone machinability during drilling of austenitic stainless steels

    Science.gov (United States)

    Jurko, Jozef

    2008-11-01

    Automated production of, in the sense of, machine production has characteristic features: a reduction of production costs, stimulation of the development of cutting tools, and changes in the construction of machine tools, all of which work against the creation of optimal technological methods, which thrusts the technological process of cutting into a more important position. These trends confirm that the cutting process remains one of the basic manufacturing technologies. A condition of the economic usage of modern, automated programmed drilling machines is the optimal course of the cutting process, i.e. the use of optimal work conditions. A summary of optimal work conditions requires knowledge of the laws of cutting theory and knowledge of the practical conditions of their application. This article presents the results of experiments that concerned the verification of machinability of work pieces of difference types of X12CrNi 18 8 austenitic stainless steel. Steel X12CrNi 18 8 is the chief representative of the austenitic stainless steels, and this steel falls into the category of materials that are difficult to machine. The rapid development of industry is marked by the development and application of new materials with characteristics that broaden their applicable uses. Precise and reliable information on the machinability of a material before it enters the machining process is a necessity, and hypotheses must be tested through verification of actual methods. This article presents conclusions of machinability tests on austenitic stainless steels and describes appropriate parameters for the cutting zone during the process of drilling with the goal of proposing recommendations for this steels, and to integrate current knowledge in this field with drilling and praxis. This article concerns itself with the evaluation of selected domains of machinability in compliance with EN ISO standards. The experiments were performed in laboratory conditions and verified in real

  19. A Hybrid Low Temperature Surface Alloying Process for Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    Y. Sun

    2004-01-01

    This paper describes a novel, hybrid process developed to engineer the surfaces of austenitic stainless steels at temperatures below 450℃ for the improvement in wear and corrosion resistance. The process is carried out in the plasma of a glow discharge containing both nitrogen and carbon reactive species, and facilitates the incorporation of both nitrogen and carbon into the austenite surface to form a dual-layer structure comprising a nitrogen-rich layer on top of a carbon-rich layer.Both layers can be precipitation-free at sufficiently low processing temperatures, and contain nitrogen and carbon respectively in supersaturated fcc austenite solid solutions. The resultant hybrid structure offers several advantages over the conventional low temperature nitriding and the newly developed carburizing processes in terms of mechanical and chemical properties, including higher surface hardness, a hardness gradient from the surface towards the layer-core interface, uniform layer thickness, and much enhanced corrosion resistance. This paper discusses the main features of this hybrid process and the various structural and properties characteristics of the resultant engineered surfaces.

  20. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  1. In Situ Thermo-magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    Science.gov (United States)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2014-12-01

    The formation of austenite during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was investigated using an in situ thermo-magnetic technique to establish the kinetics of the martensite to austenite transformation and the stability of austenite. The austenite fraction was obtained from in situ magnetization measurements. It was found that during heating to the tempering temperature 1 to 2 vol pct of austenite, retained during quenching after the austenitization treatment, decomposed between 623 K and 753 K (350 °C and 480 °C). The activation energy for martensite to austenite transformation was found by JMAK-fitting to be 233 kJ/mol. This value is similar to the activation energy for Ni and Mn diffusion in iron and supports the assumption that partitioning of Ni and Mn to austenite are mainly rate determining for the austenite formation during tempering. This also indicates that the stability of austenite during cooling after tempering depends on these elements. With increasing tempering temperature the thermal stability of austenite is decreasing due to the lower concentrations of austenite-stabilizing elements in the increased fraction of austenite. After cooling from the tempering temperature the retained austenite was further partially decomposed during holding at room temperature. This appears to be related to previous martensite formation during cooling.

  2. Work hardening mechanism in high nitrogen austenitic steel studied by in situ neutron diffraction and in situ electron backscattering diffraction

    International Nuclear Information System (INIS)

    With a focus on microstructural hierarchy, work hardening behaviour in high nitrogen-bearing austenitic steel (HNS) was investigated mainly by a combined technique of in situ neutron diffraction and in situ electron backscattering diffraction (EBSD). Stress partitioning due to difference in deformability among grains is enhanced in HNS. The larger stress partitioning among [h k l]-oriented family grains seems to realize high work hardening at a small strain. At a larger strain, dislocation density is higher in HNS than in low nitrogen austenitic steel (LNS), which is a possible reason for high work hardening after straining proceeds, resulting in large uniform elongation.

  3. Creep and LCF Behaviors of Newly Developed Advanced Heat Resistant Austenitic Stainless Steel for A-USC

    OpenAIRE

    Chai, Guocai; Boström, Magnus; Olaison, Magnus; Forsberg, Urban

    2013-01-01

    Austenitic stainless steel grade UNS S31035 (Sandvik Sanicro® 25) has been developed for use in super-heaters and reheaters in the next generation of A-USC power plants. This new grade shows very good resistances to steam oxidation and hot corrosion, and higher creep rupture strength than other austenitic stainless steels available today. This makes it an interesting alternative for super-heaters and reheaters in future high-efficient coal fired boilers. This paper will mainly focus on the st...

  4. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  5. Welding hot cracking in an austenitic stainless steel

    International Nuclear Information System (INIS)

    The occurrence of hot cracking is linked to several conditions, in particular, the composition of the material and the local strains due to clambering. The aim of this study is to better analyse the implied mechanisms and to lead to a local thermomechanical criterion for hot cracking. The example studied is an AISI 321-type stainless steel (X10CrNiTi18-12) strongly prone to cracking. Two weldability tests are studied: - the first one consists in carrying out a fusion line by the TIG process on a thin sheet. In the case of the defect occurrence, the crack is longitudinal and follows the back of the molten bath. The influence of the operating conditions welding (speed, welding heat input, width test sample) is studied. - the second one is the Varestraint test. It is widely used to evaluate the sensitivity of a material to hot cracking. It consists in loading the material by bending during a fusion line by the TIG process and in characterising the defects quantity (length, number). Various thermal and mechanical instrumentation methods were used. The possibilities of a local instrumentation instrumentation being limited because of the melting, the experimental results were complemented by a numerical modelling whose aim is to simulate the thermomechanical evolution of the loading thanks to the finite element analysis code ABAQUS. First, the heat input for thermal simulation is set by the use of an inverse method in order to optimise the energy deposit mode during welding in the calculation. Then, the mechanical simulation needs the input of a constitutive law that fits the mechanical behaviour over a wide temperature range from ambient to melting temperature. Thus, a mechanical characterization is performed by selecting strain values and strain rates representative of what the material undergoes during the tests. The results come from tensile and compressive tests and allow to settle an elasto-visco-plastic constitutive law over temperatures up to liquidus. Once

  6. Microstructure and Property Relationships in Resistance Spot Weld between 7114 Interstitial Free Steel and 304 Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Ahmet Hasanba(s)o(g)lu; Ramazan Ka(c)ar

    2006-01-01

    Due to the differences in physical, chemical and mechanical properties of the base metals, the resistance spot welding of dissimilar materials is generally more challenging than that of similar materials. The influence of the primary welding parameters affecting the heat input such as peak current on the morphology, microhardness,and tensile shear load bearing capacity of dissimilar welds between 304 grades austenitic and 7114 grade interstitial free steel has been investigated in this study. The optimum welding parameters producing maximum joint strength were established at a peak current of 9 kA, where the electrode force is kept 6×10-5 Pa and weld time is kept constant 17 cycles, respectively. The primary cause of weakening the weldment is identified as the excessive grain growing region of heat affected zone (HAZ) in case of 7114 grade interstitial free steel.

  7. Effect of isothermal holding temperature on retained austenite fraction in medium- carbon Nb/Ti-microalloyed TRIP steel

    Directory of Open Access Journals (Sweden)

    H. Krztoń

    2011-12-01

    Full Text Available Purpose: The aim of the paper is to determine the effect of the isothermal holding temperature in a bainitic transformation range on a fraction of retained austenite for a new-developed medium-carbon TRIP steel containing Nb and Ti microadditions. Design/methodology/approach: The thermo-mechanical processing was carried out by a multi-stage compression test using the Gleeble thermomechanical simulator. The steel was subjected to 5 variants of processing with an isothermal bainitic transformation temperature in a range from 250 to 450°C. Identification of structural constituents was done using microscopic observations and X-ray diffraction. To determine the fraction of retained austenite the Rietveld method was applied.Findings: It is possible to obtain a high fraction of retained austenite characterized by the high thermodynamic stability in a C-Mn-Si-Al steel containing 0.43% C. The maximal fraction of austenitic phase equal above 20% was obtained for the wide temperature range of isothermal holding from 350 to 450°C. The maximal carbon content in the retained austenite equal 1.84 wt.% is present for the temperature range from 350 to 400°C. Below 350°C due to relatively low carbon diffusivity and high Msγ temperature, a part of austenite transforms to marteniste. Above 400°C there is still a high fraction of retained austenite but it contains a lower C content.Practical implications: The obtained austenite volume fraction and carbon content in a γ phase determined as a function of isothermal holding temperature can be useful in optimization of thermo-mechanical processing conditions for medium-C TRIP steels.Originality/value: The research was performed on a new-developed medium-carbon Si-Al steel microalloyed with Nb and Ti. There is a lack of data on microstructure and stability of retained austenite in such advanced group of high-strength TRIP steels.

  8. Advanced characterizations of austenitic oxide dispersion-strengthened (ODS) steels for high-temperature reactor applications

    Science.gov (United States)

    Miao, Yinbin

    Future advanced nuclear systems involve higher operation temperatures, intenser neutron flux, and more aggressive coolants, calling for structural materials with excellent performances in multiple aspects. Embedded with densely and dispersedly distributed oxide nanoparticles that are capable of not only pinning dislocations but also trapping radiation-induced defects, oxide dispersion-strengthened (ODS) steels provide excellence in mechanical strength, creep resistance, and radiation tolerance. In order to develop ODS steels with qualifications required by advanced nuclear applications, it is important to understand the fundamental mechanisms of the enhancement of ODS steels in mechanical properties. In this dissertation, a series of austenitic ODS stainless steels were investigated by coordinated state-of-the-art techniques. A series of different precipitate phases, including multiple Y-Ti-O, Y-Al-O, and Y-Ti-Hf-O complex oxides, were observed to form during mechanical alloying. Small precipitates are likely to have coherent or cubic-on-cubic orientation relationships with the matrix, allowing the dislocation to shear through. The Orowan looping mechanism is the dominant particle-dislocation interaction mode as the temperature is low, whereas the shearing mechanism and the Hirsch mechanism are also observed. Interactions between the particles and the dislocations result in the load-partitioning phenomenon. Smaller particles were found to have the stronger loading-partitioning effect. More importantly, the load-partitioning of large size particles are marginal at elevated temperatures, while the small size particles remain sustaining higher load, explaining the excellent high temperature mechanical performance of ODS steels.

