WorldWideScience

Sample records for austempered ductile iron

  1. Study of austempering reaction in austempered ductile iron

    International Nuclear Information System (INIS)

    Austempered Ductile Iron (ADI) is an important engineering material which is gaining popularity. The conventional belief that austempered ductile iron, when heat treated satisfactorily, contains bainite, is now disproved by recent experiments. Our present work on the study of the reaction products of heat treated ADI by x-ray diffraction confirms the recent view. The results of x-ray diffraction studies on the structural constituents od ADI for various durations of austempering are presented and discussed

  2. Evaluation of impact and fatigue properties on austempered ductile iron

    OpenAIRE

    Arias Fernández, Sergio

    2009-01-01

    Austempered Ductile Iron (ADI) proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. In this work impact and the fatigue properties have been evaluated for low alloyed Austempered Ductile Iron. To do this, Charpy-type impact test for austempered ductile iron was performed by the standard ASTM A 327M and Fatigue Crack Growth Rates (FCGR) were measured by the stand...

  3. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-07-01

    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  4. Mechanical properties and structure of austempered ductile iron -ADI

    OpenAIRE

    Krzyńska A.; Kaczorowaki M.

    2007-01-01

    The results of experimental study of austempered ductile iron are presented. The aim of the investigations was to look closer into the structure – mechanical properties relationships of this very attractive cast material. The experiment was carried out with 500 7 grade ductile iron, which was austempered using different parameters of heat treatment. The specimens were first solution treated 1 hour in 910oC and then isothermally quenched for different time in silicon oil bath of temperature 27...

  5. An austempering study of ductile iron alloyed with copper

    OpenAIRE

    OLIVERA ERIC; DRAGAN RAJNOVIC; LEPOSAVA SIDJANIN; SLAVICA ZEC; MILAN T. JOVANOVIC

    2005-01-01

    Austempered ductile iron (ADI) has proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. These properties can be achieved upon adequate heat treatment which yields the optimum microstructure for a given chemical composition. In this paper the results of an investigation the austempering of ADI alloyed with 0.45 % Cu for a range of times and temperatures are reported. The micros...

  6. Improving the fracture toughness of dualphase austempered ductile iron

    OpenAIRE

    Hidalgo García, Javier

    2009-01-01

    Dual Phase Austempered Ductile Irons, DPADI alloys have a microstructure with a combination of ausferrite and pro-eutectoid ferrite along with graphite and residual/retained austenite. To reach this particular microstructure ductile iron is austenized in the austenitepro- eutectoid ferrite region before being carried though an isothermal heat treatment somewhere between the bainite-start and martensite-start temperature. The special austenization procedure makes DPADI prime candidates for app...

  7. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  8. Wear Behavior of Austempered Ductile Iron with Nanosized Additives

    OpenAIRE

    J. Kaleicheva

    2014-01-01

    The microstructure and properties of austempered ductile iron (ADI) strengthened with nanosized addtives of titanium nitride + titanium carbonitride (TiN + TiCN), titanium nitride TiN and cubic boron nitride cBN are investigated. The TiN, TiCN and cBN, nanosized particles are coated by electroless nickel coating EFTTOM-NICKEL prior to the edition to the melt. The spheroidal graphite iron samples are undergoing an austempering, including heating at 900 оС for an hour, after that isotherma...

  9. Wear Behavior of Austempered Ductile Iron with Nanosized Additives

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2014-03-01

    Full Text Available The microstructure and properties of austempered ductile iron (ADI strengthened with nanosized addtives of titanium nitride + titanium carbonitride (TiN + TiCN, titanium nitride TiN and cubic boron nitride cBN are investigated. The TiN, TiCN and cBN, nanosized particles are coated by electroless nickel coating EFTTOM-NICKEL prior to the edition to the melt. The spheroidal graphite iron samples are undergoing an austempering, including heating at 900 оС for an hour, after that isothermal retention at 280 оС, 2 h and 380 оС, 2h. The metallographic analysis by optical metallographic microscope GX41 OLIMPUS and hardness measurements by Vickers Method are performed. The structure of the austempered ductile iron consists of lower bainite and upper bainite.Experimental investigation of the wear by fixed abrasive are also carried out. The influence of the nanosized additives on the microstructure, mechanical and tribological properties of the austempered ductile irons (ADI is studied.

  10. Neural Network Analysis of Tensile Strength of Austempered Ductile Iron

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The neural technique was applied to the analysis of the ultimate tensile strength and additionally the yield strength of austempered ductile iron (ADI. Austempered ductile iron is an excellent material and it possesses attractive properties as high strength, ductility and toughness. This paper begins with an introduction to neural networks and demonstrates the ability of the method to investigate new phenomena in cases where the information cannot be accessed experimentally. The model allows the strength properties to be estimated as a function of heat treatment parameters and the chemical composition. A ‘committee’ model was used to increase the accuracy of the predictions. The model was validated by comparison its predictions with data of tensile tests experiments on austempered samples of ductile cast iron. The model successfully reproduces experimentally determined ultimate tensile strength and it can be exploited in the predictions of both ultimate and yield strength and in the design of chemical composition of cast irons and their heat treatments.

  11. Mechanical properties and structure of austempered ductile iron -ADI

    Directory of Open Access Journals (Sweden)

    Krzyńska A.

    2007-01-01

    Full Text Available The results of experimental study of austempered ductile iron are presented. The aim of the investigations was to look closer into the structure – mechanical properties relationships of this very attractive cast material. The experiment was carried out with 500 7 grade ductile iron, which was austempered using different parameters of heat treatment. The specimens were first solution treated 1 hour in 910oC and then isothermally quenched for different time in silicon oil bath of temperature 275, 325, 300 and 350oC. The mechanical properties heat treated specimens were tested in tensile to evaluate yield stress Re, 0.2, tensile strength Rm and elongation A10. Additionally hardness of heat treated samples was measured using Brinell-Rockwell hardness tester. Structure of the specimens was studied either with conventional metallography, scanning (SEM and transmission (TEM electron microscopy. It followed from the study that conventional grade ductile iron enabled to produce both low and high strength ADI, depend on heat treatment parameters. As expected the low temperature isothermal quenching produced higher strength ADI compare to the same ductile iron but austempered at 350oC. It was discovered however, that low yield strength ADI obtained for short time quenching at 275oC exhibited high strengthening effect while strained in tensile. So it was concluded that this had to by cause by large amount of untransformed austenite, which FCC lattice is characterized by high strengthening coefficient.

  12. An austempering study of ductile iron alloyed with copper

    Directory of Open Access Journals (Sweden)

    OLIVERA ERIC

    2005-07-01

    Full Text Available Austempered ductile iron (ADI has proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. These properties can be achieved upon adequate heat treatment which yields the optimum microstructure for a given chemical composition. In this paper the results of an investigation the austempering of ADI alloyed with 0.45 % Cu for a range of times and temperatures are reported. The microstructure and fracture mode developed throughout these treatments have been identified by means of light and scanning electron microscopy and X-ray diffraction analysis. It was shown that the strength, elongation and impact energy strongly depend on the amounts of bainitic ferrite and retained austenite. Based on these results, and optimal processing window was established.

  13. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting

    International Nuclear Information System (INIS)

    Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe3C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.

  14. Effect of alloying elements on austempered ductile iron (ADI properties and its process: Review

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2015-01-01

    Full Text Available Austempered ductile iron (ADI parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.

  15. Effect of Chemistry on the Transformation of Austenite to Martensite for Intercritically Austempered Ductile Iron

    OpenAIRE

    Banerjee, Sayanti

    2013-01-01

    Intercritically austempered ductile iron (IADI) with a matrix microstructure of ferrite plus metastable austenite has an excellent combination of strength and toughness. The high strength and good ductility of this material is due to the transformation of metastable austenite to martensite during deformation. In the present study, the transformation of austenite to martensite for intercritically austempered ductile irons of varying alloy chemistry (varying amounts of nickel and/or manganese) ...

  16. Microstructures and Mechanical Properties of a Wear-Resistant Alloyed Ductile Iron Austempered at Various Temperatures

    Science.gov (United States)

    Cui, Junjun; Chen, Liqing

    2015-08-01

    To further improve the mechanical performance of a new type of alloyed bainitic wear-resistant ductile iron, the effects of the various austempering temperatures have been investigated on microstructure and mechanical behaviors of alloyed ductile iron Fe-3.50C-1.95Si-3.58Ni-0.71Cu-0.92Mo-0.65Cr-0.36Mn (in weight percent). This alloyed ductile iron were firstly austenitized at 1123 K (850 °C) for 1 hour and then austempered in a salt bath at 548 K, 573 K, and 598 K (275 °C, 300 °C, and 325 °C) for 2 hours according to time-temperature-transformation diagram calculated by JMatPro software. The microstructures of austempered wear-resistant ductile irons consist of matrix of dark needle-like ferrite plus bright etching austenite and some amount of martensite and some dispersed graphite nodules. With increasing the austempering temperature, the amount of ferrite decreases in austempered ductile iron, while the amount of austenite and carbon content of austenite increases. There is a gradual decrease in hardness and increase in compressive strength with increasing austempering temperature. The increased austenite content and coarsened austenite and ferrite can lead to a hardness decrease as austempering temperature is increased. The increased compressive strength can be attributed to a decreased amount of martensitic transformation. The alloyed ductile iron behaves rather well wear resistance when the austempering is carried out at 598 K (325 °C) for 2 hours. Under the condition of wear test by dry sand/rubber wheel, the wear mechanisms of austempered ductile irons are both micro-cutting and plastic deformation.

  17. Investigation of jatropha seed oil as austempering quenchant for ductile cast iron

    Directory of Open Access Journals (Sweden)

    Akor Terngu

    2014-06-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Austempering is a multi-step process that includes austenitizing, followed by cooling rapidly enough to avoid the formation of pearlite to a temperature above the martensite start (Ms and then holding until the desired microstructure is formed. It is an isothermal heat treatment process that, when applied to cast iron, produces components that, in many cases, have properties superior to those process by conventional heat treatment. Salt bath has been recognized as the conventional quenching medium for austempering. This study investigates the suitability of jatropha seed oil as quenching medium for asaustempering ductile cast iron. Test samples were austenitized at 9500C; socked for 1hr; austempered for varying periods of 1, 2, 3, 4 and 5hrs. The result showed significant increase in tensile strength and impact energy apart from achieving an appreciable increase in hardness. It also tally with recommended values of ductile cast iron austempered in salt bath, implying that jatropha oil can be used as hot bath for the austempering of ductile cast iron. Keywords: Ausferrite, Austempering, Austenitized, Matrix So, Cked.

  18. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    OpenAIRE

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austeni...

  19. Microstructure and mechanical properties of CuNiMo austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Erić Olivera

    2004-01-01

    Full Text Available Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 and 5h, a microstructure typical for austempered ductile iron was produced, i.e. a mixture of free bainitic ferrite and highly carbon enriched retained austenite. The characteristic of the whole range of austempering at 400oC is the appearance of martensitic structure. The maximum impact energy (133 J coincides with the maximum value of volume fraction of retained austenite that was obtained after 2,5h of austempering at 320oC. The appearance of martensite during austempering at 400oC is the main cause for much lower tensile properties than at 320oC.

  20. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  1. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  2. Influence of Copper Addition and Temperature on the Kinetics of Austempering in Ductile Iron

    OpenAIRE

    Amran, Yogev; Katsman, Alexander; Schaaf, Peter; Bamberger, Menachem

    2010-01-01

    Austempered ductile iron (ADI) is a material that exhibits excellent mechanical properties because of its special microstructure, combining ferrite and austenite supersaturated with carbon. Two ADI alloys, Fe-3.5 pct C-2.5 pct Si and Fe-3.6 pct C-2.7 pct Si-0.7 pct Cu, austempered for various times at 623 K (350 °C) and 673 K (400 °C) followed by water quenching, were investigated. The first ferrite needles nucleate mainly at the graphite/austenite interface. The austenite and ferrite weight ...

  3. 350℃ - Thermal Stability of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    M. Pellizzari; M. Zadra, A. Molinari

    2004-01-01

    The thermal stability of an ADI has been studied by isothermal aging at 350℃ for 150 hours, measuring the amount of retained austenite and its carbon content by X-ray diffractometry. The influence of different austempering treatments, carried out at temperatures between 300 and 450℃ (300, 330, 360, 410 and 450℃) and holding times between15 and 60 minutes (15, 30, 45, 60), was considered. Thermal stability depends on whether austempering temperature is higher or lower than the ageing one. Thermal stability increases by increasing austempering temperatures, from 300° to410℃. Samples treated at 410° and 450° show a lower austenite decomposition than samples at 300-330-360℃. A drop in stability is shown by increasing the austempering temperature from 410° to 450℃. The results have been interpreted on the basis of the austenite stability out of the processing window, which in turn depends on the austempering parameters.

  4. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  5. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    Directory of Open Access Journals (Sweden)

    Chun-jie Xu

    2015-03-01

    Full Text Available In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC. The results show that the major factors influencing the hardness of austempered ductile iron (ADI are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efficiently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the following process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of fine acicular ferrite and a small amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93% and 25.7 J, respectively.

  6. FATIGUE PROPERTIES OF AUSTEMPERED DUCTILE IRON (ADI)IN WATER ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Q.Z.Cai; B.K.Wei; Y.Tanaka

    2004-01-01

    The acicular ferrite in austempered ductile iron(ADI)matrix around graphite was corroded preferentially in wet condition,promoting crack origination and propagation and resulting in the disappearance of ADI fatigue limit.ADI fatigue strength was gradually reduced with increasing the time of test and was reduced by 50% in wet condition at 107 cycles compared with the fatigue limit in dry condition.The fatigue strength variation of ferritic ductile iron in wet condition was similar to that of ADI.The ferritic ductile iron,however,has better corrosion resistance so that the fatigue strength was lowered only by 10% in wet condition at 107 cycles compared with the fatigue limit in dry condition.On the other hand,the fatigue limits of A DI and ferritic ductile iron were dropped by 32% and 25% in tap water dipping 480h/dry condition respectively compared with those in dry condition.The reduction of fatigue limit was attributed to corrosion pits formation correlated with stress concentration,resulting in origination and propagation of fatigue crack.

  7. Effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron

    Institute of Scientific and Technical Information of China (English)

    S. Yazdani; M. Ardestani

    2007-01-01

    The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325 ℃ and 400 ℃after austenitizing at 875 ℃ and 950 ℃. The sub-zero treatments were carried out by cooling down the samples to -30 ℃, -70 ℃ and -196 ℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875 ℃ and austempered at 325 ℃ remained unchanged, whilst it reduced in samples austenitized at 950 ℃ and 875 ℃ for austempering temperature of 400 ℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.

  8. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    Science.gov (United States)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  9. Numerical Simulation of Austempering Heat Treatment of a Ductile Cast Iron

    Science.gov (United States)

    Boccardo, Adrián D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.; Górny, Marcin; Tyrała, Edward

    2016-02-01

    This paper presents a coupled thermo-mechanical-metallurgical formulation to predict the dimensional changes and microstructure of a ductile cast iron part as a consequence of an austempering heat process. To take into account the different complex phenomena which are present in the process, the stress-strain law and plastic evolution equations are defined within the context of the associate rate-independent thermo-plasticity theory. The metallurgical model considers the reverse eutectoid, ausferritic, and martensitic transformations using macro- and micro-models. The resulting model is solved using the finite element method. The performance of this model is evaluated by comparison with experimental results of a dilatometric test. The results indicate that both the experimental evolution of deformation and temperature are well represented by the numerical model.

  10. Influence of Heat Treatment Conditions on Microstructure and Mechanical Properties of Austempered Ductile Iron After Dynamic Deformation Test

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available In this article, an attempt was made to determine the effect of dynamic load on the austempered ductile iron resistance obtained under different conditions of heat treatment. Tests were carried out on six types of cylindrical ductile iron samples austempered at 320, 370 and 400oC for 30 and 180 minutes. For each type of material, two samples were collected. As a next step in the investigations, the samples were subjected to a Taylor impact test. The samples after striking a non-deformable, rigid target were deformed on their front face. After Taylor test, a series of material tests was performed on these samples, noting a significant increase of hardness in the deformed part. This was particularly well visible in the ductile iron isothermally quenched at higher temperatures of 370 and 400oC. Inthezone of sample deformation, an increase in the content of ferromagnetic phase was also reported, thus indicating the occurrence of martensitic transformation in the microstructure containing mechanically unstable austenite. A significant amount of deformed graphite was also observed, which was a symptom of the deformation process taking place in samples. The ductile iron was characterized by high toughness and high resistance to the effect of dynamic loads, especially as regards the grade treated at a temperature of 370oC.

  11. Characterization of microstructural morphology of austempered ductile iron by electron microscopy.

    Science.gov (United States)

    Guo, X L; Su, H Q; Wu, B Y; Liu, Z G

    1998-02-15

    Mechanical properties of austempered ductile iron (ADI) are mainly controlled by its unique microstructure. The objectives of this paper are to characterize the microstructural morphology and the phase distribution of ADI using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and to determine the mechanism of strengthening and toughening of ADI. The experimental results show that, in the microstructure of ADI composing of upper bainite, retained austenite, graphitic nodule, and a small amount of martensite, the upper bainite is composed of sub-units of ferrite in the shape of "wheat ears" on which the "wheat grains" grow at an angle of about 60 degrees to the long axis of the "wheat ears." The retained austenite is connected with each other in the shape of a continuous net. The wheat-ear like bainite with a homogeneous distribution in the continuous austenite net plays an important role to the strengthening and toughening of ADI. The metastable austenite appears in the shape of a large plate in which the martensite is preferentially formed. The appearance of martensite can be suppressed at the time when retained austenite remains stable, which is of benefit to the continuity and homogeneity of austenite net. PMID:9523764

  12. Design and optimization of stepped austempered ductile iron using characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rivera, J.L., E-mail: jose.hernandez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados-Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Z.C. 31109, Chihuahua (Mexico); Garay-Reyes, C.G.; Campos-Cambranis, R.E.; Cruz-Rivera, J.J. [Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. sección, Z.C. 78210, San Luis Potosí (Mexico)

    2013-09-15

    Conventional characterization techniques such as dilatometry, X-ray diffraction and metallography were used to select and optimize temperatures and times for conventional and stepped austempering. Austenitization and conventional austempering time was selected when the dilatometry graphs showed a constant expansion value. A special heat color-etching technique was applied to distinguish between the untransformed austenite and high carbon stabilized austenite which had formed during the treatments. Finally, it was found that carbide precipitation was absent during the stepped austempering in contrast to conventional austempering, on which carbide evidence was found. - Highlights: • Dilatometry helped to establish austenitization and austempering parameters. • Untransformed austenite was present even for longer processing times. • Ausferrite formed during stepped austempering caused important reinforcement effect. • Carbide precipitation was absent during stepped treatment.

  13. Design and optimization of stepped austempered ductile iron using characterization techniques

    International Nuclear Information System (INIS)

    Conventional characterization techniques such as dilatometry, X-ray diffraction and metallography were used to select and optimize temperatures and times for conventional and stepped austempering. Austenitization and conventional austempering time was selected when the dilatometry graphs showed a constant expansion value. A special heat color-etching technique was applied to distinguish between the untransformed austenite and high carbon stabilized austenite which had formed during the treatments. Finally, it was found that carbide precipitation was absent during the stepped austempering in contrast to conventional austempering, on which carbide evidence was found. - Highlights: • Dilatometry helped to establish austenitization and austempering parameters. • Untransformed austenite was present even for longer processing times. • Ausferrite formed during stepped austempering caused important reinforcement effect. • Carbide precipitation was absent during stepped treatment

  14. Effect of Phenomena Accompanying Wear in Dry Corundum Abrasive on the Properties and Microstructure of Austempered Ductile Iron with Different Chemical Composition

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2015-04-01

    Full Text Available The research described in this article is a fragment in the series of published works trying to determine the applicability of new materials for parts of the mining machinery. Tests were performed on two groups of austempered ductile iron - one of which contained 1.5% Ni and 0.5% Mo, while the other contained 1.9% Ni and 0.9% Cu. Each group has been heat treated according to the three different heat treatment variants and then the material was subjected to detailed testing of mechanical properties and abrasion wear resistance, measuring also hardness and magnetic properties, and conducting microstructural examinations. The results indicated that each of the tested materials was senstive to the surface hardening effect, which resulted in high wear resistance. It has been found that high temperature of austempering, i.e. 370°C, favours high wear resistance of ductile iron containing nickel and molybdenum. Low temperature of austempering, i.e. 270°C, develops high wear resistance in ductile iron containing nickel and copper. Both these materials offer completely different mechanical properties and as such can be used for different and specific applications.

  15. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  16. Comportamiento del hierro nodular austemperizado en condiciones de corrosión y desgaste // Behavior of austempered ductile iron under wear and corrosion conditions

    Directory of Open Access Journals (Sweden)

    L. Goyos Pérez

    1999-07-01

    Full Text Available Los hierros nodulares en general y los austemperizados en particular han sido usados con cada vez mayor frecuencia debido asus relevantes propiedades mecánicas en comparación con su costo.En el presente trabajo se valora el comportamiento del hierro nodular ante el trabajo en condiciones de desgaste y corrosión,luego de ser sometido a diferentes tratamientos de austemperizado.Fueron usados un hierro nodular aleado con níquel y molibdeno y otro no aleado. Ambos hierros fueron sometidos a diferentestratamientos de austemperización con mantenimientos isotérmicos a temperaturas entre 250°C y 425°C por tiempos entre 15 y180 minutos.Las muestras tratadas fueron sometidas a ensayos de desgaste por fricción en condiciones no lubricadas determinando laspendientes de desgaste uniforme para cada caso. La resistencia a la corrosión fue determinada mediante el métodopotenciométrico usando como medio el jugo de caña sintético.A partir de los resultados obtenidos se valora la influencia de los diferentes tratamientos sobre las propiedades estudiadas y sedeterminan los más efectivos desde el punto de vista técnico económico.Palabras claves: Hierro nodular, corrosión, desgaste, austemperizado.____________________________________________________________________________AbstractNodular irons and particularly austempered ductile iron has been used more and more due to their excellent mechanicalproperties in comparison with their cost.Presently work deals on behavior of nodular iron working under wear and corrosion conditions, after being submitted todifferent austempered treatments.A nodular iron alloyed with nickel and molybdenum were used as well as a not alloyed one. Both irons were treated underdifferent austempered treatment combinations using isothermal maintenance to temperatures between 250°C and 425°C andspending times between 15 and 180 minutes.Samples were submitted to non-lubricated wear using a “pin on disk” method evaluating the

  17. Study of the influence of Cu and Ni on the kinetics of strain-induced martensite in austempered ductile cast iron; Estudio de la influencia del Cu y Ni en la cinetica de transformacion martensitica inducida por deformacion en fundiciones nodulares austemperadas

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D.; Navea, L.; Garin, J.; Aguilar, C.; Guzman, A.

    2013-09-01

    The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability. (Author)

  18. Rolling Contact Wear Property of Austempered Ductile Iron%等温淬火球墨铸铁的滚动接触磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    曾东方; 鲁连涛; 张继旺; 王文健; 朱曼昊; 徐志富

    2012-01-01

    将2种等温淬火球墨铸铁(AustemperedDuctileIron,ADI)和合金钢车轮材料分别与合金钢钢轨材料匹配,研究各摩擦副的滚动接触磨损性能.结果表明:与合金钢车轮材料相比,2种ADI材料的磨损性能均有大幅度的改善.硬度低、石墨球直径小且密度大的ADI材料自润滑效果好,相对应的摩擦副抗磨损性能最好;硬度高、石墨球直径大且密度小的ADI材料自润滑效果较差,相对应的摩擦副抗磨损性能居中;合金钢车轮材料不具备自润滑能力,相对应的摩擦副抗磨损性能最差.%Two austempered ductile irons (ADIs) and alloy wheel steel are matched with alloy rail steel and the rolling contact wear properties of these frictional pairs are investigated. The results show that the wear properties of two ADIs are improved significantly compared with the alloy wheel steel. The self lubricating capability of the ADI with low hardness, small and large quantity distributed graphite nodule is excellent, and the wear resistance of the corresponding frictional pair is the highest. The wear resistance of the ADI with high hardness, large and small quantity distributed graphite nodule is weak, and the self lubricating capability of the corresponding frictional pair is moderate. The alloy wheel steel is not selflubricating, and hence the wear resistance of the corresponding frictional pair is the lowest.

  19. Caracterización de la capa de boruros formada durante la austenización de un hierro nodular austemperizado//Characterization of borides coating formed during austenitization of an austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Urbano Ordóñez‐Hernández

    2015-01-01

    Full Text Available En este trabajo se ha investigado el efecto de la austenitización y el borurado simultáneos, a 950 ºC, en la microestructura, la microdureza Vickers y el espesor de la capa borurada en medio líquido de un hierro nodular austemperizado no aleado. Se demostró que es posible obtener una capa de boruros de hierro muy bien estructurada con la microdureza Vickers suficientemente alta (1400 HVy con adecuado espesor de capa de 67 μm, sobre un sustrato de ausferrita típico de las fundiciones nodulares austemperizadas. Por medio de un ensayo pin on disc modificado, se comprobó la superior resistencia al desgaste abrasivo de la capa de boruros depositada durante la austenización del ADI, comparada con la máxima obtenida durante el austempering de éste sin aplicar el recubrimiento.Palabras claves: hierro nodular, borurado, austenización, austemperizado.______________________________________________________________________________AbstractThe effect of simultaneous austenitization and boriding at 950 ºC, on microstructure, Vickers hardness and boronized layer thickness of a non alloyed austempered ductile iron has been investigated. It was demonstrated that it is possible to obtain a well formed boronized layer with a Vicker hardness sufficiently high (1400 HV, and with an appropriated 67μm layer thickness, on a typical ausferrite ADI substrate. By using a modified pin on disc test, it was demonstrated the higher abrasion wear resistance of borides layer deposited during ADI austenitization process, compared with Vickers hardness of low temperature noncoated austempered ductile iron.Key words: ductile iron, boriding, austenitization, austempering.

  20. Recent development of ductile cast iron production technology in China

    Directory of Open Access Journals (Sweden)

    Cai Qizhou

    2008-05-01

    Full Text Available Recent progress in the production and technology of ductile cast iron castings in China is reviewed. The manufacture and process control of as-cast ductile iron are discussed. The microstructure, properties and application of partial austenitization normalizing ductile iron and austempered ductile iron (ADI are briefl y depicted. The new development of ductile iron production techniques, such as cored-wire injection (wire-feeding nodularization process, tundish cover ladle nodularizing process, horizontal continuous casting, and EPC process (lost foam for ductile iron castings, etc., are summarized.

  1. Recent development of ductile cast iron production technology in China

    Institute of Scientific and Technical Information of China (English)

    Cai Qizhou; Wei Bokang

    2008-01-01

    Recent progress in the production and technology of ductile cast iron castings in China is reviewed.The manufacture and process control of as-cast ductile iron are discussed.The microstructure.properties and application of partial austenitization normalizing ductile iron and austempered duclile iron(ADI)are briefly depicted.The new development of duclile iron production techniques,such as cored-wire injection(wire-feeding nodularization)process,tundish cover ladle nodularizing process,horizontal continuous casting,and EPC process (lost foam)for ductile iron castings,etc.,are summarized.

  2. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    OpenAIRE

    Konečná, Radomila; Lukáš BUBENKO; Gianni NICOLETTO

    2012-01-01

    Perferritic isothermal ductile iron (IDI®) is an intermediate grade between the low-strength grades of austempered ductile iron (ADI) and pearlitic ductile iron (DI) recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness...

  3. Aspectos cinéticos e microestruturais da transformação bainítica incompleta em ferros nodulares austemperados Kinetic and microstructural aspects of incomplete bainite transformation in austempered ductile irons

    Directory of Open Access Journals (Sweden)

    Marcio Ferreira Hupalo

    2012-06-01

    Full Text Available Nesse trabalho, foram estudados aspectos cinéticos da transformação bainítica incompleta em ligas de ferro nodular, contendo 2,36 e 2,68% Si. As amostras foram austenitizadas a 900°C, durante 90 minutos, e austemperadas a 320 e 370ºC, em tempos entre 1,5 e 60 minutos. A caracterização microestrutural foi realizada pelas técnicas de microscopia óptica (MO, microscopia eletrônica de varredura (MEV, difração de Raios X (DRX e microdureza Vickers. Foi desenvolvido um método de quantificação das frações transformadas por microscopia óptica. Devido ao elevado teor de silício, as ligas apresentaram o fenômeno de estase da transformação bainítica. As amostras tratadas a 320°C apresentaram microestrutura mais refinada e maiores frações transformadas para o início da estase da reação. As frações transformadas obtidas por DRX foram menores que as encontradas por MO. Esse fenômeno foi mais intenso para a menor temperatura de austêmpera. Curvas de transformação isotérmica foram obtidas para todas as condições estudadas. A cinética de transformação bainítica incompleta foi analisada segundo o modelo de Johnson-Mehl-Avrami-Kolmogorov (JMAK. Os valores do expoente n da equação JMAK variaram entre 0,15 e 0,67.This work aimed at studying the kinetic aspects of the incomplete bainite transformation of ductile cast iron containing 2.36 and 2.68% silicon (in wt %. Samples were initially austenitized at 900°C during 90 minutes and then austempered at 320 and 370°C in times ranging from 1.5 to 60 minutes. Microstructural characterization was performed by light optical microscopy (LOM, scanning electron microscopy (SEM, X-ray diffraction (XRD and Vickers microhardness tests. A LOM-based method for transformed fractions quantification has been developed. Due to its high silicon content, both alloys presented the bainite transformation stasis phenomenon. Samples austempered at 320°C displayed more refined microstructures

  4. 等温淬火球墨铸铁在汽车底盘悬架类零件上的应用%Application of Austempered Ductile Iron to Automobile Suspension Components

    Institute of Scientific and Technical Information of China (English)

    曾圣湖; 黄建成; 武炳焕

    2011-01-01

    Lightweight upper chassis frame suspension part was designed, using austempered ductile iron (ADI) casting instead of steel casting. By strictly controlling the raw material and foundry and heat treatment processes, the mechanical property of the casting satisfies the specifications of ASTM A897/A897M-06 grade 1050-750-7, and the pilot production was realized. The trial production and test result indicate that the properties of casting meet the designed requirement, while the weight of the casting was reduced by 39.6%. After further improvement, the amount of ADI castings was increased, and the weight of all ADI castings in an automotive reached 550.4 kg.%对某车型上底盘悬架类零件进行轻量化设计,由铸钢件改用等温淬火球墨铸铁件.通过对原材料、铸造和热处理等工艺过程的严格控制,力学性能稳定达到了ASTM A897/A897M-06 Grade 1050-750-7要求,并实现了小批量生产.从试制及装车路试情况来看,满足了所设计的性能要求,零件重量减少了39.6%,并在后续改进中,进一步增加等温淬火球墨铸铁件数量,整车的等温淬火球墨铸铁件重量达到了550.4 kg.

  5. Efecto del conteo de nódulos en la resistencia a la tracción de los hierros dúctiles austemperados. // Effect of nodules count in the tensile strength of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2004-01-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nódular ocupa uno de los lugaresmás importantes entre los hierros fundidos de alta resistencia y con la introducción del tratamiento térmico deaustemperado, aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteos de nódulos, a los que lesfue aplicado el tratamiento de austemperado y posteriormente se les sometió a ensayos de propiedades mecánicas detracción.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichas propiedades, así comotambién, de la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas.Palabras claves: Hierro nódular, conteo de nódulos, austemperado.____________________________________________________________________________Abstract.At the present, iron production with nodular graphite, occupies one of the most important places in the production ofmetallic materials high resistance. The introduction of the austempered heat treatment, gives rise to a new family ofmaterials, characterized by its high mechanical resistance and elevated tenacity, this family maintain the economy andfacility of production of the smeltings nodules. This work, makes a valuation of the nodules iron behavior, with differentnumber of nodules, to which the austempered treatment was applied, in order to test mechanical properties. With theobtained results, an analysis is carriewd out to control the influence of the count of nodules in these properties, as well as,the interrelation of the count of nodules with the used heat treatment variables in the samples.Key words: nódular Iron, count of

  6. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the waste by abrasion resistance for ductile austempering irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2004-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular, ocupa en la actualidad unode los lugares más importantes entre los hierros fundidos de alta resistencia, y con la introducción del tratamiento térmicode austemperado aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteos de nódulos, a los que lesfue aplicado el tratamiento de austemperado y posteriormente se les sometió a ensayos de desgaste abrasivo.Con los resultados obtenidos se hace un análisis de la influencia del conteo de nódulos en dichas propiedades, así comotambién de la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas.Palabras claves: Hierro nodular, conteo de nódulos, austemperado.____________________________________________________________________________Abstract.Between the metallic materials of greater demand, the iron production with nódular graphite occupies at the present time,one of the most important places between fused irons of high resistance, and with the introduction of the austempering heattreatment, applied to these meltings, brings a new family of materials, characterized by its high mechanical resistance andelevated tenacity, that maintain the economy and facility of production of the nodular smeltings.This work makes a valuation of the nodular irons behaviors, with different counts from nodules, to which the austemperingtreatment was applied, and later they were put under tests of abrasive wearing.Of the obtained results, takes control of the influence the nodules count in these properties, as well as, of the interrelation ofthe nodules count, with the used variables of heat

  7. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the abrasive wear of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2009-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular,ocupa en la actualidad, uno de los lugares más importantes entre los hierros fundidos de altaresistencia, y con la introducción del tratamiento térmico de austemperado, aplicado a estasfundiciones, se da lugar a una nueva familia de materiales, caracterizados por su alta resistenciamecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de lasfundiciones nodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteosde nódulos, a los que les fue aplicado el tratamiento de austemperado, y posteriormente se lessometió a ensayos de desgaste abrasivo.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichaspropiedades, así como también, de la interrelación del conteo de nódulos, con las variables detratamiento térmico utilizadas en las muestras ensayadas.Palabras claves: hierro nodular, conteo de nódulos, austemperado.__________________________________________________________________________AbstractBetween the metallic materials of greater demand, the iron production with nódular graphiteoccupies at the present time, one of the most important places between fused irons of highresistance, and with the introduction of the austemperado heat treatment of, applied to thesesmeltings, gives rise to a new family of materials, characterized by its high resistance mechanicaland elevated tenacity, that the economy and facility of production of the smeltings maintainnodulares. This work, makes a valuation of the iron behavior nodulares, with different counts fromnodules, to which the austemperado was applied treatment to them of, and later it was put underto them tests of abrasive wearing down. Of the obtained results, an analysis takes control of theinfluence of the count of nodules in these properties, as well as, of the interrelation of

  8. Thin Wall Ductile Iron Castings: Technological Aspects

    Directory of Open Access Journals (Sweden)

    E Fraś

    2013-01-01

    Full Text Available The paper discusses the reasons for the current trend of substituting ductile iron castings by aluminum alloys castings.However, it has been shown that ductile iron is superior to aluminum alloys in many applications. In particular it has beendemonstrated that is possible to produce thin wall wheel rim made of ductile iron without the development of chills, coldlaps or misruns. In addition it has been shown that thin wall wheel rim made of ductile iron can have the same weight, andbetter mechanical properties, than their substitutes made of aluminum alloys.

  9. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe...

  10. Effects of Copper and Malleablizing Time on Mechanical Properties of Austempered Malleable Iron

    Science.gov (United States)

    Hsu, Cheng-Hsun; Lu, Jung-Kai; Chen, Fan-Shiong

    2007-10-01

    In this study, both the unalloyed and 1 wt pct copper alloyed white irons were successively treated with a duplex heating process consisting of malleablizing and austempering, and then the effects of copper and processing variables on microstructure and mechanical properties of the austempered malleable iron (AMI) were investigated. The results showed that AMI could effectively shorten malleablizing time to obtain the constituents of irregular graphite, acicular ferrite, and retained austenite in the microstructure. Moreover, 1 pct Cu-AMI had a higher retained austenite content than unalloyed AMI. This is because copper is an austenite stabilizer and acts to delay the start of the transformation into ausferrite. In the case of mechanical properties, AMI increased tensile strength (1083 to 1190 MPa) and impact toughness (16 to 22 J) by 2 to 3 times after 930 °C 20 hours malleablizing treatment as compared to as-cast (572 to 580 MPa and 5 to 6 J). In particular, 1 pct Cu-AMI had better performance than unalloyed AMI except for hardness. In comparison with conventional malleable irons, AMI was found to possess better tensile and impact properties.

  11. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  12. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  13. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  14. Polyurethane coating for ductile iron pipes

    Directory of Open Access Journals (Sweden)

    WANG En-qing

    2006-05-01

    Full Text Available A special polyurethane coating designed for ductile iron pipe was developed. The effects of the ingredients on properties, such as viscosity, flow leveling, solidification-rate, adhesion and hardness, were researched. It was then analyzed in what ways the technical parameters, such as temperature and pressure, influence the coat quality. The results showed that the molar ratio and synthesizing conditions must be strictly controlled to obtain suitable pre-polymer viscosity by adjusting the formula ratio of the B component, satisfactory mechanical properties and cure rate can be obtained and bubbles in the coat can be avoided.

  15. Ductile iron castings fabricated using metallic moulds

    International Nuclear Information System (INIS)

    The features and suitability of high requirements ductile iron castings production using metallic moulds have been studied in the present work. The structural and mechanical properties of the produced castings have been analysed and compared to the corresponding ones but fabricated using green sand moulds according to a conventional production process. The higher cooling rate in the metallic moulds is the main cause for the appearance of the detected structural changes in castings. The mechanical and microstructural properties obtained directly on castings are remarkable due to the higher nodule count among other factors. Finally, the benefits and inconveniences found in this kind of production methodology using metallic moulds are also discussed. (Author)

  16. 46 CFR 56.60-15 - Ductile iron.

