WorldWideScience

Sample records for austemper kyujo kokuen

  1. Impact characteristics of austempered spheroidal graphite cast steel. Austemper kyujo kokuen chuko no shogeki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Tada, S.; Abe, T. (Government Industrial Research Institute, Tohoku, Sendai (Japan))

    1993-08-25

    Austempered ductile cast iron (ADI) has excellent mechanical properties both in strength and toughness, but the Young's modulus of ADI is lower than that of steel because ADI contains much graphite. In order to obtain better mechanical properties than ADI, spheroidal graphite cast steel containing less graphite by volume was austempered. The Young's modulus of austempered spheroidal graphite cast steel (AGS) was 200 GPa, which was comparable to steel. The retained austenite volume of the sample containing 2.4% Si varied with the austempering conditions, but that of the sample containing 1.4% Si decreased in a shorter austempered time. As a result, it was found that Si affects stability of the retained austenite. Charpy impact value increased with increasing the retained austenite volume when the volume was above 15%. The impact value of AGS with 40% retained austenite was over twice as large as that of ADI austempered under the same conditions. 21 refs., 8 figs., 1 tab.

  2. Development of austempered ductile iron timing gears; Austemper kyujo kokuen chutetsu timing gear no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Yamamoto, S.; Numajiri, S.; Nakajima, K. [Mitsubishi Motors Corp., Tokyo (Japan)

    1996-05-01

    To reduce vibration and noise of gears compared with ordinary steel gears for four cycle diesel engine of small commercial vehicles, austempered ductile iron (ADI) gears have been developed, which have excellent mechanical properties and vibration damping properties equivalent to steel gears. ADI is a material with tensile strength of 1,000 MPa, which is made by austempering the ductile iron to change matrix texture into tough bainite. For a new process method of ADI gears, austempering is conducted after gear cutting, and shaving is conducted, finally. Gear materials before austempering can be smoothly machined without deteriorating their machinability, to produce highly accurate gears. Fifteen percent of noise can be reduced for ADI gears during idling of engine, where 0.7 dB can be reduced in the noise level. The ADI gears provide superior pitting resistance to ordinary steel gears. They have nearly equivalent dedendum bending fatigue strength to ordinary soft nitrided steel gears. 6 refs., 12 figs., 2 tabs.

  3. Rolling contact fatigue strength of successive austempered ductile cast iron; Chikuji austemper shori kyujo kokuen chutetsu no korogari hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering; Ogi, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Sawamoto, A. [Yamaguchi Univ., Yamaguchi (Japan). Faculty of Education

    1998-04-25

    The holding time of austempered spheroidal graphite cast iron material is allowed to vary in heat treatment especially at the lower bainite transformation zone during the process for the preparation of specimens different from each other in the amount of {gamma}-pool, and the specimens are tested for their rolling contact fatigue strength. The effects of the amount of {gamma}-pool, roughness of the bainite structure, and work-hardening, on the rolling fatigue strength are also studied. Findings obtained as the result of experiment are stated below. In the case of an austempered ductile cast iron specimen containing a {gamma}-pool amount that occupies a high rate of 6.52%, the rolling fatigue withstanding limit exhibits a relatively high level of 1310MPa, which becomes approximately 1245MPa when the holding time is extended in the lower bainite transformation zone. The limit rises to approximately 1320MPa at a stage where the {gamma}-pool virtually disappears. In a successive austempering treatment process that aims at improving on machinability and at allowing sufficient fatigue strength to be maintained, it is necessary to allow the holding time in the bainite zone to be long enough for the {gamma}-pool to disappear and for the lower bainite structure to grow sufficiently. 5 refs., 10 figs., 4 tabs.

  4. Effects of austempering heat treatment conditions on fracture toughness of austempered ductile cast iron; Kyujo kokuen chutetsu no hakai jinsei ni oyobosu austemper shori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Y.; Arai, M. [Musashi Institute of Technology, Tokyo (Japan)

    1996-03-25

    Discussions were given in various manners to learn effects of treatment conditions with respect to fracture toughness of austempered ductile cast iron. Austenitizing temperature and isothermal transforming conditions that result in comprehensively most excellent fracture toughness including tensile strength were 1173 K and 648 K - 3.6 ks, respectively. The austenitizing temperature as low as 1123 K reduces quantity of residual austenite, resulting in residual inclusion of free ferrite in the structure. If as high as 1223 K, reduction in the fracture toughness is caused under any condition as a result of increase in unstable austenite and growth of austenite into coarse particles. With respect to the isothermal transforming conditions, high fracture toughness may be achieved at a relatively high temperature. However, a structure that has been transformed from austenite to bainite causes a secondary reaction in a short time, and deposits particulates of cementite and graphite, leading to a prediction of decrease in the fracture toughness. Therefore, it is preferable that the treatment time is decreased in order to suppress the secondary reaction. 9 refs., 10 figs., 7 tabs.

  5. Application of successive austempering process to spheroidal graphite cast iron produced by inmold process. Inmold ho de seizoshita kyujo kokuen chutetsu eno chikuji austemper ho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Oide, T.; Ahmadabadi, M.; Kawashima, S. (Tohoku University, Sendai (Japan). Faculty of Engineering)

    1994-06-25

    Application of successive austempering process to the iron produced by inmold process leads to much higher graphite nodule count in the structure than the other spheroidizing methods. In this study, to improve the toughness of spheroidal graphite cast iron produced by inmold process, successive austempering process was applied to austemper ductile iron (ADI) production. Both hardenability and austemperability of the iron could be controlled with Mn alloying through the two-stage austempering at high and low temperatures. Higher retained austenite volume fraction and lower untransformed austenite volume fraction were obtained in the most suitable duplex upper and lower bainitic structure. It was confirmed that the impact energy of ADI treated by successive austempering process was remarkably much higher than the conventional austempering processes. In this process, an excellent value of toughness was obtained by selecting a combination of holding temperature and holding time, strictly. 17 refs., 10 figs., 2 tabs.

  6. Fatigue crack propagation characteristics of ductile cast iron austempered from (. alpha. +. gamma. ) phase region. (. alpha. +. gamma. ) iki kara austemper shorishita kyujo kokuen chutetsu no hiro kiretsu shinten tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Y.; Asami, K.; Kuroiwa, H. (Musashi Institute of Technoloyg, Tokyo (Japan))

    1991-01-15

    In order to enhance the fatigue crack propagation resistance of ductile cast iron, the effect of austempering from a ({alpha} + {gamma}) phase region was studied. As the dual phase matrix microstructure of ferrite and pearlite in as-casted iron was changed into the dual phase one of ferrite and bainite by partial austempering from 800 {degree} C, the fatigue crack propagation resistance was enhanced over the whole range of a {Delta} K region. The enhancement of the fatigue crack propagation resistance was caused by remarkable development of crack closures from higher {Delta} K regions which was induced by fracture contact and fretting because of an increase in fracture roughness and easy formation of oxide deposits. In addition, the static tensile and ductility of ductile cast iron were possibly enhanced simultaneously by partial austempering for changing pearlite into bainite superior in both tensile and ductility. 9 refs., 13 figs., 3 tabs.

  7. Effects of subzero treatment on toughness of austempered ductile cast iron; Austemper kyujo kokuen chutetsu no jinsei ni oyobosu subzero shori no koka

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, S.; Yamada, S. [Kanto Gakuin University, Yokohama (Japan)

    1998-04-25

    Specimens of austempered ductile cast iron (ADI) after constant temperature transformation at different temperatures are tested for tension, shock, and bending, and the effects of the testing methods and testing speeds on ADI strength and toughness are investigated. Specimens are made of an austempered Fe-Si-Mg alloy cast into 25mm-thick Y-shape blocks. Heat treatment is performed in the atmosphere for test pieces manufactured by machining. In the subzero treatment, the austempered pieces are cooled in water and then immediately placed in liquid nitrogen for rapid cooling. Findings obtained are mentioned below. A test piece austempered at 773K and then cooled in water retains 26% of austenite, and this disappears after a tension test. In a test piece given subzero treatment following the cooling in water, the residual austenite is found reduced from 20% to 13%. No change is observed in the amount of residual austenite before and after a bend test and impact test whether or not the test piece has been subjected to subzero treatment. 8 refs., 8 figs., 2 tabs.

  8. Effect of tempering treatment on toughness of austempered ductile iron; Austemper kyujo kokuen chutetsu no jinsei ni oyobosu yakimodoshi no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, S.; Kobayashi, T. [Toyohashi University of Technology, Aichi (Japan)

    1994-07-25

    Austempered ductile iron (ADI) is increasing its application to high strength members as a cast iron material that has both high strength and ductility. In order to investigate the effect of internal strain generated during austempering treatment, the present study investigates the effect of tempering on its toughness, and performs metal structural discussions. The result may be summarized as follows: the cause to bring about change in toughness given by the tempering is mainly the increase or decrease in the ductility, and the optimal tempering condition was found 723K {times} 10 min in the present study; the tempering process of ADI consists of two stages, whereas in the first stage the dislocation of high density introduced by the austempering treatment is reduced mainly in the ferrite, and the toughness improves as a result of increased ductility; in the second stage, deposition of carbide (Fe3C) is developed in association with decomposition of the residual austenite, when the toughness decreases. 18 refs., 11 figs., 1 tab.

  9. Fatigue properties of austempered ductile cast iron at room and elevated temperatures; Austemper kyujo kokuen chutetsu no chukoon ni okeru hiro tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, K.; Hasegawa, N.; Inaga, K. [Gifu University, Gifu (Japan)

    1995-06-15

    Austempered ductile cast iron (ADI) is used widely as a structural material with high strength and toughness. However, since few studies have been made on investigation of fatigue properties at medium to high temperatures, this paper describes rotating bending tests carried out in temperature range between room temperature and 400{degree}C to investigate the fatigue properties and the fatigue crack generating behavior. The following results were obtained: the fatigue limit (fatigue strength after 10{sup 7} bendings) showed a remarkable maximizing phenomenon at temperatures around 300{degree}C; micronization of the base structure caused by transformation of residual austenite was recognized above 300{degree}C, and so was rise in the hardness; heating to this temperature led to rise in the Ms point, making the transformation occur more easily; the effect of repetitive stress causes a processing induced transformation; the temperature at which the transformation and the micronization are completed declines by about 50{degree}C lower than in the non-transformed region; and the fatigue fracture at middle to high temperatures is caused more frequently by internally existing graphite and development of cracks from very small casting cavities. 31 refs., 10 figs., 7 tabs.

  10. Effects of silicon content and austempering condition on the impact characteristics of austempered ductile cast iron. Kyojin kyujo kokuen chutetsu no jinsei ni oyobosu osutenpa shori joken to Si ryo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, M. (Daido Inst. of Technology, Nagoya (Japan)); Kobayashi, T. (Toyohashi Univ. of Technology, Aichi (Japan)); Matsuo, K. (Kurimoto Iron Works, Ltd., Osaka (Japan))

    1990-07-25

    Austempered spherical graphite cast iron (ADI) is extensively expeted as a mechanical structural material because of high tenacity and resilience as well as fatigue strength and wear resistance. These excellent properties are attributed to the abundantly remaining austenite because the formation of carbides is restricted by the action of the silicon element. It is, therefore, important for obtaining the strong cast iron material to control the amount of the retained austenite. In this study, the impact characteristics was investigated for acquiring the basic materials concerning the influence of the temperature, time of austempering and the amount of silicon. The added amount of silicon is most suitably 2.1%. Samples without Mn and Ni showed an impact value of about 2 times of the amount added. At 400 {degree} C, however, the impact value reduced to half by the growth of coarse ferrite and bentonite. Time of austempering was 1 hour and showed a stable impact value and load of breaking. Transition temperature shifted tolow side by the increase of amount of silicon. 14 refs., 10 figs., 1 tab.

  11. Improvement of static strength and fatigue crack propagation resistance in ductile cast iron by austempering from (. alpha. +. gamma. ) phase region. Bubun austenpering shori ni yoru kyujo kokuen chutetsu no seiteki kyodo to hiro kiretsu shinten teiko no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Y.; Asami, K.; Matsuoka, S. (Musashi Institute of Technology, Tokyo (Japan))

    1991-06-15

    The spheroidal graphite cast iron is better characterized in resistivity against the abrasion and heat, and economical efficiency than the normal carbon steel. Notice being taken of treatment temperature (800 to 840 centigrade) in the ({alpha}+{gamma}) phase region for the partial austempering treatment condition, able to improve the spheroidal graphite cast iron simultaneously in both statical tensile characteristics and fatigue crack propagation resistance, the present report compared dual phase as-cast material, single phase ferrite and single phase bainite. As a result, the morphological ratio of bainite becomes about 20% to the base morphology at 800 centigrade in treatment temperature. Then with progressively heightening to 815, 830 and 840 centigrade in it, the above ratio so heightens to about 40, 80 and 90%, respectively. The fatigue crack propagation resistance in the low DeltaK (low stress intensity factor) region is heightened by the partial austempering treatment to higher than that of dual phase as-cast material, single phase ferrite and single phase bainite, and most done at 800 centigrade in temperature where the bainite becomes about 20% in morphological ratio. 830 centigrade where the bainite becomes about 80% is judged to be the most appropriate treatment temperature for both the statical tensile characteristics and fatigue crack propagation resistance. 3 refs., 16 figs., 3 tabs.

  12. Mechanisms of poor machinability of austempered ductile iron; Austemper kyujo kokuen chutetsu no nansaku kiko

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S.; Miyaji, H. [National Research Institute for Metals, Tsukuba (Japan); Nakajima, H. [Hosei University, Tokyo (Japan)

    1995-07-01

    For the purpose of high strength distempered ductile iron (ADD) has the potential to reduce the size and weight of automotive parts, however poor machinability has made it difficult to achieve broad commercial application. To clarify the mechanism of poor machinability of ADI, (1) the chips was analyzed by X-ray diffraction, (2) the cutting front was observed after instantaneously stopping using a quick stop device, (3) for the turning tool wear was measured and (4) sawability of material was compared using a saw test. The results were as follows: In the low cutting-speed range, it was fount teat strain induced transformation from retained austerity ({gamma}R) to martensite ({alpha}{prime}) occurred, and this corresponded to the poorest machinability in the saw test. In the high cutting-speed range. {gamma}R{yields}{alpha}{prime} transformation was limited to the damaged layer, because the temperature of chips exceeded Md point. The tool wear during turning of ADI was generated closer to the cutting edge, as compared with turning of steels. Observation of chip forming state showed that this phenomenon resulted from the following two factors: (a) the formation of saw-tooth like chips ant the decrease of the tool-chip contact length due to the spheroidal graphite, and (b) the increase of cutting force due to the high hardness of the bainitic phase and the damaged layer hardened by the {gamma}R{yields}{alpha}{prime} transformation. 24 refs., 9 figs., 3 tabs.

  13. Statistical fatigue properties of ductile cast irons; Kyujo kokuen chutetsu no hiro kyodo no tokeiteki seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, N.; Nishikawa, Y.; Inaba, K. [Gifu University, Gifu (Japan). Faculty of Engineering; Fukuyama, K. [Gifu Prefectural Police Headquarters, Gifu (Japan)

    1995-09-15

    Rotating bending fatigue tests of smooth specimens were carried out at room temperature on a pearlitic ductile cast iron (PDI) and austempered ductile cast iron (ADI). No significant difference due to sampling position from cast blocks in both materials was found in fatigue limit and fatigue life distribution. Then, the statistical fatigue properties of ferritic (FDI), ferritic/pearlitic (FPDI), pearlitic and austempered ductile cast irons were investigated. The fatigue life distributions of all ductile irons were well represented by the three parameter Weibull distribution modified by the saturated probability of failure. The shape parameters of FDI, FPDI and PDI were in proportion to {sigma}/{sigma}w independent on micro structure, while the shape parameters of both stress levels in ADI were smaller than unity. The fatigue strength of ADI was highest, but the scatter of fatigue life was largest among the all cast irons. 13 refs., 15 figs., 7 tabs.

  14. Approximate creep feed grinding of austempared ductile cast iron; Osutenpa kyujo kokuen chutetsu no kin`i kuripu fido kensaku

    Energy Technology Data Exchange (ETDEWEB)

    Nakamitsu, K.; Shimizu, K. [Oita National College of Technology, Oita (Japan)

    1996-10-01

    Austempered ductile cast iron (ADI) was subjected to approximate creep feed grinding to measure and observe the grinding ratio, hardness of ground surface, grinding resistance, production of burrs, roughness of ground surface, and grinding burn to investigate the best abrasive grains and grinding conditions. The grinding ratio of SiC grains was far better than that of Al2O3 grains, being about 10 times or more. Surface hardness of ADI ground by SiC grains changed little, but that ground by Al2O3 grains increased. As regards grinding resistance, that of Al2O3 grains have less slope and tangential component forces, but that of SiC grains increased with the increase in the ground volume. While burrs produced in grinding with SiC grains are secondary burrs, those produced in grinding with Al2O3 grains are primary burrs. In comparison with the normal grinding, grinding burn was produced on the ground surface, complicate striped patterns and grinding burns were produced by chattering particularly in grinding with Al2O3 grains. 10 refs., 11 figs., 2 tabs.

  15. Influence of slit depth on impact value of ferritic nodular graphite cast iron. Feraito kyujo kokuen chutetsu no shogekichi ni oyobosu suritto fukasa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sunada, H. (Himegi Inst. of Technology, Hyogo (Japan). Faculty of Engineering)

    1992-10-15

    Impact experiment and fracture surface observations were carried out in order to study the effect of slit depth on the impact value during austempering of ferrite spheroidal graphite east iron. The tensile strength has been increased by austempering, however the impact value was not improved. The bending strength of slit bottom for each structure has been less influenced by slit depth, and it has been almost similar, The value obtained by the multiplication by binding coefficient has been higher than yield strength in case of ferrite structure, and it has been lower in case of bainitic structure. Cleavage facets along with the large dimples originating from graphites and small dimples from inclursions, have been observed on the impact fracture surface of ferrite structure, however in general, the fracture has been ductile. The deformation around the graphite has been small for bainitic structure, pseudo brittleness type fracture surface is formed, and has been less rough compared to ferrite structure. 9 refs., 8 figs., 1 tab.

  16. Effect of graphite nodule count and Mn content on successive austempering process of austempered ductile iron; ADI no chikuji austemper ho ni oyobosu kokuen tsubusu to Mn ryo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Oide, T.; Ahmadabadi, M.; Saito, M. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1995-02-25

    Shock test was executed for a test piece where the combination of a wide range of austempering conditions was selected and the effective graphite nodule count in the successive austempering process method, the range of Mn amount, etc. were discussed. The low and high graphite nodule counts of sample were 82 - 114 and 229 - 364 piece/mm{sup 2}, respectively. The low and high Mn were 0.26 - 0.65 % and 0.96 - 1.05 %, respectively. The heat treatment cycle was retained to be 1173K, 648K, and 588K in argon gas atmosphere. The Sharpy shock test and organization observation were performed for each test piece, thus revealing that a higher toughness value than that obtained by normal treatment could be obtained by the HLAT method; the better the graphite nodulation count was, the higher the toughness was; it was effective that the Mn was approximately 0.6 %; the influence given to the shock energy value was extremely larger by residual austenite volume than the untransformed austenite module. 7 refs., 12 figs., 2 tabs.

  17. Austempered Ductile Iron Machining

    Science.gov (United States)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  18. Fracture toughness of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Komatsu, S. [Kinki Univ., Higashihiroshima (Japan). Dept. of Mechanical Systems Engineering

    1995-12-01

    The effect of austenitizing temperature, austempering temperature and austempering time on the fracture toughness of austempered ductile iron have been presented and discussed in this paper. Statistical design of experiments with a 2{sup 3} matrix was used to determine the effect of the individual variables and their interactions. The desirable combination of the three variables is suggested based on the analysis.

  19. Continuous cooling transformation behavior for heat treatment of spheroidal graphite cast iron. Kyujo kokuen chutetsu no netsushoriji ni okeru renzoku reikyaku hentai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T.; Matsumoto, H. (Shibaura Institute of Technology, Tokyo (Japan)); Kasugai, T. (National Research Institute for Metals, Tsukuba (Japan)); Koyama, M. (Automobile Foundry Co. Ltd., Yokohama (Japan))

    1992-08-25

    In order to study basic heat treatment properties of spheroidal graphite cast iron, the continuous cooling transformation(CCT) diagrams for the material equivallent to FCD700 under various austenitized conditions were obtained. There were 4 kinds of austenitized conditions varying from 1123K and 420s to 1323K and 1,800s. Eight kinds of cooling time from the austenitized temperature to 773K ranged from 6s to 4,000s. The transformation temperature was measured by a thermal expansion method. When the austenitized temperature was increased from 1123K to 1323K, ferrite and pearlite transformation regions moved a little in the CCT diagrams and the martensite transformation temperature decreased from 493K to 458K. The bainite region in the CCT diagrams disappeared at the austenite temperatures above 1223K. The nucleation sites of ferrite and pearlite in the spheroidal graphite cast iron were generated at grain boundary between austenite and graphite but not at grain boundary between austenites. The reason of such phenomena was also studied. 10 refs., 8 figs., 2 tabs.

  20. Austempering kinetics of Cu-Ni alloyed austempered Ductile Iron

    Science.gov (United States)

    Cekic, Olivera Eric; Sidjanin, Leposava; Rajnovic, Dragan; Balos, Sebastian

    2014-11-01

    The aim of the paper was to investigate the effect of austempering parameters (time and temperature) on the microstructure and mechanical properties of ADI alloyed with 1.5% Cu and 1.6% Ni (in wt.%) in order to establish the optimal processing window. It was shown that the strength, elongation and impact energy strongly depend on the amounts of ausferritic ferrite and retained austenite. A processing window was established according to the results of the kinetics of the isothermal transformation. The results show that the processing window for ADI alloyed with Cu and Ni at 350 °C was relatively wide, while the processing window for the isothermal transformation at 400 °C becomes narrower and shifted to the left. The processing window of ADI austempered at 300 °C is also narrower, but shifted to the right towards the longer times compared to the processing window of ADI austempered at 350 °C.

  1. Effect of Austempering on Plastic Behavior of Some Austempered Ductile Iron Alloys

    Science.gov (United States)

    Olofsson, Jakob; Larsson, Dan; Svensson, Ingvar L.

    2011-12-01

    A numerical description relating microstructure to elastic and plastic deformation behavior would make it possible to simulate the mechanical behavior of complex cast components with tailored material properties. Limited work and data, however, have been published regarding the connection between microstructure and plastic behavior of austempered ductile irons (ADIs). In the current work, the effects of austempering temperature and austempering time on the strength coefficient and the strain hardening exponent of the Hollomon equation were investigated for two ADI alloys. The results show that the plastic behavior is highly dependent on the combination of austempering temperature and austempering time. It was found that as the austempering temperature increases, both the strength coefficient and the strain hardening exponent initially decrease, but after reaching a minimum at the critical austempering temperature, they show a plateau or an increase. The effect of the austempering time on the plastic behavior depends on the austempering temperature. At low austempering temperatures, the strength coefficient and the strain hardening exponent decrease with increased austempering time, whereas at higher austempering temperatures, they show little time dependence. These relations are explained by the microstructural transformations that take place during the austempering heat treatment.

  2. Tensile properties of copper alloyed austempered ductile iron: Effect of austempering parameters

    Science.gov (United States)

    Batra, U.; Ray, S.; Prabhakar, S. R.

    2004-10-01

    A ductile iron containing 0.6% copper as the main alloying element was austenitized at 850 °C for 120 min and was subsequently austempered for 60 min at austempering temperatures of 270, 330, and 380 °C. The samples were also austempered at 330 °C for austempering times of 30 150 min. The structural parameters for the austempered alloy austenite (X γ ), average carbon content (C γ ), the product X γ C γ , and the size of the bainitic ferrite needle (d α ) were determined using x-ray diffraction. The effect of austempering temperature and time has been studied with respect to tensile properties such as 0.2% proof stress, ultimate tensile strength (UTS), percentage of elongation, and quality index. These properties have been correlated with the structural parameters of the austempered ductile iron microstructure. Fracture studies have been carried out on the tensile fracture surfaces of the austempered ductile iron (ADI).

  3. Austempered ductile iron process development

    Science.gov (United States)

    Gupta, C. D.; Keough, J. R.; Pramstaller, D. M.

    1986-11-01

    Pressure from imports and material substitution has severly affected demand for domestic iron industry products. It is estimated that the potential market for Austempered Ductile Iron (ADI) is as large as the market for carburized and/or through hardened forgings. The primary interest in ADI is generated by the economics of process. Improved machinability and reduced processing costs as well as interesting physical properties has created an enormous interest in all metalworking industries towards ADI. The development of gas-fired austempering processes and resoluton of technical and economic uncertainities concerning the process will help improve the outlook for iron founderies.

  4. Properties investigation of austempered ductile iron

    OpenAIRE

    Sudhanshu Detwal; Deivanathan R

    2016-01-01

    This work concerns microstructural and mechanical properties of an austempered ductile cast iron (ADI). The ductile iron material was produced by the sand mould casting technique. Afterwards, austempering heat treatment was applied to the specimens at two different temperatures of 250°C and 350°C. Austempered Ductile Irons (ADIs) were produced successfully by different two-stage heat treatments, to obtain favorable microstructure and hardness. The microstructure and hardness obtained by such ...

  5. Properties investigation of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Sudhanshu Detwal

    2016-03-01

    Full Text Available This work concerns microstructural and mechanical properties of an austempered ductile cast iron (ADI. The ductile iron material was produced by the sand mould casting technique. Afterwards, austempering heat treatment was applied to the specimens at two different temperatures of 250°C and 350°C. Austempered Ductile Irons (ADIs were produced successfully by different two-stage heat treatments, to obtain favorable microstructure and hardness. The microstructure and hardness obtained by such variable heat treatments were compared. The austempering temperature and time were found to be decisive parameters in obtaining a desired ADI microstructure.

  6. Some Mechanical Properties of Austempered Ductile Iron

    Science.gov (United States)

    Waanders, F. B.; Vorster, S. W.; Vorster, M. J.

    1998-12-01

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a "process window", on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Mössbauer spectra (CEMS) were measured, after heat treatment.

  7. Some mechanical properties of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Waanders, F.B.; Vorster, S.W.; Vorster, M.V. [Potchefstroom Univ. (South Africa). Dept. of Metall. Eng.

    1997-12-01

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a ``process window``, on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Moessbauer spectra (CEMS) were measured, after heat treatment. (orig.). 7 refs.

  8. Some Mechanical Properties of Austempered Ductile Iron

    Energy Technology Data Exchange (ETDEWEB)

    Waanders, F.B.; Vorster, S.W.; Vorster, M.J. [Potchefstroom University, Department of Metallurgical Engineering (South Africa)

    1998-12-15

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a 'process window', on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Moessbauer spectra (CEMS) were measured, after heat treatment.

  9. Effect of Austempering on Plastic Behavior of Some Austempered Ductile Iron Alloys

    OpenAIRE

    Olofsson, Jakob; Larsson, Dan; Svensson, Ingvar L

    2011-01-01

    A numerical description relating microstructure to elastic and plastic deformation behavior would make it possible to simulate the mechanical behavior of complex cast components with tailored material properties. Limited work and data have however been published regarding the connection between microstructure and plastic behavior of austempered ductile irons (ADI). In the current work the effects of austempering temperature and austempering time on the strength coefficient and the strain hard...

  10. Influece of the austempering temperature on the tensile strength of the austempered ductile iron (ADI samples

    Directory of Open Access Journals (Sweden)

    S. Savićević

    2017-01-01

    Full Text Available Austempered Ductile Iron (ADI is a class of ductile iron subjected to a two-step heat treatment process – austenitization and austempering. The heat treatment gives to ADI a high value of tensile strength and an especially good strength-to-weight ratio. However, designers in most cases are unfamiliar with this material that can compete favorably with steel and aluminum castings, weldments and forgings. The high tensile strength of ADI is the result of its unique ausferrite microstructure. In this paper, an investigation of the influence of the austempering temperature on the tensile strength of the ADI samples is presented.

  11. Thin Wall Austempered Ductile Iron (TWADI

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-07-01

    Full Text Available In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of austenitizing at 880 oC followed by holding at 400 oC for 5 minutes causes ausferrite matrix in 2 mm wall thickness castings, while casting with thicker wall thickness remain untransformed and martensite is still present in a matrix. Finally there are shown that thin wall ductile iron is an excellent base material for austempering heat treatments. As a result high mechanical properties received in thin wall plates made of austempered ductile iron.

  12. Influece of the austempering temperature on the tensile strength of the austempered ductile iron (ADI) samples

    OpenAIRE

    Savićević, S.; Avdušinović, H.; A. Gigović-Gekić; Z. Jurković; Vukčević, M.; M. Janjić

    2017-01-01

    Austempered Ductile Iron (ADI) is a class of ductile iron subjected to a two-step heat treatment process – austenitization and austempering. The heat treatment gives to ADI a high value of tensile strength and an especially good strength-to-weight ratio. However, designers in most cases are unfamiliar with this material that can compete favorably with steel and aluminum castings, weldments and forgings. The high tensile strength of ADI is the result of its unique ausferrite microstructure. In...

  13. Calorimetric examinations of austempered ductile iron ADI

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2007-12-01

    Full Text Available The study presents the results of calorimetric examinations during heating and cooling of austempered ductile iron ADI after austempering at temperatures of 280, 330 and 380oC. The samples for examinations were taken from cast rods of 20 and 60 mm diameter. Examinations were carried out on a differential scanning calorimeter, type Multi HTC S60. During heating, on a DSC curve one strong exothermic effect has been noted to occur (it does not occur in the case of common-grade cast iron, accompanied by two endothermic effects. The exothermic effect occurs within the range of about 20oC. Depending on the temperature of austempering treatment, its beginning falls to the temperatures from 469 to 490oC. The heat of this effect is proportional to the austenite content in ADI matrix after austempering. The endothermic effects are related with decomposition of pearlite (or bainite and with phase transformation α → γ (ferrite as a constituent of ausferritic matrix.

  14. Nondestructive Evaluation of the Austempered Ductile Cast Irons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. S.; Lee, S. K. [Korea Standards Research Institute, Daejeon (Korea, Republic of)

    1989-05-15

    Austempered ductile cast iron (ADI) which has been recently developed shows good mechanical properties. These properties are related to the microstructure which is greatly affected by processing variables such as austempering time and temperature. In this study, the relationships between mechanical properties from impact test, and hardness test and the results from ultrasonic velocity measurement and electrical resistivity measurement are studied on the ADI samples which are heat treated at different austempering temperature and time. From the results, we conclude the followings. The ultrasonic velocity measurement could be used for the study of austempering reaction mechanism. The electrical resistivity measurement could be used as quality assurance technique for the ADI

  15. The austempering study of alloyed ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Eric, Olivera [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11001 Belgrade (Serbia and Montenegro)]. E-mail: oliverae@vin.bg.ac.yu; Jovanovic, Milan [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); Sid-baranin, Leposava [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia and Montenegro); Rajnovic, Dragan [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia and Montenegro); Zec, Slavica [Institute of Nuclear Sciences ' Vinca' , P.O. Box 522, 11001 Belgrade (Serbia and Montenegro)

    2006-07-01

    Austempered ductile iron (ADI) proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. These properties can be achieved upon adequate heat treatment which yields optimum microstructure for a given chemical composition. In this paper an investigation has been conducted on ADI alloyed with 0.45%Cu and austempered in a range of times and temperatures. The microstructure and fracture mode developed throughout these treatments have been identified by means of light and scanning electron microscopy and X-ray diffraction analysis. It was shown that strength, elongation and impact energy strongly depend on amounts of bainitic ferrite and retained austenite. Based on these results an optimal processing window has been established.

  16. Abrasive wear behaviour of as cast and austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Baydogan, M.; Koekden, M.U.; Cimenoglu, H. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Science Engineering Istanbul (Turkey)

    2000-07-01

    In this study, abrasive wear behaviour of as cast and austempered GGG 50 and GGG 80 quality ductile irons was investigated. In the as cast condition, GGG 50 and GGG 80 quality ductile irons were having ferritic and pearlitic matrix structures, respectively. Austempering at 250 C after austenitisation at 900 C for 100 minutes produced bainitic matrix structure in both of the investigated ductile irons. Abrasive wear tests performed by rubbing the as cast and austempered specimens on Al{sub 2}O{sub 3} abrasive bands, revealed that austempering treatment improves abrasion resistance about 10-70% depending on the abrasive particle size and composition of the base iron. In the as cast condition, pearlitic GGG 80 grade ductile iron, has higher wear resistance than ferritic GGG 50 grade ductile iron. In the austempered condition GGG 50 and GGG 80 grade ductile irons which have bainitic matrix structure, exhibit almost similar wear resistance. (orig.)