  9. Inter-laminar shear stress in hybrid CFRP/austenitic steel

    Directory of Open Access Journals (Sweden)

    J. Lopes

    2015-01-01

    Full Text Available Bolted joints are the most common solution for joining composite components in aerospace structures. Critical structures such as wing to fuselage joints, or flight control surface fittings use bolted joining techniques. Recent research concluded that higher bearing strengths in composite bolted joints can be achieved by a CFRP/ Titanium hybrid lay-up in the vicinity of the bolted joint. The high costs of titanium motivate a similar research with the more cost competitive austenitic steel. An experimental program was performed in order to compare the apparent inter-laminar shear stress (ILSS of a CFRP reference beam with the ILSS of hybrid CFRP/Steel beams utilizing different surface treatments in the metallic ply. The apparent ILSS was determined by short beam test, a three-point bending test. Finite element models using cohesive elements in the CFRP/Steel interface were built to simulate the short beam test in the reference beam and in the highest interlaminar shear stress hybrid beam. The main parameters for a FEM simulation of inter laminar shear are the cohesive elements damage model and appropriate value for the critical energy release rate. The results show that hybrid CFRP/Steel have a maximum ILSS very similar to the ILSS of the reference beam. Hybrid CFRP/Steel is a competitive solution when compared with the reference beam ILSS. FEM models were able to predict the maximum ILSS in each type of beam.

  10. Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead-bismuth

    Science.gov (United States)

    Benamati, G.; Fazio, C.; Piankova, H.; Rusanov, A.

    2002-02-01

    Compatibility tests on the austenitic AISI 316L and the martensitic MANET II steels in stagnant PbBi were performed at 573, 673 and 823 K with exposures up to 5000 h. The change of the corrosion mechanism with increasing temperature has been evaluated. The results showed that at 573 and 673 K a thin oxide layer growth on the surface of both steels. By increasing the temperature to 823 K both types of steels were attacked by the liquid metal and dissolution of the steel alloying elements has been observed. The herein-reported experimental activities were performed in collaboration with the IPPE of Obninsk, where preliminary dynamic tests were performed in the experimental facility CU-2. The Russian ferritic-martensitic steel EP823 has been exposed to flowing PbBi at 623, 723 and 823 K for 700 h. After 700 h of testing, the surface of the EP823 samples showed for the three temperatures a compact oxide layer.

  11. Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel; Bolat, Georgiana [Technical Univ. Iasi (Romania). Faculty of Chemical Engineering and Environmental Protection; Strugaru, Sorin Iacob; Munteanu, Corneliu [Technical Univ. Iasi (Romania). Faculty of Mechanical Engineering; Souto, Ricardo M. [Univ. of La Laguna, Tenerife (Spain). Dept. of Chemistry

    2015-03-15

    Plasma nitriding at 500 C for 14 h was applied to austenitic 304 stainless steel for surface hardening. The effect of surface treatment on the corrosion resistance of the material was investigated in naturally-aerated 0.5 M NaCl solution for 30 days using linear potentiodynamic polarization and electrochemical impedance spectroscopy methods. Both as-cast and plasma nitrided stainless steel samples underwent spontaneous passivation, though the nitrided sample exhibited more positive zero current potential, higher breakdown potential, and lower anodic current densities than the as-cast material. Impedance spectra were interpreted in terms of a duplex passive film, corrosion resistance mainly arising from a thin inner compact layer, whereas the outer layer was more porous and less sealing. Capacitive behaviour and high corrosion resistance were observed in the low and medium frequency ranges for the nitrided samples.

  12. Effect on spot welding variables on nugget size and bond strength of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Resistance spot welding (RSW) has revolutionized mechanical assembly in the automotive industry since its introduction in the early 1970s. Currently, one mechanical assembly in five is welded using spot welding technology, with welding of stainless steel sheet becoming increasingly common. Consequently, this research paper examines the spot welding of 2 mm thick 304 austenitic stainless steel sheet. The size of a spot weld nugget is primarily determined by the welding parameters: welding current, welding time, electrode force and electrode tip diameter However, other factors such as electrode deformation, corrosion, dissimilar materials and material properties also affect the nugget size and shape. This paper analyzes only the effects of current, weld time and force variations with unchanged electrode tip diameter. A pneumatically driven 75kVA spot welder was used to accomplish the welding process and the welded samples were subjected to tensile, hardness and metallurgical testing to characterize the size and shape of the weld nugget and the bond strength.

  13. Research of estimation method of thermal aging embrittlement on cast austenitic stainless steel

    International Nuclear Information System (INIS)

    Thermal aging embrittlement of cast austenitic stainless steel components from the decommissioned Advanced Thermal prototype Reactor (ATR) Fugen power station has been characterized. Cast stainless steel materials were obtained from recirculation pump casing. The actual time at temperature for the materials was 138,000 h at 275°C. The Fugen serviced material show modest decrease in Charpy-impact properties and a small increase in micro-Vickers hardness in ferrite phase because of thermal aging at relatively low service temperatures. The fracture toughness prediction method (H3T model) predicts slightly lower values for Charpy-impact energy obtained from the Fugen material. The results from microstructural analysis suggest that the prediction method have the potential to provide higher accuracy by considering activation energy for embrittlement at low service temperatures. (author)

  14. Welding of tube-to-tube joints between martensitic and austenitic stainless steels for reactor applications

    International Nuclear Information System (INIS)

    Studies of the welding of tube-to-tube joints between dissimilar steels are described. The material combination was martensitic F6NM (0Cr13Ni4Mo) and austenitic AISI 347 stainless steels. Such joints are important parts in the primary circuit of a pressurized water reactor. A welding procedure was developed based on a series of weldability tests. The joints were subjected to various mechanical property tests including tensile test, bending test and impact test at various temperatures. A prototype product was made and subjected to pressure testing. Results of various tests indicated that the quality of the tube-to-tube joints is satisfactory for meeting all the design requirements. The joints can be used in the primary circuit of a pressurized water reactor. (author)

  15. Properties, structure and creep resistance of austenitic steel Super 304H

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Adam; Dobrzanski, Janusz; Purzynska, Hanna [Institute for Ferrous Metallurgy, Gliwice (Poland); Golanski, Grzegorz [Czestochowa Univ. of Technology (Poland). Inst. of Materials Engineering

    2015-07-01

    This paper presents selected material characteristics of Super 304H austenitic steel used for elements of boilers with super- and ultra-critical steam parameters. In particular, abridged and long-term creep tests with and without elongation measurement during testing and investigations of microstructural changes due to long-term impact of temperature and stress were carried out. The practical aspect of the use of creep test and structure investigation results in forecasting the durability of materials operating under creep conditions was presented. The characteristics of steels with regard to creep tests and structure investigations developed in this paper are used for estimation of changes in functional properties of the material of elements operating under creep conditions.

  16. Properties, structure and creep resistance of austenitic steel Super 304H

    International Nuclear Information System (INIS)

    This paper presents selected material characteristics of Super 304H austenitic steel used for elements of boilers with super- and ultra-critical steam parameters. In particular, abridged and long-term creep tests with and without elongation measurement during testing and investigations of microstructural changes due to long-term impact of temperature and stress were carried out. The practical aspect of the use of creep test and structure investigation results in forecasting the durability of materials operating under creep conditions was presented. The characteristics of steels with regard to creep tests and structure investigations developed in this paper are used for estimation of changes in functional properties of the material of elements operating under creep conditions.

  17. Effect of Carbon and Nitrogen Content on Deformation and Fracture of AISI 304 Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    C. Menapace

    2008-04-01

    Full Text Available The effect of small differences in the content of carbon and nitrogen on the room temperature tensile deformation and fracture behaviour of an AISI 304 stainless steel was studied. In the steel containing the lower amount of carbon and nitrogen, a higher amount of strain induced alfa’ martensite is formed, which increases strain hardening rate and both uniform and total elongation at fracture. The presence of large martensitic areas in the cross section causes strain localization at the austenite/martensite interface, which promotes the nucleation of cracks and their propagation along the interface. This results in a decrease of Ultimate Tensile Strength. Strain induced transformation slightly reduces strain rate sensitivity, as well.

  18. Computer Model of Phase Transformation From Hot-Deformed Austenite in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2007-01-01

    Based on thermodynamics and kinetics, a new mathematical model was developed to calculate the CCT diagrams and the transformation kinetics in low carbon niobium steels, in which the effect of deformation on the degree of supercooling was taken into account. The undercooling caused by deformation is the major reason for the increase of the starting transition temperature during continuous cooling. The critical cooling rate of bainite formation is within 2-5 ℃/s for the studied niobium steels and deformation is suitable for the occurrence of pearlite. The ferrite volume fraction increases with the increase of the austenite boundary area, and decreases with the increase of the cooling rate. The calculated CCT diagrams and the volume fraction of each phase are in good agreement with the measurements.

  19. The PISC parametric study on the effect of the texture of cast austenitic stainless steel

    International Nuclear Information System (INIS)

    Within the framework of Action 4 (Austenitic Steel Testing) of PISC III, a parametric study was carried out on a set of centrifugally cast stainless steel samples, representative of the main coolant piping of pressurized water nuclear reactors. The samples are obtained from different manufacturers, and feature various grain textures and dimensions. Artificial and realistic flaws were used to assess the detection and sizing capability of ultrasonic examination techniques. The paper analyzes the data as a function of the metal structure and of the main parameter of the testing techniques, which include TRL contact probes and immersion focusing transducers. Guidelines are deduced as to the selection of inspection techniques, in relation with the metallurgical texture of each specimen. In addition, the influence of the presence of a weld across the wavepath is evaluated, as well as the similarity between the responses obtained from crack-like machined reflectors and mechanical fatigue cracks

  20. Thick-section Laser and Hybrid Welding of Austenitic Stainless Steels

    Science.gov (United States)

    Kujanpää, Veli

    Austenitic stainless steels are generally known to have very good laser weldability, when ordinary grades of sheets are concerned. But it is not necessarily the case, if special grades of fully austenitic structures with e.g. high molybdenum, or thick-section are used. It is also known that hot cracking susceptibility is strictly controlled by composition and welding parameters. If solidification is primary ferritic, hot cracking resistance is dramatically increased. It is also well known that laser welding needs a careful control of weld edge preparation and air gap between the edges. The dependence on edge quality can be decreased by using filler metal, either cold wire, hot wire or hybrid laser-arc welding. An additional role is high molybdenum contents where micro segregation can cause low local contents in weld which can decrease the corrosion properties, if filler metal is not used. Another feature in laser welding is its incomplete mixing, especially in thick section applications. It causes inhomogeneity, which can make uneven microstructure, as well as uneven mechanical and corrosion properties In this presentation the features of laser welding of thick section austenitic stainless steels are highlighted. Thick section (up to 60 mm) can be made by multi-pass laser or laser hybrid welding. In addition to using filler metal, it requires careful joint figure planning, laser head planning, weld parameter planning, weld filler metal selection, non-destructive and destructive testing and metallography to guarantee high-quality welds in practice. In addition some tests with micro segregation is presented. Also some examples of incomplete mixing is presented.