    Science.gov (United States)

    2010-10-01

    ... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395... 395 (incorporated by reference, see 46 CFR 56.01-2) may be used within the service restrictions and... 46 Shipping 2 2010-10-01 2010-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping...

  17. Multiple inoculations of ductile iron and the effects on properties

    OpenAIRE

    Adebayo Badmos; Kelvin Fakehinde

    2015-01-01

    Multiple inoculation of ductile iron and the effects on the structure and mechanical properties have being investigated. Samples of ductile iron were produced with inoculation carried out either once or twice and with different materials as inoculants. Ferrosilicon was used for the primary inoculation and either ferrosilicon or nickel-ferrosilicon for the secondary inoculation. It is observed that the nodules produced are more and finer with multiple inoculations and the effect is more pronou...

  18. Multiple inoculations of ductile iron and the effects on properties

    Directory of Open Access Journals (Sweden)

    Adebayo Badmos

    2015-11-01

    Full Text Available Multiple inoculation of ductile iron and the effects on the structure and mechanical properties have being investigated. Samples of ductile iron were produced with inoculation carried out either once or twice and with different materials as inoculants. Ferrosilicon was used for the primary inoculation and either ferrosilicon or nickel-ferrosilicon for the secondary inoculation. It is observed that the nodules produced are more and finer with multiple inoculations and the effect is more pronounced with nickel-ferrosilicon as the secondary inoculant. Multiple inoculations produce an increase in the hardness of ductile iron when ferrosilicon is used as the secondary inoculant while a decrease in the hardness is observed with nickel-ferrosilicon despite the finer nodules. This is explained by the fact that nickel enhances graphitization in cast iron thereby depleting carbon in the matrix and making the cast iron weaker but with more nodules.

  19. Mechanical Characterization of Nodular Ductile Iron

    Energy Technology Data Exchange (ETDEWEB)

    Springer, H K

    2012-01-03

    The objective of this study is to characterize the strength and fracture response of nodular ductile iron (NDI) and its underlying ferritic matrix phase. Quasistatic and split Hopkinson pressure bar (SHPB) compression tests were performed on NDI and a model material for the NDI matrix phase (Fe-Si alloy). Smooth and notch round bar (NRB) samples were loaded in tension until fracture to determine strain-at-failure with varying stress triaxiality. Multiple tests were performed on each small and large smooth bar samples to obtain fracture statistics with sample size. Fracture statistics are important for initializing simulations of fragmentation events. Johnson-Cook strength models were developed for the NDI and the Fe-Si alloy. NDI strength model parameters are: A = 525 MPa, B = 650 MPa, n = 0.6, and C = 0.0205. The average SHPB experimental strain-rate of 2312/s was used for the reference strain-rate in this model. Fe-Si alloy strength model parameters are: A=560 MPa, B = 625 MPa, n = 0.5, and C = 0.02. The average SHPB experimental strain-rate of 2850/s was used for the reference strain-rate in this model. A Johnson-Cook failure model was developed for NDI with model parameters: D{sub 1} = 0.029, D{sub 2} = 0.44, D{sub 3} = -1.5, and D{sub 4} = D{sub 5} = 0. An exponential relationship was developed for the elongation-at-failure statistics as a function of length-scale with model parameters: S{sub f1} = 0.108, S{sub f2} = -0.00169, and L{sub m} = 32.4 {mu}m. NDI strength and failure models, including failure statistics, will be used in continuum-scale simulations of explosively-driven ring fragmentation. The Fe-Si alloy strength model will be used in mesoscale simulations of spall fracture in NDI, where the NDI matrix phase is captured explicitly.

  20. QUALITY CONTROL ON THE AUSTENITIC-BAINITIC DUCTILE IRON GEAR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By reasonable casting, spheroidizing , inoculating and heat treating processes to control cupola metallurgy and the lipuid iron chemical compositions, a new kind of austenitic-bainitic ductile iron which can substitute for 20CrMnTi carburizing steel is studied. The gears made by the cast iron are high in quality,low in weight and the production cost is greatly reduced. The mechanical properties of the gear, including wear resistance, fatigue resistance, durability and others, can be greatly improved.

  1. The properties of silicon alloyed ferritic ductile irons

    Directory of Open Access Journals (Sweden)

    Z. Glavas

    2016-07-01

    Full Text Available In this paper the influence of silicon content of 3,1 to 5,4 wt. % on the tensile properties, hardness and impact energy of ferritic ductile iron was analysed. It was found that silicon strengthens the ferrite, resulting in an increase in yield strength and tensile strength with increasing silicon content up to 4,22 wt. %. Elongation and impact energy decreases and the hardness increases with increasing silicon content. Since ferritic ductile irons alloyed and strengthened by silicon have a higher Rp0,2/Rm ratio and a higher elongation than conventional ferritic, ferritic/pearlitic and pearlitic ductile irons at the same level of tensile strength, we can expect an increased demand for these materials in applications where high resistance to impact load and low temperature impact properties are not required.

  2. The properties of silicon alloyed ferritic ductile irons

    OpenAIRE

    Z. Glavas; A. Strkalj; A. Stojakovic

    2016-01-01

    In this paper the influence of silicon content of 3,1 to 5,4 wt. % on the tensile properties, hardness and impact energy of ferritic ductile iron was analysed. It was found that silicon strengthens the ferrite, resulting in an increase in yield strength and tensile strength with increasing silicon content up to 4,22 wt. %. Elongation and impact energy decreases and the hardness increases with increasing silicon content. Since ferritic ductile irons alloyed and strengthened by silicon have a h...

  3. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    OpenAIRE

    M. Rączka; K. Gandurski; B. Isendorf

    2012-01-01

    The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline...

  4. Fracture toughness behaviour of ferritic ductile cast iron

    International Nuclear Information System (INIS)

    The static rate fracture toughness of a series of eight heats of ductile cast iron has been measured. Samples from each heat were tested in a heat treated condition which produced a fully ferritic matrix. The chemical composition and the microstructural feature size has also been measured directly from each specimen tested. A multiple linear regression method was used to establish a simple mathematical relationship between fracture toughness and the composition and microstructure. Fracture toughness was found to be strongly associated with the spacing (or size) of the graphite nodules in these fully ferritic ductile cast irons. Other features, including the composition, the ferrite grain size, or the amount of graphite (over the ranges examined), did not strongly influence the fracture toughness. Fracture toughness also did not correlate with tensile properties (i.e. strength or ductility) in these alloys. (author)

  5. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern p...

  6. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...

  7. The role of graphite morphology and matrix structure on low frequency thermal cycling of cast irons

    Indian Academy of Sciences (India)

    S Y Buni; N Raman; S Seshan

    2004-02-01

    Low frequency thermal cycling tests were carried out on four types of cast iron (viz., austempered ductile iron, pearlitic ductile iron, compacted/vermicular graphite iron and grey cast iron) at predetermined ranges of thermal cycling temperatures. The specimens were unconstrained. Results show that austempered ductile iron has the highest thermal cycling resistance, followed by pearlitic ductile iron and compacted graphite iron, while grey cast iron exhibits the lowest resistance. Microstructural analysis of test specimens subjected to thermal cycling indicates that matrix decomposition and grain growth are responsible for the reduction in hardness while graphite oxidation, de-cohesion and grain boundary separation are responsible for the reduction in the modulus of elasticity upon thermal cycling.

  8. Castability of ductile iron in thin walled castings (TWDI

    Directory of Open Access Journals (Sweden)

    M. Górny

    2008-10-01

    Full Text Available In work it has been presented results of influence of pouring temperature (Tp and carbon equivalent (CE on castability of ductile iron in thin walled castings with wall thickness of 1, 2 and 3 mm, respectively. Analysis was done on ductile iron with carbon equivalent ranging from 4.30 to 5.00 and pouring temperature varied from 1400 to 1500 oC. It has been shown that a statistical liner relationship exists between wall thickness and castability. Influence of CE and Tp on castability of cast iron flowing through channel with wall thickness of 2 and 3 mm can be presented by means of correlation equations (L = f(CE, Tp. Statistical analysis shows that pouring temperature has much higher influence on castability in comparison with influence of carbon equivalent.

  9. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... Customer Meters, Service Regulators, and Service Lines § 192.369 Service lines: Connections to cast iron...

  10. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic solidification. The first stage, which was relatively short, had none or very little recalescence. Further under cooling, followed by reheating during recalescence, was necessary to initiate the secon...

  11. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  12. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  13. Some problems in the production of ductile irons by investment casting

    OpenAIRE

    Yu Bo; Cai Qizhou; Wei Bokang

    2008-01-01

    Because of the excellent performance of ductile irons and the unique superiority of investment casting, the preparation of complicated and thin-wall ductile iron castings by investment casting shows a good development prospect. In this present work, combined with the actual product experiments, the characteristics of shell making, spheroidization, inoculation and defect prevention are presented, and some suggestions are given for investment casting of ductile iron.

  14. Some problems in the production of ductile irons by investment casting

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2008-02-01

    Full Text Available Because of the excellent performance of ductile irons and the unique superiority of investment casting, the preparation of complicated and thin-wall ductile iron castings by investment casting shows a good development prospect. In this present work, combined with the actual product experiments, the characteristics of shell making, spheroidization, inoculation and defect prevention are presented, and some suggestions are given for investment casting of ductile iron.

  15. Manufacture of Toothed Elements in Nanoausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available The technology currently used for the fabrication of toothed wheels, gear couplings and chain drums involves the induction hardening process or hardening and tempering after carburising. All these processes take a long time and cause adverse changes in the dimensions and surface quality of products, requiring post-treatment machining to remove the resulting cavities. The paper proposes the implementation of gear elements made of ductile iron with nanoausferritic matrix obtained by a new appropriate heat treatment process. The new material offers good performance characteristics and nearly no need for the application of other technological processes commonly used in the manufacture of gears.

  16. Thermal analysis of ductile iron in thin walled casting

    Directory of Open Access Journals (Sweden)

    M. Górny

    2007-12-01

    Full Text Available Hypereutectic ductile iron was cast in self hardening moulding sand to produce castings with the shape of Archimedes spirals and with wall thickness of 1, 2 and 3 mm. Inmould technique was used to produce thin wall ductile iron (TWDI. In this work it has been carried out thermal analysis in spiral with 3 mm wall thickness. The present work provides results of thermal analysis, that are initial temperature of metal in mould cavity, velocity of metal stream as well as solidification time. Measurement of temperature shows that there is essential its drop during filling of mould cavity and amounts 230 oC for distance 700 mm from the beginning of spiral. On the basic on first derivative of temperature versus time characteristic solidification points were distinguish, namely solidification of primary graphite, austenite dendrite and eutectic. Experimental measurements of temperature drop during filling of mould cavity along with microscopic examinations of castings structure can be used to verify computer modeling and simulation of fluid flow and thermal field in TWDI.

  17. Structure of ductile iron in thin walled castings

    Directory of Open Access Journals (Sweden)

    M. Górny

    2007-12-01

    Full Text Available It this work it has been shown that it is possible to produce thin wall ductile iron (TWDI castings with considerably length using Archimedes spiral with wall thickness of 1, 2 and 3 mm. Inmould technique was used to produce TWDI. It has been estimated castability and metallographic investigations were made using different moulding materials. From castability measurements result that it is possible to obtain thin wall ductile iron castings with wall thickness down to 1 mm with castability of 200 mm. Using mould with small ability to absorb heat castability increases twice. At wall thickness equal 3 mm castability reaches 1000 mm and using LDASC sand its value increases to over 1500 mm. Structure parameters for different wall thickness and moulding materials (graphite nodule count, ferrite and cementite fraction are plotted versus distance from the beginning of spiral. It is shown strong influence of LDASC sand (material with small ability to absorb heat on structure parameters (NF, Vf i VC revealing gradient character of TWDI.

  18. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  19. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  20. Assessment of ductile iron casting process with the use of the DRSA method

    OpenAIRE

    Kujawińska A.; Rogalewicz M.; Diering M.; Piłacińska M.; Hamrol A.; Kochańskib A.

    2016-01-01

    The paper introduces a concept of assessment of a ductile iron casting process with use of the rule-based approach, known as DRSA (dominance-based rough set approach). The research was conducted in a large Polish foundry. The collected data concern the chemical composition and mechanical properties of the used ductile cast iron. In the paper, a methodology of creating a rule-based moulding model for the tensile strength was proposed. The quality, sensitivit...

  1. Study on the serialization and applications of low carbon ductile iron

    OpenAIRE

    SHU Xin-fu; Shu, Rui; CHANG Dian-cun

    2005-01-01

    Both the production process and the chemical composition of Sx were studied, and the serialization of low carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalent (CE) of molten iron and to some alloying elements too. When the CE of molten iron and the contents of alloying elements were changed, the content of Sx must be revised with the change correspondingly. Low carbon ductile iron can be stably changed into the one that non-carbon ac...

  2. Stress triaxiality influence on damaging micromechanisms in a pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Vittorio Di Cocco

    2014-10-01

    Full Text Available In the last decades, damaging micromechanisms in ductile cast irons (DCIs have been widely investigated, considering both the matrix microstructure and the loading conditions influence. Considering the graphite nodules, they were initially considered as voids embedded and growing in a ductile metal matrix (especially considering ferritic ductile cast irons. Recent experimental results allowed to identify a more complex role played by the graphite nodules, depending on the matrix microstructure. In this work, damaging micromechanisms in a pearlitic DCI were investigated by means of tensile tests performed on notched specimen, mainly focusing the role played by graphite elements and considering the stress triaxiality influence.

  3. Strain analysis on ductile cast iron containers at drop tests

    International Nuclear Information System (INIS)

    Ductile cast iron (DCI) containers for transportation and deposition of radioactive waste have to be designed carefully in order to avoid unacceptable damages and leakages in case of an accident. Therefore various calculations and experimental methods are used during development and licensing of the containers. Besides others the container has to suffer severe impacts (e.g. falling from a height of several meters onto a concrete base). The level of strains must not exceed a value which would adversely affect the package in such a way that it would fail to meet the applicable requirements. In practice complex events such as drop tests are very difficult to calculate. Both the position of maximum stress and the time of its occurrence are not easily predicted with the method of FEM. The uncertainty of the material modelling for plastic deformation by dynamic loading rates is the limiting factor. Therefore holography as an integral measuring technique in combination with strain gauge techniques were used to fit the FEM. By using the FEM calculations in the case of licensing, the FE and the material model have to be verified. The verification of the FEmodel has to be done by comparison of the local maxima measured by strain gauges and by comparison of the vibration modes. These vibration modes we take from holographic measurements. In this paper we explain container vibrations after impact analysed with holographic measurements, FEM calculations and the comparison of the results. The comparison of the local maxima (strain gauges/FEM) is reported elsewhere (Schreiber 1993; Voelzer 1997). (orig.)

  4. Study on the serialization and applications of low carbon ductile iron

    Directory of Open Access Journals (Sweden)

    SHU Xin-fu

    2005-11-01

    Full Text Available Both the production process and the chemical composition of Sx were studied, and the serialization of low carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalent (CE of molten iron and to some alloying elements too. When the CE of molten iron and the contents of alloying elements were changed, the content of Sx must be revised with the change correspondingly. Low carbon ductile iron can be stably changed into the one that non-carbon acicular ferrite and retained austenite (about 25%-28% by quasi-casting bainitic process of using Sx-2 modifier treated Si-Mn-Cr-Cu-alloyed low carbon molten iron. The austenitic low carbon as-cast ductile iron could be obtained by the Ni-Si-Cr 35 5 2 percent alloys molten iron with less than 2% carbon treated by type Sx-3 modifier. The high-toughness ferritic low carbon as-cast ductile iron which contained more than 85 % ferrite in matrix could be got after the molten iron treated by type Sx-4 modifier, and it's elongation was more than 10 %.

  5. Influence of process parameters on the properties of austempered ductile iron (ADI examined with the use of data mining methods

    Directory of Open Access Journals (Sweden)

    D. Wilk-Kołodziejczyk

    2016-10-01

    Full Text Available The article presents opportunities offered by the data mining analysis as applied to studies of the effect of process parameters on the mechanical properties of ADI. The applied methods of regression trees and cluster analysis allow for the detection of relationships between parameters and also allow determination of strength and form of the impact of different factors. The results of this study allow the creation of knowledge bases for systems supporting the decision-making process in technology.

  6. A new method for chill and shrinkage control in ladle treated ductile iron

    Institute of Scientific and Technical Information of China (English)

    Torbj(o)rn Skaland

    2006-01-01

    The paper is undertaken with the objective of describing a new method for treating ductile cast iron in a ladle process, where the main objective is to minimize formation of eutectic carbides and shrinkage porosity during solidification. The suppression of carbide formation is associated with the nucleating properties of the nodularizer and inoculant alloys. By nucleating properties it is understood the number and potency of nuclei formed by an alloy addition. The nodularizer and inoculant additions also influence ductile iron solidification shrinkage. Some alloys may give good protection against shrinkage while others tend to promote more shrinkage.The use of vanous rare earth elements is found to have a pronounced impact on these conditions. It has been discovered that the use of pure lanthanum as the primary rare earth source in the magnesium ferrosilicon nodularizer surprisingly further improves the performance of the ductile iron ladle treatment method compared to similar methods using cerium or mishmetal bearing nodularizers. The nucleating properties are substantially improved and the risk for carbides (chill) and shrinkage formation in the sandwich or tundish ladle treated ductile iron is then minimized.The paper describes this new ladle treatment concept in detail, and gives examples from successful testing of the new nodularizing technology and how it simultaneously affects and minimizes critical ductile iron chill and shrinkage tendencies.

  7. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  8. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  9. Experimental characterization of a Si-Mo-Cr ductile cast iron

    OpenAIRE

    Sesana, Raffaella; Delprete, Cristiana

    2014-01-01

    High temperature-resistant ductile cast irons behaviour is highly interesting for the manufacture of components, such as exhaust manifolds for automotive applications. In the present paper the temperature-dependent static, high cycle and low cycle fatigue behaviour of a heat-resistant Si-Mo-Cr ductile cast iron (Fe-2.4C-4.6Si-0.7Mo-1.2Cr) is investigated. Tensile and high cycle fatigue properties, in terms of elastic modulus, yield stress, elongation at break, fatigue limits, and the stress-l...

  10. Draft ASME code case on ductile cast iron for transport packaging

    International Nuclear Information System (INIS)

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required

  11. Investigation of solidification of thin walled ductile cast iron using temperature measurement

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron can be improved using temperature measurement. This article includes some background of the precautions that have to be taken when measuring temperatures in thin walled castings. The aim is to minimize influence of temperature...... measurement on castings and to get sufficient response time of thermocouples. Investigation of thin wall ductile iron has been performed with temperature measurement in plates with thickness between 2,8 and 8mm. The cooling curves achieved are combined with examination of the microstructure in order to reveal...

  12. Assessment of ductile iron casting process with the use of the DRSA method

    Directory of Open Access Journals (Sweden)

    Kujawińska A.

    2016-01-01

    Full Text Available The paper introduces a concept of assessment of a ductile iron casting process with use of the rule-based approach, known as DRSA (dominance-based rough set approach. The research was conducted in a large Polish foundry. The collected data concern the chemical composition and mechanical properties of the used ductile cast iron. In the paper, a methodology of creating a rule-based moulding model for the tensile strength was proposed. The quality, sensitivity and accuracy of the model extracted from the data were examined. The studies proved its usefulness in the industrial practice and for aiding of the decision making process.

  13. Influence of the section size and holding time on the graphite parameters of ductile iron production

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2009-01-01

    Full Text Available This work was conducted to establish the conditions required to produce a desirable structure of the castings of various section sizes. This investigation was focused on the study of the influence of cooling rate or section size and holding time on graphite parameters of the ductile iron. Plates having thickness between 3 and 50mm were cast in sand molds using the same melt. The present investigation has shown that the section size of ductile iron castings and holding time had strong effect on the graphite parameters of the castings.

  14. Value/impact of design criteria for cast ductile iron shipping casks

    International Nuclear Information System (INIS)

    The ductile failure criteria proposed in the Base report appear appropriate except that stress intensity values, S/sub m/ should be based on lower safety factors and ductility should be added as a criterion. A safety factor for stress intensity, s/sub m/ of 4 is recommended rather than 3 on minimum ultimate tensile strength, S/sub u/ in accordance with ASME code philosophy of assigning higher safety factors to cast ductile iron than to steel. This more conservative approach has no impact on costs since the selection of wall thickness is controlled by shielding rather than by stress considerations. The addition of a ductility criterion is recommended because of the problems associated with the selection of appropriate brittle failure criteria and the potential for cast ductile iron to have extremely low elongation at failure. Neither a materials nor a linear elastic fracture mechanics (LEFM) approach appear to be viable for demonstrating the prevention of brittle failure in cast ductile iron shipping casks. It is possible that the analytic methods predict brittle failure because of extremely conservative assumptions whereas real casks may not fail. Model drop tests could be used to demonstrate containment integrity. It is estimated that a risk committment of at least $1,000,000 would be required for engineering, design, model fabrication and testing. Before taking such risks, a mechanism should be found to obtain concurrence from NRC that the results of the test would be acceptable. Probabilistic approaches or model testing could be used to demonstrate the acceptability of cast ductile iron casks from a brittle failure point of view. Before probabilistic methods can be used, the NRC would have to be persuaded to accept the approach of the Competent Authority in West Germany or more formalized methods for probabilistic risk assessments

  15. Machinable, Thin-Walled, Gray and Ductile Iron Casting Production, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Charles Bates; Hanjun Li; Robin Griffin

    2003-12-08

    This report presents the results of research conducted to determine the effects of normal and abnormal processing and compositional variations on machinability (tool wear rate) of gray and ductile iron. The procedures developed allow precise tool wear measurements to be made and interpreted in terms of microstructures and compositions. Accurate data allows the most efficient ways for improving machinability to be determined without sacrificing properties of the irons.

  16. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper;

    2015-01-01

    a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions on the...

  17. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  18. Production and Machining of Thin Wall Gray and Ductile Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, E.H. (INEEL POC); Li, H.; Griffin, R.; Bates, C.E.; Eleftheriou, E.

    2000-11-03

    The University of Alabama at Birmingham, in cooperation with the American Foundry Society, companies across North America, with support from the U.S. Department of Energy, is conducting a project to develop an understanding of the factors that control the machinability of cast gray and ductile iron. Differences of as much as 500% have been found in machinability have been observed at the same strength. The most machinable irons were those with a high cell counts and few carbonitride inclusions. Additions of tin and copper can be added to both gray and ductile iron to stabilize the pearlite, but excessive additions (above those required to produce the desired pearlite content) degrade the machinability.

  19. Property enhancement of cast iron used for nuclear casks

    Science.gov (United States)

    Behera, R. K.; Mahto, B. P.; Dubey, J. S.; Mishra, S. C.; Sen, S.

    2016-01-01

    Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than annealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was characterized by the presence of dimples.

  20. Nondestructive characterization of ductile cast iron by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 322, č. 20 (2010), s. 3117-3121. ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis * cast iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  1. Hot ductility and high temperature microstructure of high purity iron alloys

    International Nuclear Information System (INIS)

    The inherent properties of metals are affected by impurity elements, sometimes strongly. There are many brittle phenomena in iron and its alloys due to the harmful effect of trace impurities such as sulphur, phosphorus, hydrogen and so on. On the other hand, a large number of alloying elements also embrittle iron due to the transformation and precipitation of secondary phase. For example, the ductility of Fe-Cr alloy decreases with the increase in chromium content, although the strength and the corrosion resistance increase with chromium content. In Fe-Cr alloy containing high chromium, 475 C embrittlement and σ-phase embrittlement are well known. An Fe-50mass%Cr alloy of conventional purity is extremely brittle due to the formation of σ-phase. However, we found the highly purified alloy is essentially ductile. In the workshop of UHPM-94, the experimental results on the ductility of Fe-50mass%Cr alloy were presented and discussed. In this research, the effect of purification on the hot ductility of high purity Fe-18mass%Cr and Fe-50mass%Cr alloys was investigated by tensile testing at high temperature. It was found that the ductility of Fe-18mass%Cr alloy is remarkably improved by purification, especially by the reduction of interstitial impurities such as carbon and nitrogen. The highly-purified Fe-50mass%Cr alloy has astonishing ductility at the temperature range between room temperature and 1073K. Also in a high purity Fe-50mass%Cr alloy, the formation of the σ-phase was not observed during ageing for 1000h at 973K. These results are also very important for the development of high-performance Fe-Cr alloys and of the manufacturing process. Consequently, purification technology is very useful for progress in metal science. (orig.)

  2. Analysis of the thixoability of ASTM A536 ductile iron

    Directory of Open Access Journals (Sweden)

    M.H. Robert

    2008-06-01

    Full Text Available Purpose: Thixoability of the ASTM A536 nodular cast iron is analyzed, it meaning its ability to hold a thixotropic semi-solid state and to be formed as such. Thixoability can be characterized by the solidification range, fraction of primary phase and sensitiveness of liquid fraction with temperature (dfl/dT within the solidification range. It is also investigated the effect of thixocasting in the microstructure of the considered alloy.Design/methodology/approach: Differential thermal analysis, differential scanning calorimetry and thermodynamic calculation package THERMOCALC were used to predict transformations temperatures involving liquid formation and dfl/dT within the solidification range. Microstructures of thixotropic slurries produced by partial melting were observed.Findings: Thixoforming of ASTM A536 nodular iron can be considered in a narrow window of about 28°C, were some dissolution of graphite nodules can still be afforded; this window meaning the range of temperatures of co-existence of austenite + graphite + liquid were the eutectic transformation is taking place. At higher temperatures the dissolution of graphite nodules in liquid can be significant.Research limitations/implications: Thixoability prediction models rely on sensitive experiments as thermoanalysis, with results strongly dependent on experimental conditions; and on thermodynamic data, sometimes not available or reliable for a specific alloy composition.Practical implications: The prediction of the thixoability of a certain alloy can make it more effective its thixoprocessing, allows better control of processing parameters and quality of final product; can also subsidize modifications in the alloy to make it more suitable to semi-solid processing.Originality/value: The study of the thixoability of a nodular hypereutectic cast iron is an original subject, not available in the specialized literature, however absolutely necessary if thixoprocessing of this family of

  3. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    M. Górny

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  4. Correlation Between Surface Roughness and Rheological Properties of Liquid Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2012-12-01

    Full Text Available The investigation of filling process of ductile cast iron flow in sand mould was showed the correlation between casting roughness surface and rheological properties of metal. Evidently of castings surface roughness was state of distance, from a few to a dozen diameters of vertical channel inlet. The method of rod fluidity test permit to study of rheological properties of metal and the roughness surface of castings.

  5. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model that...... takes into account the precipitation of off-eutectic austenite during the eutectic stage. Simulations reveal that the first stage of eutectic solidification in the thin plates can be explained by growth of off-eutectic austenite....

  6. Experimental verification of a dynamic finite element analysis for a ductile iron cask

    International Nuclear Information System (INIS)

    The paper summarizes the results of an instrumented 9 meter drop test of a Cylindrical Ductile Iron Cask with shock absorbers at the BAM test facility compared to a stress analysis performed with the dynamic finite computer code DYNA 3D (GNS). The comparison between the results obtained from the experiment and the calculation, which was performed before the drop test, is according to strain and acceleration time history during the impact and the deformation of the shock absorber. (author)

  7. The shaping of zinc coating on surface steels and ductile iron casting

    OpenAIRE

    D. Kopyciński

    2010-01-01

    The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI) taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly infl...

  8. Effect of small additions of vanadium and niobium on structure and mechanical properties of ductile iron

    OpenAIRE

    Fraś E.; Górny M.; Kawalec M.

    2007-01-01

    Results of investigations of influence of small additions of vanadium (up to 0,15 % V) and niobium (up to 0,04% Nb) on structure of ductile iron is presented in this work. Effect of these additions on distribution of graphite nodule diameter, nodule count, fraction and carbide count have been determined. Investigations of effect of small additions of vanadium and niobium on mechanical properties taking into account tensile strength, yield strength and elongation have also been made.

  9. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    OpenAIRE

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses from 2.8 to 8.0 mm with good agreement for both cooling curves and nodule counts. The experimental results revealed that the eutectic solidification of plates with thicknesses less than 4.3 mm was cha...

  10. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  11. Enhancement of wear resistance of ductile iron surface alloyed by stellite 6

    International Nuclear Information System (INIS)

    Research highlights: → This paper deals with the improvement of the wear resistance of ductile iron surface alloyed by stellite 6 hardfacing alloy. → The microstructure of the surface alloyed layer consisted of carbides dispersed in a Co-based solid solution matrix with dendritic structure. → The higher wear resistance of the coated sample than that of uncoated sample attributed to the hardness of the surface alloyed layer. → The dominant mechanism of the wear in the coated and uncoated samples was delamination wear. -- Abstract: This paper deals with the improvement of the wear resistance of ductile iron surface alloyed by a hypoeutectic stellite 6 alloy. In this regard, the surface alloyed layer with 3 mm thickness deposited on ductile iron using tungsten inert gas (TIG) surface processing. The microstructure, hardness and wear resistance of surface alloyed layer were investigated using optical microscopy, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis, Vickers hardness (HV0.3) and pin-on-plate tests. The results showed that the microstructure of the surface alloyed layer consisted of carbides dispersed in a Co-based solid solution matrix with dendritic structure. This microstructure was responsible for the improvement of the hardness and wear resistance of the coating. Further investigations showed that the dominant mechanism of the wear in the coated and uncoated samples was delamination wear.

  12. Development of acceptance criteria and damage tolerance analyzes of the ductile iron insert; Framtagning av acceptanskriterier samt skadetaalighetsanalyser av segjaernsinsatsen

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Alverlind, Lars; Andersson, Magnus (Inspecta Technology AB (Sweden))

    2010-01-15

    SKB intends to qualify a test system for detection and sizing of defects deemed to be relevant to the ductile iron insert. In support of this qualification, a damage tolerance analysis indicating the current qualification targets, given assumed damage and failure modes. This report describes the damage tolerance analyzes of different types of defects that are considered relevant of the ductile iron insert. The results are reported separately for each test area (zone) and type of insert (BWRs and PWRs)

  13. Review of current research and application of ductile cast iron quality monitoring technologies in Chinese foundry industry

    OpenAIRE

    Da-yong Li; Zhen-yu Xu; Xu-liang Ma

    2015-01-01

    There is a long history of studying and making use of ductile cast iron in China. Over the years, the foundrymen in China have carried out a lot of valuable research and development work for measuring parameters and controlling the quality in ductile cast iron production. Many methods, such as rapid metallographic phase, thermal analysis, eutectic expansion ratio, surface tension measurement, melt electrical resistivity, oxygen and sulfur activity measurement, ultrasonic measurement and sound...

  14. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  15. Austempering of hot rolled transformation-induced plasticity steels

    Institute of Scientific and Technical Information of China (English)

    Zhuang Li; Di Wu

    2008-01-01

    Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering inAustempering in the salt bath after hot rolling Was investigated. The effect of isothermal holding time on mechanical properties was studied throughing of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and ad TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holdingprecipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%,respevtively.

  16. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As-cast and heat-treated 400-18 ductile iron (DI) grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px) and Antinodulizing Complex Factor (K1) have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE) and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px<2.0 are the basic conditions to obtain as-cast ferritic structure. At the same lower level of Mn and P, the increasing of residual elements (Px>2.0) determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P<0.025%) and residual elements (Px<2.0) allow to use relative high Mn content (0.32%-0.38%), in condition of ferritic structure, including in as-cast state. High P (0.04%-0.045%) and Mn (0.25%-0.35%) content stabilized pearlite, especially at lower level of residual elements (Px <2.0). Antinodulizing action of elements was counteracted up to K1=2.0 level, by RE included in Mg-treatment alloy, which are beneficial for K1<1.2 and compulsory for K1>1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres.for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  17. Machinability of clean thin-wall gray and ductile iron castings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, C.E.; Littleton, H.E.; Eleftheriou, E.; Griffin, R.D.; Dwyer, Z.B.; DelSorbo, C.; Sprague, J.

    1997-02-01

    First phase was to develop a laboratory technique for evaluating the machinability of gray and ductile iron; longer term goal is to learn how to modify the foundry process to produce castings meeting all specified mechanical properties while providing improved machining behavior. Microcarbides present in the irons were found to dominate the machinability of iron. Pearlitic irons with acceptable machinability contain 8.9 to 10.5 wt% microcarbides. The weight fraction microcarbides in the iron is influenced by carbide forming element concentrations, presence of elements that retard carbon diffusion, and cooling rate from the eutectic through the eutectoid temperature range. Tool wear rate increased at higher surface machining speeds and fraction microcarbides; all irons containing above 11.5% microcarbides had poor machinability. Graphite size, shape, distribution, etc. had a lesser effect on machinability. Reducing the addition of a foundry grade Ca and Al bearing 75% FeSi inoculant from 0.5 to 0.2% increased the tool life 100%. Inoculation test castings were also poured in a class 40 gray iron; laboratory analysis is currently underway. Exploratory studies were conducted to determine if tool force could be used to predict tool life: torque and feed forces were found to correlate with machinability.

  18. Strain hardening and ductility of iron: axisymmetric vs. plane strain elongation. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Langford, G.

    1979-05-01

    The strain hardening of iron at high strains in plane strain elongation (strip drawing) is shown to fall increasngly below that of drawn iron wires at true strains above 2. This makes it unnecessary to invoke shear band formation simultaneously as a strengthening mechanism and as a ductility reducing mechanism in the drawn strip. Rather, shear bands may be a weakening mechanism in all contexts. A set of specimens of interstitial-free iron deformed in three of the four main classifications of deformation symmetry (wire, strip, and chips, representing axisymmetric elongation, plane strain elongation, and pure shear) has been prepared in the form of mechanical test specimens and thin foils for high resolution selected area diffraction. A simple technique for rapid discovery of the <110> axis of foils of strongly textured bcc wire has been worked out.

  19. Development of a ferritic ductile cast iron for improved life in exhaust applications

    OpenAIRE

    Ekström, Madeleine

    2013-01-01

    Due to coming emission legislations, the temperature is expected to increase in heavy-duty diesel engines, specifically in the hot-end of the exhaust system affecting components, such as exhaust- and turbo manifolds. Since the current material in the turbo manifold, a ductile cast iron named SiMo51, is operating close to its limits there is a need for material development in order to maintain a high durability of these components. When designing for increased life, many material properties ne...

  20. Feeding Against Gravity with Spot Feeders in High Silicon Ductile Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    A test pattern, with three different moduli castings was developed to investigate methods to optimise feeding of high silicon ductile cast irons. Different feeder types, modulus, and locations were investigated using both an insulating and an exothermal sleeve material. Porosities were analysed and......-hill against gravity. This effect may contribute to the thermal expansion created by the exothermal reaction. It was also found that the optimum feeder size does not scale linearly with the casting modulus but that larger casting modulus requires relatively smaller modulus feeders. The thermal gradient created...

  1. A study on controlled cooling process for making bainitic ductile iron

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    In the present research, TTT curve of bainitic ductile iron under the condition of controlled cooling was generated. The cooling rate of grinding ball and its temperature distribution were also measured at the same time. It can be concluded that the bainitic zone of TTT curve is separated from the pearlitic zone. As compared to the water-quenching condition, more even cooling rate and temperature distribution can be achieved in the controlled cooling process. The controlled cooling can keep away from pearlitic zone in the high temperature cooling stage and produce similar results to the process of traditional isothermal cooling with a low cooling rate in the low temperature cooling stage.

  2. As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties

    OpenAIRE

    Torre, Urko de la; Loizaga, Aitor; Lacaze, Jacques; Sertucha, Jon

    2014-01-01

    International audience The present work shows a comparative study regarding the mechanical properties of 25 as cast ferritic ductile iron alloys, nine of them with silicon contents higher than 3·00% and carbon contents lower than 3·60%. In a first step, different carbon equivalent values have been used in order to analyse the effect of this parameter on the mechanical properties. After this comparative analysis, the composition ranges C = 3·30–3·40 wt-% and Si = 3·75–3·80 wt-% have been se...

  3. Application of 3-D numerical simulation software SRIFCAST to produce ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on a method using numerical simulation equations and their solution schemes for liquid metal flows and heat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST was created. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce sound castings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.

  4. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquire....... Measurement error depending on TC design and cooling conditions is shown. A method is presented that allows acquisition of cooling curves in thin walled ductile iron castings down to thickness of at least 2.8 mm. The obtained cooling curves can be used to compare nucleation and growth during solidification of...

  5. Graphite nodule count and size distribution in thin-walled ductile cast iron

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will g...

  6. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar...... results. The 3D size distribution showed presence of primary graphite nodules in hypereutectic castings. In thin plates the nodule count is similar in eutectic and hypereutectic plates. In thicker plates the hypereutectic casting has the highest nodule count....

  7. Application of Differential Scanning Calorimetry (DSC in study of phase transformations in ductile iron

    Directory of Open Access Journals (Sweden)

    R. Przeliorz

    2010-04-01

    Full Text Available The effect of heating rate on phase transformations to austenite range in ductile iron of the EN-GJS-450-10 grade was investigated. For studies of phase transformations, the technique of differential scanning calorimetry (DSC was used. Microstructure was examined by optical microscopy. The calorimetric examinations have proved that on heating three transformations occur in this grade of ductile iron, viz. magnetic transformation at the Curie temperature, pearlite→austenite transformation and ferrite→austenite transformation. An increase in the heating rate shifts the pearlite→austenite and ferrite→austenite transformations to higher temperature range. At the heating rate of 5 and 15°C/min, local extrema have been observed to occur: for pearlite→austenite transformation at 784°C and 795°C, respectively, and for ferrite→austenite transformation at 805°C and 821°C, respectively. The Curie temperature of magnetic transformation was extrapolated to a value of 740°C. Each transformation is related with a specific thermal effect. The highest value of enthalpy is accompanying the ferrite→austenite transformation, the lowest occurs in the case of pearlite→austenite transformation.

