WorldWideScience

Sample records for austempered ductile iron

  1. Evaluation of impact and fatigue properties on austempered ductile iron

    OpenAIRE

    Arias Fernández, Sergio

    2009-01-01

    Austempered Ductile Iron (ADI) proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. In this work impact and the fatigue properties have been evaluated for low alloyed Austempered Ductile Iron. To do this, Charpy-type impact test for austempered ductile iron was performed by the standard ASTM A 327M and Fatigue Crack Growth Rates (FCGR) were measured by the stand...

  2. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-07-01

    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  3. Mechanical properties and structure of austempered ductile iron -ADI

    OpenAIRE

    Krzyńska A.; Kaczorowaki M.

    2007-01-01

    The results of experimental study of austempered ductile iron are presented. The aim of the investigations was to look closer into the structure – mechanical properties relationships of this very attractive cast material. The experiment was carried out with 500 7 grade ductile iron, which was austempered using different parameters of heat treatment. The specimens were first solution treated 1 hour in 910oC and then isothermally quenched for different time in silicon oil bath of temperature 27...

  4. An austempering study of ductile iron alloyed with copper

    OpenAIRE

    OLIVERA ERIC; DRAGAN RAJNOVIC; LEPOSAVA SIDJANIN; SLAVICA ZEC; MILAN T. JOVANOVIC

    2005-01-01

    Austempered ductile iron (ADI) has proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. These properties can be achieved upon adequate heat treatment which yields the optimum microstructure for a given chemical composition. In this paper the results of an investigation the austempering of ADI alloyed with 0.45 % Cu for a range of times and temperatures are reported. The micros...

  5. Thermomechanical treatment of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    A. A. Nofal

    2007-11-01

    Full Text Available The production of lightweight ferrous castings with increased strength properties became unavoidable facing the serious challenge of lighter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new route for production of thin-wall products. This work aims at studying the influence of thermomechanical treatment, either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after austempering. In the first part of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate of ausferrite formation and leading to a much finer and more homogeneous ausferrite product. The kinetics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on the strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively. A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel is added to ADI to increase hardenability of thick section castings, while ausforming to higher degrees of deformation is necessary to alleviate the deleterious effect of alloy segregation on ductility. In the second part of this work, the influence of cold rolling (CR on the mechanical properties and structural characteristics of ADI was investigated. The variation in properties was related to the amount of retained austenite (γr and its mechanically induced ransformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with tensile strain. The amount of retained austenite was found to

  6. Thermomechanical treatment of austempered ductile iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The production of lightweight ferrous castings with increased strength properties became unavoidable hter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new fluence of thermomechanical treatment,either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate ics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively). A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel eformation is necessary to alleviate the deleterious effect of alloy segregation on ductility.luence of cold rolling (CR) on the mechanical properties and structural characteristics ofADI wasinvestigated. The variation in properties was related to the amount of retained austenite nsformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP) takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with o partial transformation of γr to martensite under the CR strain. Such strain-induced transformation resulted in higher amounts of mechanically generated therefore increased, while ductility and impact toughness decreased with increasing CR reduction.

  7. Successive Boronizing and Austempering for GGG-40 Grade Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    Murat Baydogan; Seckin Izzet Akray

    2009-01-01

    Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.

  8. Improving the fracture toughness of dualphase austempered ductile iron

    OpenAIRE

    Hidalgo García, Javier

    2009-01-01

    Dual Phase Austempered Ductile Irons, DPADI alloys have a microstructure with a combination of ausferrite and pro-eutectoid ferrite along with graphite and residual/retained austenite. To reach this particular microstructure ductile iron is austenized in the austenitepro- eutectoid ferrite region before being carried though an isothermal heat treatment somewhere between the bainite-start and martensite-start temperature. The special austenization procedure makes DPADI prime candidates for app...

  9. APPLICATION OF AUSTEMPERED DUCTILE IRON TO RAIL WHEEL SETS

    Directory of Open Access Journals (Sweden)

    Sacit DÜNDAR

    2003-03-01

    Full Text Available Austempered Ductile Iron (ADI is made up of a composite structure of acicular ferrite and carbon-enriched austenite. The transformation of austenite to martensite under certain stress levels results in a material with a hard rim and a tough internal structure. These properties makes it an alternate material for the production of railcar wheelsets.

  10. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  11. Wear Behavior of Austempered Ductile Iron with Nanosized Additives

    OpenAIRE

    J. Kaleicheva

    2014-01-01

    The microstructure and properties of austempered ductile iron (ADI) strengthened with nanosized addtives of titanium nitride + titanium carbonitride (TiN + TiCN), titanium nitride TiN and cubic boron nitride cBN are investigated. The TiN, TiCN and cBN, nanosized particles are coated by electroless nickel coating EFTTOM-NICKEL prior to the edition to the melt. The spheroidal graphite iron samples are undergoing an austempering, including heating at 900 оС for an hour, after that isotherma...

  12. Wear Behavior of Austempered Ductile Iron with Nanosized Additives

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2014-03-01

    Full Text Available The microstructure and properties of austempered ductile iron (ADI strengthened with nanosized addtives of titanium nitride + titanium carbonitride (TiN + TiCN, titanium nitride TiN and cubic boron nitride cBN are investigated. The TiN, TiCN and cBN, nanosized particles are coated by electroless nickel coating EFTTOM-NICKEL prior to the edition to the melt. The spheroidal graphite iron samples are undergoing an austempering, including heating at 900 оС for an hour, after that isothermal retention at 280 оС, 2 h and 380 оС, 2h. The metallographic analysis by optical metallographic microscope GX41 OLIMPUS and hardness measurements by Vickers Method are performed. The structure of the austempered ductile iron consists of lower bainite and upper bainite.Experimental investigation of the wear by fixed abrasive are also carried out. The influence of the nanosized additives on the microstructure, mechanical and tribological properties of the austempered ductile irons (ADI is studied.

  13. Mechanical properties and structure of austempered ductile iron -ADI

    Directory of Open Access Journals (Sweden)

    Krzyńska A.

    2007-01-01

    Full Text Available The results of experimental study of austempered ductile iron are presented. The aim of the investigations was to look closer into the structure – mechanical properties relationships of this very attractive cast material. The experiment was carried out with 500 7 grade ductile iron, which was austempered using different parameters of heat treatment. The specimens were first solution treated 1 hour in 910oC and then isothermally quenched for different time in silicon oil bath of temperature 275, 325, 300 and 350oC. The mechanical properties heat treated specimens were tested in tensile to evaluate yield stress Re, 0.2, tensile strength Rm and elongation A10. Additionally hardness of heat treated samples was measured using Brinell-Rockwell hardness tester. Structure of the specimens was studied either with conventional metallography, scanning (SEM and transmission (TEM electron microscopy. It followed from the study that conventional grade ductile iron enabled to produce both low and high strength ADI, depend on heat treatment parameters. As expected the low temperature isothermal quenching produced higher strength ADI compare to the same ductile iron but austempered at 350oC. It was discovered however, that low yield strength ADI obtained for short time quenching at 275oC exhibited high strengthening effect while strained in tensile. So it was concluded that this had to by cause by large amount of untransformed austenite, which FCC lattice is characterized by high strengthening coefficient.

  14. Neural Network Analysis of Tensile Strength of Austempered Ductile Iron

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The neural technique was applied to the analysis of the ultimate tensile strength and additionally the yield strength of austempered ductile iron (ADI. Austempered ductile iron is an excellent material and it possesses attractive properties as high strength, ductility and toughness. This paper begins with an introduction to neural networks and demonstrates the ability of the method to investigate new phenomena in cases where the information cannot be accessed experimentally. The model allows the strength properties to be estimated as a function of heat treatment parameters and the chemical composition. A ‘committee’ model was used to increase the accuracy of the predictions. The model was validated by comparison its predictions with data of tensile tests experiments on austempered samples of ductile cast iron. The model successfully reproduces experimentally determined ultimate tensile strength and it can be exploited in the predictions of both ultimate and yield strength and in the design of chemical composition of cast irons and their heat treatments.

  15. An austempering study of ductile iron alloyed with copper

    Directory of Open Access Journals (Sweden)

    OLIVERA ERIC

    2005-07-01

    Full Text Available Austempered ductile iron (ADI has proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. These properties can be achieved upon adequate heat treatment which yields the optimum microstructure for a given chemical composition. In this paper the results of an investigation the austempering of ADI alloyed with 0.45 % Cu for a range of times and temperatures are reported. The microstructure and fracture mode developed throughout these treatments have been identified by means of light and scanning electron microscopy and X-ray diffraction analysis. It was shown that the strength, elongation and impact energy strongly depend on the amounts of bainitic ferrite and retained austenite. Based on these results, and optimal processing window was established.

  16. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting

    International Nuclear Information System (INIS)

    Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe3C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.

  17. Effect of Chemistry on the Transformation of Austenite to Martensite for Intercritically Austempered Ductile Iron

    OpenAIRE

    Banerjee, Sayanti

    2013-01-01

    Intercritically austempered ductile iron (IADI) with a matrix microstructure of ferrite plus metastable austenite has an excellent combination of strength and toughness. The high strength and good ductility of this material is due to the transformation of metastable austenite to martensite during deformation. In the present study, the transformation of austenite to martensite for intercritically austempered ductile irons of varying alloy chemistry (varying amounts of nickel and/or manganese) ...

  18. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  19. Investigation of jatropha seed oil as austempering quenchant for ductile cast iron

    Directory of Open Access Journals (Sweden)

    Akor Terngu

    2014-06-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Austempering is a multi-step process that includes austenitizing, followed by cooling rapidly enough to avoid the formation of pearlite to a temperature above the martensite start (Ms and then holding until the desired microstructure is formed. It is an isothermal heat treatment process that, when applied to cast iron, produces components that, in many cases, have properties superior to those process by conventional heat treatment. Salt bath has been recognized as the conventional quenching medium for austempering. This study investigates the suitability of jatropha seed oil as quenching medium for asaustempering ductile cast iron. Test samples were austenitized at 9500C; socked for 1hr; austempered for varying periods of 1, 2, 3, 4 and 5hrs. The result showed significant increase in tensile strength and impact energy apart from achieving an appreciable increase in hardness. It also tally with recommended values of ductile cast iron austempered in salt bath, implying that jatropha oil can be used as hot bath for the austempering of ductile cast iron. Keywords: Ausferrite, Austempering, Austenitized, Matrix So, Cked.

  20. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    OpenAIRE

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austeni...

  1. Microstructure and mechanical properties of CuNiMo austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Erić Olivera

    2004-01-01

    Full Text Available Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 and 5h, a microstructure typical for austempered ductile iron was produced, i.e. a mixture of free bainitic ferrite and highly carbon enriched retained austenite. The characteristic of the whole range of austempering at 400oC is the appearance of martensitic structure. The maximum impact energy (133 J coincides with the maximum value of volume fraction of retained austenite that was obtained after 2,5h of austempering at 320oC. The appearance of martensite during austempering at 400oC is the main cause for much lower tensile properties than at 320oC.

  2. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  3. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  4. Influence of Copper Addition and Temperature on the Kinetics of Austempering in Ductile Iron

    OpenAIRE

    Amran, Yogev; Katsman, Alexander; Schaaf, Peter; Bamberger, Menachem

    2010-01-01

    Austempered ductile iron (ADI) is a material that exhibits excellent mechanical properties because of its special microstructure, combining ferrite and austenite supersaturated with carbon. Two ADI alloys, Fe-3.5 pct C-2.5 pct Si and Fe-3.6 pct C-2.7 pct Si-0.7 pct Cu, austempered for various times at 623 K (350 °C) and 673 K (400 °C) followed by water quenching, were investigated. The first ferrite needles nucleate mainly at the graphite/austenite interface. The austenite and ferrite weight ...

  5. 350℃ - Thermal Stability of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    M. Pellizzari; M. Zadra, A. Molinari

    2004-01-01

    The thermal stability of an ADI has been studied by isothermal aging at 350℃ for 150 hours, measuring the amount of retained austenite and its carbon content by X-ray diffractometry. The influence of different austempering treatments, carried out at temperatures between 300 and 450℃ (300, 330, 360, 410 and 450℃) and holding times between15 and 60 minutes (15, 30, 45, 60), was considered. Thermal stability depends on whether austempering temperature is higher or lower than the ageing one. Thermal stability increases by increasing austempering temperatures, from 300° to410℃. Samples treated at 410° and 450° show a lower austenite decomposition than samples at 300-330-360℃. A drop in stability is shown by increasing the austempering temperature from 410° to 450℃. The results have been interpreted on the basis of the austenite stability out of the processing window, which in turn depends on the austempering parameters.

  6. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  7. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    Directory of Open Access Journals (Sweden)

    Chun-jie Xu

    2015-03-01

    Full Text Available In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC. The results show that the major factors influencing the hardness of austempered ductile iron (ADI are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efficiently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the following process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of fine acicular ferrite and a small amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93% and 25.7 J, respectively.

  8. Effect of Graphite Nodule Diameter on Water Embrittlement of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    CAI Qi-zhou; WEI Bo-kang; TANAKA Yuichi

    2005-01-01

    Effects of graphite nodule diameter on the water embrittlement of austempered ductile iron (ADI) is studied. The water embrittlement mechanism is discussed. Due to water adhesion, local embrittlement occurs on the surface of ADI specimen, resulting in early fracture and significant reduction in tensile strength and elongation. The water embrittlement is the cracking of stress induced martensite formed during tensile deformation caused by hydrogen diffusion decomposed from water and as a result tensile strength and elongation of ADI are remarkably reduced. The segregation of alloying elements in ductile iron is weakened with decreasing nodule diameter, reducing the residual austenite in grain boundaries, then decreasing the amount of stress induced martensite during tensile plastic deformation and finally restraining ADI water embrittlement.

  9. FATIGUE PROPERTIES OF AUSTEMPERED DUCTILE IRON (ADI)IN WATER ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Q.Z.Cai; B.K.Wei; Y.Tanaka

    2004-01-01

    The acicular ferrite in austempered ductile iron(ADI)matrix around graphite was corroded preferentially in wet condition,promoting crack origination and propagation and resulting in the disappearance of ADI fatigue limit.ADI fatigue strength was gradually reduced with increasing the time of test and was reduced by 50% in wet condition at 107 cycles compared with the fatigue limit in dry condition.The fatigue strength variation of ferritic ductile iron in wet condition was similar to that of ADI.The ferritic ductile iron,however,has better corrosion resistance so that the fatigue strength was lowered only by 10% in wet condition at 107 cycles compared with the fatigue limit in dry condition.On the other hand,the fatigue limits of A DI and ferritic ductile iron were dropped by 32% and 25% in tap water dipping 480h/dry condition respectively compared with those in dry condition.The reduction of fatigue limit was attributed to corrosion pits formation correlated with stress concentration,resulting in origination and propagation of fatigue crack.

  10. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  11. Effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron

    Institute of Scientific and Technical Information of China (English)

    S. Yazdani; M. Ardestani

    2007-01-01

    The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325 ℃ and 400 ℃after austenitizing at 875 ℃ and 950 ℃. The sub-zero treatments were carried out by cooling down the samples to -30 ℃, -70 ℃ and -196 ℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875 ℃ and austempered at 325 ℃ remained unchanged, whilst it reduced in samples austenitized at 950 ℃ and 875 ℃ for austempering temperature of 400 ℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.

  12. Effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    M. Ardestani

    2007-05-01

    Full Text Available The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325! and 400℃ after austenitizing at 875℃ and 950℃. The sub-zero treatments were carried out by cooling down the samples to -30℃, -70℃ and -196℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875℃ and austempered at 325℃ remained unchanged, whilst it reduced in samples austenitized at 950℃ and 875℃ for austempering temperature of 400℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.

  13. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    Science.gov (United States)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  14. Influence of Heat Treatment Conditions on Microstructure and Mechanical Properties of Austempered Ductile Iron After Dynamic Deformation Test

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available In this article, an attempt was made to determine the effect of dynamic load on the austempered ductile iron resistance obtained under different conditions of heat treatment. Tests were carried out on six types of cylindrical ductile iron samples austempered at 320, 370 and 400oC for 30 and 180 minutes. For each type of material, two samples were collected. As a next step in the investigations, the samples were subjected to a Taylor impact test. The samples after striking a non-deformable, rigid target were deformed on their front face. After Taylor test, a series of material tests was performed on these samples, noting a significant increase of hardness in the deformed part. This was particularly well visible in the ductile iron isothermally quenched at higher temperatures of 370 and 400oC. Inthezone of sample deformation, an increase in the content of ferromagnetic phase was also reported, thus indicating the occurrence of martensitic transformation in the microstructure containing mechanically unstable austenite. A significant amount of deformed graphite was also observed, which was a symptom of the deformation process taking place in samples. The ductile iron was characterized by high toughness and high resistance to the effect of dynamic loads, especially as regards the grade treated at a temperature of 370oC.

  15. Characterization of microstructural morphology of austempered ductile iron by electron microscopy.

    Science.gov (United States)

    Guo, X L; Su, H Q; Wu, B Y; Liu, Z G

    1998-02-15

    Mechanical properties of austempered ductile iron (ADI) are mainly controlled by its unique microstructure. The objectives of this paper are to characterize the microstructural morphology and the phase distribution of ADI using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and to determine the mechanism of strengthening and toughening of ADI. The experimental results show that, in the microstructure of ADI composing of upper bainite, retained austenite, graphitic nodule, and a small amount of martensite, the upper bainite is composed of sub-units of ferrite in the shape of "wheat ears" on which the "wheat grains" grow at an angle of about 60 degrees to the long axis of the "wheat ears." The retained austenite is connected with each other in the shape of a continuous net. The wheat-ear like bainite with a homogeneous distribution in the continuous austenite net plays an important role to the strengthening and toughening of ADI. The metastable austenite appears in the shape of a large plate in which the martensite is preferentially formed. The appearance of martensite can be suppressed at the time when retained austenite remains stable, which is of benefit to the continuity and homogeneity of austenite net. PMID:9523764

  16. Design and optimization of stepped austempered ductile iron using characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rivera, J.L., E-mail: jose.hernandez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados-Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Z.C. 31109, Chihuahua (Mexico); Garay-Reyes, C.G.; Campos-Cambranis, R.E.; Cruz-Rivera, J.J. [Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. sección, Z.C. 78210, San Luis Potosí (Mexico)

    2013-09-15

    Conventional characterization techniques such as dilatometry, X-ray diffraction and metallography were used to select and optimize temperatures and times for conventional and stepped austempering. Austenitization and conventional austempering time was selected when the dilatometry graphs showed a constant expansion value. A special heat color-etching technique was applied to distinguish between the untransformed austenite and high carbon stabilized austenite which had formed during the treatments. Finally, it was found that carbide precipitation was absent during the stepped austempering in contrast to conventional austempering, on which carbide evidence was found. - Highlights: • Dilatometry helped to establish austenitization and austempering parameters. • Untransformed austenite was present even for longer processing times. • Ausferrite formed during stepped austempering caused important reinforcement effect. • Carbide precipitation was absent during stepped treatment.

  17. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  18. Comportamiento del hierro nodular austemperizado en condiciones de corrosión y desgaste // Behavior of austempered ductile iron under wear and corrosion conditions

    Directory of Open Access Journals (Sweden)

    L. Goyos Pérez

    1999-07-01

    Full Text Available Los hierros nodulares en general y los austemperizados en particular han sido usados con cada vez mayor frecuencia debido asus relevantes propiedades mecánicas en comparación con su costo.En el presente trabajo se valora el comportamiento del hierro nodular ante el trabajo en condiciones de desgaste y corrosión,luego de ser sometido a diferentes tratamientos de austemperizado.Fueron usados un hierro nodular aleado con níquel y molibdeno y otro no aleado. Ambos hierros fueron sometidos a diferentestratamientos de austemperización con mantenimientos isotérmicos a temperaturas entre 250°C y 425°C por tiempos entre 15 y180 minutos.Las muestras tratadas fueron sometidas a ensayos de desgaste por fricción en condiciones no lubricadas determinando laspendientes de desgaste uniforme para cada caso. La resistencia a la corrosión fue determinada mediante el métodopotenciométrico usando como medio el jugo de caña sintético.A partir de los resultados obtenidos se valora la influencia de los diferentes tratamientos sobre las propiedades estudiadas y sedeterminan los más efectivos desde el punto de vista técnico económico.Palabras claves: Hierro nodular, corrosión, desgaste, austemperizado.____________________________________________________________________________AbstractNodular irons and particularly austempered ductile iron has been used more and more due to their excellent mechanicalproperties in comparison with their cost.Presently work deals on behavior of nodular iron working under wear and corrosion conditions, after being submitted todifferent austempered treatments.A nodular iron alloyed with nickel and molybdenum were used as well as a not alloyed one. Both irons were treated underdifferent austempered treatment combinations using isothermal maintenance to temperatures between 250°C and 425°C andspending times between 15 and 180 minutes.Samples were submitted to non-lubricated wear using a “pin on disk” method evaluating the

  19. Study of the influence of Cu and Ni on the kinetics of strain-induced martensite in austempered ductile cast iron; Estudio de la influencia del Cu y Ni en la cinetica de transformacion martensitica inducida por deformacion en fundiciones nodulares austemperadas

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D.; Navea, L.; Garin, J.; Aguilar, C.; Guzman, A.

    2013-09-01

    The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability. (Author)

  20. Rolling Contact Wear Property of Austempered Ductile Iron%等温淬火球墨铸铁的滚动接触磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    曾东方; 鲁连涛; 张继旺; 王文健; 朱曼昊; 徐志富

    2012-01-01

    将2种等温淬火球墨铸铁(AustemperedDuctileIron,ADI)和合金钢车轮材料分别与合金钢钢轨材料匹配,研究各摩擦副的滚动接触磨损性能.结果表明:与合金钢车轮材料相比,2种ADI材料的磨损性能均有大幅度的改善.硬度低、石墨球直径小且密度大的ADI材料自润滑效果好,相对应的摩擦副抗磨损性能最好;硬度高、石墨球直径大且密度小的ADI材料自润滑效果较差,相对应的摩擦副抗磨损性能居中;合金钢车轮材料不具备自润滑能力,相对应的摩擦副抗磨损性能最差.%Two austempered ductile irons (ADIs) and alloy wheel steel are matched with alloy rail steel and the rolling contact wear properties of these frictional pairs are investigated. The results show that the wear properties of two ADIs are improved significantly compared with the alloy wheel steel. The self lubricating capability of the ADI with low hardness, small and large quantity distributed graphite nodule is excellent, and the wear resistance of the corresponding frictional pair is the highest. The wear resistance of the ADI with high hardness, large and small quantity distributed graphite nodule is weak, and the self lubricating capability of the corresponding frictional pair is moderate. The alloy wheel steel is not selflubricating, and hence the wear resistance of the corresponding frictional pair is the lowest.

  1. Estudio experimental sobre el comportamiento del hierro austemperado nitrurado (adi a la fatiga de contacto. // Experimental study to contact fatigue behavior of nitrided-austempered ductile iron.

    Directory of Open Access Journals (Sweden)

    C. Figueroa

    2001-10-01

    Full Text Available En el presente trabajo se muestra un estudio sobre el hierro fundido austemperado nitrurado sometido a pruebas de fatiga decontacto. El mismo se austenitizó y austemperó a las temperaturas de 900 y 3800C respectivamente, seleccionándose enambos casos un tiempo de 2 horas. Después se le aplicó un proceso de nitruración gaseosa a 5700C durante 6 horas.Las experiencias fueron realizadas en una máquina para el ensayo de fatiga de contacto con discos. Las presionesHertzianas utilizadas fueron de 1.73, 1.78, 2.04, 2.41, 2.46 y 2.71 GPa.La composición de fases se determinó utilizando la difracción de rayos X, evidenciándose la presencia de los compuestos e(Fe2-3N y g¢ (Fe4N. Los defectos tales como: pittings spalls y grietas fueron observados por medio de la microscopíaelectrónica de barrido (SEM. Los resultados indicaron que la capa nitrurada entre 5 y 6 micras de espesor desaparece bajola acción de las presiones de contacto. Por otra parte se pudo detectar una disminución de la resistencia a la fatiga en el ADInitrurado cuando fueron utilizadas bajas presiones Hertzianas También se comprobó que los nódulos de grafito actúancomo barreras a la propagación de grietas.Palabras claves: Fatiga de contacto, Capa nitrurada, hierro dúctil austemperado, máquina de fatiga condiscos, rayos X._____________________________________________________________________AbstractThis paper presents a study on the behavior of nitrided austempered ductile iron (ADI under contact fatigue tests. ADI wasaustenitized at 9000C for 2 hours and austempered at 380oC for 2 hours. Later, the ADI was nitrided at 570oC for a periodof 6 hours.The contact fatigue tests were carried out using a disc test machine. Hertzian pressures of 1.73, 1.78, 2.04, 2.41, 2.46 and2.71 were used during the tests.The phase composition of nitride layer was determined using X-ray analysis, which detected the presence of the e and g¢phases. The pitting, spalls and cracks that appeared

  2. Research of Austempered ductile Iron Gears in Diesel Engine%奥贝球铁齿轮在柴油机上的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘海霞; 傅明喜; 孙少纯; 司乃潮; 杨永涛; 陈柏林; 钱鲁阳

    2001-01-01

    The influences of different austemper temperatures,content of manganese,silicon,copper and molybdenum on the microstructures and mechanical properties of austempered ductile iron (ADI) were studied.The effects of work hardening on machinablities of ADI were also discussed.Meanwhile some ADI gears replaced the 40Cr hardened and tempered steel gears in a diesel engine to test their functions of reducing noise and wear resistance.It was found that the mechanical properties of ADI gears were higher than that of 40Cr hardened and tempered steel gears.The ADI gears decreased the working noise of the whole diesel engine by 1.92dB and the noise in side of the gears by 5.3dB.After 45 hours' run-in and 200 hours' continuous operation in demarcated conditions,there was no abnormal wear in the ADI gears and there still existed allowance of 0.13mm between limit gap and gear gap.So the frictional wear properties of ADI gears were qualified and the ADI gears produced could meet the design and appilication requirements.%研究了不同等温温度及Mn、Si、Cu、Mo对奥贝球铁组织和力学性能的影响,讨论了奥贝球铁加工硬化对机加工性能的影响。同时,将奥贝球铁齿轮代替40Cr调质钢齿轮进行装机试验,对降噪声和耐磨性进行了测试。结果表明,奥贝球铁齿轮与40Cr调质钢齿轮相比,力学性能高,柴油机整机噪声下降1.92dB,齿轮侧噪声下降5.3dB。奥贝球铁齿轮经过45h磨合后,在标定工况下连续运转200h,齿轮无异常磨损,齿轮间隙离极限间隙还有0.13mm的余量,所以其摩擦磨损性能合格,所生产的奥贝球铁齿轮满足设计使用要求。

  3. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    OpenAIRE

    Chen Liqing; Cui Junjun; Tong Weiping

    2015-01-01

    In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been eva...

  4. Recent development of ductile cast iron production technology in China

    Institute of Scientific and Technical Information of China (English)

    Cai Qizhou; Wei Bokang

    2008-01-01

    Recent progress in the production and technology of ductile cast iron castings in China is reviewed.The manufacture and process control of as-cast ductile iron are discussed.The microstructure.properties and application of partial austenitization normalizing ductile iron and austempered duclile iron(ADI)are briefly depicted.The new development of duclile iron production techniques,such as cored-wire injection(wire-feeding nodularization)process,tundish cover ladle nodularizing process,horizontal continuous casting,and EPC process (lost foam)for ductile iron castings,etc.,are summarized.

  5. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    OpenAIRE

    Konečná, Radomila; Lukáš BUBENKO; Gianni NICOLETTO

    2012-01-01

    Perferritic isothermal ductile iron (IDI®) is an intermediate grade between the low-strength grades of austempered ductile iron (ADI) and pearlitic ductile iron (DI) recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness...

  6. Aspectos cinéticos e microestruturais da transformação bainítica incompleta em ferros nodulares austemperados Kinetic and microstructural aspects of incomplete bainite transformation in austempered ductile irons

    Directory of Open Access Journals (Sweden)

    Marcio Ferreira Hupalo

    2012-06-01

    Full Text Available Nesse trabalho, foram estudados aspectos cinéticos da transformação bainítica incompleta em ligas de ferro nodular, contendo 2,36 e 2,68% Si. As amostras foram austenitizadas a 900°C, durante 90 minutos, e austemperadas a 320 e 370ºC, em tempos entre 1,5 e 60 minutos. A caracterização microestrutural foi realizada pelas técnicas de microscopia óptica (MO, microscopia eletrônica de varredura (MEV, difração de Raios X (DRX e microdureza Vickers. Foi desenvolvido um método de quantificação das frações transformadas por microscopia óptica. Devido ao elevado teor de silício, as ligas apresentaram o fenômeno de estase da transformação bainítica. As amostras tratadas a 320°C apresentaram microestrutura mais refinada e maiores frações transformadas para o início da estase da reação. As frações transformadas obtidas por DRX foram menores que as encontradas por MO. Esse fenômeno foi mais intenso para a menor temperatura de austêmpera. Curvas de transformação isotérmica foram obtidas para todas as condições estudadas. A cinética de transformação bainítica incompleta foi analisada segundo o modelo de Johnson-Mehl-Avrami-Kolmogorov (JMAK. Os valores do expoente n da equação JMAK variaram entre 0,15 e 0,67.This work aimed at studying the kinetic aspects of the incomplete bainite transformation of ductile cast iron containing 2.36 and 2.68% silicon (in wt %. Samples were initially austenitized at 900°C during 90 minutes and then austempered at 320 and 370°C in times ranging from 1.5 to 60 minutes. Microstructural characterization was performed by light optical microscopy (LOM, scanning electron microscopy (SEM, X-ray diffraction (XRD and Vickers microhardness tests. A LOM-based method for transformed fractions quantification has been developed. Due to its high silicon content, both alloys presented the bainite transformation stasis phenomenon. Samples austempered at 320°C displayed more refined microstructures

  7. 等温淬火球墨铸铁在汽车底盘悬架类零件上的应用%Application of Austempered Ductile Iron to Automobile Suspension Components

    Institute of Scientific and Technical Information of China (English)

    曾圣湖; 黄建成; 武炳焕

    2011-01-01

    Lightweight upper chassis frame suspension part was designed, using austempered ductile iron (ADI) casting instead of steel casting. By strictly controlling the raw material and foundry and heat treatment processes, the mechanical property of the casting satisfies the specifications of ASTM A897/A897M-06 grade 1050-750-7, and the pilot production was realized. The trial production and test result indicate that the properties of casting meet the designed requirement, while the weight of the casting was reduced by 39.6%. After further improvement, the amount of ADI castings was increased, and the weight of all ADI castings in an automotive reached 550.4 kg.%对某车型上底盘悬架类零件进行轻量化设计,由铸钢件改用等温淬火球墨铸铁件.通过对原材料、铸造和热处理等工艺过程的严格控制,力学性能稳定达到了ASTM A897/A897M-06 Grade 1050-750-7要求,并实现了小批量生产.从试制及装车路试情况来看,满足了所设计的性能要求,零件重量减少了39.6%,并在后续改进中,进一步增加等温淬火球墨铸铁件数量,整车的等温淬火球墨铸铁件重量达到了550.4 kg.

  8. Efecto del conteo de nódulos en la resistencia a la tracción de los hierros dúctiles austemperados. // Effect of nodules count in the tensile strength of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2004-01-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nódular ocupa uno de los lugaresmás importantes entre los hierros fundidos de alta resistencia y con la introducción del tratamiento térmico deaustemperado, aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteos de nódulos, a los que lesfue aplicado el tratamiento de austemperado y posteriormente se les sometió a ensayos de propiedades mecánicas detracción.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichas propiedades, así comotambién, de la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas.Palabras claves: Hierro nódular, conteo de nódulos, austemperado.____________________________________________________________________________Abstract.At the present, iron production with nodular graphite, occupies one of the most important places in the production ofmetallic materials high resistance. The introduction of the austempered heat treatment, gives rise to a new family ofmaterials, characterized by its high mechanical resistance and elevated tenacity, this family maintain the economy andfacility of production of the smeltings nodules. This work, makes a valuation of the nodules iron behavior, with differentnumber of nodules, to which the austempered treatment was applied, in order to test mechanical properties. With theobtained results, an analysis is carriewd out to control the influence of the count of nodules in these properties, as well as,the interrelation of the count of nodules with the used heat treatment variables in the samples.Key words: nódular Iron, count of

  9. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the waste by abrasion resistance for ductile austempering irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2004-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular, ocupa en la actualidad unode los lugares más importantes entre los hierros fundidos de alta resistencia, y con la introducción del tratamiento térmicode austemperado aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteos de nódulos, a los que lesfue aplicado el tratamiento de austemperado y posteriormente se les sometió a ensayos de desgaste abrasivo.Con los resultados obtenidos se hace un análisis de la influencia del conteo de nódulos en dichas propiedades, así comotambién de la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas.Palabras claves: Hierro nodular, conteo de nódulos, austemperado.____________________________________________________________________________Abstract.Between the metallic materials of greater demand, the iron production with nódular graphite occupies at the present time,one of the most important places between fused irons of high resistance, and with the introduction of the austempering heattreatment, applied to these meltings, brings a new family of materials, characterized by its high mechanical resistance andelevated tenacity, that maintain the economy and facility of production of the nodular smeltings.This work makes a valuation of the nodular irons behaviors, with different counts from nodules, to which the austemperingtreatment was applied, and later they were put under tests of abrasive wearing.Of the obtained results, takes control of the influence the nodules count in these properties, as well as, of the interrelation ofthe nodules count, with the used variables of heat

  10. Thin Wall Ductile Iron Castings: Technological Aspects

    Directory of Open Access Journals (Sweden)

    E Fraś

    2013-01-01

    Full Text Available The paper discusses the reasons for the current trend of substituting ductile iron castings by aluminum alloys castings.However, it has been shown that ductile iron is superior to aluminum alloys in many applications. In particular it has beendemonstrated that is possible to produce thin wall wheel rim made of ductile iron without the development of chills, coldlaps or misruns. In addition it has been shown that thin wall wheel rim made of ductile iron can have the same weight, andbetter mechanical properties, than their substitutes made of aluminum alloys.

  11. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the abrasive wear of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2009-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular,ocupa en la actualidad, uno de los lugares más importantes entre los hierros fundidos de altaresistencia, y con la introducción del tratamiento térmico de austemperado, aplicado a estasfundiciones, se da lugar a una nueva familia de materiales, caracterizados por su alta resistenciamecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de lasfundiciones nodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteosde nódulos, a los que les fue aplicado el tratamiento de austemperado, y posteriormente se lessometió a ensayos de desgaste abrasivo.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichaspropiedades, así como también, de la interrelación del conteo de nódulos, con las variables detratamiento térmico utilizadas en las muestras ensayadas.Palabras claves: hierro nodular, conteo de nódulos, austemperado.__________________________________________________________________________AbstractBetween the metallic materials of greater demand, the iron production with nódular graphiteoccupies at the present time, one of the most important places between fused irons of highresistance, and with the introduction of the austemperado heat treatment of, applied to thesesmeltings, gives rise to a new family of materials, characterized by its high resistance mechanicaland elevated tenacity, that the economy and facility of production of the smeltings maintainnodulares. This work, makes a valuation of the iron behavior nodulares, with different counts fromnodules, to which the austemperado was applied treatment to them of, and later it was put underto them tests of abrasive wearing down. Of the obtained results, an analysis takes control of theinfluence of the count of nodules in these properties, as well as, of the interrelation of

  12. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe...

  13. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  14. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  15. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  16. Effects of Copper and Malleablizing Time on Mechanical Properties of Austempered Malleable Iron

    Science.gov (United States)

    Hsu, Cheng-Hsun; Lu, Jung-Kai; Chen, Fan-Shiong

    2007-10-01

    In this study, both the unalloyed and 1 wt pct copper alloyed white irons were successively treated with a duplex heating process consisting of malleablizing and austempering, and then the effects of copper and processing variables on microstructure and mechanical properties of the austempered malleable iron (AMI) were investigated. The results showed that AMI could effectively shorten malleablizing time to obtain the constituents of irregular graphite, acicular ferrite, and retained austenite in the microstructure. Moreover, 1 pct Cu-AMI had a higher retained austenite content than unalloyed AMI. This is because copper is an austenite stabilizer and acts to delay the start of the transformation into ausferrite. In the case of mechanical properties, AMI increased tensile strength (1083 to 1190 MPa) and impact toughness (16 to 22 J) by 2 to 3 times after 930 °C 20 hours malleablizing treatment as compared to as-cast (572 to 580 MPa and 5 to 6 J). In particular, 1 pct Cu-AMI had better performance than unalloyed AMI except for hardness. In comparison with conventional malleable irons, AMI was found to possess better tensile and impact properties.

  17. Polyurethane coating for ductile iron pipes

    Directory of Open Access Journals (Sweden)

    WANG En-qing

    2006-05-01

    Full Text Available A special polyurethane coating designed for ductile iron pipe was developed. The effects of the ingredients on properties, such as viscosity, flow leveling, solidification-rate, adhesion and hardness, were researched. It was then analyzed in what ways the technical parameters, such as temperature and pressure, influence the coat quality. The results showed that the molar ratio and synthesizing conditions must be strictly controlled to obtain suitable pre-polymer viscosity by adjusting the formula ratio of the B component, satisfactory mechanical properties and cure rate can be obtained and bubbles in the coat can be avoided.

  18. Microstructural Characterization of Nodular Ductile Iron

    Energy Technology Data Exchange (ETDEWEB)

    Springer, H K

    2012-01-03

    The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).

  19. 46 CFR 56.60-15 - Ductile iron.

    Science.gov (United States)

    2010-10-01

    ... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395... 395 (incorporated by reference, see 46 CFR 56.01-2) may be used within the service restrictions and... 46 Shipping 2 2010-10-01 2010-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping...

  20. Hot Cutting of Real-Time Cast-Forged GS Ductile Iron for Automotive Rods

    Science.gov (United States)

    Fouilland, Laurence; Mansori, Mohamed El

    2011-01-01

    In the global economy context, automotive industry suppliers have to keep a constant advance on products design and manufacturing process. Concerning automotive rods, the substitution of forged steel by spherical graphite iron (SG iron) with high mechanical properties constitutes a valid economic alternative. Such rods are produced using a complex coupled process: casting and forging followed by an austempered heat treatment. The forging operation is capable to shape the cast rod which introduces hot deformation to increase mechanical properties of net-shape SG iron rod. However, the intermediate re-heating between casting and forging must be avoided to keep competitive manufacturing costs. A major concern of this new process development is the cracks produced in rod's surface which are consecutive to hot spruing involved after casting operations. This issue is addressed in this paper which discusses the physical mechanisms involved in the hot ductile damage of SG iron. Hot cutting tests were performed to simulate the spruing operation which shows the close interactions between microstructure, machining parameters and resulting damages. The damage mechanisms in terms of crack initiation and its growth have been studied with respect to the constituent phases (austenite+graphite nodules), the cut surface morphology and the hot cutting performance.