  17. 350℃ - Thermal Stability of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    M. Pellizzari; M. Zadra, A. Molinari

    2004-01-01

    The thermal stability of an ADI has been studied by isothermal aging at 350℃ for 150 hours, measuring the amount of retained austenite and its carbon content by X-ray diffractometry. The influence of different austempering treatments, carried out at temperatures between 300 and 450℃ (300, 330, 360, 410 and 450℃) and holding times between15 and 60 minutes (15, 30, 45, 60), was considered. Thermal stability depends on whether austempering temperature is higher or lower than the ageing one. Thermal stability increases by increasing austempering temperatures, from 300° to410℃. Samples treated at 410° and 450° show a lower austenite decomposition than samples at 300-330-360℃. A drop in stability is shown by increasing the austempering temperature from 410° to 450℃. The results have been interpreted on the basis of the austenite stability out of the processing window, which in turn depends on the austempering parameters.

  18. Stacking faults in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Hermida, J.D. [CNEA, San Martin (Argentina). Dept. de Materiales

    1996-06-01

    During last decade, Austempered Ductile Iron (ADI) has been successfully used as an acceptable replacement material for steel in many applications, due to the relatively high strength and reasonable ductility obtained. These properties are the result of the special microstructure exhibited by this material at the end of the upper bainite reaction: ferrite platelets surrounded by high carbon stabilized austenite. However, at the beginning of the austempering treatment, the existence of interdendritic low carbon austenite is revealed by its transformation to martensite when cooling the sample or during subsequent deformation. The completion of the upper bainite reaction is of decisive importance to mechanical properties because the remaining martensite reduces ductility. It was observed that the rate of the upper bainite reaction is governed by the carbon content difference between the low and high carbon austenites. The carbon content is obtained by the lattice parameter measurement, because there exists a known expression that relates both magnitudes. Several works have used X-ray diffraction to measure the lattice parameter and phase concentrations as a function of austempering time. In these works, the lattice parameters were obtained directly from the {l_brace}220{r_brace} and {l_brace}311{r_brace} peaks position. The purpose of this work is to show more precise lattice parameters measurement and, very closely related to this, the existence of stacking faults in austenite, even at times within the processing window.

  19. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Putatunda, S.K.; Gadicherla, P.K.

    2000-04-01

    An investigation was carried out to examine the influence of austempering time on the resultant microstructure and the room-temperature mechanical properties of an unalloyed and low manganese ductile cast iron with initially ferritic as-cast structure. The effect of austempering time on the plane strain fracture toughness of this material was also studied. Compact tension and round cylindrical tensile specimens were prepared from unalloyed ductile cast iron with low manganese content and with a ferritic as-cast (solidified) structure. These specimens were then austempered in the upper (371 C) and lower (260 C) bainitic temperature ranges for different time periods, ranging from 30 min. to 3 h. Microstructural features such as type of bainite and the volume fraction of ferrite and austenite and its carbon content were evaluated by X-ray diffraction to examine the influence of microstructure on the mechanical properties and fracture toughness of this material. The results of the present investigation indicate that for this low manganese austempered ductile iron (ADI), upper ausferritic microstructures exhibit higher fracture toughness than lower ausferritic microstructures. Yield and tensile strength of the material was found to increase with an increase in austempering time in a lower bainitic temperature range, whereas in the upper bainitic temperature range, time has no significant effect on the mechanical properties. A retained austenite content between 30 to 35% was found to provide optimum fracture toughness. Fracture toughness was found to increase with the parameter (X{gamma}C{gamma}/d){sup 1/2}, where X{gamma} is the volume fraction of austenite, C{gamma} is the carbon content of the austenite, and d is the mean free path of dislocation motion in ferrite.

  20. Effect of austempering time on mechanical properties of a low manganese austempered ductile iron

    Science.gov (United States)

    Putatunda, Susil K.; Gadicherla, Pavan K.

    2000-04-01

    An investigation was carried out to examine the influence of austempering time on the resultant microstructure and the room-temperature mechanical properties of an unalloyed and low manganese ductile cast iron with initially ferritic as-cast structure. The effect of austempering time on the plane strain fracture toughness of this material was also studied. Compact tension and round cylindrical tensile specimens were prepared from unalloyed ductile cast iron with low manganese content and with a ferritic as-cast (solidified) structure. These specimens were then austempered in the upper (371 °C) and lower (260 °C) bainitic temperature ranges for different time periods, ranging from 30 min. to 4 h. Microstructural features such as type of bainite and the volume fraction of ferrite and austenite and its carbon content were evaluated by X-ray diffraction to examine the influence of microstructure on the mechanical properties and fracture toughness of this material. The results of the present investigation indicate that for this low manganese austempered ductile iron (ADI), upper ausferritic microstructures exhibit higher fracture toughness than lower ausferritic microstructures. Yield and tensile strength of the material was found to increase with an increase in austempering time in a lower bainitic temperature range, whereas in the upper bainitic temperature range, time has no significant effect on the mechanical properties. A retained austenite content between 30 to 35% was found to provide optimum fracture toughness. Fracture toughness was found to increase with the parameter ( XγCγ/d)1/2, where Xγ is the volume fraction of austenite, Cγ is the carbon content of the austenite, and d is the mean free path of dislocation motion in ferrite.

  1. Experimental study of the thermal stability of austempered ductile irons

    Science.gov (United States)

    Pérez, M. J.; Cisneros, M. M.; Valdés, E.; Mancha, H.; Calderón, H. A.; Campos, R. E.

    2002-10-01

    A nonisothermal annealing was applied to austempered Ni-Cu-Mo alloyed and unalloyed ductile irons to determine the thermal stability of the ausferritic structure. Differential thermal analysis (DTA) results were used to build the corresponding stability diagrams. The transformation starting temperature of the high carbon austenite was found to be strongly dependent on the austempering temperature, the heating rate, and the chemical composition of the iron. The Ni-Cu-Mo alloying elements and high austempering temperature increased the stability. The transformation of the austenite to ferrite and cementite is achieved via the precipitation of transition carbides identified as silico-carbides of triclinic structure.

  2. Thin Wall Austempered Ductile Iron (TWADI)

    OpenAIRE

    M. Górny; E. Fraś

    2009-01-01

    In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm) after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of a...

  3. Dry sliding wear of Ni alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    E. Akbarzadeh Chiniforush

    2016-09-01

    Full Text Available Measurements of dry sliding wear are presented for ductile irons with composition Fe-3.56C-2.67Si-0.25Mo-0.5Cu and Ni contents of 0.8 and 1.5 in wt.% with applied loads of 50, 100 and 150 N for austempering temperatures of 270, 320, and 370 °C after austenitizing at 870 °C for 120 min. The mechanical property measurements show that the grades of the ASTM 897M: 1990 Standard can be satisfied for the selected austempering conditions. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Observations indicate that wear is due to subsurface fatigue with cracks nucleated at deformed graphite nodules.

  4. Effect of fully and semi austempering treatment on the fatigue properties of ductile cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Gun; Lim, Bok Kyu; Hwang, Jung Gak [Kangwon National Univ., Chuncheon (Korea, Republic of); Kim, Dong Youl [Samcheok National Univ., Samcheok (Korea, Republic of)

    2005-03-01

    Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from {alpha}+{gamma} is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from {gamma}). In spite of semi austempered ductile iron shows the 86% increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation (ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons.

  5. Successive Boronizing and Austempering for GGG-40 Grade Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    Murat Baydogan; Seckin Izzet Akray

    2009-01-01

    Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.

  6. Neural Network Analysis of Tensile Strength of Austempered Ductile Iron

    OpenAIRE

    Z. Ławrynowicz; S. Dymski; M. Trepczyńska - Łent; T. Giętka

    2007-01-01

    The neural technique was applied to the analysis of the ultimate tensile strength and additionally the yield strength of austempered ductile iron (ADI). Austempered ductile iron is an excellent material and it possesses attractive properties as high strength, ductility and toughness. This paper begins with an introduction to neural networks and demonstrates the ability of the method to investigate new phenomena in cases where the information cannot be accessed experimentally. The model allows...

  7. Dependence of fracture toughness of austempered ductile iron on austempering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.P. [Karnatak Regional Engineering Coll. (India). Dept. of Metallurgical and Materials Engineering; Putatunda, S.K. [Wayne State Univ., Detroit, MI (United States)

    1998-12-01

    Ductile cast iron samples were austenitized at 927 C and subsequently austempered for 30 minutes, 1 hour, and 2 hours at 260 C, 288 C, 316 C, 343 C, 371 C, and 399 C. These were subjected to a plane strain fracture toughness test. Fracture toughness was found to initially increase with austempering temperature, reach a maximum, and then decrease with further rise in temperature. The results of the fracture toughness study and fractographic examination were correlated with microstructural features such as bainite morphology, the volume fraction of retained austenite, and its carbon content. It was found that fracture toughness was maximized when the microstructure consisted of lower bainite with about 30 vol pct retained austenite containing more than 1.8 wt pct carbon. A theoretical model was developed, which could explain the observed variation in fracture toughness with austempering temperature in terms of microstructural features such as the width of the ferrite blades and retained austenite content. A plot of K{sub IC}{sup 2} against {sigma}, (X{sub {gamma}}C{sub {gamma}}){sup 1/2} resulted in a straight line, as predicted by the model.

  8. Dependence of fracture toughness of austempered ductile iron on austempering temperature

    Science.gov (United States)

    Rao, P. Prasad; Putatunda, Susil K.

    1998-12-01

    Ductile cast iron samples were austenitized at 927 °C and subsequently austempered for 30 minutes, 1 hour, and 2 hours at 260 °C, 288 °C, 316 °C, 343 °C, 371 °C, and 399 °C. These were subjected to a plane strain fracture toughness test. Fracture toughness was found to initially increase with austempering temperature, reach a maximum, and then decrease with further rise in temperature. The results of the fracture toughness study and fractographic examination were correlated with microstructural features such as bainite morphology, the volume fraction of retained austenite, and its carbon content. It was found that fracture toughness was maximized when the microstructure consisted of lower bainite with about 30 vol pct retained austenite containing more than 1.8 wt pct carbon. A theoretical model was developed, which could explain the observed variation in fracture toughness with austempering temperature in terms of microstructural features such as the width of the ferrite blades and retained austenite content. A plot of K {/IC 2} against σ y ( X γ, C γ)1/2 resulted in a straight line, as predicted by the model.

  9. Effects of various austempering temperatures on fatigue properties in ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Salman, S. [Marmara University, Technical Education Faculty, Istanbul (Turkey); Findik, F. [Materials Technology Department, Technical Education Faculty, Sakarya University, Sakarya (Turkey)]. E-mail: findik@sakarya.edu.tr; Topuz, P. [Yildiz Technical University, Department of Metallurgy and Material, Istanbul (Turkey)

    2007-07-01

    Austempering is an isothermal heat treatment which when applied to ferrous materials, produces a structure that is stronger and tougher than comparable structures produced with conventional heat treatments. In this paper, ductile iron specimens were applied to various austempering temperatures and interpreted fatigue properties. In this test, Denison 7615 fatigue machine was used for doing double sided bending stresses. The iron was austenitized at 900 deg. C and then austempered at 235, 300 and 370 deg. C for 2 h within a salt bath to obtain various austempered microstructures. Also, the fatigue properties of the bainitic structures which occurred by austempering are examined by scanning electron microscope.

  10. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-07-01

    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  11. Effect of austempering temperature on microstructure and mechanical properties of unalloyed ductile iron: Vpliv austempering temperature na mikrostrukturo in mehanske lastnosti nelegirane duktilne sive litine:

    OpenAIRE

    Bošnjak, Branka; Radulović, Branko

    1999-01-01

    Austempered ductile cast iron (ADI) has emerged in the last several decades as a major engeneering material. The heat-treating of the ductile cast iron produces austempered ductile iron (ADI) with an excellent combination of strength, fracture toughness and wear resistance for a wide variety of applications in automotive, rail and heavy engineering industries. The austempering temperature is the most important parameter in determining both the structure and the mechanical properties of unallo...

  12. Tensile properties of austempered ductile iron under thermomechanical treatment

    Science.gov (United States)

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1700 MPa/1300 MPa/5% and 1350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  13. Tensile properties of austempered ductile iron under thermomechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1,700 MPa/1,300 MPa/5% and 1,350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  14. Influence of microstructure on fracture toughness of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.P.; Putatunda, S.K. [Wayne State Univ., Detroit, MI (United States). Dept. of Chemical Engineering and Materials Science

    1997-07-01

    An investigation was carried out to examine the influence of microstructure on the plane strain fracture toughness of austempered ductile iron. Austempered ductile iron (ADI) alloyed with nickel, copper, and molybdenum was austenitized and subsequently austempered over a range of temperatures to produce different microstructures. The microstructures were characterized through optical microscopy and X-ray diffraction. Plane strain fracture toughness of all these materials was determined and was correlated with the microstructure. The results of the present investigation indicate that the lower bainitic microstructure results in higher fracture toughness than upper bainitic microstructure. Both volume fraction of retained austenite and its carbon content influence the fracture toughness. The retained austenite content of 25 vol pct was found to provide the optimum fracture toughness. It was further concluded that the carbon content of the retained austenite should be as high as possible to improve fracture toughness.

  15. Strain Induced Martensitic Transformation in Austempered Ductile Iron (ADI)

    Science.gov (United States)

    Li, X. H.; Saal, P.; Gan, W. M.; Landesberger, M.; Hoelzel, M.; Hofmann, M.

    2016-09-01

    The strain induced martensitic transformation in austempered ductile iron (ADI) has been investigated using high resolution neutron diffraction on samples compressed ex-situ to different plastic strains. In addition bulk texture measurements using neutron diffraction have been performed to calculate the orientation distribution of ferrite and austenite phases for different strain levels. Combing the detailed texture information with neutron diffraction pattern proved to be essential for quantitative phase analysis and extraction of martensite phase fractions. The martensite content induced by strain in ADI depends on austempering temperature and degree of deformation.

  16. Carbon content of austenite in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.C. [Kuang Wu Inst. of Tech. and Commerce, Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

    1998-06-05

    The development of austempered ductile iron (ADI) is a major achievement in cast iron technology. The austempering heat treatment enables the ductile cast iron containing mainly strong bainitic ferrite and ductile carbon-enriched austenite, with some martensite transforms from austenite during cooling down to room temperature. A key factor controlling the stability of the retained austenite can be evaluated soundly using the thermodynamics principles. It is the purpose here to demonstrate that the data of ADI from numerous sources have a similar trend.

  17. Characterisation of austempered spheroidal graphite aluminium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Boutorabi, S.M.A. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Metallurgy and Materials

    1997-06-01

    The micro constituents of austempered spheroidal graphite aluminium cast iron were investigated. The heat tinting, special etching and microhardness measurement techniques were used. The results showed that the colour of each micro constituents and the hardness values in austempered ductile iron depend on the carbon content of each phase. The above techniques were supported by using an special etching which showed similar differences in each phase. It was shown that the heat tinting and special etching are reliable tools to characterise the complex matrix of ADI. The microhardness data supported interestingly the colour changes in above technique. (orig.)

  18. Thermomechanical treatment of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    A. A. Nofal

    2007-11-01

    Full Text Available The production of lightweight ferrous castings with increased strength properties became unavoidable facing the serious challenge of lighter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new route for production of thin-wall products. This work aims at studying the influence of thermomechanical treatment, either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after austempering. In the first part of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate of ausferrite formation and leading to a much finer and more homogeneous ausferrite product. The kinetics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on the strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively. A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel is added to ADI to increase hardenability of thick section castings, while ausforming to higher degrees of deformation is necessary to alleviate the deleterious effect of alloy segregation on ductility. In the second part of this work, the influence of cold rolling (CR on the mechanical properties and structural characteristics of ADI was investigated. The variation in properties was related to the amount of retained austenite (γr and its mechanically induced ransformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with tensile strain. The amount of retained austenite was found to

  19. Wear resistance properties of austempered ductile iron

    Science.gov (United States)

    Lerner, Y. S.; Kingsbury, G. R.

    1998-02-01

    A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.

  20. Neutron diffraction study of austempered ductile iron

    Science.gov (United States)

    Choi, C. S.; Sharpe, W.; Barker, J.; Fields, R. J.

    1996-04-01

    Crystallographic properties of an austempered ductile iron (ADI) were studied by using neutron diffraction. A quantitative phase analysis based on Rietveld refinements revealed three component phases, α-Fe (ferrite), γ-Fe (austenite), and graphite precipitate, with weight fractions of 66.0, 31.5, and 2.5 pct, respectively. The ferrite phases of the samples were found to be tetragonal, 14/mmm, with a c/a ratio of about 0.993, which is very close to the body-centered cubic (bcc) structure. The austenite phase had C atoms occupying the octahedral site of the face-centered cubic (fcc) unit cell with about 8 pct occupancy ratio. A strong microstrain broadening was observed for the two Fe phases of the samples. The particle sizes of the acicular ferrite phase were studied by using small angle neutron scattering. The analysis suggested a mean rod diameter of 700 A. The scattering invariant predicts a ferrite volume fraction consistent with the powder diffraction analysis. A textbook case of nodular graphite segregation, with average diameters ranging from 10 to 20 μm, was observed by optical micrography.

  1. Design and optimization of stepped austempered ductile iron using characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rivera, J.L., E-mail: jose.hernandez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados-Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Z.C. 31109, Chihuahua (Mexico); Garay-Reyes, C.G.; Campos-Cambranis, R.E.; Cruz-Rivera, J.J. [Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. sección, Z.C. 78210, San Luis Potosí (Mexico)

    2013-09-15

    Conventional characterization techniques such as dilatometry, X-ray diffraction and metallography were used to select and optimize temperatures and times for conventional and stepped austempering. Austenitization and conventional austempering time was selected when the dilatometry graphs showed a constant expansion value. A special heat color-etching technique was applied to distinguish between the untransformed austenite and high carbon stabilized austenite which had formed during the treatments. Finally, it was found that carbide precipitation was absent during the stepped austempering in contrast to conventional austempering, on which carbide evidence was found. - Highlights: • Dilatometry helped to establish austenitization and austempering parameters. • Untransformed austenite was present even for longer processing times. • Ausferrite formed during stepped austempering caused important reinforcement effect. • Carbide precipitation was absent during stepped treatment.

  2. Effect of austempering temperature and time on the kinetics and microstructure of austempered compacted graphite cast irons; Einfluss von Zwischenstufenverguetungstemperatur und -zeit auf die Kinetik und die Mikrostruktur von zwischenstufenverguetetem, Gusseisen mit Vermiculargraphit

    Energy Technology Data Exchange (ETDEWEB)

    Teymourian, Mehdi [LMI Co., Tehran (Iran, Islamic Republic of). Casting Dept.; Boutorabi, Seyed Mohammad Ali [Iran Univ. of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of). Center of Excellence for Advanced Materials

    2012-07-01

    After starting the austempering nucleation of bainitic ferrite was observed within a very short time. Samples that austempered for 2 min. showed martensite in the microstructure. By increasing the austempering time from 30 min to 90 min the retained austenite decomposes and X-ray diffraction observations revealed the greatest volume fraction of retained austenite up to 17.3 and 23.8 percent when austempered for 30 min. Micro-hardness of the bainitic Verbesferrite increased up to 370 and 500 HV and micro-hardness of the retained austenite increased up to 300 and 400 HV at the austempering temperatures of 300 C and 400 C respectively. In comparison to austempered ductile iron, the austempered compacted graphite cast iron shows higher rate of bainitic reaction. Bainite formation driving force and consequently the rate of austempering process are higher in compacted graphite cast irons. (orig.)

  3. Wear Behavior of Austempered Ductile Iron with Nanosized Additives

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2014-03-01

    Full Text Available The microstructure and properties of austempered ductile iron (ADI strengthened with nanosized addtives of titanium nitride + titanium carbonitride (TiN + TiCN, titanium nitride TiN and cubic boron nitride cBN are investigated. The TiN, TiCN and cBN, nanosized particles are coated by electroless nickel coating EFTTOM-NICKEL prior to the edition to the melt. The spheroidal graphite iron samples are undergoing an austempering, including heating at 900 оС for an hour, after that isothermal retention at 280 оС, 2 h and 380 оС, 2h. The metallographic analysis by optical metallographic microscope GX41 OLIMPUS and hardness measurements by Vickers Method are performed. The structure of the austempered ductile iron consists of lower bainite and upper bainite.Experimental investigation of the wear by fixed abrasive are also carried out. The influence of the nanosized additives on the microstructure, mechanical and tribological properties of the austempered ductile irons (ADI is studied.

  4. Integrated modeling and heat treatment simulation of austempered ductile iron

    Science.gov (United States)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  5. Production of austempered ductile iron gears for transmission cases

    Energy Technology Data Exchange (ETDEWEB)

    Sagin, A. [Metallurgy Engineering Dept., Technical Univ. of Yildiz, Istanbul (Turkey); Topuz, A. [Chemical and Metallurgical Faculty, Technical Univ. of Yildiz, Istanbul (Turkey)

    2005-07-01

    The investigations presented in this contribution were targeted to replace a gear group made up of SAE 8620 steel in army jeeps with microstructural controlled austempered ductile iron, in order to reduce the manufacturing steps. Furthermore, the vibrations were also expected to decrease, due to the application of austempered ductile iron. The fatigue resistance of unalloyed and Ni alloyed austempered ductile iron have been investigated to see if some improvement as compared to steels with cementite could be achieved. The effect of the austenization heat treatment on the fatigue resistance was studied in metallographic investigations and it turned out that the alloying elements Cu, Ni and Mo have a beneficial effect. For economical reasons, the gears were fabricated of nodular iron containing 3.98% C, 1.89% Si, 0.269% Mn and 0.028% P. Considering the fatigue resistance, a Ni alloyed material with 3.66% C, about 1.81% Si, 0.134% Mn, 0.031% P and 1.51% Ni was chosen. The roundness of the graphites was about 93-100% and 80-85%. The gears were at first produced by austenization at 900 C for 3 hours and then by austempering at 235 C for 2.5 hours. The fatigue tests were performed at the maximum stresses to be expected. (orig.)

  6. APPLICATION OF AUSTEMPERED DUCTILE IRON TO RAIL WHEEL SETS

    Directory of Open Access Journals (Sweden)

    Sacit DÜNDAR

    2003-03-01

    Full Text Available Austempered Ductile Iron (ADI is made up of a composite structure of acicular ferrite and carbon-enriched austenite. The transformation of austenite to martensite under certain stress levels results in a material with a hard rim and a tough internal structure. These properties makes it an alternate material for the production of railcar wheelsets.

  7. APPLICATION OF AUSTEMPERED DUCTILE IRON TO RAIL WHEEL SETS

    OpenAIRE

    Sacit DÜNDAR

    2003-01-01

    Austempered Ductile Iron (ADI) is made up of a composite structure of acicular ferrite and carbon-enriched austenite. The transformation of austenite to martensite under certain stress levels results in a material with a hard rim and a tough internal structure. These properties makes it an alternate material for the production of railcar wheelsets.

  8. The surface layer of austempered ductile iron investment castings properties

    OpenAIRE

    D. Myszka; M. Kłębczyk; Zych, A.; L. Kwiatkowski

    2009-01-01

    The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  9. Wear and scuffing of austempered ductile iron gears

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, L. [Departamento de Engenharia Mecanica, Instituto Superior de Engenharia, Instituto Politecnico do Porto (Portugal); Seabra, J. [Porto Univ. (Portugal). Dept. Engenharia Mecanica e Gestao Industrial

    1998-03-01

    This paper enhances actual knowledge of the properties of austempered ductile iron (ADI) as a gear material. Results from scuffing tests performed with ADI gears on a FZG test rig are presented and discussed. Contact condition analysis is done using elast-hydrodynamic theory along with several experimental techniques, as surface electronic scanning microscopy, metallurgical spectroscopy and lubricant ferrographic analysis. (orig.)

  10. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  11. Effect of alloying elements on austempered ductile iron (ADI) properties and its process: Review

    OpenAIRE

    Amir Sadighzadeh Benam

    2015-01-01

    Austempered ductile iron (ADI) parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the...

  12. Enhancement of Fatigue Properties of Ductile Irons by Successive Austempering Heat Treatment

    Science.gov (United States)

    Jahangiri, M. R.; Ahmadabadi, M. Nili; Farhangi, H.

    2011-12-01

    The aim of this study is to evaluate the effects of austempering heat treatment on the microstructure, mechanical properties, and bending fatigue behavior of an alloyed ductile iron with chemical composition of 1.6 wt.% Ni, 0.47 wt.% manganese and 0.6 wt.% copper. Based on the results of tensile and impact tests, as well as metallographic studies, optimum heat-treating cycles were determined and applied on the standard fatigue specimens. The results showed that the fatigue strength of specimens austempered successively was practically comparable to those austempered at high temperatures and considerably greater than those austempered at low temperatures.

  13. Effect of alloying elements on austempered ductile iron (ADI properties and its process: Review

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2015-01-01

    Full Text Available Austempered ductile iron (ADI parts have a unique combination of high strength and toughness with excellent design flexibility and low cost. These excellent properties are directly related to its microstructure called "ausferrite" that is the result of austempering heat treatment applied to ductile irons. Alloying elements increase ADI austemperability and change speeds of austempering reactions. Thus, they can affect ADI resultant microstructure and mechanical properties. In this paper, the effects of alloying elements on ADI mechanical properties, microstructural changes, two-stage austempering reactions, processing windows, austemperability, and other aspects are reviewed.

  14. Thermomechanical treatment of austempered ductile iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The production of lightweight ferrous castings with increased strength properties became unavoidable hter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new fluence of thermomechanical treatment,either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate ics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively). A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel eformation is necessary to alleviate the deleterious effect of alloy segregation on ductility.luence of cold rolling (CR) on the mechanical properties and structural characteristics ofADI wasinvestigated. The variation in properties was related to the amount of retained austenite nsformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP) takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with o partial transformation of γr to martensite under the CR strain. Such strain-induced transformation resulted in higher amounts of mechanically generated therefore increased, while ductility and impact toughness decreased with increasing CR reduction.

  15. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    grinding balls with different austempering treatments in iron ore slurry using weight ... A set of 200 balls of forged EN31 steel and austempered ductile iron were ... CuCl2 solution to prevent it from surface oxidation during the heat treatment.

  16. An austempering study of ductile iron alloyed with copper

    Directory of Open Access Journals (Sweden)

    OLIVERA ERIC

    2005-07-01

    Full Text Available Austempered ductile iron (ADI has proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. These properties can be achieved upon adequate heat treatment which yields the optimum microstructure for a given chemical composition. In this paper the results of an investigation the austempering of ADI alloyed with 0.45 % Cu for a range of times and temperatures are reported. The microstructure and fracture mode developed throughout these treatments have been identified by means of light and scanning electron microscopy and X-ray diffraction analysis. It was shown that the strength, elongation and impact energy strongly depend on the amounts of bainitic ferrite and retained austenite. Based on these results, and optimal processing window was established.

  17. Bending Fatigue Strength of Austempered Ductile Iron Spur Gears

    Science.gov (United States)

    Yamanaka, Masashi; Tamura, Ryo; Inoue, Katsumi; Narita, Yukihito

    This paper deals with an experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears. The module is 2.5 and the number of teeth is 26 in the test gears. The material of the test gears corresponds to Japan Industrial Standard (JIS) FCAD1100-15. Some gears are processed by one of two types of fine particle bombarding (FPB). The surface roughness is slightly increased by FPB. The obtained strengths are 623 MPa for the as-austempered gears, and 1011 and 1085 MPa for the gears after FPB. The strength is expressed by the fillet stress level, which is calculated by FEM. The strength of a gear with the same dimensions made of carburized SCr420H alloy steel is 1205 MPa, and the strength of the ADI gear is approximately half that of the carburized steel gear. The FPB process has a significant effect on the ADI gear, improving its strength by 62-74%.

  18. Austempering of hot rolled transformation-induced plasticity steels

    Institute of Scientific and Technical Information of China (English)

    Zhuang Li; Di Wu

    2008-01-01

    Thermomechanical controlled processing (TMCP) was conducted by using a laboratory hot rolling mill. Austempering inAustempering in the salt bath after hot rolling Was investigated. The effect of isothermal holding time on mechanical properties was studied throughing of the microstructure and mechanical properties of the specimens. The mechanism of transformation-induced plasticity (TRIP) was discussed. The results show that the microstructure of these steels consists of polygonal ferrite, granular bainite, and ad TRIP occur in the hot rolled Si-Mn TRIP steels. Excellent mechanical properties were obtained for various durations at 400℃. Prolonged holdingprecipitation, which destabilized the austenite. The mechanical properties were optimal when the specimen was held for 25 min, and the tensile strength, total elongation, and strength ductility balance reached the maximum values of 776 MPa, 33%,respevtively.

  19. A Microscale Model for Ausferritic Transformation of Austempered Ductile Irons

    Science.gov (United States)

    Boccardo, Adrián D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2017-01-01

    This paper presents a new metallurgical model for the ausferritic transformation of ductile cast iron. The model allows predicting the evolution of phases in terms of the chemical composition, austenitization and austempering temperatures, graphite nodule count, and distribution of graphite nodule size. The ferrite evolution is predicted according to the displacive growth mechanism. A representative volume element is employed at the microscale to consider the phase distributions, the inhomogeneous austenite carbon content, and the nucleation of ferrite subunits at the graphite nodule surface and at the tips of existing ferrite subunits. The performance of the model is evaluated by comparison with experimental results. The results indicate that the increment of the ausferritic transformation rate, which is caused by increments of austempering temperature and graphite nodule count, is adequately represented by this model.

  20. Superior austempered ductile iron (ADI) properties achieved by prior hot isostatic pressing (HIP)

    Energy Technology Data Exchange (ETDEWEB)

    LaGoy, J.L.; Widmer, R.; Zick, D.H. [Industrial Materials Technology Inc., Andover, MA (United States)

    1996-12-31

    Ductile iron obtained from different foundries and cast by dissimilar methods has been successfully hot isostatically pressed (HIPed) before austempering to achieve substantially higher ductilities, without significant detriment to other properties, than those reached by austempering along. HIP was attempted to solve different mechanical deficiencies in austempered ductile iron (ADI) such as the lack of ductility in higher strength grades, inconsistent mechanical properties, and service life limitations. A variety of HIP temperatures were analyzed from near the austenitizing region up to within 56 C (100 F) of the melting point of ductile iron. Microporosity was eliminated by HIP at all temperatures, and subsequent austempering revealed a uniform ADI microstructure. HIP proved successful with both unencapsulated castings and those enclosed within steel canisters. Additional benefits caused by HIP processing of ductile iron castings without the austempering treatment include a significant decrease in mechanical property data scatter, high hardness at reasonable ductility levels, and a substantially reduced scrap rate.

  1. Kinetic Study of the Austempering Reactions in Ductile Irons

    Science.gov (United States)

    Pérez, M. J.; Cisneros, M. M.; Almanza, E.; Haro, S.

    2012-11-01

    Kinetics of the reaction that occur during the austempering heat treatment in unalloyed and alloyed ductile irons with 1Cu-0.25Mo, 1Ni-0.25Mo, and 0.7Cu-1Ni-0.25Mo, was studied. The austenitization and austempering cycles were achieved by isothermal dilatometry in cylindrical samples of 2 mm in diameter and 12 mm in length. The specimens were austenitized at 870 °C for 120 min, followed by isothermal holding for 300 min at temperatures between 270 and 420 °C. Kinetic parameters such as the order of reaction " n" and the rate of reaction " k" were calculated using the Johnson-Mehl equation while the empirical activation energy was calculated by means of the Arrhenius equation. It was found that the values of " k" decreased with the addition of Cu, Ni, and Mo as well as with the reduction of the isothermal temperature. The activation energy changes with the austempering temperature, in the range 30,348-58,250 J/mol when the heat treatment was carried out between 370 and 420 °C and 10,336-26,683 J/mol when the temperature varied from 270 to 350 °C. The microstructures in samples austempered at 370 and 315 °C were observed by transmission electron microscopy. No carbides precipitation was observed on samples heat treated at 370 °C for less than 120 min, while at 315 °C carbides of hexagonal structure ɛ(Fe2.4C) were found from the beginning of the transformation. The smallest value of activation energy and a slower kinetic transformation seem to be related with the presence of a carbide phase. Additionally, the time results obtained for transformation fractions of 0.05 and 0.95 by the dilatometry analysis were used to build the temperature-time-transformation diagrams for the irons.