  1. Formability and fracture studies of austenitic stainless steel 316 at different temperatures

    Directory of Open Access Journals (Sweden)

    Syed Mujahed Hussaini

    2014-07-01

    Full Text Available Deep drawing is one of the most important sheet metal forming processes in automotive, aerospace and nuclear industries. In this process, the sheet metal blank is formed into a cup shape by an application of punch into the die. The present work is aimed at studying the formability and the nature of fracture for one of the important materials in industrial applications, austenitic stainless steel 316 at different temperatures. Circular blanks were deep drawn at room temperature, 150 and 300 °C using a 20 Ton hydraulic press coupled with a furnace and found that formability of the austenitic stainless steel 316 increased as the temperature was increased. This material underwent dynamic strain aging between 350 and 550 °C. Fractured surface of the broken tensile test specimen at different regions were studied and analyzed using scanning electron microscope. It was observed that the nature of the fracture was brittle in dynamic strain aging region.

  2. Comparison on Mathematical Models for Description of Flow Curves of Stable Austenitic Steels

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The flow curves were measured for the stable austenitic steels 304L and 304LN by means of tensile test at room temperature,which are described by the models σ=K1εn1 + exp(K2 + n2ε), σ=Kεn1+n21nε and σ=σ0+Kεn (where, K1, K2, n1 andn2; K, n1 and n2; σ0, K and n are constant). The comparison of the maximum deviations and the consideration of thevariation of the work hardening rate with true strain show that the flow curves for the austenitic steels 304L and 304LN canbe described by the model σ=Kεn1+n2 inε at higher precision.The derivatives of the models σ=K1εn1 + exp(K2 + n2ε) and σ=Kεn1+n2 lnε with respect to true strain, exhibit theextreme at low true strain. This inherent character indicates that both models are unsuitable to describe the part of the workhardening rate curve at low true strain.

  3. Cutting Properties of Austenitic Stainless Steel by Using Laser Cutting Process without Assist Gas

    Directory of Open Access Journals (Sweden)

    Hitoshi Ozaki

    2012-01-01

    Full Text Available Recently, laser cutting is used in many industries. Generally, in laser cutting of metallic materials, suitable assist gas and its nozzle are needed to remove the molten metal. However, because of the gas nozzle should be set closer to the surface of a workpiece, existence of the nozzle seems to prevent laser cutting from being used flexible. Therefore, the new cutting process, Assist Gas Free laser cutting or AGF laser cutting, has been developed. In this process, the pressure at the bottom side of a workpiece is reduced by a vacuum pump, and the molten metal can be removed by the air flow caused by the pressure difference between both sides of the specimen. In this study, cutting properties of austenitic stainless steel by using AGF laser cutting with 2 kW CO2 laser were investigated. Laser power and cutting speed were varied in order to study the effect of these parameters on cutting properties. As a result, austenitic stainless steel could be cut with dross-free by AGF laser cutting. When laser power was 2.0 kW, cutting speed could be increased up to 100 mm/s, and kerf width at specimen surface was 0.28 mm.

  4. Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel

    International Nuclear Information System (INIS)

    Highlights: ► We fabricated a 310 type ODS austenitic steel by the process of MA and HIP. ► Plastic deformations, including forging and hot rolling, were applied to samples. ► Fine Y-Ti-O particles dispersed in a relatively uniform way after forging. ► Ductility increased greatly after deformations, while strength decreased slightly. - Abstract: ODS-310 austenitic steel (Fe–25Cr–20Ni–0.35Y2O3–0.5Ti) was fabricated by the process of mechanical alloying and hot isostatic pressing. Plastic deformations, including forging and hot rolling, were applied to the as-hipped samples to improve the ductility. Microstructural evolutions in samples under different fabrication conditions were characterized by TEM. Tensile properties were tested at 23 °C and 700 °C. Dispersed oxide particles with sizes between 10 nm and 50 nm were characterized to be rich in Y–Ti–O. UTS and elongation of the as-hipped sample were 904 MPa and 11% respectively at 23 °C. Elongation increased two times after plastic deformations while there was only slight decrease in strength properties.

  5. Survey report on unmanned site welding of austenitic stainless steel pipe and its ultrasonic examination

    International Nuclear Information System (INIS)

    In the field welding of austenitic stainless steel pipings and its non-destructive test in complicated and narrow places, reliable welding method and non-destructive testing method are required, and also, it is desirable to mechanize them (unmanned operation). In this study, the present state of the automatic welding of austenitic stainless steel pipings and ultrasonic flaw detection was investigated through the literatures in Japan and foreign countries. As the result, it was clarified that energetic research has been made recently to mechanize the welding, and though many points are left for future research and development, it is promising. In the ultrasonic flaw detection, many technical problems concerning the detectability of flaws remain at present, but is is expected to become feasible by future systematic research and development. The design of weld joints, the welding method and the remote automatic control of welding operation must be appropriate for guaranteeing the quality of welding, and these points were surveyed. The problems in the ultrasonic flaw detection are the attenuation of ultrasonic waves, the conditions of probes, the mode of wave motion and frequency, and the welding suitable to the ultrasonic flaw detection. (Kako, I.)

  6. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Science.gov (United States)

    Sudha, C.; Sivai Bharasi, N.; Anand, R.; Shaikh, H.; Dayal, R. K.; Vijayalakshmi, M.

    2010-07-01

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 μm width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 μm width was identified which was found to consist of M 23C 6 carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  7. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, C. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Sivai Bharasi, N. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Anand, R. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Shaikh, H., E-mail: hasan@igcar.gov.i [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Dayal, R.K. [Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Vijayalakshmi, M. [Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2010-07-31

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 {mu}m width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 {mu}m width was identified which was found to consist of M{sub 23}C{sub 6} carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  8. Estimation of Fatigue Damage for AN Austenitic Stainless Steel (SUS304) Using a Pancake Type Coil

    Science.gov (United States)

    Oka, M.; Tsuchida, Y.; Nagato, S.; Yakushiji, T.; Enokizono, M.

    2008-02-01

    There are some fatigue damage estimation methods of an austenitic stainless steel that uses martensitic transformation. For instance, those are the remanent magnetization method, the excitation method, and so on. Those two methods are researched also in our laboratory now. In the remanent magnetization method, it is well known that the relationship between fatigue damage and the remanent magnetization is simple, clear, and reproducible. However, this method has the disadvantage to need a special magnetizer. Then, this method cannot be easily used at the job site such as the factory. On the other hand, as the special magnetizer is unnecessary, the excitation method can be easily used at the job site. But, this method has some disadvantages shown as follows. For instance, the output signal of this method is small. And the surface state of the specimen strongly influences the noise component of the output signal. It is well known that the inductance of a pancake type coil put on the metallic specimen changes according to the electromagnetic properties of the metallic specimen. In this paper, the method of evaluation of fatigue damage of an austenitic stainless steel (SUS304) by using a change of an inductance of a pancake type coil is shown. In addition, the fatigue evaluation performance of this method is described.

  9. Scale-bridging analysis on deformation behavior of high-nitrogen austenitic steels.

    Science.gov (United States)

    Lee, Tae-Ho; Ha, Heon-Young; Hwang, Byoungchul; Kim, Sung-Joon; Shin, Eunjoo; Lee, Jong Wook

    2013-08-01

    Scale-bridging analysis on deformation behavior of high-nitrogen austenitic Fe-18Cr-10Mn-(0.39 and 0.69)N steels was performed by neutron diffraction, electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM). Two important modes of deformation were identified depending on the nitrogen content: deformation twinning in the 0.69 N alloy and strain-induced martensitic transformation in the 0.39 N alloy. The phase fraction and deformation faulting probabilities were evaluated based on analyses of peak shift and asymmetry of neutron diffraction profiles. Semi in situ EBSD measurement was performed to investigate the orientation dependence of deformation microstructure and it showed that the variants of ε martensite as well as twin showed strong orientation dependence with respect to tensile axis. TEM observation showed that deformation twin with a {111} mathematical left angle bracket 112 mathematical right angle bracket crystallographic component was predominant in the 0.69 N alloy whereas two types of strain-induced martensites (ε and α' martensites) were observed in the 0.39 N alloy. It can be concluded that scale-bridging analysis using neutron diffraction, EBSD, and TEM can yield a comprehensive understanding of the deformation mechanism of nitrogen-alloyed austenitic steels.

  10. The microstructural, mechanical, and fracture properties of austenitic stainless steel alloyed with gallium

    Science.gov (United States)

    Kolman, D. G.; Bingert, J. F.; Field, R. D.

    2004-11-01

    The mechanical and fracture properties of austenitic stainless steels (SSs) alloyed with gallium require assessment in order to determine the likelihood of premature storage-container failure following Ga uptake. AISI 304 L SS was cast with 1, 3, 6, 9, and 12 wt pct Ga. Increased Ga concentration promoted duplex microstructure formation with the ferritic phase having a nearly identical composition to the austenitic phase. Room-temperature tests indicated that small additions of Ga (less than 3 wt pct) were beneficial to the mechanical behavior of 304 L SS but that 12 wt pct Ga resulted in a 95 pct loss in ductility. Small additions of Ga are beneficial to the cracking resistance of stainless steel. Elastic-plastic fracture mechanics analysis indicated that 3 wt pct Ga alloys showed the greatest resistance to crack initiation and propagation as measured by fatigue crack growth rate, fracture toughness, and tearing modulus. The 12 wt pct Ga alloys were least resistant to crack initiation and propagation and these alloys primarily failed by transgranular cleavage. It is hypothesized that Ga metal embrittlement is partially responsible for increased embrittlement.