  1. Effect of austempering temperature on cavitation behaviour of unalloyed ADI material

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Marina [University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade (Serbia); Eric, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Belgrade (Serbia); Rajnovic, Dragan; Sidjanin, Leposava [Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad (Serbia); Balos, Sebastian, E-mail: sebab@uns.ac.rs [Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad (Serbia)

    2013-08-15

    This paper provides an in-depth study and description of cavitation damage and microstructural changes in two types of unalloyed austempered ductile iron (ADI). ADI materials used were austempered at 300 and 400 °C having ausferrite microstructure with 16 and 31.4% of retained austenite, respectively. Metallographic examination was carried out to study the morphology of their cavitation-damaged surfaces. Cavitation damage was initiated at graphite nodules as well as in the interface between a graphite nodule and an ausferrite matrix. Furthermore, microcracking and ferrite/retained austenite morphology were proved to be of great importance for cavitation resistance. Mass loss rate revealed that ADI austempered at 400 °C has a higher cavitation resistance in water than ADI austempered at 300 °C. A higher amount of retained austenite in ADI austempered at 400 °C played an important role in increasing cavitation resistance. The good cavitation behaviour of ADI austempered at 400 °C was due to the matrix hardening by stress assisted phase transformation of retained austenite into martensite (SATRAM) phenomenon, as shown by X-ray diffraction analysis. - Highlights: • Cavitation rate of two ADI materials was tested. • ADI material with a lower hardness has had a lower cavitation rate. • The main reason is microstructural transformations during cavitation. • SATRAM phenomenon increases cavitation resistance.

  2. Mechanical Characterization of Nodular Ductile Iron

    Energy Technology Data Exchange (ETDEWEB)

    Springer, H K

    2012-01-03

    The objective of this study is to characterize the strength and fracture response of nodular ductile iron (NDI) and its underlying ferritic matrix phase. Quasistatic and split Hopkinson pressure bar (SHPB) compression tests were performed on NDI and a model material for the NDI matrix phase (Fe-Si alloy). Smooth and notch round bar (NRB) samples were loaded in tension until fracture to determine strain-at-failure with varying stress triaxiality. Multiple tests were performed on each small and large smooth bar samples to obtain fracture statistics with sample size. Fracture statistics are important for initializing simulations of fragmentation events. Johnson-Cook strength models were developed for the NDI and the Fe-Si alloy. NDI strength model parameters are: A = 525 MPa, B = 650 MPa, n = 0.6, and C = 0.0205. The average SHPB experimental strain-rate of 2312/s was used for the reference strain-rate in this model. Fe-Si alloy strength model parameters are: A=560 MPa, B = 625 MPa, n = 0.5, and C = 0.02. The average SHPB experimental strain-rate of 2850/s was used for the reference strain-rate in this model. A Johnson-Cook failure model was developed for NDI with model parameters: D{sub 1} = 0.029, D{sub 2} = 0.44, D{sub 3} = -1.5, and D{sub 4} = D{sub 5} = 0. An exponential relationship was developed for the elongation-at-failure statistics as a function of length-scale with model parameters: S{sub f1} = 0.108, S{sub f2} = -0.00169, and L{sub m} = 32.4 {mu}m. NDI strength and failure models, including failure statistics, will be used in continuum-scale simulations of explosively-driven ring fragmentation. The Fe-Si alloy strength model will be used in mesoscale simulations of spall fracture in NDI, where the NDI matrix phase is captured explicitly.

  3. QUALITY CONTROL ON THE AUSTENITIC-BAINITIC DUCTILE IRON GEAR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By reasonable casting, spheroidizing , inoculating and heat treating processes to control cupola metallurgy and the lipuid iron chemical compositions, a new kind of austenitic-bainitic ductile iron which can substitute for 20CrMnTi carburizing steel is studied. The gears made by the cast iron are high in quality,low in weight and the production cost is greatly reduced. The mechanical properties of the gear, including wear resistance, fatigue resistance, durability and others, can be greatly improved.

  4. The properties of silicon alloyed ferritic ductile irons

    Directory of Open Access Journals (Sweden)

    Z. Glavas

    2016-07-01

    Full Text Available In this paper the influence of silicon content of 3,1 to 5,4 wt. % on the tensile properties, hardness and impact energy of ferritic ductile iron was analysed. It was found that silicon strengthens the ferrite, resulting in an increase in yield strength and tensile strength with increasing silicon content up to 4,22 wt. %. Elongation and impact energy decreases and the hardness increases with increasing silicon content. Since ferritic ductile irons alloyed and strengthened by silicon have a higher Rp0,2/Rm ratio and a higher elongation than conventional ferritic, ferritic/pearlitic and pearlitic ductile irons at the same level of tensile strength, we can expect an increased demand for these materials in applications where high resistance to impact load and low temperature impact properties are not required.

  5. The properties of silicon alloyed ferritic ductile irons

    OpenAIRE

    Z. Glavas; A. Strkalj; A. Stojakovic

    2016-01-01

    In this paper the influence of silicon content of 3,1 to 5,4 wt. % on the tensile properties, hardness and impact energy of ferritic ductile iron was analysed. It was found that silicon strengthens the ferrite, resulting in an increase in yield strength and tensile strength with increasing silicon content up to 4,22 wt. %. Elongation and impact energy decreases and the hardness increases with increasing silicon content. Since ferritic ductile irons alloyed and strengthened by silicon have a h...

  6. Fracture toughness behaviour of ferritic ductile cast iron

    International Nuclear Information System (INIS)

    The static rate fracture toughness of a series of eight heats of ductile cast iron has been measured. Samples from each heat were tested in a heat treated condition which produced a fully ferritic matrix. The chemical composition and the microstructural feature size has also been measured directly from each specimen tested. A multiple linear regression method was used to establish a simple mathematical relationship between fracture toughness and the composition and microstructure. Fracture toughness was found to be strongly associated with the spacing (or size) of the graphite nodules in these fully ferritic ductile cast irons. Other features, including the composition, the ferrite grain size, or the amount of graphite (over the ranges examined), did not strongly influence the fracture toughness. Fracture toughness also did not correlate with tensile properties (i.e. strength or ductility) in these alloys. (author)

  7. As-Cast Acicular Ductile Aluminum Cast Iron

    Institute of Scientific and Technical Information of China (English)

    S M Mostafavi Kashani; S M A Boutorabi

    2009-01-01

    The effects of nickel (2.2%)and molybdenum (0.6%)additions on the kinetics, microstructure, and me-chanical properties of ductile aluminum cast iron were studied under the as-cast and tempered conditions. Test bars machined from cast to size samples were used for mechanical and metallurgical studies. The results showed that adding nickel and molybdenum to the base iron produced an upper bainitic structure, resulting in an increase in strength and hardness. The same trend was shown when the test bars were tempered at 300 ℃ in the range of 300℃ to 400 ℃. The elongation increased with increasing the temperature from 300 ℃ to 400 ℃. The carbon content of the retained austenite also increased with increasing the temperature. The results also showed that the kinetics, mi-crostructure, and mechanical properties of this iron were similar to those of Ni-Mo alloyed silicon ductile iron.

  8. Solidification and microstructure of thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin

    2006-01-01

    In the recent years there has been an increasing interest in light constructions in order to save weight in e.g. cars. Ductile cast iron has good mechanical properties but it is necessary to re­duce the wall thicknesses of the castings in order to reduce the weight. Reducing the wall thicknesses ...

  9. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic solidification. The first stage, which was relatively short, had none or very little recalescence. Further under cooling, followed by reheating during recalescence, was necessary to initiate the secon...

  10. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  11. Multiphysics and multiscale modelling of ductile cast iron solidification

    Directory of Open Access Journals (Sweden)

    D. Gurgul

    2010-01-01

    Full Text Available The presented model of ductile cast iron solidification is a typical sample of multiphysics and multiscale engineering system. This model takes into consideration the different time and spatial scales of accounted phenomenon of microstructure formation: heat diffusion, components mass diffusion in the liquid and solid phases, thermodynamic of phase transformation under the condition of inhomogeneous chemical composition of growing and vanishing phases, phase interface kinetics and grains nucleation.The results of two-dimensional modelling of the microstructure formation in the ductile cast iron (so called - Ductile Iron - DI are pre-sented. The cellular automaton model (CA was used for the simulation. Six states of CA cells were adopted to three phases above men-tioned (liquid, austenite and graphite and to three two-phase interfaces. For the modelling of concentration and temperature fields the numerical solution was used. The parabolic nonlinear differential equa-tions with a source term were solved by using the finite difference method and explicit scheme. The overlapping lattices with the same spatial step were used for the concentration field modelling and for the CA. The time scale of the temperature field for this lattice is about 104 times shorter. Due to above reasons the another lattice was used with a multiple spatial step and the same time step.

  12. The role of graphite morphology and matrix structure on low frequency thermal cycling of cast irons

    Indian Academy of Sciences (India)

    S Y Buni; N Raman; S Seshan

    2004-02-01

    Low frequency thermal cycling tests were carried out on four types of cast iron (viz., austempered ductile iron, pearlitic ductile iron, compacted/vermicular graphite iron and grey cast iron) at predetermined ranges of thermal cycling temperatures. The specimens were unconstrained. Results show that austempered ductile iron has the highest thermal cycling resistance, followed by pearlitic ductile iron and compacted graphite iron, while grey cast iron exhibits the lowest resistance. Microstructural analysis of test specimens subjected to thermal cycling indicates that matrix decomposition and grain growth are responsible for the reduction in hardness while graphite oxidation, de-cohesion and grain boundary separation are responsible for the reduction in the modulus of elasticity upon thermal cycling.

  13. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  14. Melt Quality Evaluation of Ductile Iron by Pattern Recognition of Thermal Analysis Cooling Curves

    Institute of Scientific and Technical Information of China (English)

    LI Zhenhua; LI Yanxiang; ZHOU Rong

    2008-01-01

    The melt quality of ductile iron can be related to the melt's thermal analysis cooling curve. The freezing zone of the thermal analysis cooling curve was found to indicate the melt quality of the ductile iron. A comprehensive difference parameter, Ω, of the thermal analysis cooling curves was found to be related to the properties of ductile iron melts such as composition, temperature, and graphite morphology. As Ω ap- proached O, the thermal analysis cooling curves were found to come together with all the properties indicat- ing melt quality about the same. A database of thermal analysis cooling curves related to the properties of the ductile iron melts was set up as a basis for a method to accurately evaluate the melt quality of ductile iron by pattern recognition of thermal analysis cooling curves. The quality of a ductile iron melt can then be immediately determined by comparing its thermal analysis cooling curve freezing zone shape to those in the database.

  15. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...... austenite dendrites is too large and new nodules have to nucleate and grow. The larger under cooling for the 3 mm plates compared to the 4 mm indicates that the nucleation of new nodules is governed by kinetics even in very well inoculated melts....

  16. Manufacture of Toothed Elements in Nanoausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available The technology currently used for the fabrication of toothed wheels, gear couplings and chain drums involves the induction hardening process or hardening and tempering after carburising. All these processes take a long time and cause adverse changes in the dimensions and surface quality of products, requiring post-treatment machining to remove the resulting cavities. The paper proposes the implementation of gear elements made of ductile iron with nanoausferritic matrix obtained by a new appropriate heat treatment process. The new material offers good performance characteristics and nearly no need for the application of other technological processes commonly used in the manufacture of gears.

  17. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern...... process technology. Yet, for the skilled metallurgist and foundry engineer, it is a material that can be engineered to meet extreme demands with regard to mechanical properties and geometrical complexity. It is therefore a material that has been in growing use since its discovery. And the results...

  18. Kinetic model of ductile iron solidification with experimental verification

    Directory of Open Access Journals (Sweden)

    W. Kapturkiewicz

    2009-10-01

    Full Text Available A solidification model for ductile iron, including Weibull formula for nodule count has been presented. From this model, the following can be determined: cooling curves, kinetics of austenite and eutectic nucleation, austenite and eutectic growth velocity, volume fraction, distribution of Si and P both in austenite and eutectic grain with distribution in casting section.In the developed model of nodular graphite iron casting solidification, the correctness of the mathematical model has been experimentally verified in the range of the most significant factors, which include temperature field, the value of maximum undercooling, and the graphite nodule count interrelated with the casting cross-section. Literature offers practically no data on so confronted process model and simulation program.

  19. Thermal analysis of ductile iron in thin walled casting

    Directory of Open Access Journals (Sweden)

    M. Górny

    2007-12-01

    Full Text Available Hypereutectic ductile iron was cast in self hardening moulding sand to produce castings with the shape of Archimedes spirals and with wall thickness of 1, 2 and 3 mm. Inmould technique was used to produce thin wall ductile iron (TWDI. In this work it has been carried out thermal analysis in spiral with 3 mm wall thickness. The present work provides results of thermal analysis, that are initial temperature of metal in mould cavity, velocity of metal stream as well as solidification time. Measurement of temperature shows that there is essential its drop during filling of mould cavity and amounts 230 oC for distance 700 mm from the beginning of spiral. On the basic on first derivative of temperature versus time characteristic solidification points were distinguish, namely solidification of primary graphite, austenite dendrite and eutectic. Experimental measurements of temperature drop during filling of mould cavity along with microscopic examinations of castings structure can be used to verify computer modeling and simulation of fluid flow and thermal field in TWDI.

  20. Fatigue properties of ductile cast iron containing chunky graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, P., E-mail: ferro@gest.unipd.it [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy); Lazzarin, P.; Berto, F. [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Experimental determination of high cycle fatigue properties of EN-GJS-400. Black-Right-Pointing-Pointer Evaluation of the influence of chunky graphite morphology on fatigue life. Black-Right-Pointing-Pointer Metallurgical analysis and microstructural parameters determination. Black-Right-Pointing-Pointer Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  1. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  2. Study on the serialization and applications of low carbon ductile iron

    OpenAIRE

    SHU Xin-fu; Shu, Rui; CHANG Dian-cun

    2005-01-01

    Both the production process and the chemical composition of Sx were studied, and the serialization of low carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalent (CE) of molten iron and to some alloying elements too. When the CE of molten iron and the contents of alloying elements were changed, the content of Sx must be revised with the change correspondingly. Low carbon ductile iron can be stably changed into the one that non-carbon ac...

  3. Strain analysis on ductile cast iron containers at drop tests

    International Nuclear Information System (INIS)

    Ductile cast iron (DCI) containers for transportation and deposition of radioactive waste have to be designed carefully in order to avoid unacceptable damages and leakages in case of an accident. Therefore various calculations and experimental methods are used during development and licensing of the containers. Besides others the container has to suffer severe impacts (e.g. falling from a height of several meters onto a concrete base). The level of strains must not exceed a value which would adversely affect the package in such a way that it would fail to meet the applicable requirements. In practice complex events such as drop tests are very difficult to calculate. Both the position of maximum stress and the time of its occurrence are not easily predicted with the method of FEM. The uncertainty of the material modelling for plastic deformation by dynamic loading rates is the limiting factor. Therefore holography as an integral measuring technique in combination with strain gauge techniques were used to fit the FEM. By using the FEM calculations in the case of licensing, the FE and the material model have to be verified. The verification of the FEmodel has to be done by comparison of the local maxima measured by strain gauges and by comparison of the vibration modes. These vibration modes we take from holographic measurements. In this paper we explain container vibrations after impact analysed with holographic measurements, FEM calculations and the comparison of the results. The comparison of the local maxima (strain gauges/FEM) is reported elsewhere (Schreiber 1993; Voelzer 1997). (orig.)

  4. Automatic quantitative analysis of microstructure of ductile cast iron using digital image processing

    Directory of Open Access Journals (Sweden)

    Abhijit Malage

    2015-09-01

    Full Text Available Ductile cast iron is preferred as nodular iron or spheroidal graphite iron. Ductile cast iron contains graphite in form of discrete nodules and matrix of ferrite and perlite. In order to determine the mechanical properties, one needs to determine volume of phases in matrix and nodularity in the microstructure of metal sample. Manual methods available for this, are time consuming and accuracy depends on expertize. The paper proposes a novel method for automatic quantitative analysis of microstructure of Ferritic Pearlitic Ductile Iron which calculates volume of phases and nodularity of that sample. This gives results within a very short time (approximately 5 sec with 98% accuracy for volume phases of matrices and 90% of accuracy for nodule detection and analysis which are in the range of standard specified for SG 500/7 and validated by metallurgist.

  5. Study on the serialization and applications of low carbon ductile iron

    Institute of Scientific and Technical Information of China (English)

    SHU Xin-fu; SHU Rui; CHANG Dian-cun; ZHANG Xiao-long; ZHU Yan-dong; LI Ling-fang; LI Yu-zhong

    2005-01-01

    Both the production process and the chemical composition of Sx were studied, and the serialization of iow carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalent (CE) of molten iron and to some alloying elements too. When the CE of molten iron and the contents of alloying elements were changed, the content of Sx must be revised with the change correspondingly. Low carbon ductile iron can be stably changed into the one that non-carbon acicular ferrite and retained austenite (about 25%-28%) by quasi-casting bainitic process of using Sx-2 modifier treated Si-Mn-Cr-Cu-alloyed low carbon molten iron. The austenitic low carbon as-cast ductile iron could be obtained by the Ni-Si-Cr 35 5 2 percent alloys molten iron with less than 2% carbon treated by type Sx-3 modifier. The high-toughness ferritic low carbon as-cast ductile iron which contained more than 85 % ferrite in matrix could be got after the molten iron treated by type Sx-4 modifier, and it's elongation was more than 10 %.

  6. Study on the serialization and applications of low carbon ductile iron

    Directory of Open Access Journals (Sweden)

    SHU Xin-fu

    2005-11-01

    Full Text Available Both the production process and the chemical composition of Sx were studied, and the serialization of low carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalent (CE of molten iron and to some alloying elements too. When the CE of molten iron and the contents of alloying elements were changed, the content of Sx must be revised with the change correspondingly. Low carbon ductile iron can be stably changed into the one that non-carbon acicular ferrite and retained austenite (about 25%-28% by quasi-casting bainitic process of using Sx-2 modifier treated Si-Mn-Cr-Cu-alloyed low carbon molten iron. The austenitic low carbon as-cast ductile iron could be obtained by the Ni-Si-Cr 35 5 2 percent alloys molten iron with less than 2% carbon treated by type Sx-3 modifier. The high-toughness ferritic low carbon as-cast ductile iron which contained more than 85 % ferrite in matrix could be got after the molten iron treated by type Sx-4 modifier, and it's elongation was more than 10 %.

  7. The studies of mechanical properties and structure of ADI as function of austempering parameters

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2010-10-01

    Full Text Available The results of study of ductile iron austempered using different parameters of austempering are presented. The aim of the investigations was to look closer into mechanical properties of this very attractive cast material. The experiment was carried out with commercial EN-GJS-500-7 grade ductile iron. The specimens were first solution heat treated 1 hour in 910oC and then isothermally quenched for different time in molten tin of different temperature. The mechanical properties heat treated specimens were tested using tensile test machine to evaluate Rp,0.2, Rm and A10. Moreover Brinell hardness tests were carried out for structure investigation conventional light microscopy only was used. It was discovered, that low yield strength ADI obtained for short time quenching at 275oC exhibited high strengthening effect while tensile strained. So it was concluded that this had to by cause by large amount of untransformed austenite, which FCC lattice providing large number of glide systems.

  8. Influence of Technological Parameters of Furane Mixtures on Shrinkage Creation in Ductile Cast Iron Castings

    Directory of Open Access Journals (Sweden)

    Vasková I.

    2014-10-01

    Full Text Available Ductile cast iron (GS has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.

  9. Evaluation of Zinc-Coated Ductile Iron Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Shipilov, Sergei A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    Oak Ridge National Laboratory (ORNL) received $1m in funding from the U.S. Bureau of Reclamation in order to evaluate the performance of zinc-coated ductile iron pipe (DIP) in highly- and severely-corrosive soils. The project started in May 2016 and a final report will be issued March 31, 2017. The project is being led by the Corrosion Science and Technology Group in the Materials Science and Technology Division at ORNL. This interim report is based on the work performed by an ORNL multidisciplinary team in the last two months. The project has been broken down into four tasks. The first task is to characterize commercially available DIP. Specimens from the three major U.S. DIP manufacturers were purchased for this study via third party vendors and are being characterized. The second task is to evaluate available data on DIP corrosion in soils. The largest data set was collected by the National Bureau of Standards (now NIST) from 1910-1952 and included 95 different kinds of soil at 128 sites across the country. Because of the large amount of data and limited agreement on what defines “corrosive” soil, staff from the Computational Sciences and Engineering Division have been consulted and are currently analyzing the data using existing algorithms to look for trends between the corrosion rates and the various soil characteristics such as resistivity and pH. The third task is to develop a long-term test plan to evaluate DIP and the fourth task is to develop an accelerated test procedure to reduce the time required to evaluate soil corrosion by 1-2 orders of magnitude. By developing a better understanding of what makes a soil corrosive, including the chemical and physical properties, it may be possible to model the long-term behavior of DIP. A full report on the work will be submitted by the March 2017 deadline. It appears that a sustained, multi-year effort in this area would be of great benefit to the Bureau of Reclamation, to the DIP industry and to the country

  10. A new method for chill and shrinkage control in ladle treated ductile iron

    Institute of Scientific and Technical Information of China (English)

    Torbj(o)rn Skaland

    2006-01-01

    The paper is undertaken with the objective of describing a new method for treating ductile cast iron in a ladle process, where the main objective is to minimize formation of eutectic carbides and shrinkage porosity during solidification. The suppression of carbide formation is associated with the nucleating properties of the nodularizer and inoculant alloys. By nucleating properties it is understood the number and potency of nuclei formed by an alloy addition. The nodularizer and inoculant additions also influence ductile iron solidification shrinkage. Some alloys may give good protection against shrinkage while others tend to promote more shrinkage.The use of vanous rare earth elements is found to have a pronounced impact on these conditions. It has been discovered that the use of pure lanthanum as the primary rare earth source in the magnesium ferrosilicon nodularizer surprisingly further improves the performance of the ductile iron ladle treatment method compared to similar methods using cerium or mishmetal bearing nodularizers. The nucleating properties are substantially improved and the risk for carbides (chill) and shrinkage formation in the sandwich or tundish ladle treated ductile iron is then minimized.The paper describes this new ladle treatment concept in detail, and gives examples from successful testing of the new nodularizing technology and how it simultaneously affects and minimizes critical ductile iron chill and shrinkage tendencies.

  11. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  12. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  13. Influence of the section size and holding time on the graphite parameters of ductile iron production

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2009-01-01

    Full Text Available This work was conducted to establish the conditions required to produce a desirable structure of the castings of various section sizes. This investigation was focused on the study of the influence of cooling rate or section size and holding time on graphite parameters of the ductile iron. Plates having thickness between 3 and 50mm were cast in sand molds using the same melt. The present investigation has shown that the section size of ductile iron castings and holding time had strong effect on the graphite parameters of the castings.

  14. Draft ASME code case on ductile cast iron for transport packaging

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T. [Central Research Inst. of Electric Power Industry, Abiko (Japan); Arai, T. [Central Research Inst. of Electric Power Industry, Yokosuka (Japan); Hirose, M. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan); Kobayashi, T. [Nippon Chuzo, Kawasaki (Japan); Tezuka, Y. [Mitsubishi Materials Co., Tokyo (Japan); Urabe, N. [Kokan Keisoku K. K., Kawasaki (Japan); Hueggenberg, R. [GNB, Essen (Germany)

    2004-07-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required.

  15. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    Science.gov (United States)

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  16. Investigation of solidification of thin walled ductile cast iron using temperature measurement

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron can be improved using temperature measurement. This article includes some background of the precautions that have to be taken when measuring temperatures in thin walled castings. The aim is to minimize influence of temperature...... measurement on castings and to get sufficient response time of thermocouples. Investigation of thin wall ductile iron has been performed with temperature measurement in plates with thickness between 2,8 and 8mm. The cooling curves achieved are combined with examination of the microstructure in order to reveal...

  17. Development of thermal simulation system for heavy section ductile iron solidification

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ± 0.5 %. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5 % and 10 %, respectively.

  18. Development and Testing of a Linear Polarization Resistance Corrosion Rate Probe for Ductile Iron Pipe (Web Report 4361)

    Science.gov (United States)

    The North American water and wastewater community has hundreds of millions of feet of ductile iron pipe in service. Only a portion of the inventory has any form of external corrosion control. Ductile iron pipe, in certain environments, is subject to external corrosion.Linear Pola...

  19. Influence of process parameters on the properties of austempered ductile iron (ADI examined with the use of data mining methods

    Directory of Open Access Journals (Sweden)

    D. Wilk-Kołodziejczyk

    2016-10-01

    Full Text Available The article presents opportunities offered by the data mining analysis as applied to studies of the effect of process parameters on the mechanical properties of ADI. The applied methods of regression trees and cluster analysis allow for the detection of relationships between parameters and also allow determination of strength and form of the impact of different factors. The results of this study allow the creation of knowledge bases for systems supporting the decision-making process in technology.

  20. Machinable, Thin-Walled, Gray and Ductile Iron Casting Production, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Charles Bates; Hanjun Li; Robin Griffin

    2003-12-08

    This report presents the results of research conducted to determine the effects of normal and abnormal processing and compositional variations on machinability (tool wear rate) of gray and ductile iron. The procedures developed allow precise tool wear measurements to be made and interpreted in terms of microstructures and compositions. Accurate data allows the most efficient ways for improving machinability to be determined without sacrificing properties of the irons.

  1. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  2. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper;

    2015-01-01

    a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions on the...

  3. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  4. Development,Application and Problem of Ductile Iron Lost Foam Casting Technology in China

    Institute of Scientific and Technical Information of China (English)

    He Wenhao; Ye Shengping; Han Xiaohong; Tang Suoyun

    2010-01-01

    @@ Lost-foam casting is a 21st century green casting technology.Over the past decade,there has been an extraordinary development in lost-foam casting in China;and ductile iron lost-foam casting has developed even more rapidly in foundry equipment,foundry raw materials,and casting engineers.

  5. Effects of Silicon on Mechanical Properties and Fracture Toughness of Heavy-Section Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Liang Song

    2015-01-01

    Full Text Available The effects of silicon (Si on the mechanical properties and fracture toughness of heavy-section ductile cast iron were investigated to develop material for spent-nuclear-fuel containers. Two castings with different Si contents of 1.78 wt.% and 2.74 wt.% were prepared. Four positions in the castings from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties’ testing. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings decrease with the decrease in cooling rate. With an increase in Si content, the graphite morphology and the mechanical properties at the same position deteriorate. Decreasing cooling rate changes the impact fracture morphology from a mixed ductile-brittle fracture to a brittle fracture. The fracture morphology of fracture toughness is changed from ductile to brittle fracture. When the Si content exceeds 1.78 wt.%, the impact and fracture toughness fracture morphology transforms from ductile to brittle fracture. The in-situ scanning electronic microscope (SEM tensile experiments were first used to observe the dynamic tensile process. The influence of the vermicular and temper graphite on fracture formation of heavy section ductile iron was investigated.

  6. Production and Machining of Thin Wall Gray and Ductile Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, E.H. (INEEL POC); Li, H.; Griffin, R.; Bates, C.E.; Eleftheriou, E.

    2000-11-03

    The University of Alabama at Birmingham, in cooperation with the American Foundry Society, companies across North America, with support from the U.S. Department of Energy, is conducting a project to develop an understanding of the factors that control the machinability of cast gray and ductile iron. Differences of as much as 500% have been found in machinability have been observed at the same strength. The most machinable irons were those with a high cell counts and few carbonitride inclusions. Additions of tin and copper can be added to both gray and ductile iron to stabilize the pearlite, but excessive additions (above those required to produce the desired pearlite content) degrade the machinability.

  7. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  8. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  9. Hot ductility and high temperature microstructure of high purity iron alloys

    International Nuclear Information System (INIS)

    The inherent properties of metals are affected by impurity elements, sometimes strongly. There are many brittle phenomena in iron and its alloys due to the harmful effect of trace impurities such as sulphur, phosphorus, hydrogen and so on. On the other hand, a large number of alloying elements also embrittle iron due to the transformation and precipitation of secondary phase. For example, the ductility of Fe-Cr alloy decreases with the increase in chromium content, although the strength and the corrosion resistance increase with chromium content. In Fe-Cr alloy containing high chromium, 475 C embrittlement and σ-phase embrittlement are well known. An Fe-50mass%Cr alloy of conventional purity is extremely brittle due to the formation of σ-phase. However, we found the highly purified alloy is essentially ductile. In the workshop of UHPM-94, the experimental results on the ductility of Fe-50mass%Cr alloy were presented and discussed. In this research, the effect of purification on the hot ductility of high purity Fe-18mass%Cr and Fe-50mass%Cr alloys was investigated by tensile testing at high temperature. It was found that the ductility of Fe-18mass%Cr alloy is remarkably improved by purification, especially by the reduction of interstitial impurities such as carbon and nitrogen. The highly-purified Fe-50mass%Cr alloy has astonishing ductility at the temperature range between room temperature and 1073K. Also in a high purity Fe-50mass%Cr alloy, the formation of the σ-phase was not observed during ageing for 1000h at 973K. These results are also very important for the development of high-performance Fe-Cr alloys and of the manufacturing process. Consequently, purification technology is very useful for progress in metal science. (orig.)

  10. Analysis of the thixoability of ASTM A536 ductile iron

    Directory of Open Access Journals (Sweden)

    M.H. Robert

    2008-06-01

    Full Text Available Purpose: Thixoability of the ASTM A536 nodular cast iron is analyzed, it meaning its ability to hold a thixotropic semi-solid state and to be formed as such. Thixoability can be characterized by the solidification range, fraction of primary phase and sensitiveness of liquid fraction with temperature (dfl/dT within the solidification range. It is also investigated the effect of thixocasting in the microstructure of the considered alloy.Design/methodology/approach: Differential thermal analysis, differential scanning calorimetry and thermodynamic calculation package THERMOCALC were used to predict transformations temperatures involving liquid formation and dfl/dT within the solidification range. Microstructures of thixotropic slurries produced by partial melting were observed.Findings: Thixoforming of ASTM A536 nodular iron can be considered in a narrow window of about 28°C, were some dissolution of graphite nodules can still be afforded; this window meaning the range of temperatures of co-existence of austenite + graphite + liquid were the eutectic transformation is taking place. At higher temperatures the dissolution of graphite nodules in liquid can be significant.Research limitations/implications: Thixoability prediction models rely on sensitive experiments as thermoanalysis, with results strongly dependent on experimental conditions; and on thermodynamic data, sometimes not available or reliable for a specific alloy composition.Practical implications: The prediction of the thixoability of a certain alloy can make it more effective its thixoprocessing, allows better control of processing parameters and quality of final product; can also subsidize modifications in the alloy to make it more suitable to semi-solid processing.Originality/value: The study of the thixoability of a nodular hypereutectic cast iron is an original subject, not available in the specialized literature, however absolutely necessary if thixoprocessing of this family of

  11. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    M. Górny

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  12. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...... solidification had only one main stage. The simulations reveal that the first stage of solidification can be explained by precipitation of off-eutectic austenite...

  13. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole;

    Ductile cast iron samples were analysed in a Focused Ion Beam Scanning Electron Microscope, FIB-SEM. The focussed ion beam was used to carefully remove layers of the graphite nodules to reveal internal structures in the nodules. The sample preparation and milling procedure for sectioning graphite...... inside the nodules, their orientation in relation to the graphite and the chemistry of the inclusions is analysed and described. Formation of the structures during solidification and subsequent cooling to room temperature is discussed....

  14. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    OpenAIRE

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses from 2.8 to 8.0 mm with good agreement for both cooling curves and nodule counts. The experimental results revealed that the eutectic solidification of plates with thicknesses less than 4.3 mm was cha...

  15. The shaping of zinc coating on surface steels and ductile iron casting

    OpenAIRE

    D. Kopyciński

    2010-01-01

    The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI) taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly infl...

  16. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model that...... takes into account the precipitation of off-eutectic austenite during the eutectic stage. Simulations reveal that the first stage of eutectic solidification in the thin plates can be explained by growth of off-eutectic austenite....

  17. Effect of small additions of vanadium and niobium on structure and mechanical properties of ductile iron

    OpenAIRE

    Fraś E.; Górny M.; Kawalec M.

    2007-01-01

    Results of investigations of influence of small additions of vanadium (up to 0,15 % V) and niobium (up to 0,04% Nb) on structure of ductile iron is presented in this work. Effect of these additions on distribution of graphite nodule diameter, nodule count, fraction and carbide count have been determined. Investigations of effect of small additions of vanadium and niobium on mechanical properties taking into account tensile strength, yield strength and elongation have also been made.

  18. On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hattel, Jesper

    2016-01-01

    A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading. I...

  19. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  20. Enhancement of wear resistance of ductile iron surface alloyed by stellite 6

    International Nuclear Information System (INIS)

    Research highlights: → This paper deals with the improvement of the wear resistance of ductile iron surface alloyed by stellite 6 hardfacing alloy. → The microstructure of the surface alloyed layer consisted of carbides dispersed in a Co-based solid solution matrix with dendritic structure. → The higher wear resistance of the coated sample than that of uncoated sample attributed to the hardness of the surface alloyed layer. → The dominant mechanism of the wear in the coated and uncoated samples was delamination wear. -- Abstract: This paper deals with the improvement of the wear resistance of ductile iron surface alloyed by a hypoeutectic stellite 6 alloy. In this regard, the surface alloyed layer with 3 mm thickness deposited on ductile iron using tungsten inert gas (TIG) surface processing. The microstructure, hardness and wear resistance of surface alloyed layer were investigated using optical microscopy, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis, Vickers hardness (HV0.3) and pin-on-plate tests. The results showed that the microstructure of the surface alloyed layer consisted of carbides dispersed in a Co-based solid solution matrix with dendritic structure. This microstructure was responsible for the improvement of the hardness and wear resistance of the coating. Further investigations showed that the dominant mechanism of the wear in the coated and uncoated samples was delamination wear.

  1. Property enhancement of cast iron used for nuclear casks

    Science.gov (United States)

    Behera, R. K.; Mahto, B. P.; Dubey, J. S.; Mishra, S. C.; Sen, S.

    2016-01-01

    Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than annealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was characterized by the presence of dimples.

  2. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px) and Antinodulizing Complex Factor (K1) have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE) and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px<2.0 are the basic conditions to obtain as-cast ferritic structure. At the same lower level of Mn and P, the increasing of residual elements (Px>2.0) determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P<0.025%) and residual elements (Px<2.0) allow to use relative high Mn content (0.32%-0.38%), in condition of ferritic structure, including in as-cast state. High P (0.04%-0.045%) and Mn (0.25%-0.35%) content stabilized pearlite, especially at lower level of residual elements (Px <2.0). Antinodulizing action of elements was counteracted up to K1=2.0 level, by RE included in Mg-treatment alloy, which are beneficial for K1<1.2 and compulsory for K1>1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres.for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  3. Machinability of clean thin-wall gray and ductile iron castings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Littleton, H.E.; Eleftheriou, E.; Griffin, R.D.; Dwyer, Z.B.; DelSorbo, C.; Sprague, J.

    1997-02-01

    First phase was to develop a laboratory technique for evaluating the machinability of gray and ductile iron; longer term goal is to learn how to modify the foundry process to produce castings meeting all specified mechanical properties while providing improved machining behavior. Microcarbides present in the irons were found to dominate the machinability of iron. Pearlitic irons with acceptable machinability contain 8.9 to 10.5 wt% microcarbides. The weight fraction microcarbides in the iron is influenced by carbide forming element concentrations, presence of elements that retard carbon diffusion, and cooling rate from the eutectic through the eutectoid temperature range. Tool wear rate increased at higher surface machining speeds and fraction microcarbides; all irons containing above 11.5% microcarbides had poor machinability. Graphite size, shape, distribution, etc. had a lesser effect on machinability. Reducing the addition of a foundry grade Ca and Al bearing 75% FeSi inoculant from 0.5 to 0.2% increased the tool life 100%. Inoculation test castings were also poured in a class 40 gray iron; laboratory analysis is currently underway. Exploratory studies were conducted to determine if tool force could be used to predict tool life: torque and feed forces were found to correlate with machinability.

  4. Strain hardening and ductility of iron: axisymmetric vs. plane strain elongation. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Langford, G.

    1979-05-01

    The strain hardening of iron at high strains in plane strain elongation (strip drawing) is shown to fall increasngly below that of drawn iron wires at true strains above 2. This makes it unnecessary to invoke shear band formation simultaneously as a strengthening mechanism and as a ductility reducing mechanism in the drawn strip. Rather, shear bands may be a weakening mechanism in all contexts. A set of specimens of interstitial-free iron deformed in three of the four main classifications of deformation symmetry (wire, strip, and chips, representing axisymmetric elongation, plane strain elongation, and pure shear) has been prepared in the form of mechanical test specimens and thin foils for high resolution selected area diffraction. A simple technique for rapid discovery of the <110> axis of foils of strongly textured bcc wire has been worked out.

  5. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren;

    2016-01-01

    A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic...... strains are measured with a maximum strain of ∼6.5–8 × 10−4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found...

  6. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  7. Graphite nodule count and size distribution in thin-walled ductile cast iron

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will g...

  8. Material specification and quality control program for ductile iron spent fuel casks

    Energy Technology Data Exchange (ETDEWEB)

    Rehmer, B.; Frenz, H.; Weidlich, S.; Kuehn, H.D.

    1995-12-31

    In the process of testing spent fuel casks, BAM is gaining a lot of relevant data regarding the quality level of Ductile Cast Iron (DCI). This paper discusses the basic parameters governing the material behavior of ferritic and ferritic-pearlitic DCI and reviews the development of cask quality over the last years. The effect of microstructure and sample size on the fracture toughness of DCI is discussed. The results of a test program show the prominent effect of pearlite content and graphite nodule structure in the mechanical and fracture toughness characteristics of DCI. This observation is important for quality assurance programs for shipping and storage casks of radioactive materials.

  9. As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties

    OpenAIRE

    Torre, Urko de la; Loizaga, Aitor; Lacaze, Jacques; Sertucha, Jon

    2014-01-01

    International audience The present work shows a comparative study regarding the mechanical properties of 25 as cast ferritic ductile iron alloys, nine of them with silicon contents higher than 3·00% and carbon contents lower than 3·60%. In a first step, different carbon equivalent values have been used in order to analyse the effect of this parameter on the mechanical properties. After this comparative analysis, the composition ranges C = 3·30–3·40 wt-% and Si = 3·75–3·80 wt-% have been se...

  10. A study on controlled cooling process for making bainitic ductile iron

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same time. It can be concluded that the bainitic zone of TTT curve is separated from the pearlitic zone. As compared to the water-quenching condition, more even cooling rate and temperature distribution can be achieved in the controlled cooling process. The controlled cooling can keep away from pearlitic zone in the high temperature cooling stage and produce similar results to the process of traditional isothermal cooling with a low cooling rate in the low temperature cooling stage.

  11. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...... undercooling and primary carbides will then be formed in the first part of the solidification. Inverse chill carbides are formed at the final part of the solidification if the undercooling is too high at that point. A high number of graphite nodules nucleated in the last part of the solidification process...

  12. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquire....... Measurement error depending on TC design and cooling conditions is shown. A method is presented that allows acquisition of cooling curves in thin walled ductile iron castings down to thickness of at least 2.8 mm. The obtained cooling curves can be used to compare nucleation and growth during solidification of...