  2. Probabilistic assessment of machine parts from Kymenite, austempered ductile iron

    Science.gov (United States)

    Petrova, I.; Galperin, M.; Alimov, M.; Jokipii, K.

    1992-07-01

    The fatigue properties of Kymenite, austempered ductile iron, were investigated on the basis of the statistical theory of fatigue failure similarity. The fatigue tests were carried out on plain and notched specimens. The S-N curves for a given failure probability and the dependencies of similarity equation parameters on the number of cycles were obtained. These data allow to take into consideration the influence of design factors in the fatigue strength.

  3. The studies of nodular graphite cast iron early stages austempering

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2008-12-01

    Full Text Available The results of early stage of ductile cast iron austempering are presented. The aim of the investigations was to look closer into the structure – mechanical properties relationships of this very attractive cast material. The experiment was carried out with enriched with Cu EN-GJS-500-7 grade ductile iron. The specimens were first solution heat treated 1 hour in 910oC and then isothermally quenched for different time in molten tin at the temperature 275oC. The mechanical properties of as cast and heat treated specimens were tested to evaluate tensile Rm and yield strength R p, 0.2 and elongation A5. Additionally hardness measurements were carried out using Brinell-Rockwell method. Structure of the specimens both as cast and after austempering was studied using conventional light microscopy. Moreover, scanning electron microscopy (SEM was applied for fracture surface observations. It was concluded that short time low temperature austempering lead to formation martensitic microstructure characterized by very high hardness with almost zero ductility. The lack of ductility make the material very sensitive to any structure defects which work as a stress concentrators which strongly influence the strength of heat treated ductile iron specimens.

  4. Neural Network Analysis of Tensile Strength of Austempered Ductile Iron

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The neural technique was applied to the analysis of the ultimate tensile strength and additionally the yield strength of austempered ductile iron (ADI. Austempered ductile iron is an excellent material and it possesses attractive properties as high strength, ductility and toughness. This paper begins with an introduction to neural networks and demonstrates the ability of the method to investigate new phenomena in cases where the information cannot be accessed experimentally. The model allows the strength properties to be estimated as a function of heat treatment parameters and the chemical composition. A ‘committee’ model was used to increase the accuracy of the predictions. The model was validated by comparison its predictions with data of tensile tests experiments on austempered samples of ductile cast iron. The model successfully reproduces experimentally determined ultimate tensile strength and it can be exploited in the predictions of both ultimate and yield strength and in the design of chemical composition of cast irons and their heat treatments.

  5. Mechanical properties and structure of austempered ductile iron -ADI

    Directory of Open Access Journals (Sweden)

    Krzyńska A.

    2007-01-01

    Full Text Available The results of experimental study of austempered ductile iron are presented. The aim of the investigations was to look closer into the structure – mechanical properties relationships of this very attractive cast material. The experiment was carried out with 500 7 grade ductile iron, which was austempered using different parameters of heat treatment. The specimens were first solution treated 1 hour in 910oC and then isothermally quenched for different time in silicon oil bath of temperature 275, 325, 300 and 350oC. The mechanical properties heat treated specimens were tested in tensile to evaluate yield stress Re, 0.2, tensile strength Rm and elongation A10. Additionally hardness of heat treated samples was measured using Brinell-Rockwell hardness tester. Structure of the specimens was studied either with conventional metallography, scanning (SEM and transmission (TEM electron microscopy. It followed from the study that conventional grade ductile iron enabled to produce both low and high strength ADI, depend on heat treatment parameters. As expected the low temperature isothermal quenching produced higher strength ADI compare to the same ductile iron but austempered at 350oC. It was discovered however, that low yield strength ADI obtained for short time quenching at 275oC exhibited high strengthening effect while strained in tensile. So it was concluded that this had to by cause by large amount of untransformed austenite, which FCC lattice is characterized by high strengthening coefficient.

  6. Neutron Diffraction Studies of Intercritically Austempered Ductile Irons

    Energy Technology Data Exchange (ETDEWEB)

    Druschitz, Alan [University of Alabama, Birmingham; Aristizabal, Ricardo [University of Alabama, Birmingham; Druschitz, Edward [University of Alabama, Birmingham; Hubbard, Camden R [ORNL; Watkins, Thomas R [ORNL

    2011-01-01

    Neutron diffraction is a powerful tool that can be used to identify the phases present and to measure the spacing of the atomic planes in a material. Thus, the residual stresses can be determined within a component and/or the phases present. New intercritically austempered irons rely on the unique properties of the austenite phase present in their microstructures. If these materials are to see widespread use, methods to verify the quality (behavior consistency) of these materials and to provide guidance for further optimization will be needed. Neutron diffraction studies were performed at the second generation neutron residual stress facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory on a variety of intercritically austempered irons. For similar materials, such as TRIP steels, the strengthening mechanism involves the transformation of metastable austenite to martensite during deformation. For the intercritically austempered ductile irons two different deformation/strengthening mechanisms, phase transformation and slip, dependent upon the iron chemistry, were observed. Lattice strain and phase fraction data as a function of applied stress are presented.

  7. Wear Performance of Cu-Alloyed Austempered Ductile Iron

    Science.gov (United States)

    Batra, Uma; Batra, Nimish; Sharma, J. D.

    2013-04-01

    An investigation was carried out to examine the influence of structural and mechanical properties on wear behavior of austempered ductile iron (ADI). Ductile iron (DI) samples were austenitized at 900 °C for 60 min and subsequently austempered for 60 min at three temperatures: 270, 330, and 380 °C. Microstructures of the as-cast DI and ADIs were characterized using optical and scanning microscopy, respectively. The structural parameters, volume fraction of austenite, carbon content of austenite, and ferrite particle size were determined using x-ray diffraction technique. Mechanical properties including Vicker's hardness, 0.2% proof strength, ultimate tensile strength, ductility, and strain hardening coefficient were determined. Wear tests were carried out under dry sliding conditions using pin-on-disk machine with a linear speed of 2.4 m/s. Normal load and sliding distance were 45 N and 1.7 × 104 m, respectively. ADI developed at higher austempering temperature has large amounts of austenite, which contribute toward improvement in the wear resistance through stress-induced martensitic transformation, and strain hardening of austenite. Wear rate was found to depend on 0.2% proof strength, ductility, austenite content, and its carbon content. Study of worn surfaces and nature of wear debris revealed that the fine ausferrite structure in ADIs undergoes oxidational wear, but the coarse ausferrite structure undergoes adhesion, delamination, and mild abrasion too.

  8. Austempering transformation kinetics of austempered ductile iron obtained by Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2008-10-01

    Full Text Available The composition of metallic matrix in ductile iron as-cast and after austempering at temperatures of 280, 330 and 380oC (ADI wasexamined. The study presents the results of these examinations obtained by Mössbauer spectroscopy. The specimens were taken from castrods of 60mm diameter. Using calculated values of the parameters of hyperfine interactions (isomeric shift IS, quadrupole splitting QS andhyperfine effective magnetic field H, isolated by deconvolution of the experimental spectrum, the constituents of the metallic matrix were identified in terms of both quantity and quality. The measured values as well as the data compiled in literature indicate that component Z1 (the, so called, Zeeman spectrum sextet is related with 57Fe atoms present in the structure of ferrite α1 (I stage of o→α1 + st transformation, component Z2 is typical of ferrite α2 (II stage of st→α2 + carbides transformation, while component Z3 has its origin in 57Fe atoms seated in the structure of carbides (Fe3C, Fe2C or Fe2,4C. On the other hand, by analysis of the parameters of hyperfine interactions describing the non-magnetic components (L and Q it has been proved that they are typical of austenite.

  9. Mechanical properties of a low alloyed austempered ductile iron in the upper ausferrite region

    Energy Technology Data Exchange (ETDEWEB)

    Wen, D.C.

    1999-05-01

    Microstructural observations, X-ray diffraction testing and measurements of mechanical properties were used to study the characteristics of austempering and the influence of tempered martensite on mechanical properties as a function of austempering time at 400 degree C after austenitising at 900 degree C for a 0.77%Cu-0.5%Ni ductile iron. The austempering times were derived from a resistivity curve measured by a vacuum heat treatment system. The experimental results show that the resistivity change curve could be used effectively for selecting the isothermal holding times of austempering treatment, with all The mechanical properties of ADI austempering at times corresponding to the processing window defined by the electrical resistance measurement satisfying the standard requirement. The formation of martensite in austempering reduced the mechanical properties of ADI but these properties could be increased by a treatment tempering at 200 degree C after cooling and to obtain more ductility and toughness as compared with that undergoing single heat treatment. This increase also extended the effective austempering time interval of ADI over which the ASTM standards were satisfied. (author)

  10. Microstructural and mechanical characteristics of low alloyed Ni-Mo-Cu austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Bosnjak, B.

    2000-12-01

    The present study investigated the effect of austempering temperature and austempering time on the microstructure and mechanical properties of low alloyed Ni-Mo-Cu ductile iron. The effect of austempering parameters and alloying additions on the austemperability of treated ductile iron has been estimated, too. Specimens were austenitised at 900 degree C for 120 mm, then austempered for 10, 30, 60, 120, 240 and 360 mm at 300, 350 and 400 degree C respectively, and examined by light and scanning electron microscopy. The structure consisted of bainitic ferrite containing retained austenite. the amount of which increased, and the carbon content of which decreased, with increasing austempering temperature. The carbon content of austenite has been evaluated by measuring the lattice parameter by X-ray diffraction. After short periods of austempering time in iron, the carbon content of the retained austenite decreases and on subsequent cooling to room temperature it transforms to martensite. The volume fractions of retained austenite, bainitic ferrite, martensite and austenite carbon content was correlated with microstructural changes and mechanical properties. Optimum properties are obtained at intermediate austempering periods (120-240 mm) when both the amount of retained austenite and austenite carbon content are maximum. (author)

  11. Microstructure and mechanical properties of CuNiMo austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Erić Olivera

    2004-01-01

    Full Text Available Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 and 5h, a microstructure typical for austempered ductile iron was produced, i.e. a mixture of free bainitic ferrite and highly carbon enriched retained austenite. The characteristic of the whole range of austempering at 400oC is the appearance of martensitic structure. The maximum impact energy (133 J coincides with the maximum value of volume fraction of retained austenite that was obtained after 2,5h of austempering at 320oC. The appearance of martensite during austempering at 400oC is the main cause for much lower tensile properties than at 320oC.

  12. Microstructures and Mechanical Properties of a Wear-Resistant Alloyed Ductile Iron Austempered at Various Temperatures

    Science.gov (United States)

    Cui, Junjun; Chen, Liqing

    2015-08-01

    To further improve the mechanical performance of a new type of alloyed bainitic wear-resistant ductile iron, the effects of the various austempering temperatures have been investigated on microstructure and mechanical behaviors of alloyed ductile iron Fe-3.50C-1.95Si-3.58Ni-0.71Cu-0.92Mo-0.65Cr-0.36Mn (in weight percent). This alloyed ductile iron were firstly austenitized at 1123 K (850 °C) for 1 hour and then austempered in a salt bath at 548 K, 573 K, and 598 K (275 °C, 300 °C, and 325 °C) for 2 hours according to time-temperature-transformation diagram calculated by JMatPro software. The microstructures of austempered wear-resistant ductile irons consist of matrix of dark needle-like ferrite plus bright etching austenite and some amount of martensite and some dispersed graphite nodules. With increasing the austempering temperature, the amount of ferrite decreases in austempered ductile iron, while the amount of austenite and carbon content of austenite increases. There is a gradual decrease in hardness and increase in compressive strength with increasing austempering temperature. The increased austenite content and coarsened austenite and ferrite can lead to a hardness decrease as austempering temperature is increased. The increased compressive strength can be attributed to a decreased amount of martensitic transformation. The alloyed ductile iron behaves rather well wear resistance when the austempering is carried out at 598 K (325 °C) for 2 hours. Under the condition of wear test by dry sand/rubber wheel, the wear mechanisms of austempered ductile irons are both micro-cutting and plastic deformation.

  13. Investigations on the fracture toughness of austempered ductile irons austenitized at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P. Prasad; Putatunda, Susil K

    2003-05-25

    Ductile cast iron was austenitized at four different temperatures and subsequently austempered at six different temperatures. Plane strain fracture toughness was evaluated under all the heat treatment conditions and correlated with the microstructural features such as the austenite content and the carbon content of the austenite. Fracture mechanism was studied by scanning electron microscopy. It was found that the optimum austempering temperature for maximum fracture toughness decreased with increasing austenitizing temperature. This could be interpreted in terms of the microstructural features. A study of the fracture mechanism revealed that good fracture toughness is unlikely to be obtained when austempering temperature is less than half of the austenitizing temperature on the absolute scale.

  14. Microstructure and mechanical properties of CuNiMo austempered ductile iron

    OpenAIRE

    Erić Olivera; Jovanović Marina P.; Šiđanin Leposava P.; Rajnović Dragan M.

    2004-01-01

    Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 ...

  15. The studies of nodular graphite cast iron early stages austempering

    OpenAIRE

    A. Krzyńska; M. Kaczorowski

    2008-01-01

    The results of early stage of ductile cast iron austempering are presented. The aim of the investigations was to look closer into the structure – mechanical properties relationships of this very attractive cast material. The experiment was carried out with enriched with Cu EN-GJS-500-7 grade ductile iron. The specimens were first solution heat treated 1 hour in 910oC and then isothermally quenched for different time in molten tin at the temperature 275oC. The mechanical properties of as cast ...

  16. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    OpenAIRE

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austeni...

  17. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  18. Unnotched Charpy Impact Energy Transition Behavior of Austempered Engineering Grade Ductile Iron Castings

    Science.gov (United States)

    Kisakurek, Sukru Ergin; Ozel, Ahmet

    2014-04-01

    Unnotched Charpy impact energy transition behavior of five different engineering grade ductile iron castings, as specified by EN 1563 Standards, were examined in as-cast, as well as in austempered states. ADIs were produced with the maximum impact energy values permissible for the grades. Austempering treatment detrimented the sub-zero impact properties of the ferritic castings, but considerably enhanced those of the pearlitic-ferritic irons. The impact energy transition behavior of the austempered states of all the grades examined were noted to be determined by the progressive transformation of the unavoidable carbon-unsaturated and untransformed regions of the austenite remaining in the matrix of the austempered ductile iron to martensite with decreasing temperature.

  19. Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianghuai; Putatunda, Susil K

    2004-09-25

    An investigation was carried out to examine the influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI). Strain-hardening exponent (n value) of specimens austempered by conventional single-step austempering process as well as the novel two-step process were determined over the entire plastic deformation regions of the stress-strain curves. Optical microscopy and X-ray diffraction analysis were performed to examine mechanisms of strain-hardening behavior in ADI under monotonic (tensile) loading. Test results show that this novel two-step process has resulted in improved microstructural variables in the ADI matrix, and higher hardness, yield strength and tensile strengths, but lower ductility and strain-hardening exponent values compared to the conventional single-step austempering process. Test results also indicate that strain-hardening exponent of ADI is a function of amount and morphology of microstructural constituents and interaction intensities between carbon atoms and dislocations in the matrix.

  20. CHOSEN FACTORS INFLUENCING MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED DUCTILE IRON

    Directory of Open Access Journals (Sweden)

    Alan Vaško

    2009-10-01

    Full Text Available The paper deals with some factors influencing microstructure and mechanical properties of austempered ductile iron (ADI. Final structure and properties of ADI are obtained by exactly controlled process of heat treatment of nodular cast iron. The influence of conditions of isothermal heat treatment on microstructure and mechanical properties of austempered ductile iron, especially different temperature of isothermal transformation of austenite and different holding time at this temperature, is shown in the paper.

  1. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    OpenAIRE

    D. Myszka

    2013-01-01

    The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to...

  2. CHOSEN FACTORS INFLUENCING MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED DUCTILE IRON

    OpenAIRE

    Alan Vaško

    2009-01-01

    The paper deals with some factors influencing microstructure and mechanical properties of austempered ductile iron (ADI). Final structure and properties of ADI are obtained by exactly controlled process of heat treatment of nodular cast iron. The influence of conditions of isothermal heat treatment on microstructure and mechanical properties of austempered ductile iron, especially different temperature of isothermal transformation of austenite and different holding time at this temperature, i...

  3. Effects of carbides on fatigue characteristics of austempered ductile iron

    Science.gov (United States)

    Stokes, B.; Gao, N.; Reed, P. A. S.; Lee, K. K.

    2005-04-01

    Crack initiation and growth behavior of an austempered ductile iron (ADI) austenitized at 800 °C and austempered at 260 °C have been assessed under three-point bend fatigue conditions. Initiation sites have been identified as carbides remaining from the as-cast ductile iron due to insufficient austenization. The number of carbides cracking on loading to stresses greater than 275 MPa is critical in determining the failure mechanism. In general, high carbide area fractions promote coalescence-dominated fatigue crack failure, while low area fractions promote propagation-dominated fatigue crack failure. Individual carbides have been characterized using finite body tessellation (FBT) and adaptive numerical modeling (Support vector Parsimonious Analysis Of Variance (SUPANOVA)) techniques in an attempt to quantify the factors promoting carbide fracture. This indicated that large or long and thin carbides on the whole appear to be susceptible to fracture, and carbides that are locally clustered and aligned perpendicular to the tensile axis are particularly susceptible to fracture.

  4. Effect of austempering temperature on cavitation behaviour of unalloyed ADI material

    Energy Technology Data Exchange (ETDEWEB)

    Dojcinovic, Marina [University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade (Serbia); Eric, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Belgrade (Serbia); Rajnovic, Dragan; Sidjanin, Leposava [Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad (Serbia); Balos, Sebastian, E-mail: sebab@uns.ac.rs [Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad (Serbia)

    2013-08-15

    This paper provides an in-depth study and description of cavitation damage and microstructural changes in two types of unalloyed austempered ductile iron (ADI). ADI materials used were austempered at 300 and 400 °C having ausferrite microstructure with 16 and 31.4% of retained austenite, respectively. Metallographic examination was carried out to study the morphology of their cavitation-damaged surfaces. Cavitation damage was initiated at graphite nodules as well as in the interface between a graphite nodule and an ausferrite matrix. Furthermore, microcracking and ferrite/retained austenite morphology were proved to be of great importance for cavitation resistance. Mass loss rate revealed that ADI austempered at 400 °C has a higher cavitation resistance in water than ADI austempered at 300 °C. A higher amount of retained austenite in ADI austempered at 400 °C played an important role in increasing cavitation resistance. The good cavitation behaviour of ADI austempered at 400 °C was due to the matrix hardening by stress assisted phase transformation of retained austenite into martensite (SATRAM) phenomenon, as shown by X-ray diffraction analysis. - Highlights: • Cavitation rate of two ADI materials was tested. • ADI material with a lower hardness has had a lower cavitation rate. • The main reason is microstructural transformations during cavitation. • SATRAM phenomenon increases cavitation resistance.

  5. In Situ Study of the Influence of Nickel on the Phase Transformation Kinetics in Austempered Ductile Iron

    Science.gov (United States)

    Saal, Patrick; Meier, Leopold; Li, Xiaohu; Hofmann, Michael; Hoelzel, Markus; Wagner, Julia N.; Volk, Wolfram

    2016-02-01

    Phase fractions and austenite carbon contents in austempered ductile iron samples with three different nickel contents were determined by in situ neutron diffraction. The samples were austenitized at 1178 K (905 °C) for 30 minutes and austempered for 3.5 hours at temperatures between 523 K and 723 K (250 °C and 450 °C) using a mirror furnace. Based on the in situ neutron diffraction studies, plateau times were derived, which determine the end of stage I reaction. The austenite contents increase for higher austempering temperatures when the austempering times are selected properly, considering the accelerated phase transformation at higher temperature. Appropriate austempering times were derived for austempering temperatures between 523 K and 723 K (250 °C and 450 °C). Increased nickel contents lead to higher austenite phase fractions. Moreover the retarding effect of nickel on the phase transformation was quantified. The plateau values of phase fraction and the according austempering times were converted to TTT diagrams. The evolution of the austenite carbon content shows a maximum at 623 K (350 °C) austempering temperature. This can be explained by temperature-dependent carbide precipitation and carbon diffusion into lattice defects. Fine carbides within the ferrite could be found by preliminary APT analysis.

  6. PARAMETER OPTIMIZATION OF CARBIDIC AUSTEMPERED DUCTILE IRON USING TAGUCHI METHOD

    Directory of Open Access Journals (Sweden)

    P.DHANAPAL

    2010-08-01

    Full Text Available Carbidic austempered ductile iron [CADI] is the family of ductile iron containing wear resistance alloy carbides in the ausferrite matrix. This CADI is manufactured by selecting proper material composition through the melting route.In an effort to obtain the optimal production parameters, Taguchi method is applied. To analyse the effect of production parameters on the machanical properties, signal-to-noise (S/N ratio is calculated based on the design ofexperiments and the linear graph. The analysis of varience is calculated to find the amount of contribution of factors on individual mechanical properties and its significancy. The analytical results of taguchi method are compared with the experimental values, and it shows both are identical.

  7. Kinetics of the Bainite Transformation in Austempered Ductile Iron ADI

    Directory of Open Access Journals (Sweden)

    Ławrynowicz Z.

    2016-06-01

    Full Text Available The aim of the present research is to check an analytical model of the kinetics of bainite transformation that will enable the producers of ADI to optimise the microstructure and mechanical properties and minimise the expensive and extensive experimental trials. A combination of thermodynamics and kinetic theory was used successfully to estimate the evolution of bainite as a function of temperature, time, chemical composition and austenite grain size and predict the processing window in austempered ductile iron using a bainite transformation model developed previously for high silicon steels. The results of the present research show that the bainitic model developed for high silicon steels is applicable for calculations of the processing window for ADI.

  8. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  9. Investigation of the chip formation of austempered grey iron

    Science.gov (United States)

    Lung, S.; Klocke, F.; Döbbeler, B.; Krick, E.

    2016-10-01

    By a heat treatment process the strength and thus the field of applications of Grey Cast Iron (GI) can be increased to a range which is comparable to Compacted Graphite Iron (CGI). The microstructure of the resulting material consists of austenite and acicular ferrite. This material is named Austempered Grey Iron (AGI). Until now the material has not yet made its way to widespread use, due to the unknown machinability. For an economical use the machinability of the material must be at least at the level of CGI. This work deals with the chip formation, as an evaluation criterion for the machinability and represents a first step towards a comprehensive assessment of machining of AGI materials. To investigate the chip formation chip roots of three different AGI grades, a GI and a CGI were produced in a turning process. The chip roots were prepared to analyse the deformation of the microstructure during the chip formation.

  10. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

    Science.gov (United States)

    Takahashi, Toshio; Abe, Toshihiko; Tada, Shuji

    1996-06-01

    Austempered ductile iron (ADI) has excellent mechanical properties, but its Young's modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young's modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

  11. Effect of Copper and Nickel on the Transformation Kinetics of Austempered Ductile Iron

    Science.gov (United States)

    Górny, Marcin; Tyrała, Edward; Lopez, Hugo

    2014-10-01

    The kinetics of reaction occurring during the austempering treatment of ductile iron (DI) containing different additions of Cu and Ni was investigated in this work. DI bars were heat treated in an instrumented dilatometer in order to follow the exhibited transformation kinetics. The dilatometric results indicated that the addition of Cu alone did not have a significant effect on the incubation times for the austempering transformation. Also, the addition of both, Cu and Ni resulted in a significant effect on reducing the transformation rates. It was found that the austempering process is characterized by two clearly distinguished transformation stages. In the initial stage, the addition of Cu, and to a greater extent, additions of both Cu and Ni led to reductions in the transformation rates shifting the maximum transformation rate values toward longer times. The outcome of this work indicates that during the first stage of austempering, nucleation of the ferrite plates occurs via a diffusionless mechanism while their growth is diffusion controlled. Moreover, after the maximum in the transformation rate has been reached, the growth of ferrite plates becomes dominant with the rate-limiting step becoming the diffusion of C into the surrounding austenite. A qualitative model for the austempering transformation is proposed in this work to account for the experimental observations.

  12. Wear behavior of an austempered ductile iron containing Mo-Ni-Cu

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, S.; Rahimi, M.A. [Faculty of Materials Engineering, Sahand Univ. of Technology, Tabriz (Iran)

    2005-07-01

    The aim of the this investigation is to study the influence of Ni on tribiological behavior of an austempered ductile iron (ADI) containing Mo, Ni and Cu. Ductile irons with chemical composition Fe-3.56%C-2.67%Si -0.25%Mo-0.5%Cu and Ni contents of 0.8 and 1.5% were cast into standard Y-blocks. Wear test samples were machined off from the bottom section of blocks. Austenitizing heat treatment was carried out at 870 C temperature followed by austempering at 270, 320, and 370 C for 5-1140 minutes. The wear test was carried out by using block-on-ring test machine. Sliding dry wear behavior was studied under applied loads of 50, 100 and 150 N. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Wear mechanism is described as being due to subsurface fatigue, with cracks nucleated at plastically, deformed graphite interfaces. The wear controlling mechanism is the crack growth when wear shows a dependence on applied load and austempering temperature. (orig.)

  13. Effect of bainite transformation and retained austenite on mechanical properties of austempered spheroidal graphite cast steel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshio; Abe, Toshihiko; Tada, Shuji [Tohoku National Industrial Research Inst., Sendai (Japan). Materials Engineering Div.

    1996-06-01

    Austempered ductile iron (ADI) has excellent mechanical properties, but its Young`s modulus is low. Austempered spheroidal graphite cast steel (AGS) has been developed in order to obtain a new material with superior mechanical properties to ADI. Its carbon content (approximately 1.0 pct) is almost one-third that of a standard ADI; thus, the volume of graphite is also less. Young`s modulus of AGS is 195 to 200 GPa and is comparable to that of steel. Austempered spheroidal graphite cast steel has an approximately 200 MPa higher tensile strength than ADI and twice the Charpy absorbed energy of ADI. The impact properties and the elongation are enhanced with increasing volume fraction of carbon-enriched retained austenite. At the austempering temperature of 650 K, the volume fraction of austenite is approximately 40 pct for 120 minutes in the 2.4 pct Si alloy, although it decreases rapidly in the 1.4 pct Si alloy. The X-ray diffraction analysis shows that appropriate quantity of silicon retards the decomposition of the carbon-enriched retained austenite. For austempering at 570 K, the amount of the carbon-enriched austenite decreases and the ferrite is supersaturated with carbon, resulting in high tensile strength but low toughness.

  14. In-situ measurement of phase transformation kinetics in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Leopold, E-mail: leopold.meier@utg.de [Technische Universität München, Lehrstuhl für Umformtechnik und Gießereiwesen, Walther-Meißner-Straße 4, 85748 Garching (Germany); Hofmann, Michael, E-mail: michael.hofmann@frm2.tum.de [Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstraße 1, 85748 Garching (Germany); Saal, Patrick, E-mail: patrick.saal@utg.de [Technische Universität München, Lehrstuhl für Umformtechnik und Gießereiwesen, Walther-Meißner-Straße 4, 85748 Garching (Germany); Volk, Wolfram, E-mail: wolfram.volk@utg.de [Technische Universität München, Lehrstuhl für Umformtechnik und Gießereiwesen, Walther-Meißner-Straße 4, 85748 Garching (Germany); Hoffmann, Hartmut, E-mail: hartmut.hoffmann@utg.de [Technische Universität München, Lehrstuhl für Umformtechnik und Gießereiwesen, Walther-Meißner-Straße 4, 85748 Garching (Germany)

    2013-11-15

    Austempered ductile iron (ADI) alloyed with 0.42% Mn and 0.72% Cu was heat treated in a mirror furnace and the phase transitions were studied in-situ by neutron diffraction. The heat treatment consisted of austenitisation at 920 °C and isothermal austempering at 400 °C, 350 °C and 300 °C, respectively. Due to the growth of ferrite platelets, the austenite content decreases rapidly at all temperatures within the first 15–20 min and reaches a stable plateau after 35 min (400 °C) to 80 min (300 °C). The carbon content of the residual austenite, which was monitored and characterised by the change of the lattice parameter, increases up to 1.6 wt.% caused by redistribution from the newly formed ferrite. While at higher austempering temperatures this takes place almost parallel to the phase transformation, at 300 °C the redistribution of carbon to austenite lags behind considerably. Furthermore the neutron data revealed an austenite peak asymmetry during austempering which is attributed to successive phase transformation. It results temporarily in two fractions of austenite, an initial low-carbon and an enriched high-carbon modification. - Highlights: • The heat treatment of ADI was studied in detail by in-situ neutron diffraction. • The phase fractions were monitored and evaluated quantitatively. • The austenite carbon content increased up to 1.6 wt.% during austempering. • Peak asymmetries indicate two austenite fractions during highest transformation rates.

  15. Influence of Copper Addition and Temperature on the Kinetics of Austempering in Ductile Iron

    Science.gov (United States)

    Amran, Yogev; Katsman, Alexander; Schaaf, Peter; Bamberger, Menachem

    2010-10-01

    Austempered ductile iron (ADI) is a material that exhibits excellent mechanical properties because of its special microstructure, combining ferrite and austenite supersaturated with carbon. Two ADI alloys, Fe-3.5 pct C-2.5 pct Si and Fe-3.6 pct C-2.7 pct Si-0.7 pct Cu, austempered for various times at 623 K (350 °C) and 673 K (400 °C) followed by water quenching, were investigated. The first ferrite needles nucleate mainly at the graphite/austenite interface. The austenite and ferrite weight fractions increase with the austempering time until stabilization is reached. The increase in the lattice parameter of the austenite during austempering corresponds to an increase of carbon content in the austenite. The increase in the ferrite weight fraction is associated with a decrease in microhardness. As the austempering temperature increases, the ferrite weight fraction decreases, the high carbon austenite weight fraction increases, but the carbon content in the latter decreases. Copper addition increases the high carbon austenite weight fraction. The results are discussed based on the phases composing the Fe-2Si-C system.

  16. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper

    Science.gov (United States)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar

    2013-03-01

    The influences of relatively high manganese (0.45 through 1.0 wt pct) and copper (0.56 through 1.13 wt pct) contents on microstructure development and phase transformation in three austempered ductile irons have been studied. The experimental ductile irons alloyed with copper and manganese are found to be practically free from intercellular manganese segregation. This suggests that the positive segregation of manganese is largely neutralized by the negative segregation of copper when these alloying elements are added in appropriate proportions. The drop in unreacted austenite volume (UAV) with increasing austempering temperature and time is quite significant in irons alloyed with copper and manganese. The ausferrite morphology also undergoes a transition from lenticular to feathery appearance of increasing coarseness with the increasing austempering temperature and time. SEM micrographs of the austempered samples from the base alloy containing manganese only, as well as copper plus manganese-alloyed irons, clearly reveal the presence of some martensite along with retained austenite and ferrite. X-ray diffraction analysis also confirms the presence of these phases. SEM examination further reveals the presence of twinned martensite in the copper plus manganese-alloyed samples. The possibility of strain-induced transformation of austenite to martensite during austempering heat treatment is suggested.

  17. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  18. Investigation of austenitizing temperature on wear behavior of austempered gray iron (AGI)

    Science.gov (United States)

    Sarkar, T.; Sutradhara, G.

    2016-09-01

    This study is about finding the effect of austenitizing temperature on microstructure and wear behavior of copper alloyed austempered gray iron (AGI), and then comparing it with an as- cast (solidified) state. Tensile and wear tests specimens are prepared from as-cast gray iron material, and austenitized at different temperatures and then austempered at a fixed austempering temperature. Resulting microstructures are characterized through optical microscopy, scanning electron microscope (SEM) and X-Ray diffraction. Wear test is carried out using a block-on-roller multi-tribotester with sliding speed of 1.86 m/sec. In this investigation, wear behavior of all these austempered materials are determined and co-related with the micro structure. Hence the wear surface under scanning electron microscope showed that wear occurred mainly due to adhesion and delamination under dry sliding condition. The test results indicate that the austenitizing temperature has remarkable effect on resultant micro structure and wear behavior of austempered materials. Wear behavior is also found to be dependent on the hardness, tensile strength, austenite content and carbon content in austenite. It is shown that coarse ausferrite micro structure exhibited higher wear depth than fine ausferrite microstructure.