  11. Test and research on stress corrosion crack of austenitic stainless steel in ocean environment

    International Nuclear Information System (INIS)

    The applicability of stress corrosion test performance on wedge opened self-loaded samples to study stress corrosion property of austenitic stainless steels in ocean environment including Cl-. The studied materials were 0Cr18Ni10Ti(321) austenitic stainless steel, using NaCl solution with concentration of 3.5%, 15% and 26.5% to simulate ocean and condensable ocean situation. The average stress corrosion crack propagating rate existed in 3.34 X 10-9 mm/s∼1.31 X 10-8 mm/s and incubation time were 792∼1752 h or even more when stress intensity factor K1 in scope of 35 MPa √m∼60 MPa √m. Stress corrosion crack propagating rate was immune to differing concentration of NaCl, crack incubation got shorter along with stress intensity factor K1 was higher. That was showed prefabricated fatigue crack area, stress corrosion crack propagation area and toughness fracture area connected with each other on fracture surface. (authors)

  12. Analysis of tensile deformation and failure in austenitic stainless steels: Part II - Irradiation dose dependence

    Science.gov (United States)

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on the stable and unstable deformation and fracture behavior of austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative finite element simulation technique was used to obtain the equivalent true stress-true strain data from experimental tensile curves. The simulation result showed that the austenitic stainless steels retained high strain hardening rate during unstable deformation even after significant irradiation. The strain hardening rate was independent of irradiation dose up to the initiation of a localized necking. Similarly, the equivalent fracture stress was nearly independent of dose before the damage (embrittlement) mechanism changed. The fracture strain and tensile fracture energy decreased with dose mostly in the low dose range SS were less sensitive to irradiation than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  13. Development of nitride-layer of AISI 304 austenitic stainless steel during high-temperature ammonia gas-nitriding

    International Nuclear Information System (INIS)

    Ammonia-gas nitriding of AISI 304 austenitic stainless steel was studied at temperatures higher than 800 deg. C using SEM and X-ray diffraction. The result showed that S-phase, an expanded austenite, was formed even at such high temperatures due to a high nitriding potential of ammonia gas. The equilibrium phase, CrN was formed through a decomposition of S-layer in two different modes; the one was through continuous precipitation of particles at the surface-side of S-layer due to a higher nitriding potential; the other through a discontinuous(-like) precipitation at the austenite interface-side, producing a fine lamellar structure of austenite and CrN. The γ-phase in the surface-side resulting from the precipitation of CrN particles subsequently transformed into Fe4N because of a fast enrichment of N atoms and a limited mobility of Cr atoms at the surface-side. A coarse lamellar structure made of austenite and Cr2N was developed in front of fine lamellae composed of austenite and CrN by the decomposition of supersaturated austenite through a discontinuous precipitation via grain boundary movement.

  14. The Effects of Austenitizing Conditions on the Microstructure and Wear Resistance of a Centrifugally Cast High-Speed Steel Roll

    Science.gov (United States)

    Kang, Minwoo; Lee, Young-Kook

    2016-07-01

    The influences of austenitizing conditions on the microstructure and wear resistance of a centrifugally cast high-speed steel roll were investigated through thermodynamic calculation, microstructural analysis, and high-temperature wear tests. When the austenitizing temperature was between 1323 K and 1423 K (1050 °C and 1150 °C), coarse eutectic M2C plates were decomposed into a mixture of MC and M6C particles. However, at 1473 K (1200 °C), the M2C plates were first replaced by both new austenite grains and MC particles without M6C particles, and then remaining M2C particles were dissolved during the growth of MC particles. The wear resistance of the HSS roll was improved with increasing austenitizing temperature up to 1473 K (1200 °C) because the coarse eutectic M2C plates, which are vulnerable to crack propagation, changed to disconnected hard M6C and MC particles.

  15. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  16. Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion

    International Nuclear Information System (INIS)

    A duplex stainless steel with approximately equal volume fractions of ferrite and austenite was processed by high-pressure torsion. Nano-indentation, electron backscatter diffraction and transmission electron microscopy were used to investigate the hardness and microstructure evolutions of the steel. Despite the different strain-hardening rates of individual ferrite and austenite, the microstructures of the two phases evolved concurrently in such a way that the neighbouring two phases always maintained similar hardness. While the plastic deformation and grain refinement of ferrite occurred mainly via dislocation activities, the plastic deformation and grain refinement process of austenite were more complicated and included deformation twinning and de-twinning in coarse grains, grain refinement by twinning and dislocation–twin interactions, de-twinning in ultrafine grains and twin boundary subdivision

  17. Novel ferrite–austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms

    International Nuclear Information System (INIS)

    The need for lightweight materials has been an important issue in automotive industries to reduce greenhouse gas emission and to improve fuel efficiency. In addition, automotive steels require an excellent combination of strength and ductility to sustain automotive structures and to achieve complex shapes, but the traditional approach to obtain a reduction in weight from down-gauged steels with high strength has many limitations. Here, we present a new ferrite–austenite duplex lightweight steel containing a low-density element, Al; this steel exhibits tensile elongation up to 77% as well as high tensile strength (734 MPa). The enhanced properties are attributed to the simultaneous formation of deformation-induced martensites and deformation twins and the additional plasticity due to deformation twinning in austenite grains having optimal mechanical stability. The present work gives a promise for automotive applications requiring excellent properties as well as reduced specific weight

  18. XPS spectroscopic and electrochemical study of passivation and localized corrosion of austenitic stainless steels treated by ionic implantation of molybdenum

    International Nuclear Information System (INIS)

    As molybdenum is known to have a beneficial impact on corrosion resistance of austenitic stainless steels, this research thesis aims at characterizing and explaining the role of molybdenum in this corrosion resistance in the case of Fe-19 Cr-10 Ni steels implanted with molybdenum. After having presented the main notions, the author presents the sample preparation and both electrochemical techniques which have been used: conventional and ring-disk techniques. The author presents the XPS (X-ray photoelectron spectroscopy) technique and additional techniques (Rutherford backscattering spectrometry or RBS, electronic microscopy), and reports and discusses the XPS-based quantitative analysis. Calibration issues and characterization of the implanted material are discussed, and an experimental protocol is proposed. The author also discusses the passivation of molybdenum-implanted stainless steels, the influence of the implanted molybdenum on localized corrosion of austenitic stainless steels

  19. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  20. Microstructure and Mechanical Properties of Ultrafine-Grained Austenitic Oxide Dispersion Strengthened Steel

    Science.gov (United States)

    Mao, Xiaodong; Kang, Suk Hoon; Kim, Tae Kyu; Kim, Seul Cham; Oh, Kyu Hwan; Jang, Jinsung

    2016-06-01

    316L stainless steel based austenitic oxide dispersion strengthened (AODS) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The AODS sample exhibited an ultrafine-grained (UFG) structure with a bimodal grain size distribution (large grains of about 1200 nm and fine grains of about 260 nm). Two groups of oxide particles were observed; fine Y2Ti2O7 of about 7.7 nm and coarse Cr2O3 particles of about 200 nm in diameter. Tensile tests of the hot-rolled AODS steel samples showed yield strength of up to 890 MPa at room temperature, which is nearly four times higher than that of conventional 316L stainless steel. Micro-indentation and hardness tests indicated even higher yield strength of up to 1200 MPa, which shows a good agreement with the calculated value by combining of the grain refinement strengthening by the Hall-Petch relation and the dispersion strengthening by the Orowan mechanism. The lower strength from tensile tests should be attributed to the formation of micro-cracks at the interfaces between coarse Cr2O3 particles and the matrix. Coarse Cr2O3 particles were also frequently observed inside the fracture surface dimples of the creep ruptured sample at 923 K (650 °C) and 140 MPa. It is thus suggested that the yield strength and elongation could be further improved by controlling the coarse Cr2O3 particles.

  1. Prediction of long-term precipitate evolution in austenitic heat-resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae-Hyeok; Jung, Woo-Sang; Cho, Young Whan [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials/Devices Div.; Kozeschnik, Ernst [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology

    2010-07-01

    Numerical prediction of the long-term precipitate evolution in five different austenitic heat-resistant stainless steels, NF709, Super304H, Sanicro25, CF8C-PLUS and HTUPS has been carried out. MX and M{sub 23}C{sub 6} are predicted to remain as major precipitates during long-term aging in these steels. The addition of 3 wt% Cu produces very fine Cu-rich precipitates during aging in Super304H and Sanicro25. It is found that the amount of Z phase start to increase remarkably between 1,000 and 10,000 hours of aging at the expense of MX precipitates in the steels containing a high nitrogen content. However, the growth rate of Z phase is relatively slow and its average size reaches at most a few tens of nanometers after 100,000 hours of aging at 700 C, compared with 9-12% Cr ferritic/martensitic heat-resistant steels. The predicted precipitation sequence and precipitate size during aging are in general agreement with experimental observations. (orig.)

  2. Fatigue crack growth-Microstructure relationships in a high-manganese austenitic TWIP steel

    International Nuclear Information System (INIS)

    The crack growth behavior of a high-manganese austenitic steel, which exhibits the twinning-induced plasticity (TWIP) effect, was investigated under positive stress ratios. An experimental study making use of miniature compact tension (CT) specimens and thorough microstructural analyses including transmission electron microscopy and fracture analyses demonstrated that the microstructural evolution in the plastic zone of the fatigued TWIP CT specimens is substantially different as compared to the monotonic plastic deformation case. Specifically, the twin density in the plastic zone of the CT specimens is very low, leading to the conclusion that the deformation mechanisms depend drastically on the loading conditions. The absence of twinning under cyclic loading in the plastic zone of the CT specimens indicates that even large accumulated plastic strains are not sufficient to cause substantial twinning in the TWIP steel. This lack of hardening preserves the ductile character of the TWIP steel in the plastic zone ahead of the crack tip and provides for a crack growth rate in the Paris regime lower than reported for other high strength steels.

  3. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    International Nuclear Information System (INIS)

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 106 cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  4. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  5. Analysis the influence of drawing process parameters on the amount of retained austenite in trip steel wires

    Directory of Open Access Journals (Sweden)

    Z. Muskalski

    2013-01-01

    Full Text Available The paper presents a theoretical analysis of the process of drawing TRIP-effect steel wires involving simulation of the drawing process. The process was run following two variants, with small and large partial drafts for three drawing speeds: 1,11; 0,23 and 0,005 m/s. The investigations carried out allowed a relationship between the amount of retained austenite and strain intensity and strain rate to be established for TRIP steel wires drawn.

  6. Automatic orbital TIG-welding of small bore austenitic stainless steel tubes for nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Traditionally, manual welding techniques have been employed for shop and site fabrication of small bore austenitic stainless steel tubes in the nuclear fuel reprocessing plant of British Nuclear Fuels Limited (BNFL). This Paper describes an evaluation programme carried out to develop welding procedures for both 18Cr-13Ni-1Nb and 18Cr-10Ni low carbon stainless steel small bore tubing, the type of equipment used, and the modifications required for application to shop and site environments. (author)

  7. Effect of isothermal holding temperature on retained austenite fraction in medium- carbon Nb/Ti-microalloyed TRIP steel

    OpenAIRE

    H. Krztoń; A. Grajcar

    2011-01-01

    Purpose: The aim of the paper is to determine the effect of the isothermal holding temperature in a bainitic transformation range on a fraction of retained austenite for a new-developed medium-carbon TRIP steel containing Nb and Ti microadditions. Design/methodology/approach: The thermo-mechanical processing was carried out by a multi-stage compression test using the Gleeble thermomechanical simulator. The steel was subjected to 5 variants of processing with an isothermal bainitic transformat...