  13. Fracture mechanics behaviour of ductile cast iron and martensitic steel at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Udoh, A.; Klenk, A.; Roos, E. [Stuttgart Univ. (Germany). MPA; Sasikala, G. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam (India)

    2010-07-01

    Ductile cast iron is employed increasingly due to the advantages regarding foundry practice, design as well as economic advantages in the thermal machinery and power plant construction. It is employed preferably where higher toughness is required, e.g. in valves or thickwalled components of thermal or nuclear power plants. For this reason the safety and availability criteria for fracture mechanics assessment of components are necessary in addition to the conventional strength design. Alloys with silicon and molybdenum are developed for the application at higher temperatures. The increase in the thermal efficiency of fossil fired steam power plant that can be achieved by increasing the steam temperature and pressure has provided the incentive for development of the 9% chromium steels towards improved creep rupture strength. During the last twenty years, three such steels, P91 (9Cr-1Mo-VNb), E911 (9Cr-1Mo-1W-V-Nb) and P92 (9Cr-0,5Mo-1,8W-V-Nb), have been developed for commercial production. For application in piping systems and boiler construction sufficient reliable information concerning the long-term behaviour are necessary as well as knowledge about fracture mechanical behaviour in order to ensure integrity of components. Different methods to characterize fracture behaviour of ductile cast iron and martensitic steel at elevated temperature have been employed. The RBR method is a novel and simple method developed at IGCAR for characterizing the ductile fracture behaviour of materials from tensile tests of cylindrical specimens. Using the data evaluated at both institutes, a fracture mechanics characterisation by determining crack initiation and crack resistance by J{sub R}-curves and RBR parameters is presented. (orig.)

  14. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar......Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...... results. The 3D size distribution showed presence of primary graphite nodules in hypereutectic castings. In thin plates the nodule count is similar in eutectic and hypereutectic plates. In thicker plates the hypereutectic casting has the highest nodule count....

  15. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M23C6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M23C6. Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  16. Application of Differential Scanning Calorimetry (DSC in study of phase transformations in ductile iron

    Directory of Open Access Journals (Sweden)

    R. Przeliorz

    2010-04-01

    Full Text Available The effect of heating rate on phase transformations to austenite range in ductile iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC was used. Microstructure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15°C/min, local extrema have been observed to occur: for pearlite→austenite transformation at 784°C and 795°C, respectively, and for ferrite→austenite transformation at 805°C and 821°C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740°C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  17. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    OpenAIRE

    Zhang Xinning; Qu Yingdong; Yang Hongwang

    2013-01-01

    Different contents of Ni (0.3wt.% to 1.2wt.%) were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the...

  18. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  19. Microstructure feature of friction stir butt-welded ferritic ductile iron

    International Nuclear Information System (INIS)

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  20. Austempering of hot rolled transformation-induced plasticity steels

    Institute of Scientific and Technical Information of China (English)

    Zhuang Li; Di Wu

    2008-01-01

    Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering inAustempering in the salt bath after hot rolling Was investigated. The effect of isothermal holding time on mechanical properties was studied throughing of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and ad TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holdingprecipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%,respevtively.

  1. Effects of slope plate variable and reheating on semi-solid structure of ductile cast iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming are known as a promising process for a wide range of metal alloys production. In spite of growing application of semi-solid processed light alloys, a few works have been reported about semi-solid processing of iron and steel. In this research inclined plate was used to change dendritic structure of iron to globular one. The effects of length and slope of plate on the casting structure were examined. The results show that the process can effectively change the dendritic structure to globular. In the slope plate angle of 7.5°and length of 560 mm with cooling rate of 67K·s-1 the optimum nodular graphite and solid globular particle were achieved.The results also show that by using slope plate inoculant fading can be prevented more easily since the total time of process is rather short.In addition, the semi-solid ductile cast iron prepared by inclined plate method, was reheated to examine the effect of reheating conditions on the microstructure and coarsening kinetics of the alloy. Solid fraction at different reheating temperatures and holding time was obtained and based on these results the optimum reheating temperature range was determined.

  2. Ductile iron cask with encapsulated uranium, tungsten or other dense metal shielding

    International Nuclear Information System (INIS)

    In a cask for the transportation and storage of radioactive materials, an improvement in the shielding means which achieves significant savings in weight and increases in payload by the use of pipes of depleted uranium, tungsten or other dense metal, encapsulating polyethylene cores, dispersed in two to four rows of concentric boreholes around the periphery of the cask body which is preferably made of ductile iron. Alternatively, rods or small balls of these same shielding materials, alone or in combination, are placed in these bore holes. The thickness, number and arrangement of these shielding pipes or rods is varied to provide optimum protection against the neutrons and gamma radiation emitted by the particular radioactive material being transported or stored. (author) 4 figs

  3. Effect of Cu and Mn on the Mechanical Properties and Microstructure of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    A.M.Omran

    2014-06-01

    Full Text Available This paper described the method used for producing ductile cast iron (SGI. The processing parameters affecting the production of SGI were studied. These parameters include chemical composition, castings thickness, mechanical properties, alloying elements and microstructure. The chemical composition of producing SGI was optimized. The nodularity was increased with increasing the percentages of Mg content and with decreasing the castings thickness. The amount of pearlite and mechanical properties were increased sharply with increasing Cu and Mn contents in the produced SGI. Empirical equations were correlated to indicate the relations among nodularity, Mg content and other parameters. The results shown also as the post inoculation increased the metallurgical quality was improved. The suitability of SGI as automotive engine was tested and different empirical correlations were obtained

  4. Ultrasonic testing of pre-turned contours for large components made of ductile iron

    International Nuclear Information System (INIS)

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed.

  5. Feeding Against Gravity with Spot Feeders in High Silicon Ductile Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    -hill against gravity. This effect may contribute to the thermal expansion created by the exothermal reaction. It was also found that the optimum feeder size does not scale linearly with the casting modulus but that larger casting modulus requires relatively smaller modulus feeders. The thermal gradient created......A test pattern, with three different moduli castings was developed to investigate methods to optimise feeding of high silicon ductile cast irons. Different feeder types, modulus, and locations were investigated using both an insulating and an exothermal sleeve material. Porosities were analysed...... and classified using X-ray imaging and ultrasound analysis. The effect of the different feeder configurations were classified in reference to defect location, sleeve material, and feeder type, modulus, and location. The analysis showed that exothermal feeder sleeves with the right configurations can feed up...

  6. Kinetic study of austenite formation during continuous heating of unalloyed ductile iron

    Science.gov (United States)

    Vázquez-Gómez, Octavio; Barrera-Godínez, José Antonio; Vergara-Hernández, Héctor Javier

    2015-01-01

    The austenite formation kinetics in unalloyed cast ductile iron was studied on the basis of dilatometry measurements, and Avrami's equation was used to estimate the material's kinetic parameters. A continuous heating transformation diagram was constructed using heating rates in the range of 0.06 to 0.83°C·s-1. As the heating rate was augmented, the critical temperatures, A c1 and A α, as well as the intercritical range, which was evaluated as the difference between the critical temperatures, Δ T = A α - A c1, increased. At a low heating rate, the kinetics of austenite formation was slow as a consequence of the iron's silicon content. The effect of heating rate on k and n, the kinetic parameters of Avrami's equation, was also determined. Parameter n, which is associated with nucleation sites and growth geometry, decreased with an increase in heating rate. In addition, parameter k increased with the increase of heating rate, suggesting that the nucleation and growth rates are carbon- and silicon-diffusion controlled during austenite formation under continuous heating.

  7. Effects of Holding Temperature for Austempering on Mechanical Properties of Si-Mn TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di

    2004-01-01

    A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing. This sort of low carbon steel only contains alloying elements of silicon and manganese rather than nickel and chromium. Its mechanical properties were enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite when it was strained at temperatures between Ms and Md, because retained austenite was moderately stabilized due to carbon enrichment by austempering. Austempering was carried out at different temperatures and 400 ℃ was found to be optimal. Tensile strength, total elongation and strength-ductility balance reached the maximum values and the product of tensile strength and total elongation exceeded 30 135 MPa % when the TRIP steel was held at 400 ℃ and strained at 350 ℃.

  8. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat;

    2015-01-01

    the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature......In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under....... In contrast to previous works on the subject, the material behaviour in both matrix and nodule is assumed to be elasto-plastic, described by the classical J2-flow theory of plasticity, and damage evolution in the matrix is taken into account via Lemaitre’s isotropic model. The effects of residual stresses due...

  9. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  10. Foundry technology and its applications of ductile iron castings produced by water-cooled copper alloy mold

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity and good combined mechanical properties used for making permanent mold was developed, and the basic design principles of the water-cooled permanent mold along with the control-range of relevant foundry processing parameters were also established.A cast production line equipped with water-cooled copper alloy mold was designed and fabricated for production of ductile iron automobile gear castings. This production line can consistently make automobile gear castings in QT500-15 and QT600-5 (Chinese Standard) grades of ductile iron with up to 95 % casting success rate.

  11. Examination of Spheroidal Graphite Growth and Austenite Solidification in Ductile Iron

    Science.gov (United States)

    Qing, Jingjing; Richards, Von L.; Van Aken, David C.

    2016-09-01

    Microstructures of a ductile iron alloy at different solidification stages were captured in quenching experiments. Etched microstructures showed that spheroidal graphite particles and austenite dendrites nucleated independently to a significant extent. Growth of the austenite dendrite engulfed the spheroidal graphite particles after first contacting the nodule and then by forming an austenite shell around the spheroidal graphite particle. Statistical analysis of the graphite size distribution was used to determine the nodule diameter when the austenite shell was completed. In addition, multiple graphite nucleation events were discerned from the graphite particle distributions. Majority of graphite growth occurred when the graphite was in contact with the austenite. Circumferential growth of curved graphene layers appeared as faceted growth fronts sweeping around the entire surface of a spheroidal graphite particle which was at the early growth stage. Mismatches between competing graphene growth fronts created gaps, which divided the spheroidal graphite particle into radially oriented conical substructures. Graphene layers continued growing in each conical substructure to further extend the size of the spheroidal graphite particle.

  12. Kinetic study of austenite formation during continuous heating of unalloyed ductile iron

    Institute of Scientific and Technical Information of China (English)

    Octavio Vzquez-Gmez; Jos Antonio Barrera-Godnez; Hctor Javier Vergara-Hernndez

    2015-01-01

    The austenite formation kinetics in unalloyed cast ductile iron was studied on the basis of dilatometry measurements, and Avrami’s equation was used to estimate the material’s kinetic parameters. A continuous heating transformation diagram was constructed us-ing heating rates in the range of 0.06 to 0.83°C⋅s−1. As the heating rate was augmented, the critical temperatures, c1A and Aα, as well as the intercritical range, which was evaluated as the difference between the critical temperatures, α c1Δ T =A −A , increased. At a low heating rate, the kinetics of austenite formation was slow as a consequence of the iron’s silicon content. The effect of heating rate on k and n, the kinetic parameters of Avrami’s equation, was also determined. Parameter n, which is associated with nucleation sites and growth geometry, de-creased with an increase in heating rate. In addition, parameter k increased with the increase of heating rate, suggesting that the nucleation and growth rates are carbon-and silicon-diffusion controlled during austenite formation under continuous heating.

  13. A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete.

    Science.gov (United States)

    Fritz, Laura; Hadwiger, Markus; Geier, Georg; Pittino, Gerhard; Gröller, M Eduard

    2009-01-01

    This paper describes advanced volume visualization and quantification for applications in non-destructive testing (NDT), which results in novel and highly effective interactive workflows for NDT practitioners. We employ a visual approach to explore and quantify the features of interest, based on transfer functions in the parameter spaces of specific application scenarios. Examples are the orientations of fibres or the roundness of particles. The applicability and effectiveness of our approach is illustrated using two specific scenarios of high practical relevance. First, we discuss the analysis of Steel Fibre Reinforced Sprayed Concrete (SFRSpC). We investigate the orientations of the enclosed steel fibres and their distribution, depending on the concrete's application direction. This is a crucial step in assessing the material's behavior under mechanical stress, which is still in its infancy and therefore a hot topic in the building industry. The second application scenario is the designation of the microstructure of ductile cast irons with respect to the contained graphite. This corresponds to the requirements of the ISO standard 945-1, which deals with 2D metallographic samples. We illustrate how the necessary analysis steps can be carried out much more efficiently using our system for 3D volumes. Overall, we show that a visual approach with custom transfer functions in specific application domains offers significant benefits and has the potential of greatly improving and optimizing the workflows of domain scientists and engineers.

  14. A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules

    Science.gov (United States)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2016-06-01

    In this paper, the thermo-elastic behavior of the graphite nodules contained in ductile iron is derived on the basis of recent transmission electron microscopy investigations of their real internal structure. The proposed model is initially validated by performing a finite element homogenization analysis to verify its consistency with the room-temperature elastic properties of ductile iron measured at the macro scale. Subsequently, it is used to investigate the formation of local residual stresses around the graphite particles by simulating the manufacturing process of a typical ferritic ductile iron grade, and the results are compared with preliminary measurements using synchrotron x-rays. Finally, the obtained accurate description of the stress & strain field at the micro scale is used to shed light on common failure modes reported for the nodules and on some peculiar properties observed in ductile iron at both micro and macro scale.

  15. Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying

    International Nuclear Information System (INIS)

    Multicarbide reinforced metal matrix composite (MMC) layers on a ductile iron (QT600-3) were fabricated by laser surface alloying (LSA) using two types of laser: a 5 kW continuous wave (CW) CO2 laser and a 400 W pulsed Nd:YAG laser, respectively. The research indicated that LSA of the ductile iron with multicarbide reinforced MMC layers demonstrates sound alloying layers free of cracks and porosities. The microstructure, phase structure and wear properties of MMC layers were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), as well as dry sliding wear testing. The microstructure of the alloyed layer is composed of pre-eutectic austenite, ledeburite, spherical TiC, Cr7C3 and Cr23C6 with various morphologies. TiC particles are dispersed uniformly in the upper region of MMC layers. The average hardness of LSA layers by CO2 laser and pulsed Nd:YAG laser is 859 HV0.2 and 727 HV0.2, respectively. The dry sliding wear testing shows the wear resistance of ductile iron is significantly improved after LSA with multicarbide.

  16. Synthesis of nanoparticeles in ductile iron with small additions of vanadium and niobium and its mechanical properties

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2007-12-01

    Full Text Available It has been shown that the heat treatment of 1095oC/640 oC type of ferritic ductile iron with small addition of 0.08% vanadium permits to obtain of the rounded VC nanoparticles with an average size of 50 nm and 0.13 volume fraction. Results of investigations of influence of small vanadium up to 0.3%, niobium up to 0.16% and nitrogen up to 58 ppm additions and heat treatment of 1080oC-24h/640 oC and 1080oC-24h/600 oC type on structure and mechanical properties (tensile strength, yields strength and elongation of ductile iron are also presented in this work. It has been demonstrated that heat treatment and small additions of vanadium, and niobium as well as nitrogen enable to obtain material, which can be classified a EN-GJS-450-18 to EN-GJS-700-2 grade ductile iron.

  17. A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat;

    2016-01-01

    analysis to verify its consistency with the room-temperature elastic properties of ductile iron measured at the macro scale. Subsequently, it is used to investigate the formation of local residual stresses around the graphite particles by simulating the manufacturing process of a typical ferritic ductile......In this paper, the thermo-elastic behavior of the graphite nodules contained in ductile iron is derived on the basis of recent transmission electron microscopy investigations of their real internal structure. The proposed model is initially validated by performing a finite element homogenization...

  18. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    Directory of Open Access Journals (Sweden)

    Zhang Xinning

    2013-09-01

    Full Text Available Different contents of Ni (0.3wt.% to 1.2wt.% were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the Ni content is 0.7wt.%, the matrix structure is the refined ferrite with a very small fraction (about 2% of pearlite near the eutectic cell boundaries. When the Ni content is further increased, the fraction of pearlite increases significantly and reaches more than 5% when 1.2wt.% Ni is added. The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.% to 0.7 wt.%, but decreases as the Ni content further increases to 1.2wt.% due to the increase of pearlite fraction. The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.% Ni addition. The average value of the impact work is still more than 13 J even at -30 ℃. In addition, the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20 ℃ to -60 ℃.

  19. Nature of Surface Changes in Stamping Tools of Gray and Ductile Cast Iron During Gas and Plasma Nitrocarburizing

    Science.gov (United States)

    Roliński, E.; Konieczny, A.; Sharp, G.

    2009-11-01

    Two cast irons, pearlitic-ferritic gray and ferritic ductile, were plasma and gas nitrocarburized at the same temperature and for the same processing time to produce a compound zone of about 10-14 μm thick. It was demonstrated that both processes caused changes in the surface roughness of the irons, and the most dramatic increase of roughness was observed after gas nitrocarburizing of the gray cast iron. It was shown that the primary reason that the results were not the same is the difference in the nitriding mechanism. Significant penetration of the surface voids and imperfections between the graphite particles and the metallic matrix by ammonia molecules led to the formation of a locally thicker compound zone and a bulging of the metallic matrix above the surface. This phenomenon did not occur in the plasma process and as a result the surface changes were much smaller than in the gas process.

  20. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  1. Synthesis of nanoparticeles in ductile iron with small additions of vanadium and niobium and its mechanical properties

    OpenAIRE

    E Fraś; M. Górny; Blicharski, M.; Dymek, S.; E. Guzik

    2007-01-01

    It has been shown that the heat treatment of 1095oC/640 oC type of ferritic ductile iron with small addition of 0.08% vanadium permits to obtain of the rounded VC nanoparticles with an average size of 50 nm and 0.13 volume fraction. Results of investigations of influence of small vanadium up to 0.3%, niobium up to 0.16% and nitrogen up to 58 ppm additions and heat treatment of 1080oC-24h/640 oC and 1080oC-24h/600 oC type on structure and mechanical properties (tensile strength, yields strengt...

  2. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    OpenAIRE

    Fraś E.; Górny M.; Kawalec M.

    2007-01-01

    Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V) and niobium (about 0,05 and 0,16% Nb) as well as nitrogen (32 - 58 ppm.) on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing m...

  3. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    Directory of Open Access Journals (Sweden)

    Fraś E.

    2007-01-01

    Full Text Available Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V and niobium (about 0,05 and 0,16% Nb as well as nitrogen (32 - 58 ppm. on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing magnesium and silicon.

  4. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Cheng, Yin-Hwa [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan 320, Taiwan (China); Lee, Sheng-Long [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al{sub 2}O{sub 3} particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  5. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  6. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)

    2015-03-11

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.

  7. New progress of the manufacturing technology of ductile iron%球墨铸铁生产技术的新进展

    Institute of Scientific and Technical Information of China (English)

    曾艺成; 李克锐; 张忠仇

    2014-01-01

    The ductile iron production technology of China has made great progress in recent years . That includes that high purity pig iron , raw and auxiliary materials supply is guaranteed , modulariza-tion and inoculation process is improved .there is an new kind of excellent ductile iron that has no u-niform standard , such as silicon reinforced high strength ferrite ductile iron , ferrite ductile iron with high strength and high toughness at low temperature , high strength and high plasticity austenitic duc-tile iron and high Ni austenitic ductile Iron , and specialization of ductile iron castings production , and quality consistency and stability are improved .Now China Is in a critical period from a big country to a stronger with a basic production condition of high quality ductile iron .At the same time , the paper points out the existing problems and future development direction .%我国球墨铸铁生产技术近年来取得较大进展,包括高纯生铁在内的原辅材料商品化供应有了保障;球化、孕育处理工艺有较大改进;国内外出现了各种目前标准中没有的性能优异的新一代新牌号球铁,如硅强化高强度铁素体球铁、高强度高冲击韧性低温铁素体球铁、高强度高塑性珠光体球铁以及高镍奥氏体球铁;球铁件生产专业化程度、质量稳定性和一致性正在不断提高。我国球铁行业已具备生产高端球铁件基本条件,正处于由大变强关键时期。同时指出了存在问题和今后发展方向。

  8. The influence of the graphite mechanical properties on the constitutive response of a ferritic ductile cast iron – A micromechanical FE analysis

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2015-01-01

    In the present paper a micro-mechanical approach is used to investigate the influence of the graphite mechanical properties on the loading response in the early deformation range of ductile cast iron. A periodic unit cell composed by a single graphite nodule embedded in a uniform ferritic matrix...... is considered and elasto-plastic behavior of both constituents is assumed; damage evolution in the ductile matrix is taken into account via Lemaitre’s isotropic model. Full 3D and 2D plane-stress finite element analyses are performed to simulate the loading conditions experienced by nodules located in the bulk...... as well as on the material surface. The effects of residual stresses arising during the manufacturing process are also accounted for. It is shown that the constitutive response of the equivalent composite medium can match ductile cast iron only if the graphite Young’s modulus value lies within a certain...

  9. Testing of heating and cooling process of ADI cast iron with use of ATND method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-10-01

    Full Text Available ADI (Austempered Ductile Iron cast iron, owing to its unique combination of high tensile strength and abrasion resistance with very goodplasticity, founds implementation in many branches of industry as a substitute of alloy cast steel and carburized or heat treated steels. Inspite of its solid position among producers and recipients of castings, there are still undertaken studies aimed at perfection of its propertiesand recognition of mechanisms enabling obtaining such properties.The paper presents implementation of thermal-voltage-derivative (ATND method to registration of heating and cooling course of ADIcast iron with EN-GJS-1200-2 grade. ADI cast iron with EN-GJS-1200-2 grade underwent the study. Heat treatment of the cast iron wasperformed in Foundry Institute with use of LT ADI-350/1000 processing line. Results obtained from the testing illustrate in graphic formregistered heating and cooling curves of investigated cast irons obtained with use of the ATND method.

  10. Effect of Slope Plate Variable and Reheating on the Semi-Solid Structure of Ductile Cast Iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming is a promising production method for a wide range of metal alloys. In spite of many applications for semi-solid processed light alloys, few works have reported on the semi-solid processing of iron and steel. In this research, an inclined plate was used to change the dendritic structure of iron to globular. The effects of the length and slope of the plate on the casting structure were examined. The results show that the process effectively changes the dendritic structure to globular. A sloped plate angle of 7.5° and length of 560 mm with a cooling rate of 67 K·s-1 gave the optimum graphite nodu-larity and solid particle globularity. The results also show that the sloped plate more easily prevents inocu-lant fading since the total time processing is rather short. In addition the semi-solid ductile cast iron prepared using the inclined plate method was reheated to examine the effect of reheating conditions on the micro-structure and coarsening kinetics of the alloy. The solid fractions at different reheating temperatures and holding times were used to find the optimum reheating temperature range.

  11. Effect of rare earth element on microstructure formation and mechanical properties of thin wall ductile iron castings

    International Nuclear Information System (INIS)

    Ductile iron castings with 2, 3, 4, 6, 8, and 25 mm thickness and various amount of rare earth elements (RE) (from 0 to 0.04%), were cast in sand molds to identify the effects of sample thickness and the content of RE% on microstructural formation and selected mechanical properties. The effects of RE content and sample thickness on microstructural formation, including on graphite nodule count, graphite nodule shape, spherodization, and ferrite amount, were observed. The yield strength of the samples with RE within the range investigated were lower than those of the specimens without RE. The elongation was improved with the addition of RE up to 0.03% in ductile iron castings. The additions of 0.02% RE caused a smaller graphite nodule size and a higher number of graphite nodules than those in the specimen without RE at all levels of RE addition; the nodule count decreased with increase in section size. The chill zones were observed in the 2 mm thick samples, but were absent in the samples from castings which were thicker than 2 mm, irrespective of the addition of RE. The nodularity of graphite nodules improved due to the addition of 0.02-0.04% RE. The specimens with RE content up to 0.03% had a lower tensile strength and hardness, higher elongation than that of the specimens without RE. The ferrite content in all castings increased with additions of 0.02% RE. The tensile strengths of the 2 and 3 mm thick samples were also estimated using the relationship between strength and hardness, obtained from the data on the tensile strength and hardness of the 25 mm thick samples

  12. Dry sliding wear system response of ferritic and tempered martensitic ductile iron

    Science.gov (United States)

    Jha, V. K.; Mozumder, Y. H.; Shama, S.; Behera, R. K.; Pattaniak, A.; P, Sindhoora L.; Mishra, S. C.; Sen, S.

    2015-02-01

    Spheroidal graphite cast iron (SG iron) is the most preferable member of cast iron family due to its strength and toughness along with good tribological properties. SG iron specimens with annealed and martensitic matrix were subjected to dry sliding wear condition and the system response was correlated to matrix microstructure. Respective microstructure was obtained by annealing and quench and tempering heat treatment process for an austenitizing temperature of 1000°C. Specimens were subjected to Ball on plate wear tester under 40N, 50N, 60N load for a sliding distance of 7.54m. Except for quench and tempered specimen at 50N, weight loss was observed in every condition. The wear surface under optical microscope reveals adhesive mechanism for as-cast and annealed specimen whereas delaminated wear track feature was observed for quench and tempered specimen.

  13. Fractomechanical Properties of As-Cast and Austempered SG Cast Iron Between -40 °C and +20 °C

    Directory of Open Access Journals (Sweden)

    V.E. Fierro

    2002-06-01

    Full Text Available The spheroidal graphite (SG cast iron fractomechanical response varies with the test temperature and with the microstructure parameters. In the present paper, we analyze this variation performing fractomechanical tests in a temperature range from -40°C to +20°C, doing also Charpy and tensile tests for material characterization. The tests were carried out on as-cast samples and heat treated samples to obtain an ADI grade 1. In both cases, we studied samples taken from two well differentiated "Y" block sizes. The results obtained show that, for the chemical composition analyzed, both castings have a fractomechanical response decrease as the temperature diminishes. Besides, the block size enlargement produce a deterioration of the mechanical properties (the fracture toughness, mainly, for both castings.

  14. Effect of Feeder Configuration on the Microstructure of Ductile Cast Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    iron castings. The goal is to enable metallurgists and foundry engineers to more directly target mushy zone development to prolong the possibility to feed through this section. Keeping smaller section open for an extended period will make it possible to use fewer or smaller feeders, with reduced energy...

  15. The influence of selected elements on mechanical properties of ferritic ductile iron

    OpenAIRE

    M.S. Soiński; A. Derda

    2008-01-01

    An altcmpi of dcrcrinininp rhc relationship bcrwccn changcs of quantities of clcmcnts in the alloy (such 'as C, Si, Mn. P. S. Cr, Ni. CL~M.g )and thc basic mcchanical propcrtics of thc matcrisl (R,, Rp,0,2r As, IIB, KCV) has bccn undcstakcn on thc basis of data concerningproduction of fcrritic ductilc iron of thc EN-G1S-400-IRU-LT grndc (according 10 PN-EN 1563 Standard) from about 300 hcars. Thccxamincd cast imn has hccn pmduccd by onc of thc domcstic roundrics in thc induction lurnacc of mc...

  16. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Science.gov (United States)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-06-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron-steel hollow sphere (DI-SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder-binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI-SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI-SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.

  17. Active Mg Estimation Using Thermal Analysis: A Rapid Method to Control Nodularity in Ductile Cast Iron Production

    Science.gov (United States)

    Suárez, Ramon; Sertucha, Jon; Larrañaga, Pello; Lacaze, Jacques

    2016-10-01

    Appropriate nodularity in ductile iron castings is strongly associated with the presence of high enough not combined Mg dissolved in the melt to cast. However, the residual Mg which is commonly measured for production control accounts for both dissolved Mg and Mg combined as oxides and sulfides. To account for the uncertainties associated with such a control, it is quite usual to over treat the melt with the risk of porosity appearance. A new methodology based on thermal analysis has been developed in the present work so as to estimate the amount of free Mg dissolved in the melt ready for pouring. A combination of Te mixture and a new "reactive mixture" composed of sulfur plus a commercial inoculant has been prepared for this purpose. This reactive mixture is able to transform the magnesium remaining dissolved in the melt to combined forms of this element. Experiments performed both during start of production (when Mg overtreatment is usual) and during normal mass production indicate that important variations of free Mg occur without relevant changes in residual Mg content as determined by spectrometry. The method developed in the present work has shown to be highly effective to detect those melt batches where active Mg content is not high enough for guaranteeing a correct nodularity of castings. Selection of proper active Mg thresholds and a correct inoculation process are critical to avoid "false"-negative results when using this new method.

  18. Active Mg Estimation Using Thermal Analysis: A Rapid Method to Control Nodularity in Ductile Cast Iron Production

    Science.gov (United States)

    Suárez, Ramon; Sertucha, Jon; Larrañaga, Pello; Lacaze, Jacques

    2016-07-01

    Appropriate nodularity in ductile iron castings is strongly associated with the presence of high enough not combined Mg dissolved in the melt to cast. However, the residual Mg which is commonly measured for production control accounts for both dissolved Mg and Mg combined as oxides and sulfides. To account for the uncertainties associated with such a control, it is quite usual to over treat the melt with the risk of porosity appearance. A new methodology based on thermal analysis has been developed in the present work so as to estimate the amount of free Mg dissolved in the melt ready for pouring. A combination of Te mixture and a new "reactive mixture" composed of sulfur plus a commercial inoculant has been prepared for this purpose. This reactive mixture is able to transform the magnesium remaining dissolved in the melt to combined forms of this element. Experiments performed both during start of production (when Mg overtreatment is usual) and during normal mass production indicate that important variations of free Mg occur without relevant changes in residual Mg content as determined by spectrometry. The method developed in the present work has shown to be highly effective to detect those melt batches where active Mg content is not high enough for guaranteeing a correct nodularity of castings. Selection of proper active Mg thresholds and a correct inoculation process are critical to avoid "false"-negative results when using this new method.

  19. Damage Analysis of a Ferritic SiMo Ductile Cast Iron Submitted to Tension and Compression Loadings in Temperature

    Directory of Open Access Journals (Sweden)

    Isabel Hervas

    2015-12-01

    Full Text Available Tensile and compression tests were carried out on a ductile cast iron for temperatures up to 1073 K. The damage caused inside and around graphite nodules was evaluated as a function of the local equivalent plastic strain by using microstructural quantifications. The mechanical properties are strongly dependent on a temperature above 773 K. Concerning tensile behavior, an evolutional law issued from the Gurson model representing the void growth as a function of the deformation and temperature was successfully employed. It is demonstrated that the strain state and the temperature have a strong influence on the void growth function. In the case of compression tests, the temperature has a weak influence on the nodule deformation for temperatures lower than 773 K, and the mechanical behavior is driven by the viscoplastic properties of the ferrite. For higher temperatures, the mechanical properties in compression are progressively modified, since graphite nodules tend to remain spherical, and ferrite grains are severely deformed. A synthesis of the damage mechanisms is proposed in the studied range of temperature and plastic strain. It appears that the graphite nodule aspect ratio can be used as an indicator of the deformation under compression loading for temperatures ranging from room temperature to 673 K.

  20. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-07-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  1. Replacement of a defective ductile iron gas pipeline with d 500 PE 100 pipes; Austausch einer defekten GGG-Gasleitung durch PE 100-Rohre d 500

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Robert [FRIATEC Aktiengesellschaft, Mannheim (Germany)

    2010-05-15

    A 600 m long ductile cast-iron pipeline has been renewed safely, reliably and in record time in the center of the spa town of Bad Pyrmont. Following decades of positive experience, the local municipal utility placed its faith in PE 100 pipe material and resistance welding - a time-saving method of joining PE pipes which is also cost-efficient for large dimensions. (orig.)

  2. 推进式套头砂芯在球铁管件生产中的应用%Socket Core of Ductile Iron Pipe Fittings

    Institute of Scientific and Technical Information of China (English)

    陈剑平

    2001-01-01

    介绍了采用组合砂芯的工艺方法生产球铁管件,以及制造此类砂芯的简易射芯机。%The production of ductile iron pipe fittings by using united assembly core has been briefly introduced in this paper.The peper also discussed the design methods and techniques of those shell core and the equipment.

  3. Study on Process Tolerance of Ductile Iron Based on MAGMA%基于MAGMA的球墨铸铁铸造工艺裕度分析

    Institute of Scientific and Technical Information of China (English)

    于赟; 李小平; 雷卫宁; 徐贵宝

    2012-01-01

    基于MAGMA的模拟计算,研究40 mm×200 mm×100 mm试块在不同浇注温度、砂型刚度、孕育和石墨析出的条件下缩松行为.模拟研究表明:石墨析出率和孕育效果变化对铸件缩松形成有明显影响,浇注温度变化对铸件缩松的形成影响较小,即石墨析出和孕育方式的工艺裕度小,浇注温度的工艺裕度较大,这与试验结果基本一致;MAGMA对砂型刚度对铸件缩松形成影响的模拟结果与试验不符.%The formation of porosity in 40 mm×200 mm× 100 mm ductile iron test block under the conditions of different pouring temperature, mold dilation, inoculation and graphite precipitation were investigated on the basis of MAGMA software. The results show that the variations of inoculation and graphite precipitation have distinct influence on the formation of porosity in ductile iron and the pouring temperature changes have slight influence on the formation of porosity in ductile iron, namely, the process tolerances of graphite precipitation and inoculation are small and the pouring temperature' s process tolerance is bigger, which are in accord with the experimental results. The MAGMA simulation results about effect of the mold dilation on the formation of porosity in ductile iron were inconsistent with the experimental results.

  4. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    Directory of Open Access Journals (Sweden)

    Lacaze, Jacques

    2016-06-01

    Full Text Available There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content.Las fundiciones con grafito esferoidal de matriz totalmente ferrítica tienen gran interés debido a su homogeneidad estructural, alargamiento destacable y su buena respuesta frente a las operaciones de mecanizado. Por otro lado, la extensa variedad de materias primas disponibles en las plantas de fundición supone un problema a la hora de controlar de forma efectiva la composición química de las aleaciones preparadas. En este trabajo se ha realizado un estudio estadístico sobre la influencia de los diferentes contenidos de carbono, silicio, níquel y de otros elementos minoritarios sobre las características estructurales y las propiedades mecánicas de un grupo de fundiciones con grafito esferoidal y matriz ferrítica. Finalmente, se han obtenido un número de ecuaciones que permiten predecir las propiedades mecánicas a temperatura ambiente de estas fundiciones en función de su composición química y su contenido de perlita en la matriz metálica.

  5. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  6. 高硅合金耐热铸铁生产球墨铸铁模具的研制%Research on producing ductile iron mould with high silicon alloy heat resistant cast iron

    Institute of Scientific and Technical Information of China (English)

    梁冰利; 王宏亮; 韩黎

    2012-01-01

    对铸铁模具使用工况进行了分析,采用了高硅合金耐热铸铁为生产球墨铸铁模具的材质,并介绍了高硅合金耐热球墨铸铁模具的消失模铸造工艺、冶炼工艺、热处理工艺以及该材质模具的实际使用效果.实际生产表明:高硅合金耐热球墨铸铁具有优越的综合耐热疲劳性能,大大提高了模具寿命.%The actual operating conditions of cast iron mould were analyzed. The silicon alloy heat resistant cast iron was adopted to produce ductile iron mould, and the lost foam casting process, smelting process, heat treatment process of the high silicon alloy heat resistant ductile iron mould as well as the actual use effect of the mould with this material were introduced. The practical production shows that the high silicon alloy heat resistant cast iron has superior heat-resistant and fatigue properties, which improves the mould life.

  7. A fracture mechanics safety concept to assess the impact behavior of ductile cast iron containers for shipping and storage of radioactive materials

    International Nuclear Information System (INIS)

    Within the scope of the German licensing procedures for shipping and storage containers for radioactive materials made of ductile cast iron, BAM performs approval design tests including material tests to ensure the main safety goals of shielding, leaktightness and subcriticality under ''Type B accident conditions''. So far the safety assessment concept of BAM is based essentially on the experimental proof of container strength by prototype testing under most damaging test conditions in connection with complete approval design tests, and has been developed especially for cylindrical casks like CASTOR- and TN-design. In connection with the development of new container constructions such as ''cubic cast containers'', and the fast developments in the area of numerical calculation methods, there is a need for a more flexible safety concept especially considering fracture mechanics aspects.This paper presents the state of work at BAM for such an extended safety concept for ductile cast iron containers, based on a detailed brittle fracture safe design proof. The requirements on stress analysis (experimental or numerical), material properties, material qualification, quality assurance provisions and fracture mechanics safety assessment, including well defined and justified factors of safety, are described. ((orig.))

  8. Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan (China); Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Kung, Shu-Chi [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China)

    2013-11-01

    This study utilized electroless nickel as an interlayer, then coated nanoscale CrN/ZrN multilayer on Cu-alloyed ductile iron through cathodic arc deposition method. Morphology and structure of the coatings were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). Moreover, Rockwell-C indentation, nanoindention, and ball-on-disk wear tests were all carried out to explore the properties of the coatings consisting of adhesion, hardness, elastic modulus, friction coefficient, and wear rate, respectively. The results showed that electroless nickel had a major amorphous phase while the CrN/ZrN multilayer coatings exhibited alternate nanocrystalline CrN and ZrN phases. Compared with single coating of electroless nickel or CrN/ZrN, the CrN/ZrN multilayer coatings with an electroless nickel interlayer exhibited higher hardness (31.1 GPa) and elastic modulus (256.4 GPa). Consequently, the ductile iron with the duplex coatings could be available to reduce both the friction coefficient and wear rate.

  9. The Structure and Bond Strength of Composite Carbide Coatings (WC-Co + Ni) Deposited on Ductile Cast Iron by Thermal Spraying

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-02-01

    An investigation was conducted to determine the role of Ni particles in the WC-Co coating produced with the supersonic method on microstructure, mechanical, and wear properties in a system of type: WC-Co coating/ductile cast iron. The microstructure of the thermal-sprayed WC-Co + Ni coating was characterized by scanning electron and transmission electron microscopes as well as the analysis of chemical and phase composition in microareas (EDS, XRD). The microstructure of the WC-Co + Ni coating consisted of large, partially molten Ni particles and very fine grains of WC embedded in cobalt matrix, coming to the size of nanocrystalline. Moreover, the results were discussed in reference to examination of bending strength considering cracking and delamination in the system of (WC-Co + Ni)/ductile cast iron as well as hardness and wear resistance of the coating. It was found that the addition of Ni particles was significantly increase resistance to cracking and wear behavior in the studied system.

  10. Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding

    International Nuclear Information System (INIS)

    In this study, the effect of surface alloying on the microstructure and wear behavior of ductile iron was studied. In this regard, ductile iron samples were coated by single and double pass welds of a nickel-based electrode (ENiCrFe3) using shielded metal arc welding. The effects of number of passes on microstructure, hardness and wear resistance of cladded layers were investigated. Optical microscopy and X-ray diffractometry were used to identify the microstructure and phase composition of cladded layers and interfaces. The results revealed that cladded layers consist of austenite (Fe, C), γ(Fe, Ni) and small quantities of carbides such as Cr7C3. It was also found that the hardness of the cladded layers was higher than that of substrate. In samples processed with a single and double passes, hardness reached up to 500 and 450 HV, respectively. Pin-on-plate wear tests showed that the wear mechanism is predominantly delamination in the cladded layers and substrate.