  19. Investigations on the fracture toughness of austempered ductile iron alloyed with chromium

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P. Prasad; Putatunda, Susil K

    2003-04-15

    An investigation was carried out to examine the influence of chromium content on the plane strain fracture toughness of austempered ductile iron (ADI). ADIs containing 0, 0.3 and 0.5 wt.% chromium were austempered over a range of temperatures to produce different microstructures. The microstructures were characterized by optical microscopy and X-ray diffraction. Plane strain fracture toughness of all these materials was determined and correlated with microstructure and chromium content. The chromium content was found to influence the fracture toughness through its influence on the processing window. Since the chromium addition shifts the processing window to shorter durations, the higher chromium alloys at higher austempering temperatures tend to fall outside of the processing window, resulting in less than optimum microstructure and inferior fracture toughness. A small chromium addition of 0.3 wt.% was found to be beneficial for the fracture toughness of ADI.

  20. Effects of Holding Temperature for Austempering on Mechanical Properties of Si-Mn TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di

    2004-01-01

    A new type of high strength steel containing a significant amount of stable retained austenite was obtained by austempering immediately after intercritical annealing. This sort of low carbon steel only contains alloying elements of silicon and manganese rather than nickel and chromium. Its mechanical properties were enhanced considerably due to strain-induced martensite transformation and transformation-induced plasticity (TRIP) of retained austenite when it was strained at temperatures between Ms and Md, because retained austenite was moderately stabilized due to carbon enrichment by austempering. Austempering was carried out at different temperatures and 400 ℃ was found to be optimal. Tensile strength, total elongation and strength-ductility balance reached the maximum values and the product of tensile strength and total elongation exceeded 30 135 MPa % when the TRIP steel was held at 400 ℃ and strained at 350 ℃.

  1. Morphology change of retained austenite during austempering of carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Christina, E-mail: christina.hofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Winkelhofer, Florian [Research and Development - Business Unit Coil, voestalpine Stahl GmbH, voestalpine‐Straße 3, A-4020 Linz (Austria); Clemens, Helmut; Primig, Sophie [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2016-05-10

    A change in the mechanical properties of a carbide-free bainitic steel was observed during prolonged holding at austempering temperature after termination of the bainitic transformation. To determine the origin of the property change, the microstructure was investigated by correlative electron microscopy. Although the retained austenite content remains the same during prolonged holding, its morphology changes from thin films separating the individual bainitic sub-units to a more globular structure. Since films of austenite contain a higher C concentration, the blocky austenite becomes gradually enriched in C during this morphology change. The more homogeneous distribution of the C after prolonged austempering leads to higher deformability as a result of a more pronounced TRIP effect. - Highlights: • Higher deformability after prolonged austempering of carbide-free bainite. • Microstructure-property relationship revealed by correlative electron microscopy. • Change in austenite morphology. • Spherodization of film austenite; C enrichment & homogenization of blocky austenite.

  2. 等温处理工艺对等温淬火球铁显微组织和硬度的影响%Effect of Austempering Technics on Microstructure and Hardness of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    亚斌; 张宝昌; 贾非; 李乃朴; 房灿峰; 郝海; 张兴国; 刘恒乐; 蔡勇; 孟宪军

    2012-01-01

    Austempered ductile iron (ADI) with high-strength and high toughness was created by method of austempering in the 1970s, which is characterized to have a tensile strength over 1000MPa, and an elongation more than 15%. With an orthogonal test and the method of austempering, the effect of the austempering technics on the microstructure and hardness of austempered ductile iron was discussed. It is found that austempered ductile iron which microstructure contains bainite and retained austenite can be gained in all of the designed austempering technics through the experiment. The hardness of samples could be mostly affected by the temperature of austempered, followed by the austenitizing temperature and austenitizing time, and the timing of austempering is proved to have the least influence on the hardness of samples.%上世纪70年代,通过奥氏体等温淬火开发出抗拉强度大于1000MPa、伸长率大于15%的高强度、高韧性等温淬火球铁。利用正交试验法,研究了等温淬火工艺参数对等温淬火球铁显微组织及硬度的影响。结果发现,在设计的试验工艺内全部可以得到以针状铁素体和富碳奥氏体为基体的等温淬火球铁组织;在等温淬火工艺中,等温淬火温度对试样硬度影响最为显著,其次是奥氏体化温度与奥氏体化时间,而等温淬火时间对于试样硬度的影响最小。

  3. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    Directory of Open Access Journals (Sweden)

    Chun-jie Xu

    2015-03-01

    Full Text Available In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC. The results show that the major factors influencing the hardness of austempered ductile iron (ADI are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efficiently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the following process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of fine acicular ferrite and a small amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93% and 25.7 J, respectively.

  4. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  5. Influence of Hot Deformation and Subsequent Austempering on the Mechanical Properties of Hot Rolled Multiphase Steel

    Institute of Scientific and Technical Information of China (English)

    Zhuang LI; Di WU

    2006-01-01

    Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (δ)36% and 28476 MPa%, respectively) at optimal processes.

  6. The bainite transformation and the carbide precipitation of 4.88% aluminium austempered ductile iron investigated using electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kiani-Rashid, A.R. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)], E-mail: fkiana@yahoo.com

    2009-04-17

    The transformation to a bainitic microstructure during austempering under different conditions was examined for the most successful of the experimental casts. Austenitising temperature of 920 deg. C and austempering temperature of 350 deg. C for different holding times have been used. Microstructures have been examined by SEM and transmission electron microscopy (TEM). It was found that isothermal transformation at 350 deg. C for different soaking times gave a typical bainitic microstructure that increased with increasing austempering time. Extension of isothermal transformation time leads to precipitation of carbides which also depended on the bainitic phase transformation.

  7. Fundamental Research on Hobbing of Austempered Ductile Iron Gear

    Science.gov (United States)

    Matsuoka, Hironori; Tsuda, Yoshihiro; Ono, Hajime

    In this study, the influence of graphite particles (number of graphite particles) in austempered ductile iron (ADI) on tool wear and finished surface roughness was investigated, using TiN and (Al, Ti)N coated high-speed steel cutting tools in hobbing. The experiments were performed using a fly tool of the same geometry as that of one blade of a hob, at the cutting speed of 47m/min in dry cutting. As a consequence, the following points were clarified: (1) ADI having an average number of 284 graphite particles per 1mm2 (the average diameter of 28.0µm) showed a good machinability without causing tool failure. The tool life was improved when using the (Al, Ti)N coated tool, and the finished surface roughness Ry was 3.5µm at the end of cutting. (2) It was suggested that the adhesion of deposited metal on the rake face influences the tool failure which occurred when cutting ADI. (3) The interrelation between the center wear and the surface roughness was recognized.

  8. Development of high toughness in austempered type ductile cast iron and evaluation of its properties

    Science.gov (United States)

    Kobayashi, Toshiro; Yamamoto, Hironobu

    1988-02-01

    In order to increase the toughness of austempered ductile cast irons, we attempted to strengthen the fracture initiation sites such as graphite-matrix interfaces and eutectic cell boundaries in a way of the microsegregation of alloying elements. For instance, the retained austenite which is stable under external stresses may be introduced preferentially into these sites by the addition of Ni, which segregates to a graphite periphery and of Mn, which partitions mainly to eutectic cell boundaries. Following this concept, the effects of various austempering processes on toughness are also in-vestigated. The cast iron alloying with Ni and Mn shows the best fracture toughness when it is heat-treated by either QB' or B' process; here, the QB' means the oil-quenching from an austenite γ phase range followed by austempering from a ferrite α plus γ range and the B' means austempering from a (α + γ) range. In the newly developed iron, there is a mixed microstructure composed of the ferrite, bainitic ferrite, and austenite. Abnormal elongation due to the TRIP effect in the austenite phase is found to have occurred at about 198 K. Moreover, it is shown that this TRIP effect may be caused by the formation of deformation twins.

  9. Study of mechanical, physical, and corrosion behavior of 0.5% cobalt alloyed austempered ductile iron

    Science.gov (United States)

    Abdullah, Bulan; Jaffar, Ahmed; Alias, Siti Khadijah; Ramli, Abdullah; Izham, Mohd Faizul

    2010-03-01

    Objectives: The purpose of this research was to determine the mechanical properties and corrosion behavior of 0.5% Co-DI before and after heat treatment and compare with commercial ductile iron. Methods: Molten metal of newly developed ductile iron which alloyed with 0.5% Cobalt produced through CO2 sand casting method. The specimens then performed preheat to 500°C in an hour then oil quenched. Specimens then performed annealing to 900°C in half an hour before oil quenched again. 500°C, 600°C and 700°C austempering temperature had been selected subjected to the specimens in half an hour before cooled to room temperature. The tests involved are microstructure analysis which included nodule count and phase analysis, polarization test, spectrometer test, density test, tensile test (ASTM E 8M), hardness test and impact test (ASTM A327) on as cast and austempered specimen. Results: 0.5% Cobalt alloyed austempered ductile iron with 500°C austempered temperature is the optimum temperature for 0.5% Co-ADI. It's not only increase the nodule count in the content, but also improve the mechanical properties such as impact toughness and tensile strength. Corrosion rate of 0.5% Co-DI also improved compare to unalloyed DI.

  10. Microstructural investigation of austempered ductile irons with ultrasonic method; Ultraschall-Gefuegeuntersuchungen von zwischenstufenverguetetem Sphaeroguss

    Energy Technology Data Exchange (ETDEWEB)

    Topuz, A. [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical Engineering Dept.; Topcu, E. [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical Engineering Dept.; Bakkaloglu, A. [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical Engineering Dept.; Marsoglu, M. [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical Engineering Dept.

    1997-06-01

    In this study, the relationship between the matrix structure and the sonic velocity of ductile iron in the as-cast and austempered heat treatment conditions was investigated. The sonic velocity in 12 different ductile irons (unalloyed, alloyed with Ni, Mo, Cu, Ni+Cu and Ni+Mo+Cu) has been measured in the as-cast condition and austempered conditions. The investigations have shown that cast iron that should meet the minimum specification of 90% nodularity requires the minimum velocity of 5680 m/s in the as-cast condition and 5450 m/s in the at 235 C austempered condition. From experimental data the equation CT{sup a}=B has been found for austempered conditions. (orig.) [Deutsch] In der vorliegenden Arbeit wurde der Zusammenhang zwischen dem Matrixgefuege und der Schallgeschwindigkeit von Sphaeroguss im Guss- und Zwischenstufenverguetungszustand untersucht. Die Schallgeschwindigkeit wurde in 12 verschiedenen Proben aus Sphaeroguss (unlegiert, legiert mit Ni, Mo, Cu, Ni+Cu und Ni+Mo+Cu) im gegossenen und vergueteten Zustand gemessen. Die Untersuchungen ergaben, dass Gusseisen mit einem Grad der Sphaerolitbildung von mindestens 90% die geringste Schallgeschwindigkeit von 5680 m/s im Gusszustand und 5450 m/s im zwischenstufenvergueteten Zustand erreichte. Aus den experimentellen Ergebnissen wurde die Formel CT{sup a}=B fuer den zwischenstufenvergueteten Zustand errechnet. (orig.)

  11. Influence of austenization temperature on the erosion behavior of austempered ductile irons

    Institute of Scientific and Technical Information of China (English)

    L.C.Chang; I.C.Hsui; L.H.Chen; S.T.Lui

    2008-01-01

    The erosion behavior of austempered ductile irons austenized at different temperatures was studied. The results indicate that the erosion rate well correlates with the mechanical properties. At high impact angles, increasing ductility and mechanical energy density results in decreasing erosion rate, whereas increasing hardness reduces the erosion rate at low impact angles.

  12. Effects of Copper and Austempering on Corrosion Behavior of Ductile Iron in 3.5 Pct Sodium Chloride

    Science.gov (United States)

    Hsu, Cheng-Hsun; Lin, Kuan-Ting

    2013-10-01

    Although alloying and heat treatments are common industrial practices to obtain ductile irons with desired mechanical properties, related information on how the two practices affect corrosion behavior is scarce. In this study, two ductile irons—with and without 1 wt pct copper addition—were austempered to obtain austempered ductile irons (ADIs). Polarization tests and salt spray tests were conducted to explore how both copper-alloying and austempering heat treatments influenced the corrosion behavior of ductile irons. The results showed that the corrosion resistance of 1 wt pct copper-alloyed ductile iron was better than that of the unalloyed one, while ADI had improved corrosion resistance compared with the as-cast. In particular, the ductile iron combined with the copper-alloying and austempering treatments increased the corrosion inhibition efficiency up to 84 pct as tested in 3.5 wt pct NaCl solution.

  13. Effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron

    Institute of Scientific and Technical Information of China (English)

    S. Yazdani; M. Ardestani

    2007-01-01

    The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325 ℃ and 400 ℃after austenitizing at 875 ℃ and 950 ℃. The sub-zero treatments were carried out by cooling down the samples to -30 ℃, -70 ℃ and -196 ℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875 ℃ and austempered at 325 ℃ remained unchanged, whilst it reduced in samples austenitized at 950 ℃ and 875 ℃ for austempering temperature of 400 ℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.

  14. Effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    M. Ardestani

    2007-05-01

    Full Text Available The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325! and 400℃ after austenitizing at 875℃ and 950℃. The sub-zero treatments were carried out by cooling down the samples to -30℃, -70℃ and -196℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875℃ and austempered at 325℃ remained unchanged, whilst it reduced in samples austenitized at 950℃ and 875℃ for austempering temperature of 400℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior.

  15. The Nature of the Tensile Fracture in Austempered Ductile Iron with Dual Matrix Microstructure

    Science.gov (United States)

    Kilicli, Volkan; Erdogan, Mehmet

    2010-02-01

    The tensile fracture characteristics of austempered ductile irons with dual matrix structures and different ausferrite volume fractions have been studied for an unalloyed ductile cast iron containing (in wt.%) 3.50 C, 2.63 Si, 0.318 Mn, and 0.047 Mg. Specimens were intercritically austenitized (partially austenitized) in two phase region (α + γ) at various temperatures for 20 min and then quenched into a salt bath held at austempering temperature of 365 °C for various times and then air cooled to room temperature to obtain various ausferrite volume fractions. Conventionally austempered specimens with fully ausferritic matrix and unalloyed as-cast specimens having fully ferritic structures were also tested for comparison. In dual matrix structures, results showed that the volume fraction of proeutectoid ferrite, new (epitaxial) ferrite, and ausferrite [bainitic ferrite + high-carbon austenite (stabilized or transformed austenite)] can be controlled to influence the strength and ductility. Generally, microvoids nucleation is initiated at the interface between the graphite nodules and the surrounding ferritic structure and at the grain boundary junctions in the fully ferritic microstructure. Debonding of the graphite nodules from the surrounding matrix structure was evident. The continuity of the ausferritic structure along the intercellular boundaries plays an important role in determining the fracture behavior of austempered ductile iron with different ausferrite volume fractions. The different fracture mechanisms correspond to the different levels of ausferrite volume fractions. With increasing continuity of the ausferritic structure, fracture pattern changed from ductile to moderate ductile nature. On the other hand, in the conventionally austempered samples with a fully ausferritic structure, the fracture mode was a mixture of quasi-cleavage and a dimple pattern. Microvoid coalescence was the dominant form of fracture in all structures.

  16. Microstructure transformation during plastic deformation of the austempered ductile iron

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available Excellent properties of ADI (Austempered Ductile Iron are widely praised by the world technical literature. These properties depend onthe cast iron microstructure formed during the heat treatment process of a specific type. The matrix of ADI is a mixture of lamellar ferrite and high-carbon austenite. It seems, however, that it is the austenite that is responsible for the high strength and ductility of this material, although investigations and analyses have proved that it is not homogeneous. Various types of austenite found in the ADI matrix include unreacted austenite, stable austenite, and metastable austenite which will be transferred into martensite during machining of castings.In this study an attempt has been made to determine the fraction of metastable austenite and to evaluate its effect on ADI properties.The heat treatment enabled manufacturing ADI characterised by the following properties: T.S.>1000MPa, El.>10%, Y.S.>600MPa. As anext step, the controlled process of plastic deformation of the samples was carried out. Applying the new method it has been established that due to 15% cold work, the structure of the examined ADI contains 9% of martensite; this volume fraction goes up to 17% after 25% cold work. The results of the investigations were cofirmed by X-ray diffraction pattern analysis and magnetic measurements.Consequently, it has been proved that ADI characterised by properties satisfying the criteria of an international standard developed for this particular material contains a large amount of metastable austenite subject to the TRIP (Transformation Induced Plasticity effect.

  17. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  18. The abrasion and impact-abrasion behavior of austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Lerner, Y.S. (University of Northern Iowa)

    1998-01-01

    Austempering of ductile irons has led to a new class of irons, Austempered Ductile Irons (ADIs), with improved mechanical strength and fracture toughness lacking in gray cast irons. Laboratory wear tests have been used to evaluate the abrasive and impact-abrasive wear behavior of a suite of ADIs. The use of high-stress, two-body abrasion, low-stress, three-body abrasion, and impact-abrasion tests provides a clear picture of the abrasive wear behavior of the ADIs and the mechanisms of material removal. When combined with hardness measurements, fracture toughness and a knowledge of the microstructure of the ADIs, the overall performance can be assessed relative to more wear resistant materials such as martensitic steels and high-chromium white cast irons

  19. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  20. Effect of heat treatment on the thermal expansion coefficient of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Tadayon saidi, M. [Dept. Metallurgy-Karaj Azad Univ.-Karaj (Iran); Baghersaie, N. [Tehran Center, Control Dept., Eng. Research Inst., Ministry of Jihad Agriculture (Iran); Varahram, N. [RAZI Metallurgical Research Inst.-Tehran (Iran)

    2005-07-01

    Austempered ductile iron provide a unique combination of strength and toughness coupled with excellent design flexibility for automotive application as compared to forged or cast steels. Some material properties such as thermal expansion coefficient and its influence in final machining tolerance is a matter of discussion in the automotive industry. In this study the effect of heart treatment cycle on the microstructure and thermal expansion of ADI was investigated. Samples were austempered at 275 C and 375 C for one hour and then dilatometric test carried out in the temperature range of 50 C to 350 C, then the result was compared with the thermal expansion coefficient of forged steel. Microstructure and mechanical investigations were used to the assurance of these results. The results indicate that replacing of forged steel with ADI due to lower cost production and reduction in weight is possible if the correct tolerance were selected. (orig.)

  1. Influence of cooling conditions and amount of retained austenite on the fracture of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    VYACHESLAV GORYANY

    2008-01-01

    Full Text Available SEM Analysis of fracture surfaces from tensile test specimens of thick-walled, austempered ductile irons (diameter 160 mm shows different fracture behavior depending on the austenite retained in the matrix. The results show ductile fractures only in areas containing retained austenite sections. In section areas without or with a very low content of retained austenite, only brittle fracture without any plastic deformation occurs. The content of retained austenite determines the amount of ductile fracture in the microstructure.

  2. Mechanical Property Stability of Cu-Mo-Ni Alloyed Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng-fa; WANG Zhong-fan

    2005-01-01

    The aim of present work is to investigate the influencing factors on mechanical property stability of Cu-Mo-Ni alloyed austempered ductile iron (ADI). The results show that after austenitized at 900 ℃ for 2 h followed by austempered at 370 ℃ for another 2 h, the mechanical property of the alloyed ADI can reach the Germanite GGG-100 standard, i.e.σb≮1 000 MPa, δ≮5%, at 95% confidence level. And the satisfactory mechanical properties were obtained when the alloyed ADI was austenitized at 850 ℃ to 1 000 ℃ for 1-4 h, and austempered at 355 ℃ to 400 ℃ for another 1 h to 4 h. The microstructures, including nodule number, white bright zone content (martensite-containing interdendritic segregation zone) and retained austenite content, can significantly influence the mechanical properties of the ADI. In order to obtain the good combinations of strength and ductility, the volume fraction of white bright zone should be less than 5%, and the retained austenite contents maintain between 30 % and 40 %. The application of inoculation techniques to increase graphite nodule number can effectively reduce the white bright zone content in the structure.

  3. Influence of the Mn content on the kinetics of austempering transformation in compacted graphite cast iron

    Science.gov (United States)

    Desimoni, J.; Mercader, R. C.; Laneri, K.; Gregorutti, R.; Sarutti, J. L.

    1999-11-01

    Mossbauer spectroscopy has been used to monitor the kinetics of austempering transformation in two compacted graphite (CG) cast irons alloyed with 0.11 and 0.58 wt pct of Mn, respectively. The phase relations were analyzed in terms of the Johnson-Mehl’s equation, determining the kinetics parameters n (time exponent) and k (constant rate of the transformation). The values obtained were n=1.4 and k=7.47 × 10-3 s-1 for the low-Mn alloy, and n=2.2 and k=3.9×10-3 s-1 for the high-Mn alloy. These results, which reveal a faster kinetics for the low-Mn alloy, are coherent with metallographic observations, and the driving force obtained through the determination of the austenite carbon concentration that was determined from the Mossbauer data using the Genins model for the Fe-C configurations in the fcc lattice. The kinetics parameters are further compared to those obtained in austempered ductile iron (ADI), by analyzing the graphite morphology influence on the austempering transformation.

  4. Influence of the Mn content on the kinetics of austempering transformation in compacted graphite cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Desimoni, J.; Gregorutti, R.; Laneri, K.; Sarutti, J.L.; Mercader, R.C.

    1999-11-01

    Moessbauer spectroscopy has been used to monitor the kinetics of austempering transformation in two compacted graphite (CG) cast irons alloyed with 0.11 and 0.58 wt pct of Mn, respectively. The phase relations were analyzed in terms of the Johnson-Mehl's equation, determining the kinetics parameters n (time exponent) and k (constant rate of the transformation). The values obtained were n = 1.4 and k = 7.47 x 10{sup {minus}3} s{sup {minus}1} for the low-Mn alloy, and n = 2.2 and k = 3.9 x 10{sup {minus}3} s{sup {minus}1} for the high-Mn alloy. These results, which reveal a faster kinetics for the low-Mn alloy, are coherent with metallographic observations, and the driving force obtained through the determination of the austenite carbon concentration that was determined from the Moessbauer data using the Genins model for the Fe-C configurations in the fcc lattice. The kinetics parameters are further compared to those obtained in austempered ductile iron (ADI), by analyzing the graphite morphology influence on the austempering transformation.

  5. The effect of alloy elements on the microstructure and properties of austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, B.Y.; Chen, E.T.; Lei, T.S. [National Taiwan Institute of Technology, Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

    1995-05-01

    Ductile cast iron has already demonstrated excellent mechanical properties. If given proper austempering, it can exhibit even more outstanding characteristics. The process of austempering for ductile cast iron is similar to steel, and requires an adequate completely, and then rapidly quenching the austenitizing temperature allowing the matrix of ductile iron to be austenitized completely, and then rapidly quenching the austenitized ductile iron down to 300 C--400 C. Caution is required to prevent austenite from transforming into proeutectoid ferrite or pearlite. Finally, the ductile iron must be kept in an isothermal condition for a proper length of time. Many kinds of experimental techniques such as quantitative metallography, magnetic change, dilatometry, X-ray diffraction, electrical resistivity change etc., may be used to measure the phase transformation during the austempering of ductile irons. However, the method of measuring the change of electrical resistivity, not only provides continuous and complete data, but also the time to start and to finish for both stages of the reaction can be significantly determined. In this paper, the effect of alloy elements on the microstructure and property of ADI was investigated. First, the specimens containing Mn, Cu, Ni and Mo were made separately, then a PC-controlled vacuum heat treating system was used for the heat treatments.

  6. Ameliorated Austenite Carbon Content Control in Austempered Ductile Irons by Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Chan-Yun Yang

    2013-01-01

    Full Text Available Austempered ductile iron has emerged as a notable material in several engineering fields, including marine applications. The initial austenite carbon content after austenization transform but before austempering process for generating bainite matrix proved critical in controlling the resulted microstructure and thus mechanical properties. In this paper, support vector regression is employed in order to establish a relationship between the initial carbon concentration in the austenite with austenization temperature and alloy contents, thereby exercising improved control in the mechanical properties of the austempered ductile irons. Particularly, the paper emphasizes a methodology tailored to deal with a limited amount of available data with intrinsically contracted and skewed distribution. The collected information from a variety of data sources presents another challenge of highly uncertain variance. The authors present a hybrid model consisting of a procedure of a histogram equalizer and a procedure of a support-vector-machine (SVM- based regression to gain a more robust relationship to respond to the challenges. The results show greatly improved accuracy of the proposed model in comparison to two former established methodologies. The sum squared error of the present model is less than one fifth of that of the two previous models.

  7. Microstructures and Mechanical Properties of Austempering SUS440 Steel Thin Plates

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chen

    2016-02-01

    Full Text Available SUS440 is a high-carbon stainless steel, and its martensite matrix has high heat resistance, high corrosion resistance, and high pressure resistance. It has been widely used in mechanical parts and critical materials. However, the SUS440 martempered matrix has reliability problems in thin plate applications and thus research uses different austempering heat treatments (tempering temperature: 200 °C–400 °C to obtain a matrix containing bainite, retained austenite, martensite, and the M7C3 phase to investigate the relationships between the resulting microstructure and tensile mechanical properties. Experimental data showed that the austempering conditions of the specimen affected the volume fraction of phases and distribution of carbides. After austenitizing heat treatment (1080 °C for 30 min, the austempering of the SUS440 thin plates was carried out at a salt-bath temperature 300 °C for 120 min and water quenching was then used to obtain the bainite matrix with fine carbides, with the resulting material having a higher tensile fracture strength and average hardness (HRA 76 makes it suitable for use as a high-strength thin plate for industrial applications.

  8. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    Science.gov (United States)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  9. The Effect of Isothermal Heat Treatment Time on the Microstructure and Properties of 2.11% Al Austempered Ductile Iron

    Science.gov (United States)

    Erfanian-Naziftoosi, H. R.; Haghdadi, N.; Kiani-Rashid, A. R.

    2012-08-01

    In this article, the bainitic transformation during austempering was studied for a 2.11% Al containing ductile iron under different isothermal holding times. The austenitizing time and temperature were selected to be 60 min and 920 °C, respectively, referring to previous studies. The isothermal austempering heat treatments were performed at 350 °C for different durations. Microstructures have been examined by optical microscopy, scanning electron microscopy, and transmission electron microscopy. Microstructural investigations revealed that austempering treatment at 350 °C for durations up to 100 min results in microstructures consisting of carbide-free bainitic ferrite with considerable amounts of retained austenite while the extension of isothermal transformation time leads to precipitation of carbides. Hardness measurements were also carried out the results of which were shown to be consistent with microstructural evolutions.

  10. Effect of laser surface hardening on the microstructure, hardness and residual stresses of austempered ductile iron grades

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, C., E-mail: csoriano@tekniker.es [Tekniker-IK4, Manufacturing Processes Department, Avda. Otaola 20, CP-20600, Eibar (Gipuzkoa) (Spain); Leunda, J.; Lambarri, J.; Garcia Navas, V.; Sanz, C. [Tekniker-IK4, Manufacturing Processes Department, Avda. Otaola 20, CP-20600, Eibar (Gipuzkoa) (Spain)

    2011-06-01

    A study of the laser surface hardening process of two austempered ductile iron grades, with different austempering treatments has been carried out. Hardening was performed with an infrared continuous wave Nd:YAG laser in cylindrical specimens. The microstructure of the laser hardened samples was investigated using an optical microscope, microhardness profiles were measured and surface and radial residual stresses were studied by an X-ray diffractometer. Similar results were achieved for both materials. A coarse martensite with retained austenite structure was found in the treated area, resulting in a wear resistant effective layer of 0.6 mm to 1 mm with a microhardness between 650 HV and 800 HV. Compressive residual stresses have been found at the hardened area being in agreement with the microhardness and microstructural variations observed. The achieved results point out that the laser surface hardening is a suitable method for improving the mechanical properties of austempered ductile irons.

  11. Effects of heat treatment on toughness of austempered ductile cast iron with Cu and Ni; Cu-Ni tenka osutenpa chutetsu no jinsei ni oyobosu netsushori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, M.; Takatsu, M.; Takagi, H

    1998-08-25

    The alloying of ductile cast iron with Cu and Ni is effective for the structural control in austemper heat treatment. Use of this type of cast iron is provided to produce cast iron materials with extremely high toughness and strength. In this study, the effects of austempering conditions and the addition of Cu and Ni on toughness of ductile cast iron are investigated. In austemper heat treatment, impact absorbed energy is increased by raising the austempering temperature. However, at high austempering temperatures exceeding 3.6 ks at 673K, the formation of fine pearlite proceeded, resulting in a marked decrease in the impact absorbed energy. Addition of Cu-Ni in the cast iron resulted in greater impact absorbed energy and tensile strength at any temperature during the austempering treatment. It depends on the suppression of precipitation beginning of fine pearlite and the stabilization of retained austenite. Furthermore, this cast iron alloy reduced the change in impact absorbed energy and tensile strength, induced during the austempering time. 15 refs., 12 figs., 1 tab.

  12. Statistical Assessment of the Impact of Elevated Contents of Cu and Ni on the Properties of Austempered Ductile Iron

    Directory of Open Access Journals (Sweden)

    Nawrocki P.

    2016-12-01

    Full Text Available The article presents a statistical analysis of data collected from the observation of the production of austempered ductile iron. The impact assessment of the chemical composition, i.e. high contents of Cu and Ni on the properties of ductile iron isothermal tempered is critical to find the right chemical composition of austempered ductile iron. Based on the analyses range of the percentage of Cu and Ni which were selected in the cast iron to obtain material with high strength properties.

  13. The effect of segregation on the austemper transformation and toughness of ductile irons

    Science.gov (United States)

    Lin, B. Y.; Chen, E. T.; Lei, T. S.

    1998-06-01

    The effect of segregation of alloying elements on the phase transformation of ductile iron during austempering was investigated. Four heats, each containing 0.4%Mn, 1% Cu, 1.5% Ni, or 0.4% Mo (wt%) separately, were melted; then three different sizes of casting bars (3,15, and 75 mm diameter) were poured from each heat. The distribution and the degree of segregation of certain elements were quantitatively analyzed using an electron microprobe. A personal computer (PC)-controlled heat treating system was used to measure electrical resistivity, and the information on resistivity variations was used to analyze the effect of segregation on phase transformations during austempering. Also, Charpy impact and Rockwell hardness tests were performed to determine the effect of segregation on properties. Results of the electron microprobe analysis showed that the degree of segregation of alloy elements increases with an increase in diameter of the casting bars (i.e., an increase of solidification time of castings). The degree of segregation of alloy elements, represented by segregation ratio (SR) (the maximum concentration of element in cell divided by the minimum concentration of element in cell), varied linearly with the casting modulus (M) (volume of casting divided by surface area of casting). Regarding the segregating tendency among alloy elements, positive segregating elements Mn and Mo showed more segregation than the negative segregating elements Si, Cu, and Ni. In addition, segregation of Mo was more significant than Mn, and that for Cu was greater than Ni and Si. Between the time of finishing the first stage and beginning the second stage of bainite reaction in ductile irons, there is a significant “processing window,” At;, for austempering to obtain optimum mechanical properties. From the electrical resistivity data, it was observed that the austempering temperature plays a major role in the processing window. There was a narrow window at 400 ‡C but a larger

  14. Study of high cycle fatigue of PVD surface-modified austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.P.; Lee, S.C.; Hsu, C.H.; Ho, J.M. [Tatung Inst. of Technol., Taipei (Taiwan, Province of China). Dept. of Mater. Eng.

    1999-05-25

    Austempered ductile iron (ADI) is made from ductile iron by an austempering treatment, and its main microstructure is ausferrite that is composed of acicular ferrite and high carbon austenite. The purpose of this experiment is to investigate the influence of different coating layers and the size of casting (mass effect) on the high-cycle fatigue properties of ADI. Specimens in two casting sizes of the same chemical composition were subjected to a high-toughness austempering treatment, then coated with TiN or TiCN hard films by a physical vapor deposition (PVD) process. The results showed that the fatigue limit of the small casting size ADI is 292 MPa for ADI coated with TiN and 306 MPa for ADI coated with TiCN, which are 16% and 22%, respectively, higher than that of the ADI without coating (251 MPa). For the large casting size ADI, the fatigue limits are 200, 214 and 217 MPa for ADI without coating, ADI coated with TiN and ADI coated with TiCN, respectively. ADI coated with TiN and with TiCN are 7% and 9% better than the uncoated. Thus, it is concluded that TiN and TiCN coatings by PVD can improve the high-cycle fatigue strength of ADI. This is due to the high surface hardness and possibly the ADI surface compressive residual stress as well. For the small casting size ADI, TiCN-coated specimens have a bit higher fatigue strengths and this might be attributed to the higher hardness of TiCN than TiN films. As to the effect of mass, it is found that the small casting size has better fatigue properties and benefits more from the coating films. This could have stemmed from the higher nodule count and its associated benefits in thinner castings. (orig.) 24 refs.