  8. Morphological features of retained austenite in thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel

    OpenAIRE

    A. Grajcar

    2010-01-01

    Purpose: The aim of the paper is to determine the influence of isothermal bainitic transformation temperature on morphological features and a fraction of retained austenite in a new-developed thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel.Design/methodology/approach: The thermo-mechanical processing was realized in a multi-stage compression test by the use of the Gleeble thermomechanical simulator. The steel was isothermally held for 600 s in a bainitic transformation tempera...

  9. Investigations on the Corrosion Behaviour and Structural Characteristics of Low Temperature Nitrided and Carburised Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    D. M(u)nter; H.-J. Spies; H. Biermann; Chr. Eckstein

    2004-01-01

    The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipitation of chromiumnitrid or -carbide. The present contribution deals with investigations of the corrosion behaviour and structural characteristics of a low temperature nitrided and carburised austenitic stainless steel.The material investigated was AISI 316L (X2CrNiMo17-12-2) austenitic stainless steel. A commercial plasma-nitriding unit (pulsed dc) was used for the nitriding and carburising process. Additional samples were treated by the gasoxinitriding process for a comparison between plasma- and gasoxinitriding. The nitrided and carburised layer of austenltic stainless steel consists of the nitrogen or carbon S-phase (expanded austenite), respectively. X-ray diffraction investigations show the typical shift of the peaks to lower angles, indicating expansion of the fcc lattice. Also the X-ray diffraction technique was employed to study the residual stresses in the nitrogen and carbon S-phase. The corrosion behaviour of surface engineered samples was investigated with electrochemical methods. Anodic potentiodynamic polarisation curves were recorded for testing the resistance against general corrosion (in H2SO4) and pitting corrosion (in NaCl).

  10. Effects of Nitrogen Concentration on Microstructure and Antibac-terial Property of Copper-Bearing Austenite Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    Zhixia ZHANG; Laizhu JIANG; Gang LIN; Zhou XU

    2008-01-01

    Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food indus-tries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much research interest due to its antibacterial action. The objective of this study was to determine the effects of nitro-gen concentration on the precipitation of epsilon copper and antibacterial property. Two kinds of austenite antibacterial stainless steels containing copper and different nitrogen concentration (0.02 and 0.08 wt pct, re-spectively) were prepared and the microstructures were characterized by a combination of electron microscopy and thermodynamic analysis. A mathematical expression was deduced to predict the effect of nitrogen con-centration on the activity coefficient of copper, In(fCu/focu)=0.53524+4.11xN-0.48x2N. Higher nitrogen was found to increase the free energy difference of copper concentration distribution between precipitation phase and austenite matrix, stimulate the aggregation of copper atoms from austenite, increase the precipitation amount and consequently enhance the antibacterial property of steel.

  11. Grain-to-Grain Variations in NbC Particle Size Distributions in an Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Barlow, Claire; Ralph, B.; Silverman, B.;

    1979-01-01

    Quantitative information has been obtained concerning the size distributions of NbC precipitate particles in different grains in a deformed and aged austenitic stainless steel specimen. The precipitate size distributions obtained differ from one grain to another. The average disparity measured be...

  12. A ferric-austenitic CrNiMoN steel alloy to be used as material to manufacture welded components

    International Nuclear Information System (INIS)

    A chromium-nickel-molybdenum-nitrogen steel alloy (ferritic-austenite) is used to manufacture welded articles which without thermal treatment are resistant to pitting corrosion, intergranular corrosion (Monypenny-Stauss test) or boiling in 65% nitric acid with subsequent cross-breaking test. (IHOE)

  13. Concept for the monitoring of weld seams on pressure pipes made of austenitic steel using ultrasonic processes

    International Nuclear Information System (INIS)

    A concept for the repeat testing of weld seams in pipelines made of Austenitic steel using ultrasonic processes is developed and tested. Even with varying sound attenuation in the material and on the occurence of 'ghost' indications, it ensures certain indication of faults. Further, the depth of cracks can be assessed, for example by the height of echos, even for large extents. (orig.)

  14. Microstructural Evolution of a Low-Carbon Steel during Application of Quenching and Partitioning Heat Treatments after Partial Austenitization

    NARCIS (Netherlands)

    Santofimia, M.J.; Zhao, L.; Sietsma, J.

    2008-01-01

    The “quenching and partitioning” (Q&P) process has been studied in a low-carbon steel containing 1.1 wt pct aluminum by heat treatments consisting of partial austenitization at 900 °C and subsequent rapid cooling to a quenching temperature in the range between 125 °C and 175 °C, followed by an isoth

  15. Statistical model of water environment effects on the fatigue behavior of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul [AREVA GmbH, Erlangen (Germany); Erlangen-Nuernberg Univ., Erlangen (Germany). Chair of Applied Mechanics; Steinmann, Paul [Erlangen-Nuernberg Univ., Erlangen (Germany). Chair of Applied Mechanics; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany)

    2014-07-01

    Many studies on the effects of elevated temperature environments on the cycle fatigue performance of austenitic stainless steels typically used for boiling and light water reactor components have been performed. The key parameters (e. g. strain rate, and temperature) that influence the fatigue life were identified and the range of these key parameters where environmental effects become pronounced were defined. The two major efforts to characterize environmentally assisted fatigue (EAF) are by Argonne National Laboratory (U. S.) and EFD (Japan). Since each nation considers only domestic fatigue data, the widely applied titanium and niobium stabilized austenitic stainless steels in Germany are not included by any data points in these models. Based on a review of past and current research reports about EAF a database for wrought Types 304, 304L, 316, 316NG, 321, 347, and 348 stainless steels was compiled. Only specimen tests under strain control with a fully reversed uniaxial loading were included. The modified Langer equation was used to develop the room temperature in air curve to the collected data, which serves as the basis for the discussion of the EAF database. Besides the key variables that influence fatigue life in light and boiling water reactor environments additional parameters like, for example, the strain amplitude, which pronounces environmental effects more at low than at high strain amplitudes, can reduce the fatigue life by a factor of about two and should not be neglected in the current fatigue approach. A statistical model is evolved to address EAF in fatigue usage calculation by a fatigue life correction factor (F{sub en}), which is defined as the ratio of life in air at room temperature to that in water at elevated temperature. Compared to the current ANL statistical prediction model, a different functional form is used and additional variables are considered, too.

  16. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Field, Kevin G.; Busby, Jeremy T.

    2015-05-15

    The dynamics of deformation localization and dislocation channel formation were investigated in situ in a neutron-irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy (TEM). Channel formation was observed at ∼70% of the polycrystalline yield stress of the irradiated materials (σ{sub 0.2}). It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the σ{sub 0.2}, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young’s modulus) in channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in “soft” grains with a high Schmid factor located near “stiff” grains with high elastic stiffness. The spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one-third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. In the AISI 304 steel, channels in grains oriented close to 〈0 0 1〉||TA (tensile axis) and 〈1 0 1〉||TA were twin free and grain with 〈1 1 1〉||TA and grains oriented close to a Schmid factor maximum contained deformation twins.

  17. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    Directory of Open Access Journals (Sweden)

    Białobrzeska B.

    2015-09-01

    Full Text Available Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for heat treatment. These steels are supplied by the manufacturer after cold or hot rolling so that it is possible for them to be heat treated in a suitable manner by the purchaser for its specific application. Very important factor that determines the mechanical properties of final product is austenite grain growth occurring during hot working process such us quenching or hot rolling. Investigation of the effect of heating temperature and holding time on the austenite grain size is necessary to understand the growth behavior under different conditions. This article presents the result of investigation of austenite grain growth in selected low-allow boron steel with high resistance to abrasive wear and attempts to describe the influence of chemical composition on this process.

  18. Electron Backscatter Diffraction Analysis of Joints Between AISI 316L Austenitic/UNS S32750 Dual-Phase Stainless Steel

    Science.gov (United States)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-01

    Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.

  19. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chopra, O. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gruber, Eugene E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shack, William J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  20. Effect of Treatment Time on the Microstructure of Austenitic Stainless Steel During Low-Temperature Liquid Nitrocarburizing

    Science.gov (United States)

    Wang, Jun; Lin, Yuanhua; Zhang, Qiang; Zeng, Dezhi; Fan, Hongyuan

    2014-09-01

    The effect of treatment time on the microstructure of AISI 304 austenitic stainless steel during liquid nitrocarburizing (LNC) at 703 K (430 °C) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Experimental results revealed that the modified layer was covered with the alloy surface and the modified layer depth increased extensively from 2 to 33.4 μm with increasing treatment time. SEM and XRD showed that when the 304 stainless steel sample was subjected to LNC at 703 K (430 °C) for less than 4 hours, the main phase of the modified layer was expanded austenite. When the treatment time was prolonged to 8 hours, the abundant expanded austenite was formed and it partially transformed into CrN and ferrite subsequently. With the increased treatment time, more and more CrN precipitate transformed in the overwhelming majority zone in the form of a typical dendritic structure in the nearby outer part treated for 40 hours. Still there was a single-phase layer of the expanded austenite between the CrN part and the inner substrate. TEM showed the expanded austenite decomposition into the CrN and ferrite after longtime treatment even at low temperature.

  1. The influence of chromium on the pearlite-austenite transformation kinetics of the Fe–Cr–C ternary steels

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingnan; Liu, Yaohui, E-mail: liuyaohui2005@126.com; Liu, Jia' an; Song, Yulai; Li, Shasha; Zhang, Renhang; Li, Tuanjie; Liang, Yan

    2015-11-05

    The Fe–Cr–C ternary steels containing different contents of Cr were successfully cast and further processed in the lab. Differential scanning calorimetry (DSC), optical microscope (OM), and scanning electron microscope (SEM) were employed to investigate the transformation of the Fe–Cr–C ternary steels from pearlite to austenite. It is found that the values of Ac1 and Ac3 are raised with increase in the content of Cr. In addition, the information on the transformation kinetics was obtained from experiment results and the Johnson-Mehl-Avrami-Kolmogorov model (JMAK). The obtained austenitic transformation kinetic process has been described in three overlapping steps: site saturation nucleation, diffusion-controlled growth, and impingement correction. The pre-exponential factor for diffusion decreases firstly and then increases. The activation energy for diffusion increases with the Cr content. In addition, Cr strongly affects the effective diffusion distance, the austenite nucleation sites, and the carbon activity gradient during the austenitic transformation kinetic process. - Highlights: • The pearlite-austenite transformation kinetics is researched by DSC. • The transformation kinetics is analyzed by experiment results and the JMAK model. • The activation energy and the diffusion coefficient are discussed.