  11. Effects of Laser Shocking on the Surface Properties of Ductile Iron%激光冲击对球墨铸铁表面性能的影响

    Institute of Scientific and Technical Information of China (English)

    周建忠; 张永康; 杨继昌; 於自岚

    2001-01-01

    Selecting laser shocking parameters with the application of artificial neural networks theory,the high power density, neodymium -glass laser is used to laser shock process ductile iron QT450 - 10. The microhardness was measured and the microstructure of LSP area were examined with scanning electron microscope (SEM). The results show that the surface properties of ductile iron QT450 - 10 are improved remarkably after LSP treating. The average microhardness of the LSP area is increased by 34. 56~53.02 percent with the increasing of laser shock times (1~4),and the depth of hardened layer is about 0. 31~1.47mm%应用人工神经网络理论,合理选择激光冲击参数,对球墨铸铁QT450-10进行了激光冲击试验,并用扫描电镜和数显硬度仪等进行了分析。结果表明:激光冲击使球墨铸铁的表面性能得到明显改善,冲击区表面的平均硬度随冲击次数(1~4)的增加分别增加了34.56%~53.02%,硬化层深约为0.31mm~l 47mm。

  12. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Science.gov (United States)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al2O3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  13. 喂线技术在大型球铁铸件生产中的应用实践%Application of wire feeding technology in production of large ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    花建新

    2014-01-01

    Large ductile iron castings has wide application prospect in mining , metallurgy , machine tool, rail transportation, wind power, nuclear power and other fields, and wire feeding technology supplies the necessary technical support for the production of large ductile iron castings .%大型球铁铸件在矿山、冶金、机床、轨道交通、风电、核电等领域具有广阔的应用前景,喂线技术对生产大型球铁铸件提供了必要的技术支撑。

  14. 高镍奥氏体球墨铸铁涡壳的开发%Development of High-Ni Austenitic Ductile Iron Turbine Housing

    Institute of Scientific and Technical Information of China (English)

    高顺; 程凤军; 史朝龙; 莫俊超; 宋彦丞

    2013-01-01

    针对D-3.5和D-5S两种材质的高镍奥氏体球铁涡壳进行了试验研究,认为奥氏体枝晶发达才是高镍球铁出现碎块状石墨和显微缩松难以消除的根本原因.通过MAGMA模拟软件进行了铸造工艺模拟分析,优化了铸造工艺,缩短了开发周期,降低了成本.采用长效的Si-Ba和Si-Sr孕育剂的多次孕育,并加入微量的Sn和Sb元素,同时严格控制化学成分、出铁温度等关键参数,解决了球化不稳定、碎块石墨和显微缩松等问题,成功完成了高镍奥氏体球铁涡壳的开发,掌握了高镍奥氏体球铁的批量生产技术.%Two kinds of high nickel austenite ductile iron (D-3.5 and D-5S) turbocharger housing were researched, and a large number of austenitic dendrites were deem to the basic reason of chunky graphite and porosity. By simulation of casting process with the MAGMA software, the casting process was optimized; development cycle and the cost were reduced. Using long-acting nucleating agent such as Si-Ba and Si-Sr, adding trace of Sn and Sb element, and strictly controlling the key parameters of the chemical composition, the tapping temperature and the pouring temperature, etc., we solved the problems of the spheroidizing instability, chunky graphite and porosity, so successfully completed the development of the austenite ductile iron turbocharger housing and mastered the batch production technology of the high nickel austenite ductile iron.

  15. Mechanical milling of a nano structured ductile iron powder under dry, wet and cryogenic atmospheres; Proceso de molturacion mecanica en medio seco, humedo y criogenico de polvo de hierro ductil nanoestructurado

    Energy Technology Data Exchange (ETDEWEB)

    Cinca, N.; Hurtado, E.; Cano, I. G.; Guilemany, J. M.

    2011-07-01

    The main objective of this study, is to obtain an effective particle and grain size reduction of a nano structured iron powder by mechanical milling under different milling media. One of the main challenges in this study is to work with this material of great ductility.The variables of the study to be optimized have been the following: speed of rotation, powder to ball ratio (PBR) and the percentage of control agent to induce an effective powder fracturing in front of cold welding. The powder has been characterized by a Laser Diffraction Particle Size Analyser, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and, X-ray diffraction.Through the comparative study, it is found that operating under dry milling conditions: there is a more effective particle size reduction of 43 % and grain size reduction of 62 %. In wet conditions has been reduced the amount of oxide, as well as to obtain a more homogenous distribution of the resulting powder. The results under cryogenic media is presented as promising. (Author) 15 refs.

  16. Effect of Ce-Mg-Si and Y-Mg-Si nodulizers on the microstructures and mechanical properties of heavy section ductile iron

    Institute of Scientific and Technical Information of China (English)

    郭二军; 宋良; 王丽萍

    2014-01-01

    Effect of Ce-Mg-Si (light RE) and Y-Mg-Si (heavy RE) nodulizers on the microstructures and mechanical properties of heavy section ductile iron was investigated to develop the material of spent-nuclear-fuel containers. Two as-casts were treated by the same quality percentage of light RE and heavy RE, respectively. Four positions were chosen to stand for different solidification cool-ing rates of specimens. The tensile strength, elongation and impact toughness of specimens treated by heavy RE were all higher than those of the specimens treated by light RE. With the decrease of cooling rate, the mechanical properties of two specimens decreased, and the fracture morphology changed from ductile fracture to brittle fracture. The improving effect of mechanical properties between heavy RE and light RE was obvious due to the better anti-degradation property of heavy RE. While the solidification process lasted for more than 250 min, the improving effect was not obvious due to serious spheroidalization decaying.

  17. Aspectos cinéticos e microestruturais da transformação bainítica incompleta em ferros nodulares austemperados Kinetic and microstructural aspects of incomplete bainite transformation in austempered ductile irons

    OpenAIRE

    Marcio Ferreira Hupalo; Daniele da Silva Ramos; Alexsandro Rabelo; Nelson Batista de Lima

    2012-01-01

    Nesse trabalho, foram estudados aspectos cinéticos da transformação bainítica incompleta em ligas de ferro nodular, contendo 2,36 e 2,68% Si. As amostras foram austenitizadas a 900°C, durante 90 minutos, e austemperadas a 320 e 370ºC, em tempos entre 1,5 e 60 minutos. A caracterização microestrutural foi realizada pelas técnicas de microscopia óptica (MO), microscopia eletrônica de varredura (MEV), difração de Raios X (DRX) e microdureza Vickers. Foi desenvolvido um método de quantificação da...

  18. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the abrasive wear of austempered ductile irons.

    OpenAIRE

    C. J. Diez Cicero; G. R. Fernández López; U. Ordóñez Hernández; C. R. Figueroa Hernández; F. Mondelo

    2009-01-01

    Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular,ocupa en la actualidad, uno de los lugares más importantes entre los hierros fundidos de altaresistencia, y con la introducción del tratamiento térmico de austemperado, aplicado a estasfundiciones, se da lugar a una nueva familia de materiales, caracterizados por su alta resistenciamecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de lasfundiciones nodulares.Este trabaj...

  19. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the waste by abrasion resistance for ductile austempering irons.

    OpenAIRE

    C. J. Diez Cicero; G. R. Fernández López; U. Ordóñez Hernández

    2004-01-01

    Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular, ocupa en la actualidad unode los lugares más importantes entre los hierros fundidos de alta resistencia, y con la introducción del tratamiento térmicode austemperado aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo...

  20. Efecto del conteo de nódulos en la resistencia a la tracción de los hierros dúctiles austemperados. // Effect of nodules count in the tensile strength of austempered ductile irons.

    OpenAIRE

    C. J. Diez Cicero; G. R. Fernández López; U. Ordóñez Hernández; F. Mondelo; E. Fraga Guerra

    2004-01-01

    Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nódular ocupa uno de los lugaresmás importantes entre los hierros fundidos de alta resistencia y con la introducción del tratamiento térmico deaustemperado, aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valorac...

  1. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Institute of Scientific and Technical Information of China (English)

    Hamid Sazegaran; Ali-Reza Kiani-Rashid; Jalil Vahdati Khaki

    2016-01-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere (DI–SHS) syntactic foamswere investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and en-ergy-dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compres-sion behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that mi-crocracks start and grow from the interface region.

  2. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  3. Effect of CeO{sub 2} addition on thermal shock resistance of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaoben [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); College of Mechanical Engineering, Shanghai Dianji University, Shanghai 200240 (China); Zhu, Shigen, E-mail: sgzhu@dhu.edu.cn [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Shanghai 201620 (China)

    2015-09-15

    Highlights: • WC–Co powders with CeO{sub 2} were deposited by electric contact strengthening (ECS). • ECS is based on electric resistive heating between the electrode and work piece. • WC–Co coating with CeO{sub 2} by ECS was metallurgically bonded to the substrate. • The addition of CeO{sub 2} could refine the coating microstructure and increase the microhardness. • By the proper addition of cerium oxide, the thermal shock performance was enhanced. - Abstract: The WC–12%Co powders with different contents of CeO{sub 2} (0.1–2 wt.%) were deposited on ductile iron by electric contact surface strengthening. The coatings with and without CeO{sub 2} were examined and tested for microstructural characteristic, phase structure, microhardness and thermal shock resistance. The comparison concluded that the proper addition of CeO{sub 2} could refine the microstructure of coatings and increase the microhardness of the coatings. By the small amount addition of cerium oxide (0.5 wt.%), the solid solution strengthening effect and grain boundaries strengthening effect would delay the time of crack formation and propagation in the coatings and enhance the thermal shock performance.

  4. Effect of CeO2 addition on thermal shock resistance of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    International Nuclear Information System (INIS)

    Highlights: • WC–Co powders with CeO2 were deposited by electric contact strengthening (ECS). • ECS is based on electric resistive heating between the electrode and work piece. • WC–Co coating with CeO2 by ECS was metallurgically bonded to the substrate. • The addition of CeO2 could refine the coating microstructure and increase the microhardness. • By the proper addition of cerium oxide, the thermal shock performance was enhanced. - Abstract: The WC–12%Co powders with different contents of CeO2 (0.1–2 wt.%) were deposited on ductile iron by electric contact surface strengthening. The coatings with and without CeO2 were examined and tested for microstructural characteristic, phase structure, microhardness and thermal shock resistance. The comparison concluded that the proper addition of CeO2 could refine the microstructure of coatings and increase the microhardness of the coatings. By the small amount addition of cerium oxide (0.5 wt.%), the solid solution strengthening effect and grain boundaries strengthening effect would delay the time of crack formation and propagation in the coatings and enhance the thermal shock performance

  5. Chunky graphite formation in small section ductile iron castings; Formacion de grafito chunky en piezas de pequeno espesor fabricadas utilizando fundicion de hierro con grafito esferoidal

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, I.; Larranaga, P.; Sertucha, J.

    2011-07-01

    Chunky graphite is a degenerated graphite form which can be found in the thermal centre of ductile iron heavy section castings. Previous studies made on cubic blocks (300 and 180 mm in side) manufactured using alloys with fully ferritic matrix structures show that low cooling rates, excessive post-inoculation and high silicon and/or cerium contents in the melts are the most important factors that promote this kind of defect. The enhancement of these critical factors led to obtain chunky graphite in sections lower than 50 mm. Different experimental conditions have been used in order to establish the main parameters that affect this graphite malformation. The use of cutting-edge techniques in the analysis of chemical compositions has revealed that no significant differences can be found when comparing chunky areas and well-formed spheroidal graphite areas. On the other hand, it has not been possible to establish any correlation between the oxygen contents and the scale of the defect. However, it is noteworthy that the oxygen content is related to the use of magnesium or cerium as nodulized agent. (Author) 23 refs.

  6. Ultrasonic testing of pre-turned contours for large components made of ductile iron; Ultraschallpruefung an Vordrehkonturen fuer grosse Bauteile aus Gusseisen mit Kugelgraphit

    Energy Technology Data Exchange (ETDEWEB)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2015-07-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [German] Bei der Ultraschall-Pruefung von grossen, dickwandigen Bauteilen aus Gusseisen mit Kugelgraphit werden teilweise Schallwege von mehreren Metern noetig. Betrachtet werden hier zylinderfoermige Bauteile, wie die Koerper von CASTOR-Behaeltern, mit Durchmessern zwischen 2 und 3 m, einer Hoehe von bis zu 6 m und Wanddicken von ca. 500 mm. Bisher ist eine automatisierte Technik hierfuer nicht verfuegbar, daher werden derartige Bauteile in einem aufwaendigen und langwierigen Prozess mittels manueller Schallung geprueft. Zur Erhoehung der Nachweissicherheit und zur Steigerung der Effizienz im Pruefablauf sollen nun senkrecht zur Achse des zylinderfoermigen Bauteils liegende unzulaessige Anzeigen im gesamten Mantelvolumen durch eine teilautomatisierte Pruefung ausgeschlossen werden. Die Entwicklung und Auslegung der Prueftechnik mittels Simulationen und die Realisierung als mobile Pruefvorrichtung sind Themen dieses Beitrags. Messungen an einem Referenzkoerper mit Testreflektoren in verschiedenen Tiefen werden vorgestellt und diskutiert.

  7. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    Energy Technology Data Exchange (ETDEWEB)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  8. Investigation of the Potential of Jatropha Seed Oil as Austempering Quenchant for Medium Carbon Steel

    OpenAIRE

    Akor, T; Ashwe, A., Ikpambese, K.K., and Yaji, P.M.

    2014-01-01

    This study investigates the suitability of jatropha seed oil as quenching medium for austempering medium carbon steel. Test samples were austenitized at 9500C; socked for 1hr; austempered for varying periods of 1, 2, 3, 4 and 5hrs. The result showed significant increase in tensile strength and impact energy apart from achieving an appreciable increase in hardness. It also tally with recommended values of medium carbon steel austempered in salt bath, implying that jatropha oil can be used as h...

  9. 球墨铸铁飞轮壳的无冒口铸造工艺实践%Non-Riser Casting Technological Practice of Ductile Iron Flywheel-Casing

    Institute of Scientific and Technical Information of China (English)

    张春明

    2013-01-01

    对某球铁飞轮壳铸件的无冒口铸造工艺进行了分析,采用呋喃树脂自硬砂造型、控制铁液的化学成分、采用中间底注、铁液分散进入型腔的浇注方式以及四角设置出气孔等措施,使球铁飞轮壳的无冒口铸造工艺得到了实现,生产的球铁飞轮壳力学性能符合技术要求,且实现了批量生产.%The non-riser casting technological design of ductile iron flywheel-casing was analyzed, and the casting technology was achieved by no-bake sand molding, controlling composition of iron melt, pouring from bottom center of the casting and dispersing into the mould cavity, and exhausting from four holes around the casting. The mechanical properties of the ductile iron flywheel-casing made by this technology meet the technical standard, and the batch production is achieved.

  10. 球铁飞轮的铁型覆砂铸造生产及缺陷防止%Production of Ductile Iron Fly Wheel by Permanent Mold with Coated Sand and its Defects Elimination

    Institute of Scientific and Technical Information of China (English)

    张春明

    2012-01-01

    主要讲述了球铁飞轮的铁型覆砂铸造工艺的基本要求及生产过程控制,并对该生产工艺中可能出现的各种缺陷及其预防措施进行了总结.%The primary technological characteristics of permanent mold coated sand casting ductile iron fly wheel and its process control were described. Meanwhile, the defects possible encountered in production and countermeasures were presented.

  11. Corrosion behaviour of ductile cast irons partially modified with silicon in 0.03 M NaCl; Comportamiento frente a la corrosion de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, M. A.; Niklas, A.; Conde, A.; Mendez, S.; Sertucha, J.; Damborenea, J. J. de

    2014-07-01

    NaCl. The increasing demand of ductile cast irons with extensive technological applications leads to enlarge the corrosion resistance of this group of metallic materials. In this sense, the use of different chemical compositions on such cast irons becomes one of the most interesting aspects among the different ways to improve their behaviour against corrosion due to the extra opportunity for increasing the mechanical properties. Additionally such improvements have to be made without any increase of processing costs to keep the interesting competitiveness of developed cast irons. In the present work the preliminary results obtained from corrosion tests made on a group of cast irons with different chemical compositions are presented. Among ductile cast irons, silicon content has been varied in order to investigate the effect of this element on corrosion resistance of the alloys. The obtained results show a slight improvement of this property for the alloys with high silicon content with respect to the conventional ones though such effect was found in the first time period of the corrosion tests. Interestingly this improvement was found for alloys that exhibit better tensile properties than the conventional ductile irons. Thus an important way for developing new ductile cast irons with improved corrosion properties by alloying has been opened. (Author)

  12. 电力机车牵引电机用低温球墨铸铁件的生产%Production of Low Temperature Ductile Iron Casting for Tractor Motor

    Institute of Scientific and Technical Information of China (English)

    朱红军; 时平利

    2011-01-01

    The low-temperature ductile iron casting used for traction motor features complex structure and large difference in wall thickness. The shrinkage and dispersed shrinkage defects easy occur during the production, and the casting is required to have a low temperature impact energy greater than 12 J at -40 ℃. Herein taking the end shield casting for example, the production procedure of low-temperature ductile iron casting was presented from aspects such as the molding process, smelting, selection of raw materials, chemical composition control, heat treatment, etc. The casting's performance arrives at the same level of the similar products abroad, and its localization production is realized.%针对牵引电机用低温球墨铸铁件结构复杂,壁厚差别大,易产生缩孔和缩松缺陷,并要求铸件-40℃的低温冲击功大于12J的这些生产难点.以端盖铸件为例,分别从造型工艺、熔炼、原材料的选择、化学成分的控制、热处理工艺等方面介绍了生产低温球墨铸铁件的生产过程.经检验,铸件性能达到国外同类产品的质量要求,实现了国产化生产.

  13. Microstructure and Mechanical Properties of 50SiMnNiNb Steel by a Novel Quenching-Partitioning-Austempering Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    LI Hongyan; JIN Xuejun

    2009-01-01

    For the purpose of reducing weight of steel parts, save raw materials and keep or even improve safety standards, the development of advanced high strength steels is increasingly demanded in the automotive industry and engineering applications. We have proposed a novel heat treatment (quenching-partitioning-austempering treatment, Q-P-A) to obtain steel parts with high strength and good ductility. The Q-P-A process is intended to produce microstructure consisted of carbon-depleted martensite, carbon-enriched retained austenite and nanostructured bainite. Quenching(Q) treatment fabricates mixed microstructure of carbon-supersaturated martensite and certain amounts of untransformed austenite. Partitioning(P) thermal treatment accomplishes fully diffusing of carbon from the supersaturated martensite phase to the untransformed austenite phase and enriching the amount of carbon in untransformed austenite. Further low-temperature austempering(A) process induces incredible thin bainite from the carbon-enriched untransformed austenite. A study of the microstructure and mechanical properties of 50SiMnNiNb steel subjected to the novel Q-P-A treatment is presented. Microstructure is assessed by optical microscope(OM), field emission scanning electron microscope(FESEM) and transmission electron microscope(TEM), and the corresponding mechanical properties are measured. The experimental results indicate that attractive mechanical properties of steels during the Q-P-A process are attributed to the complex multi-phase structure. Slender plates of bainite with 20-40 nm thick are generated in the medium carbon steel. Meanwhile, with increasing of the volume fraction of nanostructured bainite, yield strength of steel parts is increased with little degradation of ultimate tensile strength. In this paper, a novel quenching-partitioning-austempering heat treatment is proposed, and the attractive mechanical properties of steels are obtained during the Q-P-A process.

  14. EFFECT OF AUSTEMPERING ON TRANSFORMATION INDUCED PLASTICITY OF HOT ROLLED MULTIPHASE STEELS

    Institute of Scientific and Technical Information of China (English)

    Z.Li; D. Wu

    2007-01-01

    Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.

  15. 球墨铸铁件防渗硫剥离型涂料的研究%Study of an Anti-sulfurizing and Stripping Coat Parts for Ductile Casting Iron

    Institute of Scientific and Technical Information of China (English)

    武晓峰; 孙铭远; 方旋; 张宝军; 刘聪

    2014-01-01

    针对呋喃树脂砂生产球墨铸铁件表面渗流、产生片状等非球状组织的现象,本文选用镁砂粉作为反应型防渗硫剂,助剂 A 和助剂 B 作为复合烧结助剂等组分配制球墨铸铁件用呋喃树脂砂醇基涂料。试验结果表明:研制的涂料具有优良的防渗流效果,能够有效地避免或减轻非球状组织的产生。同时,浇注后该涂料层能从铸件表面自行剥离、脱落,防止了铸件的粘砂并减轻了清理量。%An alcohol-base sulfur resistant and strip sintered coating used in furan resin bonded sand for ductile iron was prepared by using magnesia powder as anti-sulfurizing agent, fluxing medium A, B as complex sintered agent according to the phenomenon of surface sulfurizing and lamellar structure of ductile iron castings produced by furan resin bonded sand. The experiment and application results show that this coating has good anti-sulfurizing property, which can effectively prevent or reduce the generation of non-globular particles. At the same time, after pouring, the coated layer of casting surface can be self-stripped, or be off, which will prevent the sticky sand from casting and reduce the amount of clean-up.

  16. Quality and Cost Assessment of Treatment with SiMg and NiCuMg Master Alloys vs Cored Wire in Production of Ductile Iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2007-07-01

    Full Text Available The results of studies on the use of magnesium alloy in modern cored wire injection method for production of nodular and vermicular graphite cast irons were described. The injection of Mg cored wire length is a treatment method which can be used to process high sulphur cupola iron held in ladles or iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire (Mg recovery 47-70% for the production of vermicular and nodular graphite cast irons at Ścinawka Foundry, and for the production of nodular graphite iron at the following foundries: GZUT, KRAKODLEW, Centrozap - DEFKA, EE Zawiercie, WSK–Rzeszów, FWM PRZYSUCHA, HSW Stalowa Wola and PIOMA. The results of calculations and experiments have indicated the length of the cored wire to be injected basing on the initial sulfur content and weight of the treated melt. The results of numerous trials have shown that the magnesium cored wire process can produce high quality nodular and vermicular graphite irons under the specific industrial conditions of the above mentioned foundries. It has also been proved that in the manufacture of nodular graphite iron, the cost of the nodulariser in the form of elastic cored wire is lower than the cost of the FeSiMg or NiCuMg master alloys.

  17. Quality and Cost Assessment of Treatment with SiMg and NiCuMg Master Alloys vs Cored Wire in Production of Ductile Iron

    OpenAIRE

    E. Guzik

    2007-01-01

    The results of studies on the use of magnesium alloy in modern cored wire injection method for production of nodular and vermicular graphite cast irons were described. The injection of Mg cored wire length is a treatment method which can be used to process high sulphur cupola iron held in ladles or iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire (Mg recovery 47-70% ) for the production of vermicular and ...

  18. 位错及掺杂对球铁冲击韧性影响的电子机理%Electronic Mechanism of Dislocation and Doping for Impact Toughness of Ductile Cast Iron

    Institute of Scientific and Technical Information of China (English)

    杨忠华; 刘贵立; 曲迎东; 李荣德

    2015-01-01

    Atom module of α⁃Fe [ 100 ] ( 010 ) edge dislocation is built in metallic matrix of ductile cast iron. Density functional theory CASTEP method is employed to calculate energy parameters of carbon doping edge dislocation system including atom embedded energy, affinity energy and Mulliken population. It shows that there exist C2v symmetry group in structure of α⁃Fe [100] (010) edge dislocation and localized effect of dislocation happens in limited range. Energy valley attracts light impurity carbon which forms atom clusters in dislocation corn. Interaction between C and Fe atoms is strengthened with charge transportation between C⁃4s and Fe⁃2p obtains which pins dislocation slipping. Mulliken population of Fe atom and C atom is high. Length is short. Iron carbide could be produced. Binding energy and PDOS of carbon doping cementite system show that silicon promotes cementite decomposing and nicalon becomes corn of graphite ball, which improve impact toughness of ductile cast iron.%在球墨铸铁金属基体中建立α⁃Fe[100](010)刃型位错原子模型,利用基于密度泛函理论的CASTEP方法计算C原子在位错芯区的埋置能、亲和能、电荷布居数等电子参数。结果表明:α⁃Fe[100](010)刃型位错芯区局域效应集中范围较小并具有C2v点群对称性。位错芯区的能量低谷吸引轻质杂质C原子偏聚,C原子的2p轨道与刃型位错尖端Fe原子的4s价轨道之间发生电荷转移,具有较强的相互作用,使位错运动受阻。 Fe⁃C原子间布居数较大、原子间距离较小表明,Fe⁃C原子间有生成渗碳体化合物的倾向。 Si原子掺杂渗碳体的结合能及各原子轨道分波态密度表明,Si原子能够促使渗碳体分解,析出碳硅化合物成为石墨球化的核心,从而改善球墨铸铁的冲击韧性。

  19. 对球墨铸铁中合理稀土用量的再认识%A Re-Understanding of the Proper RE Usage Amount in Ductile Iron Production

    Institute of Scientific and Technical Information of China (English)

    应忠堂

    2013-01-01

    The effect principle of rare earth in ductile iron was introduced.lt was confirmed by showing various productive examples of RE usage amount,that the proper RE usage amount range were as follows: (1)When producing medium and small parts of automobile, diesel engine, agricultural machine etc. by using cupola melting and tapping temperature is of 1 450 ~1 500 ℃ ,the S content of base iron is of 0.04%~0.06%,and Mg content of nodularizing alloy is of 6.5% for the lower limit to 7.5% for the upper limit,adding proper amount of rare earth is beneficial,however overabundance of RE will be inadvisable, the proper RE content range of nodularizing alloy is of 1.5% ~2.5% with its lower limit for thin section castings or casting having section thickness more than 50 mm. (2)When producing above mentioned castings by using medium frequency furnace melting and tapping temperature is of 1 500~1 550 ℃ ,the S content of base iron is about 0.02%,Mg content of nodularizing alloy is of 5.5%~6.5%,the proper RE content is about 0.8%.(3)When producing heavy section ductile iron castings by using cupola melting and Mg content of nodualrizing alloy is of 6.5%~7.5%,the proper RE content range is of 1.0%~1.2% and with heavy RE as its main RE ingredient.(4)When producing heavy ductile iron castings by using medium frequency furnace melting and Mg content of nodularizing alloy is of 5.5%~6.5%,the proper RE content range is of 0.6%~ 08% also with heavy RE as its main RE ingredient. It was stressed that the too high usage amount for ductile iron will not only increase productive cost, waste national precious resource,and also is disadvantageous to the casting quality.%介绍了稀土在球墨铸铁中的作用原理.通过各种稀土用量的生产实例,论证了合理的稀土用量范围:(1)对于冲天炉熔炼,出铁温度1 450~1 500℃,原铁液w(S) 0.04%~0.06%,生产汽车、柴油机、农机等中小型球墨铸铁件时,球化剂中w(Mg)在6.5%~7.5%,出铁温度高

  20. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  1. 高硅钼涡轮壳支架的凝固模拟和铸造工艺研究%Research on Solidification Simulation and Casting Process for Turbine Housing Bracket of High-Si-Mo Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    袁海; 王今胜; 高顺

    2012-01-01

    高硅钼涡轮壳支架结构类似于排气管.根据高硅钼球铁的技术要求,制定了合理的熔炼工艺参数,但在AMF造型线生产时,缩松导致的报废率很高.为了消除缩松缺陷实现大批量生产,提出了4种工艺改进方案,并用MAGMA软件对凝固过程进行模拟,最终确定的方案不但能解决缩松缺陷,还能简化工艺流程,提高生产效率.%The structure of turhine housing bracket was similar to an exhaust. According to the technical requirements of high silicon molybdenum ductile iron, the reasonable melting process parameters were drafted, but the shrinkage led to a low qualified rate when produced in AMF moulding line. In order to eliminate the shrinkage defects to achieve massive production, four kinds of process improvement program was presented, and their solidification processes were simulated by MAGMA software and the position of shrinkage was predicted. Finally the chosen scheme can eliminate the shrinkage defect, simplify process and improve production efficiency.

  2. Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification

    International Nuclear Information System (INIS)

    The microstructure of austempered high silicon (AHS) steel before and after treating with a modifier containing titanium, vanadium and rare earth elements (so-called Ti-V-RE modifier) and austempered at different temperatures has been investigated. The plane strain fracture toughness of the steel in room temperature and ambient atmosphere has been examined. The microstructure was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography and correlated to the fracture toughness of the steel. The results show that the primary austenite grains are refined, the dendritic austempered structure is eliminated, and the volume of blocky shaped retained austenite is reduced by the addition of Ti-V-RE modifier. Modification with Ti-V-RE modifier can prompt the bainitic ferrite transformation and reduce the volume fraction of retained austenite. High fracture toughness is obtained for AHS steel with the addition of Ti-V-RE modifier when austempered between 350 and 385 deg. C with a retained austenite of 30-35% and the carbon content in the austenite is about 1.9-2%. The fracture toughness of AHS steel by the modification treatment can increase 10-40% than that of unmodified, an optimum value of 85 MPa m1/2 was obtained when austempered at 385 deg. C

  3. Causes of the hot ductility drops of steels

    Science.gov (United States)

    Kolbasnikov, N. G.; Matveev, M. A.; Mishin, V. V.; Mishnev, P. A.; Nikonov, S. V.

    2014-09-01

    The effect of conditions of continuous casting and hot rolling of steel on the high-temperature ductility of a microalloyed pipe steel of strength class Kh42 and 17G1S-U steel is studied. A Gleeble-3800 thermomechanical facility is used to perform physical modeling of the hot ductility of steel. The temperature dependence of the hot ductility of steel is determined under various slab cooling conditions in a continuous caster and during hot rolling. The ductility drops of iron and steels is found to be mainly caused by an increase in the elastic modulus near the temperatures of the polymorphic transformation caused by first- and secondorder phase transformations (polymorphic and magnetic transformations, respectively). Structural factors, such as the grain size, excess-phase inclusions located along initial grain boundaries, and interstitial impurities, lead to an additional decrease in the ductility.

  4. Influence of Hot Deformation and Subsequent Austempering on the Mechanical Properties of Hot Rolled Multiphase Steel

    Institute of Scientific and Technical Information of China (English)

    Zhuang LI; Di WU

    2006-01-01

    Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (δ)36% and 28476 MPa%, respectively) at optimal processes.

  5. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  6. Influence of treatments using different magnesium ferroalloys on the melt quality and the solidification processes of ductile irons; Influencia de los tratamientos realizados con diferentes ferroaleaciones de magnesio en la evolucion de la calidad metalurgica y los procesos de solidificacion de las funciones esferoidales

    Energy Technology Data Exchange (ETDEWEB)

    Loizaga, A.; Sertucha, J.; Suarez, R.

    2008-07-01

    In this work the metallurgical consequences of treatments applied on ductile irons using ferroalloys with different magnesium contents are analysed. The solidification processes have an important influence on the mechanical properties and the functionality of the iron castings along their service period. Consequently, the comparison of the characterstics of the cooling curves recorded from the melt and the active oxygen and sulphur contents have been used for quantifying the effects of treatments performed utilizing different types of commercial FeSiMg. The addition of magnesium into the melt strongly removes sulphur and oxygen contents and important degradations of the metallurgical quality are finally obtained as a consequence of them. On the other hand, the composition of the resulting slags and the evolution of the melt characteristics as a function of the remaining time into the pouring device is investigated. The magnesium content in ferroalloys becomes a critical parameters in the evolution of the melt quality of treated irons. (Author) 18 refs.

  7. Fading of inoculation effects in ductile iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-03-01

    Full Text Available In work i t has bccn shown rcsults or invcsligations of influcncc of rime Iapsed form inoculation proccss on graphitc nucleation potentialrcprcscntcd by: numbcr of graphitc nodulcs N and N,, maximum undercooling AT,, during solidification of gmphile eutcct ic. abmlutcchilling tcndcncy CT and critical casting diametct dh. undcr which cementite euteclic occur (so-callcd chills. Morcovcr it has hccncstima~cd raic of changc of N and N, AT,,,. CT and dk,. Also, it has bccn provcd that altcr onc minutc sincc rhc momcnt of inocuIationproccss nhout 35% of prnphttc nucIeation potenrial is tost. by 40% chitking tendency, by 70% incrcascs maximum undcrcmling forgraphitc ci~tccrica nd by nearly 40% caging diameter has to bc incrcascd in ordcr to avoid chills.

  8. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2009-01-01

    @@ This book consists of five sections:Chapter 1 Introduction,Chapter 2 Grey Iron,Chapter 3 Ductile Iron,Chapter 4Vermicular Cast Iron,and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  9. Ductile failure modeling

    DEFF Research Database (Denmark)

    Benzerga, Ahmed Amine; Leblond, Jean Baptiste; Needleman, Alan;

    2016-01-01

    Ductile fracture of structural metals occurs mainly by the nucleation, growth and coalescence of voids. Here an overview of continuum models for this type of failure is given. The most widely used current framework is described and its limitations discussed. Much work has focused on extending void...... growth models to account for non-spherical initial void shapes and for shape changes during growth. This includes cases of very low stress triaxiality, where the voids can close up to micro-cracks during the failure process. The void growth models have also been extended to consider the effect of plastic...... anisotropy, or the influence of nonlocal effects that bring a material size scale into the models. Often the voids are not present in the material from the beginning, and realistic nucleation models are important. The final failure process by coalescence of neighboring voids is an issue that has been given...

  10. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    OpenAIRE

    Chen Xiang; Li Yanxiang

    2013-01-01

    In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (...

  11. Investigation of High Cycle Fatigue Life of MW Grade Wind Turbine Ductile Iron Hub%兆瓦级风电轮毂球铁高周疲劳寿命研究

    Institute of Scientific and Technical Information of China (English)

    刘佳; 曲迎东; 李荣德; 马广辉; 白彦华; 姜珂; 邱克强; 尤俊华; 王瑞春

    2012-01-01

    为了获得MW级风机轮毂QT350-22LT的高周疲劳寿命.通过拉-拉高周疲劳试验获得其疲劳极限,并通过数值模拟的方法确定QT350-22LT是否能够作为轮毂材料.疲劳试验在PW3-10程序控制高频万能疲劳试验机进行,采用实际生产的附铸试块进行拉-拉高周疲劳试验.试验结果表明:获得的兆瓦级风电轮毂QT350-22LT的疲劳极限值为250MPa,根据数据绘制的S-N曲线的拐点在290MPa;疲劳源的位置不同,所产生的瞬断区断口形貌也有所差别.对轮毂本身所能承受的最大应力进行有限元分析,得到最大应力为156MPa.应力集中部位的值没有超过材料的疲劳极限,这证明球铁QT350-22LT能够满足风机轮毂设计的应力要求.%The main purpose of this paper is to obtain high cycle fatigue life of MW grade the wheel hub (QT350-22 LT). Through the pull-pull high cycle fatigue tests, the fatigue limit is determined. The numerical simulation method was used to determine whether QT3 50-22 LT is able to be the hub material or not. The fatigue test equipment and materials are PW3-10 program control high frequency universal fatigue test machine and the practical production casting blocks, respectively. The results show that fatigue limit of the MW grade wind turbine hub QT350-22 LT is 250 MPa and inflection point of S-N curve draw according to data is 290 MPa; the morphologies of the transient breaking fracture are different due to the different crack sources. The maximum tensile stress of the hub is 156 MPa, which is obtained by the finite element analysis. The value of tensile stress concentration position is no more than the fatigue limit of the material, which proves that the ductile iron hub (QT350-22 LT) can satisfy the design requirement of stress.

  12. Microstructures and Mechanical Properties of Austempering SUS440 Steel Thin Plates

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chen

    2016-02-01

    Full Text Available SUS440 is a high-carbon stainless steel, and its martensite matrix has high heat resistance, high corrosion resistance, and high pressure resistance. It has been widely used in mechanical parts and critical materials. However, the SUS440 martempered matrix has reliability problems in thin plate applications and thus research uses different austempering heat treatments (tempering temperature: 200 °C–400 °C to obtain a matrix containing bainite, retained austenite, martensite, and the M7C3 phase to investigate the relationships between the resulting microstructure and tensile mechanical properties. Experimental data showed that the austempering conditions of the specimen affected the volume fraction of phases and distribution of carbides. After austenitizing heat treatment (1080 °C for 30 min, the austempering of the SUS440 thin plates was carried out at a salt-bath temperature 300 °C for 120 min and water quenching was then used to obtain the bainite matrix with fine carbides, with the resulting material having a higher tensile fracture strength and average hardness (HRA 76 makes it suitable for use as a high-strength thin plate for industrial applications.

  13. Iron

    Science.gov (United States)

    ... as recommended by an obstetrician or other health care provider. Infants and toddlers Iron deficiency anemia in infancy can lead to delayed psychological development, social withdrawal, and less ability to pay attention. By age 6 to 9 months, full-term infants could ...

  14. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  15. Development of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K. [and others

    1995-06-01

    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.

  16. Cast iron - a predictable material

    OpenAIRE

    Jorg C. Sturm; Guido Busch

    2011-01-01

    High strength compacted graphite iron (CGI) or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process s...

  17. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel

    Institute of Scientific and Technical Information of China (English)

    Chen Xiang; Vuorinen Esa; Grahn Jonny

    2009-01-01

    Crack initiation,propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix:crack propagates along the boundary of two clusters of bainitic ferrite;crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths;crack propagates into bainitic ferrite laths;crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation.Based on the observation and analysis of microfracture processes,a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.

  18. Effectof austemperingparameterson microstructureandmechanicalproperties ofhorizontalcontinuouscastingductileiron densebars

    Institute of Scientific and Technical Information of China (English)

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang; Zhong-ming Zhang; Jin-cheng Wang; Yong-hui Liu

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.

  19. Method of preparing ductile superconductors

    International Nuclear Information System (INIS)

    The invention pertains to a method of producing ductile superconductors consisting of a copper matrix in which a number of superconducting alloys on a vanadium or niobium basis are embedded. According to the invention, the vanadium or niobium base alloy contains between 2 and 15 percent by weight of aluminum, silicon, germanium, gallium, or tin as alloying element. The alloy is quenched from temperatures between 1,5000C and 2,0000C to less than 5000C and then heat-treated between 600 and 1,0000C. By this method, transition temperatures up to 24 K, critical magnetic field strengths up to 200 kG and critical current densities up to 7 x 105A/cm2 could be achieved in the niobium/aluminum system. (HPOE)

  20. Ductile failure X-prize.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Wellman, Gerald William; Emery, John M.; Ostien, Jakob T.; Foster, John T.; Cordova, Theresa Elena; Crenshaw, Thomas B.; Mota, Alejandro; Bishop, Joseph E.; Silling, Stewart Andrew; Littlewood, David John; Foulk, James W., III; Dowding, Kevin J.; Dion, Kristin; Boyce, Brad Lee; Robbins, Joshua H.; Spencer, Benjamin Whiting

    2011-09-01

    Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

  1. Hot ductility of continuously cast structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, S.M. [Materials Science and Technology Institute, Cracow University of Technology, Cracow (Poland)

    1995-12-31

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author). 7 refs, 5 refs, 4 tabs.

  2. Undercooling and nodule count in thin walled ductile iron castings

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) w...