  8. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M23C6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M23C6. Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  9. Effects of Holding Temperature for Austempering on Mechanical Properties of Si-Mn TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di

    2004-01-01

    A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing. This sort of low carbon steel only contains alloying elements of silicon and manganese rather than nickel and chromium. Its mechanical properties were enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite when it was strained at temperatures between Ms and Md, because retained austenite was moderately stabilized due to carbon enrichment by austempering. Austempering was carried out at different temperatures and 400 ℃ was found to be optimal. Tensile strength, total elongation and strength-ductility balance reached the maximum values and the product of tensile strength and total elongation exceeded 30 135 MPa % when the TRIP steel was held at 400 ℃ and strained at 350 ℃.

  10. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    OpenAIRE

    Zhang Xinning; Qu Yingdong; Yang Hongwang

    2013-01-01

    Different contents of Ni (0.3wt.% to 1.2wt.%) were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the...

  11. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  12. Microstructure feature of friction stir butt-welded ferritic ductile iron

    International Nuclear Information System (INIS)

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  13. Effects of slope plate variable and reheating on semi-solid structure of ductile cast iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming are known as a promising process for a wide range of metal alloys production. In spite of growing application of semi-solid processed light alloys, a few works have been reported about semi-solid processing of iron and steel. In this research inclined plate was used to change dendritic structure of iron to globular one. The effects of length and slope of plate on the casting structure were examined. The results show that the process can effectively change the dendritic structure to globular. In the slope plate angle of 7.5°and length of 560 mm with cooling rate of 67K·s-1 the optimum nodular graphite and solid globular particle were achieved.The results also show that by using slope plate inoculant fading can be prevented more easily since the total time of process is rather short.In addition, the semi-solid ductile cast iron prepared by inclined plate method, was reheated to examine the effect of reheating conditions on the microstructure and coarsening kinetics of the alloy. Solid fraction at different reheating temperatures and holding time was obtained and based on these results the optimum reheating temperature range was determined.

  14. Effect of Feeder Configuration on the Microstructure of Ductile Cast Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    Feeding and microstructure of a test casting rigged with different feeder combinations was studied. Castings were examined and classified by soundness and microstructure. Subsequently the casting macro- and microstructure was analyzed to study how differences in solidification and segregation...... influence the soundness of different sections of the castings. Moreover, the microstructural changes due to variations in thermal gradients are classified, and the variations in the mushy zone described. The paper discusses how solidification and segregation influence porosity and microstructure of ductile...... iron castings. The goal is to enable metallurgists and foundry engineers to more directly target mushy zone development to prolong the possibility to feed through this section. Keeping smaller section open for an extended period will make it possible to use fewer or smaller feeders, with reduced energy...

  15. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...... of 6 mm and below. La gave the best nodule size distribution with many small nodules. La had less shrinkage tendency than Ce in the 10 mm test bars. This tendency was less pronounced for the 6 and 4 mm test bars and other factors may have a large influence at these thicknesses. Increasing the...... temperature T-1, which is controlled by the growth of off-eutectic austenite dendrites, increased the shrinkage tendency....

  16. Effect of Cu and Mn on the Mechanical Properties and Microstructure of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    A.M.Omran

    2014-06-01

    Full Text Available This paper described the method used for producing ductile cast iron (SGI. The processing parameters affecting the production of SGI were studied. These parameters include chemical composition, castings thickness, mechanical properties, alloying elements and microstructure. The chemical composition of producing SGI was optimized. The nodularity was increased with increasing the percentages of Mg content and with decreasing the castings thickness. The amount of pearlite and mechanical properties were increased sharply with increasing Cu and Mn contents in the produced SGI. Empirical equations were correlated to indicate the relations among nodularity, Mg content and other parameters. The results shown also as the post inoculation increased the metallurgical quality was improved. The suitability of SGI as automotive engine was tested and different empirical correlations were obtained

  17. Ultrasonic testing of pre-turned contours for large components made of ductile iron

    International Nuclear Information System (INIS)

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed.

  18. Ductile iron cask with encapsulated uranium, tungsten or other dense metal shielding

    International Nuclear Information System (INIS)

    In a cask for the transportation and storage of radioactive materials, an improvement in the shielding means which achieves significant savings in weight and increases in payload by the use of pipes of depleted uranium, tungsten or other dense metal, encapsulating polyethylene cores, dispersed in two to four rows of concentric boreholes around the periphery of the cask body which is preferably made of ductile iron. Alternatively, rods or small balls of these same shielding materials, alone or in combination, are placed in these bore holes. The thickness, number and arrangement of these shielding pipes or rods is varied to provide optimum protection against the neutrons and gamma radiation emitted by the particular radioactive material being transported or stored. (author) 4 figs

  19. Evaluation of nickel coated ductile irons after electron beam surface melting

    International Nuclear Information System (INIS)

    The Surface engineering has become an important field of materials science during the last few decades. This is because one can improve the surface properties of the materials cost effectively without changing the bulk properties. In this study electron beam surface melting (EBSM) of nickel coated ductile irons has been carried out. EBSM provide maximum hardness in melted zone due to ledeburitic structure. Nickel coated samples show lower hardness after EBSM, because nickel promotes soft phase and suppresses carbide formation. But corrosion resistance and high temperature stability is predicted to be good. Samples have been characterized by scanning electron microscope (SEM) and energy dispersion X-ray (EDX) analysis. Microhardness surface profiles after electron beam surface melting have also been reported. (author)

  20. Damaging micromechanisms characterization in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Vittorio Di Cocco

    2014-10-01

    Full Text Available The analysis of the damaging micromechanisms in Ductile Cast Irons is often focused on ferritic matrix. Up to ten years ago, for this grades of DCIs, the main damaging micromechanism was identified with the graphite elements – ferritic matrix debonding. More recent experimental results showed the presence of an internal gradient of mechanical properties in the graphite elements and the importance of other damaging micromechanisms, with a negligible importance of the graphite elements – ferritic matrix debonding mechanism. In this work, damaging micromechanisms development in a ferritic – pearlitic DCI have been investigated by means of tensile tests performed on mini-tensile specimens and observing the specimens lateral surfaces by means of a scanning electro microscope (SEM during the tests (“in-situ” tests. Experimental results have been compared with the damaging micromechanisms observed in fully ferritic and fully pearlitic DCIs.

  1. Consideraciones sobre la rotura por fatiga de contacto en el hierro nodular austemplado. // Considerations on the contact fatigue failure in the austempered nodular iron.

    Directory of Open Access Journals (Sweden)

    D. Moreno Mur

    2004-09-01

    Full Text Available El presente trabajo considera como factor importante la variación de la geometría del nódulo de grafito en el cálculo delnúmero de ciclos necesarios durante la formación de un pitting en una fundición nodular austemplada. En este caso se tomóen cuenta la aparición de una energía de deformación alrededor de este y se consideró el material con propiedadeshomogéneas. Es analizada la influencia de la variación de la carga, los valores de los diámetros de contacto, el tamaño delnódulo de grafito, de la profundidad donde aparece el nódulo en la geometría del nódulo, por ser estos factores importantesen la iniciación y propagación de grietas por fatiga de contacto. Se trabajó con las profundidades donde aparecen lasmáximas tensiones tangenciales, las cuales se obtuvieron de las expresiones de Hertz, con valores de carga dentro del límiteelástico. Luego se modela por elementos finitos el mecanismo de fractura, en el sistema ALGOR 12.06, y se realiza unaregresión múltiple en el sistema STATGRAPHICS, obteniendo modelos con buenos coeficientes de regresión y niveles deconfianza.Palabras claves: Fatiga de contacto, factura, grietas, nódulo grafito, FEM._________________________________________________________________________Abstract.The present paper deal with the failure of contact fatigue in the autempered ductil iron considering the graphite nodulesvariation as an important factor in th calculation of the number of cycles nedded for pitting, starting from theoreticalconsiderations, developing a methodology for the calculation. The influence of load variation is analyzed, the values of thecontact diameters, the size of graphite nodules, the depth where the nodule appears in the geometry of the nodule, areimportant factors in the initiation and propagation of contact fatigue cracks. It is considered the depths in wich the maximstangential tensions appear, which were obtained by Hertz expressions. An analysis by the method of

  2. Kinetic study of austenite formation during continuous heating of unalloyed ductile iron

    Science.gov (United States)

    Vázquez-Gómez, Octavio; Barrera-Godínez, José Antonio; Vergara-Hernández, Héctor Javier

    2015-01-01

    The austenite formation kinetics in unalloyed cast ductile iron was studied on the basis of dilatometry measurements, and Avrami's equation was used to estimate the material's kinetic parameters. A continuous heating transformation diagram was constructed using heating rates in the range of 0.06 to 0.83°C·s-1. As the heating rate was augmented, the critical temperatures, A c1 and A α, as well as the intercritical range, which was evaluated as the difference between the critical temperatures, Δ T = A α - A c1, increased. At a low heating rate, the kinetics of austenite formation was slow as a consequence of the iron's silicon content. The effect of heating rate on k and n, the kinetic parameters of Avrami's equation, was also determined. Parameter n, which is associated with nucleation sites and growth geometry, decreased with an increase in heating rate. In addition, parameter k increased with the increase of heating rate, suggesting that the nucleation and growth rates are carbon- and silicon-diffusion controlled during austenite formation under continuous heating.

  3. Using Cored Wires Injection 2PE-9 Method in the Production of Ferritic Si-Mo Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-12-01

    Full Text Available The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results and analysis of using this method for optimal production of ductile iron under specific industrial conditions. It means, that length of nodulariser wire plus treatment and pouring temperatures were optimized. In this case, was taken ductile iron with material designation: EN-GJS-SiMo40-6 Grade according EN 16124:2010 E. Microstructure of great number of trials was controlled on internally used sample which has been correlated with standardsample before. The paper presents typical ferritic metallic matrix and nodular graphite. Additionally, mechanical properties were checked in some experiments. Mean values of magnesium recovery and cost of this new method from optimized process parameters werecalculated as well.

  4. Using Cored Wires Injection 2PE-9 Method in the Production of Ferritic Si-Mo Ductile Iron Castings

    OpenAIRE

    E. Guzik; D. Wierzchowski

    2012-01-01

    The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron) with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describ...

  5. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  6. The Effects of Fracture Origin Size on Fatigue Properties of Ductile Cast Iron with Small Chill Structures

    Science.gov (United States)

    Sameshima, Daigo; Nakamura, Takashi; Horikawa, Noritaka; Oguma, Hiroyuki; Endo, Takeshi

    Reducing the weight of a machine structure is an increasingly important consideration both for the conservation of resources during production and for the energy saving during operation. With these objectives in mind, thin-walled ductile cast iron has recently been developed. Because rapid cooling could result in brittle microstructure of cementite (chill) in this cast iron, it is necessary to investigate the effect of cementite on the fatigue properties. Therefore, fatigue tests were carried out on a ductile cast iron of block castings which contained a relatively small amount of cementite. Fracture surface observation indicated that the fracture origins were located at graphite clusters and cast shrinkage porosity, not at cementite. It appears that when the size of the cementite is smaller than that of the graphite, the cementite does not affect the fatigue properties of ductile cast iron. Not surprisingly, the fatigue lives were found to increase with decrease in the size of the fatigue fracture origin. The threshold initial stress intensity factor range ΔKini,th for fatigue failure was found to be about 3-4MPa√m, independent of microstructure.

  7. Damage Analysis of a Ferritic SiMo Ductile Cast Iron Submitted to Tension and Compression Loadings in Temperature

    OpenAIRE

    Isabel Hervas; Anthony Thuault; Eric Hug

    2015-01-01

    Tensile and compression tests were carried out on a ductile cast iron for temperatures up to 1073 K. The damage caused inside and around graphite nodules was evaluated as a function of the local equivalent plastic strain by using microstructural quantifications. The mechanical properties are strongly dependent on a temperature above 773 K. Concerning tensile behavior, an evolutional law issued from the Gurson model representing the void growth as a function of the deformation and temperature ...

  8. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat;

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under the...... stresses due to the cooling process during manufacturing are also considered. Numerical solutions are obtained using an in-house developed finite element code; proper comparison with literature in the field is given....

  9. A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules

    Science.gov (United States)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper

    2016-06-01

    In this paper, the thermo-elastic behavior of the graphite nodules contained in ductile iron is derived on the basis of recent transmission electron microscopy investigations of their real internal structure. The proposed model is initially validated by performing a finite element homogenization analysis to verify its consistency with the room-temperature elastic properties of ductile iron measured at the macro scale. Subsequently, it is used to investigate the formation of local residual stresses around the graphite particles by simulating the manufacturing process of a typical ferritic ductile iron grade, and the results are compared with preliminary measurements using synchrotron x-rays. Finally, the obtained accurate description of the stress & strain field at the micro scale is used to shed light on common failure modes reported for the nodules and on some peculiar properties observed in ductile iron at both micro and macro scale.

  10. Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying

    International Nuclear Information System (INIS)

    Multicarbide reinforced metal matrix composite (MMC) layers on a ductile iron (QT600-3) were fabricated by laser surface alloying (LSA) using two types of laser: a 5 kW continuous wave (CW) CO2 laser and a 400 W pulsed Nd:YAG laser, respectively. The research indicated that LSA of the ductile iron with multicarbide reinforced MMC layers demonstrates sound alloying layers free of cracks and porosities. The microstructure, phase structure and wear properties of MMC layers were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), as well as dry sliding wear testing. The microstructure of the alloyed layer is composed of pre-eutectic austenite, ledeburite, spherical TiC, Cr7C3 and Cr23C6 with various morphologies. TiC particles are dispersed uniformly in the upper region of MMC layers. The average hardness of LSA layers by CO2 laser and pulsed Nd:YAG laser is 859 HV0.2 and 727 HV0.2, respectively. The dry sliding wear testing shows the wear resistance of ductile iron is significantly improved after LSA with multicarbide.

  11. Synthesis of nanoparticeles in ductile iron with small additions of vanadium and niobium and its mechanical properties

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2007-12-01

    Full Text Available It has been shown that the heat treatment of 1095oC/640 oC type of ferritic ductile iron with small addition of 0.08% vanadium permits to obtain of the rounded VC nanoparticles with an average size of 50 nm and 0.13 volume fraction. Results of investigations of influence of small vanadium up to 0.3%, niobium up to 0.16% and nitrogen up to 58 ppm additions and heat treatment of 1080oC-24h/640 oC and 1080oC-24h/600 oC type on structure and mechanical properties (tensile strength, yields strength and elongation of ductile iron are also presented in this work. It has been demonstrated that heat treatment and small additions of vanadium, and niobium as well as nitrogen enable to obtain material, which can be classified a EN-GJS-450-18 to EN-GJS-700-2 grade ductile iron.

  12. A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat;

    2016-01-01

    analysis to verify its consistency with the room-temperature elastic properties of ductile iron measured at the macro scale. Subsequently, it is used to investigate the formation of local residual stresses around the graphite particles by simulating the manufacturing process of a typical ferritic ductile......In this paper, the thermo-elastic behavior of the graphite nodules contained in ductile iron is derived on the basis of recent transmission electron microscopy investigations of their real internal structure. The proposed model is initially validated by performing a finite element homogenization...

  13. Low temperature impact toughness and fracture mechanism of cast QT400-18L ductile iron with different Ni additions

    Directory of Open Access Journals (Sweden)

    Zhang Xinning

    2013-09-01

    Full Text Available Different contents of Ni (0.3wt.% to 1.2wt.% were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures. The impact toughnesses of the samples at room and low temperatures were tested. The microstructures and fractographs were observed. Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change. When the Ni content is 0.7wt.%, the matrix structure is the refined ferrite with a very small fraction (about 2% of pearlite near the eutectic cell boundaries. When the Ni content is further increased, the fraction of pearlite increases significantly and reaches more than 5% when 1.2wt.% Ni is added. The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.% to 0.7 wt.%, but decreases as the Ni content further increases to 1.2wt.% due to the increase of pearlite fraction. The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.% Ni addition. The average value of the impact work is still more than 13 J even at -30 ℃. In addition, the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20 ℃ to -60 ℃.

  14. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  15. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    Directory of Open Access Journals (Sweden)

    Fraś E.

    2007-01-01

    Full Text Available Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V and niobium (about 0,05 and 0,16% Nb as well as nitrogen (32 - 58 ppm. on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing magnesium and silicon.

  16. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    OpenAIRE

    Fraś E.; Górny M.; Kawalec M.

    2007-01-01

    Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V) and niobium (about 0,05 and 0,16% Nb) as well as nitrogen (32 - 58 ppm.) on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing m...

  17. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    International Nuclear Information System (INIS)

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al2O3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection

  18. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Cheng, Yin-Hwa [Department of Materials Engineering, Tatung University, Taipei 104, Taiwan (China); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Department of Mechanical Engineering, National Central University, Taoyuan 320, Taiwan (China); Lee, Sheng-Long [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-01-01

    Highlights: • Electroless nickel was used as an interlayer for TiAlZrN-coated ductile iron. • The duplex coatings evidently improved corrosion resistance of ductile iron. • The duplex coated ductile iron showed a good erosion resistance. - Abstract: This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al{sub 2}O{sub 3} particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  19. Testing of heating and cooling process of ADI cast iron with use of ATND method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-10-01

    Full Text Available ADI (Austempered Ductile Iron cast iron, owing to its unique combination of high tensile strength and abrasion resistance with very goodplasticity, founds implementation in many branches of industry as a substitute of alloy cast steel and carburized or heat treated steels. Inspite of its solid position among producers and recipients of castings, there are still undertaken studies aimed at perfection of its propertiesand recognition of mechanisms enabling obtaining such properties.The paper presents implementation of thermal-voltage-derivative (ATND method to registration of heating and cooling course of ADIcast iron with EN-GJS-1200-2 grade. ADI cast iron with EN-GJS-1200-2 grade underwent the study. Heat treatment of the cast iron wasperformed in Foundry Institute with use of LT ADI-350/1000 processing line. Results obtained from the testing illustrate in graphic formregistered heating and cooling curves of investigated cast irons obtained with use of the ATND method.

  20. High Temperature Oxidation Behavior of Laser Surface Modification Layer with Thermal Sprayed Coating on Ductile Cast Iron

    International Nuclear Information System (INIS)

    The ductile cast iron substrate was coated with Al and Al-Ni powder by low pressure spraying and it was irradiated with a CO2 laser. The isothermal oxidation behavior on its surface modification layer was investigated at high temperature (1023, 1123K) in air during 24 hours. The oxidation kinetics of DA and DAN laser alloyed layer were shown to follow a parabolic rate law over the DA50 specimen was approximately decreased from one-third to one-sixth than DAN's. The DA50 alloyed layer was difficult to grow its oxide scale, since dense aluminum oxide was produced on the interface of alloyed layer. High temperature corrosion resistance of the DAN alloyed layer was greatly decreased as compared with DA50's. Therefore, it is considered that external iron oxide layer contains porosity or crack as well as Ni-rich internal oxide layer

  1. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)

    2015-03-11

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.

  2. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    International Nuclear Information System (INIS)

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity

  3. Effect of Slope Plate Variable and Reheating on the Semi-Solid Structure of Ductile Cast Iron

    Institute of Scientific and Technical Information of China (English)

    M. Nili-Ahmadabadi; F. Pahlevani; P. Babaghorbani

    2008-01-01

    Semi-solid metal casting and forming is a promising production method for a wide range of metal alloys. In spite of many applications for semi-solid processed light alloys, few works have reported on the semi-solid processing of iron and steel. In this research, an inclined plate was used to change the dendritic structure of iron to globular. The effects of the length and slope of the plate on the casting structure were examined. The results show that the process effectively changes the dendritic structure to globular. A sloped plate angle of 7.5° and length of 560 mm with a cooling rate of 67 K·s-1 gave the optimum graphite nodu-larity and solid particle globularity. The results also show that the sloped plate more easily prevents inocu-lant fading since the total time processing is rather short. In addition the semi-solid ductile cast iron prepared using the inclined plate method was reheated to examine the effect of reheating conditions on the micro-structure and coarsening kinetics of the alloy. The solid fractions at different reheating temperatures and holding times were used to find the optimum reheating temperature range.

  4. On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hattel, Jesper

    2016-01-01

    the present paper, the nodules’ elastic properties are thoroughly investigated by means of both analytical and numerical techniques. The analysis takes into account the influence of several non-linear phenomena, as local residual stresses arising during solid-state cooling, interface debonding and......A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading. In...... limited particle strength. It is shown that if the nodule internal structure is considered, the traditional isotropy assumption leads to the definition of a domain of admissible values for the effective elastic constants. However, micromechanical calculations indicate that values within the domain do not...

  5. Effect of rare earth element on microstructure formation and mechanical properties of thin wall ductile iron castings

    International Nuclear Information System (INIS)

    Ductile iron castings with 2, 3, 4, 6, 8, and 25 mm thickness and various amount of rare earth elements (RE) (from 0 to 0.04%), were cast in sand molds to identify the effects of sample thickness and the content of RE% on microstructural formation and selected mechanical properties. The effects of RE content and sample thickness on microstructural formation, including on graphite nodule count, graphite nodule shape, spherodization, and ferrite amount, were observed. The yield strength of the samples with RE within the range investigated were lower than those of the specimens without RE. The elongation was improved with the addition of RE up to 0.03% in ductile iron castings. The additions of 0.02% RE caused a smaller graphite nodule size and a higher number of graphite nodules than those in the specimen without RE at all levels of RE addition; the nodule count decreased with increase in section size. The chill zones were observed in the 2 mm thick samples, but were absent in the samples from castings which were thicker than 2 mm, irrespective of the addition of RE. The nodularity of graphite nodules improved due to the addition of 0.02-0.04% RE. The specimens with RE content up to 0.03% had a lower tensile strength and hardness, higher elongation than that of the specimens without RE. The ferrite content in all castings increased with additions of 0.02% RE. The tensile strengths of the 2 and 3 mm thick samples were also estimated using the relationship between strength and hardness, obtained from the data on the tensile strength and hardness of the 25 mm thick samples

  6. The influence of the graphite mechanical properties on the constitutive response of a ferritic ductile cast iron – A micromechanical FE analysis

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2015-01-01

    In the present paper a micro-mechanical approach is used to investigate the influence of the graphite mechanical properties on the loading response in the early deformation range of ductile cast iron. A periodic unit cell composed by a single graphite nodule embedded in a uniform ferritic matrix is...

  7. Dry sliding wear system response of ferritic and tempered martensitic ductile iron

    Science.gov (United States)

    Jha, V. K.; Mozumder, Y. H.; Shama, S.; Behera, R. K.; Pattaniak, A.; P, Sindhoora L.; Mishra, S. C.; Sen, S.

    2015-02-01

    Spheroidal graphite cast iron (SG iron) is the most preferable member of cast iron family due to its strength and toughness along with good tribological properties. SG iron specimens with annealed and martensitic matrix were subjected to dry sliding wear condition and the system response was correlated to matrix microstructure. Respective microstructure was obtained by annealing and quench and tempering heat treatment process for an austenitizing temperature of 1000°C. Specimens were subjected to Ball on plate wear tester under 40N, 50N, 60N load for a sliding distance of 7.54m. Except for quench and tempered specimen at 50N, weight loss was observed in every condition. The wear surface under optical microscope reveals adhesive mechanism for as-cast and annealed specimen whereas delaminated wear track feature was observed for quench and tempered specimen.

  8. Standard test method for determining nodularity and nodule count in ductile iron using image analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method is used to determine the percent nodularity and the nodule count per unit area (that is, number of nodules per mm2) using a light microscopical image of graphite in nodular cast iron. Images generated by other devices, such as a scanning electron microscope, are not specifically addressed, but can be utilized if the system is calibrated in both x and y directions. 1.2 Measurement of secondary or temper carbon in other types of cast iron, for example, malleable cast iron or in graphitic tool steels, is not specifically included in this standard because of the different graphite shapes and sizes inherent to such grades 1.3 This standard deals only with the recommended test method and nothing in it should be construed as defining or establishing limits of acceptability or fitness for purpose of the material tested. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address al...

  9. The influence of selected elements on mechanical properties of ferritic ductile iron

    OpenAIRE

    M.S. Soiński; A. Derda

    2008-01-01

    An altcmpi of dcrcrinininp rhc relationship bcrwccn changcs of quantities of clcmcnts in the alloy (such 'as C, Si, Mn. P. S. Cr, Ni. CL~M.g )and thc basic mcchanical propcrtics of thc matcrisl (R,, Rp,0,2r As, IIB, KCV) has bccn undcstakcn on thc basis of data concerningproduction of fcrritic ductilc iron of thc EN-G1S-400-IRU-LT grndc (according 10 PN-EN 1563 Standard) from about 300 hcars. Thccxamincd cast imn has hccn pmduccd by onc of thc domcstic roundrics in thc induction lurnacc of mc...

  10. Damage Analysis of a Ferritic SiMo Ductile Cast Iron Submitted to Tension and Compression Loadings in Temperature

    Directory of Open Access Journals (Sweden)

    Isabel Hervas

    2015-12-01

    Full Text Available Tensile and compression tests were carried out on a ductile cast iron for temperatures up to 1073 K. The damage caused inside and around graphite nodules was evaluated as a function of the local equivalent plastic strain by using microstructural quantifications. The mechanical properties are strongly dependent on a temperature above 773 K. Concerning tensile behavior, an evolutional law issued from the Gurson model representing the void growth as a function of the deformation and temperature was successfully employed. It is demonstrated that the strain state and the temperature have a strong influence on the void growth function. In the case of compression tests, the temperature has a weak influence on the nodule deformation for temperatures lower than 773 K, and the mechanical behavior is driven by the viscoplastic properties of the ferrite. For higher temperatures, the mechanical properties in compression are progressively modified, since graphite nodules tend to remain spherical, and ferrite grains are severely deformed. A synthesis of the damage mechanisms is proposed in the studied range of temperature and plastic strain. It appears that the graphite nodule aspect ratio can be used as an indicator of the deformation under compression loading for temperatures ranging from room temperature to 673 K.

  11. Effects of sphere size on the microstructure and mechanical properties of ductile iron-steel hollow sphere syntactic foams

    Science.gov (United States)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-06-01

    The effects of sphere size on the microstructural and mechanical properties of ductile iron-steel hollow sphere (DI-SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder-binder suspension onto expanded polystyrene spheres (EPSs). Afterwards, the DI-SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy (EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI-SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.

  12. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-07-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  13. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  14. 高硅合金耐热铸铁生产球墨铸铁模具的研制%Research on producing ductile iron mould with high silicon alloy heat resistant cast iron

    Institute of Scientific and Technical Information of China (English)

    梁冰利; 王宏亮; 韩黎

    2012-01-01

    对铸铁模具使用工况进行了分析,采用了高硅合金耐热铸铁为生产球墨铸铁模具的材质,并介绍了高硅合金耐热球墨铸铁模具的消失模铸造工艺、冶炼工艺、热处理工艺以及该材质模具的实际使用效果.实际生产表明:高硅合金耐热球墨铸铁具有优越的综合耐热疲劳性能,大大提高了模具寿命.%The actual operating conditions of cast iron mould were analyzed. The silicon alloy heat resistant cast iron was adopted to produce ductile iron mould, and the lost foam casting process, smelting process, heat treatment process of the high silicon alloy heat resistant ductile iron mould as well as the actual use effect of the mould with this material were introduced. The practical production shows that the high silicon alloy heat resistant cast iron has superior heat-resistant and fatigue properties, which improves the mould life.

  15. Aspectos cinéticos e microestruturais da transformação bainítica incompleta em ferros nodulares austemperados Kinetic and microstructural aspects of incomplete bainite transformation in austempered ductile irons

    OpenAIRE

    Marcio Ferreira Hupalo; Daniele da Silva Ramos; Alexsandro Rabelo; Nelson Batista de Lima

    2012-01-01

    Nesse trabalho, foram estudados aspectos cinéticos da transformação bainítica incompleta em ligas de ferro nodular, contendo 2,36 e 2,68% Si. As amostras foram austenitizadas a 900°C, durante 90 minutos, e austemperadas a 320 e 370ºC, em tempos entre 1,5 e 60 minutos. A caracterização microestrutural foi realizada pelas técnicas de microscopia óptica (MO), microscopia eletrônica de varredura (MEV), difração de Raios X (DRX) e microdureza Vickers. Foi desenvolvido um método de quantificação da...

  16. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the abrasive wear of austempered ductile irons.

    OpenAIRE

    C. J. Diez Cicero; G. R. Fernández López; U. Ordóñez Hernández; C. R. Figueroa Hernández; F. Mondelo

    2009-01-01

    Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular,ocupa en la actualidad, uno de los lugares más importantes entre los hierros fundidos de altaresistencia, y con la introducción del tratamiento térmico de austemperado, aplicado a estasfundiciones, se da lugar a una nueva familia de materiales, caracterizados por su alta resistenciamecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de lasfundiciones nodulares.Este trabaj...

  17. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the waste by abrasion resistance for ductile austempering irons.

    OpenAIRE

    C. J. Diez Cicero; G. R. Fernández López; U. Ordóñez Hernández

    2004-01-01

    Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular, ocupa en la actualidad unode los lugares más importantes entre los hierros fundidos de alta resistencia, y con la introducción del tratamiento térmicode austemperado aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo...

  18. Efecto del conteo de nódulos en la resistencia a la tracción de los hierros dúctiles austemperados. // Effect of nodules count in the tensile strength of austempered ductile irons.

    OpenAIRE

    C. J. Diez Cicero; G. R. Fernández López; U. Ordóñez Hernández; F. Mondelo; E. Fraga Guerra

    2004-01-01

    Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nódular ocupa uno de los lugaresmás importantes entre los hierros fundidos de alta resistencia y con la introducción del tratamiento térmico deaustemperado, aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valorac...

  19. Caracterización de la capa de boruros formada durante la austenización de un hierro nodular austemperizado//Characterization of borides coating formed during austenitization of an austempered ductile iron

    OpenAIRE

    Urbano Ordóñez‐Hernández; Sarah Parada-de-la-Puente; Carlos Figueroa - Hernández; Francisco-J. Mondelo-García; Arturo Barba-Pingarrón; Alfredo del-Castillo-Serpa

    2015-01-01

    En este trabajo se ha investigado el efecto de la austenitización y el borurado simultáneos, a 950 ºC, en la microestructura, la microdureza Vickers y el espesor de la capa borurada en medio líquido de un hierro nodular austemperizado no aleado. Se demostró que es posible obtener una capa de boruros de hierro muy bien estructurada con la microdureza Vickers suficientemente alta (1400 HV)y con adecuado espesor de capa de 67 μm, sobre un sustrato de ausferrita típico de las fundiciones nodulare...

  20. A fracture mechanics safety concept to assess the impact behavior of ductile cast iron containers for shipping and storage of radioactive materials

    International Nuclear Information System (INIS)

    Within the scope of the German licensing procedures for shipping and storage containers for radioactive materials made of ductile cast iron, BAM performs approval design tests including material tests to ensure the main safety goals of shielding, leaktightness and subcriticality under ''Type B accident conditions''. So far the safety assessment concept of BAM is based essentially on the experimental proof of container strength by prototype testing under most damaging test conditions in connection with complete approval design tests, and has been developed especially for cylindrical casks like CASTOR- and TN-design. In connection with the development of new container constructions such as ''cubic cast containers'', and the fast developments in the area of numerical calculation methods, there is a need for a more flexible safety concept especially considering fracture mechanics aspects.This paper presents the state of work at BAM for such an extended safety concept for ductile cast iron containers, based on a detailed brittle fracture safe design proof. The requirements on stress analysis (experimental or numerical), material properties, material qualification, quality assurance provisions and fracture mechanics safety assessment, including well defined and justified factors of safety, are described. ((orig.))

  1. Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding

    International Nuclear Information System (INIS)

    In this study, the effect of surface alloying on the microstructure and wear behavior of ductile iron was studied. In this regard, ductile iron samples were coated by single and double pass welds of a nickel-based electrode (ENiCrFe3) using shielded metal arc welding. The effects of number of passes on microstructure, hardness and wear resistance of cladded layers were investigated. Optical microscopy and X-ray diffractometry were used to identify the microstructure and phase composition of cladded layers and interfaces. The results revealed that cladded layers consist of austenite (Fe, C), γ(Fe, Ni) and small quantities of carbides such as Cr7C3. It was also found that the hardness of the cladded layers was higher than that of substrate. In samples processed with a single and double passes, hardness reached up to 500 and 450 HV, respectively. Pin-on-plate wear tests showed that the wear mechanism is predominantly delamination in the cladded layers and substrate.

  2. A study on the corrosion and erosion behavior of electroless nickel and TiAlN/ZrN duplex coatings on ductile iron

    Science.gov (United States)

    Lin, Chung-Kwei; Hsu, Cheng-Hsun; Cheng, Yin-Hwa; Ou, Keng-Liang; Lee, Sheng-Long

    2015-01-01

    This study utilized electroless nickel (EN) and cathodic arc evaporation (CAE) technologies to deposit protective coatings onto ductile iron. Polarization corrosion tests were performed in 3.5 wt.% sodium chloride, and also erosion tests were carried out by using Al2O3 particles (∼177 μm in size and Mohr 7 scale) of about 5 g. Surface morphologies of the corroded and eroded specimens were observed separately. To further understand the coating effects on both the corrosive and erosive behavior of ductile iron, coating structure, morphology, and adhesion were analyzed using X-ray diffractormeter, scanning electron microscopy, and Rockwell-C indenter, respectively. The results showed that the EN exhibited an amorphous structure while the CAE-TiAlN/ZrN coating was a multilayered nanocrystalline. When the TiAlN/ZrN coated specimen with EN interlayer could effectively increase the adhesion strength between the CAE coating and substrate. Consequently, the combination of TiAlN/ZrN and EN delivered a better performance than did the monolithic EN or TiAlN/ZrN for both corrosion and erosion protection.

  3. Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan (China); Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Kung, Shu-Chi [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China)

    2013-11-01

    This study utilized electroless nickel as an interlayer, then coated nanoscale CrN/ZrN multilayer on Cu-alloyed ductile iron through cathodic arc deposition method. Morphology and structure of the coatings were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). Moreover, Rockwell-C indentation, nanoindention, and ball-on-disk wear tests were all carried out to explore the properties of the coatings consisting of adhesion, hardness, elastic modulus, friction coefficient, and wear rate, respectively. The results showed that electroless nickel had a major amorphous phase while the CrN/ZrN multilayer coatings exhibited alternate nanocrystalline CrN and ZrN phases. Compared with single coating of electroless nickel or CrN/ZrN, the CrN/ZrN multilayer coatings with an electroless nickel interlayer exhibited higher hardness (31.1 GPa) and elastic modulus (256.4 GPa). Consequently, the ductile iron with the duplex coatings could be available to reduce both the friction coefficient and wear rate.

  4. Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron

    International Nuclear Information System (INIS)

    This study utilized electroless nickel as an interlayer, then coated nanoscale CrN/ZrN multilayer on Cu-alloyed ductile iron through cathodic arc deposition method. Morphology and structure of the coatings were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). Moreover, Rockwell-C indentation, nanoindention, and ball-on-disk wear tests were all carried out to explore the properties of the coatings consisting of adhesion, hardness, elastic modulus, friction coefficient, and wear rate, respectively. The results showed that electroless nickel had a major amorphous phase while the CrN/ZrN multilayer coatings exhibited alternate nanocrystalline CrN and ZrN phases. Compared with single coating of electroless nickel or CrN/ZrN, the CrN/ZrN multilayer coatings with an electroless nickel interlayer exhibited higher hardness (31.1 GPa) and elastic modulus (256.4 GPa). Consequently, the ductile iron with the duplex coatings could be available to reduce both the friction coefficient and wear rate.

  5. The Structure and Bond Strength of Composite Carbide Coatings (WC-Co + Ni) Deposited on Ductile Cast Iron by Thermal Spraying

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-02-01

    An investigation was conducted to determine the role of Ni particles in the WC-Co coating produced with the supersonic method on microstructure, mechanical, and wear properties in a system of type: WC-Co coating/ductile cast iron. The microstructure of the thermal-sprayed WC-Co + Ni coating was characterized by scanning electron and transmission electron microscopes as well as the analysis of chemical and phase composition in microareas (EDS, XRD). The microstructure of the WC-Co + Ni coating consisted of large, partially molten Ni particles and very fine grains of WC embedded in cobalt matrix, coming to the size of nanocrystalline. Moreover, the results were discussed in reference to examination of bending strength considering cracking and delamination in the system of (WC-Co + Ni)/ductile cast iron as well as hardness and wear resistance of the coating. It was found that the addition of Ni particles was significantly increase resistance to cracking and wear behavior in the studied system.

  6. Effect of Ce-Mg-Si and Y-Mg-Si nodulizers on the microstructures and mechanical properties of heavy section ductile iron

    Institute of Scientific and Technical Information of China (English)

    郭二军; 宋良; 王丽萍

    2014-01-01

    Effect of Ce-Mg-Si (light RE) and Y-Mg-Si (heavy RE) nodulizers on the microstructures and mechanical properties of heavy section ductile iron was investigated to develop the material of spent-nuclear-fuel containers. Two as-casts were treated by the same quality percentage of light RE and heavy RE, respectively. Four positions were chosen to stand for different solidification cool-ing rates of specimens. The tensile strength, elongation and impact toughness of specimens treated by heavy RE were all higher than those of the specimens treated by light RE. With the decrease of cooling rate, the mechanical properties of two specimens decreased, and the fracture morphology changed from ductile fracture to brittle fracture. The improving effect of mechanical properties between heavy RE and light RE was obvious due to the better anti-degradation property of heavy RE. While the solidification process lasted for more than 250 min, the improving effect was not obvious due to serious spheroidalization decaying.

  7. Investigation of the Potential of Jatropha Seed Oil as Austempering Quenchant for Medium Carbon Steel

    OpenAIRE

    Akor, T; Ashwe, A., Ikpambese, K.K., and Yaji, P.M.