  2. Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels

    Science.gov (United States)

    Isasti, N.; Jorge-Badiola, D.; Taheri, M. L.; López, B.; Uranga, P.

    2011-12-01

    Thermomechanical processing of microalloyed steels containing niobium can be performed to obtain deformed austenite prior to transformation. Accelerated cooling can be employed to refine the final microstructure and, consequently, to improve both strength and toughness. This general rule is fulfilled if the transformation occurs on a quite homogeneous austenite microstructure. Nevertheless, the presence of coarse austenite grains before transformation in different industrial processes is a usual source of concern, and regarding toughness, the coarsest high-angle boundary units would determine its final value. Sets of deformation dilatometry tests were carried out using three 0.06 pct Nb microalloyed steels to evaluate the effect of Mo alloying additions (0, 0.16, and 0.31 pct Mo) on final transformation from both recrystallized and unrecrystallized coarse-grained austenite. Continuous cooling transformation (CCT) diagrams were created, and detailed microstructural characterization was achieved through the use of optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), and electron backscattered diffraction (EBSD). The resultant microstructures ranged from polygonal ferrite (PF) and pearlite (P) at slow cooling ranges to bainitic ferrite (BF) accompanied by martensite (M) for fast cooling rates. Plastic deformation of the parent austenite accelerated both ferrite and bainite transformation, moving the CCT curves to higher temperatures and shorter times. However, an increase in the final heterogeneity was observed when BF packets were formed, creating coarse high-angle grain boundary units.

  3. Assessment of void swelling in austenitic stainless steel PWR core internals.

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling

  4. Crack initiation in smooth fatigue specimens of austenitic stainless steel in light water reactor environments.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Smith, J. L.

    1999-04-08

    The fatigue design curves for structural materials specified in Section III of the ASME Boiler and Pressure Vessel Code are based on tests of smooth polished specimens at room temperature in air. The effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves; however, recent test data illustrate the detrimental effects of LWR coolant environments on the fatigue resistance of austenitic stainless steels (SSs). Certain loading and environmental conditions have led to test specimen fatigue lives that are significantly shorter than those obtained in air. Results of fatigue tests that examine the influence of reactor environments on crack initiation and crack growth of austenitic SSs are presented. Block loading was used to mark the fracture surface to determine crack length as a function of fatigue cycles in water environments, Crack lengths were measured by scanning electron microscopy. The mechanism for decreased fatigue life in LWR environments is discussed, and crack growth rates in the smooth fatigue specimens are compared with existing data from studies of crack growth rates.

  5. Ultrasonic flaw detection of austenitic stainless steel longitudinally welded pipe and tubing

    International Nuclear Information System (INIS)

    Recently there has been the trend that the welded austenitic stainless steel pipe and tubing are used in the nuclear industry in place of the seamless pipe and tubing. For most of the nuclear components, the pipe and tubing must be examined with ultrasonic method by the demands of ASME SA-655. But the ultrasonic flaw detection of the austenitic welds is generally difficult because of scattering and deflection of the acoustic beam due to the coarse grained and elastically anisotropic preferred oriented structure of dendrite. For the thinner welds of pipe and tubing, the attenuation and deflection of the beam do not make the serious problems, however, the deterioration of the signal-to-noise ratio by the coherent structural noise from the welds may still disturb the flaw detection. The longitudinal wave can be employed to suppress the structural noise. This depends upon its longer wave length. In the automatic examination of the pipe and tubing, however, the customary shear wave angle beam technique must be applied to use the skipped beam

  6. Effect of thermal cycles on heavily cold deformed AISI 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    The solution treated commercial grade AISI 304L austenitic stainless steel plate was heavily cold rolled to 90% of thickness reduction. Cold rolled specimens were annealed at various temperatures by thermal cycles and isothermal annealing. Strain-induced phase transformations and microstructure studies were carried out both in the cold rolled and annealed conditions. The X-ray diffraction and magnetic measurements were used for phase transformation studies. The transmission electron microscope characterisation revealed that the cyclic thermal process resulted in ultrafine grain austenite formation whereas, the isothermal annealing developed coarser grain size microstructure. The different microstructural evolutions by the above two processes largely influenced the development of the recrystallisation texture. The thermal cycling produced a distinct γ-fibre texture while the isothermal annealing resulted in a cube texture component along with the γ-fibre. The γ-fibre texture evolution was attributed to the over critical subgrains or nuclei and {1 0 0} cube texture to the coarser grains of micrometer size.

  7. Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression

    Institute of Scientific and Technical Information of China (English)

    Amir Momeni; Shahab Kazemi; Golam Ebrahimi; Alireza Maldar

    2014-01-01

    Dynamic recrystallization and precipitation in a high manganese austenitic stainless steel were investigated by hot compression tests over temperatures of 950-1150°C at strain rates of 0.001 s-1-1 s-1. All the flow curves within the studied deformation regimes were typ-ical of dynamic recrystallization. A window was constructed to determine the value of apparent activation energy as a function of strain rate and deformation temperature. The kinetics of dynamic recrystallization was analyzed using the Avrami kinetics equation. A range of apparent activation energy for hot deformation from 303 kJ/mol to 477 kJ/mol is obtained at different deformation regimes. Microscopic characterization confirms that under a certain deformation condition (medium Zener-Hollomon parameter (Z) values), dynamic recrystalliza-tion appears at first, but large particles can not inhibit the recrystallization. At low or high Z values, dynamic recrystallization may occur be-fore dynamic precipitation and proceeds faster. In both cases, secondary phase precipitation is observed along prior austenite grain bounda-ries. Stress relaxation tests at the same deformation temperatures also confirm the possibility of dynamic precipitation. Unexpectedly, the Avrami's exponent value increases with the increase of Z value. It is associated with the priority of dynamic recrystallization to dynamic pre-cipitation at higher Z values.

  8. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    Science.gov (United States)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  9. Effects of Mo on the Precipitation Behaviors in High-Nitrogen Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    Feng Shi; Yang Qi; Chunming Liu

    2011-01-01

    Precipitation behaviors of Fe-18Cr-18Mn-0.63N and Fe-18Cr-18Mn-2Mo-0.69N high-nitrogen austenitic stainless steels during isothermally aging at 850℃ have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The experimental results show that precipitation displays a discontinuous cellular way and the precipitates are identified as Cr2N in Fe-18Cr-18Mn-0.63N steel. The addition of Mo makes precipitation occur not only at the grain boundary but also inside the grain and precipitation also displays discontinuous cellular way. The precipitates at the grain boundary and in the cell are both identified as G2N phase and χ phase and the precipitates inside the grain are identified as χ phase in Fe-18Cr-18Mn-2Mo-0.69N steel. The nucleations of χ phase and Cr2N phase at the grain boundary are both governed by the diffusion of Cr atoms. The formation and growth of χ phase inside the grain are induced by the impoverishment of N atoms with increasing aging time.

  10. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  11. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel

    Directory of Open Access Journals (Sweden)

    Josip Brnic

    2016-04-01

    Full Text Available The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed.

  12. Static recrystallisation and precipitation after hot deformation of austenitic stainless steels containing molybdenum and niobium

    International Nuclear Information System (INIS)

    In general the hot workability of austenite depends on the work hardening during deformation and the kinetics of the dynamic and static restoration processes. Static recrystallisation is a very important factor in the case of hot rolling. The present work was undertaken to determine the effect of additions of molybdenum or niobium on the kinetics of static recrystallisation. The results show that the rate of static recrystallisation of type 304, 316 and 347 stainless steels decreases in this order for a given amount of prior deformation (epsilon=0,44). The differences in the rates of recrystallisation increases as the temperature is lowered towards 900 deg C. The effect of molybdenum appears to be attribuable to a solute drag effect on the mobility of dislocations, subgrain boundaries or grain boundaries whereas niobium additions lead to the formation of NbC precipitates on the dislocation cell walls and sub boundaries. It is also shown that in the case of type 316 and type 347 steels the dynamic recrystallisation process (observed in type 304 steels at all temperatures above 900 deg C) is replaced by dynamic recovery at temperatures egal to or below about 1000 deg C

  13. Recrystallization-precipitation interaction during austenite hot deformation of a Nb microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Vervynckt, S. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium); Verbeken, K., E-mail: Kim.Verbeken@UGent.be [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium); Max-Planck-Institut fur Eisenforschung, Max-Planck-Strasse 1, 40237 Duesseldorf (Germany); Thibaux, P. [OCAS N.V., ArcelorMittal R and D Industry Ghent, J.F. Kennedylaan 3, B-9060 Zelzate (Belgium); Houbaert, Y. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Ghent (Belgium)

    2011-06-25

    Highlights: {yields} Recrystallization-precipitation interaction was studied in well-designed HSLA steel. {yields} Recrystallization process was monitored by multiple characterization techniques. {yields} The Zener drag force evolution was determined based on experimental data. {yields} A reasonable estimate of the recrystallization driving force was made. {yields} Correlation between recrystallization and precipitate pinning was demonstrated. - Abstract: The role of Nb during austenite processing of High Strength Low Alloy (HSLA) steels has been the subject of considerable interest and discussion over the past decades. In this work, the precipitation state of a Nb microalloyed steel is studied extensively during the different stages of the process, i.e. after reheating, during cooling, during deformation and during recrystallization. To do so, a combination of experimental methods was applied: Transmission Electron Microscopy in combination with Energy Dispersive X-ray Spectroscopy (TEM-EDX), Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and X-ray Diffraction (XRD). To obtain the best accuracy for these precipitation measurements, a model alloy was designed that showed extensive precipitation. From this experimental study, a correlation between the precipitate pinning and the recrystallization driving force could be made and the precipitation state during recrystallization could be linked to the recrystallization kinetics by comparison of the recrystallization driving force to the Zener pinning force. It was confirmed that recrystallization occurred during the precipitate nucleation and coarsening stage, while it was halted completely during the precipitation growth stage.