  3. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thick¬nesses from 2 to 8 mm involving both temperature measurements during solidification and micro¬structural examination afterwards. The nodule count was the same for the eutectic and hypereutectic...... castings in the thin plates ( 4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature prior to the eutectic recalescence (Tmin) was 15 to 20C lower for the eutectic than the hypereutectic castings. This is due to nucleation...... of graphite nodules which begins at a lover temperature in the eutectic than in the hypereutectic castings The recalescence (Trec) was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic...

  4. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings...... in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) was 15 to 20ºC lower for the eutectic than for the hypereutectic castings. This is due to nucleation of...... graphite nodules which begins at a lower temperature in the eutectic than in the hypereutectic castings. The recalescence ∆Trec was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  5. Ductility-modified response spectra methods for ductile equipment seismic failure analysis

    International Nuclear Information System (INIS)

    An approach for developing the system ductility of a typical nuclear power plant component is presented, and a comparison of the measured seismic response of a scale model system tested above the elastic range with that calculated by two ductility-modified response spectra methods is shown. (author)

  6. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    in the fraction of primary austenite and formation of superfine interdendritic graphite have been investigated using Thermocalc simulations and metallographic studies. TiC did not appear to be a nucleation site for the primary austenite as it was found mostly at the periphery of the secondary arms......The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... the unetched, colour-etched and deep-etched samples. It was confirmed that in irons with high sulphur content (0.12 wt%) nucleation of type-A and type-D graphite occurs on Mn sulphides that have a core of complex Al, Ca, Mg oxide. An increased titanium level of 0.35% produced superfine interdendritic graphite...

  7. Compaction of Ductile and Fragile Grains

    Science.gov (United States)

    Creissac, S.; Pouliquen, O.; Dalloz-Dubrujeaud, B.

    2009-06-01

    The compaction of powders into tablets is widely used in several industries (cosmetics, food, pharmaceutics…). In all these industries, the composition of the initial powder is complex, and the behaviour under compaction is not well known, also the mechanical behaviour of the tablets. The aim of this paper is to understand the behaviour (pressure vs density) of a simplified media made of fragile and ductile powders, varying the relative ratio of each powder. Some compaction experiments were carried out with glass beads (fragile) and Polyethylen Glycol powder (ductile). We observe two typical behaviours, depending on the relative volumic fraction of each component. A transition is pointed out, observing the evolution of the slope of the curve pressure/density. This transition is explained by geometrical considerations during compaction. A model is proposed, based on the assumption that the studied media can be compare to a diphasic material with a continuous phase (the ductile powder) and a discrete phase (the fragile powder). The result of this model is compare to the experimental results of compaction, and give a good prediction of the behaviour of the different mixing, knowing the behaviour of the ductile and the fragile phase separately. These results were also interpreted in terms of Heckel parameter which characterizes the ability of the powder to deform plastically under compaction. Some mechanical tests were also performed to compare the mechanical resitance of the obtained tablets.

  8. Ductile PVC: a perfect pipe material; Schlagfestes PVC: Ein ausgezeichneter Rohrwerkstoff

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, M.; Kop, L. [Gastec, Apeldoorn (Netherlands)

    2001-07-01

    Several pipe materials can be used for low-pressure gas distribution systems including steel, ductile and grey cast iron, asbestos cement, ductile (or high-impact) PVC and PE. Nowadays, the latter two are the most frequently applied materials. Plastics are generally advantageous in low-pressure distribution systems, in particular because of their resistance to soil corrosion and the relatively low overall costs. Remarkably, the Netherlands has opted mainly for ductile PVC, whereas PE is used almost exclusively in other countries. Yet ductile PVC has a number of major technical and economic benefits, which makes it worth considering for use in low-pressure gas distribution systems, such as a complete and sophisticated system, simple and reliable jointing techniques and low purchase and construction costs. (orig.) [German] Fuer Niederdruck-Gasverteilungssysteme gibt es eine Vielzahl von Rohrwerkstoffen, wie z.B. Stahl, Sphaeroguss, Grauguss, Asbestzement, PVC hart, schlagfestes PVC und PE. Die beiden letzten Werkstoffe werden heutzutage am haeufigsten verwendet. Kunststoffe sind bei Niederdrucksystemen in der Regel im Vorteil, insbesondere durch ihre Bestaendigkeit gegenueber Bodenkorrosion und die relativ niedrigen Gesamtkosten. Bemerkenswert ist, dass man sich in den Niederlanden vor allem fuer schlagfestes PVC und in anderen Laendern fast ausschliesslich fuer PE entschieden hat. Dennoch weist schlagfestes PVC einige wichtige technische und wirtschaftliche Vorteile auf, wodurch der Einsatz dieses Rohrwerkstoffes in Niederdruck-Gasverteilungssystemen erwaegenswert ist, darunter ein komplettes und ausgekluegeltes System, einfache und zuverlaessige Verbindungstechniken und niedrige Anschaffungs- und Verlegekosten. (orig.)

  9. Seismic force modification factor for ductile structures

    Institute of Scientific and Technical Information of China (English)

    TONG Gen-shu; HUANG Jin-qiao

    2005-01-01

    The earthquake forces used in design codes of buildings should be theoretically determinable. This work examines the seismic force modification factor R based on elastic-plastic time-history earthquake analysis of SDOF systems, wherein the hysteresis models are elastic-perfectly-plastic (EPP), elastic-linearly-hardening (ELH), shear-slipped and bilinear-elastic. The latter two models are analysed for separating the effect of the ductility and the energy-dissipating capacity. Three-hundred eighty-eight earthquake records from different site conditions are used in analysis. The ductility is taken to be 2, 3, 4, 5 and 6, with the damping ratio being 0.02, 0.035 and 0.05 respectively. The post-yield stiffness ratios 0.0, 0.1 and 0.2 are used in the analysis. The R spectra are standardized by the characteristic period of the earthquake records, which leads to a much smaller scatter in averaged numerical results. It was found that the most important factor determining R is the ductility. R increases more than linearly with ductility. The energy-dissipating capacity, damping and the post-yield stiffness are the less important factors. The energy dissipating capacity is important only for structures with short period and moderate period (0.3≤T/Tg<5.0). For EPP and ELH models, R for 0.05 damping is 10% to 15% smaller than for 0.02 damping. For EPP and ELH models, greater post-yield stiffness leads to greater R, but the influence of post-yield stiffness is obvious only when the post-yield stiffness is less than 10% of the initial stiffness. By means of statistical regression analysis the relation of the seismic force modification factor R with the natural period of the system and ductility for EPP and ELH models were established for each site and soil condition.

  10. Iron and Iron Metabolism

    OpenAIRE

    Melike Sezgin Evim; Birol Baytan; Adalet Meral Güneş

    2012-01-01

    Iron is an essential element for almost all living organisms except some bacteria. A great number of new articles related to the iron metabolism have been published in recent years explaining new findings. Hepsidine, a peptide hormon, that is recently found, regulates iron methabolism by effecting iron absorbsion from gut, secreting iron from hepatic store and flows iron from macrophages. Hepsidin blockes to effluxe iron from cells by bounding to ferroportin and by inducing ferroportin destru...

  11. Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic–austenitic TRIP steels

    International Nuclear Information System (INIS)

    Understanding alloying and thermal processing at an atomic scale is essential for the optimal design of high-carbon (0.71 wt.%) bainitic–austenitic transformation-induced plasticity (TRIP) steels. We investigate the influence of the austempering temperature, chemical composition (especially the Si:Al ratio) and partitioning on the nanostructure and mechanical behavior of these steels by atom probe tomography. The effects of the austempering temperature and of Si and Al on the compositional gradients across the phase boundaries between retained austenite and bainitic ferrite are studied. We observe that controlling these parameters (i.e. Si, Al content and austempering temperature) can be used to tune the stability of the retained austenite and hence the mechanical behavior of these steels. We also study the atomic scale redistribution of Mn and Si at the bainitic ferrite/austenite interface. The observations suggest that either para-equilibrium or local equilibrium-negligible partitioning conditions prevail depending on the Si:Al ratio during bainite transformation.

  12. Ductility of a continuous fiber reinforced aluminum matrix composite

    Science.gov (United States)

    Jansson, S.; Leckie, Frederick A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers have been investigated. The composite is subjected to both mechanical and cyclic thermal loading. The ductility can vary by an order of magnitude according to the operating conditions. For high mechanical and low thermal loading the ductility is small, for low mechanical and high thermal loading the ductility is an order of magnitude higher. Experiments on a beam in bending confirm that the ductility is strongly dependent on the loading conditions. The observations suggest a means of utilizing the inherent ductility of the matrix.

  13. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    , and also tests for a thin ductile metal layer bonding two ceramic blocks have indicated rapid void growth. Analyses for these material configurations are discussed here. When the void radius is very small, a nonlocal plasticity model is needed to account for observed size-effects, and recent analyses...... analyzed for a material containing a periodic distribution of spherical voids with two different void sizes, where the stress fields around larger voids may accelerate the growth of smaller voids. Another approach has been an analysis of a unit cell model in which a central cavity is discretely represented......, while the surrounding voids are represented by a porous ductile material model in terms of a field quantity that specifies the variation of the void volume fraction in the surrounding metal....

  14. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  15. Ductility in lightweight concrete with fiber

    OpenAIRE

    Ahmadyar, Milad

    2011-01-01

    This master thesis presents the influence of different fiber in high-performance lightweight concrete and the ductility capacity of reinforced lightweight concrete beam. Twelve beams with length of 2.2m and reinforcement ratio 0.24 have been tested under 4 point bending, three of them were made by normal density aggregates as references beams. The target concrete compressive strength for all beams were 50MPa. Three different types of fibers such as steel fiber, Polypropylene ma...

  16. Ductile Damage Evolution and Strain Path Dependency

    Science.gov (United States)

    Tasan, C. C.; Hoefnagels, J. M. P.; Peerlings, R. H. J.; Geers, M. G. D.; ten Horn, C. H. L. J.; Vegter, H.

    2007-04-01

    Forming limit diagrams are commonly used in sheet metal industry to define the safe forming regions. These diagrams are built to define the necking strains of sheet metals. However, with the rise in the popularity of advance high strength steels, ductile fracture through damage evolution has also emerged as an important parameter in the determination of limit strains. In this work, damage evolution in two different steels used in the automotive industry is examined to observe the relationship between damage evolution and the strain path that is followed during the forming operation.

  17. Robustness Evaluation of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2009-01-01

    The present paper considers robustness evaluation of timber structures where the ductile behavior of joints of timber material is taken into account. The robustness analysis is based on the structural reliability framework used on a simplified mechanical system modelling a structural timber system...... indicate the reliability of a structural timber ystem can be increased apprximately 20 % awarding the ductile behaviour. At last the paper discusses possible structural timber systems which have potential for providing ductility and redundancy....

  18. Reconstituted Keratin Biomaterial with Enhanced Ductility

    Directory of Open Access Journals (Sweden)

    Halleh Atri

    2015-11-01

    Full Text Available Nowadays the waste from protein fibres represents an important renewable source for a new generation of biomaterials and promising competitors for carbohydrate based biomaterials. Regenerated keratin biomaterials are biodegradable in vivo and in vitro, biocompatible, and support cell attachment and proliferation; however, their major drawback has been their weak mechanical properties such as ductility. The following study was conducted in an attempt to improve the ductility of reconstituted keratin films obtained from Australian merino wool fibres. Keratin was extracted from wool fibres according to an established protocol proposed by Yamauchi, and then dialyzed and desalted by multiple diafiltration wash cycles. The resulting keratin film was transparent, biodegradable, and, opposite to its predecessors, mechanically durable, possessing a Young modulus about 12.5 MPa with 35% extensibility. The polypeptide chains were found to rearrange themselves in the β-sheet state in this keratin film, which was shown to be semi-crystalline. This film, unlike its predecessors, did not support human cell proliferation. These properties of the diafiltered keratin film have led us to think that diafiltration resulted in producing a totally new keratin film, which is envisaged to find applications in various areas.

  19. Study made of ductility limitations of aluminum-silicon alloys

    Science.gov (United States)

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  20. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility

    Science.gov (United States)

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J.

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  1. Enhanced ductility in round tensile bars produced by cladding a ductile ring

    Science.gov (United States)

    Chen, X. X.; Wu, P. D.; Embury, J. D.; Huang, Y.

    2010-03-01

    The effect of cladding a ductile ring on necking and fracture in round bars under tension is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that the cladding increases both the necking strain and the fracture strain. The effects of topological arrangement of cladding ring on necking and fracture are numerically investigated. It is indicated that while a topological arrangement of cladding has no noticeable effect on necking, it significantly influences the fracture strain. For a given volume fraction of cladding, the fracture strain could increase about 11% if the ductile ring is moved from the outmost to the innermost. It is also found that the subtle appearance of fracture surface due to cladding displays strong mesh sensitivity and may even be an artefact of the mesh.

  2. Untersuchungen zur Zerspanbarkeit von austenitisch-ferritischem Gusseisen mit Kugelgraphit (ADI)

    OpenAIRE

    Klöpper, Carsten Felix

    2006-01-01

    In many applications increasing demands on weight and cost saving require the application of new materials. In this regard austempered ductile iron (ADI) offers a high potential. Cast iron materials exhibit a high freedom of shape combined with rather low manufacturing costs. In addition, ADI offers an excellent combination of high strength, high toughness and a good wear resistance. The fabrication of ADI-parts consists of a casting process and a following special heat treatment. Depending o...

  3. Fluid migration in ductile shear zones

    Science.gov (United States)

    Fusseis, Florian; Menegon, Luca

    2014-05-01

    Fluid migration in metamorphic environments depends on a dynamically evolving permeable pore space, which was rarely characterised in detail. The data-base behind our understanding of the 4-dimensional transport properties of metamorphic rocks is therefore fragmentary at best, which leaves conceptual models poorly supported. Generally, it seems established that deformation is a major driver of permeability generation during regional metamorphism, and evidence for metamorphic fluids being channelled in large scale shear zones has been found in all depth segments of the continental crust. When strain localizes in ductile shear zones, the microfabric is modified until a steady state mylonite is formed that supports large deformations. A dynamic porosity that evolves during mylonitisation controls the distinct transport pathways along which fluid interacts with the rock. This dynamic porosity is controlled by a limited number of mechanisms, which are intrinsically linked to the metamorphic evolution of the rock during its deformational overprint. Many mid- and lower-crustal mylonites comprise polyphase mixtures of micron-sized grains that show evidence for deformation by dissolution/precipitation-assisted viscous grain boundary sliding. The establishment of these mineral mixtures is a critical process, where monomineralic layers are dispersed and grain growth is inhibited by the heterogeneous nucleation of secondary mineral phases at triple junctions. Here we show evidence from three different mid- and lower-crustal shear zones indicating that heterogeneous nucleation occurs in creep cavities. Micro- and nanotomographic observations show that creep cavities provide the dominant form of porosity in these ultramylonites. They control a "granular fluid pump" that directs fluid migration and hence mass transport. The granular fluid pump operates on the grain scale driven by viscous grain boundary sliding, and requires only small amounts of fluid. The spatial arrangement of

  4. Creep deformation characteristics of ductile discontinuous fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Biner, S.B.

    1993-10-01

    Role of material parameters and geometric parameters of ductile reinforcing phase on the creep deformation behavior of 20% discontinuously reinforced composite was numerically investigated including debonding and pull-out mechanisms. Results indicate that for rigidly bonded interfaces, the creep rate of the composite is not significantly influenced by the material properties and geometric parameters of the ductile reinforcing phase due to development of large hydrostatic stress and constrained deformation in the reinforcement. For debonding interfaces, the geometric parameters of the reinforcing phase are important; however, event with very weak interfacial behavior low composite creep rates can be achieved by suitable selection of the geometric parameters of the ductile reinforcing phase.

  5. System Reliability of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Čizmar, Dean;

    2011-01-01

    The present paper considers the evaluation of timber structures with the focus on robustness due to connection ductility. The robustness analysis is based on the structural reliability framework applied to a simplified mechanical system. The structural timber system is depicted as a parallel system....... An evaluation method of the ductile behaviour is introduced. For different ductile behaviours, the system reliability is estimated based on Monte Carlo simulation. A correlation between the strength of the structural elements is introduced. The results indicate that the reliability of a structural timber system...

  6. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  7. Non-local models for ductile failure

    Science.gov (United States)

    César de Sá, José; Azinpour, Erfan; Santos, Abel

    2016-08-01

    Ductile damage can be dealt with continuous descriptions of material, resorting, for example, to continuous damage mechanic descriptions or micromechanical constitutive models. When it comes to describe material behaviour near and beyond fracture these approaches are no longer sufficient or valid and continuous/discontinuous approaches can be adopted to track fracture initiation and propagation. Apart from more pragmatic solutions like element erosion or remeshing techniques more advanced approaches based on the X-FEM concept, in particular associated with non-local formulations, may be adopted to numerically model these problems. Nevertheless, very often, for practical reasons, some important aspects are somewhat left behind, specially energetic requirements to promote the necessary transition of energy release associated with material damage and fracture energy associated to a crack creation and evolution. Phase-field methods may combine advantages of regularised continuous models by providing a similar description to non-local thermodynamical continuous damage mechanics, as well as, a "continuous" approach to numerically follow crack evolution and branching

  8. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility.

    Science.gov (United States)

    An, Qi; Goddard, William A

    2014-12-01

    Boron carbide (B4C) is a hard material whose value for extended engineering applications such as body armor; is limited by its brittleness under impact. To improve the ductility while retaining hardness, we used density functional theory to examine modifying B4C ductility through microalloying. We found that replacing the CBC chain in B4C with Si-Si, denoted as (B11Cp)-Si2, dramatically improves the ductility, allowing a continuous shear to a large strain of 0.802 (about twice of B4C failure strain) without brittle failure. Moreover, (B11C)-Si2 retains low density and high hardness. This ductility improvement arises because the Si-Si linkages enable the icosahedra accommodate additional shear by rotating instead of breaking bonds.

  9. Ductile damage parameters identification for cold metal forming applications

    OpenAIRE

    Bouchard, Pierre-Olivier; Gachet, Jean-Marie; Roux, Emile

    2011-01-01

    Ductile damage mechanics is essential to predict failure during cold metal forming applications. Several damage models can be found in the literature. These damage models are coupled with the mechanical behavior so as to model the progressive softening of the material due to damage growth. However, the identification of damage parameters remains an issue. In this paper, an inverse analysis approach is set-up to identify ductile damage parameters, based on different kind of mechanical tests an...

  10. Ductile streaks in precision grinding of hard and brittle materials

    Indian Academy of Sciences (India)

    V C Venkatesh; S Izman; S Sharif; T T Mon; M Konneh

    2003-10-01

    Ductile streaks produced during diamond grinding of hard and brittle materials have aided the subsequent process of polishing. Two novel techniques were used to study the formation of ductile mode streaks during diamond grinding (primary process) of germanium, silicon, and glass. In the first technique, aspheric surfaces were generated on Ge and Si at conventional speeds (5000 rpm). In the second technique, diamond grinding of plano surfaces on glass and Si surfaces using high speed (100,000 rpm) was carried out. Form accuracy, surface finish and ductile mode grinding streaks are discussed in this paper. It was found that resinoid diamond wheels gave more ductile streaks than metal-bonded wheels but better form accuracy was obtained with the latter. Ductile streaks were obtained more easily with pyrex rather than with BK 7 glass thus necessitating very little time for polishing. Ductile streaks appeared in abundance on germanium rather than silicon. Both the novel grinding techniques were used on CNC machining centres.

  11. Incoloy alloy MA956. Strain rate and temperature effects on the microstructure and ductility

    International Nuclear Information System (INIS)

    MA956 is an iron-base, oxide dispersion strengthened alloy produced by mechanical alloying with the nominal composition Fe-Cr 20-Al 5-Ti 0.5-Y2O3 0.5, which is utilised in applications involving rigorous service conditions. It is ferritic and therefore undergoes a ductile-brittle transition which tends to occur between 40 and 70 C. For this reason, working at elevated temperatures is required. However, the ductility is not a simple function of temperature, strain rate, and grain size. Tensile tests have been carried out at temperatures up to 1000 C, at strain rates of 10-2 to 10-4s-1, and the behaviour of the coarse and fine grained materials is markedly different. Both materials show an increase in elongation around 600 C, but it decreases again with increasing temperature. The elongation continues to decrease in the coarse grained material. However, the fine grained material exhibits an increase in elongation with increasing strain rate at the higher temperatures which peaks around 800 C. The microstructures and fracture surfaces of the materials which have undergone deformation have been studied and provide a basis for understanding the complex mechanical behaviour. (orig.)

  12. From brittle to ductile: a structure dependent ductility of diamond nanothread

    Science.gov (United States)

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B. C.; Cheng, Yuan; Bell, John M.; Zhang, Yong-Wei; Gu, Yuantong

    2016-05-01

    As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp3 bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the ``grain size''. On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp3 bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different

  13. Energetic approach for ductile tearing; Approche energetique de la dechirure ductile

    Energy Technology Data Exchange (ETDEWEB)

    Marie, St

    1999-07-01

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a J{sub i} tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter G{sub fr} is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters J{sub i} and G{sub fr}, intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  14. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  15. Hot Ductility of the 17-4 PH Stainless Steels

    Science.gov (United States)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  16. An Improved Ductile Fracture Criterion for Fine-blanking Process

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen; ZHUANG Xin-cun; XIE Xiao-long

    2008-01-01

    In order to accurately simnulate the fine-blanking process,a suitable ductile fracture is significant.So an evaluation strategy based on experimental and corresponding simulation results of tensile,compression,torsion and fine-blanking test is designed to evaluate five typical ductile fracture criteria,which are widely-used in metal forming process.The stress triaxiality and ductile damage of each test specimen are analyzed.The results show that none of these five criteria is sufficient for all tests.Furthermore,an improved fracture criterion based on Rice and Tracey model,taking the influence of both volume change and shape change of voids into account,is proposed.The characterization of this model for fine-blanking process is easily done by the tensile test and the prediction result shows good.

  17. Experimental research on ductile fracture criterion in metal forming

    Science.gov (United States)

    Yu, Song; Feng, Weiming

    2011-09-01

    Ductile fracture criterion is key limitation parameter in material forming. Accuracy predicting surface and internal failure in plastic deformation process affects on the technology design of workpiece and die greatly. Tension, compression, torsion and shearing test on 45# steel are utilized for providing the experimental values of the critical values at fracture, and 11 widely used ductile fracture criterion are selected to simulate the physical experiments and their relative accuracy for predicting and quantifying fracture initiation sites are investigated. The comparing results show that metal forming process under high triaxiality can be estimated successively using both Normalized Cockcroft-latham and the Brozzo ductile fracture criteria, but the Ayada and general Rice-Tracey model work very well for the low triaxiality cases.

  18. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, E.G.; Shelly, D.R.; Guyer, R.A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place. Copyright ?? 2011 by the American Geophysical Union.

  19. Ductility of metal thin films in flexible electronics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flexible, large area electronics using various organic and inorganic materials are beginning to show great promise. During manufacture and service, large deforma- tion of these hybrid materials will pose significant challenges in terms of high performance and reliability. A deep understanding of the ductility or flexibility of macroelectronics becomes one of the major issues that must be addressed ur- gently. This paper describes the current level of understanding on the thin-film ductility, both free-standing and substrate-supported, and relevant influencing factors.

  20. BRITTLE-DUCTILE TRANSITION OF POLYMERS AND ITS PERCOLATION MODEL

    Institute of Scientific and Technical Information of China (English)

    Wei Jiang; Li-jia An; Bing-zheng Jiang

    2003-01-01

    The brittle-ductile transition (BDT) of particle toughened polymers was extensively studied in terms of morphology, strain rate, and temperature. The calculation results showed that both the critical interparticle distance (IDc) and the brittle-ductile transition temperature (TBD) of polymers were a function of strain rate. The IDc reduced nonlinearly with increasing strain rate, whereas TBD increased considerably with increasing strain rate. The effects of temperature and plasticizer concentration on BDT were discussed using a percolation model. The results were in agreement with the experiments.

  1. Ductile Faults Control Seismogenic Movement on Oceanic Transforms

    Science.gov (United States)

    Lister, G. S.; Tkalcic, H.; Forster, M. A.; McClusky, S.

    2014-12-01

    Structural Geology is about 3D geometry and the symphony of kinematically-coordinated movement. In this case we discuss patterns of violent relative displacement inferred from focal plane data for earthquakes. Systematic stereographic analysis of centroid moment tensor data often shows well-defined orientation groups in scatterplots of fault plane normals and associated slip line vectors. These allow important geodynamic inferences, e.g., we can show that ductile faults control the geometry of oceanic transforms, and that normal fault earthquakes on spreading ridges are usually skewed with respect to adjacent transform faults. To explain this asymmetry requires finite rock strength, but it also means that it is not brittle failure that controls the orientation of oceanic transforms. This asymmetry also requires formation of tilt block geometries reminiscent of Basin-and-Range-style continental extension, systematic offset of earthquake hypocentres from the spreading ridge, and a general complexity in magma-fault interactions that is far beyond what might be expected if ocean-floor spreading is the result of dilating tension-mode fractures in dyke swarms. The role of ductile faulting should be given special mention because mostly it is argued that brittle faults are responsible for earthquakes. Yet many other examples of ductile faults in operation can be inferred, e.g., ductile faults associated with slab drop-off, where slab boudinage leads to extensional ductile faults and seismic activity driven by the pulling away of a relict slab, e.g., beneath the Hindu Kush. Another example might be found by close examination of the tectonic significance of the lowermost of the double (or paired) seismic zones such as can be seen in cross-sections of the subducting slab beneath Japan. The lowermost of the paired seismic zones may mark the locus of aseismic ductile shears or detachments formed by slumping of gigantic sheets of rock attempting to slide down the face of

  2. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  3. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  4. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  5. Construction-friendly ductile shear joints for precast concrete panels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Fischer, Gregor;

    2015-01-01

    for the mounting of a vertical locking bar. Where limited space is available bending and subsequent straightening of the U-bars are required to assemble the adjacent panels, a procedure which imposes substantial ductility requirements on the reinforcement as well as some manual workload. This paper introduces...

  6. Numerical determination of parameterised failure curves for ductile structural materials

    NARCIS (Netherlands)

    Weber, Ulrich; Mohanta, Ashok; Schmauder, Siegfried

    2007-01-01

    Inhomogeneities such as voids or inclusions can lead to stress and strain concentrations under external loading conditions due to the different elastic-plastic and thermal properties of the phases. To describe the damage behavior of ductile materials, a damage parameter was introduced by Rice and Tr

  7. Observations on Mode I ductile tearing in sheet metals

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau

    2013-01-01

    Cracked ductile sheet metals, subject to Mode I tearing, have been observed to display a variety of fracture surface morphologies depending on the material properties, and a range of studies on the fracture surface appearance have been published in the literature. Whereas classical fractures...

  8. Multiscale modeling of ductile failure in metallic alloys

    NARCIS (Netherlands)

    Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoglu, Cihan; Onck, Patrick R.; Tekoğlu, Cihan

    2010-01-01

    Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failu

  9. Effect of inclusion density on ductile fracture toughness and roughness

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Ponson, L.; Osovski, S.;

    2014-01-01

    Three dimensional calculations of ductile fracture under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitating solid with two populations of void nucleating second phase particles. Larger inclusions ...

  10. Age Strengthening of Gray Cast Iron Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Wayne Nicola

    2003-06-26

    The primary objective of this research is to identify the age strengthening mechanism in gray and ductile cast iron, and to quantify the parameters that control it. It is also to contribute to a new predictive model for gray and ductile iron strength and hardness. This work shows that age strengthening occurs on a sigmoidal-logarithmic scale in gray and ductile cast irons, to a statistically significant extent. This is similar to Avrami-Johnson-Mehl kinetics for phase transformations in metals. It occurs in both cupola-melted iron and induction melted iron. However, it does not happen in all compositions. We have developed some understanding of the process. Data suggests that nitrogen and nitride-forming trace elements have a significant role in the process, but that is yet not fully characterized. Also, the time dependence of the bulk hardness and strength increase, the nano-scale precipitation evidence from neutron scattering, differential scanning calorimetry results and matrix micro-hardness increase in ferrite all indicate that age strengthening occurs by a precipitation or pre-precipitate cluster formation mechanism.

  11. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  12. The Influence of Saturation of Cast Iron Austenite with Carbon on the Ausferrite Transformation

    OpenAIRE

    T. Giętka; T. Szykowny; S. Dymski

    2007-01-01

    Austenitizing during quench hardening of the ductile cast iron influences the content of carbon in austenite depending on the soaking heat. On the other hand, the saturation of austenite impacts its transformation in the ausferritizing process of a metal matrix and forming of microstructure. Ductile cast iron with the ferrite matrix was hardened with isothermal transformation in the range of ausferritizing in temperature tpi = 400 i 300 0C and the range of time τpi = 7,5 �� 240 min. Specimens...

  13. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  14. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    International Nuclear Information System (INIS)

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  15. Influence of molding sand on the number of grains graphite and on the rate of thin ferrite in pieces in a nodular iron ferritic matrix

    OpenAIRE

    B. Khatemi

    2010-01-01

    The nodular cast irons are characterized by high mechanical properties compared to cast iron with lamellar graphite or vermiculargraphite. The ductile iron has already been the subject of many studies especially since the literature is rich on them, and sources of information are different. The fact is that the mechanical properties of nodular cast iron (FGS) depend on the number of graphitegrains, their roundness, the solidification rate and nature of the matrix [3]. Many studies of nodular ...

  16. Ductile mode electrochemical oxidation assisted micromachining for glassy carbon

    International Nuclear Information System (INIS)

    Recently, a new mechanical machining process using electrochemical oxidation was reported. Electrochemical oxidation assisted micromachining was applied to the machining of glassy carbon. The material removal process of the electrochemical oxidation assisted micromachining consists of repeated cycles of oxidation followed by removal of the oxide layer. In this paper, we experimentally investigate and compare the critical chip thickness for ductile mode cutting in mechanical machining and electrochemical oxidation assisted micromachining of glassy carbon. The theoretical critical chip thickness is calculated for mechanical machining of glassy carbon and experimentally verified. The effect of electrochemical oxidation on the critical chip thickness for ductile mode micromachining is also studied for glassy carbon. It is found that the critical chip thickness is increased for the electrochemical oxidation assisted micromachining. (paper)

  17. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  18. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  19. Ductile damage prediction in sheet and bulk metal forming

    Science.gov (United States)

    Badreddine, Houssem; Labergère, Carl; Saanouni, Khemais

    2016-04-01

    This paper is dedicated to the presentation of an advanced 3D numerical methodology for virtual sheet and/or bulk metal forming simulation to predict the anisotropic ductile defects occurrence. First, the detailed formulation of thermodynamically-consistent fully coupled and fully anisotropic constitutive equations is given. The proposed constitutive equations account for the main material nonlinearities as the anisotropic plastic flow, the mixed isotropic and kinematic hardening and the anisotropic ductile damage under large inelastic strains. Second, the related numerical aspects required to solve the initial and boundary value problem (IBVP) are very briefly presented in the framework of the 3D finite element method. The global resolution schemes as well as the local integration schemes of the fully coupled constitutive equations are briefly discussed. Finally, some typical examples of sheet and bulk metal forming processes are numerically simulated using the proposed numerical methodology.

  20. ASME code ductile failure criteria for impulsively loaded pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Robert E.; Duffey, T. A. (Thomas A.); Rodriguez, E. A. (Edward A.)

    2003-01-01

    Ductile failure criteria suitable for application to impulsively loaded high pressure vessels that are designed to the rules of the ASME Code Section VI11 Division 3 are described and justified. The criteria are based upon prevention of load instability and the associated global failure mechanisms, and on protection against progressive distortion for multiple-use vessels. The criteria are demonstrated by the design and analysis of vessels that contain high explosive charges.

  1. Strength and damage of marble in ductile failure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    To study the effects of loading paths and stress states on rock strength and deformation, marble specimens were axially compressed to various displacements under a confining pressure (CP) firstly, and then the damaged specimens were recompressed under another CP. The bearing capacity of a marble specimen depends merely on CP at the stage of ductile deformation, and it has no relation with the loading history when CP keeps constant or increases. However, the damaged specimen turns into brittle when it is rec...

  2. An improved cohesive zone model for ductile dynamic crack propagation

    OpenAIRE

    Sagimon Buch, Marc

    2008-01-01

    Ductile dynamic crack propagation is a current field of research in aerospace industry. The damage created by an explosion in a flying airplane depends on the fracture behaviour of the fuselage materials. Thus the rate of fracture for aluminium 2024 T3 is being studied. Analytical and empirical calculation methods do not predict correctly the experimental fracture velocity. Numerical simulations using cohesive elements with standard material models do not estimate it correctly ...

  3. Understanding toughness and ductility in novel steels with mixed microstructures

    OpenAIRE

    Fielding, Lucy Chandra Devi

    2014-01-01

    The purpose of the work presented in this thesis was to explore and understand the mechanisms governing toughness, ductility and ballistic performance in a class of nanostructured carbide-free bainite-austenite steels, sometimes known as ?superbainite?. The mechanical properties of these alloys have been extensively reported, but their interpretation is not clear. The thesis begins with an introduction to both the relevant nanostructures and some of the difficulties involved in explaining obs...

  4. A ductile fracture analysis using a local damage model

    Energy Technology Data Exchange (ETDEWEB)

    Benseddiq, N. [Laboratoire de Mecanique et de Rheologie de Tours, Ecole Nationale d' Ingenieurs du Val de Loire (ENIVL), Rue de la Chocolaterie, 41000 Blois Cedex (France)], E-mail: nbensedd@polytech-lille.fr; Imad, A. [Laboratoire de Mecanique de Lille (UMR CNRS 8107), USTL, Ecole Polytechnique Universitaire de Lille Cite Scientifique, Avenue P. Langevin, 59655 Villeneuve d' Ascq Cedex (France)

    2008-04-15

    In this study, the Gurson-Tvergaard-Needleman (GTN) model is used to investigate ductile tearing. The sensitivity of the model parameters has been examined from literature data. Three types of parameters have been reported: the 'constitutive parameters'q{sub 1}, q{sub 2} and q{sub 3}, the 'initial material and nucleation parameters' and the 'critical and final failure parameters'. Each parameter in this model has been analysed in terms of various results in the literature. Both experimental and numerical results have been obtained for notched round and CT specimens to characterize ductile failure in a NiCr steel (12NC6) with a small initial void volume fraction f{sub 0} (f{sub 0}=0.001%). Ductile crack growth, defined by the J-{delta}a curve, has been correctly simulated using the numerical calculations by adjusting the different parameters of the GTN model in the calibration procedure.

  5. Nano-modification to improve the ductility of cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Yeşilmen, Seda [Department of Civil Engineering, Çankaya University, Ankara (Turkey); Al-Najjar, Yazin [Department of Civil Engineering, Gaziantep University, Gaziantep (Turkey); Balav, Mohammad Hatam [Department of Civil Engineering, Gazi University, Ankara (Turkey); Şahmaran, Mustafa, E-mail: sahmaran@gazi.edu.tr [Department of Civil Engineering, Gazi University, Ankara (Turkey); Yıldırım, Gürkan [Department of Civil Engineering, Gazi University, Ankara (Turkey); Lachemi, Mohamed [Department of Civil Engineering, Ryerson University, Toronto, ON (Canada)

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.

  6. Strain rate influence on fracture development in experimental ductile multilayers

    Science.gov (United States)

    Gomez-Rivas, Enrique; Griera, Albert

    2011-04-01

    The far-field strain rate is a crucial parameter that controls the transition between brittle and ductile deformation. We have used analogue experiments to study the strain rate influence on the development of brittle fractures in a ductile composite material. Plasticine multilayer models were deformed under coaxial boundary conditions at three different strain rates to analyse the transition from non-localised deformation to the development of a brittle fracture network that accommodates part of the deformation. The results show that tension cracks and voids are the first macroscopic structures that nucleate after an early stage of ductile deformation. Coalescence and collapse of these structures lead to the development of brittle shear fractures. The evolution of fracture orientations, lengths and displacements was systematically analysed. The ratio of the accumulated fracture displacement vs. fracture length ( dmax/ L) depends not only on the total deformation, but also on the strain rate at which the system is deformed. The accumulated displacement with respect to fracture length increases with strain rate.

  7. Dynamic ductile tearing in high strength pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Rivalin, F.; Iung, T.; Di Fant, M. [IRSID, Maizieres-les-Metz (France); Pineau, A. [Centre des Materiaux P.M. Fourt, Evry (France)

    1996-12-31

    The study of rapid ductile crack propagation and crack arrest is a central point if one wants to reach a higher safety level in pipelines. Correlations between Charpy tests and full scale burst tests proved to be unsuccessful in predicting pipe burst for recent high strength steels. This paper presents an experiment which allows to test large SENT specimens under dynamic loading, and to characterize steel resistance against rapid ductile crack propagation by a classical energetic parameter, called the crack propagation energy, R, proposed by Turner. The R parameter proved to be characteristic of the rapid crack propagation in the material, for a given specimen and loading configuration. Failure of the specimen under dynamic conditions occurs by shearing fracture which is the same as in a full scale burst test. An example is given for an X65 ferritic-pearlitic steel loaded under static and dynamic conditions. A fracture mode transition is shown following the loading rate. From a metallurgical point of view, shearing fracture occurs by nucleation, growth and coalescence of voids, as for classical ductile fracture.

  8. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  9. Predictive Process Optimization for Fracture Ductility in Automotive TRIP Steels

    Science.gov (United States)

    Gong, Jiadong

    In light of the emerging challenges in the automotive industry of meeting new energy-saving and environment-friendly requirements imposed by both the government and the society, the auto makers have been working relentlessly to reduce the weight of automobiles. While steel makers pushed out a variety of novel Advanced High Strength Steels (AHSS) to serve this market with new needs, TRIP (Transformation Induced Plasticity) steels is one of the most promising materials for auto-body due to its exceptional combination of strength and formability. However, current commercial automotive TRIP steels demonstrate relatively low hole-expansion (HE) capability, which is critical in stretch forming of various auto parts. This shortcoming on ductility has been causing fracture issues in the forming process and limits the wider applications of this steel. The kinetic theory of martensitic transformations and associated transformation plasticity is applied to the optimization of transformation stability for enhanced mechanical properties in a class of high strength galvannealed TRIP steel. This research leverages newly developed characterization and simulation capabilities, supporting computational design of high-performance steels exploiting optimized transformation plasticity for desired mechanical behaviors, especially for the hole-expansion ductility. The microstructure of the automotive TRIP sheet steels was investigated, using advanced tomographic characterization including nanoscale Local Electrode Atom Probe (LEAP) microanalysis. The microstructural basis of austenite stability, the austenite carbon concentration in particular, was quantified and correlated with measured fracture ductility through transformation plasticity constitutive laws. Plastic flow stability for enhanced local fracture ductility at high strength is sought to maintain high hole-expansion ductility, through quantifying the optimal stability and the heat-treatment process to achieve it. An additional

  10. ADI After Austenitising From Intercritical Temperature

    OpenAIRE

    A. Kowalski; S. Kloska-Nawarecka; Regulski, K.

    2013-01-01

    ADI subjected to austenitising at intercritical temperatures contains in its matrix the precipitates of pre-eutectoid ferrite. Studies were carried out on the ductile iron of the following chemical composition: C = 3,80%, Si = 2,30%, Mn = 0,28%, P = 0,060%, S = 0,010%, Mg = 0,065%, Ni = 0,60%, Cu = 0,70%, Mo = 0,21% This cast iron was austenitised at three different temperatures, i.e. 800, 815 and 830oC and austempered at 360 and 380oC. For each variant of the cast iron heat treatment, the me...