    2014-01-01

    This study investigates the suitability of jatropha seed oil as quenching medium for austempering medium carbon steel. Test samples were austenitized at 9500C; socked for 1hr; austempered for varying periods of 1, 2, 3, 4 and 5hrs. The result showed significant increase in tensile strength and impact energy apart from achieving an appreciable increase in hardness. It also tally with recommended values of medium carbon steel austempered in salt bath, implying that jatropha oil can be used as h...

  8. Effect of CeO{sub 2} addition on thermal shock resistance of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaoben [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); College of Mechanical Engineering, Shanghai Dianji University, Shanghai 200240 (China); Zhu, Shigen, E-mail: sgzhu@dhu.edu.cn [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Shanghai 201620 (China)

    2015-09-15

    Highlights: • WC–Co powders with CeO{sub 2} were deposited by electric contact strengthening (ECS). • ECS is based on electric resistive heating between the electrode and work piece. • WC–Co coating with CeO{sub 2} by ECS was metallurgically bonded to the substrate. • The addition of CeO{sub 2} could refine the coating microstructure and increase the microhardness. • By the proper addition of cerium oxide, the thermal shock performance was enhanced. - Abstract: The WC–12%Co powders with different contents of CeO{sub 2} (0.1–2 wt.%) were deposited on ductile iron by electric contact surface strengthening. The coatings with and without CeO{sub 2} were examined and tested for microstructural characteristic, phase structure, microhardness and thermal shock resistance. The comparison concluded that the proper addition of CeO{sub 2} could refine the microstructure of coatings and increase the microhardness of the coatings. By the small amount addition of cerium oxide (0.5 wt.%), the solid solution strengthening effect and grain boundaries strengthening effect would delay the time of crack formation and propagation in the coatings and enhance the thermal shock performance.

  9. Ultrasonic testing of pre-turned contours for large components made of ductile iron; Ultraschallpruefung an Vordrehkonturen fuer grosse Bauteile aus Gusseisen mit Kugelgraphit

    Energy Technology Data Exchange (ETDEWEB)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2015-07-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [German] Bei der Ultraschall-Pruefung von grossen, dickwandigen Bauteilen aus Gusseisen mit Kugelgraphit werden teilweise Schallwege von mehreren Metern noetig. Betrachtet werden hier zylinderfoermige Bauteile, wie die Koerper von CASTOR-Behaeltern, mit Durchmessern zwischen 2 und 3 m, einer Hoehe von bis zu 6 m und Wanddicken von ca. 500 mm. Bisher ist eine automatisierte Technik hierfuer nicht verfuegbar, daher werden derartige Bauteile in einem aufwaendigen und langwierigen Prozess mittels manueller Schallung geprueft. Zur Erhoehung der Nachweissicherheit und zur Steigerung der Effizienz im Pruefablauf sollen nun senkrecht zur Achse des zylinderfoermigen Bauteils liegende unzulaessige Anzeigen im gesamten Mantelvolumen durch eine teilautomatisierte Pruefung ausgeschlossen werden. Die Entwicklung und Auslegung der Prueftechnik mittels Simulationen und die Realisierung als mobile Pruefvorrichtung sind Themen dieses Beitrags. Messungen an einem Referenzkoerper mit Testreflektoren in verschiedenen Tiefen werden vorgestellt und diskutiert.

  10. Effect of CeO2 addition on thermal shock resistance of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    International Nuclear Information System (INIS)

    Highlights: • WC–Co powders with CeO2 were deposited by electric contact strengthening (ECS). • ECS is based on electric resistive heating between the electrode and work piece. • WC–Co coating with CeO2 by ECS was metallurgically bonded to the substrate. • The addition of CeO2 could refine the coating microstructure and increase the microhardness. • By the proper addition of cerium oxide, the thermal shock performance was enhanced. - Abstract: The WC–12%Co powders with different contents of CeO2 (0.1–2 wt.%) were deposited on ductile iron by electric contact surface strengthening. The coatings with and without CeO2 were examined and tested for microstructural characteristic, phase structure, microhardness and thermal shock resistance. The comparison concluded that the proper addition of CeO2 could refine the microstructure of coatings and increase the microhardness of the coatings. By the small amount addition of cerium oxide (0.5 wt.%), the solid solution strengthening effect and grain boundaries strengthening effect would delay the time of crack formation and propagation in the coatings and enhance the thermal shock performance

  11. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    Energy Technology Data Exchange (ETDEWEB)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  12. Microstructure and Mechanical Properties of 50SiMnNiNb Steel by a Novel Quenching-Partitioning-Austempering Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    LI Hongyan; JIN Xuejun

    2009-01-01

    For the purpose of reducing weight of steel parts, save raw materials and keep or even improve safety standards, the development of advanced high strength steels is increasingly demanded in the automotive industry and engineering applications. We have proposed a novel heat treatment (quenching-partitioning-austempering treatment, Q-P-A) to obtain steel parts with high strength and good ductility. The Q-P-A process is intended to produce microstructure consisted of carbon-depleted martensite, carbon-enriched retained austenite and nanostructured bainite. Quenching(Q) treatment fabricates mixed microstructure of carbon-supersaturated martensite and certain amounts of untransformed austenite. Partitioning(P) thermal treatment accomplishes fully diffusing of carbon from the supersaturated martensite phase to the untransformed austenite phase and enriching the amount of carbon in untransformed austenite. Further low-temperature austempering(A) process induces incredible thin bainite from the carbon-enriched untransformed austenite. A study of the microstructure and mechanical properties of 50SiMnNiNb steel subjected to the novel Q-P-A treatment is presented. Microstructure is assessed by optical microscope(OM), field emission scanning electron microscope(FESEM) and transmission electron microscope(TEM), and the corresponding mechanical properties are measured. The experimental results indicate that attractive mechanical properties of steels during the Q-P-A process are attributed to the complex multi-phase structure. Slender plates of bainite with 20-40 nm thick are generated in the medium carbon steel. Meanwhile, with increasing of the volume fraction of nanostructured bainite, yield strength of steel parts is increased with little degradation of ultimate tensile strength. In this paper, a novel quenching-partitioning-austempering heat treatment is proposed, and the attractive mechanical properties of steels are obtained during the Q-P-A process.

  13. EFFECT OF AUSTEMPERING ON TRANSFORMATION INDUCED PLASTICITY OF HOT ROLLED MULTIPHASE STEELS

    Institute of Scientific and Technical Information of China (English)

    Z.Li; D. Wu

    2007-01-01

    Effect of austempering on the transformation induced plasticity (TRIP) of hot rolled multiphase steel was investigated. Polygonal ferrite, granular bainite, and a large amount of stabilized retained austenite could be obtained in the hot rolled multiphase steel. Strain induced martensite transformation (SIMT) of retained austenite and TRIP effectively occur under straining owing to austempering after hot rolling, and mechanical properties of the present steel remain at a relatively high constant value for austempering at 400℃. The mechanical properties of the steel exhibited a good combination of tensile strength (791MPa) and total elongation (36%) because the stability of retained austenite is optimal when the steel is held for 20min.

  14. Corrosion behaviour of ductile cast irons partially modified with silicon in 0.03 M NaCl; Comportamiento frente a la corrosion de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, M. A.; Niklas, A.; Conde, A.; Mendez, S.; Sertucha, J.; Damborenea, J. J. de

    2014-07-01

    NaCl. The increasing demand of ductile cast irons with extensive technological applications leads to enlarge the corrosion resistance of this group of metallic materials. In this sense, the use of different chemical compositions on such cast irons becomes one of the most interesting aspects among the different ways to improve their behaviour against corrosion due to the extra opportunity for increasing the mechanical properties. Additionally such improvements have to be made without any increase of processing costs to keep the interesting competitiveness of developed cast irons. In the present work the preliminary results obtained from corrosion tests made on a group of cast irons with different chemical compositions are presented. Among ductile cast irons, silicon content has been varied in order to investigate the effect of this element on corrosion resistance of the alloys. The obtained results show a slight improvement of this property for the alloys with high silicon content with respect to the conventional ones though such effect was found in the first time period of the corrosion tests. Interestingly this improvement was found for alloys that exhibit better tensile properties than the conventional ductile irons. Thus an important way for developing new ductile cast irons with improved corrosion properties by alloying has been opened. (Author)

  15. Development of a Cast Iron Fatigue Properties Database for use with Modern Design Methods

    Energy Technology Data Exchange (ETDEWEB)

    DeLa' O, James, D.; Gundlach, Richard, B.; Tartaglia, John, M.

    2003-09-18

    A reliable and comprehensive database of design properties for cast iron is key to full and efficient utilization of this versatile family of high production-volume engineering materials. A database of strain-life fatigue properties and supporting data for a wide range of structural cast irons representing industry standard quality was developed in this program. The database primarily covers ASTM/SAE standard structural grades of ADI, CGI, ductile iron and gray iron as well as an austempered gray iron. Twenty-two carefully chosen materials provided by commercial foundries were tested and fifteen additional datasets were contributed by private industry. The test materials are principally distinguished on the basis of grade designation; most grades were tested in a 25 mm section size and in a single material condition common for the particular grade. Selected grades were tested in multiple sections-sizes and/or material conditions to delineate the properties associated with a range of materials for the given grade. The cyclic properties are presented in terms of the conventional strain-life formalism (e.g., SAE J1099). Additionally, cyclic properties for gray iron and CGI are presented in terms of the Downing Model, which was specifically developed to treat the unique stress-strain response associated with gray iron (and to a lesser extent with CGI). The test materials were fully characterized in terms of alloy composition, microstructure and monotonic properties. The CDROM database presents the data in various levels of detail including property summaries for each material, detailed data analyses for each specimen and raw monotonic and cyclic stress-strain data. The CDROM database has been published by the American Foundry Society (AFS) as an AFS Research Publication entitled ''Development of a Cast Iron Fatigue Properties Database for Use in Modern Design Methods'' (ISDN 0-87433-267-2).

  16. Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification

    International Nuclear Information System (INIS)

    The microstructure of austempered high silicon (AHS) steel before and after treating with a modifier containing titanium, vanadium and rare earth elements (so-called Ti-V-RE modifier) and austempered at different temperatures has been investigated. The plane strain fracture toughness of the steel in room temperature and ambient atmosphere has been examined. The microstructure was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography and correlated to the fracture toughness of the steel. The results show that the primary austenite grains are refined, the dendritic austempered structure is eliminated, and the volume of blocky shaped retained austenite is reduced by the addition of Ti-V-RE modifier. Modification with Ti-V-RE modifier can prompt the bainitic ferrite transformation and reduce the volume fraction of retained austenite. High fracture toughness is obtained for AHS steel with the addition of Ti-V-RE modifier when austempered between 350 and 385 deg. C with a retained austenite of 30-35% and the carbon content in the austenite is about 1.9-2%. The fracture toughness of AHS steel by the modification treatment can increase 10-40% than that of unmodified, an optimum value of 85 MPa m1/2 was obtained when austempered at 385 deg. C

  17. 球墨铸铁件防渗硫剥离型涂料的研究%Study of an Anti-sulfurizing and Stripping Coat Parts for Ductile Casting Iron

    Institute of Scientific and Technical Information of China (English)

    武晓峰; 孙铭远; 方旋; 张宝军; 刘聪

    2014-01-01

    针对呋喃树脂砂生产球墨铸铁件表面渗流、产生片状等非球状组织的现象,本文选用镁砂粉作为反应型防渗硫剂,助剂 A 和助剂 B 作为复合烧结助剂等组分配制球墨铸铁件用呋喃树脂砂醇基涂料。试验结果表明:研制的涂料具有优良的防渗流效果,能够有效地避免或减轻非球状组织的产生。同时,浇注后该涂料层能从铸件表面自行剥离、脱落,防止了铸件的粘砂并减轻了清理量。%An alcohol-base sulfur resistant and strip sintered coating used in furan resin bonded sand for ductile iron was prepared by using magnesia powder as anti-sulfurizing agent, fluxing medium A, B as complex sintered agent according to the phenomenon of surface sulfurizing and lamellar structure of ductile iron castings produced by furan resin bonded sand. The experiment and application results show that this coating has good anti-sulfurizing property, which can effectively prevent or reduce the generation of non-globular particles. At the same time, after pouring, the coated layer of casting surface can be self-stripped, or be off, which will prevent the sticky sand from casting and reduce the amount of clean-up.

  18. Quality and Cost Assessment of Treatment with SiMg and NiCuMg Master Alloys vs Cored Wire in Production of Ductile Iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2007-07-01

    Full Text Available The results of studies on the use of magnesium alloy in modern cored wire injection method for production of nodular and vermicular graphite cast irons were described. The injection of Mg cored wire length is a treatment method which can be used to process high sulphur cupola iron held in ladles or iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire (Mg recovery 47-70% for the production of vermicular and nodular graphite cast irons at Ścinawka Foundry, and for the production of nodular graphite iron at the following foundries: GZUT, KRAKODLEW, Centrozap - DEFKA, EE Zawiercie, WSK–Rzeszów, FWM PRZYSUCHA, HSW Stalowa Wola and PIOMA. The results of calculations and experiments have indicated the length of the cored wire to be injected basing on the initial sulfur content and weight of the treated melt. The results of numerous trials have shown that the magnesium cored wire process can produce high quality nodular and vermicular graphite irons under the specific industrial conditions of the above mentioned foundries. It has also been proved that in the manufacture of nodular graphite iron, the cost of the nodulariser in the form of elastic cored wire is lower than the cost of the FeSiMg or NiCuMg master alloys.

  19. Quality and Cost Assessment of Treatment with SiMg and NiCuMg Master Alloys vs Cored Wire in Production of Ductile Iron

    OpenAIRE

    E. Guzik

    2007-01-01

    The results of studies on the use of magnesium alloy in modern cored wire injection method for production of nodular and vermicular graphite cast irons were described. The injection of Mg cored wire length is a treatment method which can be used to process high sulphur cupola iron held in ladles or iron melted in an electric induction furnace. This paper describes the results of using a high-magnesium ferrosilicon alloy in cored wire (Mg recovery 47-70% ) for the production of vermicular and ...

  20. 位错及掺杂对球铁冲击韧性影响的电子机理%Electronic Mechanism of Dislocation and Doping for Impact Toughness of Ductile Cast Iron

    Institute of Scientific and Technical Information of China (English)

    杨忠华; 刘贵立; 曲迎东; 李荣德

    2015-01-01

    Atom module of α⁃Fe [ 100 ] ( 010 ) edge dislocation is built in metallic matrix of ductile cast iron. Density functional theory CASTEP method is employed to calculate energy parameters of carbon doping edge dislocation system including atom embedded energy, affinity energy and Mulliken population. It shows that there exist C2v symmetry group in structure of α⁃Fe [100] (010) edge dislocation and localized effect of dislocation happens in limited range. Energy valley attracts light impurity carbon which forms atom clusters in dislocation corn. Interaction between C and Fe atoms is strengthened with charge transportation between C⁃4s and Fe⁃2p obtains which pins dislocation slipping. Mulliken population of Fe atom and C atom is high. Length is short. Iron carbide could be produced. Binding energy and PDOS of carbon doping cementite system show that silicon promotes cementite decomposing and nicalon becomes corn of graphite ball, which improve impact toughness of ductile cast iron.%在球墨铸铁金属基体中建立α⁃Fe[100](010)刃型位错原子模型,利用基于密度泛函理论的CASTEP方法计算C原子在位错芯区的埋置能、亲和能、电荷布居数等电子参数。结果表明:α⁃Fe[100](010)刃型位错芯区局域效应集中范围较小并具有C2v点群对称性。位错芯区的能量低谷吸引轻质杂质C原子偏聚,C原子的2p轨道与刃型位错尖端Fe原子的4s价轨道之间发生电荷转移,具有较强的相互作用,使位错运动受阻。 Fe⁃C原子间布居数较大、原子间距离较小表明,Fe⁃C原子间有生成渗碳体化合物的倾向。 Si原子掺杂渗碳体的结合能及各原子轨道分波态密度表明,Si原子能够促使渗碳体分解,析出碳硅化合物成为石墨球化的核心,从而改善球墨铸铁的冲击韧性。

  1. 对球墨铸铁中合理稀土用量的再认识%A Re-Understanding of the Proper RE Usage Amount in Ductile Iron Production

    Institute of Scientific and Technical Information of China (English)

    应忠堂

    2013-01-01

    The effect principle of rare earth in ductile iron was introduced.lt was confirmed by showing various productive examples of RE usage amount,that the proper RE usage amount range were as follows: (1)When producing medium and small parts of automobile, diesel engine, agricultural machine etc. by using cupola melting and tapping temperature is of 1 450 ~1 500 ℃ ,the S content of base iron is of 0.04%~0.06%,and Mg content of nodularizing alloy is of 6.5% for the lower limit to 7.5% for the upper limit,adding proper amount of rare earth is beneficial,however overabundance of RE will be inadvisable, the proper RE content range of nodularizing alloy is of 1.5% ~2.5% with its lower limit for thin section castings or casting having section thickness more than 50 mm. (2)When producing above mentioned castings by using medium frequency furnace melting and tapping temperature is of 1 500~1 550 ℃ ,the S content of base iron is about 0.02%,Mg content of nodularizing alloy is of 5.5%~6.5%,the proper RE content is about 0.8%.(3)When producing heavy section ductile iron castings by using cupola melting and Mg content of nodualrizing alloy is of 6.5%~7.5%,the proper RE content range is of 1.0%~1.2% and with heavy RE as its main RE ingredient.(4)When producing heavy ductile iron castings by using medium frequency furnace melting and Mg content of nodularizing alloy is of 5.5%~6.5%,the proper RE content range is of 0.6%~ 08% also with heavy RE as its main RE ingredient. It was stressed that the too high usage amount for ductile iron will not only increase productive cost, waste national precious resource,and also is disadvantageous to the casting quality.%介绍了稀土在球墨铸铁中的作用原理.通过各种稀土用量的生产实例,论证了合理的稀土用量范围:(1)对于冲天炉熔炼,出铁温度1 450~1 500℃,原铁液w(S) 0.04%~0.06%,生产汽车、柴油机、农机等中小型球墨铸铁件时,球化剂中w(Mg)在6.5%~7.5%,出铁温度高

  2. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  3. Causes of the hot ductility drops of steels

    Science.gov (United States)

    Kolbasnikov, N. G.; Matveev, M. A.; Mishin, V. V.; Mishnev, P. A.; Nikonov, S. V.

    2014-09-01

    The effect of conditions of continuous casting and hot rolling of steel on the high-temperature ductility of a microalloyed pipe steel of strength class Kh42 and 17G1S-U steel is studied. A Gleeble-3800 thermomechanical facility is used to perform physical modeling of the hot ductility of steel. The temperature dependence of the hot ductility of steel is determined under various slab cooling conditions in a continuous caster and during hot rolling. The ductility drops of iron and steels is found to be mainly caused by an increase in the elastic modulus near the temperatures of the polymorphic transformation caused by first- and secondorder phase transformations (polymorphic and magnetic transformations, respectively). Structural factors, such as the grain size, excess-phase inclusions located along initial grain boundaries, and interstitial impurities, lead to an additional decrease in the ductility.

  4. Iron

    Science.gov (United States)

    ... seafood, and foods that contain vitamin C , like citrus fruits, strawberries, sweet peppers, tomatoes, and broccoli. What ... diets. What are some effects of iron on health? Scientists are studying iron to understand how it ...

  5. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to...... present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation...

  6. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    OpenAIRE

    Chen Xiang; Li Yanxiang

    2013-01-01

    In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (...

  7. Microstructures and Mechanical Properties of Austempering SUS440 Steel Thin Plates

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chen

    2016-02-01

    Full Text Available SUS440 is a high-carbon stainless steel, and its martensite matrix has high heat resistance, high corrosion resistance, and high pressure resistance. It has been widely used in mechanical parts and critical materials. However, the SUS440 martempered matrix has reliability problems in thin plate applications and thus research uses different austempering heat treatments (tempering temperature: 200 °C–400 °C to obtain a matrix containing bainite, retained austenite, martensite, and the M7C3 phase to investigate the relationships between the resulting microstructure and tensile mechanical properties. Experimental data showed that the austempering conditions of the specimen affected the volume fraction of phases and distribution of carbides. After austenitizing heat treatment (1080 °C for 30 min, the austempering of the SUS440 thin plates was carried out at a salt-bath temperature 300 °C for 120 min and water quenching was then used to obtain the bainite matrix with fine carbides, with the resulting material having a higher tensile fracture strength and average hardness (HRA 76 makes it suitable for use as a high-strength thin plate for industrial applications.

  8. Influence of treatments using different magnesium ferroalloys on the melt quality and the solidification processes of ductile irons; Influencia de los tratamientos realizados con diferentes ferroaleaciones de magnesio en la evolucion de la calidad metalurgica y los procesos de solidificacion de las funciones esferoidales

    Energy Technology Data Exchange (ETDEWEB)

    Loizaga, A.; Sertucha, J.; Suarez, R.

    2008-07-01

    In this work the metallurgical consequences of treatments applied on ductile irons using ferroalloys with different magnesium contents are analysed. The solidification processes have an important influence on the mechanical properties and the functionality of the iron castings along their service period. Consequently, the comparison of the characterstics of the cooling curves recorded from the melt and the active oxygen and sulphur contents have been used for quantifying the effects of treatments performed utilizing different types of commercial FeSiMg. The addition of magnesium into the melt strongly removes sulphur and oxygen contents and important degradations of the metallurgical quality are finally obtained as a consequence of them. On the other hand, the composition of the resulting slags and the evolution of the melt characteristics as a function of the remaining time into the pouring device is investigated. The magnesium content in ferroalloys becomes a critical parameters in the evolution of the melt quality of treated irons. (Author) 18 refs.

  9. Carbidic Bainitic and Ausferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Gumienny G.

    2013-12-01

    Full Text Available W arty kule przedstawiono nowe rodzaje żeliwa sferoidalnego z węglikami o różnej mikrostrukturze osnowy metalowej. Żeliwo to otrzymano stosując sferoidyzację metodą Inmold. zapewniającą dużą liczbę kulek grafitu i rozdrobnienie składników osnowy metalowej. Różną mikrostrukturę osnowy metalowej żeliwa otrzymywano bez stosowania obróbki cieplnej (w stanie surowym poprzez odpowiednią kombinację ilościową dodatków stopowych. Wykazano, że dodatek molibdenu, chromu, niklu i miedzi w żeliwie sferoidalnym pozwala uzyskać osnowę metalową złożoną z bainitu górnego, jego mieszaniny z dolnym lub ausferrytu w odlewach o grubości ściany 3^-25 mm. Proces krystalizacji żeliwa przedstawiono i opisano za pomocą krzywych analizy termicznej i derywacyjnej (ATD. Pokazano efekty cieplne od przemiany austenitu w stanie stałym

  10. Fading of inoculation effects in ductile iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-03-01

    Full Text Available In work i t has bccn shown rcsults or invcsligations of influcncc of rime Iapsed form inoculation proccss on graphitc nucleation potentialrcprcscntcd by: numbcr of graphitc nodulcs N and N,, maximum undercooling AT,, during solidification of gmphile eutcct ic. abmlutcchilling tcndcncy CT and critical casting diametct dh. undcr which cementite euteclic occur (so-callcd chills. Morcovcr it has hccncstima~cd raic of changc of N and N, AT,,,. CT and dk,. Also, it has bccn provcd that altcr onc minutc sincc rhc momcnt of inocuIationproccss nhout 35% of prnphttc nucIeation potenrial is tost. by 40% chitking tendency, by 70% incrcascs maximum undcrcmling forgraphitc ci~tccrica nd by nearly 40% caging diameter has to bc incrcascd in ordcr to avoid chills.

  11. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2009-01-01

    @@ This book consists of five sections:Chapter 1 Introduction,Chapter 2 Grey Iron,Chapter 3 Ductile Iron,Chapter 4Vermicular Cast Iron,and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  12. Investigation of High Cycle Fatigue Life of MW Grade Wind Turbine Ductile Iron Hub%兆瓦级风电轮毂球铁高周疲劳寿命研究

    Institute of Scientific and Technical Information of China (English)

    刘佳; 曲迎东; 李荣德; 马广辉; 白彦华; 姜珂; 邱克强; 尤俊华; 王瑞春

    2012-01-01

    为了获得MW级风机轮毂QT350-22LT的高周疲劳寿命.通过拉-拉高周疲劳试验获得其疲劳极限,并通过数值模拟的方法确定QT350-22LT是否能够作为轮毂材料.疲劳试验在PW3-10程序控制高频万能疲劳试验机进行,采用实际生产的附铸试块进行拉-拉高周疲劳试验.试验结果表明:获得的兆瓦级风电轮毂QT350-22LT的疲劳极限值为250MPa,根据数据绘制的S-N曲线的拐点在290MPa;疲劳源的位置不同,所产生的瞬断区断口形貌也有所差别.对轮毂本身所能承受的最大应力进行有限元分析,得到最大应力为156MPa.应力集中部位的值没有超过材料的疲劳极限,这证明球铁QT350-22LT能够满足风机轮毂设计的应力要求.%The main purpose of this paper is to obtain high cycle fatigue life of MW grade the wheel hub (QT350-22 LT). Through the pull-pull high cycle fatigue tests, the fatigue limit is determined. The numerical simulation method was used to determine whether QT3 50-22 LT is able to be the hub material or not. The fatigue test equipment and materials are PW3-10 program control high frequency universal fatigue test machine and the practical production casting blocks, respectively. The results show that fatigue limit of the MW grade wind turbine hub QT350-22 LT is 250 MPa and inflection point of S-N curve draw according to data is 290 MPa; the morphologies of the transient breaking fracture are different due to the different crack sources. The maximum tensile stress of the hub is 156 MPa, which is obtained by the finite element analysis. The value of tensile stress concentration position is no more than the fatigue limit of the material, which proves that the ductile iron hub (QT350-22 LT) can satisfy the design requirement of stress.

  13. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  14. Numerical and experimental investigation of the temperature field of a solidifying massive ductile-cast-iron roller: Numerične in eksperimentalne raziskave temperaturnega polja pri strjevanju litega valja iz sive litine s kroglastim grafitom:

    OpenAIRE

    Dobrovská, Jana; Gontarev, Vasilij; Kavička, František; Sekanina, Buhumil; Stransky, Karel; Štětina, Josef

    2012-01-01

    The quality of the working rollers used for rolling rails of different profiles is determined by the chemical and structural composition of the material of the rollers and the production technology The requirements for the quality cannot be ensured without a perfect knowledge of the course of the solidification, the cooling and the heat treatment of the cast rollers as well as the kinetics of the temperature field of the casting and the mould. The solidification and cooling of the ductile-cas...

  15. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  16. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel

    Institute of Scientific and Technical Information of China (English)

    Chen Xiang; Vuorinen Esa; Grahn Jonny

    2009-01-01

    Crack initiation,propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix:crack propagates along the boundary of two clusters of bainitic ferrite;crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths;crack propagates into bainitic ferrite laths;crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation.Based on the observation and analysis of microfracture processes,a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.

  17. A path dependent model for ductile fracture

    International Nuclear Information System (INIS)

    A path dependent model for ductile fracture has been developed which uses the principle of accumulation of damage up to some critical value at which failure occurs. The damage is calculated from void growth equations which depend on the strain path and the value of hydrostatic tension along this path. The model developed on this basis enables the critical damage for failure to be calculated from a simple test such as the tensile test in which the hydrostatic tension can be calculated at all points along the strain path. The method has been verified using some of Bridgman's data over a wide range of strain and hydrostatic tension and more recent data on a high purity iron. (orig.)

  18. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: The great potential of ultrafine filmy retained austenite

    International Nuclear Information System (INIS)

    Three heat-treatment routes incorporating bainite formation, namely bainite-based quenching plus tempering, bainite austempering and bainite-based quenching plus partitioning (BQ and P), were applied to a medium-carbon Mn–Si–Cr alloyed steel. An optimum combination of strength, ductility and toughness was achieved after the BQ and P treatment (ultimate tensile strength: 1688 MPa; total elongation: 25.2%; U-notch impact toughness at −40 °C: 48 J cm−2). The enhanced mechanical properties were attributed to an increased amount of refined filmy retained austenite (22 vol.%, nanometer width range: <100 nm and submicron width range: 100–500 nm). The formation process of the bainitic microstructure as well as martensite and retained austenite was revealed by conducting dilatometry, X-ray diffraction, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy (TEM). The effect of the retained austenite on mechanical properties was discussed in terms of its size and morphology

  19. Development of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K. [and others

    1995-06-01

    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.

  20. Cast iron - a predictable material

    OpenAIRE

    Jorg C. Sturm; Guido Busch

    2011-01-01

    High strength compacted graphite iron (CGI) or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process s...

  1. Effectof austemperingparameterson microstructureandmechanicalproperties ofhorizontalcontinuouscastingductileiron densebars

    Institute of Scientific and Technical Information of China (English)

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang; Zhong-ming Zhang; Jin-cheng Wang; Yong-hui Liu

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.

  2. Turbulent breakage of ductile aggregates

    CERN Document Server

    Marchioli, Cristian

    2015-01-01

    In this paper we study breakage rate statistics of small colloidal aggregates in non-homogeneous anisotropic turbulence. We use pseudo-spectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modelled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, $\\sigma>\\sigma_{cr}$, and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e. breakage occurs as soon as $\\sigma>\\sigma_{cr}$). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  3. Method of preparing ductile superconductors

    International Nuclear Information System (INIS)

    The invention pertains to a method of producing ductile superconductors consisting of a copper matrix in which a number of superconducting alloys on a vanadium or niobium basis are embedded. According to the invention, the vanadium or niobium base alloy contains between 2 and 15 percent by weight of aluminum, silicon, germanium, gallium, or tin as alloying element. The alloy is quenched from temperatures between 1,5000C and 2,0000C to less than 5000C and then heat-treated between 600 and 1,0000C. By this method, transition temperatures up to 24 K, critical magnetic field strengths up to 200 kG and critical current densities up to 7 x 105A/cm2 could be achieved in the niobium/aluminum system. (HPOE)

  4. Ductile failure X-prize.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Wellman, Gerald William; Emery, John M.; Ostien, Jakob T.; Foster, John T.; Cordova, Theresa Elena; Crenshaw, Thomas B.; Mota, Alejandro; Bishop, Joseph E.; Silling, Stewart Andrew; Littlewood, David John; Foulk, James W., III; Dowding, Kevin J.; Dion, Kristin; Boyce, Brad Lee; Robbins, Joshua H.; Spencer, Benjamin Whiting

    2011-09-01

    Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

  5. Energetic approach for ductile tearing

    International Nuclear Information System (INIS)

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a Ji tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter Gfr is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters Ji and Gfr, intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  6. Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic–austenitic TRIP steels

    International Nuclear Information System (INIS)

    Understanding alloying and thermal processing at an atomic scale is essential for the optimal design of high-carbon (0.71 wt.%) bainitic–austenitic transformation-induced plasticity (TRIP) steels. We investigate the influence of the austempering temperature, chemical composition (especially the Si:Al ratio) and partitioning on the nanostructure and mechanical behavior of these steels by atom probe tomography. The effects of the austempering temperature and of Si and Al on the compositional gradients across the phase boundaries between retained austenite and bainitic ferrite are studied. We observe that controlling these parameters (i.e. Si, Al content and austempering temperature) can be used to tune the stability of the retained austenite and hence the mechanical behavior of these steels. We also study the atomic scale redistribution of Mn and Si at the bainitic ferrite/austenite interface. The observations suggest that either para-equilibrium or local equilibrium-negligible partitioning conditions prevail depending on the Si:Al ratio during bainite transformation.

  7. Fatigue Lifetime of ADI from Ultimate Tensile Strength to Permanent Fatigue Limit

    Czech Academy of Sciences Publication Activity Database

    Zapletal, J.; Věchet, S.; Kohout, J.; Obrtlík, Karel

    -, č. 1 (2008), s. 40-43. ISSN 0556-171X. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA ČR GA106/03/1265 Institutional research plan: CEZ:AV0Z20410507 Keywords : austempered ductile iron * fatigue behaviour * S N curve Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Undercooling and nodule count in thin walled ductile iron castings

    OpenAIRE

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) w...

  9. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thick¬nesses from 2 to 8 mm involving both temperature measurements during solidification and micro¬structural examination afterwards. The nodule count was the same for the eutectic and hypereutectic...... castings in the thin plates ( 4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature prior to the eutectic recalescence (Tmin) was 15 to 20C lower for the eutectic than the hypereutectic castings. This is due to nucleation...... of graphite nodules which begins at a lover temperature in the eutectic than in the hypereutectic castings The recalescence (Trec) was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic...

  10. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings...... in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) was 15 to 20ºC lower for the eutectic than for the hypereutectic castings. This is due to nucleation of...... graphite nodules which begins at a lower temperature in the eutectic than in the hypereutectic castings. The recalescence ∆Trec was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  11. Ductility-modified response spectra methods for ductile equipment seismic failure analysis

    International Nuclear Information System (INIS)

    An approach for developing the system ductility of a typical nuclear power plant component is presented, and a comparison of the measured seismic response of a scale model system tested above the elastic range with that calculated by two ductility-modified response spectra methods is shown. (author)

  12. Iron and Iron Metabolism

    OpenAIRE

    Melike Sezgin Evim; Birol Baytan; Adalet Meral Güneş

    2012-01-01

    Iron is an essential element for almost all living organisms except some bacteria. A great number of new articles related to the iron metabolism have been published in recent years explaining new findings. Hepsidine, a peptide hormon, that is recently found, regulates iron methabolism by effecting iron absorbsion from gut, secreting iron from hepatic store and flows iron from macrophages. Hepsidin blockes to effluxe iron from cells by bounding to ferroportin and by inducing ferroportin destru...

  13. Ductility of high strength reinforced concrete columns

    International Nuclear Information System (INIS)

    Based on the experimental research of 48 reinforced concrete columns using high strength and normal strength concrete under monotonic and cyclic loading, the factors which affect the ductility, such as the concrete strength, axial load ratio, stirrup volume ratio, etc., are analyzed. It can be concluded that the axial load ratio is the most important factor that affects the ductility. The axial load ratio limits and relative stirrup volume ratio limits were proposed under the condition of limited ductility (μΔ≥3). The experiments also show that the relationship between the stirrup ratio and axial load ratio is not linear if the axial load ratio is high, which is different from the finding of previous research. In the design, a simplified bilinear relationship can be adopted which agrees well with the experimental results. (orig.)

  14. Ductile PVC: a perfect pipe material; Schlagfestes PVC: Ein ausgezeichneter Rohrwerkstoff

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, M.; Kop, L. [Gastec, Apeldoorn (Netherlands)

    2001-07-01

    Several pipe materials can be used for low-pressure gas distribution systems including steel, ductile and grey cast iron, asbestos cement, ductile (or high-impact) PVC and PE. Nowadays, the latter two are the most frequently applied materials. Plastics are generally advantageous in low-pressure distribution systems, in particular because of their resistance to soil corrosion and the relatively low overall costs. Remarkably, the Netherlands has opted mainly for ductile PVC, whereas PE is used almost exclusively in other countries. Yet ductile PVC has a number of major technical and economic benefits, which makes it worth considering for use in low-pressure gas distribution systems, such as a complete and sophisticated system, simple and reliable jointing techniques and low purchase and construction costs. (orig.) [German] Fuer Niederdruck-Gasverteilungssysteme gibt es eine Vielzahl von Rohrwerkstoffen, wie z.B. Stahl, Sphaeroguss, Grauguss, Asbestzement, PVC hart, schlagfestes PVC und PE. Die beiden letzten Werkstoffe werden heutzutage am haeufigsten verwendet. Kunststoffe sind bei Niederdrucksystemen in der Regel im Vorteil, insbesondere durch ihre Bestaendigkeit gegenueber Bodenkorrosion und die relativ niedrigen Gesamtkosten. Bemerkenswert ist, dass man sich in den Niederlanden vor allem fuer schlagfestes PVC und in anderen Laendern fast ausschliesslich fuer PE entschieden hat. Dennoch weist schlagfestes PVC einige wichtige technische und wirtschaftliche Vorteile auf, wodurch der Einsatz dieses Rohrwerkstoffes in Niederdruck-Gasverteilungssystemen erwaegenswert ist, darunter ein komplettes und ausgekluegeltes System, einfache und zuverlaessige Verbindungstechniken und niedrige Anschaffungs- und Verlegekosten. (orig.)

  15. Ductility of a continuous fiber reinforced aluminum matrix composite

    Science.gov (United States)

    Jansson, S.; Leckie, Frederick A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers have been investigated. The composite is subjected to both mechanical and cyclic thermal loading. The ductility can vary by an order of magnitude according to the operating conditions. For high mechanical and low thermal loading the ductility is small, for low mechanical and high thermal loading the ductility is an order of magnitude higher. Experiments on a beam in bending confirm that the ductility is strongly dependent on the loading conditions. The observations suggest a means of utilizing the inherent ductility of the matrix.

  16. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  17. Ductile grinding of ultraprecise aspherical optical lenses

    Science.gov (United States)

    Koenig, Wilfried; Sinhoff, Volker

    1993-04-01

    The manufacturing of glass lenses has always set exacting requirements on the finishing technique. If, in addition, the design deviates from the conventional geometry of plane and sphere, the standard manufacturing process of rough grinding with cup-wheels and subsequent precision grinding and polishing with reproductive techniques fails. In order to achieve highest form accuracies and surface qualities combined with a flexible surface shape, ductile single- point-grinding meets the requirements for the production of rotationally symmetric aspheres.

  18. Ductility in lightweight concrete with fiber

    OpenAIRE

    Ahmadyar, Milad

    2011-01-01

    This master thesis presents the influence of different fiber in high-performance lightweight concrete and the ductility capacity of reinforced lightweight concrete beam. Twelve beams with length of 2.2m and reinforcement ratio 0.24 have been tested under 4 point bending, three of them were made by normal density aggregates as references beams. The target concrete compressive strength for all beams were 50MPa. Three different types of fibers such as steel fiber, Polypropylene ma...