  14. Evaluation of neutron irradiation effect on SCC crack growth behaviour for austenitic stainless steels

    International Nuclear Information System (INIS)

    Austenitic stainless steels are widely used as structural components in reactor pressure vessel internals because of their high strength, ductility, and fracture toughness. However, exposure to neutron irradiation results in changes in microstructure, mechanical properties and microchemistry of the steels. Irradiation assisted stress corrosion cracking (IASCC) caused by the effect of neutron irradiation during long term plant operation in high temperature water environments is considered to take the form of intergranular stress corrosion cracking (IGSCC) and the critical fluence level has been reported to be about 5x1024n/m2 (E>1MeV) in Type 304 stainless steel in BWR environment. JNES had been conducting IASCC project during the JFY (2000) - JFY (2008) period, and prepared an engineering database on IASCC. However, the data of Crack Growth Rate (CGR) below the critical fluence level are not sufficient. So, this project was initiated to obtain the CGR data below the critical fluence level. Test specimens have been irradiated in the Halden reactor, operating by the OECD Halden Reactor Project, and the post irradiation examination (PIE) will be conducted from JFY (2011) to JFY (2013), finally the modified IASCC guide will be prepared in JFY (2013). (author)

  15. Damage structure of austenitic stainless steel 316LN irradiated at low temperature in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, N.; Robertson, J.P.; Grossbeck, M.L.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States); Wakai, E. [Japan Atomic Energy Research Inst. (Japan)

    1998-03-01

    TEM disk specimens of austenitic stainless steel 316LN irradiated to damage levels of about 3 dpa at irradiation temperatures of either about 90 C or 250 C have been investigated by using transmission electron microscopy. The irradiation at 90 C and 250 C induced a dislocation loop density of 3.5 {times} 10{sup 22} m{sup {minus}3} and 6.5 {times} 10{sup 22} m{sup {minus}3}, a black dot density of 2.2 {times} 10{sup 23} m{sup {minus}3} and 1.6 {times} 10{sup 23} m{sup {minus}3}, respectively, in the steels, and a high density (<1 {times} 10{sup 22} m{sup {minus}3}) of precipitates in matrix. Cavities could be observed in the specimens after the irradiation. It is suggested that the dislocation loops, the black dots, and the precipitates cause irradiation hardening, an increase in the yield strength and a decrease in the uniform elongation, in the 316LN steel irradiated at low temperature.

  16. Corrosion sensitization behavior and mechanical properties of liquid-nitrogen-deformed austenitic 304 stainless steel

    Science.gov (United States)

    Maldonado, Julio Gerardo

    Plastic deformation of 304 stainless steel at liquid nitrogen temperature ({-}196sp°C) produces an almost complete transformation to strain-induced alphasp'/-martensite which provides the necessary conditions for a pseudo-recrystallization of the microstructure. This "so-called" pseudo-recrystallization results directly from the martensitic reversion (i.e. martensite to austenite reverse transformation) upon the application of heat treatment within the sensitization temperature range. The very fine duplex (alpha/gamma) microstructure which results (after heat treatment-0.1h-670sp°C) is also accompanied by a very extensive and homogeneous precipitation of chromium-rich carbides. The concomitant pseudo-recrystallization and precipitation processes not only have a profound positive effect on the sensitization behavior, but also affect the mechanical properties of the material. This suggests that 304 stainless steel could be thermo-mechanically treated, to in essence, heal itself and simultaneously produce an extremely fine (≈0.1mum) duplex grain structure with intermixed carbides to form a very high strength product. This might have important practical implications since 304 stainless steel is the material of choice in many engineering applications. Electrochemical testing, transmission electron microscopy, scanning electron microscopy, optical microscopy, neutron diffraction, X-ray diffraction, and mechanical testing were some of the techniques employed in this work.

  17. Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel

    Science.gov (United States)

    Yin, Xue; Sun, Yanhui; Yang, Yindong; Bai, Xuefeng; Barati, Mansoor; Mclean, Alex

    2016-04-01

    The behavior and formation mechanisms of inclusions in Ti-stabilized, 17Cr Austenitic Stainless Steel produced by the ingot casting route were investigated through systematic sampling of liquid steel and rolled products. Analysis methods included total oxygen and nitrogen contents, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicate that the composition of inclusions was strongly dependent on the types of added alloying agents. During the AOD refining process, after the addition of ferrosilicon alloy and electrolytic manganese, followed by aluminum, the composition of inclusions changed from manganese silicate-rich inclusions to alumina-rich inclusions. After tapping and titanium wire feeding, pure TiN particles and complex inclusions with Al2O3-MgO-TiO x cores containing TiN were found to be the dominant inclusions when [pct Ti] was 0.307 mass pct in the molten steel. These findings were confirmed by thermodynamic calculations which indicated that there was a driving force for TiN inclusions to be formed in the liquid phase due to the high contents of [Ti] and [N] in the molten steel. From the start of casting through to the rolled bar, there was no further change in the composition of inclusions compared to the titanium addition stage. Stringer-shaped TiN inclusions were observed in the rolled bar. These inclusions were elongated along the rolling direction with lengths varying from 17 to 84 µm and could have a detrimental impact on the corrosion resistance as well as the mechanical properties of the stainless steel products.

  18. Elastic and plastic strains and the stress corrosion cracking of austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    The influence of elastic (stress) and plastic (cold work) strains on the stress corrosion cracking of a transformable austenitic stainless steel was studied in several aqueous chloride environments. Initial polarization behavior was active for all deformation conditions as well as for the annealed state. Visual observation, potential-time, and current-time curves indicated the development of a pseudo-passive (flawed) film leading to localized corrosion, occluded cells and SCC. SCC did not initiate during active corrosion regardless of the state of strain unless severe low temperature deformation produced a high percentage of martensite. Both elastic and plastic deformation increased the sensitivity to SCC when examined on the basis of percent yield strength. The corrosion potential, the critical cracking potential, and the potential at which the current changes from anodic to cathodic were essentially unaffected by deformation. It is apparent that the basic electrochemical parameters are independent of the bulk properties of the alloy and totally controlled by surface phenomena

  19. Investigations on cyclic thermal fatigue of 1.4436 austenitic steel tubes

    International Nuclear Information System (INIS)

    Results of crack initiation and crack propagation in 1.4436 austenitic steel tubes under cyclic thermal loading are presented. From outside the tubes are induction heated rotation symmetrically, the interior is cooled by water. Crack initiation and propagation on the inner surface is investigated with an endoscope in fixed intervalls. The crack distribution is evaluated statistically. The temperature distribution in the wall is calculated analytically and allowed further calculations of elastic and inelastic stress-strain-distributions. Crack propagation is described with the methods of fracture mechanics (K-Concept, J-Integral). Results of lifetime and crack initiation from isothermal uniaxial fatigue tests are compared with the results from the thermal fatigue tests. (orig.)

  20. Mechanical testing of austenitic steel welded joints. Joint final report - Vol. 2

    International Nuclear Information System (INIS)

    In the field of material properties and structural behaviour of LMFBR reactor components under normal operation and accident conditions, the Commission of the European Communities has promoted an experimental study on the mechanical properties of welded austenitic steel type AISI 316L. The study was launched in the frame of the Shared Cost Action (SCA) programme 1985-1987 on reactor safety. The research was performed in four European laboratories and coordinated by JRC-Ispra. Five different welding methods have been examined. The manufacture and characterization of the welds has been described in a separate report. The present report gives the results of four different mechanical tests carried out on the weld material. The comparison of results proved that, at the present state of development, the vacuum electron beam method seems to have clear advantages as compared with the other methods investigated

  1. Performance evaluation of vegetable-based oils in drilling austenitic stainless steel

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2004-01-01

    The efficiency of six cutting oils was evaluated in drilling AISI 316L austenitic stainless steel using conventional HSS-Co tools by measurements of tool life, tool wear, cutting forces and chip formation. Seven tools were tested with each fluid to catastrophic failure. Cutting forces and chip...... breaking were recorded for each bore, and tool wear was measured at constant intervals. A commercial mineral-based oil was taken as reference product, and five vegetable-based cutting fluids at different levels of additivation were tested. All measured parameters were in agreement, confirming...... that a performing fluid produces longer tool life, better chip breaking, lower wear and cutting forces. In particular, good correlation was found between tool life and cutting forces. Differences in cutting forces due to the fluid could be measured with a higher repeatability than tool life, thus resulting...

  2. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L. [Oak Ridge National Laboratory, TN (United States); Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  3. Microstructural observations of HFIR-irratiated austenitic stainless steels including welds from JP9-16

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, T.; Shiba, K.; Hishinuma, A.

    1996-04-01

    Austenitic stainless steels, including specimens taken from various electron beam (EB) welds, have been irradiated in HFIR Phase II capsules, JP9-16. Fifteen specimens irradiated at 300, 400, and 500{degrees}C up to 17 dpa are so far examined by a transmission electron microscope (TEM). In 300{degrees}C irradiation, cavities were smaller than 2nm and different specimens showed little difference in cavity microstructure. At 400{degrees}C, cavity size was larger, but still very small (<8 nm). At 500{degrees}C, cavity size reached 30 nm in weld metal specimens of JPCA, while cold worked JPCA contained a small (<5 nm) cavities. Inhomogeneous microstructural evolution was clearly observed in weld-metal specimens irradiated at 500{degrees}C.

  4. Behavior of super-austenitic stainless steels in chlorinated brackish seawater

    Energy Technology Data Exchange (ETDEWEB)

    Ives, M.B. [McMaster Univ., Hamilton, Ontario (Canada)

    1994-12-31

    A series of highly-alloyed austenitic stainless steels has been exposed in a model heat exchanger cooled with water from a brackish inlet in southeast Florida. The behavior of the alloys has been found to depend significantly on the formation of adherent surface deposits. These deposits may occur under certain conditions when natural seawater is used, but the use of chlorination has been found invariably to produce significant deposits, beneath which even the more highly alloyed tubing suffered considerable localized corrosion. It is suggested from noise analysis of the electrochemical potential of individual electrically isolated tubes that the noise analysis might be appropriate as an on-line corrosion monitoring technique for complete heat exchangers, as an alternative to the use of independent monitoring probes.

  5. Formation of dislocations, precipitates and cavities in He-implanted Mn-Cr austenitic steels

    Science.gov (United States)

    Ruedl, E.; Valdrè, G.

    1991-03-01

    Solution-annealed discs of three Mn-Cr austenitic steels containing different amounts of C and N were uniformly implanted at 310 K with 1000 appm He corresponding to ~ 0.2 dpa. The samples were subsequently aged at temperatures from 923 to 1073 K for various times and, after electropolishing, examined by TEM, EDS and EELS. A study was made of the dislocation loops developing on aging and of the compositional changes in their neighbourhood. The formation and growth of precipitates and He-filled cavities was also investigated together with the elemental segregation to the cavity surfaces. It was found that the microstructural evolution in the three materials can take various forms depending on many parameters.

  6. Noncontact nonlinear resonant ultrasound spectroscopy to evaluate creep damage in an austenitic stainless steel

    Science.gov (United States)

    Ohtani, T.; Kusanagi, Y.; Ishii, Y.

    2013-01-01

    In this paper, we described an evaluating technique of creep damage in an austenitic stainless steel by the combination with an electromagnetic acoustic transducer (EMAT) and the nonlinear resonant ultrasound spectroscopy (NRUS), which was a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity was manifest by a shift in the resonance frequency. The nonlinearity with NRUS showed a peak at 50 % and a minimum at 70 % of the total creep life. This nonlinearity measurement has a potential to assess creep damage advance and predict the creep remaining life of metals.