  11. Outcome of impact disruption of iron meteorites at room temperature

    Science.gov (United States)

    Katsura, T.; Nakamura, A.; Takabe, A.; Okamoto, T.; Sangen, K.; Hasegawa, S.; Liu, X.; Mashimo, T.

    2014-07-01

    The iron meteorites and some M-class asteroids are generally understood to originate in the cores of differentiated planetesimals or in the local melt pools of primitive bodies. On these primitive bodies and planetesimals, a wide range of collisional events at different mass scales, temperatures, and impact velocities would have occurred. Iron materials have a brittle-ductile transition at a certain temperature, which depends on metallurgical factors such as grain size and purity, and on conditions such as strain-rate and confining pressure [1]. An evolutional scenario of iron meteorite parent bodies was proposed in which they formed in the terrestrial planet region, after which they were scattered into the main belt by collisions, Yarkovsky thermal forces, and resonances [2]. In this case, they may have experienced collisional evolution in the vicinity of the Earth before they were scattered into the main belt. The size distribution of iron bodies in the main belt may therefore have depended on the disruption threshold of iron bodies at temperature above the brittle-ductile transition. This paper presents the results of impact-disruption experiments of iron meteorite and steel specimens mm-cm in size as projectiles or targets conducted at room temperature using three light-gas guns and one powder gun. Our iron specimens were almost all smaller in size than their counterparts (as targets or projectiles, respectively). The fragment size distribution of iron material was different from that of rocks. In iron fragmentation, a higher percentage of the mass is concentrated in larger fragments, i.e., the mass fraction of fine fragments is much less than that of rocks shown in the Figure (left). This is probably due to the ductile nature of the iron materials at room temperature. Furthermore, the Figure (right) shows that the largest fragment mass fraction f is dependent not only on the energy density but also on the size of the specimens. In order to obtain a generalized

  12. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  13. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    of factors influencing temperature measurement in thin walled castings was carried out. The calculations are based on and compared with experiments presented in part 1 of this paper. The analysis shows that the presence of the TC has only a minor influence on the microstructure of the casting. The influence...... is restricted to a volume within 2mm from the TC. Measured cooling curves will have the right shape. In a 2 mm plate the measured temperature was 17 °C below the true temperature in the melt. However, the cooling curve provides important information about nucleation and growth during solidification....

  14. Computer modelling of ductile iron solidification using FDM and CA methods

    Directory of Open Access Journals (Sweden)

    W. Kapturkiewicz

    2010-11-01

    Full Text Available prediction of some structure parameters in DI by the given chemical composition of alloy and for given boundary condition of casting.Design/methodology/approach: Two mathematical models and methods developed by authors have been presented: micromodelling with using of finite difference method (FDM and mesomodelling with using of cellular automaton method (CA.Findings: The FDM was used for solving the DI so¬lidification model, including heat conductivity equation with source function, boundary condition for casting, equations for austenite and eutectic grains nucleation depended on the changing undercooling, the Weibull’s formula for graphite nodule count, Kolmogorov’s equation for calculation of volume fraction of phases (eutectics and austenite. A set of equations, after transformation to a differ¬ence form, were solved by the finite difference method, using an iteration procedure. The correctness of the mathematical model has been experimen¬tally verified in the range of most significant factors, which include temperature field, the value of maximum undercooling, and the graphite nodule count interrelated with the casting cross-section. Literature offers practi¬cally no data on so confronted process model and simulation program. The CA model was used for the simulation of the grains’ shapes in connection with FD for temperature field and solute redistribution in the grain scale.Practical implications: FDM modeling gives the possibility of statistical description of microstructure but the geometrical shape of grains is assumed a priori. In CA modeling the grain shape is not assumed, but this is the result of modeling. The use of FDM gives results quantitatively comparable to the process in real casting, particularly according to temperature fields and number of graphite spheroids.Originality/value: The CA method gives on the present stage credible qualitative results but this method is more perspective for good reproducing of the real process of solidification.

  15. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    thicknesses between 2 and 4.3 mm. The thermocouples were accurately placed at the same distance from the surface of the casting for different plate thicknesses. It is shown that when measuring the temperature in plates with thickness between 2 and 4.3 mm the measured temperature will be parallel shifted to a...... level about 20C lower than the actual temperature in the casting. Factors affecting the measurement error (oxide layer on the thermocouple wire, penetration into the ceramic tube and variation in placement of thermocouple) are discussed. Finally, it is shown how useful cooling curve may be obtained in...

  16. Ductile-to-brittle transition in a low alloy steel

    International Nuclear Information System (INIS)

    The mechanical properties of pressure vessel steel (and above all its resistance to brittle fracture) are a decisive factor in the complex safety assessment of nuclear power plants. The monitoring of neutron induced embrittlement is provided using Charpy impact tests on standard V-notch specimens due to their small size. Material's ductile-to-brittle transition temperature (DBTT) can be easily characterised using this test. However, Charpy impact energy cannot be immediately used for safety assessment, since fracture toughness is required. Some empirical formulas have been developed, but no direct relationship was still found. When the specimens are tested in the ductile-to-brittle transition region, cleavage crack initiation is preceded by ductile crack growth giving a large scatter to the values of fracture toughness and/or Charpy impact energy. Even if the cleavage initiation and propagation in steels containing isolated spheroidic carbides are qualitatively well understood, no one from existing models can explain the sharp upturn in ductile-to-brittle transition region. In the present work, French tempered bainitic steel 16MND5 (considered as equivalent to the American standard A508 Cl.3) is studied: The large fractographic analysis of CT and Charpy specimens broken in the DBTT range is undertaken to account for the evolution of cleavage fracture mechanisms. In addition to classical scanning electron microscopy, transmission electron microscopy and EBSD technique are used in order to study the propagation of cleavage crack. The classical fracture mechanics using KIc or Jc concepts can hardly describe the unstable brittle fracture in the DBTT range. Hence, the local approach, which aims to predict the fracture of any structural component using local criteria, providing that the mechanical fields in the structure are known, is used. The probability of cleavage fracture in the DBTT range is predicted using the Beremin model based on weakest link theory, e.g. 2

  17. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  18. Evaluation of Floor Response Spectrum considering Ductility of Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junhee; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The FRS (floor response spectrum) is directly influenced by the behavior of structure under the seismic load. If the structure is nonlinear range, the energy dissipation will be occurred by the damage of structure and the maximum force will be reduced. In Zion method, the inelastic energy abortion factor has been used to consider the nonlinearity of structure. This factor was used for the seismic fragility of structure. For the seismic fragility of equipment, the uncertainty of this factor was used differently according to the story level. But this method is not warranted under the strong earthquake leads to the structural damage. Therefore it is needed to evaluate the FRS considering the nonlinear behavior of structure and to assessment the conservatism related to nonlinear behavior of structure in FRS. In this study, the nonlinear analysis was performed for the conservatism of FRS under the damage of structure. The conservatism of FRS by the nonlinear analysis was compared by that proposed by the Zion method. The conservatism of floor acceleration response for the equipment was evaluated by performing the nonlinear analysis. From the nonlinear analysis results, it was showed that the median and β{sub c} of FRSR was increased with the ductility of structure and the response of equipment had the resonance effect between the frequency of equipment and structure. The seismic capacity of equipment by the Zion method can be different from the real seismic capacity of equipment because the inelastic structure response factor has nothing to do with the ductility of structure. Therefore the median and COV for FRSR should be defined considering the ductility of structure and the frequency of equipment for more exactly evaluating the seismic capacity of equipment.

  19. Crack propagation in tough ductile materials. Phase I

    International Nuclear Information System (INIS)

    The report describes and presents the J-resistance curves obtained as a function of crack extension for two representative tough ductile materials namely ASTM516 grade 70 plate steel and SA106 grade B pipe steel. The results were obtained using the ASTM standard method for determining J-R curves, E24.08, 12th Draft, 25th July, 1985. Both compact tension and three point bend tests were employed for the plate steel tests; only compact tension specimens were used to evaluate the pipe steel. All tests were carried out under load control conditions using specimens of different thickness and cut from known orientations within the parent material

  20. Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy

    Science.gov (United States)

    Wu, Y.; Zhou, D. Q.; Song, W. L.; Wang, H.; Zhang, Z. Y.; Ma, D.; Wang, X. L.; Lu, Z. P.

    2012-12-01

    Martensitic transformation was successfully introduced to bulk metallic glasses as the reinforcement micromechanism. In this Letter, it was found that the twinning property of the reinforcing crystals can be dramatically improved by reducing the stacking fault energy through microalloying, which effectively alters the electron charge density redistribution on the slipping plane. The enhanced twinning propensity promotes the martensitic transformation of the reinforcing austenite and, consequently, improves plastic stability and the macroscopic tensile ductility. In addition, a general rule to identify effective microalloying elements based on their electronegativity and atomic size was proposed.

  1. A Theoretical Approach for Estimating Fracture Toughness of Ductile Metals

    Institute of Scientific and Technical Information of China (English)

    Y.T. He; F. Li; G.Q. Zhang; L.J. Ernst; X.J. FU

    2004-01-01

    Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.

  2. Robustness Analysis of a Wide-Span Timber Structure with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.;

    2010-01-01

    This paper considers robustness evaluation of a wide span timber truss structure where the ductile behavior is taken into account. The robustness analysis is based on a structural reliability framework used on a simplified mechanical system modelling a timber truss system. A measure of ductile...... behaviour is introduced and for different values of this measure the robustness indices are estimated. The results indicate that the robustness of a timber truss system can be increased by taking the ductile behavior into....

  3. Effects of ageing on the ductile fracture of AISI type 316 stainless steel

    International Nuclear Information System (INIS)

    The micromechanisms of ductile fracture have been studied in a commercial AISI type 316 austenitic stainless steel. Tensile, Charpy impact and ductile fracture toughness testing has been performed on unaged material and samples aged at 7000C for times up to 4380 h. Examination of the specimens after testing has demonstrated that the microstructural changes occurring at grain boundaries are reponsible for the observed losses of ductility and crack growth resistance. The relative magnitude of the observed changes in mechanical properties has been accounted for using a simple model to describe the ductile fracture process. (author)

  4. On key factors influencing ductile fractures of dual phase (DP) steels

    International Nuclear Information System (INIS)

    In this paper, we examine the key factors influencing ductile failure of various grades of dual phase (DP) steels using the microstructure-based modeling approach. Various microstructure-based finite element models are generated based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite phase and also the influence of voids introduced in the ferrite phase on the overall ductility of DP steels. It is found that with volume fraction of martensite in the microstructure less than 15%, the overall ductility of the DP steels strongly depends on the ductility of the ferrite matrix, hence pre-existing micro-voids in the microstructure significantly reduce the overall ductility of the steel. When the volume fraction of martensite is above 15%, the pre-existing voids in the ferrite matrix does not significantly reduce the overall ductility of the DP steels, and the overall ductility is more influenced by the mechanical property disparity between the two phases. The applicability of the phase inhomogeneity driven ductile failure of DP steels is then discussed based on the obtained computational results for various grades of DP steels, and the experimentally obtained scanning electron microscopy (SEM) pictures of the corresponding grades of DP steels near fracture surface are used as evidence for result validations.

  5. Analysis of Percent Elongation for Ductile Metal in Uniaxial Tension

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin; YANG Mei; JIANG Jian

    2005-01-01

    Percent elongation of ductile metal in uniaxial tension due to non-homogeneity was analyzed based on gradient-dependent plasticity. Three assumptions are used to get the analytical solution of percent elongation: one is static equilibrium condition in axial direction; another is that plastic volumetric strain is zero in necking zone;the other is that the diameter in unloading zone remains constant after strain localization is initiated. The strain gradient term was introduced into the yield function of classical plastic mechanics to obtain the analytical solution of distributed plastic strain. Integrating the plastic strain and considering the influence of necking on plastic elongation, a one-dimensional analytical solution of percent elongation was proposed. The analytical solution shows that the percent elongation is inversely proportional to the gauge length, and the solution is formally similar to earlier empirical formula proposed by Barba. Comparisons of existing experimental results and present analytical solutions for relation between load and total elongation and for relation between percent elongation and gauge lengthwere carried out and the new mechanical model for percent elongation was verified. Moreover, higher ductility,toughness and heterogeneity can cause much larger percentage elongation, which coincides with usual viewpoints.

  6. EFFECT OF VELOCITY ON DUCTILITY UNDER HIGH VELOCITY FORMING

    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LI Chunfeng

    2007-01-01

    The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures are simplified to one-dimensional tension by constraining the radial deformation, with element birth and death method, fracture problem of circular ring are considered. The calculated results show that for insensitive materials of 1060 aluminum and 3A21 aluminum alloy, fracture strain increases corresponding to the increase of forming velocity. This trend agrees well with experimental results, and indicates inertia is the key factor to affect ductility; With element birth and death methods, fracture problems can be solved effectively. Experimental studies on formability of tubular workpieces are also conducted, experimental results show that the formability of 1060 aluminum and 3A21 aluminum alloy under electromagnetic forming is higher than that under quasistatic forming, according to the characteristics of electromagnetic forming, the forming limit diagrams of the two materials tube are also built respectively, this is very important to promote the development of electromagnetic forming and guide the engineering practices.

  7. The causes of geometry effects in ductile tearing

    International Nuclear Information System (INIS)

    An adequate understanding of geometry effects in ductile tearing can only be achieved when the different causes of the effects are distinguished and these geometry effects are linked to particular micromechanical fracture processes or global deformation mechanisms. It is shown that the micromechanical process of ductile (fibrous) fracture is dependent on achieving a critical strain, which is only slightly dependent on the stress state for the range of triaxiality conditions in pressure vessels and through-cracked plates. Under certain conditions, the crack tip strain can be shown to scale with the value of the J integral and there is a direct connection between J and the underlying micro mechanical process. This connection is lost for significant crack extension or large-scale plasticity. Nevertheless the J integral may still be use on an empirical basis under some conditions. Under fully-plastic conditions the primary source of geometry dependence in the J-R curves is due to the geometry dependence of the shape and volume of the plastic region that develops around the uncracked ligament. This occurs because J is essentially proportional to the total plastic work done on the specimen. If it can be assured that the fracture mode in both the test specimen and the structure will remain fully fibrous, it is conservative to extrapolate J-R curves generated from small compact specimens for the analysis of pressure vessel crack stability. 132 refs., 12 figs., 3 tabs

  8. Nitrogen Impurity Gettering in Oxide Dispersion Ductilized Chromium

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Michael P [ORNL; Anderson, Ian M [ORNL; Weaver, Mark [University of Alabama, Tuscaloosa; Meyer III, Harry M [ORNL; Walker, Larry R [ORNL; Miller, Michael K [ORNL; Larson, David James [ORNL; Wright, Ian G [ORNL; Sikka, Vinod K [ORNL; Rar, Andrei [ORNL; Pharr, George Mathews [ORNL; Keiser, James R [ORNL; Walls, Claudia Alexandra [ORNL

    2003-01-01

    Work by Scruggs in the 1960s demonstrated that tensile ductility could be achieved at room temperature in powder metallurgically-produced Cr alloyed with MgO. During consolidation, much of the MgO converted to the MgCr{sub 2}O{sub 4} spinel phase, which was hypothesized to getter nitrogen from the Cr, rendering it ductile. We have duplicated this effect, achieving room temperature tensile elongations of 4% for hot-pressed Cr-6MgO-(0-1)Ti (wt.%) and 10% for hot-pressed and extruded Cr-6MgO-0.75Ti. Direct incorporation of nitrogen into the MgCr{sub 2}O{sub 4} phase was not detected; however, impurities, particularly nitrogen and sulfur, were observed to segregate to and/or precipitate at interfaces between the MgO/MgCr{sub 2}O{sub 4} phases and the Cr matrix. Exploratory studies of other non-spinel forming oxide dispersions (La{sub 2}O{sub 3}, TiO{sub 2} and Y{sub 2}O{sub 3}) showed a similar pattern of impurity segregation/precipitation, suggesting that there is nothing unique about spinel dispersions in Cr with regards to impurities. However, none of these other dispersions resulted in similar levels of tensile elongation.

  9. Fracturing of ductile anisotropic multilayers: influence of material strength

    Science.gov (United States)

    Gomez-Rivas, E.; Griera, A.; Llorens, M.-G.

    2015-05-01

    Fractures in rocks deformed under dominant ductile conditions typically form simultaneously with viscous flow. Material strength plays a fundamental role during fracture development in such systems, since fracture propagation can be strongly reduced if the material accommodates most of the deformation by viscous flow. Additionally, the degree and nature of anisotropy can influence the orientation and type of resulting fractures. In this study, four plasticine multilayer models have been deformed under coaxial boundary conditions to investigate the influence of strength and anisotropy on the formation of fracture networks. The experiments were made of different mixtures and had two types of anisotropy: composite and composite-intrinsic. The transition from non-localised deformation to systems where fracture networks control deformation accommodation is determined by the ability of the material to dissipate the external work and relax the elastic strain during loading either by viscous flow or by coeval flow and failure. Tension cracks grow in experiments with composite anisotropy, giving rise to a network of shear fractures when they collapse and coalesce with progressive deformation. The presence of an additional intrinsic anisotropy enhances the direct nucleation of shear fractures, the propagation and final length of which depend on the rigidity of the medium. Material strength increases the fracture maximum displacement (dmax) to fracture length (L) ratio, and the resulting values are significantly higher than those from fractures in elastic-brittle rocks. This can be related to the low propagation rates of fractures in rocks undergoing ductile deformation.

  10. Influence of molding sand on the number of grains graphite and on the rate of thin ferrite in pieces in a nodular iron ferritic matrix

    Directory of Open Access Journals (Sweden)

    B. Khatemi

    2010-07-01

    Full Text Available The nodular cast irons are characterized by high mechanical properties compared to cast iron with lamellar graphite or vermiculargraphite. The ductile iron has already been the subject of many studies especially since the literature is rich on them, and sources of information are different. The fact is that the mechanical properties of nodular cast iron (FGS depend on the number of graphitegrains, their roundness, the solidification rate and nature of the matrix [3]. Many studies of nodular cast irons showed that the morespherical particles of graphite, the higher the mechanical properties are high. In gray cast irons, the graphite spheroids have anticrackingand give the ductile iron ductility. Note in this connection that the higher the number of graphite grains, the higher theductile iron has better mechanical properties. In cast iron, the nature of the matrix is depending on several parameters including thecooling rate of molten metal, the thickness, shape and dimensions of parts. The faster cooling is slow over rate of ferrite is important[3, 4]. In this paper, we tested three types of sand casting: sand –based sodium silicate, furan resin and green sand on samplesspherical graphite cast iron of different thickness. The objective in this article is to determine the number of grains of graphite andferrite for each type of sand casting under the same experimental conditions including the cooling rate and chemical composition ofthe liquid metal.

  11. The effects of steel fibre reinforced concrete on system ductility

    Directory of Open Access Journals (Sweden)

    Yilmaz, U. S.

    2007-03-01

    Full Text Available Steel fibre-reinforced concrete is being used extensively today in both field applications and experimental studies on concrete strength and ductility. The state of passive confinement generated by the fibre delays cracking and enhances ductility. The present paper reports on both experimental and analytical studies. In the former, a series of 16 steel-fibre reinforced concrete prismatic specimens were subjected to axial loads and the respective axial load-unit strain diagrams were subsequently plotted to determine the effect of steel fibres on reinforced concrete column ductility. Secondly, an analytical study was run to determine the additional ductility accruing to a frame system when steel fibres are included in the concrete. Analytical models were generated for 16 two-storey, single-span reinforced concrete frames. The columns in these frames were designed to the same characteristics as the specimens used in the experimental tests. Non-linear static (pushover analyses were performed for each frame to obtain load-displacement curves and determine the effect of steel fibres on reinforced concrete column ductility.El hormigón reforzado con fibra de acero se emplea actualmente tanto en obra como en los trabajos experimentales para estudiar la resistencia mecánica y ductilidad del hormigón. El estado de confinamiento pasivo producido por la fibra retrasa la fisuración y aumenta la ductilidad. El presente trabajo es de índole tanto experimental como analítica. En primer lugar, en la parte experimental se aplica una fuerza axial a 16 probetas prismáticas (160 x 160 x 840 mm de hormigón reforzado con fibra de acero para determinar su comportamiento, obteniéndose las curvas de fuerza axial-deformación unitaria correspondientes a partir de los resultados observados. A partir de una evaluación de dichos resultados experimentales, se determina el efecto que ejercen las fibras de acero sobre la ductilidad de las probetas de hormigón armado

  12. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s-1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  13. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  14. Iron overdose

    Science.gov (United States)

    ... PA: Elsevier Saunders; 2014:chap 147. Liebelt EL. Iron. In: Shannon MW, Borron SW, Burns MJ, eds. Haddad and Winchester's Clinical Management of Poisoning and Drug Overdose . 4th ed. Philadelphia, PA: Elsevier ...

  15. Ductile fracture assessment using parameters from small specimens

    Energy Technology Data Exchange (ETDEWEB)

    Talja, H. [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    The topic of this thesis is the computational aspects in the assessment of ductile failure in metals. The first part briefly describes the micromechanics of ductile crack growth and methods for assessing it. The `classic` approach to describe material behaviour using fracture mechanics is summarised. The limitations of the one parameter approach based on the stress intensity factor K or the J- integral are described. Attempts to extend the application field of fracture mechanics parameters by introducing triaxility or constraint parameters are also presented. Different local approach methodologies are summarised. Special attention is paid to the modified Gurson model, which is based on micro-mechanical studies of void initiation, growth and coalescence. The main part of the work consists of numerical analyses with the modified Gurson model. The parameters of the model are first determined by matching tensile test results by finite element analysis, and then applied to J-R curve prediction. This methodology is applied to several reactor pressure vessel materials: A533B, 20 MnMoNi 5 5 and austenitic VVER 440 cladding. As a result, the applicability of different specimen types for the parameter determination of the modified Gurson model has been evaluated. Because a combination of experimental and numerical work is needed, it proved to be most feasible to use specimens which can be simulated with two-dimensional or axisymmetric finite element models. Further, a practical way to treat anisotropic material behaviour using the modified Gurson model by using separate parameter sets for different orientations has been proposed and verified. The correspondence between the observed scatters in tensile and fracture mechanical test results has been examined. Best agreement was obtained fitting the scatter of tensile tests by varying the values of initial parameters. Reasons for apparently higher ductility measured from sub-sized than standard size tensile specimens were

  16. Ductile fracture assessment using parameters from small specimens

    International Nuclear Information System (INIS)

    The topic of this thesis is the computational aspects in the assessment of ductile failure in metals. The first part briefly describes the micromechanics of ductile crack growth and methods for assessing it. The 'classic' approach to describe material behaviour using fracture mechanics is summarised. The limitations of the one parameter approach based on the stress intensity factor K or the J- integral are described. Attempts to extend the application field of fracture mechanics parameters by introducing triaxility or constraint parameters are also presented. Different local approach methodologies are summarised. Special attention is paid to the modified Gurson model, which is based on micro-mechanical studies of void initiation, growth and coalescence. The main part of the work consists of numerical analyses with the modified Gurson model. The parameters of the model are first determined by matching tensile test results by finite element analysis, and then applied to J-R curve prediction. This methodology is applied to several reactor pressure vessel materials: A533B, 20 MnMoNi 5 5 and austenitic VVER 440 cladding. As a result, the applicability of different specimen types for the parameter determination of the modified Gurson model has been evaluated. Because a combination of experimental and numerical work is needed, it proved to be most feasible to use specimens which can be simulated with two-dimensional or axisymmetric finite element models. Further, a practical way to treat anisotropic material behaviour using the modified Gurson model by using separate parameter sets for different orientations has been proposed and verified. The correspondence between the observed scatters in tensile and fracture mechanical test results has been examined. Best agreement was obtained fitting the scatter of tensile tests by varying the values of initial parameters. Reasons for apparently higher ductility measured from sub-sized than standard size tensile specimens were

  17. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    Science.gov (United States)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data

  18. Development of a high strength high toughness ausferritic steel

    International Nuclear Information System (INIS)

    A new ausferritic steel with high strength and exceptionally high fracture toughness has been developed. This steel has been synthesized integrating concepts from Austempered Ductile Cast Iron (ADI) technology. The influence of the austempering temperature on the microstructure and mechanical properties of this steel at room temperature and ambient atmosphere has been examined. The effect of microstructure on the plane strain fracture toughness and on the magnetic, electrical, and thermal properties was also investigated. Compact tension and cylindrical tensile specimens prepared from the low alloy medium carbon steel with high silicon content were initially austenitized at 927 deg. C for 2 h and then subsequently austempered at several temperatures between 260 deg. C (500 F) and 400 deg. C (750 F) to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. A combination of exceptionally high yield strength (1336 MPa) and a high fracture of toughness of 116 MPa√m (a value comparable to maraging steel) was obtained in this steel after austempering at 316 deg. C (600 F) for 2 h. Potential applications of this steel include the inexpensive fabrication of armored plates and components requiring high reliability and durability.

  19. Optimization of Abrasive Water Jet Cutting of Ductile Materials

    Institute of Scientific and Technical Information of China (English)

    Asif IQBAL; Naeem U DAR; Ghulam HUSSAIN

    2011-01-01

    Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material.Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.

  20. A LOWER BOUND LIMIT ANALYSIS OF DUCTILE COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongtao; Liu Yinghua; Xu Bingye

    2005-01-01

    The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogenization theory with static limit analysis, where the temperature parameter method is used to construct the self-equilibrium stress field. An interface failure model is proposed to account for the effects of the interface on the failure of composites.The static limit analysis with the finite-element method is then formulated as a constrained nonlinear programming problem, which is solved by the Sequential Quadratic Programming (SQP)method. Finally, the macroscopic transverse strength of perforated materials, the macroscopic transverse and off-axis strength of fiber-reinforced composites are obtained through numerical calculation. The computational results are in good agreement with the experimental data.

  1. Ductility of copper films on sandblasting polyimide substrates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Different surface morphologies of polyimide(PI)foils widely applied in flexible electronics were obtained using the technique of sandblasting.Copper(Cu)films were subsequently deposited on the treated surface of PI substrates.Upon tensile loading, the critical strain,crack density and count of cracks were measured to examine the ductility of Cu films on PI substrates.Obtained results show that after sandblasting treatment,the critical strain of Cu film decreases from 8.0%to 6.9%and,in comparison with the case without sandblasting,its surface crack density decreases remarkably,with no saturation of the crack density.The reduced crack density is attributed to the increase of contact area and interfacial adhesion after sandblasting,and whether the crack density is saturated or not is dependent upon the morphology of the cracks formed as a function of tensile strain.

  2. Ductile damage of porous materials with two populations of voids

    Science.gov (United States)

    Vincent, Pierre-Guy; Monerie, Yann; Suquet, Pierre

    2008-01-01

    This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains two populations of voids of well separated size. The problem addressed here is the prediction of the effective flow surface of a Gurson material containing randomly oriented oblate voids. The case of spherical voids is considered first and the variational approach of Gurson is generalized by adding a compressible component to his original velocity field. The case of aligned oblate voids is then considered and a suitable generalization of a velocity field due to Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290-297) is proposed. The extension to randomly oriented voids is achieved by averaging over all orientations. In each case, rigorous upper bounds and approximate estimates are derived and compared (in the case of spherical voids) with Finite Element simulations. To cite this article: P.-G. Vincent et al., C. R. Mecanique 336 (2008).

  3. Ductile film delamination from compliant substrates using hard overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Cordill, M.J. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Marx, V.M.; Kirchlechner, C. [Max-Plank-Insitut für Eisenforschung GmbH, Düsseldorf (Germany)

    2014-11-28

    Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems. - Highlights: • Measuring the adhesion energies of ductile metal–polymer interfaces is difficult. • A Cu film would plastically deform under tensile strain without a Cr overlayer. • A Cr overlayer forces cracking and induces buckling between the crack fragments. • The adhesion energy of the metal–polymer interface can be measured.

  4. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly......, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example...

  5. Boudinage and folding as an energy instability in ductile deformation

    Science.gov (United States)

    Peters, Max; Herwegh, Marco; Paesold, Martin K.; Poulet, Thomas; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2016-05-01

    We present a theory for the onset of localization in layered rate- and temperature-sensitive rocks, in which energy-related mechanical bifurcations lead to localized dissipation patterns in the transient deformation regime. The implementation of the coupled thermomechanical 2-D finite element model comprises an elastic and rate-dependent von Mises plastic rheology. The underlying system of equations is solved in a three-layer pure shear box, for constant velocity and isothermal boundary conditions. To examine the transition from stable to localized creep, we study how material instabilities are related to energy bifurcations, which arise independently of the sign of the stress conditions imposed on opposite boundaries, whether in compression or extension. The onset of localization is controlled by a critical amount of dissipation, termed Gruntfest number, when dissipative work by temperature-sensitive creep translated into heat overcomes the diffusive capacity of the layer. Through an additional mathematical bifurcation analysis using constant stress boundary conditions, we verify that boudinage and folding develop at the same critical Gruntfest number. Since the critical material parameters and boundary conditions for both structures to develop are found to coincide, the initiation of localized deformation in strong layered media within a weaker matrix can be captured by a unified theory for localization in ductile materials. In this energy framework, neither intrinsic nor extrinsic material weaknesses are required, because the nucleation process of strain localization arises out of steady state conditions. This finding allows us to describe boudinage and folding structures as the same energy attractor of ductile deformation.

  6. Ductile fracture of metals under triaxial states of stress

    Science.gov (United States)

    Schrems, Karol Krumrey

    Silver interlayers between maraging steel base metal were examined to evaluate mechanisms leading to ductile failure in constrained thin metals. The constraint of the maraging steel base metal during uniaxial testing of constrained thin silver results in a large hydrostatic tension component, a small von Mises effective stress, and negligible far-field plasticity. The failure theory proposed by Rice and Tracey predicts uniform cavity wall expansion as a result of high triaxiality, in which an increase in plastic strain drives an increase in cavity size. The Rice and Tracey theory predicts significantly greater plastic strain than is experimentally observed. The theory developed by Huang, Hutchinson, and Tvergaard states that a cavitation limit exists at which a cavity continues to grow without an increase in elastic or plastic strain. This occurs when the energy stored in the elastic region is sufficient to drive continued cavity expansion. Inherent in both theories is the assumption of a single cavity in an infinite solid, which implies non-interacting cavities. Modifications have been developed to allow for multiple cavities, but assume pre-existing cavities. By examining silver interlayers previously loaded to various times at a fraction of the tensile strength where time-dependent failure is observed, it was found that some cavities were initially present in the as-bonded samples. Some of the initial cavities were spaced close enough to suggest localized interacting stress fields. This indicates that a failure model should be able to accommodate cavity spacing. The results suggest that cavities are continuously nucleating (from at least the 20 nanometers detectability limit) and grow, sometimes to over 500 nm in diameter. This thesis evaluates the number, size, shape and spacing of cavities in the silver interlayers and uses these results to evaluate ductile failure theories for metals subjected to high triaxial states of stress such as in constrained

  7. Modeling effects of constituents and dispersoids on tensile ductility of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    SONG Min; CHEN Kang-hua; QI Xiong-wei

    2007-01-01

    The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied. The results show that the tensile ductility decreases with the increase of the volume fraction and size of constituents. Thus, purification can improve the tensile ductility by decreasing the volume fraction of constituents (normally compositions of Fe and Si) and the first-class microcracks. The model also indicates that the tensile ductility decreases with the increase in the volume fraction of dispersoids. Decreasing the volume fraction of dispersoids along the grain boundaries by proper heat-treatment and improving the cohesion strength between dispersoids and matrix can also improve the tensile ductility by decreasing the volume fraction of the second-class microcracks.

  8. Low alloy steel versus ADI – differences and similarities

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2009-01-01

    Full Text Available The results of comparison between the microstructure of selected bainitic low alloy steel and austempered ductile iron ADI are presented. The aim of the comparison was to find out differences and similarities existing in these iron carbon commercial alloys. In this paper our own results on ADI structure and literature data were used. It follows from discussion presented here that both microstructure and properties of ADI are very close that which are observed in low alloy carbon steel. Moreover, we suggest that there is no so doubt to treat ADI mechanical properties as steel containing nodular inclusions of graphite.

  9. Ductile damage of porous materials with two populations of voids; Endommagement ductile de materiaux poreux contenant deux populations de cavites

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, P.G.; Monerie, Y. [Institut de Radioprotection et de Surete Nucleaire, 13 - Saint Paul lez Durance (France); Vincent, P.G.; Suquet, P. [Laboratoire de Mecanique et d' Acoustique, 13 - Marseille (France)

    2008-01-15

    This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains two populations of voids of well separated size. The problem addressed here is the prediction of the effective flow surface of a Gurson material containing randomly oriented oblate voids. The case of spherical voids is considered first and the variational approach of Gurson is generalized by adding a compressible component to his original velocity field. The case of aligned oblate voids is then considered and a suitable generalization of a velocity field due to Gologanu (et al.) is proposed. The extension to randomly oriented voids is achieved by averaging over all orientations. In each case, rigorous upper bounds and approximate estimates are derived and compared (in the case of spherical voids) with Finite Element simulations. (authors)

  10. Characterizing Ductile Damage and Failure: Application of the Direct Current Potential Drop Method to Uncracked Tensile Specimens

    OpenAIRE

    Brinnel, V.; Döbereiner, B.; Münstermann, Sebastian

    2014-01-01

    Modern high-strength steels exhibit excellent ductility properties but their application is hindered by traditional design rules. A characterization of necessary safety margins for the ductile failure of these steels is therefore required. Direct observation of ductile damage within tests is currently not possible, only limited measurements can be made with synchrotron or X-ray radiation facilities. The direct current potential drop (DCPD) method can determine ductile crack propagation with l...

  11. Iron and Your Child

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Iron and Your Child KidsHealth > For Parents > Iron and ... enough iron in their daily diets. How Much Iron Do Kids Need? Kids require different amounts of ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have enough iron in your body. Low iron levels usually are due to blood loss, poor diet, ... iron supplements and multivitamins to improve her iron levels. Susan also made changes to her diet, such ...

  13. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja;

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  14. Ductility demands on buckling-restrained braced frames under earthquake loading

    Institute of Scientific and Technical Information of China (English)

    Larry A. Fahnestock; Richard Sause; James M. Ricles; Le-Wu Lu

    2003-01-01

    Accurate estimates of ductility demands on buckling-restrained braced frames (BRBFs) are crucial to performance-based design of BRBFs. An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center, Lehigh University to prepare for an upcoming experimental program. The analysis program DRAIN-2DX was used to model a one-bay, four-story prototype BRBF including material and geometric nonlinearities. The bucklingrestrained brace (BRB) model incorporates both isotropic and kinematic hardening. Nonlinear static pushover and timehistory analyses were performed on the prototype BRBF. Performance objectives for the BRBs were defined and uscd to evaluate thc time-history analysis results. Particular emphasis was placed on global ductility demands and ductility demands oa the BRBs. These demands were compared with anticipated ductility capacities. The analysis results, along with results from similar previous studics, are used to evaluate the BRBF design provisions that have been recommended for codification in the United States. Thc results show that BRB maximum ductility demands can be as high as 20 to 25. These demands significantly exceed those anticipated by the BRBF recommended provisions. Results from the static pushover and timehistory analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions.The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5. Modifications to the testing protocol are recommended.

  15. Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Z.K., E-mail: zteng81@gmail.com [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Liu, C.T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Department of Mechanical Engineering City University of Hong Kong, Kowloon (Hong Kong); Materials Engineering, Auburn University, Auburn, AL 36849-5341 (United States); Miller, M.K. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6136 (United States); Ghosh, G. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Kenik, E.A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6136 (United States); Huang, S. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Liaw, P.K., E-mail: pliaw@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Effects of precipitate microstructure on the ductility were investigated. Black-Right-Pointing-Pointer The NiAl precipitates can be systematically characterized by TEM, APT, and USAXS. Black-Right-Pointing-Pointer Ductility is a function of the precipitate volume fraction. Black-Right-Pointing-Pointer Ductility is closely related to the Al and Ni solubilities in the Fe matrix. Black-Right-Pointing-Pointer Ductility is independent of precipitate size and inter-particle spacing. - Abstract: The effects of precipitate microstructure on the room temperature ductility of a series of carefully designed Fe-Al-Ni-Cr-Mo steels were investigated. Transmission electron microscopy (TEM), ultra small angle X-ray scattering (USAXS), and atom probe tomography (APT) were conducted to quantify the nano-scaled precipitates. The accuracy of the characterization results was verified by a numerical analysis. Three point bending tests results demonstrated that ductility was a function of the precipitate volume fraction and the Al and Ni concentrations in the Fe matrix, these relationships were discussed in terms of possible mechanisms. The ductility was also found to be independent of the precipitate size and inter-particle spacing in the studied range, which was validated by a theoretical model.

  16. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  17. Hot ductility and deformation behavior of C-Mn/Nb-microalloyed steel related to cracking during continuous casting

    OpenAIRE

    Lanjewar, Harishchandra; Tripathi, Pranavkumar; M Singhai; Patra, PK

    2014-01-01

    Hot ductility studies have been performed on C-Mn and C-Mn-Nb steels with an approach to simulate the effect of cooling conditions experienced by steel in secondary cooling zone during continuous casting. Thermal oscillations prior to tensile straining deteriorate hot ductility of steel by deepening and widening the hot ductility trough. C-Mn steels are found to exhibit ductility troughs in three distinct zones whereas C-Mn-Nb steel shows drop in ductility only at low temperature in the vicin...

  18. Comparison of ductile-to-brittle transition curve fitting approaches

    Energy Technology Data Exchange (ETDEWEB)

    Cao, L.W. [School of Materials Science and Engineering, Beihang University (BUAA), Beijing 100191 (China)] [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Wu, S.J., E-mail: wusj@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), Beijing 100191 (China); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom)] [School of Physics, HH Wills Laboratory, University of Bristol, BS8 1TL (United Kingdom)

    2012-05-15

    Ductile-to-brittle transition (DBT) curve fitting approaches are compared over the transition temperature range for reactor pressure vessel steels with different kinds of data, including Charpy-V notch impact energy data and fracture toughness data. Three DBT curve fitting methods have been frequently used in the past, including the Burr S-Weibull and tanh distributions. In general there is greater scatter associated with test data obtained within the transition region. Therefore these methods give results with different accuracies, especially when fitting to small quantities of data. The comparison shows that the Burr distribution and tanh distribution can almost equally fit well distributed and large data sets extending across the test temperature range to include the upper and lower shelves. The S-Weibull distribution fit is poor for the lower shelf of the DBT curve. Overall for both large and small quantities of measured data the Burr distribution provides the best description. - Highlights: Black-Right-Pointing-Pointer Burr distribution offers a better fit than that of a S-Weibull and tanh fit. Black-Right-Pointing-Pointer Burr and tanh methods show similar fitting ability for a large data set. Black-Right-Pointing-Pointer Burr method can fit sparse data well distributed across the test temperature. Black-Right-Pointing-Pointer S-Weibull method cannot fit the lower shelf well and show poor fitting quality.