  19. Impact of microstructural mechanisms on ductility limits

    OpenAIRE

    FRANZ, Gérald; ABED-MERAIM, Farid; BEN ZINEB, Tarak; LEMOINE, Xavier; Berveiller, Marcel

    2011-01-01

    In order to investigate the effects of microstructure and deformation mechanisms on the ductility of multiphase steels, a formability criterion based on loss of ellipticity of the boundary value problem is coupled with an advanced multiscale model accounting for intragranular microstructure development and evolution. The resulting large strain elastic–plastic single crystal constitutive law (based on crystal plasticity) is incorporated into a self-consistent scale-transition scheme. The prese...

  20. Fuel powder production from ductile uranium alloys

    International Nuclear Information System (INIS)

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. (author)

  1. Tunable Tensile Ductility in Metallic Glasses

    Science.gov (United States)

    Magagnosc, D. J.; Ehrbar, R.; Kumar, G.; He, M. R.; Schroers, J.; Gianola, D. S.

    2013-01-01

    Widespread adoption of metallic glasses (MGs) in applications motivated by high strength and elasticity combined with plastic-like processing has been stymied by their lack of tensile ductility. One emerging strategy to couple the attractive properties of MGs with resistance to failure by shear localization is to employ sub-micron sample or feature length scales, although conflicting results shroud an atomistic understanding of the responsible mechanisms in uncertainty. Here, we report in situ deformation experiments of directly moulded Pt57.5Cu14.7Ni5.3P22.5 MG nanowires, which show tunable tensile ductility. Initially brittle as-moulded nanowires can be coerced to a distinct glassy state upon irradiation with Ga+ ions, leading to tensile ductility and quasi-homogeneous plastic flow. This behaviour is reversible and the glass returns to a brittle state upon subsequent annealing. Our results suggest a novel mechanism for homogenous plastic flow in nano-scaled MGs and strategies for circumventing the poor damage tolerance that has long plagued MGs.

  2. Untersuchungen zur Zerspanbarkeit von austenitisch-ferritischem Gusseisen mit Kugelgraphit (ADI)

    OpenAIRE

    Klöpper, Carsten Felix

    2006-01-01

    In many applications increasing demands on weight and cost saving require the application of new materials. In this regard austempered ductile iron (ADI) offers a high potential. Cast iron materials exhibit a high freedom of shape combined with rather low manufacturing costs. In addition, ADI offers an excellent combination of high strength, high toughness and a good wear resistance. The fabrication of ADI-parts consists of a casting process and a following special heat treatment. Depending o...

  3. Microstructure and mechanical properties of ductile aluminium alloy manufactured by recycled materials

    OpenAIRE

    Yang, HL; Ji, SX; Watson, D.; M. White; Fan, ZY

    2014-01-01

    The present paper introduces the microstructure and mechanical properties of the Al-Mg- Si-Mn alloy made by recycled materials, in which the impurity levels of iron are mainly concerned. It is found that the increased Fe content reduces the ductility and yield strength but slightly increases the UTS of the diecast alloy. The tolerable Fe content is 0.45wt.%, at which the recycled alloys are still able to produce castings with the mechanical properties of yield strength over 140MPa, UTS over 2...

  4. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack...... for the influence of such size-effects on cavitation instabilities are presented. When a metal contains a distribution of micro voids, and the void spacing compared to void size is not extremely large, the surrounding voids may affect the occurrence of a cavitation instability at one of the voids...

  5. Reconstituted Keratin Biomaterial with Enhanced Ductility

    Directory of Open Access Journals (Sweden)

    Halleh Atri

    2015-11-01

    Full Text Available Nowadays the waste from protein fibres represents an important renewable source for a new generation of biomaterials and promising competitors for carbohydrate based biomaterials. Regenerated keratin biomaterials are biodegradable in vivo and in vitro, biocompatible, and support cell attachment and proliferation; however, their major drawback has been their weak mechanical properties such as ductility. The following study was conducted in an attempt to improve the ductility of reconstituted keratin films obtained from Australian merino wool fibres. Keratin was extracted from wool fibres according to an established protocol proposed by Yamauchi, and then dialyzed and desalted by multiple diafiltration wash cycles. The resulting keratin film was transparent, biodegradable, and, opposite to its predecessors, mechanically durable, possessing a Young modulus about 12.5 MPa with 35% extensibility. The polypeptide chains were found to rearrange themselves in the β-sheet state in this keratin film, which was shown to be semi-crystalline. This film, unlike its predecessors, did not support human cell proliferation. These properties of the diafiltered keratin film have led us to think that diafiltration resulted in producing a totally new keratin film, which is envisaged to find applications in various areas.

  6. Carbon Concentration of Austenite

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The investigation was carried out to examine the influence of temperature and times of austempering process on the maximum extend towhich the bainite reaction can proceed and the carbon content in retained austenite. It should be noted that a small percentage change in theaustenite carbon content can have a significant effect on the subsequent austempering reaction changing the volume fraction of the phasespresent and hence, the resulting mechanical properties. Specimens were prepared from an unalloyed ductile cast iron, austenitised at 950oCfor 60 minutes and austempered by the conventional single-step austempering process at four temperatures between BS and MS, eg., 250,300, 350 and 400oC. The samples were austempered at these temperatures for 15, 30, 60, 120 and 240 minutes and finally quenched toambient temperature. Volume fractions of retained austenite and carbon concentration in the residual austenite have been observed byusing X-ray diffraction. Additionally, carbon concentration in the residual austenite was calculated using volume fraction data of austeniteand a model developed by Bhadeshia based on the McLellan and Dunn quasi-chemical thermodynamic model. The comparison ofexperimental data with the T0, T0' and Ae3' phase boundaries suggests the likely mechanism of bainite reaction in cast iron is displacive rather than diffusional. The carbon concentration in retained austenite demonstrates that at the end of bainite reaction the microstructure must consist of not only ausferrite but additionally precipitated carbides.

  7. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility

    Science.gov (United States)

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J.

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  8. Fracture of longitudinally cracked ductile tubes

    International Nuclear Information System (INIS)

    Various bulging factor and plasticity correction factor formulations are discussed and a new plasticity correction factor leading to a simple failure law is proposed. Failure stresses predicted by the usual Linear Elastic Fracture Mechanics formula corrected for plasticity are shown to be identical with the Dowling and Townley two-criteria approach if the relevant parameters are chosen in a suitable manner. Burst tests on AISI 304 stainless steel tubes performed at the Joint Research Centre, Ispra are described. The strengthening effect of the sealing patch was taken into account by replacing the Folias bulging factor by a smaller empirical factor determined by Bernard and Henry from fatigue crack growth tests. A flow stress sigma and a toughness Ksub(c) were derived which apply to the prediction of the onset of stable crack growth in 304 stainless steel tubes at room temperature. For other ductile materials and temperatures tentative formulae are proposed. (author)

  9. Prediction of Ductile Fracture Surface Roughness Scaling

    DEFF Research Database (Denmark)

    Needleman, Alan; Tvergaard, Viggo; Bouchaud, Elisabeth

    2012-01-01

    Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling...... three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low...... strength, which result in large voids near the crack tip at an early stage, and small second phase particles, which require large strains before cavities nucleate. The larger inclusions are represented discretely and various three dimensional distributions of the larger particles are considered. The...

  10. Study made of ductility limitations of aluminum-silicon alloys

    Science.gov (United States)

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  11. Dislocation dynamics modelling of brittle-ductile transitions in BCC metals

    Energy Technology Data Exchange (ETDEWEB)

    Tarleton, E.; Roberts, S.; Novokshanov, R. [Oxford Univ., Dept. of Materials (United Kingdom)

    2007-07-01

    Full text of publication follows: Bend tests on single crystals of BCC metals (Tungsten, Iron and Iron Chromium alloys) show the brittle ductile transition temperature of a pre-cracked specimen under 4 point bending decreases by around 10 K for each order of magnitude decrease in strain rate. At higher temperatures or lower strain rates large numbers of dislocations are produced which are able to shield the crack from the external loading. This increased plasticity in the region of the crack tip can delay or even prevent brittle fracture meaning the specimen is ductile. These experiments have been modelled using a 2D dislocation dynamics code which simulates the nucleation and motion of dislocations around a loaded crack, and their effect of the crack-tip stress intensity factor. At high simulated temperatures or low simulated loading rates, dislocations can shield the crack tip sufficiently to prevent fracture. The model gives excellent agreement between predicted and experimental value of BDT temperatures and the variation with loading rate. However this good agreement occurs only the slip direction is at 70 degrees to the crack plane, rather than the 45 degree angle imposed by the crystallography of the real test specimens. 3D modelling of a crack is currently being performed to see if cross slip can account for an effective slip plane angle close to 70 degrees. (authors)

  12. Creep deformation characteristics of ductile discontinuous fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Biner, S.B.

    1993-10-01

    Role of material parameters and geometric parameters of ductile reinforcing phase on the creep deformation behavior of 20% discontinuously reinforced composite was numerically investigated including debonding and pull-out mechanisms. Results indicate that for rigidly bonded interfaces, the creep rate of the composite is not significantly influenced by the material properties and geometric parameters of the ductile reinforcing phase due to development of large hydrostatic stress and constrained deformation in the reinforcement. For debonding interfaces, the geometric parameters of the reinforcing phase are important; however, event with very weak interfacial behavior low composite creep rates can be achieved by suitable selection of the geometric parameters of the ductile reinforcing phase.

  13. Fracture toughness for materials of low ductility

    International Nuclear Information System (INIS)

    The results of a survey of methods for evaluating fracture toughness characteristics for semi-brittle and brittle materials are presented in this report. These methods differ considerably from those used for ductile materials by the specimen configurations, the methodology of the experiments and by the problems occurring while using these methods. The survey yields several important findings A. It is possible to create steady state crack growth by cyclic loading in several semi-brittle materials. B. The need for pre-cracking is not yet clear, nevertheless it is recommended to evaluate fracture toughens with pre-cracked specimen. C. As crack length and ligament size may effect fracture toughness results it is necessary to define minimum specimen dimensions to avoid this effect. D. The specimen thickness hardly affects the fracture toughens. E. Loading rate for the test is not well defined. It is commonly accepted to end the test in one minute. F. The main mechanism that causes inelastic deformation in semi-brittle materials is related to the generation of micro-cracks

  14. Iron overdose

    Science.gov (United States)

    Iron is a mineral found in many over-the-counter supplements. Iron overdose occurs when someone takes more than the ... This can be by accident or on purpose. Iron overdose is especially dangerous for children. A severe ...

  15. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility.

    Science.gov (United States)

    An, Qi; Goddard, William A

    2014-12-01

    Boron carbide (B4C) is a hard material whose value for extended engineering applications such as body armor; is limited by its brittleness under impact. To improve the ductility while retaining hardness, we used density functional theory to examine modifying B4C ductility through microalloying. We found that replacing the CBC chain in B4C with Si-Si, denoted as (B11Cp)-Si2, dramatically improves the ductility, allowing a continuous shear to a large strain of 0.802 (about twice of B4C failure strain) without brittle failure. Moreover, (B11C)-Si2 retains low density and high hardness. This ductility improvement arises because the Si-Si linkages enable the icosahedra accommodate additional shear by rotating instead of breaking bonds. PMID:26278950

  16. Ductile damage parameters identification for cold metal forming applications

    OpenAIRE

    Bouchard, Pierre-Olivier; Gachet, Jean-Marie; Roux, Emile

    2011-01-01

    Ductile damage mechanics is essential to predict failure during cold metal forming applications. Several damage models can be found in the literature. These damage models are coupled with the mechanical behavior so as to model the progressive softening of the material due to damage growth. However, the identification of damage parameters remains an issue. In this paper, an inverse analysis approach is set-up to identify ductile damage parameters, based on different kind of mechanical tests an...

  17. Ductile flow by water-assisted cataclasis

    Science.gov (United States)

    den Brok, Bas

    2003-04-01

    In the presence of water otherwise brittle materials may deform macroscopically ductile by water-assisted cataclastic creep. This is possible as long as (i) solubility is high enough, so that stress-corrosion can occur, and (ii) local stress is low enough, to that fracturing remains subcritical. Water-assisted cataclastic creep (WACC) may play an important role in the middle and lower continental crust where mineral solubilities are high and stresses low. WACC is a poorly understood deformation process. Experiments were performed on very soluble brittle salts (Na-chlorate; K-alum) to study microstructure development by WACC. The experiments were carried out at room temperature and atmospheric pressure in a small see-through vessel. In this way the cataclastic deformation process could be studied "in-situ" under the microscope. Crystals were loaded in the presence of saturated salt solution. It appeared that originally straight mineral surfaces were instable when kept under stress. Grooves (or channels) slowly developed in the surface by local dissolution. These grooves behave like so-called Grinfeld instabilities. They develop because the energy of a grooved surface under stress is lower than the energy of a straight surface under stress. The grooves may deepen and turn into subcritical cracks when local stress further increases. These cracks propagate slowly. They propagate parallel to sigma1 but also at an angle and even perpendicular to sigma1, often following crystallographically controlled directions. The fractures mostly change direction while propagating, locally making turns of more than 180 degrees. Irregular fracture fragments thus develop. The fractures may migrate sideways (as with grain bounday migration) probably by solution-redeposition driven by differences in stress between both sides of the fracture. Thus the shape of the fragments changes. The size of the fracture fragments seems to be controlled by the distance of the grooves, which decreases

  18. Influence of phosphorus on the creep ductility of copper

    International Nuclear Information System (INIS)

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper

  19. Ductile streaks in precision grinding of hard and brittle materials

    Indian Academy of Sciences (India)

    V C Venkatesh; S Izman; S Sharif; T T Mon; M Konneh

    2003-10-01

    Ductile streaks produced during diamond grinding of hard and brittle materials have aided the subsequent process of polishing. Two novel techniques were used to study the formation of ductile mode streaks during diamond grinding (primary process) of germanium, silicon, and glass. In the first technique, aspheric surfaces were generated on Ge and Si at conventional speeds (5000 rpm). In the second technique, diamond grinding of plano surfaces on glass and Si surfaces using high speed (100,000 rpm) was carried out. Form accuracy, surface finish and ductile mode grinding streaks are discussed in this paper. It was found that resinoid diamond wheels gave more ductile streaks than metal-bonded wheels but better form accuracy was obtained with the latter. Ductile streaks were obtained more easily with pyrex rather than with BK 7 glass thus necessitating very little time for polishing. Ductile streaks appeared in abundance on germanium rather than silicon. Both the novel grinding techniques were used on CNC machining centres.

  20. Simulation of the ductile damage under the metal forming

    International Nuclear Information System (INIS)

    Potentiality of metal forming is limited by ductile damage. The damage degree is estimated by the scalar value ω, that is equal to 0(ω=0) before plastic strain and is equal to 1(ω=1) at the macro cracks moment. There are two criteria that describe micro damage. The value ω=ω* corresponds to the generation of micro voids that couldn't be recovered by recrystallization but do not reduce the metal strength. The value ω=ω** corresponds to the generation of micro voids that reduce the metal strength and material long life. The models of metal damage accumulation under pure and alternate strain also the model of metal damage recovery under the recrystallization are developed. The specimen testing at high loading parameters gives the basic equations of the ductile damage mechanics. All of that gives the method to study ductile damage under the metal forming. The methodology damage nucleation and growing is shown on various examples: the void and crack development in the areas ductile damage and unlimited ductility; mathematical simulation of the metal damage under the sheet and wire drawing and others. The problems of physical simulating at the ductile damage under metal forming are shown too in this paper. The method and equipment of metal damage physical simulation are proposed. (Original)

  1. Incoloy alloy MA956. Strain rate and temperature effects on the microstructure and ductility

    International Nuclear Information System (INIS)

    MA956 is an iron-base, oxide dispersion strengthened alloy produced by mechanical alloying with the nominal composition Fe-Cr 20-Al 5-Ti 0.5-Y2O3 0.5, which is utilised in applications involving rigorous service conditions. It is ferritic and therefore undergoes a ductile-brittle transition which tends to occur between 40 and 70 C. For this reason, working at elevated temperatures is required. However, the ductility is not a simple function of temperature, strain rate, and grain size. Tensile tests have been carried out at temperatures up to 1000 C, at strain rates of 10-2 to 10-4s-1, and the behaviour of the coarse and fine grained materials is markedly different. Both materials show an increase in elongation around 600 C, but it decreases again with increasing temperature. The elongation continues to decrease in the coarse grained material. However, the fine grained material exhibits an increase in elongation with increasing strain rate at the higher temperatures which peaks around 800 C. The microstructures and fracture surfaces of the materials which have undergone deformation have been studied and provide a basis for understanding the complex mechanical behaviour. (orig.)

  2. From brittle to ductile: a structure dependent ductility of diamond nanothread

    Science.gov (United States)

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B. C.; Cheng, Yuan; Bell, John M.; Zhang, Yong-Wei; Gu, Yuantong

    2016-05-01

    As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp3 bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the ``grain size''. On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp3 bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different

  3. Energetic approach for ductile tearing; Approche energetique de la dechirure ductile

    Energy Technology Data Exchange (ETDEWEB)

    Marie, St

    1999-07-01

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a J{sub i} tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter G{sub fr} is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters J{sub i} and G{sub fr}, intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  4. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (Jc) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c-values. Previous work by the authors described a micromechanics fracture model to correct measured Jc-values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  5. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  6. An Improved Ductile Fracture Criterion for Fine-blanking Process

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen; ZHUANG Xin-cun; XIE Xiao-long

    2008-01-01

    In order to accurately simnulate the fine-blanking process,a suitable ductile fracture is significant.So an evaluation strategy based on experimental and corresponding simulation results of tensile,compression,torsion and fine-blanking test is designed to evaluate five typical ductile fracture criteria,which are widely-used in metal forming process.The stress triaxiality and ductile damage of each test specimen are analyzed.The results show that none of these five criteria is sufficient for all tests.Furthermore,an improved fracture criterion based on Rice and Tracey model,taking the influence of both volume change and shape change of voids into account,is proposed.The characterization of this model for fine-blanking process is easily done by the tensile test and the prediction result shows good.

  7. Hot Ductility of the 17-4 PH Stainless Steels

    Science.gov (United States)

    Herrera Lara, V.; Guerra Fuentes, L.; Covarrubias Alvarado, O.; Salinas Rodriguez, A.; Garcia Sanchez, E.

    2016-03-01

    The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10-4, 10-2, and 10-1 s-1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

  8. Study on the ductility of high strength reinforced concrete columns

    International Nuclear Information System (INIS)

    Based on the experimental research of 48 reinforced concrete columns with high strength and normal strength concrete under monotonic and cyclic loading, the factors which affect the ductility such as the concrete strength, axial load ratio, stirrup ratio, etc. are analysed. It can be concluded that the axial load ratio is the most important factor that affects ductility. The axial load ratio limits and relative stirrups ratio limits were proposed under the condition of limited ductility (μΔ≥3). The experiments also show that the relationship between stirrup ratio and axial load ratio is not linear if the axial load ratio is high, which is different from previous researches. In the design, a simplified bilinear relationship can be adopted which agrees well the experimental results. (author)

  9. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, E.G.; Shelly, D.R.; Guyer, R.A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place. Copyright ?? 2011 by the American Geophysical Union.

  10. Toughened microstructures for ductile phase reinforced molybdenum disilicide

    International Nuclear Information System (INIS)

    Various morphologies of ductile Nb refractory metal reinforcement are incorporated into a MoSi2 matrix using powder metallurgy, including single-ply laminates, continuous metal ribbons and sections of 2-dimensional wire mesh. Hot forging techniques are used to redistribute the reinforcement and change the dimensions and the aspect ratio of the reinforcing metal ligaments. Work-of-rupture measurements are conducted on bend test specimens and precracked tensile specimens of the composite so that the toughness contribution from the various ductile metal morphologies can be assessed according to its effectiveness. Accompanying microstructural examination of crack bridging interaction with the reinforcement is conducted

  11. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Von L. [Advanced Technology Inst., Virginia Beach, VA (United States)

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  12. Iron Overload

    Science.gov (United States)

    ... drug called an iron chelator to remove excess iron from your body because of transfusion-dependent anemias. Be sure to talk with your doctor about the potential benefits and risks of using these drugs. Previous Article ...

  13. Age Strengthening of Gray Cast Iron Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Wayne Nicola

    2003-06-26

    The primary objective of this research is to identify the age strengthening mechanism in gray and ductile cast iron, and to quantify the parameters that control it. It is also to contribute to a new predictive model for gray and ductile iron strength and hardness. This work shows that age strengthening occurs on a sigmoidal-logarithmic scale in gray and ductile cast irons, to a statistically significant extent. This is similar to Avrami-Johnson-Mehl kinetics for phase transformations in metals. It occurs in both cupola-melted iron and induction melted iron. However, it does not happen in all compositions. We have developed some understanding of the process. Data suggests that nitrogen and nitride-forming trace elements have a significant role in the process, but that is yet not fully characterized. Also, the time dependence of the bulk hardness and strength increase, the nano-scale precipitation evidence from neutron scattering, differential scanning calorimetry results and matrix micro-hardness increase in ferrite all indicate that age strengthening occurs by a precipitation or pre-precipitate cluster formation mechanism.

  14. Method of producing a ductile rare-earth containing superalloy

    International Nuclear Information System (INIS)

    A method is provided for producing ductile superalloys containing rare-earth metals, lanthanum, and yttrium by melting the desired alloy composition by conventional melt practices, adding the rare-earth metals, lanthanum or yttrium to the molten composition, forming the alloy composition into solid electrodes, remelting the solid electrode by electroslag remelting, techniques and casting the remelted alloy

  15. How plasticizer makes a ductile polymer glass brittle?

    Science.gov (United States)

    Zhao, Yue; Li, Xiaoxiao; Wang, Shi-Qing

    During uniaxial extension, a polymer glass of high molecular weight is ductile at high temperatures (still below Tg) and turns brittle when the temperature is sufficiently lowered. Incorporation of small-molecular additives to polymer glasses can speed up segmental relaxation considerably. The effect of such plasticization should be to make the polymers more ductile. We examined the effect of blending a few weight percent of either triphenyl phosphate (TPP) or a mineral oil to a commercial-grade PS and PMMA. Our Instron tests show that the plasticized PS is less ductile. Specifically, at 70 oC, the original PS is ductile at an extensional rate of 0.02 s-1 whereas the PS with 4 wt. % TPP turns brittle. Mechanical spectroscopic measurements show that the alpha relaxation time is shortened by more than two orders of magnitude with 4 wt. % TPP. On the other hand, such anomalous behavior did not occur in PMMA. We need to go beyond the conventional description to rationalize these results This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859).

  16. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    Auton, Lucy; MacMinn, Chris

    2015-11-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the injection of fluid at high pressure. This creates fractures in the rock, providing hydraulic access deeper into the reservoir and enabling gas to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We solve the model semi-analytically at steady state, and numerically in general. We find that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from purely elastic models.

  17. Multiscale modeling of ductile failure in metallic alloys

    NARCIS (Netherlands)

    Pardoen, Thomas; Scheyvaerts, Florence; Simar, Aude; Tekoglu, Cihan; Onck, Patrick R.; Tekoğlu, Cihan

    2010-01-01

    Micromechanical models for ductile failure have been developed in the 1970s and 1980s essentially to address cracking in structural applications and complement the fracture mechanics approach. Later, this approach has become attractive for physical metallurgists interested by the prediction of failu

  18. System Reliability of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Čizmar, Dean; Rajčić, Vlatka

    2011-01-01

    The present paper considers the evaluation of timber structures with the focus on robustness due to connection ductility. The robustness analysis is based on the structural reliability framework applied to a simplified mechanical system. The structural timber system is depicted as a parallel syst...

  19. Robustness Evaluation of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2009-01-01

    The present paper considers robustness evaluation of timber structures where the ductile behavior of joints of timber material is taken into account. The robustness analysis is based on the structural reliability framework used on a simplified mechanical system modelling a structural timber system...

  20. Iron Homeostasis and Nutritional Iron Deficiency123

    OpenAIRE

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  1. ADI After Austenitising From Intercritical Temperature

    OpenAIRE

    A. Kowalski; S. Kloska-Nawarecka; Regulski, K.

    2013-01-01

    ADI subjected to austenitising at intercritical temperatures contains in its matrix the precipitates of pre-eutectoid ferrite. Studies were carried out on the ductile iron of the following chemical composition: C = 3,80%, Si = 2,30%, Mn = 0,28%, P = 0,060%, S = 0,010%, Mg = 0,065%, Ni = 0,60%, Cu = 0,70%, Mo = 0,21% This cast iron was austenitised at three different temperatures, i.e. 800, 815 and 830oC and austempered at 360 and 380oC. For each variant of the cast iron heat treatment, the me...

  2. Effects of microstructure on ductility and fracture resistance of Zr-1.2Sn-1Nb-0.4Fe alloy

    International Nuclear Information System (INIS)

    The effect of microstructure on the ductility and fracture resistance of Zr-1.2Sn-1Nb-(0.2--0.5)Fe alloy has been studied. Different structural states of the alloy were attained by varying the iron content and working/heat treatment schedules, which comprised quenching, cold work, and anneal. The results of the tests for uniaxial tension, impact toughness, and static crack resistance as well as the electron microscope analysis of the microstructure revealed that the main structural factors governing the level of the as-recrystallized alloy ductility and fracture resistance are the sizes and uniformity of distribution of intermetallic particles of different types in the matrix. The highest ductility and impact toughness are reached when fine intermetallic particles from 0.03 to 0.20 microm are distributed uniformly within the structure. The impact toughness and critical crack opening grow linearly with an increase of particle distribution density and a decrease in interparticle spacing. Changes in the alloy microstructure and mechanical properties were investigated upon its anneal after β-quenching. It is demonstrated that the highest values of ductility and impact toughness are reached with the formation of a polygonized matrix structure without intermetallic particle precipitation

  3. The Influence of Saturation of Cast Iron Austenite with Carbon on the Ausferrite Transformation

    OpenAIRE

    T. Giętka; T. Szykowny; S. Dymski

    2007-01-01

    Austenitizing during quench hardening of the ductile cast iron influences the content of carbon in austenite depending on the soaking heat. On the other hand, the saturation of austenite impacts its transformation in the ausferritizing process of a metal matrix and forming of microstructure. Ductile cast iron with the ferrite matrix was hardened with isothermal transformation in the range of ausferritizing in temperature tpi = 400 i 300 0C and the range of time τpi = 7,5 �� 240 min. Specimens...

  4. Influence of molding sand on the number of grains graphite and on the rate of thin ferrite in pieces in a nodular iron ferritic matrix

    OpenAIRE

    B. Khatemi

    2010-01-01

    The nodular cast irons are characterized by high mechanical properties compared to cast iron with lamellar graphite or vermiculargraphite. The ductile iron has already been the subject of many studies especially since the literature is rich on them, and sources of information are different. The fact is that the mechanical properties of nodular cast iron (FGS) depend on the number of graphitegrains, their roundness, the solidification rate and nature of the matrix [3]. Many studies of nodular ...

  5. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  6. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    International Nuclear Information System (INIS)

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  7. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  8. Ductile mode electrochemical oxidation assisted micromachining for glassy carbon

    International Nuclear Information System (INIS)

    Recently, a new mechanical machining process using electrochemical oxidation was reported. Electrochemical oxidation assisted micromachining was applied to the machining of glassy carbon. The material removal process of the electrochemical oxidation assisted micromachining consists of repeated cycles of oxidation followed by removal of the oxide layer. In this paper, we experimentally investigate and compare the critical chip thickness for ductile mode cutting in mechanical machining and electrochemical oxidation assisted micromachining of glassy carbon. The theoretical critical chip thickness is calculated for mechanical machining of glassy carbon and experimentally verified. The effect of electrochemical oxidation on the critical chip thickness for ductile mode micromachining is also studied for glassy carbon. It is found that the critical chip thickness is increased for the electrochemical oxidation assisted micromachining. (paper)

  9. Brittle-to-ductile transition temperature in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bayu-Aji, Leonardus B. [School of Education, Universitas Pelita Harapan, M. H. Thamrin Boulevard, 15811 Tangerang (Indonesia); Pirouz, P. [Department of Materials Science and Engineering, Case Western Reserve University, 44106 Cleveland, Ohio (United States)

    2010-05-15

    Deformation experiments were conducted on monocrystalline InP by 4-point bend tests as well as by conventional and depth-sensing indentation (DSI) tests. Temperature ranges where the material exhibited a brittle or a ductile behavior were investigated with particular focus on the transition from one deformation mode to the other. The 4-point bend tests show that InP exhibits a sharp brittle-to-ductile transition (BDT) temperature within 5 between 350 and 355 C at a strain rate of 2.9 x 10{sup -5} s{sup -1}. The indentation BDT (IBDT) temperature is found to be significantly lower at {proportional_to}250 C. The difference of nearly 100 C between the two techniques is attributed to the hydrostatic component of the indentation stress field that suppresses fracture and shifts the transition to a lower temperature. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Ductile damage prediction in sheet and bulk metal forming

    Science.gov (United States)

    Badreddine, Houssem; Labergère, Carl; Saanouni, Khemais

    2016-04-01

    This paper is dedicated to the presentation of an advanced 3D numerical methodology for virtual sheet and/or bulk metal forming simulation to predict the anisotropic ductile defects occurrence. First, the detailed formulation of thermodynamically-consistent fully coupled and fully anisotropic constitutive equations is given. The proposed constitutive equations account for the main material nonlinearities as the anisotropic plastic flow, the mixed isotropic and kinematic hardening and the anisotropic ductile damage under large inelastic strains. Second, the related numerical aspects required to solve the initial and boundary value problem (IBVP) are very briefly presented in the framework of the 3D finite element method. The global resolution schemes as well as the local integration schemes of the fully coupled constitutive equations are briefly discussed. Finally, some typical examples of sheet and bulk metal forming processes are numerically simulated using the proposed numerical methodology.

  11. The effect of yield strength and ductility to fatigue damage

    Science.gov (United States)

    Yeh, H. Y.

    1973-01-01

    The cumulative damage of aluminium alloys with different yield strength and various ductility due to seismic loads was studied. The responses of an idealized beam with a centered mass at one end and fixed at the other end to El Centro's and Taft's earthquakes are computed by assuming that the alloys are perfectly elastoplastic materials and by using numerical technique. Consequently, the corresponding residual plastic strain can be obtained from the stress-strain relationship. The revised Palmgren-Miner cumulative damage theorem is utilized to calculate the fatigue damage. The numerical results show that in certain cases, the high ductility materials are more resistant to seismic loads than the high yield strength materials. The results also show that if a structure collapse during the earthquake, the collapse always occurs in the very early stage.

  12. Ductile fracture toughness estimation based on CVN upper shelf energy

    International Nuclear Information System (INIS)

    J-R-curve testing is costly and difficult. The results may also sometimes be unreliable. For less demanding structures, J-R -curve testing is therefore not practical. The Charpy-V-notch test provides information about the energy needed to fracture a small specimen in half. On the upper shelf this energy relates to ductile fracture resistance and it is possible to correlate it to the J-R -curve. Here, a simple power law description of the J-R -curve was correlated to the CVNUS energy. This new correlation corresponds essentially to a 5 % lower bound and conforms well with earlier correlations, regardless of the definition of the ductile fracture toughness parameter. (orig.)

  13. Construction-friendly ductile shear joints for precast concrete panels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Fischer, Gregor; Olesen, John Forbes

    2015-01-01

    The scope of this paper is the shear capacity of in-situ cast joints between precast concrete panels. Current practice with vertical lowering of the wall panels experiences difficulties in the assembly phase, since the traditional U-bar connection requires an overlap in a horizontal plane to allow...... for the mounting of a vertical locking bar. Where limited space is available bending and subsequent straightening of the U-bars are required to assemble the adjacent panels, a procedure which imposes substantial ductility requirements on the reinforcement as well as some manual workload. This paper...... introduces a construction-friendly design with U-bars overlapping in the same plane as the panel itself. The design allows for a trouble-free vertical lowering of the panels without pre or post processing of the preinstalled reinforcement loops. Furthermore, an overall more ductile behavior of the joint is...

  14. A Study of Solder Alloy Ductility for Cryogenic Applications

    Science.gov (United States)

    Lupinacci, A.; Shapiro, A. A.; Suh, J-O.; Minor, A. M.

    2013-01-01

    For aerospace applications it is important to understand the mechanical performance of components at the extreme temperature conditions seen in service. For solder alloys used in microelectronics, cryogenic temperatures can prove problematic. At low temperatures Sn-based solders undergo a ductile to brittle transition that leads to brittle cracks, which can result in catastrophic failure of electronic components, assemblies and spacecraft payloads. As industrial processes begin to move away from Pb-Sn solder, it is even more critical to characterize the behavior of alternative Sn-based solders. Here we report on initial investigations using a modified Charpy test apparatus to characterize the ductile to brittle transformation temperature of nine different solder systems.

  15. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  16. An improved cohesive zone model for ductile dynamic crack propagation

    OpenAIRE

    Sagimon Buch, Marc

    2008-01-01

    Ductile dynamic crack propagation is a current field of research in aerospace industry. The damage created by an explosion in a flying airplane depends on the fracture behaviour of the fuselage materials. Thus the rate of fracture for aluminium 2024 T3 is being studied. Analytical and empirical calculation methods do not predict correctly the experimental fracture velocity. Numerical simulations using cohesive elements with standard material models do not estimate it correctly ...

  17. Creep ductility of ultrafine-grained metallic materials

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Dvořák, Jiří; Kvapilová, Marie; Král, Petr; Svoboda, Milan; Langdon, T. G.

    San Juan : NEAT Press, 2012, s. 244-246. ISBN 0-9659463-0-4. [International Symposium on Plasticity and Its Current Applications /18./. San Juan (US), 03.01.2012-08.01.2012] R&D Projects: GA ČR(CZ) GAP108/11/2260 Institutional research plan: CEZ:AV0Z2041904 Keywords : ultrafine-grained materials * creep * ductility * deformation mechanisms Subject RIV: JG - Metallurgy http://www.internationalplasticity.com

  18. Understanding toughness and ductility in novel steels with mixed microstructures

    OpenAIRE

    Fielding, Lucy Chandra Devi

    2014-01-01

    The purpose of the work presented in this thesis was to explore and understand the mechanisms governing toughness, ductility and ballistic performance in a class of nanostructured carbide-free bainite-austenite steels, sometimes known as ?superbainite?. The mechanical properties of these alloys have been extensively reported, but their interpretation is not clear. The thesis begins with an introduction to both the relevant nanostructures and some of the difficulties involved in explaining obs...

  19. Strength and damage of marble in ductile failure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    To study the effects of loading paths and stress states on rock strength and deformation, marble specimens were axially compressed to various displacements under a confining pressure (CP) firstly, and then the damaged specimens were recompressed under another CP. The bearing capacity of a marble specimen depends merely on CP at the stage of ductile deformation, and it has no relation with the loading history when CP keeps constant or increases. However, the damaged specimen turns into brittle when it is rec...

  20. Nano-modification to improve the ductility of cementitious composites

    International Nuclear Information System (INIS)

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO3 was more effective compared to nano-silica. However, the crystal structure of CaCO3 played a very important role in the range of expected improvements

  1. Nano-modification to improve the ductility of cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Yeşilmen, Seda [Department of Civil Engineering, Çankaya University, Ankara (Turkey); Al-Najjar, Yazin [Department of Civil Engineering, Gaziantep University, Gaziantep (Turkey); Balav, Mohammad Hatam [Department of Civil Engineering, Gazi University, Ankara (Turkey); Şahmaran, Mustafa, E-mail: sahmaran@gazi.edu.tr [Department of Civil Engineering, Gazi University, Ankara (Turkey); Yıldırım, Gürkan [Department of Civil Engineering, Gazi University, Ankara (Turkey); Lachemi, Mohamed [Department of Civil Engineering, Ryerson University, Toronto, ON (Canada)

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.

  2. Dislocation dynamics modelling of the ductile-brittle-transition

    Energy Technology Data Exchange (ETDEWEB)

    Hennecke, Thomas; Haehner, Peter, E-mail: thomas.hennecke@tu-bs.de, E-mail: peter.haehner@jrc.nl [European Commission, DG Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2009-07-15

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  3. Dynamic ductile tearing in high strength pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Rivalin, F.; Iung, T.; Di Fant, M. [IRSID, Maizieres-les-Metz (France); Pineau, A. [Centre des Materiaux P.M. Fourt, Evry (France)

    1996-12-31

    The study of rapid ductile crack propagation and crack arrest is a central point if one wants to reach a higher safety level in pipelines. Correlations between Charpy tests and full scale burst tests proved to be unsuccessful in predicting pipe burst for recent high strength steels. This paper presents an experiment which allows to test large SENT specimens under dynamic loading, and to characterize steel resistance against rapid ductile crack propagation by a classical energetic parameter, called the crack propagation energy, R, proposed by Turner. The R parameter proved to be characteristic of the rapid crack propagation in the material, for a given specimen and loading configuration. Failure of the specimen under dynamic conditions occurs by shearing fracture which is the same as in a full scale burst test. An example is given for an X65 ferritic-pearlitic steel loaded under static and dynamic conditions. A fracture mode transition is shown following the loading rate. From a metallurgical point of view, shearing fracture occurs by nucleation, growth and coalescence of voids, as for classical ductile fracture.