  15. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  16. Effect of Cu, Mo, Si on the content of retained austenite of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y. [Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering

    1995-05-01

    In this paper, the effects of Cu, Mo, Si contents on the volume fraction of retained austenite of austempered ductile iron (ADI) are analyzed exactly by X-ray diffraction, and the fracture modes of test samples with different volume fraction of retained austenite are investigated by SEM. It is shown that the retained austenite content increases with the content of copper, decreases with the content of molybdenum, and reaches the maximum with a certain content of silicon. When the retained austenite content decreases, the fracture modes of test samples change from ductile fracture to cleavage fracture.

  17. Morphology and constitution of the phases in as-welded microstructure of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.Y.; Zhou, Z.F.; Sun, D.Q.

    2005-06-15

    It was found by optical and electron microscopic examination of the microstructure of as-weld austempered ductile iron that the weld matrix is composed of austenite and bainite, the volume fractions of which were determined. In addition, the carbon content of austenite was measured and therefore the average carbon content of the matrix was calculated. In the matrix of the weld metal two types of bainite, bainite ferrite and lower bainite, were found. According to the morphology and distribution of the bainite plates, the nucleation and growth modes of bainite was inferred. (author)

  18. Effects of matrix structures on fracture mechanisms of austempered ductile cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Shigeru; Matsufuji, Kenichi [Oita Univ. (Japan); Mitsunaga, Koichi [Kagoshima Junior Womens College (Japan); Takahara, Masao [Isuzu Motors, Kawasaki, Kanagawa (Japan)

    1995-12-31

    On the fatigue behavior of Austempered Ductile Iron (so called ADI), rotating fatigue tests in very high cycle region were performed. The S-N curve represented the double bending. This behavior is caused by the high cycle (>10{sup 7} cycles) fracture, and called the complex three region fractures. The main reason is the work hardening in the surface layer. Therefore, it was removed by electropolishing the surface layer with work hardening. The S-N curve did not show the double bending mentioned above. The fatigue strength with bainitic structure of electropolished ADI was higher than those of mother pearlitic structure.

  19. Behavior Of Austempered Ductile Irons (ADI) Subjected To Laser Surface Melting

    Science.gov (United States)

    Jones, D. L.; Fagoaga, I.; Liceaga, J. F.; Sanz Justes, Pedro; Jasnowski, Kazie S.

    1989-03-01

    The near surface microstructure of 3 austempered ductile irons has been modified using laser surface melting (LSM). A white cast iron layer was produced to depths of up to 500 microns. The microstructure of this region varied depending upon the parameters used. A heat affected zone (HAZ) appeared at an abrupt transition between the LSM zone and the substrate. The size of the HAZ, which varied between 20 and 200 microns was predominately affected by the pass velocity in the range of energies used. The hardness profiles showed large variations in the Haz probably due to varing tempering effects from the subsequent passes.

  20. Mathematical formalisms to represent knowledge concerning the production process of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    D. Wilk-Kołodziejczyk

    2015-10-01

    Full Text Available The aim of this study is to develop computer tools for calculation of the Fe - Fe3C phase equilibrium diagram. The phase equilibrium diagram is of fundamental importance in materials science and heat treatment processes of ferrous alloys. It enables prediction of carbon steel microstructure in the annealed condition, and facilitates selection of proper temperature for the heat treatment process. Choosing the right values of the heat treatment process parameters is essential in the production of Austempered Ductile Iron (ADI.

  1. Embrittlement of austempered nodular irons: Grain boundary phosphorus enrichment resulting from precipitate decomposition

    Science.gov (United States)

    Klug, R. C.; Hintz, M. B.; Rundman, K. B.

    1985-05-01

    The microstructures, mechanical properties, and fracture behavior were characterized for a series of Mg treated nodular cast iron specimens austenitized at 1170, 1255, and 1340 K and subsequently austempered at 640 K. The ductility and toughness of the alloy decreased as austenitization temperatures were increased, which is contrary to the behavior anticipated from the observed micro-structural evolution. Fractographic and surface chemical analyses demonstrated that the mechanical property degradation was associated with embrittlement of the austenite grain boundaries by phosphorus. The primary mechanism of grain boundary phosphorus enrichment does not appear to be equilibrium segregation, and an alternative mechanism based on the decomposition of P rich precipitates is proposed and discussed.

  2. Material Characterization of Austempered Ductile Iron (ADI) Produced by a Sustainable Continuous Casting-Heat Treatment Process

    Science.gov (United States)

    Meena, Anil; El Mansori, Mohamed

    2012-12-01

    Selecting a suitable manufacturing process is one way of achieving sustainability of a product by diminishing energy consumption during its production cycle and improving material efficiency. The article attempts to explore the new processing technology for direct manufacturing of lightweight austempered ductile iron (ADI) casting in a permanent mold. The new processing technology is based on the innovative integrated approach toward casting and heat-treatment process. In this technology, the ductile iron samples obtained using the permanent mold are first austenized immediately after solidification process followed by austempering heat treatment in the fluidized bed and then air cooled at room temperature to obtain ADI material. The influence of austempering time on the microstructural characteristics, mechanical properties, and strain-hardening behavior of ADI was studied. Optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were performed to correlate the mechanical properties with microstructural characteristics. It was observed that the mechanical properties of resulting ADI samples were influenced by the microstructural transformations and varied retained austenite volume fractions obtained due to different austempering time. The results indicate that the strain-hardening behavior of the ADI material is influenced by the carbon content of retained austenite.

  3. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  4. The studies of mechanical properties and structure of ADI as function of austempering parameters

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2010-10-01

    Full Text Available The results of study of ductile iron austempered using different parameters of austempering are presented. The aim of the investigations was to look closer into mechanical properties of this very attractive cast material. The experiment was carried out with commercial EN-GJS-500-7 grade ductile iron. The specimens were first solution heat treated 1 hour in 910oC and then isothermally quenched for different time in molten tin of different temperature. The mechanical properties heat treated specimens were tested using tensile test machine to evaluate Rp,0.2, Rm and A10. Moreover Brinell hardness tests were carried out for structure investigation conventional light microscopy only was used. It was discovered, that low yield strength ADI obtained for short time quenching at 275oC exhibited high strengthening effect while tensile strained. So it was concluded that this had to by cause by large amount of untransformed austenite, which FCC lattice providing large number of glide systems.

  5. Un-lubricated sliding wear performance of unalloyed austempered ductile iron under high contact stresses

    Energy Technology Data Exchange (ETDEWEB)

    Zimba, J.; Samandi, M.; Yu, D.; Chandra, T.; Navara, E.; Simbi, D.J

    2004-08-15

    The dry sliding wear behaviour of unalloyed austempered ductile iron (ADI) was studied in a reciprocating tribotester using contact loads in the range 40-140 N. The results obtained show that austempering in the temperature range 325-375 deg. C significantly improves the tribological properties of the unalloyed spheroidal graphite iron. The friction coefficient was reduced by a factor of ten (10) with the wear resistance increasing by several orders of magnitude. The improvement in wear performance was attributed to: the lubricity inherent the graphite nodules, the increase in initial hardness brought about by the ausferrite structure, and the work hardening of the surface as retained austenite is transformed to martensite by plastic deformation, and in the process reducing considerably the sensitivity of the specific wear rate to loading. Optical, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) results pertaining to the wear tracks suggest that two main wear mechanisms are responsible for material removal in the unlubricated sliding wear of ADI, namely, plastic yielding and oxidation, with the latter producing hard oxide particles that act as abrasives. Massive plastic yielding followed by delamination and sometimes oxidation accounts for material loss in the much softer as cast ductile spheroidal graphite iron.

  6. Bainitic transformation in austempered ductile iron with reference to untransformed austenite volume phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadabadai, M.N. [Tehran Univ. (Iran, Islamic Republic of)

    1997-10-01

    Much interest has been focused on austempered ductile iron (ADI) because of its superior mechanical properties, which might be improved by further control of microstructure. It has so far been assumed that segregation of alloying elements in the intercellular region just delays bainitic reaction in these regions. However, the existence of bainite-free regions (UAV) even after 10,000 minutes at test temperature, e.g., 375 C, indicates something intrinsic to the mechanism of bainitic transformation. The bainitic transformation start (B{sub s}) temperature is a function of alloying elements; segregation of alloying elements can also alter the B{sub s} temperature. In other words, B{sub s} temperature in the region near graphite should be different from the intercellular region. Therefore, the intercellular region with higher concentration of alloying elements such as Mn should have a lower B{sub s} temperature, which leads to formation of UAV even after a long high-temperature austempering time (hereafter, this stable UAV will be named as the minimum UAV value). To examine this concept, theoretical and experimental procedures were employed.

  7. Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yuncheng; Jin Huijin [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Liu Jinhai, E-mail: pyc_wanhj@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China); Li Guolu [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132 (China)

    2011-11-25

    Highlights: {yields} Boron are applied to carbidic austempered ductile iron (CADI). {yields} Boron microalloying CADI is a new high hardenability of wear-resistant cast iron. {yields} Addition of boron to CADI significantly improves hardenability. {yields} Effect of boron on the CADI grinding ball were investigated. {yields} Optimum property is obtained when boron content at 0.03 wt%. - Abstract: Carbidic austempered ductile iron (CADI) castings provide a unique combination of high hardness and toughness coupled with superior wear resistance properties, but their hardenability restricts their range of applications. The purpose of this study was to investigate the influence of boron on the microstructure and mechanical properties of CADI. The experimental results indicate that the CADI comprises graphite nodules, which are dispersive boron-carbides that are distributed in the form of strips, and the matrix is a typical ausferritic matrix. Microscopic amounts of boron can improve the hardenability of CADI, but higher boron content reduces the hardenability and toughness of CADI. The results are discussed in the context of the influence of boron content on the microstructure and mechanical properties of grinding balls.

  8. Effects of boron addition and austempering time on microstructure, hardness and tensile properties of ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Guerra L, F.V. [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico); Bedolla-Jacuinde, A., E-mail: abedollj@icloud.com [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico); Mejía, I. [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico); Facultad de Ingeniería Mecánica UAEH, México (Mexico); Zuno, J. [Facultad de Ingeniería Mecánica UAEH, México (Mexico); Maldonado, C. [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico)

    2015-11-11

    The present work analyzes the effect of boron addition to an Austempered Ductile Iron, in amounts from zero to 120 ppm. It has been found that boron has a strong effect on the equivalent carbon content, resulting in an increase on the precipitated graphite volume and a decrease in the dissolved carbon content in the matrix. This in turn, increases the ferrite volume fraction in the as-cast conditions from 0.24 in the base alloy to 0.78 for the iron with 120 ppm of boron. Furthermore, a decrease in the nodularity from 100% in the base alloy to 83% with 120 ppm of boron has been observed. During austempering, the transformation to ausferrite was faster and lower volumes of martensite and unstable austenite were detected when boron increased; this promoted lower hardness values, 239 HV for the base iron and 189 HV for the 120 ppm boron alloy. The increase in hardness and strength, typical for the start of bainite formation, were not observed in the boron added irons, but just in the base alloy. Under this basis, it is assumed that at least the addition of 60 ppm of boron extended the optimal processing window. The higher values of strength and ductility were obtained for the alloy with 60 ppm of boron; these results are discussed in terms of the graphitizing effect of boron in these irons and the reduced amount of carbon dissolved in austenite.

  9. 奥氏体等温转变铸铁研究的新进展%Recent Researches on Austempered Cast Irons

    Institute of Scientific and Technical Information of China (English)

    赵红; 徐卫平; 周继扬

    2001-01-01

    Recent researches on austempered cast irons have been reviewed. The present theories of the austempering transformation and the stability of high carbon austenite in ductile cast iron have been presented. The effects of chemical and mechanical deformation on austempering transformation have been discussed. The heat treatment processes, some mechanical properties and their applications of austempered gray iron, austempered compacted iron and austempered malleable iron have been introduced.%综述了奥氏体等温转变铸铁的最新研究成果。阐述了球墨铸铁奥氏体等温转变的最新理论及高碳奥氏体的稳定性,论述了化学成分及形变对奥氏体等温转变过程的影响,概述了奥氏体等温转变灰铸铁、蠕墨铸铁及可锻铸铁的热处理工艺特点、性能及其应用。

  10. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel

    Institute of Scientific and Technical Information of China (English)

    Chen Xiang; Vuorinen Esa; Grahn Jonny

    2009-01-01

    Crack initiation,propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix:crack propagates along the boundary of two clusters of bainitic ferrite;crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths;crack propagates into bainitic ferrite laths;crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation.Based on the observation and analysis of microfracture processes,a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.

  11. Influence of casting size and graphite nodule refinement on fracture toughness of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C.; Hsu, C.H.; Chang, C.C.; Feng, H.P. [Tatung Inst. of Tech., Raipei (Taiwan, Province of China). Dept. of Materials Engineering

    1998-10-01

    Casting size affects the solidification cooling rate and microstructure of casting materials. Graphite nodules existing in the structure of ductile iron are an inherent and inert second phase that cannot be modified in subsequent heat-treatment processing. The matrix and the fineness of the second phase undoubtedly have some impact on the fracture toughness of the as-cast material, as does the subsequent heat treatment, as it alters the microstructure. This research applied austempering heat treatment to ductile iron of different section sizes and graphite nodule finenesses. The influence of these variables on the plane strain fracture toughness (K{sub IC}) of the castings so treated was compared to that of the as-cast state. Metallography, scanning electron microscopy (SEM), and X-ray diffraction analysis were performed to correlate the properties attained to the microstructural observation.

  12. Effect of Graphite Nodule Diameter on Water Embrittlement of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    CAI Qi-zhou; WEI Bo-kang; TANAKA Yuichi

    2005-01-01

    Effects of graphite nodule diameter on the water embrittlement of austempered ductile iron (ADI) is studied. The water embrittlement mechanism is discussed. Due to water adhesion, local embrittlement occurs on the surface of ADI specimen, resulting in early fracture and significant reduction in tensile strength and elongation. The water embrittlement is the cracking of stress induced martensite formed during tensile deformation caused by hydrogen diffusion decomposed from water and as a result tensile strength and elongation of ADI are remarkably reduced. The segregation of alloying elements in ductile iron is weakened with decreasing nodule diameter, reducing the residual austenite in grain boundaries, then decreasing the amount of stress induced martensite during tensile plastic deformation and finally restraining ADI water embrittlement.

  13. Numerical Simulation of Austempering Heat Treatment of a Ductile Cast Iron

    Science.gov (United States)

    Boccardo, Adrián D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.; Górny, Marcin; Tyrała, Edward

    2016-02-01

    This paper presents a coupled thermo-mechanical-metallurgical formulation to predict the dimensional changes and microstructure of a ductile cast iron part as a consequence of an austempering heat process. To take into account the different complex phenomena which are present in the process, the stress-strain law and plastic evolution equations are defined within the context of the associate rate-independent thermo-plasticity theory. The metallurgical model considers the reverse eutectoid, ausferritic, and martensitic transformations using macro- and micro-models. The resulting model is solved using the finite element method. The performance of this model is evaluated by comparison with experimental results of a dilatometric test. The results indicate that both the experimental evolution of deformation and temperature are well represented by the numerical model.

  14. Multi-Response Optimization of Carbidic Austempered Ductile Iron Production Parameters using Taguchi Method

    Science.gov (United States)

    Dhanapal, P.; Mohamed Nazirudeen, S. S.; Chandrasekar, A.

    2012-04-01

    Carbide Austempered Ductile Iron (CADI) is the family of ductile iron containing wear resistance alloy carbides in the ausferrite matrix. This CADI is manufactured by selecting and characterizing the proper material composition through the melting route done. In an effort to arrive the optimal production parameters of multi responses, Taguchi method and Grey relational analysis have been applied. To analyze the effect of production parameters on the mechanical properties signal-to-noise ratio and Grey relational grade have been calculated based on the design of experiments. An analysis of variance was calculated to find the amount of contribution of factors on mechanical properties and their significance. The analytical results of Taguchi method were compared with the experimental values, and it shows that both are identical.

  15. Comparing the possibilities of austenite content determination in austempered ductile iron

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2011-07-01

    Full Text Available The article presents various methods for assessment of the austenite volume fraction in Austempered Ductile Iron (ADI. Tests were carried out on two types of ADI, i.e. unalloyed and alloyed with the addition of 0.72%Cu and 0.27%Mo, heat treated under different conditions of isothermal transformation to obtain different austenite volume fractions. The test material was then subjected to metallographic examinations, X-ray diffraction (XRD analysis, an analysis using the author's genuine programme of artificial neural networks, image analysis and magnetic measurements. The results were compared with each other indicating the possibility of a quantitative measurement of austenite and other phases present in cast iron. It was found that different methods of measurement are not fully consistent with each other but show similar results of the austenite content.

  16. In-Situ Studies of Intercritically Austempered Ductile Iron Using Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Druschitz, Alan [University of Alabama, Birmingham; Aristizabal, Ricardo [University of Alabama, Birmingham; Druschitz, Edward [University of Alabama, Birmingham; Hubbard, Camden R [ORNL; Watkins, Thomas R [ORNL; Walker, Larry R [ORNL; Ostrander, M [Rex Heat Treat, Anniston, AL

    2012-01-01

    Intercritically austempered ductile irons hold promise for applications requiring fatigue durability, excellent castability, low production energy requirements, reduced greenhouse gas emissions and excellent machinability. In the present study, four different ductile iron alloys, containing manganese and nickel as the primary austenite-stabilizing elements, were heat treated to obtain different quantities of austenite in the final microstructure. This paper reports the microstructures and phases present in these alloys. Further, lattice strains and diffraction elastic constants in various crystallographic directions and the transformation characteristics of the austenite as a function of applied stress were determined using in-situ loading with neutron diffraction at the second generation Neutron Residual Stress Facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL).

  17. Design and control of chemical compositions for high-performance austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Gong Wenbang

    2012-05-01

    Full Text Available This paper presents the effects of chemical compositions of austempered ductile iron (ADI on casting quality, heat treatment process parameters and mechanical properties of final products. Through experiment and production practice, the impacts of carbon equivalent on ADI and its mechanical properties have been studied. Proper content ranges for carbon and silicon have been obtained to avoid ADI casting shrinkage and graphite floatation, as well as to achieve the optimal mechanical properties. According to the impact of silicon content on austenite phase transformation, the existing form of carbon in ADI has been analyzed, and also the formula and diagram showing the relationship between austenitizing temperature and carbon content in austenite have been deduced. The chemical composition range for high performance ADI and its control points have been recommended, to serve as a reference for production process.

  18. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting

    Science.gov (United States)

    Gulzar, A.; Akhter, J. I.; Ahmad, M.; Ali, G.; Mahmood, M.; Ajmal, M.

    2009-07-01

    Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe 3C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.

  19. Mathematical modeling of localized melting around graphite nodules during laser surface hardening of austempered ductile iron

    Science.gov (United States)

    Roy, A.; Manna, I.

    2000-10-01

    An attempt has been made to mathematically predict the optimum conditions of laser surface hardening (LSH) of austempered ductile iron (ADI) that can ensure a predominantly martensitic microstructure and preclude partial/complete dissolution of graphite nodules in the laser hardened zone during laser irradiation. The exercise involves prediction of the thermal profile (using the Ashby and Easterling model), and consequently, the carbon diffusion profile around the graphite nodules at different depths from the surface for the given conditions of LSH. Microstructural investigations have been carried out by optical and scanning electron microscopy to study the morphology, shape and width of the partially/completely melted graphite nodules as a function of the LSH parameters. Finally, the predicted maximum width of the melted zone around the graphite nodules is compared with the relevant experimental data to validate the proposed model.

  20. In Situ Studies of Intercritically Austempered Ductile Iron Using Neutron Diffraction

    Science.gov (United States)

    Druschitz, Alan P.; Aristizabal, Ricardo E.; Druschitz, Edward; Hubbard, C. R.; Watkins, Thomas R.; Walker, L.; Ostrander, Mel

    2012-05-01

    Intercritically austempered ductile irons hold promise for applications requiring fatigue durability, excellent castability, low production energy requirements, reduced greenhouse gas emissions, and excellent machinability. In the present study, four different ductile iron alloys, containing manganese and nickel as the primary austenite-stabilizing elements, were heat treated to obtain different quantities of austenite in the final microstructure. This article reports the microstructures and phases present in these alloys. Furthermore, lattice strains and diffraction elastic constants in various crystallographic directions and the transformation characteristics of the austenite were determined as a function of applied stress using in situ loading during neutron diffraction at the second generation Neutron Residual Stress Facility at the High Flux Isotope Reactor at Oak Ridge National Laboratory.

  1. Anti-friction Coating for Drilling of Green Austempered Ductile Iron (ADI) grade

    Science.gov (United States)

    Meena, A.; El Mansori, M.; Ghidossi, P.; Mkaddem, A.

    2011-05-01

    In this paper the anti-friction performance of two types of coating, post-coated coating and PVD-TiAlN coating were investigated when drilling green austempered ductile iron (ADI) grade. The green ADI grade is produced by a new processing technology known as continuous casting-heat treatment process. The effect of coatings on tool wear and surface finish of the holes when drilling using coolant were reported. Results showed that the tool with post-coated coating has higher anti-friction properties as compared to PVD-TiAlN coating in terms of tool wear and surface roughness. Results also showed that there is a formation of preventive aluminum oxide layer during machining for both types of coating.

  2. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  3. Transition temperature and fracture mode of as-castand austempered ductile iron.

    Science.gov (United States)

    Rajnovic, D; Eric, O; Sidjanin, L

    2008-12-01

    The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this paper transition temperature of as-cast and austempered copper and copper-nickel alloyed ductile iron (DI) in the temperature interval from -196 to +150 degrees C have been investigated. The microstructures of DIs and ADIs were examined by light microscope, whereas the fractured surfaces were observed by scanning electron microscope. The ADI materials have higher impact energies compared with DIs in an as-cast condition. In addition, the transition curves for ADIs are shifted towards lower temperatures. The fracture mode of Dls is influenced by a dominantly pearlitic matrix, exhibiting mostly brittle fracture through all temperatures of testing. By contrast, with decrease of temperature, the fracture mode for ADI materials changes gradually from fully ductile to fully brittle.

  4. Effect of Water on Ductility and Fatigue Strength of Austempered Ductile Cast Iron (adi)

    Science.gov (United States)

    Yakushiji, Terutoshi; Ferguson, W. George; Goto, Masahiro

    In order to study the mechanism of decreasing tensile strength and elongation of Austempered Ductile Cast Iron (ADI) in the wet condition, various tension tests and impact tests were carried out. Three point bending fatigue tests were carried out on ADI and annealed 0.55% carbon steel to clarify the influence of water on fatigue strength. The main conclusions are as follow. Embrittlement by water begins when plastic deformation starts in a tension test. The fatigue limit of ADI in water showed a lower value than that in air. The influence of a water environment on fatigue behaviour was similar to that of annealed 0.55% carbon steel. Embrittlement such as that in a tension test was not observed in a fatigue test.

  5. Determination of the fatigue limit of an austempered ductile iron using thermal infrared imagry

    Science.gov (United States)

    Geraci, Alberto L.; La Rosa, Guido; Risitano, Antonino; Grech, Maurice

    1995-12-01

    Previous work by the authors showed that the endurance limit of specimens, or mechanical components, can be predicted using thermal infrared imagery. The new technique enables the determination of the fatigue strength limit in a comparatively short period of time (few thousands cycles), and using very few specimens (theoretically only 1). The present work applies this technique to rotating-bending test specimens of austempered ductile iron, an alloy whose fatigue limit is, due to the high scatter dispersion of the data points and the long testing period required, generally difficult to determine by the traditional technique. This material exhibited higher fatigue strength than the familiar nodular cast iron. This was confirmed by the results derived from the traditional Wohler test and the new technique, and supported by the data gathered from literature.

  6. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Gulzar, A. [Materials Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ali, G. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Mahmood, M. [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Ajmal, M. [Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore (Pakistan)

    2009-07-30

    Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe{sub 3}C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.

  7. Austempered Ductile Iron Manufacturing Data Acquisition Process with the Use of Semantic Techniques

    Directory of Open Access Journals (Sweden)

    Wilk-Kołodziejczyk D.

    2016-12-01

    Full Text Available The aim of this work was to propose a methodology supporting the task of collecting the comparative data on studies of the mechanical properties of ADI. Collecting of research data is an important step in the process of finding the optimum design solutions for newly made products - experimental data allow us properly calibrate the manufacturing process of ADI to let the final product achieve the required properties. Parameters of the ADI production process, i.e. the time and temperature of austenitising and austempering, as well as the alloying elements added to ductile iron affect the ADI properties. The design process can use research data collected, among others, from the Web. As stated in the article, the process of data acquisition can be supported by semantic technologies, including ontologies which are descriptive logic formalism.

  8. Effect of initial microstructure on the activation energy of second stage during austempering of ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Cambranis, R.E.; Narvaez Hernandez, L. [UASLP, San Luis Potosi (Mexico). Instituto de Metalurgia; Cisneros-Guerrero, M.M. [Inst. Tecnologico de Saltillo (Mexico). Dept. Metal-Mecanica; Perez-Lopez, M.J. [Inst. Tecnologico de Zacatecas (Mexico)

    1998-03-13

    The good balance among mechanical properties of austempered ductile irons (ADI) mainly depends on the matrix microstructure, which basically consists of acicular ferrite and carbon-enriched austenite. This structure is produced by isothermal transformation of the austenite over the temperature range of 523 to 673 K. It is well accepted that during the isothermal holding, the transformation takes place in two stages. In the first stage, the austenite decomposes into acicular ferrite and carbon-enriched austenite. When the austenite is transformed at temperatures higher than 623 K, the acicular ferrite is free of carbides; at temperatures below 623 K, besides the formation of the acicular ferrite and austenite, precipitation of carbides takes place over the plates of the acicular ferrite. The mixture of ferrite and austenite is known as ausferrite being the responsible for the good mechanical properties of ADI. In this work, the ausferrite obtained above and below 623 K will be termed high and low temperature ausferrite respectively. Although ausferrite does not transform at room temperature, it is not a thermodynamically stable structure. Consequently, if the isothermal holding is extended, or if ADI is heated at high temperatures (523 to 800 K), the second stage of the austempering reaction will occur. During this stage, the carbon rich austenite will decompose into ferrite and carbides. In order to establish the maximum working temperature of ADI, it is necessary to characterize the thermal stability of ausferrite microstructure, since once stage II takes place, the mechanical properties, in particular ductility and toughness, are adversely affected. In the present work the influence of previous ausferrite microstructure (that obtained during first stage) of an alloyed ductile iron (0.6%Ni, 0.15%Mo) on the empirical activation energy of stage II is studied.

  9. The effect of manganese on the onset of the stage 2 reaction in an austempered ductile iron matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, K. N.

    1990-02-01

    Austempered ductile irons (ADIs) possess a unique combination of toughness and ductility plus high strength which make them attractive alternatives to other metal castings. ADIs can have tensile strengths up to 230 ksi with a 1% elongation and high hardness for wear resistant applications, or tensile strengths of approximately 150 ksi and elongations of 14% where a large amount of ductility is required. Austempering is a two step process: complete transformation to the austenite ({gamma}) phase; and a quench and hold in the temperature range of 270--420{degree}C for some time followed by cooling to room temperature. This quench must be sufficiently rapid to avoid formation of pearlite or ferrite if the best mechanical properties are to be obtained. This thesis presents the results of a number of experiments aimed at determining the effect of Mn on the length of the Stage 1 reaction. (austenite decomposes into bainitie ferrite and high carbon austenite). A basic knowledge of the effects of Mn will yield a more complete understanding of the austempering process for the normal case and also when microsegregation is present. The onset time for Stage 2 (high carbon austenite decomposes into bainitic ferrite plus carbides) in ductile irons is a critical parameter because of the associated degradation of the mechanical properties which result from carbide formation.

  10. Effect of nodule count and austempering heat treatment on segregation behavior of alloying elements in ductile cast iron

    Directory of Open Access Journals (Sweden)

    E. Akbarzadeh Chiniforush

    2016-05-01

    Full Text Available The equilibrium partition ratio, k, has been measured for Mn, Mo, Si, Ni and Cu in a ductile iron with composition (wt.%: 3.45C, 0.25Mn, 0.25Mo, 2.45Si, 0.5Ni and 0.5Cu with different nodule counts obtained from different section sizes of 13, 25, 75 mm in the as cast, austenitized (at 870 °C for times 1, 4 and 6 hours and austempered (at 375 °C for times 1 to 1,440 min samples. Results show that Mn and Mo segregate positively at cell boundaries, but Si, Ni and Cu concentrate in an inverse manner in the vicinity of graphite nodules and there is a depletion of these elements at cell boundaries. Segregation curves for Ni and Cu are more smooth than for Si. Carbide formation has been observed at cell boundaries. Based on the results, the partition ratios for all elements decrease with increasing the nodule count. More carbide with coarser morphology has been observed in the microstructure with a lower nodule count. Austenitization for a longer time can decrease partition ratio, but cannot eliminate it entirely. Increasing the austenitization temperature has the same effect. Austenitizing parameters have no significant effect on carbides volume fraction. The kinetics of austempering is faster in higher nodule counts and subsequently better mechanical properties including higher ductility, strength and toughness have been observed for all austempering conditions studied.

  11. Effect of austempering process on microstructure and wear behavior of ductile iron containing Mn-Ni-Cu-Mo

    Science.gov (United States)

    PourAsiabi, HaMiD; Saghafian, Hasan; Pourasiabi, Hamed

    2013-01-01

    In this work, the effects of austempering time and temperature on the microstructure and sliding wear behavior of a Mn-Ni-Cu-Mo alloyed ductile iron were investigated. Ductile iron samples with the desired chemical composition were cast according to ASTM A897M-1990 Y-block. Wear test samples austenitized at 900 °C for 90 min, were austempered at 260, 290 and 320 °C for 30, 60, 90 and 120 min. The wear tests on samples were conducted by Block-on-Ring testing machine according to ASTM G77-98 standard, at the applied load of 75N and the displacement speed of 3.27 m/s. The results showed that the sample austempered at 260 °C for 90 min exhibited the maximum relative wear resistance in comparison with the as-cast sample. The X-ray diffraction patterns of wear debris and the SEM observations of worn surfaces and crosssection of worn surfaces together with wear debris showed that delamination associated with oxidation is the dominant wear mechanism in the samples.

  12. Grinding Wear Behaviour of Stepped Austempered Ductile Iron as Media Material During Comminution of Iron Ore in Ball Mills

    Science.gov (United States)

    Raghavendra, H.; Bhat, K. L.; Udupa, K. Rajendra; Hegde, M. M. Rajath

    2011-01-01

    An attempt has been made to evaluate the suitability of austempered ductile iron (ADI) as media material for grinding iron ore in a ball mill. Spheroidal graphite (S.G) iron balls are austenitised at 900° C for 60 minutes and given stepped austempering treatment at 280° C for 30 minutes and 60 minutes followed by 380° C for 60 minutes in each case. These materials are characterised by measuring hardness, analysing X-ray diffraction (X-RD), studying microstructure using optical and scanning electron microscope (SEM). Grinding wear behaviour of these materials was assessed for wear loss in wet condition at different pH value of the mineral slurry and found that the wear rate of grinding media material decreases with increase in pH of the slurry. The wear resistance of ADI balls were compared with forged En31 steel balls and found that the stepped austempered ductile iron is superior to forged En31 steel balls.