  19. Low ductility creep failure in austenitic weld metals

    International Nuclear Information System (INIS)

    Creep tests have been carried out for times of up to approx. 22,000 hrs on three austenitic weld metals of nominal composition 17Cr-8Ni-2Mo, 19Cr-12Ni-3Mo+Nb and 17Cr-10Ni-2Mo. The two former deposits were designed to produce delta-ferrite contents in the range 3-9% while the latter was designed to be fully austenitic. The common feature of all three weld metals was that they all gave very low strains at failure, typically approx. 1%. The microstructures of the failed creep specimens have been studied using optical and electron microscopy and the precipitate structures related to the occurrence of low creep strains. Creep deformation and fracture mechanisms in austenitic materials in general have been reviewed and this has been used as a basis for discussion of the observations of the present work. Finally, some of the factors that can be controlled to improve long-term creep ductility have been appraised

  20. Effects of microscale inertia on dynamic ductile crack growth

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  1. Estimation of ductile fracture behavior incorporating material anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Beom; Lee, Dock Jin; Jeong, Jae Uk [Sungkyunkwan University, Seoul (Korea, Republic of); Chang, Yoon Suk [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Nuclear Material Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill;s 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

  2. Quantifying Damage Accumulation During Ductile Plastic Deformation Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suter, Robert M. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rollett, Anthony D. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-08-15

    Under this grant, we have developed and demonstrated the ability of near-field High Energy Diffraction Microscopy (nf-HEDM) to map crystal orientation fields over three dimensions in deformed polycrystalline materials. Experimental work was performed at the Advanced Photon Source (APS) at beamline 1-ID. Applications of this new capability to ductile deformation of copper and zirconium samples were demonstrated as was the comparison of the experimental observations to computational plasticity models using a fast Fourier transform based algorithm that is able to handle the large experimental data sets. No such spatially resolved, direct comparison between measured and computed microstructure evolutions had previously been possible. The impact of this work is reflected in numerous publications and presentations as well as in the investments by DOE and DOD laboratories of millions of dollars in applying the technique, developing sophisticated new hardware that allows the technique to be applied to a wide variety of materials and materials problems, and in the use of the technique by other researchers. In essence, the grant facilitated the development of a new form of three dimensional microscopy and its application to technologically critical states of polycrystalline materials that are used throughout the U.S. and world economies. On-going collaborative work is further optimizing experimental and computational facilities at the APS and is pursuing expanded facilities.

  3. Numerical simulations of interfacial debonding in ductile-phase reinforced intermetallic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Henshall, G.A.; Zywicz, E.; Strum, M.J.

    1993-08-10

    The fracture toughness of brittle intermetallic compounds can be improved by ductile-phase reinforcements. Effectiveness of the ductile phase in bridging cracks, and therefore increasing, the composite toughness, is known qualitatively to depend upon the extent of debonding, between the two phases. Numerical crack-growth simulations are used here to provide semi-quantitative predictions of the influence of interfacial debonding on the macroscopic stress-displacement behavior and, hence, the fracture toughness of an idealized Pb/glass composite. The interfacial toughness required to cause debonding, characterized by a constant critical energy release rate, is varied parametrically. As expected, higher interfacial toughness results in less interphase debonding, higher composite strength, and greater ductile-phase constraint. Consequently, the increase in ductile-phase triaxiality can potentially accelerate internal void formation and growth or facilitate cleavage fracture, either of which would likely decrease the toughness of the composite.

  4. Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying

    International Nuclear Information System (INIS)

    Highlights: • Modified Ti64 alloys with improved ductility and oxidation resistance are developed. • B improves the ductility by refining grain size and enhancing boundary cohesion. • Y enhances the oxidation resistance by possibly slowing down the oxidation kinetics. - Abstract: The effects of B and Y on the mechanical properties and oxidation behavior of cast Ti–6Al–4V alloys were systematically investigated, and the new alloys with improved ductility and oxidation resistance are developed by the microalloying approach. The results indicate that boron is beneficial for improving the ductility by not only grain-size refinement but also grain-boundary enhancement, while yttrium is effective in increasing the oxidation resistance through possibly slowing down the oxidation kinetics. The improved properties, together with their high strength, make the microalloyed cast Ti–6Al–4V alloys competitive for practical engineering applications

  5. Application of damage mechanics modeling to strain based design with respect to ductile crack initiation

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Sueyoshi, Hitoshi; Igi, Satoshi [Steel Research Laboratory, JFE Steel Corporation (Japan)

    2010-07-01

    In the oil and gas sector, with the increase in demand, more and more pipelines are now constructed in permafrost and seismic regions. When installed in such harsh environments, pipelines must be resistant to buckling and weld fracture and the strain based design methodology is preferably used. The aim of this paper is to study the critical condition for ductile crack initiation. Both notched round bar and wide plate tests were carried out on X80 and X100 steel pipes and welds; the equivalent plastic strain criterion and Gurson Tvergaard mechanical damage analysis were used. It was found that to determine ductile crack initiation that is not affected by specimen geometry, the critical equivalent plastic strain can be used as the local criterion. In addition, when ductile crack initiation is independent of specimen geometry, the void volume fraction can be used as a criterion. This paper provided useful information on which criterion to use for ductile crack initiation.

  6. Stable ductility of an electrodeposited nanocrystalline Ni–20 wt.%Fe alloy in tensile plastic deformation

    International Nuclear Information System (INIS)

    Tensile behavior of an electrodeposited nanocrystalline Ni–20 wt.%Fe (average grain size d = ∼32 nm) alloy was investigated. With the variety of strain rate, high ultimate strength (1762–1939 MPa) and stable fracture ductility (8.5–9.3%) were observed during tensile tests. The ductility of the nanocrystalline Ni–20 wt.%Fe alloy is more stable than that of the nanocrystalline Ni (5.6–11.3%) with similar microstructures. The stable ductility of the nanocrystalline Ni–20 wt.%Fe alloy can be attributed to its higher work hardening ability. Transmission electron microscope analysis revealed that there are massive dislocations, deformation twins and stacking faults in the deformed nanocrystalline Ni–20 wt.%Fe alloy. The decrease of stacking fault energy, caused by alloying of Fe element, should be responsible for the crystal defect microstructures and this increases work hardening rate, which can improve the ductility at last

  7. Ductile electroless Ni-P coating onto flexible printed circuit board

    Science.gov (United States)

    Wang, Wenchang; Zhang, Weiwei; Wang, Yurong; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-03-01

    In this study, a ductile electroless Ni-P coating on the flexible printed circuit board (FPCB) was prepared in an acidic nickel plating bath. The addition of dipropylamine (DPA) in electroless plating not only improves the ductility of the Ni-P coating, but also enhances the corrosion resistance. The further analysis reveals that the ductility improvement and enhancement of corrosion resistance for the Ni-P coating may be due to the fact that the addition of DPA significantly refines the volume of columnar nodule and reduce the porosity, thus leading to the released internal stress. In addition, it was found that the nodule within the Ni-P coating grew into a columnar structure, which may be also contribute to the improvement of ductility.

  8. Properties shaping and repair of selected types of cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2007-04-01

    Full Text Available The paper presents research results of twofold use of TIG - Tungsten Inert Gas also known as GTA - Gas Tungsten Arc. First is surfacing by welding on cold and hot-cold to repair chromium cast iron with chromium content about 15%. Second is remelting with electric arc of selected gray (with pearlitic matrix and ductile (with ferritic-pearlitic matrix cast iron. Repair of cast iron elements was realized in order to cut out a casting defects. Defects decrease a usability of castings for constructional application and increase a manufacturing costs. Application of surface heat treatment guarantees mechanical properties i.e. hardness and wear resistance improvement. The result of investigations show possibility of castings repair by put on defects a good quality padding welds, which have comparable properties with base material. Use of electric arc surface heat treatment resulted in increase of hardness and wear resistance, which was measured on the basis of ASTM G 65 - 00 standard.

  9. Human iron transporters

    OpenAIRE

    Garrick, Michael D.

    2010-01-01

    Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned task...

  10. Industrial vegetable oil by-products increase the ductility of polylactide

    OpenAIRE

    RUELLAN A.; GUINAULT, A; SOLLOGOUB, C; CHOLLET, G; A. Ait-Mada; Ducruet, V; DOMENEK, S

    2015-01-01

    The use of industrial by-products of the vegetable oil industry as ductility increasing additives of polylactide (PLA) was investigated. Vegetable oil deodorization condensates were melt-blended by twin-screw extrusion up to a max- imum inclusion quantity of 20 wt% without preliminary purification. Sample films were obtained by single screw cast extrusion. Compounded PLA films featured largely improved ductility in tensile testing with an elongation at break up to 180%. The glass transition t...

  11. Cost and Ductility Effectiveness of Concrete Columns Strengthened with CFRP and SFRP Sheets

    OpenAIRE

    Khaled Abdelrahman; Raafat El-Hacha

    2014-01-01

    Recently, steel fibre reinforced polymers (SFRP) sheets have been introduced for the repair and rehabilitation of concrete structures. Few researchers studied the behaviour of the concrete columns wrapped with SFRP sheets; however, several critical parameters such as the cost and ductility effectiveness of the SFRP wrapped concrete columns have been lightly addressed. Thus, the main objective of this paper is to study the cost and ductility effectiveness of SFRP wrapped concrete columns and c...

  12. Influence of strain-rate on the flow stress and ductility of copper and tantalum

    International Nuclear Information System (INIS)

    Tensile experiments were carried out at strain-rates in a range from epsilon = 6.10-5 to 3.103 s-1 at 293 K and 673 K or 773 K. Two types of copper (FCC) and pure tantalum (BCC) were tested. The variations of ductility have been investigated in relation with the σ - epsilon equations of the materials and the examinations of fracture surfaces. They can be explained in terms of stability and intrinsic ductility

  13. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-01-01

    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  14. Microstructure-property relationship in highly ductile Au-Cu thin films for flexible electronics

    International Nuclear Information System (INIS)

    Research highlights: → Nanocrystalline AuCu alloy thin films were co-sputter deposited on polyimide. →In situ SEM tensile tests were performed. → The most ductile films did not crack up to 30% applied tensile strain. → Deformation localizes in periodic and oriented shear bands. → Shear bands are the precursors for cracks. - Abstract: The new and fast emerging field of flexible electronic devices requires highly ductile materials. Deposition of thin metal films on flexible substrates is a suitable method to create highly ductile interconnects. In this study, thin films consisting of a graded composition of Au-Cu were co-deposited by direct-current magnetron sputtering on polyimide (Kapton) substrate for in situ SEM tensile testing, while silicon wafer supported thin film spreads were characterized by nanoindentation, XRD and EDX. Substrate quality turned out to be extremely important for strain delocalization to allow for uniform deformation characterized by high ductility. No cracking was observed up to the maximal strain of 30% for films consisting of pure gold and alloys with a low copper content up to 10 at.%, while cracking was more prevalent in films with higher copper contents and with applied heat treatment. In the most ductile thin films shear bands are the precursors of ductile cracks.

  15. New concept on ductility exhaustion considering creep-fatigue failure mechanism of Type 304SS

    International Nuclear Information System (INIS)

    For long-term creep-fatigue of Type 304SS, intergranular failure is dominant when significant life reduction occurs. This phenomenon has its origin in grain boundary sliding as same as that in cavity type creep failure. Accordingly a simplified procedure to estimate intergranular damages caused by grain boundary sliding is presented in connection with the secondary creep. In the conventional ductility exhaustion method, fracture ductility includes plastic strain, and damage estimation is based on primary creep recoverable during strain cycling. Therefore, the accumulated creep strain becomes a very large value, and is quite different from grain boundary sliding strain. As a new concept on ductility exhaustion, the products of secondary creep rate and time to rupture (ε2tR) is applied to fracture ductility, and grain boundary sliding is estimated using the accumulated secondary creep strain. It was shown that the time fraction rule and the conventional ductility exhaustion method can be derived analytically from the new concept. Furthermore an advanced method on cyclic stress relaxation was examined. If cyclic plastic strain hardening is softened thermally during strain hold, softening of the primary and secondary creep can occur. And the unrecoverable accumulated primary creep strain causes hardening of the primary creep. The reduction of deformation resistance to the secondary creep accelerates the grain boundary sliding rate, and increases creep damage. The new concept ductility exhaustion method based on the above consideration gave good life prediction for the intergranular failure mode. (author)

  16. Effect of foundation flexibility on ductility reduction factors for R/C stack-like structures

    Science.gov (United States)

    Halabian, Amir M.; Kabiri, Shabnam

    2011-06-01

    The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundation, the ductility factor could be affected by foundation compliances. The ductility factors given in the current codes are mostly assigned ignoring the effect of SSI and therefore the objective of this research is to assess the significance of SSI phenomenon on ductility factors of stack-like structures. The deformed configuration of stack-like structures is idealized as an assemblage of beam elements considering nonlinear moment-curvature relations, while a linear sway-rocking model was implemented to model the supporting soil. Using a set of artificial records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration to a level where the first yielding of steel in linear and nonlinear analyses is observed and a level corresponding to the stack collapse in the nonlinear analysis. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicate that foundation flexibility can decrease the ductility of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of the seismic performance of flexibly-supported R/C stack-like structures.

  17. Hot ductility behavior of near-alpha titanium alloy IMI834

    Energy Technology Data Exchange (ETDEWEB)

    Ghavam, Mohammad Hadi; Morakabati, Maryam; Abbasi, Seyed Mahdi; Badri, Hassan [Metallic Materials Research Center (MMRC-MA), Tehran (Iran, Islamic Republic of)

    2014-11-15

    The hot ductility of rolled IMI834 titanium alloy (Ti-5.3Al-2.9Sn-3.0Zr-0.65Nb-0.5Mo-0.2Si in wt%) has been studied by conducting tensile tests with a strain rate of 0.1 s{sup -1} and temperature range of 750-1100 C to obtain the optimum hot working conditions. The alloy showed minimum hot ductility in the lower alpha-beta region in the temperature range 750-950 C. Further microstructural characterizations showed improvement in hot ductility by increasing temperature, which was attributed to reduction of volume fraction of high strength alpha phase. The best hot ductility was observed at 1000 C, i.e. in the upper alpha-beta region. The better hot ductility at higher temperature could be related to the increase in the volume fraction of beta phase and the occurrence of dynamic restoration phenomena. The second decline in hot ductility appeared at higher temperatures in the beta region and was attributed to the high stacking fault energy and self-diffusion of beta phase leading to limitation of dynamic recrystallization.

  18. A mechanism-based approach to modeling ductile fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Hammi, Youssef; Antoun, Bonnie R.; Klein, Patrick A.; Foulk, James W., III; McFadden, Sam X.

    2004-01-01

    Ductile fracture in metals has been observed to result from the nucleation, growth, and coalescence of voids. The evolution of this damage is inherently history dependent, affected by how time-varying stresses drive the formation of defect structures in the material. At some critically damaged state, the softening response of the material leads to strain localization across a surface that, under continued loading, becomes the faces of a crack in the material. Modeling localization of strain requires introduction of a length scale to make the energy dissipated in the localized zone well-defined. In this work, a cohesive zone approach is used to describe the post-bifurcation evolution of material within the localized zone. The relations are developed within a thermodynamically consistent framework that incorporates temperature and rate-dependent evolution relationships motivated by dislocation mechanics. As such, we do not prescribe the evolution of tractions with opening displacements across the localized zone a priori. The evolution of tractions is itself an outcome of the solution of particular, initial boundary value problems. The stress and internal state of the material at the point of bifurcation provides the initial conditions for the subsequent evolution of the cohesive zone. The models we develop are motivated by in-situ scanning electron microscopy of three-point bending experiments using 6061-T6 aluminum and 304L stainless steel, The in situ observations of the initiation and evolution of fracture zones reveal the scale over which the failure mechanisms act. In addition, these observations are essential for motivating the micromechanically-based models of the decohesion process that incorporate the effects of loading mode mixity, temperature, and loading rate. The response of these new cohesive zone relations is demonstrated by modeling the three-point bending configuration used for the experiments. In addition, we survey other methods with the potential

  19. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  20. Mechanical Behavior of Ultrafine Gradient Grain Structures Produced via Ambient and Cryogenic Surface Mechanical Attrition Treatment in Iron

    Directory of Open Access Journals (Sweden)

    Heather A. Murdoch

    2015-06-01

    Full Text Available Ambient and cryogenic surface mechanical attrition treatments (SMAT are applied to bcc iron plate. Both processes result in significant surface grain refinement down to the ultrafine-grained regime; the cryogenic treatment results in a 45% greater grain size reduction. However, the refined region is shallower in the cryogenic SMAT process. The tensile ductility of the grain size gradient remains low (<10%, in line with the expected behavior of the refined surface grains. Good tensile ductility in a grain size gradient requires the continuation of the gradient into an undeformed region.

  1. Hot Ductility Characterization of Sanicro-28 Super-Austenitic Stainless Steel

    Science.gov (United States)

    Mirzaei, A.; Zarei-Hanzaki, A.; Abedi, H. R.

    2016-05-01

    The hot ductility behavior of a super-austenitic stainless steel has been studied using tensile testing method in the temperature range from 1073 K to 1373 K (800 °C to 1100 °C) under the strain rates of 0.1, 0.01, and 0.001 s-1. The hot compression tests were also performed at the same deformation condition to identify the activated restoration mechanisms. At lower temperatures [ i.e., 1073 K and 1173 K (800 °C and 900 °C)], the serration of initial grain boundaries confirms the occurrence of dynamic recovery as the predominant restoration process. However, in the course of applied deformation, the initial microstructure is recrystallized at higher temperatures [ i.e., 1273 K and 1373 K (1000 °C and 1100 °C)]. In this respect, annealing the twin boundaries could well stimulate the recrystallization kinetic through initiation new annealing twins on prior annealing twin boundaries. The hot tensile results show that there is a general trend of increasing ductility by temperature. However, two regions of ductility drop are recognized at 1273 K and 1373 K (1000°C)/0.1s-1 and (1100°C)/0.01s-1. The ductility variations at different conditions of temperature and strain rate are discussed in terms of simultaneous activation of grain boundary sliding and restoration processes. The observed ductility troughs are attributed to the occurrence of grain boundary sliding and the resulting R-type and W-type cracks. The occurrence of dynamic recrystallization is also considered as the main factor increasing the ductility at higher temperatures. The enhanced ductility is primarily originated from the post-uniform elongation behavior, which is directly associated with the strain rate sensitivity of the experimental material.

  2. Iron Sucrose Injection

    Science.gov (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called ...

  3. Steam iron cleaner poisoning

    Science.gov (United States)

    ... cleaner is a substance used to clean steam irons. Poisoning occurs when someone swallows steam iron cleaner. This ... Below are symptoms of steam iron cleaner poisoning in different ... AND THROAT Severe pain in the throat Severe pain in the mouth ...

  4. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... refers to a condition in which your blood has a lower than normal number of red blood ... iron, your body starts using the iron it has stored. Soon, the stored iron gets used up. ...

  6. The Effect of Stepped Austempering on Phase Composition and Mechanical Properties of Nanostructured X37CrMoV5-1 Steel

    Directory of Open Access Journals (Sweden)

    Marciniak S.

    2015-04-01

    Full Text Available This paper presents the results of studies of X37CrMoV5-1 steel subjected to quenching processes with a one-step and a two-step isothermal annealing. The TEM observation revealed that steel after one-step treatment led is composed of carbide-free bainite with nanometric thickness of ferrite plates and of high volume fraction of retained austenite in form of thin layers or large blocks. In order to improve the strength parameters an attempt was made to reduce the austenite content by use of quenching with the two-step isothermal annealing. The temperature and time of each step were designed on the basis of dilatometric measurements. It was shown, that the two-step heat treatment led to increase of the bainitic ferrite content and resulted in improvement of steel's strength with no loss of steel ductility.

  7. Estudio de la influencia del Cu y Ni en la cinética de transformación martensítica inducida por deformación en fundiciones nodulares austemperadas

    Directory of Open Access Journals (Sweden)

    Guzmán, D.

    2013-06-01

    Full Text Available The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability.El objetivo de este trabajo fue estudiar el efecto del cobre y níquel en la cinética de la transformación martensítica inducida por deformación en fundiciones nodulares austemperadas. Las fundiciones utilizadas se fabricaron mediante austemperado, a partir de dos fundiciones nodulares, con diferentes contenidos de cobre y níquel. La deformación se realizó en un laminador de rodillo. La cuantificación de las fases se realizó mediante difracción de rayos X, mientras que la caracterización microestructural se efectuó utilizando microscopía óptica y electrónica de barrido. Se comprobó que la cinética de transformación martensítica inducida por deformación en fundiciones nodulares austemperadas puede ser modelada mediante los modelos de Olson-Cohen y Chang et al. Basándose en los resultados obtenidos de estos ajustes, se concluye que tanto el níquel como el cobre dificultan la transformación martensítica debido a que estos elementos aumentan la energía de falla de

  8. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  9. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  10. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    OpenAIRE

    S. G. Sandomirskiy; V. L. Zuckerman

    2013-01-01

    The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  11. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  12. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    Science.gov (United States)

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  13. Irradiation and inhomogeneity effects on ductility and toughness of (ODS)-7 -13Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Preininger, D. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: The superimposed effect of irradiation defect and structural inhomogeneity formation on tensile ductility and dynamic toughness of ferritic-martensitic 7-13CrW(Mo)VTa(Nb) and oxide dispersion-strengthened (ODS)-7-13CrWVTa(Ti)- RAFM steels has been examined by work hardening and local stress/strain-induced ductile fracture models. Structural inhomogeneities which strongly promoting plastic instability and localized flow might be formed by the applied fabrication process, high dose irradiation and additionally further during deformation by enhanced local dislocation generation around fine particles or due to slip band formation with localized heating at high impact strain rates {epsilon}'. The work hardening model takes into account superimposed dislocation multiplication from stored dislocations, dispersions and also grain boundaries as well as annihilation by cross-slip. Analytical relations have been deduced from the model describing uniform ductility and ductile upper shelf energy (USE) observed from Charpy-impact testes. Especially, the influence of different irradiation defects like atomic clusters, dislocation loops and coherent chromium-rich {alpha}'- precipitates have been considered together with effects from strain rate as well as irradiation (TI) and test temperature TT. Strengthening by clusters and more pronounced by dislocation loops formed at higher TI>250 deg. C reduces uniform ductility and also distinctly stronger dynamic toughness USE. A superimposed hardening by the {alpha}'- formation in higher Cr containing 9-13Cr steels strongly reduces toughness assisted by a combined grain-boundary embrittlement with reduction of the ductile fracture stress. But that improves work hardening and uniform ductility as observed particularly due to nano-scale Y{sub 2}O{sub 3}- dispersions in ODS-RAFM steels. For ODS- steels additionally the strength-induced reduction of toughness is diminished by a combined

  14. Effect of niobium and titanium addition on the hot ductility of boron containing steel

    International Nuclear Information System (INIS)

    Research highlights: → Addition of only Nb without Ti has little influence in the hot ductility of B steel. → Hot ductility loss of B-Nb steel is due to grain boundary precipitation of BN. → Adding a small amount of Ti improve the hot ductility of B-Nb steel. → In B-Nb-Ti steel, hot ductility improvement is related to presence of TiN particle. → Presence of TiN particles makes the BN precipitates' distribution more homogeneous. - Abstract: Hot ductility of boron containing steel (B steel) with adding Nb (0.03 wt.%) (B-Nb steel) and B-Nb steel with adding Ti (0.0079 wt.%) (B-Nb-Ti steel) was quantified using hot tensile tests. The specimens were solution-treated at 1350 deg. C and cooled at 20 deg. C s-1 to tensile test temperature (T) in the range of 750 ≤ T ≤ 1050 deg. C. After that, they were strained to failure at a strain rate of 2.5 x 10-3 s-1. For the B-Nb steel, severe hot ductility loss was observed at 850 ≤ T ≤ 950 deg. C, which covered the low temperature in which austenite (γ) single-phase exists, and the high temperature at which γ and ferrite (α) coexist. Ductility loss in the B-Nb steel was caused by the presence of a network of BN precipitates, rather than by Nb(C, N) precipitates at the γ grain boundaries. In contrast, hot ductility of the B-Nb-Ti steel was remarkably improved at 850 ≤ T ≤ 950 deg. C. In the B-Nb-Ti steel, BN precipitates preferentially on TiN particles, resulting in increased BN precipitation in the γ grain interior and a decrease in the network of BN precipitates at the γ grain boundaries. These changes reduce strain localization at the γ grain boundaries and therefore increase the hot ductility of the steel.

  15. A wet abrasive blasting process for smooth micromachining of glass by ductile-mode removal

    International Nuclear Information System (INIS)

    This paper describes the ductile removal behavior of a Pyrex glass substrate in a wet blasting process with an aqueous fine abrasive slurry of 4 µm Al2O3 particles in water. Glass was removed in a ductile cutting mode when the blasting was carried out with low applied pressure or with a long nozzle distance. Although the removal rate in the ductile mode was much lower than with brittle-mode blasting, a smooth surface within a roughness of 50 nm Ra was obtained. Using ductile-mode blasting, a micro groove with a smooth surface (roughness <50 nm Ra) was successfully obtained. The profile of the micro groove was U-shaped, in contrast to the V-shaped profile obtained with conventional brittle-mode blasting. Ductile-mode blasting was also used for surface finishing after a rough pre-blasting process. The roughness of the pre-blasted surface was reduced from 200 nm Ra to about 100 nm Ra by the finishing process

  16. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  17. Liver iron transport

    Institute of Scientific and Technical Information of China (English)

    Ross M Graham; Anita CG Chua; Carly E Herbison; John K Olynyk; Debbie Trinder

    2007-01-01

    The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV),which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.

  18. Low temperature impact testing of welded structural wrought iron

    Science.gov (United States)

    Rogers, Zachary

    During the second half of the 19th century, structural wrought iron was commonly used in construction of bridges and other structures. Today, these remaining structures are still actively in use and may fall under the protection of historic preservation agencies. Continued use and protection leads to the need for inspection, maintenance, and repair of the wrought iron within these structures. Welding can be useful to achieve the appropriate repair, rehabilitation, or replacement of wrought iron members. There is currently very little published on modern welding techniques for historic wrought iron. There is also no pre-qualified method for this welding. The demand for welding in the repair of historic structural wrought iron has led to a line of research investigating shielded metal arc welding (SMAW) of historic wrought iron at the University of Colorado Denver. This prior research selected the weld type and other weld specifications to try and achieve a recognized specific welding procedure using modern SMAW technology and techniques. This thesis continues investigating SMAW of historic wrought iron. Specifically, this thesis addresses the toughness of these welds from analysis of the data collected from performing Charpy V-Notch (CVN) Impact Tests. Temperature was varied to observe the material response of the welds at low temperature. The wrought iron used in testing was from a historic vehicle bridge in Minnesota, USA. This area, and many other areas with wrought iron structures, can experience sustained or fluctuating temperatures far below freezing. Investigating the toughness of welds in historic wrought iron at these temperatures is necessary to fully understand material responses of the existing structures in need of maintenance and repair. It was shown that welded wrought iron is tougher and more ductile than non-welded wrought iron. In regards to toughness, welding is an acceptable repair method. Information on wrought iron, low temperature failure

  19. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  20. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Hao, T., E-mail: hao.ting@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fan, Z.Q.; Zhang, T. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang, X.P.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)

    2014-12-15

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  1. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    Science.gov (United States)

    Hao, T.; Fan, Z. Q.; Zhang, T.; Luo, G. N.; Wang, X. P.; Liu, C. S.; Fang, Q. F.

    2014-12-01

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  2. Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation

    Science.gov (United States)

    Khamei, A. A.; Dehghani, K.; Mahmudi, R.

    2015-05-01

    Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.

  3. High strength and high ductility in as-deposited nanocrystalline Ni

    Energy Technology Data Exchange (ETDEWEB)

    Dai Pinqiang; Xu Weichang; Tang Dian, E-mail: pqdai@126.co [School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 (China)

    2010-07-01

    In the present study, an electrodeposited nanocrystalline (nc) Ni sample with high strength and superior ductility relative to many other electrodeposited nc-Ni was prepared. The superior ductility in the present nc-Ni sample free of defects was ascribed to mixed grains, the size of which spanned nano- and sub-micro scales at its as-deposited state with a grain size distribution ranged from 5 to 120nm. Obvious dislocation motion happening in coarse-grained polycrystalline was observed in large grains of nc-Ni matrix resulting in a remarkable enhanced ductility without a decrease in the strength. The present nc-Ni with an average grain size of 27.2nm prepared by direct current electrodeposition shows the average ultimate tensile strength of 1200MPa and the average elongation to failure of 10.4%.

  4. Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Z.K.; Liu, C.T.; Miller, M.K.; Ghosh, G.; Kenik, E.A.; Huang, S.; Liaw, P.K. (Tennessee-K); (ORNL); (NWU)

    2012-04-11

    The effects of precipitate microstructure on the room temperature ductility of a series of carefully designed Fe-Al-Ni-Cr-Mo steels were investigated. Transmission electron microscopy (TEM), ultra small angle X-ray scattering (USAXS), and atom probe tomography (APT) were conducted to quantify the nano-scaled precipitates. The accuracy of the characterization results was verified by a numerical analysis. Three point bending tests results demonstrated that ductility was a function of the precipitate volume fraction and the Al and Ni concentrations in the Fe matrix, these relationships were discussed in terms of possible mechanisms. The ductility was also found to be independent of the precipitate size and inter-particle spacing in the studied range, which was validated by a theoretical model.

  5. BRITTLE-DUCTILE TRANSITION OF PP/EPDM/ELASTOMERIC NANO-PARTICLE TERNARY BLENDS

    Institute of Scientific and Technical Information of China (English)

    Yan Xiao; Wen Cao; Ke Wang; Hong Tan; Qin Zhang; Rong-ni Du; Qiang Fu

    2006-01-01

    The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content,PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.

  6. Analysis and calculation of factors on curvature ductility of unbonded prestressed concrete beams

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wen-zhong; XIE Hengyan; YANG Chun-feng

    2007-01-01

    In consideration that behavior of curvature ductility of interior support directly influences the degree of moment modification of unbonded prestressed concrete (UPC) continuous structures, constitutive relationships of concrete, non-prestressed reinforcement and prestressed reinforcement used for nonlinear analysis are given. Through simulation analysis on simple beams subjected to single loading at the middle of the span, the law of factors influencing curvature ductility, such as global reinforcing index, prestressing degree, effective prestress, strength of concrete and grade of non-prestressed reinforcement are explored. Based on these researches, calculating formula of curvature ductility coefficient of UPC beams is established, which provides basic data for further research on plastic design of UPC indeterminate structures.

  7. A New Ductile Fracture Criterion for Various Deformation Conditions Based on Microvoid Model

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian-ke; DONG Xiang-huai

    2009-01-01

    To accurately predict the occurrence of ductile fracture in metal forming processes, the Gurson-Tvergaard (GT) porous material model with optimized adjustment parameters is adopted to analyze the macroscopic stress-strain response, and a practical void nucleation law is proposed with a few material constants for engineering applications. Mechanical and metallographie analyses of uniaxial tension, torsion and upsetting experiments are performed. According to the character of the metal forming processes, the basic mechanisms of ductile fracture are divided into two modes: tension-type mode and shear-type mode. A unified fracture criterion is proposed for wide applicable range, and the comparison of experimental results with numerical analysis results confirms the validity of the newly proposed ductile fracture criterion based on the GT porous material model.

  8. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  9. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  10. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  11. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  12. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked.

  13. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  14. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  15. Transformation plasticity in ductile solids. Final report, August 1, 1988--November 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.B.

    1996-09-01

    Throughout history, the development of stronger materials has enabled the realization of countless technological advances. Unfortunately, any increase in strength is rarely achieved without concomitant decreases in toughness and ductility: a fact which severely limits the utility of materials such as ultrahigh-strength alloy steels. Typical precipitation-strengthened stainless steels have very little toughness at high strength levels. In the last decade, however, several investigators have reported exceptionally large fracture toughness values in high-strength precipitation-hardened metastable austenitic steels. This remarkable achievement is directly attributable to the process of transformation toughening. This report describes studies on tranformations and enhancement of plane-strain ductility in high strength steels.

  16. Seismic Performance Evaluation of Reinforced Concrete Moment Resisting Frames with Various Ductility in Low Seismic Zone

    Directory of Open Access Journals (Sweden)

    N. Choopool

    2011-01-01

    Full Text Available Problem statement: Bangkok, the capital of Thailand, is at moderate risk for distant earthquake due to the ability of soft soil to amplify ground motion about 3-4 times although it locates in low seismic zone. In addition, before the enforcement of seismic loading for buildings in the Ministerial Law in 2007, many existing reinforced concrete buildings in Bangkok may have been designed without consideration for seismic loading and did not incorporate the special detailing provisions that required for ductile concrete frames. Now, guidelines for seismic loading of buildings of Thailand (DPT 1302-52 have been recently improved by adopting ASCE7-05. Approach: This study is focused on the effects of the new guidelines on cost estimates and the seismic performance of a nine-story reinforced concrete apartment building with various ductility by the nonlinear static and nonlinear dynamic analyses compared with a Gravity Load Designed (GLD building. Five selected ground motion records are investigated in the analyses. In order to examine the influence of design ductility classes, the seismic forces on moment resisting frame buildings are defined according to the newly proposed seismic specifications of Thailand with ductility from 8, 5 and 3, corresponding to Special Ductile (SDF, Intermediate Ductile (IDF and Ordinary Ductile (ODF frames, respectively. The various frames are assumed to have collapsed if the local drift exceed of 3, 2.5, 2 and 1% for SDF, IDF, ODF and GLD, respectively. Results: SDF is more ductile than that of ODF, however, the strength of SDF is less than ODF. For inelastic designs, SDF decreases stiffness and increases deflection of structures. As for the effect on cost estimates, ODF is the most expensive among ODF, IDF and SDF. Costs of SDF and IDF in Bangkok are quite similar. The study found that the average PGAs for the failure state for SDF, IDF, ODF and GLD are 0.76, 0.60, 0.50 and 0.29g, respectively. Moreover, for the

  17. Hot Ductility of a Microalloyed Steel in the Intermediate Temperature Range

    OpenAIRE

    Darsouni, A.; Bouzabata, B.; Montheillet, F.

    1995-01-01

    In this study hot ductility has been determined from tensile tests for two states of a microalloyed steel : after casting and after rolling processes. Hot deformations were carried out at speeds varying from 10-4s-1 to 10-2s-1 and temperatures from 750°C to 1100°C. Two heat treatments were chosen before hot deformation. A ferrite precipitation is observed at austenitic grain boundaries in the intercritical temperature range, causing intergranular embrittlement. Ductility trough is deeper in t...

  18. Application of a second-gradient model of ductile fracture on a Dissimilar Metal Weld

    Directory of Open Access Journals (Sweden)

    YangJun

    2016-01-01

    Full Text Available A “micromorphic”, second-gradient model applicable to ductile porous materials has been proposed, as an improvement from the fundamental work of Gurson that take into account the physical mechanisms responsible for ductile damage. The model has been applied to the study of fracture of the decarburized layer of a Dissimilar Metal Weld. The model successfully reproduces the crack path experimentally observed in a notched tensile sample extracted from this weld, different from the one predicted by the first gradient model.

  19. Ductility and resistance of bolted connections in structures made of high strength steels

    OpenAIRE

    Može, Primož

    2008-01-01

    Structural steel grades with yield strength higher than 420 MPa are considered as high strength steels. They undoubtedly have lower ductility than mild steels in terms of engineering measures of ductility, such as ultimate-to-yield strength ratio, uniform strain and elongation at fracture. A typical values for high strength steels are: ultimate-to-yield strength ratio fu/fy = 1,05, uniform strain εu = 0,05 and elongation after fracture εfr = 15%. The problem is that inelastic behaviour is hid...

  20. Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents

    Science.gov (United States)

    Liu, K.; Cao, X.; Chen, X.-G.

    2014-05-01

    The Al-Cu 206 cast alloys with varying alloy compositions ( i.e., different levels of Fe, Mn, and Si) were investigated to evaluate the effect of the iron-rich intermetallics on the tensile properties. It is found that the tensile strength decreases with increasing iron content, but its overall loss is less than 10 pct over the range of 0.15 to 0.5 pct Fe at 0.3 pct Mn and 0.3 pct Si. At similar iron contents, the tensile properties of the alloys with dominant Chinese script iron-rich intermetallics are generally higher than those with the dominant platelet phase. In the solution and artificial overaging condition (T7), the tensile strength of the 206 cast alloys with more than 0.15 pct Fe is satisfactory, but the elongation does not sufficiently meet the minimum requirement of ductility (>7 pct) for critical automotive applications. However, it was found that both the required ductility and tensile strength can be reached at high Fe levels of 0.3 to 0.5 pct for the alloys with well-controlled alloy chemistry and microstructure in the solution and natural aging condition (T4), reinforcing the motivation for developing recyclable high-iron Al-Cu 206 cast alloys.

  1. Iron aluminide useful as electrical resistance heating elements

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1999-11-02

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {le}1% Cr and either {ge}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {ge}0.1% oxide dispersoid particles. The alloy can contain 14--32% Al, {le}2% Ti, {le}2% Mo, {le}1% Zr, {le}1% C, {le}0.1% B, {le}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {le}1% rare earth metal, {le}1% oxygen, {le}3% Cu, balance Fe.

  2. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  3. Iron aluminide useful as electrical resistance heating elements

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  4. Iron aluminide useful as electrical resistance heating elements

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    In this paper, a new traction-separation law is developed that represents the constitutive relation of ductile adhesive materials in Modes I, II, and III. The proposed traction-separation laws model the elastic, plastic, and failure material response of a ductile adhesive layer. Initially, the in...

  6. A comparison of analytical methods with experimental data for earthquake ductility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Adelson, B.L.; Steinmetz, R.L.

    1983-05-01

    A two-part study was conducted to help evaluate analytical methods used to assess the ductile behavior of offshore structures subjected to severe earthquake ground motion. Part I of the study consisted of a comparison between analytical time-history responses predicted using the Inelastic Tower Response Analysis (INTRA) program and experimental data gathered during a shake-table experiment performed by the University of California at Berkeley in March 1981. The experiment involved a series of tests on a scaled, two-dimensional model of a prototype offshore platform subjected to various levels of simulated ground motion. Part II of the study consisted of a comparison between the ductile behavior predicted using simplified analysis methods (static pushover and impulse velocity) and the ductile behavior demonstrated by the experimental and analytical time-history results. Results of Part I indicated that the analytical time-history analyses predicted within reasonable accuracy the response of the test structure as measured during the experiment. The results of Part II demonstrated that the simplified methods produce conservative estimates of the test structure's energy absorption capacity and ductile behavior during intense ground motion.