  4. Development of a high strength high toughness ausferritic steel

    International Nuclear Information System (INIS)

    A new ausferritic steel with high strength and exceptionally high fracture toughness has been developed. This steel has been synthesized integrating concepts from Austempered Ductile Cast Iron (ADI) technology. The influence of the austempering temperature on the microstructure and mechanical properties of this steel at room temperature and ambient atmosphere has been examined. The effect of microstructure on the plane strain fracture toughness and on the magnetic, electrical, and thermal properties was also investigated. Compact tension and cylindrical tensile specimens prepared from the low alloy medium carbon steel with high silicon content were initially austenitized at 927 deg. C for 2 h and then subsequently austempered at several temperatures between 260 deg. C (500 F) and 400 deg. C (750 F) to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. A combination of exceptionally high yield strength (1336 MPa) and a high fracture of toughness of 116 MPa√m (a value comparable to maraging steel) was obtained in this steel after austempering at 316 deg. C (600 F) for 2 h. Potential applications of this steel include the inexpensive fabrication of armored plates and components requiring high reliability and durability.

  5. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja;

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES...... understand iron metabolism in elderly HF patients....

  6. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  7. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    International Nuclear Information System (INIS)

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D0-D1) are mostly obscured by later deformation events. The D2-D4 is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D2). The S2 foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D3 the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S3 axial surfaces having a NE-SW orientation. Generally the dip of the S3 axial surfaces is slightly more steeper (55- 65 deg C) than that of the S2 axial surfaces, which shows a more moderate dip (40-65 deg C). F3 fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D3 shear structures contain blastomylonites as characteristic fault rocks, which examined in detail also indicates dextral sense of shearing and

  8. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  9. Predictive Process Optimization for Fracture Ductility in Automotive TRIP Steels

    Science.gov (United States)

    Gong, Jiadong

    In light of the emerging challenges in the automotive industry of meeting new energy-saving and environment-friendly requirements imposed by both the government and the society, the auto makers have been working relentlessly to reduce the weight of automobiles. While steel makers pushed out a variety of novel Advanced High Strength Steels (AHSS) to serve this market with new needs, TRIP (Transformation Induced Plasticity) steels is one of the most promising materials for auto-body due to its exceptional combination of strength and formability. However, current commercial automotive TRIP steels demonstrate relatively low hole-expansion (HE) capability, which is critical in stretch forming of various auto parts. This shortcoming on ductility has been causing fracture issues in the forming process and limits the wider applications of this steel. The kinetic theory of martensitic transformations and associated transformation plasticity is applied to the optimization of transformation stability for enhanced mechanical properties in a class of high strength galvannealed TRIP steel. This research leverages newly developed characterization and simulation capabilities, supporting computational design of high-performance steels exploiting optimized transformation plasticity for desired mechanical behaviors, especially for the hole-expansion ductility. The microstructure of the automotive TRIP sheet steels was investigated, using advanced tomographic characterization including nanoscale Local Electrode Atom Probe (LEAP) microanalysis. The microstructural basis of austenite stability, the austenite carbon concentration in particular, was quantified and correlated with measured fracture ductility through transformation plasticity constitutive laws. Plastic flow stability for enhanced local fracture ductility at high strength is sought to maintain high hole-expansion ductility, through quantifying the optimal stability and the heat-treatment process to achieve it. An additional

  10. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole; da Silva Fanta, Alice Bastos; Horsewell, Andy; Tiedje, Niels Skat

    nodules is described and ef-fects of preparation methods discussed. It was found that nodules contain different types of inclusions. These were analysed for chemical composition and crystallography using energy dispersive spectrometry (EDS) and electron back-scatter patterns (EBSP). Location of inclusions...

  11. Ductile-brittle behavior of (001)[110] nano-cracks in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Machová, Anna; Beltz, G. E.

    2004-01-01

    Roč. 387, 389C (2004), s. 414-418. ISSN 0921-5093. [ICSMA-13. Budapest, 25.08.2003-30.08.2003] R&D Projects: GA AV ČR IAA2076201; GA MŠk ME 504 Grant ostatní: NSF(US) 0000142 Institutional research plan: CEZ:AV0Z2076919 Keywords : crack * stability * twins Subject RIV: JG - Metallurgy Impact factor: 1.445, year: 2004

  12. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    thicknesses between 2 and 4.3 mm. The thermocouples were accurately placed at the same distance from the surface of the casting for different plate thicknesses. It is shown that when measuring the temperature in plates with thickness between 2 and 4.3 mm the measured temperature will be parallel shifted to a...... level about 20C lower than the actual temperature in the casting. Factors affecting the measurement error (oxide layer on the thermocouple wire, penetration into the ceramic tube and variation in placement of thermocouple) are discussed. Finally, it is shown how useful cooling curve may be obtained in...

  13. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    of factors influencing temperature measurement in thin walled castings was carried out. The calculations are based on and compared with experiments presented in part 1 of this paper. The analysis shows that the presence of the TC has only a minor influence on the microstructure of the casting. The...... influence is restricted to a volume within 2mm from the TC. Measured cooling curves will have the right shape. In a 2 mm plate the measured temperature was 17 °C below the true temperature in the melt. However, the cooling curve provides important information about nucleation and growth during...

  14. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    the presence of austenite dendrites even in hypereutectic castings. In thin-walled castings the presence of austenite dendrites is even more pronounced, which increases the risk of shrinkage porosities. This off-eutectic austenite is therefore an important part that should be taken into account during...

  15. Computer modelling of ductile iron solidification using FDM and CA methods

    Directory of Open Access Journals (Sweden)

    W. Kapturkiewicz

    2010-11-01

    Full Text Available prediction of some structure parameters in DI by the given chemical composition of alloy and for given boundary condition of casting.Design/methodology/approach: Two mathematical models and methods developed by authors have been presented: micromodelling with using of finite difference method (FDM and mesomodelling with using of cellular automaton method (CA.Findings: The FDM was used for solving the DI so¬lidification model, including heat conductivity equation with source function, boundary condition for casting, equations for austenite and eutectic grains nucleation depended on the changing undercooling, the Weibull’s formula for graphite nodule count, Kolmogorov’s equation for calculation of volume fraction of phases (eutectics and austenite. A set of equations, after transformation to a differ¬ence form, were solved by the finite difference method, using an iteration procedure. The correctness of the mathematical model has been experimen¬tally verified in the range of most significant factors, which include temperature field, the value of maximum undercooling, and the graphite nodule count interrelated with the casting cross-section. Literature offers practi¬cally no data on so confronted process model and simulation program. The CA model was used for the simulation of the grains’ shapes in connection with FD for temperature field and solute redistribution in the grain scale.Practical implications: FDM modeling gives the possibility of statistical description of microstructure but the geometrical shape of grains is assumed a priori. In CA modeling the grain shape is not assumed, but this is the result of modeling. The use of FDM gives results quantitatively comparable to the process in real casting, particularly according to temperature fields and number of graphite spheroids.Originality/value: The CA method gives on the present stage credible qualitative results but this method is more perspective for good reproducing of the real process of solidification.

  16. Ductile-to-brittle transition in a low alloy steel

    International Nuclear Information System (INIS)

    The mechanical properties of pressure vessel steel (and above all its resistance to brittle fracture) are a decisive factor in the complex safety assessment of nuclear power plants. The monitoring of neutron induced embrittlement is provided using Charpy impact tests on standard V-notch specimens due to their small size. Material's ductile-to-brittle transition temperature (DBTT) can be easily characterised using this test. However, Charpy impact energy cannot be immediately used for safety assessment, since fracture toughness is required. Some empirical formulas have been developed, but no direct relationship was still found. When the specimens are tested in the ductile-to-brittle transition region, cleavage crack initiation is preceded by ductile crack growth giving a large scatter to the values of fracture toughness and/or Charpy impact energy. Even if the cleavage initiation and propagation in steels containing isolated spheroidic carbides are qualitatively well understood, no one from existing models can explain the sharp upturn in ductile-to-brittle transition region. In the present work, French tempered bainitic steel 16MND5 (considered as equivalent to the American standard A508 Cl.3) is studied: The large fractographic analysis of CT and Charpy specimens broken in the DBTT range is undertaken to account for the evolution of cleavage fracture mechanisms. In addition to classical scanning electron microscopy, transmission electron microscopy and EBSD technique are used in order to study the propagation of cleavage crack. The classical fracture mechanics using KIc or Jc concepts can hardly describe the unstable brittle fracture in the DBTT range. Hence, the local approach, which aims to predict the fracture of any structural component using local criteria, providing that the mechanical fields in the structure are known, is used. The probability of cleavage fracture in the DBTT range is predicted using the Beremin model based on weakest link theory, e.g. 2

  17. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  18. Evaluation of Floor Response Spectrum considering Ductility of Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junhee; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The FRS (floor response spectrum) is directly influenced by the behavior of structure under the seismic load. If the structure is nonlinear range, the energy dissipation will be occurred by the damage of structure and the maximum force will be reduced. In Zion method, the inelastic energy abortion factor has been used to consider the nonlinearity of structure. This factor was used for the seismic fragility of structure. For the seismic fragility of equipment, the uncertainty of this factor was used differently according to the story level. But this method is not warranted under the strong earthquake leads to the structural damage. Therefore it is needed to evaluate the FRS considering the nonlinear behavior of structure and to assessment the conservatism related to nonlinear behavior of structure in FRS. In this study, the nonlinear analysis was performed for the conservatism of FRS under the damage of structure. The conservatism of FRS by the nonlinear analysis was compared by that proposed by the Zion method. The conservatism of floor acceleration response for the equipment was evaluated by performing the nonlinear analysis. From the nonlinear analysis results, it was showed that the median and β{sub c} of FRSR was increased with the ductility of structure and the response of equipment had the resonance effect between the frequency of equipment and structure. The seismic capacity of equipment by the Zion method can be different from the real seismic capacity of equipment because the inelastic structure response factor has nothing to do with the ductility of structure. Therefore the median and COV for FRSR should be defined considering the ductility of structure and the frequency of equipment for more exactly evaluating the seismic capacity of equipment.

  19. Modelling of ductile and cleavage fracture by local approach

    International Nuclear Information System (INIS)

    This report describes the modelling of ductile and cleavage fracture processes by local approach. It is now well known that the conventional fracture mechanics method based on single parameter criteria is not adequate to model the fracture processes. It is because of the existence of effect of size and geometry of flaw, loading type and rate on the fracture resistance behaviour of any structure. Hence, it is questionable to use same fracture resistance curves as determined from standard tests in the analysis of real life components because of existence of all the above effects. So, there is need to have a method in which the parameters used for the analysis will be true material properties, i.e. independent of geometry and size. One of the solutions to the above problem is the use of local approaches. These approaches have been extensively studied and applied to different materials (including SA33 Gr.6) in this report. Each method has been studied and reported in a separate section. This report has been divided into five sections. Section-I gives a brief review of the fundamentals of fracture process. Section-II deals with modelling of ductile fracture by locally uncoupled type of models. In this section, the critical cavity growth parameters of the different models have been determined for the primary heat transport (PHT) piping material of Indian pressurised heavy water reactor (PHWR). A comparative study has been done among different models. The dependency of the critical parameters on stress triaxiality factor has also been studied. It is observed that Rice and Tracey's model is the most suitable one. But, its parameters are not fully independent of triaxiality factor. For this purpose, a modification to Rice and Tracery's model is suggested in Section-III. Section-IV deals with modelling of ductile fracture process by locally coupled type of models. Section-V deals with the modelling of cleavage fracture process by Beremins model, which is based on Weibulls

  20. Spall behavior of cast iron with varying microstructures

    International Nuclear Information System (INIS)

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  1. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar...... System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course of...... situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3...

  2. Statistics of ductile fracture surfaces: the effect of material parameters

    DEFF Research Database (Denmark)

    Ponson, Laurent; Cao, Yuanyuan; Bouchaud, Elisabeth;

    2013-01-01

    The effect of material parameters on the statistics of fracture surfaces is analyzed under small scale yielding conditions. Three dimensional calculations of ductile crack growth under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive...... microscopic fracture properties: height fluctuations are shown to crossover from a Student’s distribution with power law tails at small scales to a Gaussian behavior at large scales, but this transition occurs at a material dependent length scale. Using the family of Student’s distributions, this transition...

  3. Crack propagation in tough ductile materials. Phase I

    International Nuclear Information System (INIS)

    The report describes and presents the J-resistance curves obtained as a function of crack extension for two representative tough ductile materials namely ASTM516 grade 70 plate steel and SA106 grade B pipe steel. The results were obtained using the ASTM standard method for determining J-R curves, E24.08, 12th Draft, 25th July, 1985. Both compact tension and three point bend tests were employed for the plate steel tests; only compact tension specimens were used to evaluate the pipe steel. All tests were carried out under load control conditions using specimens of different thickness and cut from known orientations within the parent material

  4. A Theoretical Approach for Estimating Fracture Toughness of Ductile Metals

    Institute of Scientific and Technical Information of China (English)

    Y.T. He; F. Li; G.Q. Zhang; L.J. Ernst; X.J. FU

    2004-01-01

    Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.

  5. Radiographic Observation of Damage Zone Evolution in High Ductile Specimen

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Holý, T.; Jakůbek, J.; Jakůbek, M.; Vykydal, Z.; Bryscejn, Jan; Tichý, V.; Valach, Jaroslav

    Dordrecht: Springer, 2006 - (Gdoutos, E.), s. 601-607 ISBN 1-4020-4971-4. [European Conference of Fracture /16./. Alexandroupolis (GR), 03.07.2006-07.07.2006] R&D Projects: GA ČR(CZ) GA106/04/0567 Grant ostatní: Evropská komise(XE) EVK4–CT–2002–30011 Institutional research plan: CEZ:AV0Z20710524 Keywords : digital radiography * ductile fracture mechanics * NDT Subject RIV: JL - Materials Fatigue, Friction Mechanics

  6. Design of ductile bulk metallic glasses by adding ''soft'' atoms

    International Nuclear Information System (INIS)

    We propose a strategy for the design of ductile bulk metallic glasses (BMGs) through minor substitution using relatively large atoms, which make the bonding nature become more metallic and with it less shear resistant. Such a locally modified structure results in topological heterogeneity, which appears to be crucial for achieving enhanced plasticity. This strategy is verified for Ti-Zr-Cu-Pd glassy alloys, in which Cu was replaced by In, and seems to be extendable to other BMG systems. The atomic-scale heterogeneity in BMGs is somewhat analog to defects in crystalline alloys and helps to improve the overall plasticity of BMGs.

  7. Influence of molding sand on the number of grains graphite and on the rate of thin ferrite in pieces in a nodular iron ferritic matrix

    Directory of Open Access Journals (Sweden)

    B. Khatemi

    2010-07-01

    Full Text Available The nodular cast irons are characterized by high mechanical properties compared to cast iron with lamellar graphite or vermiculargraphite. The ductile iron has already been the subject of many studies especially since the literature is rich on them, and sources of information are different. The fact is that the mechanical properties of nodular cast iron (FGS depend on the number of graphitegrains, their roundness, the solidification rate and nature of the matrix [3]. Many studies of nodular cast irons showed that the morespherical particles of graphite, the higher the mechanical properties are high. In gray cast irons, the graphite spheroids have anticrackingand give the ductile iron ductility. Note in this connection that the higher the number of graphite grains, the higher theductile iron has better mechanical properties. In cast iron, the nature of the matrix is depending on several parameters including thecooling rate of molten metal, the thickness, shape and dimensions of parts. The faster cooling is slow over rate of ferrite is important[3, 4]. In this paper, we tested three types of sand casting: sand –based sodium silicate, furan resin and green sand on samplesspherical graphite cast iron of different thickness. The objective in this article is to determine the number of grains of graphite andferrite for each type of sand casting under the same experimental conditions including the cooling rate and chemical composition ofthe liquid metal.

  8. Brittle versus ductile behaviour of nanotwinned copper: A molecular dynamics study

    International Nuclear Information System (INIS)

    Nanotwinned copper (Cu) exhibits an unusual combination of ultra-high yield strength and high ductility. A brittle-to-ductile transition was previously experimentally observed in nanotwinned Cu despite Cu being an intrinsically ductile metal. However, the atomic mechanisms responsible for brittle fracture and ductile fracture in nanotwinned Cu are still not clear. In this study, molecular dynamics (MD) simulations at different temperatures have been performed to investigate the fracture behaviour of a nanotwinned Cu specimen with a single-edge-notched crack whose surface coincides with a twin boundary. Three temperature ranges are identified, indicative of distinct fracture regimes, under tensile straining perpendicular to the twin boundary. Below 1.1 K, the crack propagates in a brittle fashion. Between 2 K and 30 K a dynamic brittle-to-ductile transition is observed. Above 40 K the crack propagates in a ductile mode. A detailed analysis has been carried out to understand the atomic fracture mechanism in each fracture regime

  9. Clean iron production and machining technology. Year 1 summary report, January 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-05

    The first phase of this project was conducted to develop a technique for evaluating the machinability of gray and ductile iron. That technique was then used to measure the machinability of a variety of irons and determine the processing factors that influenced and controlled machinability. The procedure developed to evaluate machinability involved drilling holes with a feed rate of 0.009 in/rev at various surface speeds. High speed steel drills were used so wear was observed more quickly. Microcarbides present in the irons were found to dominate the machinability. Pearlitic irons considered to have ``acceptable`` machinability (indicated either by tool life measured in the laboratory using high speed steel (HSS) drills or reports from commercial machine shops using other cutters) were found to contain from 8.9 to 10.5% by weight microscopic carbides. The tool wear rate increased when machining at higher surface speeds or machining irons containing higher weight percentage of microcarbides. All irons containing above 11.5% microcarbides consistently exhibited poor machinability. Tool wear results obtained using cubic boron nitride (CBN) cutters paralleled those obtained with HSS. Higher iron microcarbide concentrations produced faster tool wear. Experiments are now being formulated to explore methods of improving iron machinability. Future work will extend the study to ductile irons.

  10. METABOLISM OF IRON STORES

    OpenAIRE

    Saito, Hiroshi

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since th...

  11. Effects of ageing on the ductile fracture of AISI type 316 stainless steel

    International Nuclear Information System (INIS)

    The micromechanisms of ductile fracture have been studied in a commercial AISI type 316 austenitic stainless steel. Tensile, Charpy impact and ductile fracture toughness testing has been performed on unaged material and samples aged at 7000C for times up to 4380 h. Examination of the specimens after testing has demonstrated that the microstructural changes occurring at grain boundaries are reponsible for the observed losses of ductility and crack growth resistance. The relative magnitude of the observed changes in mechanical properties has been accounted for using a simple model to describe the ductile fracture process. (author)

  12. On key factors influencing ductile fractures of dual phase (DP) steels

    International Nuclear Information System (INIS)

    In this paper, we examine the key factors influencing ductile failure of various grades of dual phase (DP) steels using the microstructure-based modeling approach. Various microstructure-based finite element models are generated based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite phase and also the influence of voids introduced in the ferrite phase on the overall ductility of DP steels. It is found that with volume fraction of martensite in the microstructure less than 15%, the overall ductility of the DP steels strongly depends on the ductility of the ferrite matrix, hence pre-existing micro-voids in the microstructure significantly reduce the overall ductility of the steel. When the volume fraction of martensite is above 15%, the pre-existing voids in the ferrite matrix does not significantly reduce the overall ductility of the DP steels, and the overall ductility is more influenced by the mechanical property disparity between the two phases. The applicability of the phase inhomogeneity driven ductile failure of DP steels is then discussed based on the obtained computational results for various grades of DP steels, and the experimentally obtained scanning electron microscopy (SEM) pictures of the corresponding grades of DP steels near fracture surface are used as evidence for result validations.

  13. EFFECT OF VELOCITY ON DUCTILITY UNDER HIGH VELOCITY FORMING

    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LI Chunfeng

    2007-01-01

    The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures are simplified to one-dimensional tension by constraining the radial deformation, with element birth and death method, fracture problem of circular ring are considered. The calculated results show that for insensitive materials of 1060 aluminum and 3A21 aluminum alloy, fracture strain increases corresponding to the increase of forming velocity. This trend agrees well with experimental results, and indicates inertia is the key factor to affect ductility; With element birth and death methods, fracture problems can be solved effectively. Experimental studies on formability of tubular workpieces are also conducted, experimental results show that the formability of 1060 aluminum and 3A21 aluminum alloy under electromagnetic forming is higher than that under quasistatic forming, according to the characteristics of electromagnetic forming, the forming limit diagrams of the two materials tube are also built respectively, this is very important to promote the development of electromagnetic forming and guide the engineering practices.

  14. The causes of geometry effects in ductile tearing

    International Nuclear Information System (INIS)

    An adequate understanding of geometry effects in ductile tearing can only be achieved when the different causes of the effects are distinguished and these geometry effects are linked to particular micromechanical fracture processes or global deformation mechanisms. It is shown that the micromechanical process of ductile (fibrous) fracture is dependent on achieving a critical strain, which is only slightly dependent on the stress state for the range of triaxiality conditions in pressure vessels and through-cracked plates. Under certain conditions, the crack tip strain can be shown to scale with the value of the J integral and there is a direct connection between J and the underlying micro mechanical process. This connection is lost for significant crack extension or large-scale plasticity. Nevertheless the J integral may still be use on an empirical basis under some conditions. Under fully-plastic conditions the primary source of geometry dependence in the J-R curves is due to the geometry dependence of the shape and volume of the plastic region that develops around the uncracked ligament. This occurs because J is essentially proportional to the total plastic work done on the specimen. If it can be assured that the fracture mode in both the test specimen and the structure will remain fully fibrous, it is conservative to extrapolate J-R curves generated from small compact specimens for the analysis of pressure vessel crack stability. 132 refs., 12 figs., 3 tabs

  15. Electropulsing strengthened 2GPa boron steel with good ductility

    International Nuclear Information System (INIS)

    Highlights: ► The boron steel with ultra-high strength could be made by electropulsing. ► The steel also has good ductility. ► The fine lath-martensitic contributed to tensile properties improvement. ► The fine lath-martensitic resulted from the effects of the electropulsing. -- Abstract: For the purpose of further enhancing the mechanical properties of a boron steel used in the automotive industry, the electropulsing is applied to strengthen the steel. The results show that the steel exhibits unexpected high strength and ductility. The engineering ultimate-tensile-strength and fracture strain are about 2022 MPa and 0.246, respectively. The microstructure examinations indicate that the martensitic was refined greatly during the electropulsing strengthening process. The fine martensitic with high-density dislocation makes the steel with good mechanical properties. The amazing results can be attributed to the thermal and athermal effects of the electropulsing. Due to the effect of rapid heating during electropulsing, a large overheating could be obtained, which could result in the high nucleation rate of austenite. Moreover, the pulse current itself can increase the austenite nucleation rate by decreasing the thermodynamic barrier. Finally, the fine lath-martensitic with high-density dislocation formed during the subsequent quenching process.

  16. Crack and fracture behaviour in tough ductile materials

    International Nuclear Information System (INIS)

    The report describes various approaches and developments pertaining to the understanding of crack and fracture behaviour in tough ductile materials. The fundamental elastic fracture mechanics concepts based on the concepts of energy, stress field, and displacement are introduced and their interrelationships demonstrated. The extension of these concepts to include elasto-plastic fracture mechanics considerations is reviewed in the context of the preferred options available for the development of appropriate design methodologies. The recommendations of the authors are directed towards the continued development of the J-integral concept. This energy-based concept, in its fundamental form, has a sound theoretical basis and as such offers the possibility of incorporating elasto-plastic fracture mechanics considerations in the crack and fracture behaviour of tough ductile materials. It must however be emphasized that the concise defintion of J becomes increasingly suspect as the crack length increases. J is not a material property, as is JIC, but emerges as a useful empirical parameter which is dependent upon the particular geometry and the loading imposed on the structure. It is proposed that 'lowest bound' J-resistance curves and the associated J-T curves be experimentally developed and employed in the design process. Improvements to these 'lowest bounds' can be developed through extensive analysis of the twin J-CTOA criteria and validation of this approach through near full scale tests

  17. Analysis of Percent Elongation for Ductile Metal in Uniaxial Tension

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin; YANG Mei; JIANG Jian

    2005-01-01

    Percent elongation of ductile metal in uniaxial tension due to non-homogeneity was analyzed based on gradient-dependent plasticity. Three assumptions are used to get the analytical solution of percent elongation: one is static equilibrium condition in axial direction; another is that plastic volumetric strain is zero in necking zone;the other is that the diameter in unloading zone remains constant after strain localization is initiated. The strain gradient term was introduced into the yield function of classical plastic mechanics to obtain the analytical solution of distributed plastic strain. Integrating the plastic strain and considering the influence of necking on plastic elongation, a one-dimensional analytical solution of percent elongation was proposed. The analytical solution shows that the percent elongation is inversely proportional to the gauge length, and the solution is formally similar to earlier empirical formula proposed by Barba. Comparisons of existing experimental results and present analytical solutions for relation between load and total elongation and for relation between percent elongation and gauge lengthwere carried out and the new mechanical model for percent elongation was verified. Moreover, higher ductility,toughness and heterogeneity can cause much larger percentage elongation, which coincides with usual viewpoints.

  18. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s-1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  19. Ductile fracture assessment using parameters from small specimens

    International Nuclear Information System (INIS)

    The topic of this thesis is the computational aspects in the assessment of ductile failure in metals. The first part briefly describes the micromechanics of ductile crack growth and methods for assessing it. The 'classic' approach to describe material behaviour using fracture mechanics is summarised. The limitations of the one parameter approach based on the stress intensity factor K or the J- integral are described. Attempts to extend the application field of fracture mechanics parameters by introducing triaxility or constraint parameters are also presented. Different local approach methodologies are summarised. Special attention is paid to the modified Gurson model, which is based on micro-mechanical studies of void initiation, growth and coalescence. The main part of the work consists of numerical analyses with the modified Gurson model. The parameters of the model are first determined by matching tensile test results by finite element analysis, and then applied to J-R curve prediction. This methodology is applied to several reactor pressure vessel materials: A533B, 20 MnMoNi 5 5 and austenitic VVER 440 cladding. As a result, the applicability of different specimen types for the parameter determination of the modified Gurson model has been evaluated. Because a combination of experimental and numerical work is needed, it proved to be most feasible to use specimens which can be simulated with two-dimensional or axisymmetric finite element models. Further, a practical way to treat anisotropic material behaviour using the modified Gurson model by using separate parameter sets for different orientations has been proposed and verified. The correspondence between the observed scatters in tensile and fracture mechanical test results has been examined. Best agreement was obtained fitting the scatter of tensile tests by varying the values of initial parameters. Reasons for apparently higher ductility measured from sub-sized than standard size tensile specimens were

  20. Ductile fracture assessment using parameters from small specimens

    Energy Technology Data Exchange (ETDEWEB)

    Talja, H. [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    The topic of this thesis is the computational aspects in the assessment of ductile failure in metals. The first part briefly describes the micromechanics of ductile crack growth and methods for assessing it. The `classic` approach to describe material behaviour using fracture mechanics is summarised. The limitations of the one parameter approach based on the stress intensity factor K or the J- integral are described. Attempts to extend the application field of fracture mechanics parameters by introducing triaxility or constraint parameters are also presented. Different local approach methodologies are summarised. Special attention is paid to the modified Gurson model, which is based on micro-mechanical studies of void initiation, growth and coalescence. The main part of the work consists of numerical analyses with the modified Gurson model. The parameters of the model are first determined by matching tensile test results by finite element analysis, and then applied to J-R curve prediction. This methodology is applied to several reactor pressure vessel materials: A533B, 20 MnMoNi 5 5 and austenitic VVER 440 cladding. As a result, the applicability of different specimen types for the parameter determination of the modified Gurson model has been evaluated. Because a combination of experimental and numerical work is needed, it proved to be most feasible to use specimens which can be simulated with two-dimensional or axisymmetric finite element models. Further, a practical way to treat anisotropic material behaviour using the modified Gurson model by using separate parameter sets for different orientations has been proposed and verified. The correspondence between the observed scatters in tensile and fracture mechanical test results has been examined. Best agreement was obtained fitting the scatter of tensile tests by varying the values of initial parameters. Reasons for apparently higher ductility measured from sub-sized than standard size tensile specimens were

  1. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    Science.gov (United States)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data

  2. Iron and Your Child

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Iron and Your Child KidsHealth > For Parents > Iron and ... enough iron in their daily diets. How Much Iron Do Kids Need? Kids require different amounts of ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have enough iron in your body. Low iron levels usually are due to blood loss, poor diet, ... iron supplements and multivitamins to improve her iron levels. Susan also made changes to her diet, such ...

  4. Powdering ductile U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-dehydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and γ-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  5. Ductile film delamination from compliant substrates using hard overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Cordill, M.J. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Marx, V.M.; Kirchlechner, C. [Max-Plank-Insitut für Eisenforschung GmbH, Düsseldorf (Germany)

    2014-11-28

    Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems. - Highlights: • Measuring the adhesion energies of ductile metal–polymer interfaces is difficult. • A Cu film would plastically deform under tensile strain without a Cr overlayer. • A Cr overlayer forces cracking and induces buckling between the crack fragments. • The adhesion energy of the metal–polymer interface can be measured.

  6. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been......, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example, the...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly...

  7. Observations on Mode I ductile tearing in sheet metals

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau

    2013-01-01

    Cracked ductile sheet metals, subject to Mode I tearing, have been observed to display a variety of fracture surface morphologies depending on the material properties, and a range of studies on the fracture surface appearance have been published in the literature. Whereas classical fractures such...... as cup-cone, cup-cup and slanting are widely observed, the phenomenon of a slanted crack which systematically "flips" back and forth in a roughly 45 orientation has only recently been reported. The present study aims to add details and understanding to this crack growth phenomenon - through...... experimental testing and comparison with published results. A series of crack propagation tests have been carried out, where cracks are driven many plate thicknesses under global Mode I loading. The current study employs both the edge crack specimen (ECS) loaded in combined in-plane bending and extension, and...

  8. Ductility of copper films on sandblasting polyimide substrates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Different surface morphologies of polyimide(PI)foils widely applied in flexible electronics were obtained using the technique of sandblasting.Copper(Cu)films were subsequently deposited on the treated surface of PI substrates.Upon tensile loading, the critical strain,crack density and count of cracks were measured to examine the ductility of Cu films on PI substrates.Obtained results show that after sandblasting treatment,the critical strain of Cu film decreases from 8.0%to 6.9%and,in comparison with the case without sandblasting,its surface crack density decreases remarkably,with no saturation of the crack density.The reduced crack density is attributed to the increase of contact area and interfacial adhesion after sandblasting,and whether the crack density is saturated or not is dependent upon the morphology of the cracks formed as a function of tensile strain.

  9. A LOWER BOUND LIMIT ANALYSIS OF DUCTILE COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongtao; Liu Yinghua; Xu Bingye

    2005-01-01

    The plastic load-bearing capacity of ductile composites such as metal matrix composites is studied with an insight into the microstructures. The macroscopic strength of a composite is obtained by combining the homogenization theory with static limit analysis, where the temperature parameter method is used to construct the self-equilibrium stress field. An interface failure model is proposed to account for the effects of the interface on the failure of composites.The static limit analysis with the finite-element method is then formulated as a constrained nonlinear programming problem, which is solved by the Sequential Quadratic Programming (SQP)method. Finally, the macroscopic transverse strength of perforated materials, the macroscopic transverse and off-axis strength of fiber-reinforced composites are obtained through numerical calculation. The computational results are in good agreement with the experimental data.

  10. Optimization of Abrasive Water Jet Cutting of Ductile Materials

    Institute of Scientific and Technical Information of China (English)

    Asif IQBAL; Naeem U DAR; Ghulam HUSSAIN

    2011-01-01

    Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material.Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.

  11. Investigation the parameters for torsion ductility of bead wire

    International Nuclear Information System (INIS)

    Torsion testing is used to determine the quality of steel wire used for beads in pneumatic tires. However, strain aging (dynamic and static) caused by interstitial carbon and nitrogen atoms bound to mobile dislocations increases yield strength and decreases bead formability. Processing parameters of bead wire, such as line speed, lead bath temperature and wire diameter, were investigated, and theoretical calculations were made to estimate the effect of these parameters on strain aging. Nitrogen concentration was measured in bead wire samples with varying numbers of twists to failure during torsion testing. Surface morphologies of twisted bead wires were examined by scanning electron microscopy. Experimental data showed that torsional properties of bead wire were a function of stress relief temperature on and theoretical calculations showed that line speed and temperature have to be optimized for optimum torsion ductility.

  12. Robustness Analysis of a Wide-Span Timber Structure with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.;

    2010-01-01

    This paper considers robustness evaluation of a wide span timber truss structure where the ductile behavior is taken into account. The robustness analysis is based on a structural reliability framework used on a simplified mechanical system modelling a timber truss system. A measure of ductile be...

  13. Iron homeostasis and nutritional iron deficiency.

    Science.gov (United States)

    Theil, Elizabeth C

    2011-04-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe(2+) and O(2) (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  14. Boudinage and folding as an energy instability in ductile deformation

    Science.gov (United States)

    Peters, Max; Herwegh, Marco; Paesold, Martin K.; Poulet, Thomas; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2016-05-01

    We present a theory for the onset of localization in layered rate- and temperature-sensitive rocks, in which energy-related mechanical bifurcations lead to localized dissipation patterns in the transient deformation regime. The implementation of the coupled thermomechanical 2-D finite element model comprises an elastic and rate-dependent von Mises plastic rheology. The underlying system of equations is solved in a three-layer pure shear box, for constant velocity and isothermal boundary conditions. To examine the transition from stable to localized creep, we study how material instabilities are related to energy bifurcations, which arise independently of the sign of the stress conditions imposed on opposite boundaries, whether in compression or extension. The onset of localization is controlled by a critical amount of dissipation, termed Gruntfest number, when dissipative work by temperature-sensitive creep translated into heat overcomes the diffusive capacity of the layer. Through an additional mathematical bifurcation analysis using constant stress boundary conditions, we verify that boudinage and folding develop at the same critical Gruntfest number. Since the critical material parameters and boundary conditions for both structures to develop are found to coincide, the initiation of localized deformation in strong layered media within a weaker matrix can be captured by a unified theory for localization in ductile materials. In this energy framework, neither intrinsic nor extrinsic material weaknesses are required, because the nucleation process of strain localization arises out of steady state conditions. This finding allows us to describe boudinage and folding structures as the same energy attractor of ductile deformation.

  15. Onset of ductility and brittleness in silicon nanowires mediated by dislocation nucleation

    International Nuclear Information System (INIS)

    Most studies show that materials at the nano-scale have different mechanical properties than in the bulk state. Semiconductors like silicon and germanium are brittle in the bulk state, but when their size is reduced to the nano-scale they appear to be ductile. Under tensile loading, we performed molecular dynamics simulations on silicon crystalline nanowires of different lengths. We present the details of the obtained mechanisms that led to ductility and brittleness. In the case of ductility, dislocation nucleation was observed with a signature of surface step formation on the surface and in the case of brittleness a cavity was formed after the distinct formation of a wedge-like shape on the surface. Interestingly, a common mechanism taking place behind ductility and brittleness is dislocation nucleation. We believe that the observed mechanisms reveal interesting information for understanding and explaining the size dependent brittle to ductile transition. (paper)

  16. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  17. Synthesis of nanoparticles from malleable and ductile metals using powder-free, reactant-assisted mechanical attrition.

    Science.gov (United States)

    McMahon, Brandon W; Perez, Jesus Paulo L; Yu, Jiang; Boatz, Jerry A; Anderson, Scott L

    2014-11-26

    A reactant-assisted mechanochemical method was used to produce copious nanoparticles from malleable/ductile metals, demonstrated here for aluminum, iron, and copper. The milling media is intentionally degraded via a reactant-accelerated wear process, where the reactant aids particle production by binding to the metal surfaces, enhancing particle production, and reducing the tendency toward mechanochemical (cold) welding. The mechanism is explored by comparing the effects of different types of solvents and solvent mixtures on the amount and type of particles produced. Particles were functionalized with oleic acid to aid in particle size separation, enhance dispersion in hydrocarbon solvents, and protect the particles from oxidation. For aluminum and iron, the result is air-stable particles, but for copper, the suspended particles are found to dissolve when exposed to air. Characterization was performed using electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Density functional theory was used to examine the nature of carboxylic acid binding to the aluminum surface, confirming the dominance of bridging bidentate binding. PMID:25343708

  18. Dislocation mechanics based analysis of material dynamics behavior: enhanced ductility, deformation twinning, shock deformation, shear instability, dynamic recovery

    International Nuclear Information System (INIS)

    Further developments are described for the dislocation mechanics based constitutive equation analysis previously used to describe the separate dynamic stress-strain behavior of fcc and bcc metal polycrystals. An enhanced hardening and ductility in copper and certain tantalum materials at higher strain rates in split Hopkinson pressure bar tests and in shock loading are attributed to enhanced dislocation generation rather than to dislocation drag. Added material strengthening is accounted for also by deformation twinning in ARMCO iron and titanium and in shocked copper and tantalum. The separate equations are applied to calculate the critical strain for shear banding in copper, iron, and the titanium alloy, Ti-6Al-4V. In the two latter cases, the results are very sensitive to the details of the strain-hardening behavior and the need is demonstrated for a dynamic recovery factor to account for the onset of shear banding. Consideration is given also to the possibility that shear band behavior requires explanation on a more fundamental Hall-Petch dislocation pile-up basis. (orig.)

  19. The Effect of Stepped Austempering on Phase Composition and Mechanical Properties of Nanostructured X37CrMoV5-1 Steel

    Directory of Open Access Journals (Sweden)

    Marciniak S.

    2015-04-01

    Full Text Available This paper presents the results of studies of X37CrMoV5-1 steel subjected to quenching processes with a one-step and a two-step isothermal annealing. The TEM observation revealed that steel after one-step treatment led is composed of carbide-free bainite with nanometric thickness of ferrite plates and of high volume fraction of retained austenite in form of thin layers or large blocks. In order to improve the strength parameters an attempt was made to reduce the austenite content by use of quenching with the two-step isothermal annealing. The temperature and time of each step were designed on the basis of dilatometric measurements. It was shown, that the two-step heat treatment led to increase of the bainitic ferrite content and resulted in improvement of steel's strength with no loss of steel ductility.