  13. Effects of austempering conditions on the microstructures and mechanical properties in Fe-0.9%C-2.3%Si-0.3%Mn steel

    Science.gov (United States)

    Son, Je-Young; Kim, Ji-Hun; Kim, Won-Bae; Ye, Byung-Joon

    2010-06-01

    In this study, the effect of the microstructure and mechanical properties of austempered high-carbon (0.9 %C) high-silicon (2.3 %Si) cast steel were investigated. The specimens were austenitised for 60 min. at 900 °C, and austempered at 260 °C, 320 °C, and 380 °C for periods of time ranging from 30 min to 240 min. After receiving this heat treatment, the mechanical properties were measured using both a tensile test and hardness test. To analyze the microstructure, an optical microscope was used and an X-ray diffraction (XRD) analysis was carried out. In this study, high carbon high silicon cast steel without graphite and with higher tensile strength (1300 MPa to 2200 MPa) and elongation (˜25 %), when compared to austempered ductile cast iron (ADI), was developed. When the austempering temperature was at 260 °C, the microstructures were low ausferrite, but at 380 °C, an upper ausferrite structure was formed. As the austempering temperature increased from 260 to 380 °C, the ultimate tensile strength and hardness decreased, but the elongation and retained austenite volume fraction increased. In addition, the microstructures were coarser.

  14. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J.; Ren, Y.Q.; Zhou, W.H. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Yang, J.R. [Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States)

    2014-05-01

    The contribution of multi-phase microstructure and retained austenite on mechanical properties of austempered and intercritical annealed Fe–0.23C–1.8Mn–1.35Si (wt%) steel was studied. The multi-phase microstructure comprised of intercritical ferrite (IF), bainite/martensite, and retained austenite. During austempering, the retained austenite was stabilized, which was studied using a combination of experimental (XRD, TEM) and thermodynamic analysis. The termination of bainitic transformation combined with carbon rejection into residual austenite during the second step austempering treatment is believed to be the underlying basis for stabilization of retained austenite. This led to significant increase in uniform and total elongation (25% and 36%, respectively) and the product of tensile strength and % elongation was 33 GPa%. The work hardening behavior of retained austenite exhibited a three-stage process such that necking was delayed. The increased work hardening rate is attributed to the multi-phase microstructure and TRIP effect.

  15. FATIGUE PROPERTIES OF AUSTEMPERED DUCTILE IRON (ADI)IN WATER ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Q.Z.Cai; B.K.Wei; Y.Tanaka

    2004-01-01

    The acicular ferrite in austempered ductile iron(ADI)matrix around graphite was corroded preferentially in wet condition,promoting crack origination and propagation and resulting in the disappearance of ADI fatigue limit.ADI fatigue strength was gradually reduced with increasing the time of test and was reduced by 50% in wet condition at 107 cycles compared with the fatigue limit in dry condition.The fatigue strength variation of ferritic ductile iron in wet condition was similar to that of ADI.The ferritic ductile iron,however,has better corrosion resistance so that the fatigue strength was lowered only by 10% in wet condition at 107 cycles compared with the fatigue limit in dry condition.On the other hand,the fatigue limits of A DI and ferritic ductile iron were dropped by 32% and 25% in tap water dipping 480h/dry condition respectively compared with those in dry condition.The reduction of fatigue limit was attributed to corrosion pits formation correlated with stress concentration,resulting in origination and propagation of fatigue crack.

  16. Characterization of microstructural morphology of austempered ductile iron by electron microscopy.

    Science.gov (United States)

    Guo, X L; Su, H Q; Wu, B Y; Liu, Z G

    1998-02-15

    Mechanical properties of austempered ductile iron (ADI) are mainly controlled by its unique microstructure. The objectives of this paper are to characterize the microstructural morphology and the phase distribution of ADI using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and to determine the mechanism of strengthening and toughening of ADI. The experimental results show that, in the microstructure of ADI composing of upper bainite, retained austenite, graphitic nodule, and a small amount of martensite, the upper bainite is composed of sub-units of ferrite in the shape of "wheat ears" on which the "wheat grains" grow at an angle of about 60 degrees to the long axis of the "wheat ears." The retained austenite is connected with each other in the shape of a continuous net. The wheat-ear like bainite with a homogeneous distribution in the continuous austenite net plays an important role to the strengthening and toughening of ADI. The metastable austenite appears in the shape of a large plate in which the martensite is preferentially formed. The appearance of martensite can be suppressed at the time when retained austenite remains stable, which is of benefit to the continuity and homogeneity of austenite net.

  17. The influence of chromium on mechanical properties of austempered ductile cast iron

    Science.gov (United States)

    Bartosiewicz, L.; Singh, I.; Alberts, F. A.; Krause, A. R.; Putatunda, S. K.

    1995-02-01

    An investigation was carried out to examine the influence of microstructure and chromium on the tensile properties and plane strain fracture toughness of austempered ductile cast iron (ADI). The investigation also examined the growth kinetics of ferrite in these alloys. Compact tension and round cylindrical tensile specimens were prepared from ductile cast iron with Cr as well as without Cr. These specimens were then given four different heat treatments to produce four different microstructures. Tensile tests and fracture toughness tests were carried out as per ASTM standards E-8 and E-399. The crack growth mechanism during fracture toughness tests was also determined. The test results indicate that yield strength, tensile strength, and fracture toughness of ADI increases with an increase in the volume fractions of ferrite, and the fracture toughness reaches a peak when the volume fractions of the ferrite are approximately 60% in these alloys. The Cr addition was found to reduce the fracture toughness of ADI at lower hardness levels (<40 HRC); at higher hardness levels (≥40 HRC), the effect of chromium on the fracture toughness was negligible. The crack growth mechanism was found to be a combination of quasi-cleavage and microvoid coalescences, and the crack trajectories connect the graphite nodules along the way.

  18. The Strain-Hardening Behavior of Partially Austenitized and the Austempered Ductile Irons with Dual Matrix Structures

    Science.gov (United States)

    Kilicli, Volkan; Erdogan, Mehmet

    2008-04-01

    In the current study, an unalloyed ductile iron containing 3.50 C wt.%, 2.63 Si wt.%, 0.318 Mn wt.%, and 0.047 Mg wt.% was intercritically austenitized (partially austenitized) in two-phase regions (α + γ) at different temperatures for 20 min and then was quenched into salt bath held at austempering temperature of 365 °C for various times to obtain different ausferrite plus proeutectoid ferrite volume fractions. Fine and coarse dual matrix structures (DMS) were obtained from two different starting conditions. Some specimens were also conventionally austempered from 900 °C for comparison. The results showed that a structure having proeutectoid ferrite plus ausferrite (bainitic ferrite + high-carbon austenite (retained or stabilized austenite)) has been developed. Both of the specimens with ˜75% ausferrite volume fraction (coarse structure) and the specimen with ˜82% ausferrite volume fraction (fine structure) exhibited the best combination of high strength and ductility compared to the pearlitic grades, but their ductility is slightly lower than the ferritic grades. These materials also satisfy the requirements for the strength of the quenched and tempered grades and their ductility is superior to this grade. The correlation between the strain-hardening rates of the various austempered ductile iron (ADI) with DMS and conventionally heat-treated ADI microstructures as a function of strain was conducted by inspection of the respective tensile curves. For this purpose, the Crussard-Jaoul (C-J) analysis was employed. The test results also indicate that strain-hardening behavior of ADI with dual matrix is influenced by the variations in the volume fractions of the phases, and their morphologies, the degree of ausferrite connectivity and the interaction intensities between the carbon atoms and the dislocations in the matrix. The ADI with DMS generally exhibited low strain-hardening rates compared to the conventionally ADI.

  19. Effect of Austempering Time on the Microstructure and Carbon Partitioning of Ultrahigh Strength Steel 56NiCrMoV7

    Directory of Open Access Journals (Sweden)

    Quanshun Luo

    2017-07-01

    Full Text Available Ultrahigh strength steel 56NiCrMoV7 was austempered at 270 °C for different durations in order to investigate the microstructure evolution, carbon partitioning behaviour and hardness property. Detailed microstructure has been characterised using optical microscopy and field emission gun scanning electron microscopy. A newly developed X-ray diffraction method has been employed to dissolve the bainitic/martensitic ferrite phase as two sub-phases of different tetragonal ratios, which provides quantitative analyses of the carbon partitioning between the resultant ferrites and the retained austenite. The results show that, a short-term austempering treatment was in the incubation period of the bainite transformation, which resulted in maximum hardness being equivalent to the oil-quenching treatment. The associated microstructure comprises fine carbide-free martensitic and bainitic ferrites of supersaturated carbon contents as well as carbon-rich retained austenite. In particular, the short-term austempering treatment helped prevent the formation of lengthy martensitic laths as those being found in the microstructure of oil-quenched sample. When the austempering time was increased from 20 to 80 min, progressive decrease of the hardness was associated with the evolution of the microstructure, including progressive coarsening of bainitic ferrite, carbide precipitating inside high-carbon bainitic ferrite and its subsequent decarbonisation.

  20. 关于奥贝球铁及其微观组织术语的探讨—对ADI(AustemperedDuctileIron)我们需要一个正确的中文术语%Discussion on the Term of Austempered Ductile Iron and Its Microstructure - We need a correct Chinese term for the " austempered ductile iron"

    Institute of Scientific and Technical Information of China (English)

    刘金城

    2002-01-01

    论述了等温淬火球铁的工艺及其微观组织.分析了其微观组织与钢中贝氏体的区别.指出ADI(AustemperedDuctileIron)奥贝球铁是一个不恰当的术语.对这种新铸铁,我们需要一个正确的中文术语:奥铁球铁或者称奥氏体等温淬火球铁.

  1. Influence of the amount and morphology of retained austenite on the mechanical properties of an austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Aranzabal, J. [INASMET, San Sebastian (Spain); Gutierrez, I.; Rodriguez-Ibabe, J.M.; Urcola, J.J. [CEIT, San Sebastian (Spain). Dept. of Materials

    1997-05-01

    High Si contents in nodular cast irons lead to a significant volume fraction of retained austenite in the material after the austempering treatment. In the present work, the influence of the amount and morphology of this phase on the mechanical properties (proof stress, ultimate tensile strength (UTS), elongation, and toughness) has been analyzed for different austempering conditions. After 300 C isothermal treatments at intermediate times, the austenite is plastically stable at room temperature and contributes, together with the bainitic ferrite, to the proof stress and the toughness of the material. For austenite volume fractions higher than 25 pct, the proof stress is controlled by this phase and the toughness depends mainly on the stability of {gamma}. In these conditions (370 C and 410 C treatments), the present material exhibits a transformation-induced plasticity (TRIP) effect, which leads to an improvement in ductility. It is shown that the strain level necessary to initiate the martensitic transformation induced by deformation depends on the carbon content of the austenite. The martensite formed under TRIP conditions can be of two different types: autotempered plate martensite, which forms at room temperature from an austenite with a quasi-coherent epsilon carbide precipitation, and lath martensite nucleated at twin boundaries and twin intersections.

  2. Effect of Holding Time in the (α + γ) Temperature Range on Toughness of Specially Austempered Ductile Iron

    Science.gov (United States)

    Kobayashi, Toshiro; Yamada, Shinya

    1996-07-01

    Austempered ductile iron (ADI) finds wide application in the industry because of its high strength and toughness. The QB' process has been developed to produce a fine microstructure with high fracture toughness in ADI. This process involves reaustenitizing a prequenched ductile iron in the (α + γ) temperature range followed by an isothermal treatment in the bainitic transformation tem-perature range. In the present work, the effect of holding time in the (α + γ) temperature range on the structure and un-notched toughness of ADI has been studied. Prior to the austempering treatment, the as-cast ductile iron was heat treated to obtain martensitic, ferritic, and pearlitic matrix structures. In the case of prequenched material (martensitic matrix), the un-notched impact toughness increased as a function of holding time in the (α + γ) temperature range. The reaustenitization heat treatment also resulted in the precipitation of fine carbide particles, identified as (Fe,Cr,Mn)3C. It was shown that the increase in holding time in the (α + γ) temperature range leads to a reduction in the number of carbide particles. In the case of a ferritic prior structure, a long duration hold in the (α + γ) temperature range resulted in the coarsening of the structure with a marginal increase in the tough-ness. In the case of a pearlitic prior structure, the toughness increased with holding time. This was attributed to the decomposition of the relatively stable carbide around the eutectic cell boundary with longer holding times.

  3. Effect of holding time in the ({alpha} + {gamma}) temperature range on toughness of specially austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T.; Yamada, S. [Toyohashi Univ. of Technology (Japan). Dept. of Production Systems Engineering

    1996-07-01

    Austempered ductile iron (ADI) finds wide application in the industry because of its high strength and toughness. The QB{prime} process has been developed to produce a fine microstructure with high fracture toughness in ADI. This process involves reaustenitizing a prequenched ductile iron in the ({alpha} + {gamma}) temperature range followed by an isothermal treatment in the bainitic transformation temperature range. In the present work, the effect of holding time in the ({alpha} + {gamma}) temperature range on the structure and un-notched toughness of ADI has been studied. Prior to the austempering treatment, the as-cast ductile iron was heat treated to obtain martensitic, ferritic, and pearlitic matrix structures. In the case of prequenched material (martensitic matrix), the un-notched impact toughness increased as a function of holding time in the ({alpha} + {gamma}) temperature range. The reaustenitization heat treatment also resulted in the precipitation of fine carbide particles, identified as (Fe,Cr,Mn){sub 3}C. It was shown that the increase in holding time in the ({alpha} + {gamma}) temperature range leads to a reduction in the number of carbide particles. In the case of a ferritic prior structure, a long duration hold in the ({alpha} + {gamma}) temperature range resulted in the coarsening of the structure with a marginal increase in the toughness. In the case of a pearlitic prior structure, the toughness increased with holding time. This was attributed to the decomposition of the relatively stable carbide around the eutectic cell boundary with longer holding times.

  4. Modification during heat treatment and application service of austempered ductile iron parts. ADI buhin no netsushori oyobi shiyochu no henkei

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, T. (Subiyama Co. Ltd., Tokyo (Japan))

    1991-12-25

    Austempered ductile iron (ADI) has a very high mechanical strength, and excellent tenacity and ductility, but has also problems of dimensional changes in ADI parts. This paper describes dimensional changes in ADI parts, and further discusses points requiring cautions on dimensions when using ADI parts. To reduce dimensional changes before and after a heat treatment of an ADI, a use of ferrite is desirable as a texture before the heat treatment. Or otherwise the dimensional change due to heat treatment may be reflected initially on the dimensions before the heat treatment as an effective means of reducing the change. As an ADI varies its dimension-related thermal stability according to its chemical composition and the heat treatment method, parts that need the stability require a consideration to use a low Ni content and extend the austempering time. Since the ADI parts have different thermal expansion coefficient from the conventional ductile cast irons, parts subjected to a temperature rise should be used with considerations given to the thermal expansion difference with the mating parts. 4 refs., 4 figs., 3 tabs.

  5. Effect of austenitizing conditions on the impact properties of an alloyed austempered ductile iron of initially ferritic matrix structure

    Energy Technology Data Exchange (ETDEWEB)

    Delia, M.; Alaalam, M.; Grech, M. [Univ. of Malta (Malta). Dept. of Metallurgy and Materials

    1998-04-01

    The effect of austenitizing conditions on the microstructure and impact properties of an austempered ductile iron (ADI) containing 1.6% Cu and 1.6% Ni as the main alloying elements was investigated. Impact tests were carried out on samples of initially ferritic matrix structure and which had been first austenitized at 850, 900, 950, and 1,000 C for 15 to 360 min and austempered at 360 C for 180 min. Results showed that the austenitizing temperature, T{sub {gamma}}, and time, t{sub {gamma}} have a significant effect on the impact properties of the alloy. This has been attributed to the influence of these variables on the carbon kinetics. Microstructures of samples austenitized at 950 and 1,000 C contain no pro-eutectoid ferrite. The impact properties of the former structures are independent of t{sub {gamma}}, while those solution treated at 1,000 C are generally low and show wide variation over the range of soaking time investigated. For fully ausferritic structures, impact properties fall with an increase in T{sub {gamma}}. This is particularly evident at 1,000 C. As the T{sub {gamma}} increases, the amount of carbon dissolved in the original austenite increases. This slows down the rate of austenite transformation and results in coarser structures with lower mechanical properties. Optimum impact properties are obtained following austenitizing between 900 and 950 C for 120 to 180 min.

  6. Influence of Heat Treatment Conditions on Microstructure and Mechanical Properties of Austempered Ductile Iron After Dynamic Deformation Test

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available In this article, an attempt was made to determine the effect of dynamic load on the austempered ductile iron resistance obtained under different conditions of heat treatment. Tests were carried out on six types of cylindrical ductile iron samples austempered at 320, 370 and 400oC for 30 and 180 minutes. For each type of material, two samples were collected. As a next step in the investigations, the samples were subjected to a Taylor impact test. The samples after striking a non-deformable, rigid target were deformed on their front face. After Taylor test, a series of material tests was performed on these samples, noting a significant increase of hardness in the deformed part. This was particularly well visible in the ductile iron isothermally quenched at higher temperatures of 370 and 400oC. Inthezone of sample deformation, an increase in the content of ferromagnetic phase was also reported, thus indicating the occurrence of martensitic transformation in the microstructure containing mechanically unstable austenite. A significant amount of deformed graphite was also observed, which was a symptom of the deformation process taking place in samples. The ductile iron was characterized by high toughness and high resistance to the effect of dynamic loads, especially as regards the grade treated at a temperature of 370oC.

  7. Effect of low temperatures on charpy impact toughness of austempered ductile irons

    Science.gov (United States)

    Riabov, Mikhail V.; Lerner, Yury S.; Fahmy, Mohammed F.

    2002-10-01

    Impact properties of standard American Society for Testing Materials (ASTM) grades of austempered ductile iron (ADI) were evaluated at subzero temperatures in unnotched and V-notched conditions and compared with ferritic and pearlitic grades of ductile irons (DIs). It was determined that there is a decrease in impact toughness for all ADI grades when there is a decrease in content of retained austenite and a decrease in test temperature, from room temperature (RT) to -60 °C. However, the difference in impact toughness values was not so noticeable for low retained austenite containing grade 5 ADI at both room and subzero temperatures as it was for ADI grade 1. Furthermore, the difference in impact toughness values of V-notched specimens of ADI grades 1 and 5 tested at -40 °C was minimal. The impact behaviors of ADI grade 5 and ferritic DI were found to be more stable than those of ADI grades 1, 2, 3, and 4 and pearlitic DI when the testing temperature was decreased. The impact toughness of ferritic DI was higher than that of ADI grades 1 and 2 at both -40 °C and -60 °C. The impact properties of ADI grades 4 and 5 were found to be higher than that of pearlitic DI at both -40 °C and -60 °C. The scanning electron microscopy (SEM) study of fracture surfaces revealed mixed ductile and quasicleavage rupture morphology types in all ADI samples tested at both -40 °C and -60 °C. With decreasing content of retained austenite and ductility, the number of quasicleavage facets increased from ADI grade 1-5. It was also found that fracture morphology of ADI did not experience significant changes when the testing temperature decreased. Evaluation of the bending angle was used to support impact-testing data. Designers and users of ADI castings may use the data developed in this research as a reference.

  8. Effects of Austempered Temperature on Microstructure and Properties of CADI%等温淬火温度对CADI组织及性能的影响

    Institute of Scientific and Technical Information of China (English)

    孙玉福; 张婷; 赵靖宇; 刘金庆; 吴娜; 徐栩

    2011-01-01

    In this paper, the effects of austempered temperature on the morphology of bainite,contents of retained austenite, mechanical properties and wear resistance of carbide austempered ductile iron (CADI) were researched and the impact fracture mechanism was analyzed. The samples whose as-cast microstructures composed of 75% pearlite+ferrite+10% carbide, were .austenited at 920 ℃ for 1.5 h and then austempered at 240 ℃, 280 ℃ and 320 ℃ for 2 h, respectively.The results show that with the increase of austempered temperature the morphology of bainite changes from needle to featheriness; the residual austenite content increases; the impact toughness increases and the hardness and relative wear resistance reduces. After austempering at the optimal temperature 280 ℃, the microstructure is composed of bainite, 22.33% retained austenite and 10% carbide. Its hardness is HRC 50.9, impact toughness is 32.72 J/cm2, and the relative wear resistance rises by 11% than that of the samples austempered at 320 ℃. The fracture morphology of the CADI exhibits a mixed fracture characteristic.%针对含一定碳化物等温淬火球墨铸铁(CADI),研究了等温淬火温度对贝氏体相形貌、残余奥氏体量、力学性能及耐磨性能的影响,分析了冲击断裂机理.结果表明,对于铸态组织为75%珠光体+铁素体+10%碳化物试样,经920℃×1.5 h奥氏体化后,在240℃,280℃及320℃进行等温淬火处理2h,随着等淬温度的提高,贝氏体的形貌由针状变粗至羽毛状,残余奥氏体量增加,硬度减低,冲击韧度提高,相对耐磨性降低.最佳等温淬火温度为280℃,此热处理工艺后组织为贝氏体+22.33%残余奥氏体+10%碳化物,硬度HRC 50.9,冲击韧度32.72 J/c㎡,断口呈混合断裂特征,相对耐磨性比320℃时增加11%.

  9. A study of several factors governing the fatigue limits of austempered ductile cast iron with various microstructures

    Science.gov (United States)

    Kim, Jinhak; Kim, Sangtae; Kim, Mingun

    2000-06-01

    The effects the leading factors bearing on fatigue limits were investigated with three kinds of ductile iron specimens various microstructures. As a result of examination, the fatigue limits in relationship to hardness and tensile strength, the expected higher improvement for fatigue limits in the case of the high strength specimens that experienced austempering treatment are not observed in comparison with the specimens treated with stress relief treatment. The estimated maximum defect size is one of the important parameters in predicting and evaluating fatigue limits for three different heat-treated ductile cast irons. Also, a quantitative relationship can be established between the fatigue limit and maximum defect size. Moreover, it is possible to explain the difference in fatigue limits in the three ductile cast irons by application of the rates of non-propagating crack which connects the adjacent graphite nodules before it stops.

  10. Fatigue crack growth in austempered ductile and grey cast irons - stress ratio effects in air and mine water

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N. [Plymouth Univ. (United Kingdom). Dept. of Mech. and Marine Eng.; Li Wenfong [Department of Mechanical Engineering, University of Sydney, Sydney, NSW 2006 (Australia)

    1999-06-15

    A study is presented of the effect of stress ratio on fatigue crack growth in grey (GI) and austempered ductile (ADI) cast irons in laboratory air and, for the ADI, in synthetic mine water. Fatigue crack closure was measured by compliance techniques and factored out of the applied {Delta}K values ({Delta}K=K{sub max}-K{sub min}) to give effective stress intensity values. Crack growth rate modelling was then attempted for the laboratory air data using a two-parameter approach ({Delta}K and K{sub max}). This worked well for the ADI, but not for the GI, probably due to the much larger scatter inherent in the fatigue crack growth rates in the latter alloy. Trends in the observed growth rate and closure data for the two alloys are explained in terms of mechanism changes arising from microstructural/crack tip plastic zone interactions, and K{sub max} effects. (orig.) 9 refs.

  11. Effects of Austempering after Hot Deformation on the Mechanical Properties of Hot Rolled Si-Mn TRIP Steel Sheets

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; ZHANG Ping-li; WU Di

    2004-01-01

    Excellent mechanical properties are obtained by austempering after hot deformation without subsequent heat treatment in the present Si-Mn TRIP steel sheets. Isothermal holding time after finishing rolling has affected the mechanical properties of this steel. The results show that the sample exhibits a good combination of ultimate tensile strength and total elongation when it is held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase of isothermal holding time, and a further increase in the holding duration results in a decrease of it. The tensile strength, total elongation and strength ductility reach the maximum values(774MPa, 33% and 25542MPa% respectively) for this sort of hot rolled Si-Mn TRIP steel using the optimal technology.

  12. Isothermal Transformation of Austempered Ductile Iron and ADI Continuous Production Line%等温淬火球铁的等温转变过程及ADI设备

    Institute of Scientific and Technical Information of China (English)

    王蕾; 吴光英

    2012-01-01

    分析了等温淬火球铁(ADI)等温转变过程及影响因素,介绍了奥一贝球铁等温淬火设备,包括推杆式、立式、箱式等温淬火连续生产线,并对国内外等温淬火生产线进行了对比。%The isothermal transformation of austempered ductile iron and main influence factors were described. The austempered ductile iron continuous production lines, including pusher type, vertical type and box type were introduced, and the ADI production lines at home and abroad were compared.

  13. Effect of austenitizing conditions on the impact properties of an alloyed austempered ductile iron of initially ferritic matrix structure

    Science.gov (United States)

    Delia, M.; Alaalam, M.; Grech, M.

    1998-04-01

    The effect of austenitizing conditions on the microstructure and impact properties of an austempered ductile iron (ADI) containing 1.6% Cu and 1.6% Ni as the main alloying elements was investigated. Impact tests were carried out on samples of initially ferritic matrix structure and which had been first austenitized at 850,900, 950, and 1000°C for 15 to 360 min and austempered at 360°C for 180 min. Results showed that the austenitizing temperature, Tγ, and time, tγ, have a significant effect on the impact properties of the alloy. This has been attributed to the influence of these variables on the carbon kinetics. The impact energy is generally high after short tγ, and it falls with further soaking. In samples austenitized at 850 and 900°C, these trends correspond to the gradual disappearance of the pro-eutectoid ferrite and the attainment of fully developed ausferritic structures. In initially ferritic structures, the carbon diffusion distances involved during austenitization are large compared to those in pearlitic structures. This explains the relatively long soaking periods required to attain fully ausferritic structures, which in spite of the lower impact energy values, have a better combination of mechanical properties. Microstructures of samples austenitized at 950 and 1000°C contain no pro-eutectoid ferrite. The impact properties of the former structures are independent of tγ, while those solution treated at 1000°C are generally low and show wide variation over the range of soaking time investigated. For fully ausferritic structures, impact properties fall with an increase in Tγ. This is particularly evident at 1000°C. As the Tγ increases, the amount of carbon dissolved in the original austenite increases. This slows down the rate of austenite transformation and results in coarser structures with lower mechanical properties. Optimum impact properties are obtained following austenitizing between 900 and 950°C for 120 to 180 min.

  14. Effect of Phenomena Accompanying Wear in Dry Corundum Abrasive on the Properties and Microstructure of Austempered Ductile Iron with Different Chemical Composition

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2015-04-01

    Full Text Available The research described in this article is a fragment in the series of published works trying to determine the applicability of new materials for parts of the mining machinery. Tests were performed on two groups of austempered ductile iron - one of which contained 1.5% Ni and 0.5% Mo, while the other contained 1.9% Ni and 0.9% Cu. Each group has been heat treated according to the three different heat treatment variants and then the material was subjected to detailed testing of mechanical properties and abrasion wear resistance, measuring also hardness and magnetic properties, and conducting microstructural examinations. The results indicated that each of the tested materials was senstive to the surface hardening effect, which resulted in high wear resistance. It has been found that high temperature of austempering, i.e. 370°C, favours high wear resistance of ductile iron containing nickel and molybdenum. Low temperature of austempering, i.e. 270°C, develops high wear resistance in ductile iron containing nickel and copper. Both these materials offer completely different mechanical properties and as such can be used for different and specific applications.

  15. The Application of Acoustic Emission and Artificial Neural Networks in an Analysis of Kinetics in the Phase Transformation of Tool Steel During Austempering

    Directory of Open Access Journals (Sweden)

    Łazarska M.

    2017-06-01

    Full Text Available During the course of the study it involved tool steel C105U was used. The steel was austempered at temperatures of 130°C, 160°C and 180°C respectively. Methods of acoustic emission (AE were used to investigate the resulting effects associated with transformations and a large number of AE events were registered. Neural networks were applied to analyse these phenomena. In the tested signal, three groups of events were identified of: high, medium and low energy. The average spectral characteristics enabled the power of the signal spectrum to be determined. After completing the process, the results were compiled in the form of diagrams of the relationship of the AE incidence frequency as a function of time. Based on the results, it was found that in the austempering of tool steel, in the first stage of transformation midrib morphology is formed. Midrib is a twinned thin plate martensite. In the 2nd stage of transformation, the intensity of the generation of medium energy events indicates the occurrence of bainite initialised by martensite. The obtained graphic of AE characteristics of tool steel austempering allow conclusions to be drawn about the kinetics and the mechanism of this transformation.

  16. Application of austempered ductile iron for lightening the automotive chassis%高性能球墨铸铁在汽车底盘轻量化中的应用

    Institute of Scientific and Technical Information of China (English)

    吴华锋; 张金根

    2012-01-01

    Development and excellent performance of austempered ductile iron were introduced. Application trends and conditions of austempered ductile iron for the auto classis were analyzed in order, to lighten its weight. And finally, the austempered ductile iron application in practical production were introduced.%介绍了高性能球墨铸铁的发展现状及优异性能,并结合汽车轻量化需求,分析了等温淬火球墨铸铁材料在汽车底盘上的应用趋势,最后介绍了等温淬火球墨铸铁在实际生产中的应用。

  17. Isothermal Quenching Temperature and Time on Microstructure and Mechanical Properties Effect of Austempered Ductile Iron%等温淬火温度和时间对奥贝球铁组织性能的影响

    Institute of Scientific and Technical Information of China (English)

    吴秋敏; 袁延彬; 李广路

    2012-01-01

    本文通过工艺试验,介绍了奥贝球铁在等温淬火的不同温度下的变化情况及对其切削性能的影响。给出了最佳等温淬火温度和时间。%This article, through process test. introduced changing conditions and its cutting performance of austempered ductile iron in the isothermal quenching ureter different temperatures, giving the optimal austempering temperature and time.

  18. Microstructures and Mechanical Properties of Helical Bevel Gears Made by Mn-Cu Alloyed Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng-fa; CHEN Yang; CHEN Xin; MIAO Hua-ming

    2012-01-01

    Austempered ductile iron (ADI) has several advantages of replacing cast steel and forged steel in many engineering fields. A new Mn-Cu alloyed ADI with excellent mechanical properties has been developed in order to cut the cost and enlarge the application of ADI. The helical bevel gears were made of the new-developed Mn-Cu alloyed ADI. The microstructure and mechanical properties of the standard sample were investigated by optical microscope (OM), scanning electron microscope (SEM) and performance measurement. The results showed that after a series of treatments, the mechanical properties (Rm 1007. 4 to 1200 MPa, A 5.2% to 8. 8%, HRC 32 to HRC 35, O~K 70 to 120 J/cmz ) of the Mn-Cu alloyed ADI standard sample could reach European standard EN1564-97/ EN-CJS-1000-5. The surface hardness after helical bevel gears meshing was significantly increased due to the formation of martensite. The bench test and traffic running testing results suggested that the new Mn-Cu alloyed ADI with ultimate life and median life respectively exceeding 30×104 and 50 × 10^4 times could replace 20CrMnTi forged steel for manufacturing the EQ140 helical bevel gears.

  19. Corrosion behaviour and structure of the surface layer formed on austempered ductile iron in concentrated sulphuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, H. [AGH University of Science and Technology, Department of Foundry Engineering, ul. Reymonta 23, 30-059 Cracow (Poland)]. E-mail: krawiec@uci.agh.edu.pl; Stypula, B. [AGH University of Science and Technology, Department of Foundry Engineering, ul. Reymonta 23, 30-059 Cracow (Poland); Stoch, J. [Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences (PAS), ul. Niezapominajek 8, 30-239 Cracow (Poland); Mikolajczyk, M. [Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences (PAS), ul. Niezapominajek 8, 30-239 Cracow (Poland)

    2006-03-15

    The aim of this paper is to investigate the structure of the surface layer formed on austempered ductile iron (ADI) after exposure to hot concentrated sulphuric acid at the open circuit potential value (OCP). The results derived from polarization measurements carried out in sulphuric acid at a temperature of 90 deg. C show that anodic dissolution of ADI is divided into three stages (corresponding to three anodic dissolution peaks). The structure of the layer formed on alloys at 90 deg. C at OCP was investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). SEM analysis shows that the main elements of the surface layer are iron, silicon, oxygen, sulphur, and carbon. The binding energy recorded in individual bands indicates that the surface layer includes mainly SiO{sub 2} and FeOOH. The presence of sulphur at the lower oxidation state (S{sup 2-}) indicates that sulphuric acid undergoes reduction during this process. The corrosion resistance of these alloys is connected with the presence of SiO{sub 2} in the surface layer.