  7. Study on comparison between absolute and relative input energy spectra and effects of ductility factor

    Institute of Scientific and Technical Information of China (English)

    GONG Mao-sheng; XIE Li-li

    2005-01-01

    Based on 266 strong ground motion records, an attenuation relationship was developed for both absolute and relative input energy spectra. The comparison of the two kinds of input energy spectra constructed from the attenuation relationship was made in this paper. The results show that there is little difference between the absolute input energy spectra and relative input energy spectra at the periods of 0.5~1.0 s for elastic systems and at the period of 0.5 s for inelastic systems. The absolute input energy spectra are much larger than relative input energy spectra in very short period range but some less than relative input energy spectra in long period range. It is also found that the ductility factor has a significant effect on both absolute and relafve input energy spectra. The absolute input energy spectra increase with the increasing of ductility factor in the period range of less than 0.3 s but decrease in the period range of larger than 0.3 s. The absolute input energy spectra for different ductility factor are almost equivalent at the period about 0.3 s, but for relative input energy spectra, the period is about 0.5 s. The effect of ductility on the relative input energy spectra in the short period range is much larger than that on the absolute input energy spectra, especially on the softer site class.

  8. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  9. Characterisation of reactor steels in the brittle-ductile transition region using the small punch test

    International Nuclear Information System (INIS)

    Two ferritic reactor steels (A 533 B and A508) were investigated using the small punch test for different temperatures and irradiation states, with particular interest in the ductile-tensile transition region. The material characteristics obtained with the aid of neuronal nets were compared with the results of conventional tests. (orig.)

  10. Investigation of Ductility Reduction Factor in Seismic Rehabilitation of Existing Reinforced Concrete School Buildings

    Directory of Open Access Journals (Sweden)

    O. Gorgulu

    2015-02-01

    Full Text Available Converting existing Reinforced Concrete (RC frames into RC infill walls is one of the most efficient seismic strengthening technique due to its simplicity in application providing high rigidity, stability and strength in structures. On the other hand, this method affects the seismic behavior of existing RC structure in terms of the energy dissipation capacity or in other words, ductility reduction factor, Rμ. This research is an attempt to investigate the RC infill wall ratio effect on ductility reduction factor in terms of the seismic rehabilitation of the typical RC school buildings. For this purpose, nonlinear static pushover analyses are conducted for existing 3 and 5 story RC school buildings which were rehabilitated with different RC infill wall ratio. Numerical analyses are carried out by using the fiber element based modeling approach in the software, Perform-3D. Based on these analytical results, correlation between the ductility reduction factor and the RC infill wall ratio is obtained for the seismic rehabilitation of the RC school buildings. In addition, two mathematical expressions for the variation of the ductility reduction factor with RC infill wall ratios are proposed in terms of the preliminary seismic rehabilitation assessment of the existing RC school buildings.

  11. Robustness Analysis of a Timber Structure with Ductile Behaviour in Compression

    DEFF Research Database (Denmark)

    Čizmar, Dean; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning;

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness assessment. The complex timber structure with a large number of failure modes...... material ductility of timber is taken into account. The robustness is expressed and evaluated by a robustness index....

  12. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...

  13. The effect of loading rate on ductile fracture toughness and fracture surface roughness

    DEFF Research Database (Denmark)

    Osovski, S.; Srivastava, Akhilesh Kumar; Ponson, L.;

    2015-01-01

    The variation of ductile crack growth resistance and fracture surface roughness with loading rate is modeled under mode I plane strain, small scale yielding conditions. Three-dimensional calculations are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitatin...

  14. Ductility contrast induced by silicification in pelitic schist of the Ryoke metamorphic belt, Japan

    Science.gov (United States)

    Mateen, Tayyaba; Yamamoto, Hiroshi; Rehman, Hafiz Ur; Terabayashi, Masaru

    2015-11-01

    Contrasting ductility is recognized in the rocks of Cretaceous Ryoke metamorphic belt in Iwakuni area, southwest Japan. Pelitic schist is ubiquitous in the region and differences in mineral assemblages mark increase in metamorphic grade. The area has been graded as chlorite-biotite zone in the north progressing into biotite- and muscovite-cordierite zones in the south. Pelitic schist near the boundary between the biotite- and muscovite-cordierite zones has undergone partial silicification to form whitish silicified schist layers which contain two types of quartz veins: those parallel to foliation in the host rock are called schistosity-concordant veins, and those inclined to host rock foliation, schistosity-discordant veins. In this study we examined the quartz structure in the silicified schist and in both types of veins to understand the ductility contrast induced by the silicification process. Crystallographic orientations of quartz in the veins and silicified schist rocks were studied using the Scanning Electron Microscopy (SEM) based Electron Back Scatter Diffraction (EBSD) technique. Quartz c-axis orientations in the silicified schist are nearly random, demonstrating an absence of post-silicification ductile deformation. Quartz grains in the schistosity-concordant veins have preferred c-axis orientations perpendicular to the schistosity indicating ductile shortening. In contrast, schistosity-discordant veins display distinct quartz c-axis fabric than that found in the schistosity-concordant veins. This is because the two types of host rocks exhibit a difference in ductility during deformation. The presence of deformed quartz veins in the undeformed silicified schist indicates transformation of the ductile pelitic schist into the brittle silicified schist at mid-crustal levels where these rocks originate, hence forming contrasting rock layers. Schistosity-concordant veins in the biotite-rich pelitic schist deformed with its host rock in a ductile manner while

  15. Brittle versus ductile deformation as the main control of the deep fluid circulation in continental crust

    Science.gov (United States)

    Violay, Marie; Madonna, Claudio; Burg, Jean-Pierre

    2016-04-01

    The Japan Beyond-Brittle Project (JBBP) and the Taupo Volcanic Zone-Deep geothermal drilling project in New Zealand (TVZ-DGDP) proposed a new concept of engineered geothermal development where reservoirs are created in ductile rocks. This system has several advantages including (1) a simpler design and control of the reservoir due to homogeneous rock properties and stress states in the ductile domain ,(2) possible extraction of supercritical fluids (3) less probability for induced earthquakes. However, it is at present unknwon what and how porosity and permeability can be engineered in such environments. It has been proposed that the magmatic chamber is surrounded by a hot and ductile carapace through which heat transfer is conductive because the plastic behaviour of the rock will close possible fluid pathways. Further outward, as temperature declines, the rock will encounter the brittle-ductile transition with a concomitant increase in porosity and permeability. The thickness of the conduction-dominated, ductile boundary zone between the magmatic chamber and the convecting geothermal fluid directly determines the rate of heat transfer. To examine the brittle to ductile transition in the context of the Japanese crust, we conducted deformation experiments on very-fine-grain granite in conventional servocontrolled, gas-medium triaxial apparatus (from Paterson instrument). Temperature ranged from 600° C to 1100° C and effective confining pressure from 100 to 150 MPa. Dilatancy was measured during deformation. The method consisted in monitoring the volume of pore fluid that flows into or out of the sample at constant pore pressure. Permeability was measured under static conditions by transient pressure pulse method. Mechanical and micro-structural observations at experimental constant strain rate of 10-5 s-1 indicated that the granite was brittle and dilatant up to 900 ° C. At higher temperatures the deformation mode becomes macroscopically ductile, i

  16. Slip transfer across fault discontinuities within granitic rock at the brittle-ductile transition

    Science.gov (United States)

    Nevitt, J. M.; Pollard, D. D.; Warren, J. M.

    2011-12-01

    Fault mechanics are strongly influenced by discontinuities in fault geometry and constitutive differences between the brittle and ductile regions of the lithosphere. This project uses field observations, laboratory analysis and numerical modeling to investigate deformational processes within a contractional step at the brittle-ductile transition, and in particular, how slip is transferred between faults via ductile deformation across the step. The Bear Creek field area (central Sierra Nevada, CA) is comprised of late Cretaceous biotite-hornblende granodiorite and experienced a period of faulting at the brittle-ductile transition. Abundant echelon faults in Bear Creek, some of which were seismically active, provide many textbook examples of contractional steps, which are characterized by well-developed ductile fabrics. The occurrence of hydrothermal alteration halos and hydrothermal minerals in fracture fill documents the presence of water, which we suggest played a weakening role in the constitutive behavior of the granodiorite. Furthermore, the mechanism that accomplishes slip transfer in contractional steps appears to be related to water-enhanced ductile deformation. We focus our investigation on Outcrop SG10, which features a 10cm thick aplite dike that is offset 0.45m through a contractional step between two sub-parallel left-lateral faults. Within the step, the aplite undergoes dramatic thinning (stretch ~1/10) and the granodiorite is characterized by a well-developed mylonitic foliation, in which quartz and biotite plastically flow around larger grains of feldspars, hornblende and opaque minerals. Electron backscatter diffraction (EBSD) analysis gives a more quantitative depiction of the active micromechanics and reveals how slip is accommodated at the crystal scale throughout the step. We use Abaqus, a commercial finite element software, to test several constitutive laws that may account for the deformation observed both macro- and microscopically throughout

  17. Brittle versus ductile deformation as the main control of the deep fluid circulation in continental crust

    Science.gov (United States)

    Violay, Marie; Madonna, Claudio; Burg, Jean-Pierre

    2016-04-01

    The Japan Beyond-Brittle Project (JBBP) and the Taupo Volcanic Zone-Deep geothermal drilling project in New Zealand (TVZ-DGDP) proposed a new concept of engineered geothermal development where reservoirs are created in ductile rocks. This system has several advantages including (1) a simpler design and control of the reservoir due to homogeneous rock properties and stress states in the ductile domain ,(2) possible extraction of supercritical fluids (3) less probability for induced earthquakes. However, it is at present unknwon what and how porosity and permeability can be engineered in such environments. It has been proposed that the magmatic chamber is surrounded by a hot and ductile carapace through which heat transfer is conductive because the plastic behaviour of the rock will close possible fluid pathways. Further outward, as temperature declines, the rock will encounter the brittle-ductile transition with a concomitant increase in porosity and permeability. The thickness of the conduction-dominated, ductile boundary zone between the magmatic chamber and the convecting geothermal fluid directly determines the rate of heat transfer. To examine the brittle to ductile transition in the context of the Japanese crust, we conducted deformation experiments on very-fine-grain granite in conventional servocontrolled, gas-medium triaxial apparatus (from Paterson instrument). Temperature ranged from 600° C to 1100° C and effective confining pressure from 100 to 150 MPa. Dilatancy was measured during deformation. The method consisted in monitoring the volume of pore fluid that flows into or out of the sample at constant pore pressure. Permeability was measured under static conditions by transient pressure pulse method. Mechanical and micro-structural observations at experimental constant strain rate of 10‑5 s‑1 indicated that the granite was brittle and dilatant up to 900 ° C. At higher temperatures the deformation mode becomes macroscopically ductile, i

  18. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  19. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  20. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    OpenAIRE

    Olofsson, Jakob; Ingvar L. Svensson

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to...

  1. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...... for the chill casting, resulting in a very course microstructure.From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules permm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat.This is verified from nodule counts performed on...... the real cast main shafts. Residual stressevaluations show an overall increase of the maximum principal stress field for the chill casting,which is expected. However, the stresses are found to be in compression on the surface of thechill cast main shaft, which is unforeseen....

  2. Manufacturing of Ferritic Low-Silicon and Molybdenum Ductile Cast Iron with the Innovative 2PE- 9 Technique

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2014-06-01

    Full Text Available W pracy przedstawiono analizę wyników badań otrzymanych podczas produkcji żeliwa sferoidalnego typu SiMo, z zastosowaniem nowej metody sferoidyzacji metalu w kadzi bębnowej (technika 2PE- 9. Zaprezentowano wyniki badań w zakresie optymalizacji parametrów procesu, takich jak: długości przewodu sferoidyzującego. krytycznej zawartość magnezu, temperatur' zabiegu i temperatury zalewania. Pokazano wpływ temperatur i zabiegu, prędkości przemieszczania przewodu sferoidyzującego (czasu zabiegu sferoidyzowania i masy ciekłego stopu na uzysk magnezu ze sferoidyzatora. Przedstawiono mikrostrukturę, właściwości mechaniczne i koszt wytwarzania terrytycznego żeliwa sferoidalnego SiMo: gatunku EN-GJS-SiMo40-6. zgodnie z najnowszą EN 16124:2011 (E. Wprowadzenie dwóch przewodów elastycznych o średnicy Ø 9 mm; jeden wypełniony mieszaniną FeSi + Mg, a drugi moyfikatorem grafityzującym do zabiegowej kadzi bębnowej, jest nową metodą obróbki pozapiecowej produkcji terrytycznego żeliwa typu SiMo. która może być wykorzystana do produkcji żeliwa sferoidalnego wytapianego w indukcyjnym piecu.

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood ...

  4. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  5. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ... treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics ...

  7. Serum iron test

    Science.gov (United States)

    ... of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, et al, ... EJ, Gardner LB. Anemia of chronic diseases. In: Hoffman R, Benz EJ Jr, Silberstein LE, et al, ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from ... iron levels. Susan also made changes to her diet, such as focusing more on green leafy vegetables, ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency ... 2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National Institutes ...

  10. Special thermite cast irons

    Directory of Open Access Journals (Sweden)

    Yu. Zhiguts

    2008-07-01

    Full Text Available The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  11. Iron deficiency and cognition

    OpenAIRE

    Hulthén, Lena

    2003-01-01

    Iron deficiency is the most prevalent nutritional disorder in the world. One of the most worrying consequences of iron deficiency in children is the alteration of behaviour and cognitive performance. In iron-deficient children, striking behavioural changes are observed, such as reduced attention span, reduced emotional responsiveness and low scores on tests of intelligence. Animal studies on nutritional iron deficiency show effects on learning ability that parallel the human studies. Despite ...

  12. Alternative iron making routes

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, P.; Sharma, T. [Indian School of Mines, Dhanbad (India)

    2002-07-01

    The versatile route of iron production 'blast furnace' technique is being replaced by widely accepted Corex technology, Midrex process using Fastmelt ironmaking, eco-friendly Romelt process, more innovative Ausmelt & Hismelt technology, TATA KORF Mini blast furnace improvement, 'quickest iron through Orbiting Plasma', Direct iron ore smelting process, Conred, AISI-Hyl, Inred processes, Direct iron ore reduction methods, their comparison and proposed modifications. 18 refs., 11 figs., 14 tabs.

  13. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    Science.gov (United States)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  14. Iron-Deficiency Anemia

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ... Institutes of Health—shows how Susan, a full-time worker and student, has coped with having iron- ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body. Low iron levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  18. Iron and the liver.

    Science.gov (United States)

    Pietrangelo, Antonello

    2016-01-01

    Humans have evolved to retain iron in the body and are exposed to a high risk of iron overload and iron-related toxicity. Excess iron in the blood, in the absence of increased erythropoietic needs, can saturate the buffering capacity of serum transferrin and result in non-transferrin-bound highly reactive forms of iron that can cause damage, as well as promote fibrogenesis and carcinogenesis in the parenchymatous organs. A number of hereditary or acquired diseases are associated with systemic or local iron deposition or iron misdistribution in organs or cells. Two of these, the HFE- and non-HFE hemochromatosis syndromes represent the paradigms of genetic iron overload. They share common clinical features and the same pathogenic basis, in particular, a lack of synthesis or activity of hepcidin, the iron hormone. Before hepcidin was discovered, the liver was simply regarded as the main site of iron storage and, as such, the main target of iron toxicity. Now, as the main source of hepcidin, it appears that the loss of the hepcidin-producing liver mass or genetic and acquired factors that repress hepcidin synthesis in the liver may also lead to iron overload. Usually, there is low-grade excess iron which, through oxidative stress, is sufficient to worsen the course of the underlying liver disease or other chronic diseases that are apparently unrelated to iron, such as chronic metabolic and cardiovascular diseases. In the future, modulation of hepcidin synthesis and activity or hepcidin hormone-replacing strategies may become therapeutic options to cure iron-related disorders.

  19. An experimental and analytical study of ductile fracture and stable crack-growth

    International Nuclear Information System (INIS)

    A study is described, the objectives of which were to define a numerical model for stable crack growth, to calibrate the model by tensile tests, and to obtain agreement between corresponding numerical calculations and experiments on cracked specimens. The model was based on a finite element program with a critical state at the crack tip defined by a ductility curve: equivalent plastic strain versus stress triaxiality. The curve was determined by tests on notched tensile specimens of a low alloy rotor steel. The critical states corresponded to the initiation of a crack at the centre of the specimens. Three point bend tests were also performed and experimental and numerical load displacement curves and crack growth versus displacement curves were compared. Agreement with experiments on cracked specimens was obtained by simple fittings of the 'ductility' curve in the high triaxiality area. Results are discussed and it is indicated where future progress might be made in numerical modelling of cracked bodies. (author)

  20. Flow of mantle fluids through the ductile lower crust: Heliumisotope trends

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack; van Soest, Matthijs C.

    2007-10-07

    Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

  1. The effect of plastic constraint on the initiation of ductile tears in shipbuilding structural steels

    Institute of Scientific and Technical Information of China (English)

    LI Qing-fen; WANG Peng; REN Zheng-yi; LONG Ping

    2003-01-01

    In this paper, the effect of plastic constraint on the initiation of ductile tears in four different shipbuilding structural steels has been experimentally studied by measuring the J-integral and crack opening displacement COD at initiation in three-point bend specimens with deep and shallow notches. Experimental results of seven groups of different strength alloy steels show that both δì and Jì values of ductile tear from the shallow crack specimens which have less constraint flow field are significantly higher than those of deeply notched specimens. Slip-line-field analysis shows that, for shallow crack, the hydrostatic stress is lower than that from standard deeply cracked bend specimen, which develops a high level of crack tip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservative approach when applied to structural defects, especially if initiation values of COD and J-integral are used.

  2. Theoretical investigation on improving the ductility of Rh{sub 3}V by ternary addition

    Energy Technology Data Exchange (ETDEWEB)

    Manjula, M.; Sundareswari, M., E-mail: sundare65@gmail.com; Jayalakshmi, D. S.; Viswanathan, E. [Department of Physics, Sathyabama University, Chennai-600119, Tamilnadu (India)

    2015-06-24

    The band structure calculations are performed on the intermetallic compounds Rh{sub 3}V and Rh{sub 3}V{sub x}(Al){sub 1-x} by Full Potential Linearized Augmented Plane Wave(FP-LAPW) method. Total energies are calculated as a function of volume and fitted to Birch-Murnaughan equation of state to find the lattice parameter and the other ground state properties. The ductility of these compounds has been analyzed using Cauchy’s Pressure, Pugh Rule and Poisson’s ratio. From this study we observed that Rh{sub 3}V is brittle while its alloy Rh{sub 3}V{sub 0.875}Al{sub 0.125} is ductile. Electron density plots are illustrated and compared.

  3. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    Science.gov (United States)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  4. Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyun Moo; Joo, Ho Seon; Im, Yong-Taek [KAIST, Daejeon (Korea, Republic of); Hwang, Sun Kwang [KITECH, Cheonan (Korea, Republic of); Son, Il-Heon; Bae, Chul Min [POSCO, Pohang (Korea, Republic of)

    2014-07-15

    In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

  5. Implications of radiation-induced reductions in ductility to the design of austenitic stainless steel structures

    International Nuclear Information System (INIS)

    In the dose and temperature range anticipated for ITER, austenitic stainless steels exhibit significant hardening with a concomitant loss in work hardening and uniform elongation. However, significant post-necking ductility may still be retained. When uniform elongation (eu) is well defined in terms of a plastic instability criterion, eu is found to sustain reasonably high values out to about 7 dpa in the temperature range 250-350 C, beyond which it decreases to about 0.3% for 316LN. This loss of ductility has significant implications to fracture toughness and the onset of new failure modes associated with hear instability. However, the retention of a significant reduction in area at failure following irradiation indicates a less severe degradation of low-cycle fatigue life in agreement with a limited amount of data obtained to date. Suggestions are made for incorporating these results into design criteria and future testing programs

  6. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wang, Xueju; Xia, Shuman [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  7. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...... void nucleation and very limited void growth. Void coalescence would therefore be largely postponed. However, using the shear modification of the Gurson model, recently introduced by Nahshon and Hutchinson (2008) [1], failure prediction is possible at zero or even negative mean stress. Since......, this shear modification has too large effect in some cases where the stress triaxiality is rather high, an extension is proposed in the present study to better represent the damage development at moderate to high stress triaxiality, which is known to be well described by the Gurson model. Failure prediction...

  8. Bifurcation and neck formation as a precursor to ductile fracture during high rate extension

    Energy Technology Data Exchange (ETDEWEB)

    Freund, L.B.; Soerensen, N.J. [Brown Univ., Providence, RI (United States)

    1997-12-31

    A block of ductile material, typically a segment of a plate or shell, being deformed homogeneously in simple plane strain extension commonly undergoes a bifurcation in deformation mode to nonuniform straining in the advanced stages of plastic flow. The focus here is on the influence of material inertia on the bifurcation process, particularly on the formation of diffuse necks as precursors to dynamic ductile fracture. The issue is considered from two points of view, first within the context of the theory of bifurcation of rate-independent, incrementally linear materials and then in terms of the complete numerical solution of a boundary value problem for an elastic-viscoplastic material. It is found that inertia favors the formation of relatively short wavelength necks as observed in shaped charge break-up and dynamic fragmentation.

  9. Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence

    International Nuclear Information System (INIS)

    In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated

  10. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    Science.gov (United States)

    El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.

    2015-12-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.

  11. Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity

    Science.gov (United States)

    Fokoua, Landry; Conti, Sergio; Ortiz, Michael

    2014-01-01

    We perform an optimal-scaling analysis of ductile fracture in metals. We specifically consider the deformation up to failure of a slab of finite thickness subject to monotonically increasing normal opening displacements on its surfaces. We show that ductile fracture emerges as the net outcome of two competing effects: the sublinear growth characteristic of the hardening of metals and strain-gradient plasticity. We also put forth physical arguments that identify the intrinsic length of strain-gradient plasticity and the critical opening displacement for fracture. We show that, when Jc is renormalized in a manner suggested by the optimal scaling laws, the experimental data tends to cluster—with allowances made for experimental scatter—within bounds dependent on the hardening exponent but otherwise material independent.

  12. Microstructural features responsible for the combined high strength and ductility properties in CA processed HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Michal, G.M. (Case Western Reserve Univ., Cleveland, OH (USA))

    Under a variety of CA processing conditions HSLA steels can develop superior combined strength and ductility properties compared to the same steels subject to BA processing. To determine the possible causes of the better properties of CA processed HSLA steels, a detailed optical and TEM evaluation of a series of Cb and Cb-V steels cold rolled 62% and annealed at 705 C to 871 C for 1 to 10 minutes was performed. Steels that developed yield strengths above 414 MPa (60 KSI) were often found to contain isolated regions of nonrecrystallized ferrite. These regions caused increases in yield strengths of as much as 75 MPa (11 KSI) with only a slight loss in ductility compared to fully recrystallized steels. Cementite inherited from the hot band spheroidized under certain annealing conditions. These and other results are presented and their ramifications for developing improved CA processing schemes are discussed.

  13. [Iron function and carcinogenesis].

    Science.gov (United States)

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models.

  14. Non-Local Ductile Damage Formulations for Sheet Bulk Metal Forming

    Science.gov (United States)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2016-08-01

    A ductile damage model for sheet bulk metal forming processes and its efficient and accurate treatment in the context of the Finite Element Method is presented. The damage is introduced as a non-local field to overcome pathological mesh dependency. Since standard elements tend to show volumetric locking in the bulk forming process a mixed formulation is implemented in the commercial software simufact.forming to obtain better results.

  15. Experimental observation of dynamic ductile damage development under various triaxiality conditions - description of the principle

    Directory of Open Access Journals (Sweden)

    Pillon L.

    2012-08-01

    Full Text Available The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic materials. The so-called Gurson-Perrin model allows representing damage development with respect to strain-rate conditions. In order to fill a lack in current experimental procedures, we propose an experimental project able to test and validate the Gurson-Perrin model under various dynamic conditions and for different stress triaxiality levels.

  16. INVESTIGATION ON HOT DUCTILITY AND STRENGTH OF CONTINUOUS CASTING SLAB FOR AH32 STEEL

    Institute of Scientific and Technical Information of China (English)

    G.Y. Li; X.F. Li; L.G. Ao

    2006-01-01

    By means of Gleeble-1500 testing machine, the simulation of continuous casting process for AH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the different temperatures and strain rates. The Precipitations of AlN at different temperatures and the fractures of high-temperature tensile samples were observed by using TEM (transmission electron microscope) and SEM (scanning electron microscope). The factors affecting the brittle temperature zone were discussed.

  17. Technique for studies of ductile fracture in metals containing voids or inclusions

    International Nuclear Information System (INIS)

    A technique of sample preparation is described for the study of the ductile fracture which occurs in metals containing failure initiating voids or inclusions. For the measurements discussed, commercial grade Ti--6 percent Al--4 percent V was machined into the form of right circular cylinders, each about 2 cm in dia and 3 cm long. The specimen was then prepared by taking a pair of these cylinders and diffusion bonding their end faces together to form one cylinder 6 cm long. Prior to bonding, the surfaces to be mated were machined in such a way then when mated, the desired shape, location, and number of defects would result arrayed on the bond plane. The results of the tensile tests show that of the three parameters measured, (yield stress, tensile strength, and ductility) only the ductility (reduction of area) exhibited a sufficiently significant variation over the samples tested to be a meaningful variable. The reason for the small change observed in ultimate strength with increasing volume fraction of defects is thought to be as follows: The metal near an array of voids may be compared with the necked portion of a tensile bar of ductile material. For this latter problem, Bridgman [Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, 1952] has shown that large triaxial stresses are induced in the necked region of a deformed bar. While the analogy is not exact, in many respects the region near a bond line containing voids is like the necked tensile bar. The bond-line voids may induce local triaxial stresses of the same type as those found for a cylindrically symmetric tensile bar, though the mathematical form and magnitude will be different. Consequently, while fracture originated at or near the bond-line voids at a strain below bulk-metal failure strain, the apparent failure stress is not markedly reduced even for significant volume fractions on bond-line voids

  18. Behaviour of porous ductile solids at low stress triaxiality in different modes of deformation

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    of pure shear it is found that the voids close up to micro-cracks, and these cracks remain closed during continued deformation, with large compressive stresses acting between crack surfaces. The same type of behaviour is found for different initial sizes of the voids and for cases where the two types...... appears that the behaviour of a porous ductile material at low stress triaxiality depends a great deal on the mode of deformation....

  19. Hot ductility of austenitic and duplex stainless steels under hot rolling conditions

    OpenAIRE

    Kömi, J. (Jenni)

    2001-01-01

    Abstract The effects of restoration and certain elements, nitrogen, sulphur, calcium and Misch metal, on the hot ductility of austenitic, high-alloyed austenitic and duplex stainless steels have been investigated by means of hot rolling, hot tensile, hot bending and stress relaxation tests. The results of these different testing methods indicated that hot rolling experiments using stepped specimens is the most effective way to investigate the relationship between the s...

  20. Evaluation of the Interfacial Adhesion between Brittle Coating and Ductile Substrate by Cross-Secitional Indention

    Institute of Scientific and Technical Information of China (English)

    SU Jian-yu; ZHANG Kun; CHEN Guang-nan

    2004-01-01

    The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method.

  1. Evaluation of the Interfacial Adhesion between Brittle Coating and Ductile Substrate by Cross-Sectional Indention

    Institute of Scientific and Technical Information of China (English)

    SUJian-yu; ZHANGKun; CHENGuang-nan

    2004-01-01

    The cross-sectional indentation method is extended to evaluate the interracial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interracial separation occurs due to the edge chipping of brittle coating. The comesponding models are established to elucidate interracial separation processes. This work further highlights the advantages and potential of this novel indentation method.

  2. Reduced creep strength and ductility of Type 304 steel in sodium

    International Nuclear Information System (INIS)

    Reductions in creep strength and ductility have been observed in Type 304 steel tested in flowing sodium. This effect is associated with a reduction in the extent of tertiary creep arising from more extensive surface grain boundary cracking in sodium. A mechanism involving the dissolution of chromium rich grain boundary carbides to allow the formation of a relatively brittle sodium chromite phase has been used to explain these results. (author)

  3. Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials

    OpenAIRE

    K. Woll; Bergamaschi, A; Avchachov, K.; Djurabekova, F.; Gier, S.; Pauly, C.; Leibenguth, P.; Wagner, C; Nordlund, K.; Mücklich, F

    2016-01-01

    Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the ...

  4. Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities

    Science.gov (United States)

    Ghosh, Somnath; Bai, Jie; Paquet, Daniel

    2009-07-01

    This paper develops an accurate and computationally efficient homogenization-based continuum plasticity-damage (HCPD) model for macroscopic analysis of ductile failure in porous ductile materials containing brittle inclusions. Example of these materials are cast alloys such as aluminum and metal matrix composites. The overall framework of the HCPD model follows the structure of the anisotropic Gurson-Tvergaard-Needleman (GTN) type elasto-plasticity model for porous ductile materials. The HCPD model is assumed to be orthotropic in an evolving material principal coordinate system throughout the deformation history. The GTN model parameters are calibrated from homogenization of evolving variables in representative volume elements (RVE) of the microstructure containing inclusions and voids. Micromechanical analyses for this purpose are conducted by the locally enriched Voronoi cell finite element model (LE-VCFEM) [Hu, C., Ghosh, S., 2008. Locally enhanced Voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions. Int. J. Numer. Methods Eng. 76(12), 1955-1992]. The model also introduces a novel void nucleation criterion from micromechanical damage evolution due to combined inclusion and matrix cracking. The paper discusses methods for estimating RVE length scales in microstructures with non-uniform dispersions, as well as macroscopic characteristic length scales for non-local constitutive models. Comparison of results from the anisotropic HCPD model with homogenized micromechanics shows excellent agreement. The HCPD model has a huge efficiency advantage over micromechanics models. Hence, it is a very effective tool in predicting macroscopic damage in structures with direct reference to microstructural composition.

  5. Experimental observation of dynamic ductile damage development under various triaxiality conditions - description of the principle

    Science.gov (United States)

    Pillon, L.

    2012-08-01

    The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic materials. The so-called Gurson-Perrin model allows representing damage development with respect to strain-rate conditions. In order to fill a lack in current experimental procedures, we propose an experimental project able to test and validate the Gurson-Perrin model under various dynamic conditions and for different stress triaxiality levels.

  6. A Finite Element Implementation of a Ductile Damage Model for Small Strains

    OpenAIRE

    Gates, Robert Lee

    2013-01-01

    Lemaitre's ductile damage model and a simplified variant excluding kinematic hardening were studied and implemented into computer code. For purposes of verifying the model, results from computations with the finite element method are compared to literature. It is found that the behavior expected from theory is modeled by both implementations. Quadratic levels of convergence were observed for the simplified model, while results show that convergence of the kinematic hardening implementation de...

  7. Design of an eight-storey reinforced concrete frame for ductility class medium

    OpenAIRE

    Zupančič, Matej

    2011-01-01

    An eight storey reinforced concrete frame is designed. Seismic action is defined according to standard SIST EN 1998-1 utilizing ductility class medium. The reinforcement is first designed according to requirements of standard SIST EN 1992-1-1 and then with consideration of additional demands of standard SIST EN 1998-1, since the objective of this research is to evaluate to which extend the amount of reinforcement increases due to design requirements and capacity design rules prescribed in sta...

  8. 冲天炉先后熔炼灰铁和球铁的实践%Practice of Melting Gray Iron and Ductile Iron in Cupola Furnace

    Institute of Scientific and Technical Information of China (English)

    金桂芹; 阎涛; 陈翠凤; 渠赵静

    2011-01-01

    1 熔炼顺序冲天炉前半部分结合订单的情况按灰铁配料熔炼,后半部分按球铁配料熔炼,在灰铁与球铁料相接部分,铁液含碳量高,偏软,所以灰铁料先配厚大件料(含碳量低),后配薄壁件料(含碳量高),使灰铁件与球铁件的相互影响减小.灰铁产品浇注完成后,加隔离焦,开始配球铁料.隔离焦使用优质铸造焦,加入2.5批层焦.球铁配料方案为:Q12生铁54%,球铁回炉料40%,废钢6%,铁液目标含碳量3.7%.

  9. Computer simulation of strength and ductility of nanotwin-strengthened coarse-grained metals

    Science.gov (United States)

    Guo, X.; Ji, R.; Weng, G. J.; Zhu, L. L.; Lu, J.

    2014-10-01

    The superior strength-ductility combination in nanotwin (NT)-strengthened metals has provided a new potential for optimizing the mechanical properties of coarse-grained (CG) metals. In this paper computer simulations based on the mechanism-based strain gradient plasticity and the Johnson-Cook failure criterion have been carried out to uncover the critical factors that serve to provide this dual function. Our results indicate that both the distribution characteristics of the NT regions and the constitutive relations of the NT phase can have a significant impact on the strength and ductility of the CG Cu strengthened by the NT regions. In particular, twin spacing, distribution characteristics such as arrangement, shape and orientation, together with volume fraction of the NT regions, can all have significant effects. Along the way, we also discovered that microcrack initiation, coalescence and deflection constituted the entire failure process. Significant insights into the morphology of NT regions that could deliver superior strength and ductility combination for CG metals have been established.

  10. Ductility Enhancement of Post-Northridge Connections by Multilongitudinal Voids in the Beam Web

    Directory of Open Access Journals (Sweden)

    Sepanta Naimi

    2013-01-01

    Full Text Available Since the earthquakes in Northridge and Kobe in 1994 and 1995, respectively, many investigations have been carried out towards improving the strength and ductility of steel beam to column pre- and post-Northridge connections. In order to achieve these objectives, recent researches are mainly focused on three principles: reducing the beam section to improve the beam ductility, adding different kinds of slit damper to beam and column flanges to absorb and dissipate the input earthquake energy in the connection and strengthening the connection area using additional elements such as rib plates, cover plates, and flange plates to keep the plastic hinges away from the column face. This paper presents a reduced beam section approach via the introduction of multilongitudinal voids (MLV in the beam web for various beam depths varying from 450 mm to 912 mm. ANSYS finite element program was used to simulate the three different sizes of SAC sections: SAC3, SAC5, and SAC7. Results showed an improvement in the connection ductility since the input energy was dissipated uniformly along the beam length and the total rotation of the connection was over four percent radian.

  11. Ductility of a 60-Story Shearwall Frame-Belt Truss (Virtual Outrigger Building

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi P.

    2012-01-01

    Full Text Available Researches have been conducted to study Shearwall-frame combined with belt truss as structural system (SFBT, in which the post-elastic behavior and ductility of this structural system are explored. A 60-story SFBT building, with a ductility set equal to 3.75 (value for fully ductile cantilever wall is considered. The Elastic Response Spectrum used for design is taken from Zone 2 of Indonesian Seismic Map. Capacity design method according to Indonesian Concrete Code is employed. The seismic performance is analyzed using static non-linear push-over analysis and dynamic non-linear time-history analysis. Spectrum consistent ground motions of the May 18, 1940 El-Centro earthquake N-S components scaled to maximum accelerations of various return periods (50, 200, and 500 years are used for analysis. The results of this study show that plastic hinges mainly developed in beams above the truss, columns below the truss, and bottom levels of the wall. The building shows no indication of structural instability.

  12. Investigation of scaling effects in elastic-plastic ductile fracture using the local approach

    International Nuclear Information System (INIS)

    This paper investigates the ability of a simple ductile local fracture model to predict the fracture initiation conditions for geometrically similar specimens of different sizes containing either sharp cracks or blunt notches. The material considered is the high strength, low hardening HY 130 steel. We simulated fracture tests on fatigue-precracked compact tension specimens and three-point bend bars containing blunt notches, using the local fracture model to control crack initiation in the finite element analyses. We compared the results of the simulations with experimental results. The comparison indicates that the model qualitatively predicts the right scaling effects for cracked specimens when a characteristic material length is adequately introduced. However, the model failed to predict the fracture initiation conditions and the scaling behavior of notched specimens. The discrepancy arises because the actual micromechanism leading to fracture initiation at the notch (void growth in a band of localized shear) is different from the mechanism underlying the model (quasi-isotropic void growth). Therefore, new or improved models capable of handling ductile failure by void growth under predominantly shear deformation must be developed to predict ductile fracture initiation conditions and scaling laws for generalized loading and geometric configurations. (orig.)

  13. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  14. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    Science.gov (United States)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  15. Slip energy barriers in aluminum and implications for ductile versus brittle behavior

    CERN Document Server

    Sun, Y; Sun, Yuemin; Kaxiras, Efthimios

    1996-01-01

    We conisder the brittle versus ductile behavior of aluminum in the framework of the Peierls-model analysis of dislocation emission from a crack tip. To this end, we perform first-principles quantum mechanical calculations for the unstable stacking energy $\\gamma_{us}$ of aluminum along the Shockley partial slip route. Our calculations are based on density functional theory and the local density approximation and include full atomic and volume relaxation. We find that in aluminum $\\gamma_{us} = 0.224$ J/m$^2$. Within the Peierls-model analysis, this value would predict a brittle solid which poses an interesting problem since aluminum is typically considered ductile. The resolution may be given by one of three possibilites: (a) Aluminum is indeed brittle at zero temperature, and becomes ductile at a finite temperature due to motion of pre-existing dislocations which relax the stress concentration at the crack tip. (b) Dislocation emission at the crack tip is itself a thermally activated process. (c) Aluminum is...

  16. Cost and Ductility Effectiveness of Concrete Columns Strengthened with CFRP and SFRP Sheets

    Directory of Open Access Journals (Sweden)

    Khaled Abdelrahman

    2014-05-01

    Full Text Available Recently, steel fibre reinforced polymers (SFRP sheets have been introduced for the repair and rehabilitation of concrete structures. Few researchers studied the behaviour of the concrete columns wrapped with SFRP sheets; however, several critical parameters such as the cost and ductility effectiveness of the SFRP wrapped concrete columns have been lightly addressed. Thus, the main objective of this paper is to study the cost and ductility effectiveness of SFRP wrapped concrete columns and compare the results with the conventionally used carbon FRP (CFRP wrapped concrete columns. In addition, an analytical procedure to predict the cost effectiveness of SFRP wrapped concrete columns is also suggested, from which, a parametric study was conducted. The parametric study investigated the effect of the concrete strength, the number of SFRP layers, and the size and slenderness effects on the cost effectiveness of the concrete columns wrapped with SFRP sheets. The results from the cost and ductility effectiveness study indicated that the SFRP wrapped concrete columns showed enhanced performance over the CFRP wrapped concrete columns. The suggested analytical procedure proved to be a reliable and accurate method to predict the cost effectiveness parameter of SFRP wrapped concrete columns. The parametric study showed the significant impact of the investigated parameters on the cost effectiveness of concrete columns wrapped with SFRP sheets.

  17. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Link, T.M.; Motta, A.T.; Koss, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.

  18. Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials.

    Science.gov (United States)

    Woll, K; Bergamaschi, A; Avchachov, K; Djurabekova, F; Gier, S; Pauly, C; Leibenguth, P; Wagner, C; Nordlund, K; Mücklich, F

    2016-01-01

    Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (± 0.33) ms(-1) and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material.

  19. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    International Nuclear Information System (INIS)

    Highlights: ► A new DARA effect in the bainitic steel is proposed. ► The conditions of DARA effect are proposed. ► The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  20. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    Science.gov (United States)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.