  20. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  1. Characterizing Ductile Damage and Failure: Application of the Direct Current Potential Drop Method to Uncracked Tensile Specimens

    OpenAIRE

    Brinnel, V.; Döbereiner, B.; Münstermann, Sebastian

    2014-01-01

    Modern high-strength steels exhibit excellent ductility properties but their application is hindered by traditional design rules. A characterization of necessary safety margins for the ductile failure of these steels is therefore required. Direct observation of ductile damage within tests is currently not possible, only limited measurements can be made with synchrotron or X-ray radiation facilities. The direct current potential drop (DCPD) method can determine ductile crack propagation with l...

  2. Human iron transporters

    OpenAIRE

    Garrick, Michael D.

    2010-01-01

    Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned task...

  3. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-01-01

    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  4. Hot Ductility Behavior of Boron Containing Microalloyed Steels with Varying Manganese Contents

    Science.gov (United States)

    Brune, Tobias; Senk, Dieter; Walpot, Raphael; Steenken, Bernhard

    2015-02-01

    The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope-energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).

  5. Brittleness and elastic limit of iron-aluminium 40 at high strain rates

    International Nuclear Information System (INIS)

    Iron-aluminium 40 - a B2 ordered solid solution - was tensile tested to provide information on the brittleness of this alloy and its dependence on strain rate and temperature. For slow strain rates (0.34 per cent s-1) cleaved fracture prevails when temperature is kept below 400 deg. C, while a ductile rupture is observed, with an almost 100 per cent necking at higher temperatures. In this case, recrystallization occurs during the deformation. For higher strain rates - 335 per cent s-1), a ductility reduction - owed to intergranular fracture - precedes the brittle-ductile transition. This property may be bound to the peak on the yield stress temperature curve, which is itself connected to the ordered structure of this alloy. (author)

  6. Sulphur, manganese and titanium effects on high-temperature ductility and corrosion resistance of stainless steels

    International Nuclear Information System (INIS)

    Hot ductility has been studied for stabilized 06Kh18N10T steel and nonstabilized low carbon 03Kh18N11 steel which have been melted with the use of gas-oxygen refining as well as for arc melted steel type 03Kh18N11. It has been shown that from one hand, manganese content increase has a beneficial effect on hot ductility. From the other hand, such steel experiences elevated tendency to pitting corrosion. Titanium addition may assure a combination of satisfactory hot ductility with good resistance to pitting corrosion

  7. Improvements in the ductility of molybdenum weldments by alloying additions of Zr, B and C

    International Nuclear Information System (INIS)

    A significant improvement in the ductility of molybdenum weldments has been achieved through the addition of zirconium, aluminum, carbon and boron at the parts per million level. A ductility of 20 % has been obtained in gas-tungsten arc weldments in 6.35-mm-thick plate. This improvement over molybdenum's traditional 3 % ductility has been achieved by improving the normally low fracture stress of grain boundaries. Atom probe tomography has revealed beneficial segregation of zirconium, boron and carbon to and depletion of oxygen at the grain boundaries in the base metal and the heat affected zone. (author)

  8. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  9. Standard test methods for bend testing of material for ductility

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...

  10. Ductile fracture behavior of cast structure containing voids

    International Nuclear Information System (INIS)

    In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)

  11. An analysis of ductile rupture modes at a crack tip

    Science.gov (United States)

    Needleman, A.; Tvergaard, V.

    A N ELASTIC-VISCOPLASTIC model of a ductile, porous solid is used to study the influence of the nucleation and growth of micro-voids in the material near the tip of a crack. Conditions of small scale yielding are assumed, and the numerical analyses of the stress and strain fields are based on finite strain theory, so that crack tip blunting is fully accounted for. An array of large inclusions or inclusion colonies, with a relatively low strength, results in large voids near the crack tip at a rather early stage, whereas small second phase particles in the matrix material between the inclusions require large strains before cavities nucleate. Various distributions of the large inclusions, and various critical strains for nucleation of the small scale voids between the inclusions, are considered. Localization of plastic flow plays an important role in determining the failure path between the crack tip and the nearest larger void, and the path is strongly sensitive to the distribution of the large inclusions. Values of the J-integral and the crack opening displacement at fracture initiation are estimated, together with values of the tearing modulus during crack growth, and these values are related to experimental results.

  12. Quantifying Damage Accumulation During Ductile Plastic Deformation Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suter, Robert M. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rollett, Anthony D. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-08-15

    Under this grant, we have developed and demonstrated the ability of near-field High Energy Diffraction Microscopy (nf-HEDM) to map crystal orientation fields over three dimensions in deformed polycrystalline materials. Experimental work was performed at the Advanced Photon Source (APS) at beamline 1-ID. Applications of this new capability to ductile deformation of copper and zirconium samples were demonstrated as was the comparison of the experimental observations to computational plasticity models using a fast Fourier transform based algorithm that is able to handle the large experimental data sets. No such spatially resolved, direct comparison between measured and computed microstructure evolutions had previously been possible. The impact of this work is reflected in numerous publications and presentations as well as in the investments by DOE and DOD laboratories of millions of dollars in applying the technique, developing sophisticated new hardware that allows the technique to be applied to a wide variety of materials and materials problems, and in the use of the technique by other researchers. In essence, the grant facilitated the development of a new form of three dimensional microscopy and its application to technologically critical states of polycrystalline materials that are used throughout the U.S. and world economies. On-going collaborative work is further optimizing experimental and computational facilities at the APS and is pursuing expanded facilities.

  13. Crack propagation in touch ductile materials. Phase II

    International Nuclear Information System (INIS)

    The thrust of this work was to investigate published J material resistance and stress-strain data applicable to the understanding of crack propagation in tough ductile steels, particularly SA 106 Grade B pipe steel. This data has been assembled from PIFRAC, AECB report INFO-0254-1 and Ontario Hydro sources and has been uniformly formatted and presented to facilitate comparison and assessment. While the data is in many aspects incomplete it has enabled an evaluation of the influence of temperature, specimen thickness and specimen orientation to be made in the context of the experimental J-R curves so determined. Comparisons of the stress-strain data within the Ramburg-Osgood formulation are also considered. A further component of this report addresses the development of the required software to utilize what is referred to as the engineering approach to elasto-plastic analysis to investigate the load carrying capacity of selected cracked pipe geometries which are representative of applied crack propagation studies associated with piping systems in the nuclear industry. Three specific geometries and loading situations, identified as Condition A, B and C have been evaluated; the results are presented and illustrate the variation in applied load as a function of an initial and final crack extension leading to instability

  14. Low ductility creep failure in austenitic weld metals

    International Nuclear Information System (INIS)

    Creep tests have been carried out for times of up to approx. 22,000 hrs on three austenitic weld metals of nominal composition 17Cr-8Ni-2Mo, 19Cr-12Ni-3Mo+Nb and 17Cr-10Ni-2Mo. The two former deposits were designed to produce delta-ferrite contents in the range 3-9% while the latter was designed to be fully austenitic. The common feature of all three weld metals was that they all gave very low strains at failure, typically approx. 1%. The microstructures of the failed creep specimens have been studied using optical and electron microscopy and the precipitate structures related to the occurrence of low creep strains. Creep deformation and fracture mechanisms in austenitic materials in general have been reviewed and this has been used as a basis for discussion of the observations of the present work. Finally, some of the factors that can be controlled to improve long-term creep ductility have been appraised

  15. Hot ductility and deformation behavior of C-Mn/Nb-microalloyed steel related to cracking during continuous casting

    OpenAIRE

    Lanjewar, Harishchandra; Tripathi, Pranavkumar; M Singhai; Patra, PK

    2014-01-01

    Hot ductility studies have been performed on C-Mn and C-Mn-Nb steels with an approach to simulate the effect of cooling conditions experienced by steel in secondary cooling zone during continuous casting. Thermal oscillations prior to tensile straining deteriorate hot ductility of steel by deepening and widening the hot ductility trough. C-Mn steels are found to exhibit ductility troughs in three distinct zones whereas C-Mn-Nb steel shows drop in ductility only at low temperature in the vicin...

  16. Iron Sucrose Injection

    Science.gov (United States)

    ... is in a class of medications called iron replacement products. It works by replenishing iron stores so ... ferumoxytol (Feraheme), iron dextran (Dexferrum, Infed, Proferdex), or sodium ferric gluconate (Ferrlecit); any other medications; or any ...

  17. Iron Dextran Injection

    Science.gov (United States)

    ... is in a class of medications called iron replacement products. It works by replenishing iron stores so ... carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other medications; or any ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... refers to a condition in which your blood has a lower than normal number of red blood ... iron, your body starts using the iron it has stored. Soon, the stored iron gets used up. ...

  19. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  20. Iron deficiency anemia

    Science.gov (United States)

    ... Iron-rich foods include: Chicken and turkey Dried lentils, peas, and beans Fish Meats (liver is the ... and egg yolks are high sources of iron. Flour, bread, and some cereals are fortified with iron. ...

  1. Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals

    International Nuclear Information System (INIS)

    Nanotwinned metals have opened exciting avenues for the design of high strength and high ductility materials. In this work, we investigate crack propagation along coherent twin boundaries in nanotwinned metals using molecular dynamics. Our simulations reveal that alternating twin boundaries exhibit intrinsic brittleness and ductility owing to the opposite crystallographic orientations of the adjoining twins. This is a startling consequence of the directional anisotropy of an atomically sharp crack along a twin boundary that favors cleavage in one direction and dislocation emission from the crack tip in the opposite direction. We further find that a blunt crack exhibits ductility in all cases albeit with very distinct deformation mechanisms and yield strength associated with intrinsically brittle and ductile coherent twin boundaries

  2. Ductility response of three high temperature materials tested under hydrostatic pressure

    International Nuclear Information System (INIS)

    The pressure-ductility response of Udimet 700, TZM, and Stellite 21 was investigated. Results are presented in plots and analyzed. Photomicrographs showing the microstructure of these alloys in tests to failure at high pressures are included

  3. Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying

    International Nuclear Information System (INIS)

    Highlights: • Modified Ti64 alloys with improved ductility and oxidation resistance are developed. • B improves the ductility by refining grain size and enhancing boundary cohesion. • Y enhances the oxidation resistance by possibly slowing down the oxidation kinetics. - Abstract: The effects of B and Y on the mechanical properties and oxidation behavior of cast Ti–6Al–4V alloys were systematically investigated, and the new alloys with improved ductility and oxidation resistance are developed by the microalloying approach. The results indicate that boron is beneficial for improving the ductility by not only grain-size refinement but also grain-boundary enhancement, while yttrium is effective in increasing the oxidation resistance through possibly slowing down the oxidation kinetics. The improved properties, together with their high strength, make the microalloyed cast Ti–6Al–4V alloys competitive for practical engineering applications

  4. Ductile electroless Ni-P coating onto flexible printed circuit board

    Science.gov (United States)

    Wang, Wenchang; Zhang, Weiwei; Wang, Yurong; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-03-01

    In this study, a ductile electroless Ni-P coating on the flexible printed circuit board (FPCB) was prepared in an acidic nickel plating bath. The addition of dipropylamine (DPA) in electroless plating not only improves the ductility of the Ni-P coating, but also enhances the corrosion resistance. The further analysis reveals that the ductility improvement and enhancement of corrosion resistance for the Ni-P coating may be due to the fact that the addition of DPA significantly refines the volume of columnar nodule and reduce the porosity, thus leading to the released internal stress. In addition, it was found that the nodule within the Ni-P coating grew into a columnar structure, which may be also contribute to the improvement of ductility.

  5. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict v...... simple way of accounting for damage development under low triaxiality shearing, without further increasing the damage rate in regions of moderate to high stress triaxiality.......For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...... void nucleation and very limited void growth. Void coalescence would therefore be largely postponed. However, using the shear modification of the Gurson model, recently introduced by Nahshon and Hutchinson (2008) [1], failure prediction is possible at zero or even negative mean stress. Since, this...

  6. Stable ductility of an electrodeposited nanocrystalline Ni–20 wt.%Fe alloy in tensile plastic deformation

    International Nuclear Information System (INIS)

    Tensile behavior of an electrodeposited nanocrystalline Ni–20 wt.%Fe (average grain size d = ∼32 nm) alloy was investigated. With the variety of strain rate, high ultimate strength (1762–1939 MPa) and stable fracture ductility (8.5–9.3%) were observed during tensile tests. The ductility of the nanocrystalline Ni–20 wt.%Fe alloy is more stable than that of the nanocrystalline Ni (5.6–11.3%) with similar microstructures. The stable ductility of the nanocrystalline Ni–20 wt.%Fe alloy can be attributed to its higher work hardening ability. Transmission electron microscope analysis revealed that there are massive dislocations, deformation twins and stacking faults in the deformed nanocrystalline Ni–20 wt.%Fe alloy. The decrease of stacking fault energy, caused by alloying of Fe element, should be responsible for the crystal defect microstructures and this increases work hardening rate, which can improve the ductility at last

  7. Pharmacology of Iron Transport

    OpenAIRE

    Byrne, Shaina L.; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2012-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential phar...

  8. Influence of strain-rate on the flow stress and ductility of copper and tantalum

    International Nuclear Information System (INIS)

    Tensile experiments were carried out at strain-rates in a range from epsilon = 6.10-5 to 3.103 s-1 at 293 K and 673 K or 773 K. Two types of copper (FCC) and pure tantalum (BCC) were tested. The variations of ductility have been investigated in relation with the σ - epsilon equations of the materials and the examinations of fracture surfaces. They can be explained in terms of stability and intrinsic ductility

  9. Cost and Ductility Effectiveness of Concrete Columns Strengthened with CFRP and SFRP Sheets

    OpenAIRE

    Khaled Abdelrahman; Raafat El-Hacha

    2014-01-01

    Recently, steel fibre reinforced polymers (SFRP) sheets have been introduced for the repair and rehabilitation of concrete structures. Few researchers studied the behaviour of the concrete columns wrapped with SFRP sheets; however, several critical parameters such as the cost and ductility effectiveness of the SFRP wrapped concrete columns have been lightly addressed. Thus, the main objective of this paper is to study the cost and ductility effectiveness of SFRP wrapped concrete columns and c...

  10. Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography

    International Nuclear Information System (INIS)

    Ductile crack initiation and propagation within a naturally aged aluminium alloy sheet has been observed in situ via synchrotron radiation-computed laminography, a technique specifically adapted to three-dimensional imaging of thin objects that are laterally extended. Voids and intermetallic particles, and their subsequent evolution during ductile crack extension at different associated levels of stress triaxiality, were clearly observed within fracture coupons of a reasonable engineering length-scale, overcoming the conventional sample size limitation of computed tomography at high resolutions.

  11. Hardening effects on strain localization predictions in porous ductile materials using the bifurcation approach

    OpenAIRE

    Chalal, Hocine; ABED-MERAIM, Farid

    2015-01-01

    The localization of deformation into planar bands is often considered as the ultimate stage of strain prior to ductile fracture. In this study, ductility limits of metallic materials are predicted using the Gurson–Tvergaard–Needleman (GTN) damage model combined with the bifurcation approach. Both the GTN constitutive equations and the Rice bifurcation criterion are implemented into the finite element (FE) code ABAQUS/Standard within the framework of large plastic strains and a fully three-dim...

  12. Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres

    OpenAIRE

    Yu, Hana; Longana, Marco L; Jalalvand, Meisam; WISNOM, Michael R.; Potter, Kevin D

    2015-01-01

    The aim of this research is to manufacture intermingled hybrid composites using aligned discontinuous fibres to achieve pseudo-ductility. Hybrid composites, made with different types of fibres that provide a balanced suite of modulus, strength and ductility, allow avoiding catastrophic failure that is a key limitation of composites. Two different material combinations of high strength carbon/E-glass and high modulus carbon/E-glass were selected. Several highly aligned and well dispersed short...

  13. Industrial vegetable oil by-products increase the ductility of polylactide

    OpenAIRE

    RUELLAN A.; GUINAULT, A; SOLLOGOUB, C; CHOLLET, G; A. Ait-Mada; Ducruet, V; DOMENEK, S

    2015-01-01

    The use of industrial by-products of the vegetable oil industry as ductility increasing additives of polylactide (PLA) was investigated. Vegetable oil deodorization condensates were melt-blended by twin-screw extrusion up to a max- imum inclusion quantity of 20 wt% without preliminary purification. Sample films were obtained by single screw cast extrusion. Compounded PLA films featured largely improved ductility in tensile testing with an elongation at break up to 180%. The glass transition t...

  14. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  15. Ductility enhancement in Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) have gained increasing attention in the past decade; because of their importance in both fundamental science and engineering applications. BMGs have unique characteristics including high strength, high elastic limit, good corrosion resistance, etc. Nevertheless, BMGs usually display only minute plasticity at room temperature that limits the range of their commercial applications. Plastic deformation of BMGs at room temperature is highly localized into shear bands, which propagate easily resulting in a very limited plastic strain before catastrophic failure. In this project work, two different strategies were used to enhance the plasticity of different BMGs i.e., (i) shot-blasting and (ii) geometrical confinement. This leads to formation of stress gradients in the as cast samples which in turn improved their plasticity. Sand blasting has been successfully used for inducing plasticity in Zr-based BMG that exhibit brittleness in the as cast condition. The as cast sample was sand blasted for different duration of time. A significant amount of plasticity (up to about 6%) was achieved in the sample blasted for 4 minutes that was found to be optimum duration under the experimental conditions employed in this work. It was observed that there exists a threshold pre-straining required for enhancing ductility based on the evolution and intersection of multiple shear bands. Moreover, a novel method of geometrical confinement was employed for Zr-based BMG and plasticity of 10.5% was achieved along with work hardening like behavior. Both of these techniques are novel and very simple and can lead to advanced applications for BMGs.

  16. Hot ductility behavior of near-alpha titanium alloy IMI834

    Energy Technology Data Exchange (ETDEWEB)

    Ghavam, Mohammad Hadi; Morakabati, Maryam; Abbasi, Seyed Mahdi; Badri, Hassan [Metallic Materials Research Center (MMRC-MA), Tehran (Iran, Islamic Republic of)

    2014-11-15

    The hot ductility of rolled IMI834 titanium alloy (Ti-5.3Al-2.9Sn-3.0Zr-0.65Nb-0.5Mo-0.2Si in wt%) has been studied by conducting tensile tests with a strain rate of 0.1 s{sup -1} and temperature range of 750-1100 C to obtain the optimum hot working conditions. The alloy showed minimum hot ductility in the lower alpha-beta region in the temperature range 750-950 C. Further microstructural characterizations showed improvement in hot ductility by increasing temperature, which was attributed to reduction of volume fraction of high strength alpha phase. The best hot ductility was observed at 1000 C, i.e. in the upper alpha-beta region. The better hot ductility at higher temperature could be related to the increase in the volume fraction of beta phase and the occurrence of dynamic restoration phenomena. The second decline in hot ductility appeared at higher temperatures in the beta region and was attributed to the high stacking fault energy and self-diffusion of beta phase leading to limitation of dynamic recrystallization.

  17. Microstructure-property relationship in highly ductile Au-Cu thin films for flexible electronics

    International Nuclear Information System (INIS)

    Research highlights: → Nanocrystalline AuCu alloy thin films were co-sputter deposited on polyimide. →In situ SEM tensile tests were performed. → The most ductile films did not crack up to 30% applied tensile strain. → Deformation localizes in periodic and oriented shear bands. → Shear bands are the precursors for cracks. - Abstract: The new and fast emerging field of flexible electronic devices requires highly ductile materials. Deposition of thin metal films on flexible substrates is a suitable method to create highly ductile interconnects. In this study, thin films consisting of a graded composition of Au-Cu were co-deposited by direct-current magnetron sputtering on polyimide (Kapton) substrate for in situ SEM tensile testing, while silicon wafer supported thin film spreads were characterized by nanoindentation, XRD and EDX. Substrate quality turned out to be extremely important for strain delocalization to allow for uniform deformation characterized by high ductility. No cracking was observed up to the maximal strain of 30% for films consisting of pure gold and alloys with a low copper content up to 10 at.%, while cracking was more prevalent in films with higher copper contents and with applied heat treatment. In the most ductile thin films shear bands are the precursors of ductile cracks.

  18. New concept on ductility exhaustion considering creep-fatigue failure mechanism of Type 304SS

    International Nuclear Information System (INIS)

    For long-term creep-fatigue of Type 304SS, intergranular failure is dominant when significant life reduction occurs. This phenomenon has its origin in grain boundary sliding as same as that in cavity type creep failure. Accordingly a simplified procedure to estimate intergranular damages caused by grain boundary sliding is presented in connection with the secondary creep. In the conventional ductility exhaustion method, fracture ductility includes plastic strain, and damage estimation is based on primary creep recoverable during strain cycling. Therefore, the accumulated creep strain becomes a very large value, and is quite different from grain boundary sliding strain. As a new concept on ductility exhaustion, the products of secondary creep rate and time to rupture (ε2tR) is applied to fracture ductility, and grain boundary sliding is estimated using the accumulated secondary creep strain. It was shown that the time fraction rule and the conventional ductility exhaustion method can be derived analytically from the new concept. Furthermore an advanced method on cyclic stress relaxation was examined. If cyclic plastic strain hardening is softened thermally during strain hold, softening of the primary and secondary creep can occur. And the unrecoverable accumulated primary creep strain causes hardening of the primary creep. The reduction of deformation resistance to the secondary creep accelerates the grain boundary sliding rate, and increases creep damage. The new concept ductility exhaustion method based on the above consideration gave good life prediction for the intergranular failure mode. (author)

  19. Hot ductility behavior of near-alpha titanium alloy IMI834

    International Nuclear Information System (INIS)

    The hot ductility of rolled IMI834 titanium alloy (Ti-5.3Al-2.9Sn-3.0Zr-0.65Nb-0.5Mo-0.2Si in wt%) has been studied by conducting tensile tests with a strain rate of 0.1 s-1 and temperature range of 750-1100 C to obtain the optimum hot working conditions. The alloy showed minimum hot ductility in the lower alpha-beta region in the temperature range 750-950 C. Further microstructural characterizations showed improvement in hot ductility by increasing temperature, which was attributed to reduction of volume fraction of high strength alpha phase. The best hot ductility was observed at 1000 C, i.e. in the upper alpha-beta region. The better hot ductility at higher temperature could be related to the increase in the volume fraction of beta phase and the occurrence of dynamic restoration phenomena. The second decline in hot ductility appeared at higher temperatures in the beta region and was attributed to the high stacking fault energy and self-diffusion of beta phase leading to limitation of dynamic recrystallization.

  20. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T.J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep...

  1. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... contours are sketched of iron production based on bog iron ore from Zealand....

  2. Mechanical Behavior of Ultrafine Gradient Grain Structures Produced via Ambient and Cryogenic Surface Mechanical Attrition Treatment in Iron

    Directory of Open Access Journals (Sweden)

    Heather A. Murdoch

    2015-06-01

    Full Text Available Ambient and cryogenic surface mechanical attrition treatments (SMAT are applied to bcc iron plate. Both processes result in significant surface grain refinement down to the ultrafine-grained regime; the cryogenic treatment results in a 45% greater grain size reduction. However, the refined region is shallower in the cryogenic SMAT process. The tensile ductility of the grain size gradient remains low (<10%, in line with the expected behavior of the refined surface grains. Good tensile ductility in a grain size gradient requires the continuation of the gradient into an undeformed region.

  3. Liver iron transport

    Institute of Scientific and Technical Information of China (English)

    Ross M Graham; Anita CG Chua; Carly E Herbison; John K Olynyk; Debbie Trinder

    2007-01-01

    The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV),which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.

  4. Study of an Al-Si-Cu HPDC alloy with high Zn content for the production of components requiring high ductility and tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Vicario, Iban; Egizabal, Pedro; Galarraga, Haize; Plaza, Luis Maria; Crespo, Inigo [Fundacion Tecnalia Research and Innovation, Donostia-San Sebastien (Spain). Dept. of foundry processes

    2013-04-15

    Conventional high-pressure die casting aluminium components present certain limitations in terms of mechanical properties attainable due to the intrinsic porosity of the castings as well as the presence of iron-based brittle intermetallic phases. The present work approaches the increase in ductility and tensile strength through the analysis of the effect of the alloying elements of AlSi alloys used for high-pressure die casting. The combination of alloying elements providing the best results in terms of ductility and tensile strength were eventually selected to produce a batch of components that were thoroughly tested. The final alloy had a composition of Si 8.21, Fe 0.78, Cu 1.53, Mn 0.64, Mg 0.46, Ni 0.07, Zn 3.37, Pb 0.34, Sn 0.27, Ti 0.18 and Cr 0.04wt.%. The selected alloy performance was compared to that of the commercial AlSi9Cu3 and Silafont {sup registered} 36 alloys.

  5. Effect of small additions of silicon, iron, and aluminum on the room-temperature tensile properties of high-purity uranium

    International Nuclear Information System (INIS)

    Eleven binary and ternary alloys of uranium and very low concentrations of iron, silicon, and aluminum were prepared and tested for room-temperature tensile properties after various heat treatments. A yield strength approximately double that of high-purity derby uranium was obtained from a U-400 ppM Si-200 ppM Fe alloy after beta solution treatment and alpha aging. Higher silicon plus iron alloy contents resulted in increased yield strength, but showed an unacceptable loss of ductility

  6. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  7. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    OpenAIRE

    S. G. Sandomirskiy; V. L. Zuckerman

    2013-01-01

    The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  8. The Influence of Carbon on Small Punch Testing of Niobium-alloyed Iron Aluminide

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand; Dymáček, Petr

    Ostrava - Vítkovice : Ocelot, s.r.o, 2012 - (Matocha, K.; Hurst, R.; Sun, W.), s. 105-109 ISBN 978-80-260-0079-2. [Determination of Mechanical Properties of Materials by Small Punch and Other Miniature Techniques. Ostrava (CZ), 02.10.2012-04.10.2012] R&D Projects: GA ČR(CZ) GAP108/12/1452 Institutional support: RVO:68081723 Keywords : Iron aluminides * ductility * small punch Subject RIV: JG - Metallurgy

  9. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  10. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  11. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  12. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  13. Hot Ductility Characterization of Sanicro-28 Super-Austenitic Stainless Steel

    Science.gov (United States)

    Mirzaei, A.; Zarei-Hanzaki, A.; Abedi, H. R.

    2016-05-01

    The hot ductility behavior of a super-austenitic stainless steel has been studied using tensile testing method in the temperature range from 1073 K to 1373 K (800 °C to 1100 °C) under the strain rates of 0.1, 0.01, and 0.001 s-1. The hot compression tests were also performed at the same deformation condition to identify the activated restoration mechanisms. At lower temperatures [ i.e., 1073 K and 1173 K (800 °C and 900 °C)], the serration of initial grain boundaries confirms the occurrence of dynamic recovery as the predominant restoration process. However, in the course of applied deformation, the initial microstructure is recrystallized at higher temperatures [ i.e., 1273 K and 1373 K (1000 °C and 1100 °C)]. In this respect, annealing the twin boundaries could well stimulate the recrystallization kinetic through initiation new annealing twins on prior annealing twin boundaries. The hot tensile results show that there is a general trend of increasing ductility by temperature. However, two regions of ductility drop are recognized at 1273 K and 1373 K (1000°C)/0.1s-1 and (1100°C)/0.01s-1. The ductility variations at different conditions of temperature and strain rate are discussed in terms of simultaneous activation of grain boundary sliding and restoration processes. The observed ductility troughs are attributed to the occurrence of grain boundary sliding and the resulting R-type and W-type cracks. The occurrence of dynamic recrystallization is also considered as the main factor increasing the ductility at higher temperatures. The enhanced ductility is primarily originated from the post-uniform elongation behavior, which is directly associated with the strain rate sensitivity of the experimental material.

  14. Urinary iron excretion test in iron deficiency anemia.

    OpenAIRE

    Kimura,Ikuro; Yamana,Masatoshi; NNishishita,Akira; Sugiyama,Motoharu; Miyata, Akira

    1980-01-01

    A urinary iron excretion test was carried out in 22 patients with iron deficiency anemia. The iron excretion index was significantly higher in patients with intractable iron deficiency anemia compared with normal subjects and anemic patients who were responsive to iron therapy. The findings suggest that iron excretion may be a factor that modulates the response of patients to iron therapy.

  15. Mammalian iron transport.

    Science.gov (United States)

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  16. Iron metabolism and iron supplementation in cancer patients

    OpenAIRE

    Ludwig, Heinz; Evstatiev, Rayko; Kornek, Gabriela; Aapro, Matti; Bauernhofer, Thomas; Buxhofer-Ausch, Veronika; Fridrik, Michael; Geissler, Dietmar; Geissler, Klaus; Gisslinger, Heinz; Koller, Elisabeth; Kopetzky, Gerhard; Lang, Alois; Rumpold, Holger; Steurer, Michael

    2015-01-01

    Summary Iron deficiency and iron deficiency-associated anemia are common complications in cancer patients. Most iron deficient cancer patients present with functional iron deficiency (FID), a status with adequate storage iron, but insufficient iron supply for erythroblasts and other iron dependent tissues. FID is the consequence of the cancer-associated cytokine release, while in absolute iron deficiency iron stores are depleted resulting in similar but often more severe symptoms of insuffici...

  17. Evaluation of the ductile-to-brittle transition temperature in steel low carbon

    International Nuclear Information System (INIS)

    The aim of this study was evaluated the The aim of this study was evaluated the ductile-to-brittle transition temperature (DBTT) by five different methods: lateral expansion, shear fracture appearance, the average between lower and upper-shelf, load diagram and master curve using instrumented Charpy tests with total impact energy was 300 J and the impact velocity was 5.12 m/s. The Charpy specimens were 10 x 10 x 55 mm according to ASTM E-23. The load diagram showed one approach to measure when shear fractures become 50 %. Quantitative fractographic analyses of Charpy specimens reveal a certain proportion of ductile fracture even if the Charpy test is conducted at low temperatures, below the transition temperature. The ductile fracture area situated next to the notch was correlated to fracture energy for all temperatures. In the transition temperature range, fracture energy and the ductile area had a large scatter. A model for ductile -to-brittle fracture mode transition has been developed. Master curve was applied and one direction results were good.transition temperature (DBTT) by five different methods: lateral expansion, shear fracture appearance, the average between lower and upper-shelf, load diagram and master curve using instrumented Charpy tests with total impact energy was 300 J and the impact velocity was 5.12 m/s. The Charpy specimens were 10 x 10 x 55 mm according to ASTM E-23. The load diagram showed one approach to measure when shear fractures become 50 %. Quantitative fractographic analyses of Charpy specimens reveal a certain proportion of ductile fracture even if the Charpy test is conducted at low temperatures, below the transition temperature. The ductile fracture area situated next to the notch was correlated to fracture energy for all temperatures. In the transition temperature range, fracture energy and the ductile area had a large scatter. A model for ductile -to-brittle fracture mode transition has been developed. Master curve was applied

  18. Effect of niobium and titanium addition on the hot ductility of boron containing steel

    International Nuclear Information System (INIS)

    Research highlights: → Addition of only Nb without Ti has little influence in the hot ductility of B steel. → Hot ductility loss of B-Nb steel is due to grain boundary precipitation of BN. → Adding a small amount of Ti improve the hot ductility of B-Nb steel. → In B-Nb-Ti steel, hot ductility improvement is related to presence of TiN particle. → Presence of TiN particles makes the BN precipitates' distribution more homogeneous. - Abstract: Hot ductility of boron containing steel (B steel) with adding Nb (0.03 wt.%) (B-Nb steel) and B-Nb steel with adding Ti (0.0079 wt.%) (B-Nb-Ti steel) was quantified using hot tensile tests. The specimens were solution-treated at 1350 deg. C and cooled at 20 deg. C s-1 to tensile test temperature (T) in the range of 750 ≤ T ≤ 1050 deg. C. After that, they were strained to failure at a strain rate of 2.5 x 10-3 s-1. For the B-Nb steel, severe hot ductility loss was observed at 850 ≤ T ≤ 950 deg. C, which covered the low temperature in which austenite (γ) single-phase exists, and the high temperature at which γ and ferrite (α) coexist. Ductility loss in the B-Nb steel was caused by the presence of a network of BN precipitates, rather than by Nb(C, N) precipitates at the γ grain boundaries. In contrast, hot ductility of the B-Nb-Ti steel was remarkably improved at 850 ≤ T ≤ 950 deg. C. In the B-Nb-Ti steel, BN precipitates preferentially on TiN particles, resulting in increased BN precipitation in the γ grain interior and a decrease in the network of BN precipitates at the γ grain boundaries. These changes reduce strain localization at the γ grain boundaries and therefore increase the hot ductility of the steel.

  19. Micromechanical modelling of ductile damage and tearing. Results of a European numerical round robin

    International Nuclear Information System (INIS)

    'Local approaches' and 'micromechanical models' of damage have found increasing interest in fracture mechanics. Many unsolved problems exist, however, with respect to the uniqueness and transferability of parameter sets. Technical Committee 8, Numerical Methods, of the European Structural Integrity Society (ESIS), intends to be a platform for gathering and exchanging experience, discussing problems and, by this, improving the quality of numerical procedures and analyses. For this purpose, a numerical round robin on the application of 'Micromechanical Models' for characterising ductile tearing and cleavage of ferritic steels has been started. The present report summarises the contributions of 15 participants from nine European countries and from India to the ductile tearing exercise, namely the numerical simulations of - the deformation and failure of a standard smooth tensile specimen to characterise the material and identify critical damage parameters for ductile tearing and - the ductile crack growth in a C(T) specimen to predict a JR-curve. The numerical simulations are based on experimental data for the ferritic steel DIN 22 Ni Mo Cr 3 7 which where obtained in the European Project 'Fracture Toughness of Steel in the Ductile to Brittle Transition Regime' (Contract MAT1 CT 940080). The results of this round robin will be valuable for future discussions on guidelines for parameter determination strategies and handling of the damage models in respect to significant material characterisation and prediction of structural response. (orig.)

  20. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy

    International Nuclear Information System (INIS)

    Highlights: • A high elongation of ∼33% was achieved for magnesium alloy through common extrusion. • Basal slip and extension twinning are the dominant deformation modes for the high ductility. • Non-basal slip, contraction twinning and twin-slip interaction also contribute to the ductility. - Abstract: An extruded Mg-3.0Y alloy with non-basal texture of 〈42¯2¯3〉 component was fabricated by common extrusion and exhibited a high elongation of ∼33%. The deformation modes and microstructure evolution of the extruded Mg-3.0Y alloy during the tensile test at room temperature were investigated to explore the reasons for the high ductility by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The results suggested that texture changed from 〈42¯2¯3〉 to 〈101¯0〉 component during the tensile deformation, which is attributed the slip and twinning activity. Basal slip and extension twinning are the dominant deformation modes for the high ductility. Meanwhile, the activation of non-basal slip, contraction twinning and twin–slip interaction also contributes to the good ductility of Mg-3.0Y alloy

  1. Effects of Fe, Co and Ni elements on the ductility of TiAl alloy

    International Nuclear Information System (INIS)

    Highlights: • Effect of Fe/Co/Ni on the ductility of TiAl was studied by theory and experiments. • Ni exists in the form of NiTi, which is detrimental to the ductility of TiAl. • Fe Co change electronic and elastic properties to improve ductility of TiAl. - Abstract: The Ni atom is difficult to occupy the Ti or Al site in TiAl, it exists in the form of NiTi phase at the grain boundary of TiAl alloy, which is detrimental to the ductility of the TiAl alloy. The Fe and Co atoms preferentially occupy the Al sites and can improve the electronic structures and elastic properties of TiAl, leading to the improvement of the ductility of TiAl alloy. With the addition of 3 at.% Fe and Co, the tested average fracture strain of TiAl alloy increases from 17.3% to 19.1% and 18.0%, respectively

  2. A wet abrasive blasting process for smooth micromachining of glass by ductile-mode removal

    International Nuclear Information System (INIS)

    This paper describes the ductile removal behavior of a Pyrex glass substrate in a wet blasting process with an aqueous fine abrasive slurry of 4 µm Al2O3 particles in water. Glass was removed in a ductile cutting mode when the blasting was carried out with low applied pressure or with a long nozzle distance. Although the removal rate in the ductile mode was much lower than with brittle-mode blasting, a smooth surface within a roughness of 50 nm Ra was obtained. Using ductile-mode blasting, a micro groove with a smooth surface (roughness <50 nm Ra) was successfully obtained. The profile of the micro groove was U-shaped, in contrast to the V-shaped profile obtained with conventional brittle-mode blasting. Ductile-mode blasting was also used for surface finishing after a rough pre-blasting process. The roughness of the pre-blasted surface was reduced from 200 nm Ra to about 100 nm Ra by the finishing process

  3. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    interiors of Earth and other terrestrial planets. This chapter deals with our current knowledge of these meteorites. How did they form? What can they tell us about the early evolution of the solar system and its solid bodies? How closely do they resemble the materials from planetary interiors? What do and...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar......Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...

  4. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Hao, T., E-mail: hao.ting@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fan, Z.Q.; Zhang, T. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang, X.P.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)

    2014-12-15

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  5. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    Science.gov (United States)

    Hao, T.; Fan, Z. Q.; Zhang, T.; Luo, G. N.; Wang, X. P.; Liu, C. S.; Fang, Q. F.

    2014-12-01

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  6. Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation

    Science.gov (United States)

    Khamei, A. A.; Dehghani, K.; Mahmudi, R.

    2015-05-01

    Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.