  20. Microstructure and Mechanical Properties of 50SiMnNiNb Steel by a Novel Quenching-Partitioning-Austempering Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    LI Hongyan; JIN Xuejun

    2009-01-01

    For the purpose of reducing weight of steel parts, save raw materials and keep or even improve safety standards, the development of advanced high strength steels is increasingly demanded in the automotive industry and engineering applications. We have proposed a novel heat treatment (quenching-partitioning-austempering treatment, Q-P-A) to obtain steel parts with high strength and good ductility. The Q-P-A process is intended to produce microstructure consisted of carbon-depleted martensite, carbon-enriched retained austenite and nanostructured bainite. Quenching(Q) treatment fabricates mixed microstructure of carbon-supersaturated martensite and certain amounts of untransformed austenite. Partitioning(P) thermal treatment accomplishes fully diffusing of carbon from the supersaturated martensite phase to the untransformed austenite phase and enriching the amount of carbon in untransformed austenite. Further low-temperature austempering(A) process induces incredible thin bainite from the carbon-enriched untransformed austenite. A study of the microstructure and mechanical properties of 50SiMnNiNb steel subjected to the novel Q-P-A treatment is presented. Microstructure is assessed by optical microscope(OM), field emission scanning electron microscope(FESEM) and transmission electron microscope(TEM), and the corresponding mechanical properties are measured. The experimental results indicate that attractive mechanical properties of steels during the Q-P-A process are attributed to the complex multi-phase structure. Slender plates of bainite with 20-40 nm thick are generated in the medium carbon steel. Meanwhile, with increasing of the volume fraction of nanostructured bainite, yield strength of steel parts is increased with little degradation of ultimate tensile strength. In this paper, a novel quenching-partitioning-austempering heat treatment is proposed, and the attractive mechanical properties of steels are obtained during the Q-P-A process.

  1. Comportamiento del hierro nodular austemperizado en condiciones de corrosión y desgaste // Behavior of austempered ductile iron under wear and corrosion conditions

    Directory of Open Access Journals (Sweden)

    L. Goyos Pérez

    1999-07-01

    Full Text Available Los hierros nodulares en general y los austemperizados en particular han sido usados con cada vez mayor frecuencia debido asus relevantes propiedades mecánicas en comparación con su costo.En el presente trabajo se valora el comportamiento del hierro nodular ante el trabajo en condiciones de desgaste y corrosión,luego de ser sometido a diferentes tratamientos de austemperizado.Fueron usados un hierro nodular aleado con níquel y molibdeno y otro no aleado. Ambos hierros fueron sometidos a diferentestratamientos de austemperización con mantenimientos isotérmicos a temperaturas entre 250°C y 425°C por tiempos entre 15 y180 minutos.Las muestras tratadas fueron sometidas a ensayos de desgaste por fricción en condiciones no lubricadas determinando laspendientes de desgaste uniforme para cada caso. La resistencia a la corrosión fue determinada mediante el métodopotenciométrico usando como medio el jugo de caña sintético.A partir de los resultados obtenidos se valora la influencia de los diferentes tratamientos sobre las propiedades estudiadas y sedeterminan los más efectivos desde el punto de vista técnico económico.Palabras claves: Hierro nodular, corrosión, desgaste, austemperizado.____________________________________________________________________________AbstractNodular irons and particularly austempered ductile iron has been used more and more due to their excellent mechanicalproperties in comparison with their cost.Presently work deals on behavior of nodular iron working under wear and corrosion conditions, after being submitted todifferent austempered treatments.A nodular iron alloyed with nickel and molybdenum were used as well as a not alloyed one. Both irons were treated underdifferent austempered treatment combinations using isothermal maintenance to temperatures between 250°C and 425°C andspending times between 15 and 180 minutes.Samples were submitted to non-lubricated wear using a “pin on disk” method evaluating the

  2. Effects of austempered temperature on corrosive wear behavior of carbidic austempered ductile iron%淬火温度对含碳化物等温淬火球墨铸铁耐腐蚀磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    李国禄; 董天顺; 刘金海; 张建军

    2014-01-01

    In order to study the effects of austempered temperature on corrosive wear behaviors of carbidic austempered ductile iron (CADI), the CADI was prepared, and the wear corrosion resistance test was conducted in acid medium, neutral medium and alkaline medium, respectively. The results show that in acid medium and alkaline medium, the mass loss of CADI first increased and then decreased with increasing austempered temperature. But in neutral medium, the mass loss of CADI increased gradually with increasing austempered temperature. The performance of corrosion wear resistance of CADI in acid medium is inferior to that in alkaline medium and neutral medium. While the performance of corrosion wear resistance of CADI is obviously superior to that of low chromium white cast iron under different pH values medium. Therefore, CADI is a material with good property of corrosion wear resistance.%通过等温淬火获得含碳化物等温淬火球墨铸铁(carbidic austempered ductile iron,简称CADI),并分别在中性、酸性和碱性腐蚀介质中进行腐蚀磨损实验,研究淬火温度对CADI在不同腐蚀介质中耐腐蚀磨损特性的影响,并与低铬铸铁进行对比。结果表明:在酸性和碱性介质中,CADI 的质量磨损随等温淬火温度升高先增加,然后再减少;在中性介质中,CADI 的质量磨损随等温淬火温度升高而逐渐增加;CADI 在酸性介质中的耐腐蚀磨损性能相对较差;CADI在不同pH值溶液中的耐磨损性能均优于低铬铸铁,是一种优良的耐腐蚀磨损材料。

  3. Study of the influence of Cu and Ni on the kinetics of strain-induced martensite in austempered ductile cast iron; Estudio de la influencia del Cu y Ni en la cinetica de transformacion martensitica inducida por deformacion en fundiciones nodulares austemperadas

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D.; Navea, L.; Garin, J.; Aguilar, C.; Guzman, A.

    2013-09-01

    The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability. (Author)

  4. Estudio experimental sobre el comportamiento del hierro austemperado nitrurado (adi a la fatiga de contacto. // Experimental study to contact fatigue behavior of nitrided-austempered ductile iron.

    Directory of Open Access Journals (Sweden)

    C. Figueroa

    2001-10-01

    Full Text Available En el presente trabajo se muestra un estudio sobre el hierro fundido austemperado nitrurado sometido a pruebas de fatiga decontacto. El mismo se austenitizó y austemperó a las temperaturas de 900 y 3800C respectivamente, seleccionándose enambos casos un tiempo de 2 horas. Después se le aplicó un proceso de nitruración gaseosa a 5700C durante 6 horas.Las experiencias fueron realizadas en una máquina para el ensayo de fatiga de contacto con discos. Las presionesHertzianas utilizadas fueron de 1.73, 1.78, 2.04, 2.41, 2.46 y 2.71 GPa.La composición de fases se determinó utilizando la difracción de rayos X, evidenciándose la presencia de los compuestos e(Fe2-3N y g¢ (Fe4N. Los defectos tales como: pittings spalls y grietas fueron observados por medio de la microscopíaelectrónica de barrido (SEM. Los resultados indicaron que la capa nitrurada entre 5 y 6 micras de espesor desaparece bajola acción de las presiones de contacto. Por otra parte se pudo detectar una disminución de la resistencia a la fatiga en el ADInitrurado cuando fueron utilizadas bajas presiones Hertzianas También se comprobó que los nódulos de grafito actúancomo barreras a la propagación de grietas.Palabras claves: Fatiga de contacto, Capa nitrurada, hierro dúctil austemperado, máquina de fatiga condiscos, rayos X._____________________________________________________________________AbstractThis paper presents a study on the behavior of nitrided austempered ductile iron (ADI under contact fatigue tests. ADI wasaustenitized at 9000C for 2 hours and austempered at 380oC for 2 hours. Later, the ADI was nitrided at 570oC for a periodof 6 hours.The contact fatigue tests were carried out using a disc test machine. Hertzian pressures of 1.73, 1.78, 2.04, 2.41, 2.46 and2.71 were used during the tests.The phase composition of nitride layer was determined using X-ray analysis, which detected the presence of the e and g¢phases. The pitting, spalls and cracks that appeared

  5. Caracterización de la capa de boruros formada durante la austenización de un hierro nodular austemperizado//Characterization of borides coating formed during austenitization of an austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Urbano Ordóñez‐Hernández

    2015-01-01

    Full Text Available En este trabajo se ha investigado el efecto de la austenitización y el borurado simultáneos, a 950 ºC, en la microestructura, la microdureza Vickers y el espesor de la capa borurada en medio líquido de un hierro nodular austemperizado no aleado. Se demostró que es posible obtener una capa de boruros de hierro muy bien estructurada con la microdureza Vickers suficientemente alta (1400 HVy con adecuado espesor de capa de 67 μm, sobre un sustrato de ausferrita típico de las fundiciones nodulares austemperizadas. Por medio de un ensayo pin on disc modificado, se comprobó la superior resistencia al desgaste abrasivo de la capa de boruros depositada durante la austenización del ADI, comparada con la máxima obtenida durante el austempering de éste sin aplicar el recubrimiento.Palabras claves: hierro nodular, borurado, austenización, austemperizado.______________________________________________________________________________AbstractThe effect of simultaneous austenitization and boriding at 950 ºC, on microstructure, Vickers hardness and boronized layer thickness of a non alloyed austempered ductile iron has been investigated. It was demonstrated that it is possible to obtain a well formed boronized layer with a Vicker hardness sufficiently high (1400 HV, and with an appropriated 67μm layer thickness, on a typical ausferrite ADI substrate. By using a modified pin on disc test, it was demonstrated the higher abrasion wear resistance of borides layer deposited during ADI austenitization process, compared with Vickers hardness of low temperature noncoated austempered ductile iron.Key words: ductile iron, boriding, austenitization, austempering.

  6. Research of Austempered ductile Iron Gears in Diesel Engine%奥贝球铁齿轮在柴油机上的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘海霞; 傅明喜; 孙少纯; 司乃潮; 杨永涛; 陈柏林; 钱鲁阳

    2001-01-01

    The influences of different austemper temperatures,content of manganese,silicon,copper and molybdenum on the microstructures and mechanical properties of austempered ductile iron (ADI) were studied.The effects of work hardening on machinablities of ADI were also discussed.Meanwhile some ADI gears replaced the 40Cr hardened and tempered steel gears in a diesel engine to test their functions of reducing noise and wear resistance.It was found that the mechanical properties of ADI gears were higher than that of 40Cr hardened and tempered steel gears.The ADI gears decreased the working noise of the whole diesel engine by 1.92dB and the noise in side of the gears by 5.3dB.After 45 hours' run-in and 200 hours' continuous operation in demarcated conditions,there was no abnormal wear in the ADI gears and there still existed allowance of 0.13mm between limit gap and gear gap.So the frictional wear properties of ADI gears were qualified and the ADI gears produced could meet the design and appilication requirements.%研究了不同等温温度及Mn、Si、Cu、Mo对奥贝球铁组织和力学性能的影响,讨论了奥贝球铁加工硬化对机加工性能的影响。同时,将奥贝球铁齿轮代替40Cr调质钢齿轮进行装机试验,对降噪声和耐磨性进行了测试。结果表明,奥贝球铁齿轮与40Cr调质钢齿轮相比,力学性能高,柴油机整机噪声下降1.92dB,齿轮侧噪声下降5.3dB。奥贝球铁齿轮经过45h磨合后,在标定工况下连续运转200h,齿轮无异常磨损,齿轮间隙离极限间隙还有0.13mm的余量,所以其摩擦磨损性能合格,所生产的奥贝球铁齿轮满足设计使用要求。

  7. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  8. Comparison of High-Temperature Properties and Thermal Shock Resistance of Austempered Ductile Irons (ADI) with Those of Pearlitic Ductile Cast Irons

    Science.gov (United States)

    Ajabshiri, Mehrdad; Sharafi, Shahriar; Moeini, Alireza

    2012-01-01

    High-temperature strength and thermal shock resistance of austempered ductile iron (ADI) in high temperatures because of instability of ausferrite phase has been less interest. The aim of this study is to investigate the tensile properties of ADI and pearlitic ductile cast iron by using the short-time tensile test in high temperatures. Tensile test was conducted in temperatures of 298 K, 673 K, 873 K, and 1073 K (25 °C, 400 °C, 600 °C, and 800 °C). Thermal shock test also was conducted by using the molten lead bath at 1273 K (1000 °C). In this experiment, samples of pearlitic ductile cast iron and ADI were divided in two groups; that after immersing in the molten lead bath for 25 seconds, one group was cooled in the air and other one was quenched in the water. Results showed that strength and thermal shock resistance of ADI samples are higher than those of the pearlitic ductile cast iron.

  9. 等温淬火球铁热处理工艺参数的优化方法%Optimization Method of Heat Treatment Parameters for Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    王洪; 郭旭红; 王伟

    2011-01-01

    等温淬火球铁(ADI)作为性能可设计材料,其热处理工艺参数的优化设计是开发性能优良的ADI材料的关键.在不改变热处理生产条件的基础上,采用不同的等温淬火温度和时间,分别制作出不同力学性能检测数据的各种试样,并将实验数据用于建立热处理工艺参数与力学性能的模糊减法聚类函数模型.以抗拉强度、冲击韧度、硬度等力学性能为用户需求目标,等温淬火温度和时间为可设计变量,采用NSGA Ⅱ遗传算法作为优化算法进行优化计算.结果表明:用这种方法设计满足ASTM3,ASTM4级力学性能要求的热处理参数,可以得到最佳的等温淬火预测温度和时间分别为333℃,136 min和312℃,132 min.%Austempered ductile iron (ADI) is a performance designable material. The optimization design of its heat treatment parameters is the key to develop a good performance ADI material. The fuzzy subtractive clustering function model about the heat treatment parameter and mechanical properties was built using experiment data on the base of no changing the production conditions of heat treatment, various ADI samples with test data of different mechanical properties were made at the different austempering temperatures and time. The heat treatment parameters were chosen by taking tensile strength, impact toughness and hardness as objective of eustomers demand, taking austempering temperature and time as designable variables, and using the NSAG Ⅱ genetic algorithm as optimization algorithm. The results show that this method can satisfy the parameters of heat treatment required by mechanical properties ASTM grade 3 and 4, and can get the best prediction austempering temperature and time ,which are respectively 333 ℃ ,136 min and 312 ℃ ,132 min.

  10. Effect of Shot Peening Process on Fatigue Behavior of Alloyed Austempered Ductile Iron%喷丸强化对合金化奥贝球铁疲劳性能的影响

    Institute of Scientific and Technical Information of China (English)

    Amir Sadighzadeh Benam; Sasan Yazdani; Behzad Avishan

    2012-01-01

    喷丸处理是改进金属工件疲劳性能最常规的表面处理方法.文中研究了喷丸处理对合金化奥贝球铁(ADI)疲劳性能的影响.等温淬火包括875℃保温90 min奥氏体化处理,然后在320℃、365℃和400℃进行等温处理.用直径0.4~0.6mm的丸喷丸后的试样做旋转弯曲疲劳试验.对试样进行XRD和SEM分析,测定显微硬度和粗糙度,研究试样的疲劳性能.结果表明,在320℃、365℃和400℃等温处理的试样喷丸后疲劳强度分别增加了27.3%、33.3%和48.4%.%Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI) has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min and following austempering at 320 ℃, 365 ℃ and 400 ℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 to 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320 ℃, 365 ℃ and 400 ℃ are increased by 27.3%, 33.3% and 48.4%, respectively after shot peening process.

  11. 水附着状态下奥贝球铁的拉伸性能及断裂机制%The Tensile Properties of Austempered Ductile Iron in Condition of Contact with Water and its Fracture Mechanism

    Institute of Scientific and Technical Information of China (English)

    蔡启舟; 魏伯康; 林汉同; 田中雄一

    2001-01-01

    The tensile properties of austempered ductile iron (ADI) were tested in condition of contact with water and its fracture mechanism was investigated in this paper. Both tensile strength and elongation of the iron were decreased drastically, it exhibited remarkable water-embrittlement in condition of contact with water. Especially, ADI austempered specimens of the iron in process window showed more remarkable embrittlement than others. White spot region regarded as fracture initiation point was observed on fracture surface tested in contact with water. From this result, it was suggested that embrittlement behavior of ADI resulted from a local embrittlement near the surface of specimen during plastic deformation and it led to a rapid fracture of the entire specimen.%研究结果表明,水附着状态下,奥贝球铁的抗拉强度和伸长率显著降低,发生明显的脆化现象,特别是在工艺窗口内等温淬火处理的试样脆化更显著。经断口分析发现,这种脆化现象是水附着拉伸试样在塑性变形初期,表面附近产生了脆性断裂区域,作为试样破坏的起点,导致试样早期断裂而造成的。

  12. Wear resistance studies of an austempered ductile iron with the aid of a single pass grooving pendulum; Estudo do comportamento em desgate de um ferro fundido nodular austemperado atraves da tecnica da tecnica de esclerometria pendular

    Energy Technology Data Exchange (ETDEWEB)

    Velez, J.M.; Tschiptschin, A.P. [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1995-12-31

    The abrasive wear resistance of an austempered ductile iron was studied with the aid of a single pass grooving pendulum. Specimens were austenitized at 860 deg C and austempered at 370 deg C for 30, 60, 90, 180 and 240 min. Austenite transformation kinetics was measured by quantitative metallography. Specimens for pendulum tests were gridded as squared based prisms (50 mm x 10 mm x 10 mm) and one of the faces submitted to metallographic polishing before the test. A hard metal cutting tool was used as abrasive. The absorbed energy as well as the loss of matter were measured. Scanning Electron Microscopy was used to analyze the surface topography of the scratched specimen. It was observed a maximum in the absorbed specific energy for the specimen treated for 60 min. with a microstructure of bainite ferrite plus plus 42% volume fraction of retained austenite. All other structures (ferrite plus carbides, ferrite plus lower contents of austenite and martensite plus austenite) gave lower values of absorbed specific energy. Observation of scratches and chips formed on the surface of the specimen can explain the above mentioned behaviour 12 refs., 11 figs., 2 tabs.

  13. Rolling Wear and Damage Properties of Austempered Ductile Iron%等温淬火球墨铸铁滚动磨损与损伤性能

    Institute of Scientific and Technical Information of China (English)

    付志凯; 王文健; 丁昊昊; 顾凯凯; 刘启跃

    2015-01-01

    利用不同热处理方式和球化工艺,获得两种显微组织和不同硬度的等温淬火球墨铸铁(Austempered Ductile Iron,ADI)材料,利用MMS-2A微机控制摩擦磨损试验机对比研究了两种等温淬火球墨铸铁材料、车轮材料与U71Mn钢轨匹配时的滚动磨损与损伤性能.结果表明:ADI材料与U71Mn钢轨匹配时的摩擦因数明显小于车轮材料;由于ADI材料具有自润滑效果导致其磨损率明显小于车轮材料,ADI材料的自润滑性能也降低了对摩副U71Mn钢轨的磨损率,其中含有较大球状石墨和较少残余奥氏体的ADI2材料和对摩副U71Mn钢轨的磨损率最小;ADI材料的磨损机制主要表现为轻微疲劳磨损,对摩副U71Mn钢轨的磨损机制主要表现为黏着和轻微疲劳磨损,而轮轨材料匹配时的塑性流动层显著,损伤以表面疲劳裂纹和剥层损伤为主.

  14. Efecto del conteo de nódulos en la resistencia a la tracción de los hierros dúctiles austemperados. // Effect of nodules count in the tensile strength of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2004-01-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nódular ocupa uno de los lugaresmás importantes entre los hierros fundidos de alta resistencia y con la introducción del tratamiento térmico deaustemperado, aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteos de nódulos, a los que lesfue aplicado el tratamiento de austemperado y posteriormente se les sometió a ensayos de propiedades mecánicas detracción.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichas propiedades, así comotambién, de la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas.Palabras claves: Hierro nódular, conteo de nódulos, austemperado.____________________________________________________________________________Abstract.At the present, iron production with nodular graphite, occupies one of the most important places in the production ofmetallic materials high resistance. The introduction of the austempered heat treatment, gives rise to a new family ofmaterials, characterized by its high mechanical resistance and elevated tenacity, this family maintain the economy andfacility of production of the smeltings nodules. This work, makes a valuation of the nodules iron behavior, with differentnumber of nodules, to which the austempered treatment was applied, in order to test mechanical properties. With theobtained results, an analysis is carriewd out to control the influence of the count of nodules in these properties, as well as,the interrelation of the count of nodules with the used heat treatment variables in the samples.Key words: nódular Iron, count of

  15. Effects of Austempered Temperature On Microstructure and Properties of Tungstenic CADI%盐浴温度对含钨CADI材料组织和性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱耀; 李继林; 李永杰; 赵明纯

    2016-01-01

    将含钨的碳化物的等温淬火球墨铸铁(Carbidic Austempered Ductile Iron简称CADI)铸件在900℃高温奥氏体化后,在盐浴不同温度等温处理及保温不同的时间,对试样作力学性能和耐磨性对比测试.结果表明,当盐浴温度为280℃时硬度最高,耐磨性最好.但冲击韧度较小;当温度提高到340℃,C曲线左移,贝氏体晶粒粗化,试样的硬度下降此时材料的冲击韧度最好.

  16. Effects of Graphite Form and Amount on Performance of Austempered Ductile Iron%石墨形态和数量对奥-贝球铁性能的影响

    Institute of Scientific and Technical Information of China (English)

    许太平; 徐伟; 蔡彦强; 贾连杰

    2013-01-01

    For the austempered ductile iron as required by tensile strength ≥1200MPa, elongation after fracture≥1% and energy absorption (sample without notch)≥35J, if its spheroidization rate is lower than level 3, the spheroidal graphite is thicker than level 6 and its amount per mm2 is less than 180, its mechanical performance after isothermal treatment will be difficult to suit the specification requirements.%对于要求抗拉强度≥1200MPa;断后伸长率逸1%;吸收能量(无缺口试样)≥35J的奥-贝球铁,如果其球化率差于3级,球墨粗于6级且每平方毫米球墨少于180个,等温处理后的力学性能不易达到规范要求。

  17. Effect of Austempering Temperature On Microstructure and Mechanical Properties of CADI%等温淬火温度对CADI组织与力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    高颂; 刘金海; 李国禄; 徐卓; 朱晨

    2008-01-01

    研究了等温淬火温度对含碳化物的等温淬火球墨铸铁(Carbidic Austempered Ductile Iron,简称CADI)的组织、硬度和冲击韧性的影响.试验结果表明:等温淬火后的组织为贝氏体、残余奥氏体和碳化物.在等温温度范围内(230-290℃),硬度随着等温淬火温度的升高呈现逐渐下降的趋势,而冲击韧性则逐渐升高;显微组织中的贝氏体针逐渐变粗.

  18. 奥-贝球铁断裂与疲劳研究的新近进展%Progress of Research on the Fracture and Fatigue of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    戴品强; 何则荣; 毛志远

    2000-01-01

    奥-贝球铁具有很强的强度、塑性、韧性、疲劳强度和耐磨性等综合性能,应用日益广泛,已成为一种重要的工程材料。近年来对其断裂与疲劳的研究发展很快,得到不断的深入,本文详细介绍了其新近进展。%Austempered ductile irons (ADI) exhibit excellent combination of strength, ductility,toughness, fatigue strength and wear resistance. They have been successfully used in many fields and become an important engineering material. The fracture and fatigue of ADI have been investigated extensively in the recent years. The recent developments on the mechanisms of fracture and fatigue in ADI are reviewed in this paper.

  19. 高温预处理及等温淬火工艺对含碳球墨铸铁力学性能的影响%Effects of high temperature pretreatment and austempering process on mechanical properties of CADI

    Institute of Scientific and Technical Information of China (English)

    陈传胜; 刘建升; 祖方遒

    2016-01-01

    研究了高温预处理、奥氏体化温度(Tγ)及等温淬火温度(TA)对0.5%Cr含碳化物等温淬火球墨铸铁(CADI)的韧性、硬度的影响。结果表明,高温预处理可使CADI的冲击性能提高90%以上。当硬度为51.4~55.7 HRC时,冲击吸收能量( K)可达37.7~18.3 J。高温预处理后,随着Tγ的升高,CADI的K明显提高,硬度在一定范围内略有降低;随着TA 的升高,CADI硬度逐渐降低,而K在260℃时达到最高。%Effects of high temperature pretreatment, austenitizing temperature (Tγ) and austempering temperature (TA) on toughness and hardness properties of carbidic austempered ductile iron (CADI) with 0.5%Cr were investigated.The results show that high temperature pretreatment can make the impact toughness of CADI increase more than 90%.The hardness value is 51.4-55.7 HRC corresponding to the impact absorbed energy ( K) is 37.7-18.3 J.After high temperature pretreatment, the K of CADI is significantly improved and its hardness decrease with the increase of Tγ, the hardness of CADI decreases with the increase of TA and the K achieves the best when TA is 260 ℃.

  20. Cu和Mo对厚大断面等温淬火球墨铸铁件淬透性的影响%Influence of Cu and Mo on the Hardenability of Austempered Ductile Iron with Heavy Section

    Institute of Scientific and Technical Information of China (English)

    沈鹏; 曲迎东; 李荣德; 张新宁; 姜珂

    2013-01-01

    In order to improve the hardenability of austempered ductile iron with heavy section, the influence of Cu and Mo on casting' s hardenability was studied. Five groups of ductile iron specimens with 1% Ni and 150 mm thickness were prepared, of which addition amount of Cu and Mo changed. The hardenability and mechanical properties were observed and tested after austenitizing at 900 ℃ for 3 h and austemper at 385 ℃ for 1.5 h. The results shows that the hardenability of ductile iron dose not improve obviously when Mo is 0.25% and Cu increases from 0.05% to 0.75%, the mechanical properties are corresponding with that of pearlitic structure. But when Mo increases to 0.36% and Cu is 0.75%, no pearlitic structure appears at the edge of dultile iron as well as only 5% pearlitic structure is found and others are coarser ausferrite structure in the core. Its mechanical properties meet the grade 4 of the European Community ADI standard. A small amount of Mo should be added instead of a large amount of Cu when ductile iron casting with heavy section is austempered.%为提高厚大断面等温淬火球墨铸铁(ADD件的淬透性,研究了Cu和Mo对铸件淬透性的影响.制备了5组壁厚为150 mm的球墨铸铁试样,5组试样中Ni元素控制在1%,改变Cu和Mo的添加量;经过900℃奥氏体化3 h+385℃等温淬火处理1.5h,对试样的淬透性及力学性能进行了观察和测试.结果表明:当Mo为0.25%,Cu由0.05%提高到0.75%时,铸件的淬透性没有明显改善,其力学性能偏向于珠光体的力学性能;当Mo提高到0.36%,Cu为0.75%时,铸件的淬透性有了明显的提高,边部没有珠光体析出,心部只存在5%左有的珠光体,其余为较粗的奥铁体组织,同时力学性能也达到了欧洲ADI四级标准.对厚大断面球墨铸铁件进行等温淬火处理时,应首先选择增加少量的Mo元素,而不是增加大量的Cu元素.

  1. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the waste by abrasion resistance for ductile austempering irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2004-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular, ocupa en la actualidad unode los lugares más importantes entre los hierros fundidos de alta resistencia, y con la introducción del tratamiento térmicode austemperado aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteos de nódulos, a los que lesfue aplicado el tratamiento de austemperado y posteriormente se les sometió a ensayos de desgaste abrasivo.Con los resultados obtenidos se hace un análisis de la influencia del conteo de nódulos en dichas propiedades, así comotambién de la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas.Palabras claves: Hierro nodular, conteo de nódulos, austemperado.____________________________________________________________________________Abstract.Between the metallic materials of greater demand, the iron production with nódular graphite occupies at the present time,one of the most important places between fused irons of high resistance, and with the introduction of the austempering heattreatment, applied to these meltings, brings a new family of materials, characterized by its high mechanical resistance andelevated tenacity, that maintain the economy and facility of production of the nodular smeltings.This work makes a valuation of the nodular irons behaviors, with different counts from nodules, to which the austemperingtreatment was applied, and later they were put under tests of abrasive wearing.Of the obtained results, takes control of the influence the nodules count in these properties, as well as, of the interrelation ofthe nodules count, with the used variables of heat

  2. Effect of Austempering on Mechanical Properties of Dual Phase ADI%等温淬火工艺对双相等温淬火球墨铸铁力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    姜利坤; 刘金海; 李国禄; 王磊; 田霄楠

    2009-01-01

    对双相ADI(双相等温淬火球墨铸铁Dual Phase Austempered Ductile Iron,简称Dual Phase ADI)在不同等温温度和不同等温时间下的力学性能进行了试验.结果表明:当等温温度在250~390℃时,随着等温淬火温度的升高,双相ADI的抗拉强度减小,伸长率逐渐增大,硬度先减小后增大,冲击韧性先增大后减小.当等温时间在30~120min时,随着等温淬火时间的延长,双相ADI的抗拉强度升高,超过90min后,抗拉强度略有降低;当等温淬火时间为60min时,冲击韧性达到最大值,超过60min后,冲击韧性逐渐减小;伸长率先增大后减小;硬度逐渐增大.

  3. 奥氏体化温度对双相ADI中残余奥氏体含量的影响%Effects of austempering on residual austenite content of dual phase ADI

    Institute of Scientific and Technical Information of China (English)

    姜利坤; 刘运腾; 田长文; 赵德刚; 李卫红; 周吉学; 詹成伟

    2012-01-01

    The residual austenite has significant influence on the mechanical properties of Dual Phase Austempered Ductile Iron (ADI). We address the effects of austenitizing temperature on the content of retained austenite in ADI with X-ray method to investigate the relationship between process, organization and performance. Results show that the content of retained austenite .qradually increases with the increase of austenitizinq temperature.%残余奥氏体对双相等温淬火球墨铸铁(ADI)的力学性能影响比较显著。为了进一步了解工艺-组织-性能的关系,利用X射线法研究了奥氏体化温度对双相ADI中残余奥氏体含量的影响。结果表明随着奥氏体化温度的升高,残余奥氏体的含量逐渐增大。

  4. 等温淬火球墨铸铁在汽车底盘悬架类零件上的应用%Application of Austempered Ductile Iron to Automobile Suspension Components

    Institute of Scientific and Technical Information of China (English)

    曾圣湖; 黄建成; 武炳焕

    2011-01-01

    Lightweight upper chassis frame suspension part was designed, using austempered ductile iron (ADI) casting instead of steel casting. By strictly controlling the raw material and foundry and heat treatment processes, the mechanical property of the casting satisfies the specifications of ASTM A897/A897M-06 grade 1050-750-7, and the pilot production was realized. The trial production and test result indicate that the properties of casting meet the designed requirement, while the weight of the casting was reduced by 39.6%. After further improvement, the amount of ADI castings was increased, and the weight of all ADI castings in an automotive reached 550.4 kg.%对某车型上底盘悬架类零件进行轻量化设计,由铸钢件改用等温淬火球墨铸铁件.通过对原材料、铸造和热处理等工艺过程的严格控制,力学性能稳定达到了ASTM A897/A897M-06 Grade 1050-750-7要求,并实现了小批量生产.从试制及装车路试情况来看,满足了所设计的性能要求,零件重量减少了39.6%,并在后续改进中,进一步增加等温淬火球墨铸铁件数量,整车的等温淬火球墨铸铁件重量达到了550.4 kg.

  5. Influencia de los factores microestructurales en la resistencia al desgaste por deslizamiento de las fundiciones nodulares austemperadas. // Influence of the microstructure factors in the sliding wear resistance of austempered cast ductile iron.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2008-09-01

    Full Text Available Entre los materiales metálicos de mayor demanda, el hierro dúctil con grafito esferoidal o nodular ocupa en la actualidaduno de los lugares más importantes entre los hierros fundidos de alta resistencia. Desde hace unos veinticinco años laintroducción del hierro nodular austemperado significó de hecho una revolución en el campo de las aleaciones ferrosas. Enel presente trabajo se realiza un estudio de la influencia del conteo de nódulos de grafito del hierro nodular en el proceso deaustemperado, a partir de las características de las estructuras obtenidas, por la variación de la cantidad de nódulos degrafito y de las variables de tratamiento térmico. Dichas estructuras son sometidas a la acción del desgaste, en este caso aun desgaste por deslizamiento mediante un ensayo típico disco-zapata. Con los resultados obtenidos, se realiza un análisisestadístico de la influencia del conteo de nódulos en dichas propiedades y de las causas de este comportamiento, tomandoen consideración la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas y su incidencia en el mecanismo de desgaste.Palabras claves: Hierro nodular, conteo de nódulos, austemperado, desgaste por deslizamiento.____________________________________________________________________________Abstract:A study about the influence of the graphite nodules quantity and some heat treatment parameters in the characteristic of castductile iron is presented. Experimental investigation of wear resistance by sliding is applied to specimens tested ofaustempered ductile irons using a test machine based in the disc- plate system. Statistical analysis about the influence of thegraphite nodule quantity in the wear resistance properties, so as well as, the causes of this behaviour taking into account thegraphite nodule count and some heat treatment variables is done.Key words: austempered ductile iron, graphite nodules, wear

  6. Thin wall ductile and austempered iron castings

    OpenAIRE

    E. Fraś; M. Górny

    2010-01-01

    It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns). Thin wall ductile iron castings can be lighter (380 g) than their substitutes made of aluminium alloys (580g). The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dil...