  7. Surface Modification by Nitrogen Plasma Immersion Ion Implantation on Austenitic AISI 304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Miguel CASTRO-COLIN; William DURRER; Jorge ALPEZ; Enrique RAMIREZ-HOMS

    2016-01-01

    Surfaces of AISI 304 austenitic stainless steel plates nitrided by plasma immersion ion implantation (PIII) technology were studied by means of Auger electron spectroscopy (AES)and X-ray photoelectron spectroscopy (XPS)to determine the effect of the nitriding process on the surface and subjacent layers.Elemental compositions obtained by AES and XPS at varying depths indicate that the saturation of N is relatively constant as a function of depth,indicating the reliability of PIII technology for subsurface saturation.It is concluded that the concentrations of both Cr and O increase with depth,the subjacent oxide is driven by the Ar+ sputtering process used to access the lower layers,and then N is bound to Cr.

  8. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    International Nuclear Information System (INIS)

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation

  9. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures

    International Nuclear Information System (INIS)

    In the dose and temperature range anticipated for ITER, austenitic stainless steels exhibit significant hardening with a concomitant loss in work hardening and uniform elongation. However, significant post-necking ductility may still be retained. When uniform elongation (eu) is well defined in terms of a plastic instability criterion, eu is found to sustain reasonably high values out to about 7 dpa in the temperature range 250-350 C, beyond which it decreases to about 0.3% for 316LN. This loss of ductility has significant implications to fracture toughness and the onset of new failure modes associated with hear instability. However, the retention of a significant reduction in area at failure following irradiation indicates a less severe degradation of low-cycle fatigue life in agreement with a limited amount of data obtained to date. Suggestions are made for incorporating these results into design criteria and future testing programs

  10. Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Frutos, E. [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)] [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain); Multigner, M. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain); Gonzalez-Carrasco, J.L., E-mail: jlg@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)

    2010-07-15

    This research addresses the determination of residual stresses in sandblasted austenitic steel by ultramicroindentation techniques using a sharp indenter, of which the sensitivity to residual stress effects is said to be inferior to that of spherical ones. The introduction of an angular correction in the model of Wang et al. which relates variations in the maximum load to the presence of residual stresses is proposed. Similarly, the contribution to the hardness of grain size refinement and work hardening, developed as a consequence of the severe plastic deformation during blasting, is determined in order to avoid overestimation of the residual stresses. Measurements were performed on polished cross sections along a length of several microns, thus obtaining a profile of the residual stresses. Results show good agreement with those obtained by synchrotron radiation on the same specimens, which validates the method and demonstrates that microindentation using sharp indenters may be sensitive to the residual stress effect.

  11. Fatigue crack propagation in welded joint of austenitic steel for nuclear power engineering

    International Nuclear Information System (INIS)

    The crack propagation characteristics were obtained for Cr-Ni type austenitic steel 08Kh18N10T under variable stress in the individual zones of a welded joint on a pipe. Measurements of the threshold deviation of the stress intensity factor, ΔKp, showed that the root zone of the pipe welded joint was the weakest point as concerns crack propagation. The threshold values obtained for the filler metal on the pipe outer surface were considerably greater than those for the root zone of the welded joint and slightly greater than those for the base material and for the transition between the joint and the base material. The measured propagation response showed that the rate of fatigue crack propagation was for the base material higher by up to one order for low ΔK than for the filler joint and the root zone of the joint. (J.B.). 5 figs., 3 tabs., 6 refs

  12. Evaluation of residual stress distribution in austenitic stainless steel pipe butt-welded joint

    International Nuclear Information System (INIS)

    This paper reports measured and estimated results of residual stress distributions of butt-welded austenitic stainless steel pipe in order to improve estimation accuracy of welding residual stress. Neutron diffraction and strain gauge method were employed for the measurement of the welding residual stress and its detailed distributions on inner and outer surface of the pipe as well as the distributions within the pipe wall were obtained. Finite element method was employed for the estimation. Transient and residual stresses in 3D butt-welded joint model were computed by employing Iterative Substructure Method and also commercial FEM code ABAQUS for a reference. The measured and estimated distributions presented typical characteristic of straight butt-welded pipe which had decreasing trend along the axial direction and bending type distributions through wall of the pipe. Both results were compared and the accuracy of measurement and estimation was discussed. (author)

  13. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St. Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Jones, C.P. [Interface Analysis Centre, University of Bristol, 121 St. Michael' s Hill, Bristol BS2 8BS (United Kingdom)

    2011-04-15

    Inter-granular creep cavitation damage has been observed in an ex-service 316H austenitic stainless steel thick section weldment. Focused ion beam cross-section milling combined with ion channelling contrast imaging is used to identify the cavitation damage, which is usually associated with the grain boundary carbide precipitates in this material. The results demonstrate that this technique can identify, in particular, the early stage of grain boundary creep cavitation unambiguously in materials with complex phase constituents. -- Research highlights: {yields} FIB milling plus ion channelling contrast optimise the observation of cavity. {yields} Identification of the creep cavities unambiguously, using an FIB technique. {yields} The FIB technique can retain the polyhedral shape of cavity. {yields} Various stages of creep cavitation can be observed, using the FIB technique.

  14. Effect of Plasma Nitriding Temperatures on Characteristics of Aisi 201 Austenitic Stainless Steel

    Science.gov (United States)

    Gao, Yuxin; Zheng, Shaomei

    2016-10-01

    Samples of AISI 201 austenitic stainless steel were produced by plasma nitriding at 350∘C, 390∘C, 420∘C, 450∘C and 480∘C for 5h. Systematic characterization of the nitrided layer was carried out in terms of micrograph observations, phase identification, chemical composition depth profiling, surface microhardness measurements and electrochemical corrosion tests. The results show that the surface hardness and the layer thickness increased with increasing temperature. XRD indicated that a single S-phase layer was formed during low temperature (≤420∘C), while Cr2N or CrN phase was formed besides S-phase when nitrided at 450∘C and 480∘C. The specimen treated at 390∘C presents a much enhanced corrosion resistance compared to the untreated substrate. The corrosion resistance deteriorated for samples treated above 450∘C due to the formation of chromium nitrides.

  15. Corrosion Fatigue of Austenitic Stainless Steel in Different Hot Chloride Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Visser, A.; Mori, G.; Panzenboeck, M. [Montanuniversitaet Leoben, Leoben (Austria); Pippan, R. [Erich Schmid Institute of Materials Science, Austrian Academy of Science, Leoben (Austria)

    2015-08-15

    Austenitic stainless steel was investigated under cyclic loading in electrolytes with different chloride contents and pH and at different temperatures. The testing solutions were 13.2 % NaCl (80,000 ppm Cl-) at 80 °C and 43 % CaCl{sub 2} (275,000 ppm Cl-) at 120 °C. In addition to S-N curves in inert and corrosive media, the fracture surfaces were investigated with a scanning electron microscope (SEM) to analyse the type of attack. The experimental results showed that a sharp decrease in corrosion fatigue properties can be correlated with the occurrence of stress corrosion cracking. The correlation of occurring types of damage in different corrosion systems is described.

  16. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Science.gov (United States)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  17. Cyclic deformation behavior of a 316L austenitic stainless steel processed by high pressure torsion

    International Nuclear Information System (INIS)

    The influence of severe plastic deformation (SPD) on the fatigue behavior of a modified 316L austenitic stainless steel is investigated. Different ultrafine-grained and nanocrystalline microstructures are obtained by changing the processing parameters and applying a post heat treatment procedure. Samples are fatigued using both, load and strain controlled experiments. High pressure torsion processing makes it possible to reach a saturation microstructure, which is cyclically stable up to a stress level three times higher than the stress level of the coarse-grained structure. Fracture surface investigations and surface damage clearly show that the failure behavior of the SPD states under cyclic loading is different to their coarse-grained counterparts. For these microstructures, localized deformation in shear bands seems to play a major role for crack initiation and propagation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Influence of the austenitic stainless steel microstructure on the void swelling under ion irradiation

    Directory of Open Access Journals (Sweden)

    Rouxel Baptiste

    2016-01-01

    Full Text Available To understand the role of different metallurgical parameters on the void formation mechanisms, various austenitic stainless steels were elaborated and irradiated with heavy ions. Two alloys, in several metallurgical conditions (15Cr/15Ni–Ti and 15Cr/25Ni–Ti, were irradiated in the JANNUS-Saclay facility at 600 °C with 2 MeV Fe2+ ions up to 150 dpa. Resulting microstructures were observed by Transmission Electron Microscopy (TEM. Different effects on void swelling are highlighted. Only the pre-aged samples, which were consequently solute and especially titanium depleted, show cavities. The nickel-enriched matrix shows more voids with a smaller size. Finally, the presence of nano-precipitates combined with a dense dislocation network decreases strongly the number of cavities.

  19. Depth distribution analysis of Martensitic transformations in Xe implanted austenitic stainless steel

    DEFF Research Database (Denmark)

    Johnson, E.; Gerritsen, E.; Chechenin, N.G.;

    1989-01-01

    transformation in the implanted layer. In this work we present results from a depth distribution analysis of the martensitic phase change occurring in Xe implanted single crystals of austenitic stainless steel. Analysis was done by in situ RBS/channeling analysis, X-ray diffraction and cross-section transmission...... electron microscopy (XTEM) of the implanted surface. It is found that the martensitic transformation of the surface layer occurs for fluences above 1 × 1020 m−2. The thickness of the transformed layer increases with fluence to ≈ 150 nm at 1 × 10 21 m−2, which far exceeds the range plus straggling...... epitaxial nature of the Xe inclusions, induced prior to the martensitic transformation, was established. The lattice constant obtained from the broad diffraction peak indicates that the pressure in the inclusions is ≈ 5 GPa....

  20. Analysis of the austenitic stainless steel's r-value behavior at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2015-05-01

    Full Text Available An analysis of the anisotropy properties of austenitic steel AISI 304 (X5CrNi18-10 at elevated temperatures is presented in this paper. Considerations of the anisotropy problems are presented in the theoretical part of the paper, as well as the procedure for determination of the normal anisotropy coefficient. The experimental part of the paper describes the plan, methodology and equipment for testing of material's normal anisotropy and mechanical characteristics. The objective of conducting the experiments was to investigate influence of temperature on normal anisotropy, as well as on the mechanical properties of the considered material. The normal anisotropy was monitored by the coefficient – the so-called "r-value". Besides that, the tensile strength, yield stress and elongation at break were monitored, also. The tests were done on the 0.7 mm thick sheet metal within the temperature range 20 to 700°C.