  7. Effect of prestrain on ductility and toughness in high strength line pipe steels

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Y.; Besson, J. [Paristech, Evry (France). Centre des Materiaux, Mines Paris; Madi, Y. [Ecole d' Ingenieurs, Sceaux (France). Ermess EPF; Paristech, Evry (France). Centre des Materiaux, Mines Paris

    2009-07-01

    The anisotropic plasticity, ductility and toughness of an X100 steel pipeline was investigated both before and after a series of prestraining experiments. The aim of the study was to determine the effect of prestraining on ductility and toughness in high strength pipe steels. Results of the study showed that primary void growth and coalescence was dependent on initial plastic anisotropy and not dependent on tensile prestrain. Secondary void nucleation and growth was not influenced by either the initial plastic anisotropy or by prestraining. Scanning electron microscopy (SEM) studies showed that the main damage mechanism was the void growth of primary dimples. Dimples in the prestrained materials were larger than those observed in materials that had not been prestrained. However, the effect on prestrain on dimple size was limited. Results showed both plastic and rupture anisotropies. It was concluded that prestraining induces a decrease in ductility, but has a significant impact on toughness. 4 refs., 2 tabs., 12 figs.

  8. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi2, TiNb/TiAl, Nb/TiAl and Nb/Nb3Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  9. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    Science.gov (United States)

    Soboyejo, W. O.; Rao, K. T. Venkateswara; Sastry, S. M. L.; Ritchie, R. O.

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48A1 + 20 vol pct TiNb and hot-isostatically pressed (“hipped”) MoSi2 + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48A1 and MoSi2 on the micromechanisms of fracture under monotonie and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonie loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  10. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    International Nuclear Information System (INIS)

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48Al + 20 vol pct TiNb and hot-isostatically pressed ('hipped') MoSi2 + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48Al and MoSi2 on the micromechanisms of fracture under monotonic and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonic loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions

  11. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O. (Ohio State Univ., Columbus (United States)); Venkateswara Rao, K.T.; Ritchie, R.O. (Univ. of California, Berkeley (United States)); Sastry, S.M.L. (Washington Univ., St. Louis, MO (United States))

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48Al + 20 vol pct TiNb and hot-isostatically pressed ('hipped') MoSi[sub 2] + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48Al and MoSi[sub 2] on the micromechanisms of fracture under monotonic and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonic loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  12. Characteristics and significance of ductile shear zone in Tianli, Jiangxi Province and Youxi, Zhejiang Province

    International Nuclear Information System (INIS)

    The result of experiment show that 40Ar/39Ar plateau age of muscovite which is from Tianli petrofabric in Guanfeng county, Jiangxi Province is 1019 +- 0.9 Ma, and 40Ar/39Ar plateau age of biotite which is from migmatite in Youxi petrofabric Jiangshan county, Zhejiang Province is 501.2 +- 2.2 Ma, and the heat event age is 127 Ma. The research shows that they are two larger scale ductile shear zones. The 40Ar/39Ar plateau ages represent respectively the forming time of Tianli ductile shear zone and Youxi ductile shear zone. According to the age data and regional geological investigation analysis, they belong separately to the part of two tectonic units of Yangtze and south China. It also shows that Jiang-Shao tectonic zone undergoes multiphase orogeny which are Jinning, Caledonian, Indosinian and Yanshanian epoch. It is of geological significance for re-understand again the crust evolution of south China

  13. Factors influencing the tensile strength, hardness, and ductility of hydrogen-cycled palladium

    International Nuclear Information System (INIS)

    A systematic study of the tensile strength, hardness, and ductility of palladium has been performed on foil specimens that have undergone hydrogen absorption and desorption under a variety of conditions. The experimental parameters under control in the various hydrogen treatments were: (i) the amount of hydrogen absorbed, (ii) the isotope of hydrogen (protium versus deuterium) absorbed, (iii) the number of hydrogen absorption/desorption cycles, and (iv) the hydrogen absorption/desorption temperature. In all instances hydrogen absorption/desorption cycling significantly alters the tensile strength, hardness, and ductility of well-annealed palladium. The results show that, in general, the strength and hardness of palladium increases as a result of hydrogen cycling while the ductility decreases. The extent of the respective increases and decreases has been found to differ depending on the parameter being varied. The most sensitive parameter was found to be the amount of hydrogen absorbed during cycling.

  14. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  15. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  16. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  17. Investigation of the hot ductility of a high-strength boron steel

    International Nuclear Information System (INIS)

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s−1. The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C

  18. BRITTLE-DUCTILE TRANSITION OF PP/EPDM/ELASTOMERIC NANO-PARTICLE TERNARY BLENDS

    Institute of Scientific and Technical Information of China (English)

    Yan Xiao; Wen Cao; Ke Wang; Hong Tan; Qin Zhang; Rong-ni Du; Qiang Fu

    2006-01-01

    The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content,PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.

  19. Ductility Enhancement of Molybdenum Phase by Nano-sizedd Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Kang

    2008-07-31

    The present research is focused on ductility enhancement of molybdenum (Mo) alloys by adding nano-sized oxide particles to the alloy system. The research approach includes: (1) determination of microscopic mechanisms responsible for the macroscopic ductility enhancement effects through atomistic modeling of the metal-ceramic interface; (2) subsequent computer simulation-aided optimization of composition and nanoparticle size of the dispersion for improved performance; (3) synthesis and characterization of nanoparticle dispersion following the guidance from atomistic computational modeling analyses (e.g., by processing a small sample of Mo alloy for evaluation); and (4) experimental testing of the mechanical properties to determine optimal ductility enhancement.Through atomistic modeling and electronic structure analysis using full-potential linearized muffin-tin orbital (FP-LMTO) techniques, research to date has been performed on a number of selected chromium (Cr) systems containing nitrogen (N) and/or magnesium oxide (MgO) impurities. The emphasis has been on determining the properties of the valence electrons and the characteristics of the chemical bonds they formed. It was found that the brittle/ductile behavior of this transitional metal system is controlled by the relative population of valence charges: bonds formed by s valence electrons yield metallic, ductile behavior, whereas bonds formed by d valence electrons lead to covalent, brittle behavior. The presence of valence bands from impurities also affects the metal bonding, thereby explaining the detrimental and beneficial effects induced by the inclusion of N impurities and MgO dispersions. These understandings are useful for optimizing ductility enhancement effects on the dispersion materials.

  20. Iron deficiency in Europe.

    Science.gov (United States)

    Hercberg, S; Preziosi, P; Galan, P

    2001-04-01

    In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established

  1. Hot Ductility of a Microalloyed Steel in the Intermediate Temperature Range

    OpenAIRE

    Darsouni, A.; Bouzabata, B.; Montheillet, F.

    1995-01-01

    In this study hot ductility has been determined from tensile tests for two states of a microalloyed steel : after casting and after rolling processes. Hot deformations were carried out at speeds varying from 10-4s-1 to 10-2s-1 and temperatures from 750°C to 1100°C. Two heat treatments were chosen before hot deformation. A ferrite precipitation is observed at austenitic grain boundaries in the intercritical temperature range, causing intergranular embrittlement. Ductility trough is deeper in t...

  2. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...... the computations are continued through the mechanically unstable regime, where an open crack forms near the ends of the fibers by the coalescence of voids in the matrix. Comparison of predictions for an isotropic hardening model and a kinematic hardening model are used to evaluate the effect of a...

  3. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    The effect of alloying elements on the Ms temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu73-Al17-Mn10 alloy stabilized the martensite (6M) phase increasing the Ms temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the Ms temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  4. Ductility and structural transformations in Kh20N40 type commercial alloys

    International Nuclear Information System (INIS)

    Investigations for revealing and explaining reasons for appearing regions of decreased ductility in commercial Fe-Cr-Ni-base alloys of Kh20N40 type during short-term tensile tests at 20-900 deg C are conducted. It is shown that alloying with molybdenum as well as decrease of content of harmful impurities including interstitials of carbon and nitrogen permit to remove undesirable decrease of ductility both in the range of moderate (300-400 deg C) and increased (600-900 deg C) temperatures

  5. Ductility and resistance of bolted connections in structures made of high strength steels

    OpenAIRE

    Može, Primož

    2008-01-01

    Structural steel grades with yield strength higher than 420 MPa are considered as high strength steels. They undoubtedly have lower ductility than mild steels in terms of engineering measures of ductility, such as ultimate-to-yield strength ratio, uniform strain and elongation at fracture. A typical values for high strength steels are: ultimate-to-yield strength ratio fu/fy = 1,05, uniform strain εu = 0,05 and elongation after fracture εfr = 15%. The problem is that inelastic behaviour is hid...

  6. Transformation plasticity in ductile solids. Final report, August 1, 1988--November 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.B.

    1996-09-01

    Throughout history, the development of stronger materials has enabled the realization of countless technological advances. Unfortunately, any increase in strength is rarely achieved without concomitant decreases in toughness and ductility: a fact which severely limits the utility of materials such as ultrahigh-strength alloy steels. Typical precipitation-strengthened stainless steels have very little toughness at high strength levels. In the last decade, however, several investigators have reported exceptionally large fracture toughness values in high-strength precipitation-hardened metastable austenitic steels. This remarkable achievement is directly attributable to the process of transformation toughening. This report describes studies on tranformations and enhancement of plane-strain ductility in high strength steels.

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Deficiency Anemia Explore Iron-Deficiency Anemia What Is... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS ... less hemoglobin than normal. Iron-deficiency anemia can cause fatigue (tiredness), shortness of breath, chest pain, and ...

  8. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  9. Iron in diet

    Science.gov (United States)

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  10. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and women are the two groups at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully ... With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from ... iron levels. Susan also made changes to her diet, such as focusing more on green leafy vegetables, ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ... treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency ... 2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National Institutes ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood ...

  16. Iron Therapy for Preterm Infants

    OpenAIRE

    Rao, Raghavendra; Georgieff, Michael K.

    2009-01-01

    Preterm infants are at risk for both iron deficiency and iron overload. The role of iron in multiple organ functions suggests that iron supplementation is essential for the preterm infant. Conversely, the potential for iron overload and the poorly developed anti-oxidant measures in the preterm infant argues against indiscriminate iron supplementation in this population. The purpose of this article is to review the predisposing factors and consequences of iron deficiency and iron overload in t...

  17. Special thermite cast irons

    Directory of Open Access Journals (Sweden)

    Yu. Zhiguts

    2008-07-01

    Full Text Available The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  18. Alternative iron making routes

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, P.; Sharma, T. [Indian School of Mines, Dhanbad (India)

    2002-07-01

    The versatile route of iron production 'blast furnace' technique is being replaced by widely accepted Corex technology, Midrex process using Fastmelt ironmaking, eco-friendly Romelt process, more innovative Ausmelt & Hismelt technology, TATA KORF Mini blast furnace improvement, 'quickest iron through Orbiting Plasma', Direct iron ore smelting process, Conred, AISI-Hyl, Inred processes, Direct iron ore reduction methods, their comparison and proposed modifications. 18 refs., 11 figs., 14 tabs.

  19. Iron deficiency and cognition

    OpenAIRE

    Hulthén, Lena

    2003-01-01

    Iron deficiency is the most prevalent nutritional disorder in the world. One of the most worrying consequences of iron deficiency in children is the alteration of behaviour and cognitive performance. In iron-deficient children, striking behavioural changes are observed, such as reduced attention span, reduced emotional responsiveness and low scores on tests of intelligence. Animal studies on nutritional iron deficiency show effects on learning ability that parallel the human studies. Despite ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ... Institutes of Health—shows how Susan, a full-time worker and student, has coped with having iron- ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body. Low iron levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  3. Iron-Deficiency Anemia

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented ...

  5. Manufacturing of Ferritic Low-Silicon and Molybdenum Ductile Cast Iron with the Innovative 2PE- 9 Technique

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2014-06-01

    Full Text Available W pracy przedstawiono analizę wyników badań otrzymanych podczas produkcji żeliwa sferoidalnego typu SiMo, z zastosowaniem nowej metody sferoidyzacji metalu w kadzi bębnowej (technika 2PE- 9. Zaprezentowano wyniki badań w zakresie optymalizacji parametrów procesu, takich jak: długości przewodu sferoidyzującego. krytycznej zawartość magnezu, temperatur' zabiegu i temperatury zalewania. Pokazano wpływ temperatur i zabiegu, prędkości przemieszczania przewodu sferoidyzującego (czasu zabiegu sferoidyzowania i masy ciekłego stopu na uzysk magnezu ze sferoidyzatora. Przedstawiono mikrostrukturę, właściwości mechaniczne i koszt wytwarzania terrytycznego żeliwa sferoidalnego SiMo: gatunku EN-GJS-SiMo40-6. zgodnie z najnowszą EN 16124:2011 (E. Wprowadzenie dwóch przewodów elastycznych o średnicy Ø 9 mm; jeden wypełniony mieszaniną FeSi + Mg, a drugi moyfikatorem grafityzującym do zabiegowej kadzi bębnowej, jest nową metodą obróbki pozapiecowej produkcji terrytycznego żeliwa typu SiMo. która może być wykorzystana do produkcji żeliwa sferoidalnego wytapianego w indukcyjnym piecu.

  6. Manufacturing of Ferritic Low-Silicon and Molybdenum Ductile Cast Iron with the Innovative 2PE- 9 Technique

    OpenAIRE

    Guzik E.; Kopyciński D.; Wierzchowski D.

    2014-01-01

    W pracy przedstawiono analizę wyników badań otrzymanych podczas produkcji żeliwa sferoidalnego typu SiMo, z zastosowaniem nowej metody sferoidyzacji metalu w kadzi bębnowej (technika 2PE- 9). Zaprezentowano wyniki badań w zakresie optymalizacji parametrów procesu, takich jak: długości przewodu sferoidyzującego. krytycznej zawartość magnezu, temperatur)' zabiegu i temperatury zalewania. Pokazano wpływ temperatur) i zabiegu, prędkości przemieszczania przewodu sferoidyzującego (czasu zabiegu sfe...

  7. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    OpenAIRE

    Olofsson, Jakob; Ingvar L. Svensson

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to...

  8. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...... for the chill casting, resulting in a very course microstructure.From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules permm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat.This is verified from nodule counts performed on...... the real cast main shafts. Residual stressevaluations show an overall increase of the maximum principal stress field for the chill casting,which is expected. However, the stresses are found to be in compression on the surface of thechill cast main shaft, which is unforeseen....

  9. Local Plastic-Strain Heterogeneities and Their Impact on the Ductility of Mg

    Science.gov (United States)

    Martin, Guilhem; Sinclair, Chad W.; Poole, Warren J.; Azizi-Alizamini, Hamid

    2015-08-01

    Microscale plastic strain heterogeneity can arise in polycrystalline Mg and its alloys in a variety of different ways. In this article, we illustrate how microscale digital image correction based on scanning electron microscope images can reveal this plastic heterogeneity in commercially pure polycrystalline Mg and how such observations provide insight into plasticity, damage, and ductility.

  10. Ductile damage development in friction stir welded aluminum (AA2024) joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    Ductile damage development in a friction stir welded aluminum joint subjected to tension is analyzed numerically by FE-analysis, based on a total Lagrangian formulation. An elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids is applied. Main focus in the...

  11. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack g...

  12. Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials

    Czech Academy of Sciences Publication Activity Database

    Pei, Z.; Friák, Martin; Sandlöbes, S.; Nazarov, R.; Svendsen, B.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 17, č. 9 (2015), Art. n. 093009. ISSN 1367-2630 Institutional support: RVO:68081723 Keywords : magnesium * alloys * ductile * ternary * rare-earth * ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.558, year: 2014

  13. Study on comparison between absolute and relative input energy spectra and effects of ductility factor

    Institute of Scientific and Technical Information of China (English)

    GONG Mao-sheng; XIE Li-li

    2005-01-01

    Based on 266 strong ground motion records, an attenuation relationship was developed for both absolute and relative input energy spectra. The comparison of the two kinds of input energy spectra constructed from the attenuation relationship was made in this paper. The results show that there is little difference between the absolute input energy spectra and relative input energy spectra at the periods of 0.5~1.0 s for elastic systems and at the period of 0.5 s for inelastic systems. The absolute input energy spectra are much larger than relative input energy spectra in very short period range but some less than relative input energy spectra in long period range. It is also found that the ductility factor has a significant effect on both absolute and relafve input energy spectra. The absolute input energy spectra increase with the increasing of ductility factor in the period range of less than 0.3 s but decrease in the period range of larger than 0.3 s. The absolute input energy spectra for different ductility factor are almost equivalent at the period about 0.3 s, but for relative input energy spectra, the period is about 0.5 s. The effect of ductility on the relative input energy spectra in the short period range is much larger than that on the absolute input energy spectra, especially on the softer site class.

  14. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  15. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Sandlöbes, S.; Pei, Z.; Friák, Martin; Zhu, L.-F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J.

    2014-01-01

    Roč. 70, MAY (2014), s. 92-104. ISSN 1359-6454 Grant ostatní: GA MŠk(CZ) LM2010005 Institutional support: RVO:68081723 Keywords : Magnesium * Rare-earth elements * Ductility * Modeling * Ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014

  16. Investigation of Ductility Reduction Factor in Seismic Rehabilitation of Existing Reinforced Concrete School Buildings

    Directory of Open Access Journals (Sweden)

    O. Gorgulu

    2015-02-01

    Full Text Available Converting existing Reinforced Concrete (RC frames into RC infill walls is one of the most efficient seismic strengthening technique due to its simplicity in application providing high rigidity, stability and strength in structures. On the other hand, this method affects the seismic behavior of existing RC structure in terms of the energy dissipation capacity or in other words, ductility reduction factor, Rμ. This research is an attempt to investigate the RC infill wall ratio effect on ductility reduction factor in terms of the seismic rehabilitation of the typical RC school buildings. For this purpose, nonlinear static pushover analyses are conducted for existing 3 and 5 story RC school buildings which were rehabilitated with different RC infill wall ratio. Numerical analyses are carried out by using the fiber element based modeling approach in the software, Perform-3D. Based on these analytical results, correlation between the ductility reduction factor and the RC infill wall ratio is obtained for the seismic rehabilitation of the RC school buildings. In addition, two mathematical expressions for the variation of the ductility reduction factor with RC infill wall ratios are proposed in terms of the preliminary seismic rehabilitation assessment of the existing RC school buildings.

  17. Analysis of stable crack growth in ductile materials based on the Tw criterion

    International Nuclear Information System (INIS)

    In the high toughness materials used for reactor pressure vessels and pipings, cracks occur, and after ductile cracks stably propagate, unstable fracture arises, therefore, it is an important subject to know the fracture resistance to the stable propagation of ductile cracks for the evaluation of the soundness of structures made of such materials. In the computer simulation of the stable propagation of ductile cracks by finite element method, there are generation phase simulation and application phase simulation. Before the authors carried out the comparison of the usefulness of a tearing modulus as the fracture parameter giving the resistance to ductile crack propagation peculiar to materials and a newly introduced Tw. For applying Tw to the evaluation of the soundness of the structures made of high toughness materials, it is necessary to newly carry out the application phase simulation based on Tw criterion and to verify that the macroscopic deformation behavior of these structures can be forecast. In this study, the finite element analysis program introducing 8-node isoparametric elements was developed, and the comparison of the results of both simulations was carried out. The method of numerical calculation and the results of analysis are reported. (Kako, I.)

  18. Characterisation of reactor steels in the brittle-ductile transition region using the small punch test

    International Nuclear Information System (INIS)

    Two ferritic reactor steels (A 533 B and A508) were investigated using the small punch test for different temperatures and irradiation states, with particular interest in the ductile-tensile transition region. The material characteristics obtained with the aid of neuronal nets were compared with the results of conventional tests. (orig.)

  19. Stress-induced transformation of retained austenite and residual stress in polishing and grinding of ADI. ADI no kenma kensaku kako ni okeru zanryu austenite no kako yuki hentai to zanryu oryoku

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Tada, S.; Abe, T. (Government Industrial Research Institute, Tohoku, Sendai (Japan)); Kurihana, S. (Fukushima Prefectural Office, Fukushima (Japan))

    1993-06-25

    In the present research, relation between the retained austenite ([gamma]) and residual stress (Sr) on the mechanically worked surface was investigated by an X-ray diffraction to furthermore reform the ADI (Austempered Ductile Iron) which is high toughness automobile part material. As samples, selected were two types of ductile iron which are equivalent to FCD450 and FCD600, respectively. In the main process of thermal treatment, they are austenitized in argon at 1173K in the furnace, held quickly cooled (to between 573 and 648K) a cooled at room temperatures. After the treatment, both of them have no structural differences. As a result of investigating the relation of [gamma]'s stress-induced transformation on the polished and ground surface to both Sr and carbon concentration, the vol% of [gamma] on the worked surface by silicon carbide waterproof abrasive paper and buff is small on the surface where the Sr is high, and both of them are mutually correlative. The [gamma] is so quasi-stable as to be martensitized, if worked, and degraded in mechanical properties. The low carbon ductile iron (less than 1.4% in carbon content) is easy to transform, while the high carbon ductile iron (more than 1.6% in carbon content) is difficult to transform and its [gamma] is stable for the working. 16 refs., 8 figs., 2 tabs.

  20. Slip transfer across fault discontinuities within granitic rock at the brittle-ductile transition

    Science.gov (United States)

    Nevitt, J. M.; Pollard, D. D.; Warren, J. M.

    2011-12-01

    Fault mechanics are strongly influenced by discontinuities in fault geometry and constitutive differences between the brittle and ductile regions of the lithosphere. This project uses field observations, laboratory analysis and numerical modeling to investigate deformational processes within a contractional step at the brittle-ductile transition, and in particular, how slip is transferred between faults via ductile deformation across the step. The Bear Creek field area (central Sierra Nevada, CA) is comprised of late Cretaceous biotite-hornblende granodiorite and experienced a period of faulting at the brittle-ductile transition. Abundant echelon faults in Bear Creek, some of which were seismically active, provide many textbook examples of contractional steps, which are characterized by well-developed ductile fabrics. The occurrence of hydrothermal alteration halos and hydrothermal minerals in fracture fill documents the presence of water, which we suggest played a weakening role in the constitutive behavior of the granodiorite. Furthermore, the mechanism that accomplishes slip transfer in contractional steps appears to be related to water-enhanced ductile deformation. We focus our investigation on Outcrop SG10, which features a 10cm thick aplite dike that is offset 0.45m through a contractional step between two sub-parallel left-lateral faults. Within the step, the aplite undergoes dramatic thinning (stretch ~1/10) and the granodiorite is characterized by a well-developed mylonitic foliation, in which quartz and biotite plastically flow around larger grains of feldspars, hornblende and opaque minerals. Electron backscatter diffraction (EBSD) analysis gives a more quantitative depiction of the active micromechanics and reveals how slip is accommodated at the crystal scale throughout the step. We use Abaqus, a commercial finite element software, to test several constitutive laws that may account for the deformation observed both macro- and microscopically throughout

  1. Brittle versus ductile deformation as the main control of the deep fluid circulation in continental crust

    Science.gov (United States)

    Violay, Marie; Madonna, Claudio; Burg, Jean-Pierre

    2016-04-01

    The Japan Beyond-Brittle Project (JBBP) and the Taupo Volcanic Zone-Deep geothermal drilling project in New Zealand (TVZ-DGDP) proposed a new concept of engineered geothermal development where reservoirs are created in ductile rocks. This system has several advantages including (1) a simpler design and control of the reservoir due to homogeneous rock properties and stress states in the ductile domain ,(2) possible extraction of supercritical fluids (3) less probability for induced earthquakes. However, it is at present unknwon what and how porosity and permeability can be engineered in such environments. It has been proposed that the magmatic chamber is surrounded by a hot and ductile carapace through which heat transfer is conductive because the plastic behaviour of the rock will close possible fluid pathways. Further outward, as temperature declines, the rock will encounter the brittle-ductile transition with a concomitant increase in porosity and permeability. The thickness of the conduction-dominated, ductile boundary zone between the magmatic chamber and the convecting geothermal fluid directly determines the rate of heat transfer. To examine the brittle to ductile transition in the context of the Japanese crust, we conducted deformation experiments on very-fine-grain granite in conventional servocontrolled, gas-medium triaxial apparatus (from Paterson instrument). Temperature ranged from 600° C to 1100° C and effective confining pressure from 100 to 150 MPa. Dilatancy was measured during deformation. The method consisted in monitoring the volume of pore fluid that flows into or out of the sample at constant pore pressure. Permeability was measured under static conditions by transient pressure pulse method. Mechanical and micro-structural observations at experimental constant strain rate of 10‑5 s‑1 indicated that the granite was brittle and dilatant up to 900 ° C. At higher temperatures the deformation mode becomes macroscopically ductile, i

  2. Ductility Enhancement of Molybdenum Phase by Nano-sized Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bruce

    2008-07-18

    The objective of this research is to understand and to remedy the impurity effects for room-temperature ductility enhancement of molybdenum (Mo) based alloys by the inclusion of nano-sized metal oxide dispersions. This research combines theoretical, computational, and experimental efforts. The results will help to formulate systematic strategies in searching for better composed Mo-based alloys with optimal mechanical properties. For this project, majority of the research effort was directed to atomistic modeling to identify the mechanisms responsible for the oxygen embrittling and ductility enhancement based on fundamental electronic structure analysis. Through first principles molecular dynamics simulations, it was found that the embrittling impurity species were attracted to the metal oxide interface, consistent with previous experiments. Further investigation on the electronic structures reveals that the presence of embrittling species degrades the quality of the metallic chemical bonds in the hosting matrix in a number of ways, the latter providing the source of ductility. For example, the spatial flexibility of the bonds is reduced, and localization of the impurity states occurs to pin the dislocation flow. Rice’s criterion has been invoked to explain the connections of electronic structure and mechanical properties. It was also found that when impurity species become attracted to the metal oxide interface, some of the detrimental effects are alleviated, thus explaining the observed ductility enhancement effects. These understandings help to develop predictive capabilities to facilitate the design and optimization of Mo and other high temperature alloys (e.g. ODS alloys) for fossil energy materials applications. Based on the theoretical and computational studies, the experimental work includes the preparation of Mo powders mixed with candidate nano-sized metal oxides, which were then vacuum hot-pressed to make the Mo alloys. Several powder mixing methods

  3. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength–ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy

  4. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  5. Iron toxicity in yeast.

    Science.gov (United States)

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  6. ADI After Austenitising From Intercritical Temperature

    Directory of Open Access Journals (Sweden)

    A. Kowalski

    2013-01-01

    Full Text Available ADI subjected to austenitising at intercritical temperatures contains in its matrix the precipitates of pre-eutectoid ferrite. Studies were carried out on the ductile iron of the following chemical composition: C = 3,80%, Si = 2,30%, Mn = 0,28%, P = 0,060%, S = 0,010%, Mg = 0,065%, Ni = 0,60%, Cu = 0,70%, Mo = 0,21% This cast iron was austenitised at three different temperatures, i.e. 800, 815 and 830oC and austempered at 360 and 380oC. For each variant of the cast iron heat treatment, the mechanical properties, i.e. YS, TS, EL and Hardness, were measured, and structure of the matrix was examined. Higher plastic properties were obtained owing to the presence of certain amount of pre-eutectoid ferrite. The properties were visualised using fuzzy logic model in a MATLAB. software.

  7. Fiber laser cladding of nickel-based alloy on cast iron

    Science.gov (United States)

    Arias-González, F.; del Val, J.; Comesaña, R.; Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2016-06-01

    Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based coating obtained presents a significantly superior hardness than cast iron.

  8. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    Science.gov (United States)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  9. Effects of carbon, nitrogen, and phosphorus on creep rupture ductility of high purity Ni-Cr austenitic steels

    International Nuclear Information System (INIS)

    Creep rupture ductility becomes one of the important properties of austenitic stainless steels as structural materials for fast breeder reactors. Using high purity nickel-chromium austenitic steels, the effects of carbon, nitrogen, and phosphorus on creep rupture ductility were investigated. Creep rupture tests were conducted at 600deg C and extensive microstructural works were performed. The results were as follows. Rupture strength increases with carbon or nitrogen content. Although the rupture ductility decreases with carbon, change in ductility with nitrogen is small. The ductility loss with carbon is due to the grain boundary embrittlement by carbides. With nitrogen, there is no precipitation during creep. Addition of phosphorus to ultra low carbon and nitrogen steels increases their rupture strength and ductility. Fine precipitates of (Fe,Cr)2P are uniformly dispersed in the grains and coarse (Fe,Cr)2P also precipitates on the grain boundary during creep. Grain boundary migration occurs extensively and few wedge type cracks are observed in the P containing steels. It is concluded that, from the viewpoint of increasing creep rupture ductility, nitrogen is much more effective than carbon and phosphorus is also beneficial. (author)

  10. New, fast corroding high ductility Mg–Bi–Ca and Mg–Bi–Si alloys, with no clinically observable gas formation in bone implants

    International Nuclear Information System (INIS)

    Highlights: ► Biodegradable, biocompatible and highly ductile Mg alloys based on the Mg–Bi system have been produced by rapid solidification and extrusion processes. ► The implants corroded fast within the first 4 weeks after implantation in rabbit bone, but no gas formation has been clinically observed. ► The corrosion rate could be significantly reduced in vitro and in vivo by using high purity magnesium for the alloy production. - Abstract: Current approaches to initial corrosion rate reduction of biodegradable magnesium alloys include alloying with rare earth elements, mechanical processing, coatings and the use of metallic glasses. The latter has limited ductility needed for implant adaptively to various surgery procedures. Furthermore, slow corroding magnesium alloys, coatings or metallic glasses have not proved to be fully dissolvable in vivo. With this in mind, we have developed a new class of biocompatible, biodegradable ductile magnesium alloys with 40% elongation at room temperature. The alloys are based on the Mg–Bi system and undergo a series of production routes, which include rapid solidification (RS) and various extrusion processes. The Mg–Bi–Si (B-BS) system exhibited a high corrosion rates in vitro and was excluded from in vivo screening. In preliminary experiments of Mg–Bi–Ca (B-BX) in rabbit femur bones, the alloy corroded rapidly without any clinically visible gas formation. Only 30% of the B-BX implant remained uncorroded after 4 weeks of implantation. After using low iron Mg for implant preparation the corrosion rate of HP-B-BX was reduced in bone leaving 70% of the implant uncorroded after 4 weeks, while the corrosion in intramuscular and subcutaneous sites were still high leaving only 40% and 10% uncorroded after 4 weeks. The foreign body reaction was very mild and enhanced bone formation could be observed in the vicinity of the corroding implant. Thus, these new magnesium alloys are potentially promising biomaterials

  11. New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Remennik, S., E-mail: saggym@gmail.com [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Bartsch, I.; Willbold, E.; Witte, F. [Laboratory for Biomechanics and Biomaterials, Orthopaedic Clinic, Hannover Medical School, Anna-von-Borries-Str. 1-7, 30625 Hannover (Germany); Shechtman, D. [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); MSE, Iowa State University, Ames, Iowa 50011 (United States)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Biodegradable, biocompatible and highly ductile Mg alloys based on the Mg-Bi system have been produced by rapid solidification and extrusion processes. Black-Right-Pointing-Pointer The implants corroded fast within the first 4 weeks after implantation in rabbit bone, but no gas formation has been clinically observed. Black-Right-Pointing-Pointer The corrosion rate could be significantly reduced in vitro and in vivo by using high purity magnesium for the alloy production. - Abstract: Current approaches to initial corrosion rate reduction of biodegradable magnesium alloys include alloying with rare earth elements, mechanical processing, coatings and the use of metallic glasses. The latter has limited ductility needed for implant adaptively to various surgery procedures. Furthermore, slow corroding magnesium alloys, coatings or metallic glasses have not proved to be fully dissolvable in vivo. With this in mind, we have developed a new class of biocompatible, biodegradable ductile magnesium alloys with 40% elongation at room temperature. The alloys are based on the Mg-Bi system and undergo a series of production routes, which include rapid solidification (RS) and various extrusion processes. The Mg-Bi-Si (B-BS) system exhibited a high corrosion rates in vitro and was excluded from in vivo screening. In preliminary experiments of Mg-Bi-Ca (B-BX) in rabbit femur bones, the alloy corroded rapidly without any clinically visible gas formation. Only 30% of the B-BX implant remained uncorroded after 4 weeks of implantation. After using low iron Mg for implant preparation the corrosion rate of HP-B-BX was reduced in bone leaving 70% of the implant uncorroded after 4 weeks, while the corrosion in intramuscular and subcutaneous sites were still high leaving only 40% and 10% uncorroded after 4 weeks. The foreign body reaction was very mild and enhanced bone formation could be observed in the vicinity of the corroding implant. Thus, these

  12. 冲天炉先后熔炼灰铁和球铁的实践%Practice of Melting Gray Iron and Ductile Iron in Cupola Furnace

    Institute of Scientific and Technical Information of China (English)

    金桂芹; 阎涛; 陈翠凤; 渠赵静

    2011-01-01

    1 熔炼顺序冲天炉前半部分结合订单的情况按灰铁配料熔炼,后半部分按球铁配料熔炼,在灰铁与球铁料相接部分,铁液含碳量高,偏软,所以灰铁料先配厚大件料(含碳量低),后配薄壁件料(含碳量高),使灰铁件与球铁件的相互影响减小.灰铁产品浇注完成后,加隔离焦,开始配球铁料.隔离焦使用优质铸造焦,加入2.5批层焦.球铁配料方案为:Q12生铁54%,球铁回炉料40%,废钢6%,铁液目标含碳量3.7%.

  13. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.

  14. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Spheroidal Graphite Cast Iron(Ⅳ) 3.7 Segregation of SG iron The non-uniform distribution of solute elements during solidification results in the micro segregation of SG iron.As for the redistribution of elements in the phases of the solidification structure,there is no intrinsic difference between SG iron and grey iron[132].

  15. Iron regulation by hepcidin

    OpenAIRE

    Zhao, Ningning; Zhang, An-Sheng; Enns, Caroline A

    2013-01-01

    Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulati...

  16. Iron deficiency anemia Review

    OpenAIRE

    Yıldız, İnci

    2009-01-01

    Iron deficiency anemia is the most frequent and widespread anemia around the world Its prevalence is increased in infants and adolescent girls The etiologic factors may vary but anemia is essentially related to iron deficient nutrition blood loss and malabsorption Children may have paleness cardiovascular and neurologic impacts of anemia pica epithelial changes as koilonychia glossitis angular stomatitis Treatment is by oral or parenteral supplementation of iron Turk Arch Ped 2009; 44 Suppl: ...

  17. An experimental and analytical study of ductile fracture and stable crack-growth

    International Nuclear Information System (INIS)

    A study is described, the objectives of which were to define a numerical model for stable crack growth, to calibrate the model by tensile tests, and to obtain agreement between corresponding numerical calculations and experiments on cracked specimens. The model was based on a finite element program with a critical state at the crack tip defined by a ductility curve: equivalent plastic strain versus stress triaxiality. The curve was determined by tests on notched tensile specimens of a low alloy rotor steel. The critical states corresponded to the initiation of a crack at the centre of the specimens. Three point bend tests were also performed and experimental and numerical load displacement curves and crack growth versus displacement curves were compared. Agreement with experiments on cracked specimens was obtained by simple fittings of the 'ductility' curve in the high triaxiality area. Results are discussed and it is indicated where future progress might be made in numerical modelling of cracked bodies. (author)

  18. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility

    Science.gov (United States)

    Khalajhedayati, Amirhossein; Pan, Zhiliang; Rupert, Timothy J.

    2016-01-01

    The control of interfaces in engineered nanostructured materials has met limited success compared with that which has evolved in natural materials, where hierarchical structures with distinct interfacial states are often found. Such interface control could mitigate common limitations of engineering nanomaterials. For example, nanostructured metals exhibit extremely high strength, but this benefit comes at the expense of other important properties like ductility. Here, we report a technique for combining nanostructuring with recent advances capable of tuning interface structure, a complementary materials design strategy that allows for unprecedented property combinations. Copper-based alloys with both grain sizes in the nanometre range and distinct grain boundary structural features are created, using segregating dopants and a processing route that favours the formation of amorphous intergranular films. The mechanical behaviour of these alloys shows that the trade-off between strength and ductility typically observed for metallic materials is successfully avoided here. PMID:26887444

  19. DUCTILITY BEHAVIOR FIBER REINFORCED CONCRETE BEAMS STRENGTHENED WITH EXTERNALLY BONDED GLASS FIBER REINFORCED POLYMER LAMINATES

    Directory of Open Access Journals (Sweden)

    Mariappan Mahalingam

    2013-01-01

    Full Text Available The study presents the results of an experimental investigation conducted on Steel Fiber Reinforced Concrete (SFRC beams with externally bonded Glass Fiber Reinforced Polymer (GFRP laminates with a view to study their strength and ductility. A total of ten beams, 150×250 mm in cross-section were tested in the laboratory over an effective span of 2800 mm. Three fiber reinforced concrete beams were used as reference beams. Six fiber reinforced concrete beams were provided with externally bonded GFRP laminates. One concrete beam was left virgin without any fiber reinforcement and external GFRP laminates. All the beams were tested until failure. The variables considered included volume fraction of fiber reinforcement and stiffness of GFRP laminates. The static responses of all the beams were evaluated in terms of strength, stiffness and ductility. The test results show that the beams provided with externally bonded GFRP laminates exhibit improved performance over the beams with internal fiber reinforcement.

  20. Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process

    Directory of Open Access Journals (Sweden)

    M. Ll. Maspoch

    2015-03-01

    Full Text Available The ductile-brittle transition behaviour of organo modified montmorillonite-based Poly(lactic acid films (PLA/o-MMT was analysed using the Essential Work of Fracture (EWF methodology, Small Punch Tests (SPT and Enthalpy relaxation analysis. While the EWF methodology could only be applied successfully to de-aged samples, small punch test (SPT was revealed as more effective for a mechanical characterization during the transient behaviour from ductile to brittle. According to differential scanning calorimetry (DSC results, physical aging at 30°C of PLA/o-MMT samples exhibited slower enthalpy relaxation kinetics as compared to the pristine polymer. Although all samples exhibited an equivalent thermodynamic state after being stored one week at 30°C, significant differences were observed in the mechanical performances. These changes could be attributed to the toughening mechanisms promoted by o-MMT.