  7. Mechanical Performance of Austempered Ductile Iron.

    Science.gov (United States)

    1994-04-01

    Street, Alexandria, VA, 22304-6145 2 ATTN: DTIC-FDAC 1 MIAC/ CINDAS , Purdue University, 2595 Yeagar Road, West Lafayette, IN, 47905 Commander, Army Research... William Donnelly 1 ATTN: AMSMC-PBR-M(D), Mr. Al Gonsiska 1 ATTN: AMSMC-PBR-M(D), Mr. Ferdinand del Carmen 1 ATTN: SMCAR-CCH-P, Mr. William Sharpe...ATTN: Code 5830 Naval Sea System Command, Washington, DC, 20326-5101 1 ATTN: Code 03R5, Mr. John Williams Naval Surface Warfare Center, Dahlgren, VA

  8. Influence of Temper Temperature of Austenite on High-speed Cutting Properties of Austempering Ductile Iron (ADI)%奥氏体回火温度对等温淬火球墨铸铁(ADI) 高速切削加工性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    吴少华; 郭旭红; 石皋莲

    2009-01-01

    等温淬火球墨铸铁(Austempering Ductile Iron,以下简称ADI)是一种新型的耐磨球铁材料.结合现有ADI材料的生产情况,选取300、350、400 ℃3个奥氏体回火温度,制备3组试样并测定力学性能.通过高速切削试验,研究了CC650陶瓷刀具高速干式切削不同性能ADI材料时刀具磨损形态和磨损机理,探讨了奥氏体回火温度对ADI高速切削时刀具磨损性能的关系.试验结果表明,奥氏体回火温度对ADI材料组织和力学性能有较大影响;奥氏体回火温度和ADI试件材料与CC650刀具磨损之间具有相关性;高速切削时,CC650刀具对ADI切削的磨损机制以磨粒磨损和扩散磨损为主.

  9. Impact toughness and fracture toughness of austempered ductile iron

    OpenAIRE

    Liu, Jingcheng; Guoxiong SUN

    2004-01-01

    The impact toughness and fracture toughness ofaustermpered ductile iron (ADI) are described. The notched and un-notched charpy impact toughness of ADI at room temperature are somewhat lower than that of steel castings or forged steel pieces, however, they are approximately three times higher than that of mormal pearlitic ductile iron. The impact toughness of ADI decreases with decreasing temperature; but at -40 ℃ it still maintains about 70% of the value at room temperature. The properties of...

  10. Impact toughness and fracture toughness of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Jingcheng LIU

    2004-11-01

    Full Text Available The impact toughness and fracture toughness ofaustermpered ductile iron (ADI are described. The notched and un-notched charpy impact toughness of ADI at room temperature are somewhat lower than that of steel castings or forged steel pieces, however, they are approximately three times higher than that of mormal pearlitic ductile iron. The impact toughness of ADI decreases with decreasing temperature; but at -40 ℃ it still maintains about 70% of the value at room temperature. The properties of fracture toughness are important in safety design and failure analysis. In this study all fracture toughness data of ADI are higher than that of conventional ductile iron, and are equivalent to or better than that of steel castings o forged steel pieces with the tensile strength equivalent to ADI.

  11. The bainite reaction kinetics in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Taran, Yu.N.; Uzlov, K.I.; Kutsov, A.Yu. [State Metall. Acad., Dnepropetrovsk (Ukraine). Phys. Metall. Dept.

    1997-11-01

    Bainitic reaction kinetics in ductile iron contained according to Ukrainian standard (weight%) 3.60-3.80 carbon, 2.60-2.80 Si, {proportional_to}0.12 Mn, {proportional_to}0.60 Cu and additionally alloyed by Mo (0.15-0.20) has been studied. It was found that the overall transformation kinetics becomes slower as transformation temperature increase. This is because more intensive redistribution of carbon into austenite at higher temperatures. Two austenites with different carbon content have been fixed and kinetics of their lattices parameters has been studied. (orig.). 6 refs.

  12. Modeling of Railway Wheels Made of Austempered Ductile Iron

    Directory of Open Access Journals (Sweden)

    Giętka T.

    2016-12-01

    Full Text Available A person is forced to travel constantly throughout its entire life. The more modern the society, the greater the pace of life, and the greater the need to be present in many places that are distant from each other. Rail transport occupies second place in this regard, after air transport. This means of transportation has many advantages, however the time of travel requires continuous improvement, in particular, to match the competition. One factor limiting the speed of travel is inter-operation between the wheels – rail kinematic pair. When rolling on a rail, a wheel is subject to wear, which unavoidably leads to its degradation. Frequent damage to both the wheel and the rail necessitates consideration of this problem. Because any changes to the rail are very expensive and time-consuming, this paper focuses on possible changes to the wheel.

  13. Development of spherical fine powders by high-pressure water atomization using swirl water jet; Senkaisui jet wo mochiita koatsusui atomize ni yoru kyujo bifun no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kikukawa, M.; Matsumoto, S.; Inaba, T.; Iwatsu, O.; Takeda, T. [Fukuda Metal Foil and Powder Co. Ltd., Kyoto (Japan)

    2000-05-15

    In order to obtain spherical fine powders, a new high-pressure water atomization method using swirl water jet was developed. In this paper the effects of jet swirl angle ({omega}) upon the properties of powders were investigated. Cu-10 mass%Sn alloy was atomized by this method at the constant water pressure of 83.3 MPa and constant metal orifice diameter of 4mm, while {omega} was varied from 0 to 0.18 rad. Median diameter of the powder by the laser diffraction method (D{sub 50}) decreased from 12.5 {mu}m to 7.5{mu}m with increasing {omega}, and this corresponded to Fisher average diameter (D{sub FS}) at about w=0.18 rad. The apparent and tap density of the powder increased about 1 and 1.5 Mg/m{sup 3} respectively, and the particle shape observed by SEM became spherical with increasing {omega}. (author)

  14. Improvement of oxidation resistance in magnesia-graphite material for casting nozzle; Chuzo nozuru yo maguneshia-kokuen zaishitsu no tai sankasei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Rikimaru, Yasushi.; Iitsuka, Shoji.; Harada, Tsutomu.; Ando, Hideyuki.; Yamato, Tsugio. [Kurosaki Corp., Fukuoka (Japan). Technical Research Center

    1999-08-01

    As for the alumina black lead quality of the material, it knows that loss grows big caused by CaO from steel and the formation of the low melting point material due to the response with the alumina in the refractories at the time of the Ca-Si management steel cast. Because of this, it was exchanged with the AG quality of the material for the nozzle union department that emphasis could specially cut abrasion and corrosion, and the application of the magnesia black lead quality of the material was examined. Slag caused by the disappearance that black lead on the operating side oxidizes and the permeation of the metal were recognized as the improvement in the corrosion though it was recognized when an actual opportunity checked a ceremony nozzle in the Ca-Si management steel while MG quality of the material was applied to the union part. The decline of the durability due to the disappearance that black lead oxidizes from not forming it was recognized on the operating side in the bone material and the steel the low melting point material layer due to the response with the element because a magnesia was high melting point material when a nozzle was usually used for the steel again. (NEDO)

  15. Preparation of spherical fine particulate pigments within water-in-oil emulsions and their properties. (II). ; Formation mechanism and characteristic of spherical fine particulate pigment of tartrazine. W/O emulsion wo mochiita kyujo biryushi ganryo no chosei to seishitsu(dai 2 ho). ; Kiiro 4 go kyujo biryushi ganryo no seisei kiko to tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, T.; Iwano, K.; Hotta, H.; Takano, S.; Tsutsumi, H. (Kao Corporation, Tokyo (Japan))

    1991-12-20

    The previous report explained that an excellent spherical particulate pigment with a grain size of 0.5 mm or less can be obtained by preparing multinuclear aluminum lakes from acidic dyes and multinuclear aluminum salt using water droplets in a W/O emulsion as reaction fields. This paper describes preparing pigments varying the charging concentrations of the pigments in a W/O emulsion and the droplet particle size to discuss the mechanism of forming the pigments. As a result, it was found that the particle sizes in the produced pigments have a clear correlation with the charging concentrations of the pigments and the droplet particle sizes in the W/O emulsion. A pigment produced in the W/O emulsion forms only in its own droplets, and reflects its particle sizes. Films dispersed with pigments having different particle sizes were prepared to discuss their tinting abilities, whereas it was clarified that the smaller the particle size, the higher the tinting ability and the higher saturation in colored paint films. 6 refs., 9 figs., 3 tabs.

  16. Effect of Austempering on the Wear Resistance of Austempered Ductile Iron%等温淬火工艺对ADI耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    高颂; 刘金海; 边泊乾; 徐卓

    2008-01-01

    研究了等温淬火工艺对ADI耐磨性的影响.结果表明:当等温温度在260~380℃时,随着等温淬火温度的升高,耐磨性逐渐降低;360℃等温淬火时,耐磨性最差,继续升高等温淬火温度,耐磨性又有升高的趋势;当等温时间在30~120 min,随着等温淬火时间的增加,耐磨性逐渐降低;等温淬火60 min时,耐磨性最差;等温淬火时问继续延长,耐磨性又有升高的趋势.

  17. Influence of isothermal transformation dwell on tensile and fatigue properties of austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Vechet, S.; Hanzlikova, K. [Brno Univ. of Technology, Brno (Czech Republic); Kohout, J. [Military Academy in Brno, Brno (Czech Republic)

    2005-07-01

    Two ADI heats transformed at temperatures of 400 and 380 C during temporal range from 2 minutes to 9 hours were studied in details, with emphasis on structure composition and mechanical properties (tensile and fatigue properties were determined). In the case of the shortest dwells the level of mechanical properties is influenced by martensite, which occurs in the structure as a result of subsequent cooling. UTS and yield stress increase slightly with the dwell of isothermal transformation while the values of elongation to fracture as well as of fatigue limit are very closely dependent on the amount of the retained austenite in the microstructure. (orig.)

  18. Reduction of industrial waste by the employment of simultaneous desulfurization/graphite spheroidization method using magnesium; Maguneshiumu wo mochiita datsuryu/kokuen kyujoka doji shoriho no saiyo ni yoru sangyo haikibutsu no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Toriyama, T.; Yamamuro, S.; Yoshida, A.; Ono, S. [Kurimoto Ltd., Osaka (Japan)

    1996-10-25

    The Sakai Factory of KURIMOTO LTD. employed a continuous porous plug desulfurization method in 1992. In this desulfurization method, the molten iron from a cupola is desulfurized with a desulfurizing agent in which calcium carbide and lime are mixed. This paper reports the details of the development of a simultaneous desulfurization/graphite spheroidization method using Mg, which aims at disusing the operation in a high-temperature environment and reducing the quantity of slag which is an industrial waste. The main results obtained are as follows. The quantity of desulfurized slag in a porous plug ladle could be reduced to zero. A total quantity of slag produced was reduced by about 70%, which was better than the target reduction. Owing to the employment of this simultaneous desulfurization/graphite spheroidization method using Mg, the operations of mixing the desulfurizing agent and removing desulfurized slag in a high-temperature environment were omitted. The S-value after the simultaneous desulfurization/graphite spheroidization became lower than 0.010%. It could be ascertained that the graphite spheroidization rate and mechanical properties of the product did not differ from those of the product obtained by a conventional desulfurization and fully satisfied the standard values of the product. 8 figs., 4 tabs.

  19. Impact Properties of Copper-Alloyed and Nickel-Copper Alloyed ADI

    Science.gov (United States)

    Batra, Uma; Ray, Subrata; Prabhakar, S. R.

    2007-08-01

    The influence of austenitization and austempering parameters on the impact properties of copper-alloyed and nickel-copper-alloyed austempered ductile irons (ADIs) has been studied. The austenitization temperature of 850 and 900 °C have been used in the present study for which austempering time periods of 120 and 60 min were optimized in an earlier work. The austempering process was carried out for 60 min for three austempering temperatures of 270, 330, and 380 °C to study the effect of austempering temperature. The influence of the austempering time on impact properties has been studied for austempering temperature of 330 °C for time periods of 30-150 min. The variation in impact strength with the austenitization and austempering parameters has been correlated to the morphology, size and amount of austenite and bainitic ferrite in the austempered structure. The fracture surface of ADI failed under impact has been studied using SEM.

  20. Effect of the Linear Graphite on Austempered Austemper-Bainite Ductile Iron%线状石墨对奥-贝球铁性能影响的分析

    Institute of Scientific and Technical Information of China (English)

    张博

    2009-01-01

    @@ 板簧支座零件,选用奥-贝球铁AD11000-5,性能要求:抗拉强度≥1 000 MPa,伸长率≥5%,硬度300~360 HB;组织要求:球化级别1~3级,石墨大小5~7级,基体组织为中等或细小上贝氏体+20%~30%残余奥氏体.

  1. Influence of Austempering Temperature on Water Embrittlement Behavior of Austempered Ductile Iron%等温淬火温度对奥贝球铁水脆化行为的影响

    Institute of Scientific and Technical Information of China (English)

    蔡启舟; 魏伯康; 田中雄一

    2004-01-01

    研究了等温淬火温度对奥贝球铁(ADI)水脆化行为的影响,水附着条件下不同等温淬火温度处理的ADI均发生水脆化行为,抗拉强度和伸长率显著降低;但随着等温淬火温度升高,ADI的水脆化程度降低.高强度的ADI、淬火回火球铁和珠光体球铁均发生水脆化行为,而铁素体含量高的铸态球铁和铁素体球铁无明显的水脆化行为.

  2. Discussion on the Naming of Austempered Ductile Iron%奥贝球铁的命名方式

    Institute of Scientific and Technical Information of China (English)

    王峥; 刘瑞玲; 史玉芳; 刁美艳

    2007-01-01

    介绍和总结了奥贝球铁的不同命名方式.指出了等温淬火球铁(ADI)、奥铁球铁(Ausferrite)、贝氏体球铁等几种名称,并对其作了进一步理解和认识,可为有关方面的研究提供参考依据.

  3. Producing Process of Austempered Ductile Iron%奥贝球铁的生产工艺

    Institute of Scientific and Technical Information of China (English)

    王峥; 刘瑞玲; 王忠民

    2007-01-01

    奥贝球铁具有很多优点,在各个领域中广泛应用.其生产技术尤其受到重视.详细叙述了奥贝球铁的各种生产方式,包括传统的等温淬火工艺,分级冷却工艺,连续冷却工艺和铸态、准铸态奥贝球铁生产工艺.

  4. TEM observation of microstructure of austempered ductile iron%奥-贝球铁显微组织的TEM观察

    Institute of Scientific and Technical Information of China (English)

    郑春明; 周巧琴; 戴品强

    2004-01-01

    本文采用透射电镜观察分析非合金奥-贝球铁显微组织,结果发现:球铁中石墨形态为由中心向外辐射呈层状结构;非合金球铁经900℃奥氏体化、370℃等温1h后,基体组织为贝氏体铁素体和奥氏体,且有两种形貌:一种是贝氏体铁素体和奥氏体呈板条状相间分布,另一种是奥氏体呈块状分布在贝氏体铁素体中.

  5. Influence of process parameters on the properties of austempered ductile iron (ADI examined with the use of data mining methods

    Directory of Open Access Journals (Sweden)

    D. Wilk-Kołodziejczyk

    2016-10-01

    Full Text Available The article presents opportunities offered by the data mining analysis as applied to studies of the effect of process parameters on the mechanical properties of ADI. The applied methods of regression trees and cluster analysis allow for the detection of relationships between parameters and also allow determination of strength and form of the impact of different factors. The results of this study allow the creation of knowledge bases for systems supporting the decision-making process in technology.

  6. The DTIC Review: Volume 3, Number 3. Microtechnologies and Microelectronics

    Science.gov (United States)

    1997-09-01

    of Austempered Ductile Iron ," D. Bergstrom, doctoral research, Northwestern University. v Research Progress A. Problem Statement While quantitative...Materials Design project report, Northwestern University, June, 1993. 10 APPENDIX Austenite Stability and Mechanical Properties of Austempered Ductile Iron ...Abstract The stability of austenite in Austempered Ductile Iron (ADI) has been quantified by measurement of the M. a temperature, below which stress

  7. Casting Principle and Research Development of Austempered Ductile Iron%奥-贝球铁的铸造原理及研究进展

    Institute of Scientific and Technical Information of China (English)

    孟丽华

    2005-01-01

    奥-贝球铁具有高强度、高韧性、良好的耐磨性、耐热性、耐蚀性以及优良的铸造性能等特点,本文中概述了奥-贝球铁的铸造原理,详细介绍了碳、硅、锰、硫、磷、钼、镍、铜、钒、铌等合金元素及热处理工艺对奥-贝球铁性能的影响.并简要介绍了第四届国际奥-贝球铁学术会议的内容,对国内外奥-贝球铁的研究及生产应用作了综述,最后展望了奥-贝球铁的应用前景.

  8. Mating Surface Microstructure of Austempered Ductile Iron Bevel Gear%奥贝球铁锥齿轮啮合表面显微组织演变

    Institute of Scientific and Technical Information of China (English)

    喻国铭; 韩辉

    2010-01-01

    利用扫描电镜测试研究了锰铜合金奥贝球铁锥齿轮啮合后齿轮表面显微组织的演变.结果表明,齿轮啮合后其表面残余奥氏体转变成马氏体组织,显著提高了齿轮的表面硬度导致其耐磨性和使用寿命提高.

  9. Heating Treatment and Application of Austempering Ductile Iron%等温淬火球墨铸铁的热处理及应用

    Institute of Scientific and Technical Information of China (English)

    李佐锋

    2007-01-01

    探索了等温淬火球墨铸铁的生产工艺,分析了原料化学成分的选择,及铸造工艺中的熔炼、球化和孕育处理、浇注温度对制取球墨铸铁的影响;在获得基体组织合理的球墨铸铁的前提下,重点分析了热处理工艺中的奥氏体化温度、等温淬火温度和时间对ADI组织及性能的影响,通过实验及分析,确定了制取理想ADI的最佳热处理工艺.

  10. Study and Application of the Unalloyed Austempered Ductile Iron Disc Harrow%非合金奥贝球铁耙片的研究与应用

    Institute of Scientific and Technical Information of China (English)

    沈大东; 金宝士; 郭继伟; 徐志军

    2002-01-01

    研究了采用非合金奥贝球铁,经二次孕育处理、等温淬火等工艺措施生产耙片.耙片材质的组织为下贝氏体、残余奥氏体和少量马氏体.经装机实际耕作考核表明,使用寿命明显高于65Mn耙片,而生产成本却大为降低,经济效益和社会效益明显.

  11. Study on the Wear Resistance of Austempered Ductile Irons%等温淬火球墨铸铁耐磨性的研究

    Institute of Scientific and Technical Information of China (English)

    刘伟; 王金华; 韩建民

    2000-01-01

    对比研究了淬火45#钢、渗碳淬火20Cr钢和5种经等温淬火的球墨铸铁在干摩擦条件下的耐磨性能.结果表明,5种等温淬火球墨铸铁的耐磨性均优于2种淬火钢,并可大大降低摩擦副的总磨损量;加入少量的Mo有助于细化和增加组织中的下贝氏体,降低磨损量;多而细小的石墨球对等温淬火球墨铸铁的耐磨性不利.

  12. 等温淬火球墨铸铁(ADI)在中国的市场机会%Market Opportunities for Austempered Ductile Iron (ADI) in China

    Institute of Scientific and Technical Information of China (English)

    John; R.Keough; 夏勇

    2007-01-01

    @@ 1 引言 目前中国的工业发展速度已超过欧洲和北美,这其中绝大部分增长得益于出口.由于人民币对美元在不断升值,未来中国的大部分工业增长将来自于国内市场.

  13. Research and Industry Development of Austempered Ductile Iron%奥贝球铁(ADI)的研究与产业发展

    Institute of Scientific and Technical Information of China (English)

    常恒毅; 朱松林; 龚文邦; 余靖; 向纲玉

    2004-01-01

    新型工程材料奥贝球铁的产品研发及应用,在不同的工况下要求各异,同时存在着工艺、设备及加工三大难题.以高韧性ADI风镐缸体的批量生产实践为例,论述了产品研发的技术关键,并提出了ADI产业化的思路.

  14. Characteristics of Austempered Ductile Iron Alloyed with Low Additions of Ni and Ca%镍、铜低合金奥贝球铁特性研究

    Institute of Scientific and Technical Information of China (English)

    Tybul.,J; Kowal.,A

    2001-01-01

    阐明了含Ni、Cu质量分数分别为1.5%和0.8%的奥贝球铁的凝固/相变和性能特点.测定了凝固过程的微分热分析曲线、膨胀仪曲线,绘制了奥氏体连续冷却转变曲线和等温转变动力学曲线,对比分析了该成分铸铁的淬透性.测定了Ni、Cu合金化奥贝球铁的常温力学性能.

  15. 等温淬火球墨铸铁(ADI)现状及发展前景%Applicaton and Devdlopment Forecast of Austempered Ductile Iron in China

    Institute of Scientific and Technical Information of China (English)

    曾艺成

    2007-01-01

    ADI是一种很好的金属结构材料,但在我国还未得到广大工程技术人员的认可,同时在产业化进程中,遇到诸多问题有待解决。去年的12月,全国铸造学会铸铁熔炼专业委员会与全国ADI技术委员会在苏州的同里湖度假村召开了“第四届全国等温淬火球铁(ADI)技术研讨会”;这次大会的主题就是:共同努力继续推进我国ADI产业化进程。

  16. Property and Application of Austempered Ductile Iron%等温淬火球铁的性能及其应用

    Institute of Scientific and Technical Information of China (English)

    潘安霞

    2004-01-01

    等温淬火球铁(ADI)是一种新兴的综合力学性能很高的工程材料,对等温淬火球铁优良的综合力学性能、高的疲劳强度和良好的摩擦磨损特性做了介绍,同时对等温淬火球墨铸铁在国、内外的应用状况进行了阐述.

  17. 奥-贝球墨铸铁在精铸件上的应用%Application of Austempered Ductile Iron in Refined Castings

    Institute of Scientific and Technical Information of China (English)

    廉峰月

    2005-01-01

    第一汽车集团公司解放系列载货车所装配的汽车前拖钩一直是锻件,直到上世纪末开发了以铸代锻的汽车前拖钩(当时采用的材质是ZG45),但以铸代锻汽车前拖钩只能满足5t以下的小吨位汽车使用。随着精铸件市场竞争越来越激烈,采用新材料、新工艺来大幅度提高铸件工艺性能,以满足大吨位载货车装车,从而全面取代锻件拖钩,成为摆在技术人员面前的首要任务。

  18. Research of austempering process of low-carbon ductile iron%低碳球铁的等温淬火工艺研究

    Institute of Scientific and Technical Information of China (English)

    李玲芳; 舒信福; 朱延东; 李玉中

    2005-01-01

    对低碳球铁的等温淬火工艺进行了研究.测定了低碳球铁件在几种不同奥氏体化时间、等温温度、等温时间下的力学性能,并对金相组织进行了分析.实验结果表明:在900℃奥氏体化40min,340℃进行30min的盐浴处理,能得到σb=1040MPa,δ=3%,ak=42J/cm2,HRC=32的较高的力学性能.

  19. Consideraciones sobre la rotura por fatiga de contacto en el hierro nodular austemplado. // Considerations on the contact fatigue failure in the austempered nodular iron.

    Directory of Open Access Journals (Sweden)

    D. Moreno Mur

    2004-09-01

    Full Text Available El presente trabajo considera como factor importante la variación de la geometría del nódulo de grafito en el cálculo delnúmero de ciclos necesarios durante la formación de un pitting en una fundición nodular austemplada. En este caso se tomóen cuenta la aparición de una energía de deformación alrededor de este y se consideró el material con propiedadeshomogéneas. Es analizada la influencia de la variación de la carga, los valores de los diámetros de contacto, el tamaño delnódulo de grafito, de la profundidad donde aparece el nódulo en la geometría del nódulo, por ser estos factores importantesen la iniciación y propagación de grietas por fatiga de contacto. Se trabajó con las profundidades donde aparecen lasmáximas tensiones tangenciales, las cuales se obtuvieron de las expresiones de Hertz, con valores de carga dentro del límiteelástico. Luego se modela por elementos finitos el mecanismo de fractura, en el sistema ALGOR 12.06, y se realiza unaregresión múltiple en el sistema STATGRAPHICS, obteniendo modelos con buenos coeficientes de regresión y niveles deconfianza.Palabras claves: Fatiga de contacto, factura, grietas, nódulo grafito, FEM._________________________________________________________________________Abstract.The present paper deal with the failure of contact fatigue in the autempered ductil iron considering the graphite nodulesvariation as an important factor in th calculation of the number of cycles nedded for pitting, starting from theoreticalconsiderations, developing a methodology for the calculation. The influence of load variation is analyzed, the values of thecontact diameters, the size of graphite nodules, the depth where the nodule appears in the geometry of the nodule, areimportant factors in the initiation and propagation of contact fatigue cracks. It is considered the depths in wich the maximstangential tensions appear, which were obtained by Hertz expressions. An analysis by the method of finite elements with aproffesional software was carried out obtaining the best mesh for a convergence analysis and a regression analysis withSTATGRAPHICS, in order to obtain numeric models that related the signal parameters.Key words: Contac Fatigue, Fracture, Cracks, Graphite Nodule, Finite Elements.

  20. The Effect of Stepped Austempering on Phase Composition and Mechanical Properties of Nanostructured X37CrMoV5-1 Steel

    Directory of Open Access Journals (Sweden)

    Marciniak S.

    2015-04-01

    Full Text Available This paper presents the results of studies of X37CrMoV5-1 steel subjected to quenching processes with a one-step and a two-step isothermal annealing. The TEM observation revealed that steel after one-step treatment led is composed of carbide-free bainite with nanometric thickness of ferrite plates and of high volume fraction of retained austenite in form of thin layers or large blocks. In order to improve the strength parameters an attempt was made to reduce the austenite content by use of quenching with the two-step isothermal annealing. The temperature and time of each step were designed on the basis of dilatometric measurements. It was shown, that the two-step heat treatment led to increase of the bainitic ferrite content and resulted in improvement of steel's strength with no loss of steel ductility.

  1. Fractomechanical Properties of As-Cast and Austempered SG Cast Iron Between -40 °C and +20 °C

    Directory of Open Access Journals (Sweden)

    V.E. Fierro

    2002-06-01

    Full Text Available The spheroidal graphite (SG cast iron fractomechanical response varies with the test temperature and with the microstructure parameters. In the present paper, we analyze this variation performing fractomechanical tests in a temperature range from -40°C to +20°C, doing also Charpy and tensile tests for material characterization. The tests were carried out on as-cast samples and heat treated samples to obtain an ADI grade 1. In both cases, we studied samples taken from two well differentiated "Y" block sizes. The results obtained show that, for the chemical composition analyzed, both castings have a fractomechanical response decrease as the temperature diminishes. Besides, the block size enlargement produce a deterioration of the mechanical properties (the fracture toughness, mainly, for both castings.

  2. Manufacturing Technology Research Needs of the Gear Industry

    Science.gov (United States)

    1987-12-31

    OF TER1S ADI Austempered Ductile Iron AGMA American Gear Manufacturers Association AGV Automatic Guided Vehicle Al Artificial Intelligence ASME...I 3 2.2.11.5 Department of Commerce. The Department of Commerce is provid- ing about half the funding for a program on austempered ductile iron (ADI... austempered ductile iron (ADI) as a gear mate- rial has developed. ADI gives a uniquely favorable performance, i.e., 3 strength and toughness, due to

  3. High Integrity Castings: Proceedings of the Conference on Advances in High Integrity Castings Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    Science.gov (United States)

    1988-01-01

    optimization for Austempered Ductile Iron . Although traditional SPC techniques help maintain current levels of reliability, in order to obtain "World...heat production of ADI: metal casting and treating process will be discussed. heat treating. The desired properties Austempered Ductile Iron (ADI...understood, austempered STEEL IRON ductile iron production becomes as simple and reliable as that of other YIELD STRENGTH, KSI 75 70 120 conventional steel

  4. A Comparison of CuAlNi and Other High Damping Alloys for the Purpose of Naval Ship Silencing Applications

    Science.gov (United States)

    1989-09-01

    Austempered ductile iron has the potential for extensive use in diesel propulsion plants. In order to evaluate these materials properly, an engineering...31 AUSTEMPERED DUCTILE IRON grade one Composition Properties (weight percent) Fe Balance Tensile Strength (kel) - 125 C 3.1 - 3.8 Yield Strength...Metallurgy Branch, Code 2182, Annapolis, Maryland. 30. Forrest, R.D., " Austempered Ductile Iron for Both Strength and Toughness," Machine Design, pp

  5. Effectof austemperingparameterson microstructureandmechanicalproperties ofhorizontalcontinuouscastingductileiron densebars

    Institute of Scientific and Technical Information of China (English)

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang; Zhong-ming Zhang; Jin-cheng Wang; Yong-hui Liu

    2015-01-01

    In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.

  6. Development of high strength high toughness third generation advanced high strength steels

    Science.gov (United States)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  7. 预退火处理对奥贝球铁力学性能的影响%Effect of Pre-annealing on Mechanical Properties of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    王从祥; 刘仙山; 龙满林

    2003-01-01

    研究了预退火处理对奥贝球铁力学性能的影响.结果表明,进行了预退火处理的奥贝球铁材料的强度、硬度有一定的降低,但其伸长率有较大幅度的提高,材料的综合力学性能得到极大的改善.

  8. Design of Automatic Production Line of Austempered Ductile Iron Grinding Balls by Coated Sand Metal Mould Casting%金属型全覆砂铸造磨球自动化生产线工艺装备设计

    Institute of Scientific and Technical Information of China (English)

    荣建忠; 关成君

    2009-01-01

    介绍了一种新型金属型等温淬火球墨铸铁(ADI)磨球全覆砂自动化生产线的工艺装备和流程,详细论述了模具、射芯机、浇铸等设备的功能特点,并提出了生产线目前存在的问题和解决方案,指出磨球自动化生产线具有广阔的市场应用前景.

  9. 铜钼合金奥贝球铁力学性能的稳定性%Stability of Mechanical Properties for 0.5Cu-0.2Mo Alloyed Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    刘生发; 徐萍; 王仲范

    2004-01-01

    研究了铜钼合金奥贝球铁力学性能的稳定性.结果表明:在95%的概率下,所研制的铜钼合金奥贝球铁达到了国外同类材料的力学性能水平;铸造缺陷、石墨形态和基体组织对奥贝球铁力学性能的稳定性产生显著影响,并相应地提出了质量控制的基本原则.

  10. 等温淬火工艺对低碳球墨铸铁组织与性能的影响%Research of Austempering Process of Low-carbon Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    李玲芳; 舒信福

    2007-01-01

    对低碳球铁的等温淬火工艺进行了研究.测定了低碳球铁件在几种不同奥氏体化时间、等温时间下的力学性能,并对金相组织进行了分析.实验结果表明:在900 ℃奥氏体化40 min,340 ℃进行30 min的盐浴处理,能得到抗拉强度σb=1 040 Mpa,延伸率δ=3%,冲击韧性αk= 42 J/cm2,硬度HRC=32的较高的力学性能.

  11. 等温热处理工艺对奥-贝球铁焊缝的影响%Effect of Isothermal Heat Treatment Process on Austempered Ductile Iron Weld

    Institute of Scientific and Technical Information of China (English)

    刘炼

    2002-01-01

    系统地研究了奥氏体化温度及保温时间、等温温度及等温时间对奥-贝球铁焊缝金属组织与力学性能的影响规律,探讨了其影响机理,并确定了最佳的等温热处理工艺。

  12. 提高等温淬火球铁韧性的研究与生产实践%Study and Production Practice on Increasing Ductility of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    龚文邦; 余靖; 向纲玉

    2004-01-01

    研究了高韧性等温淬火球铁的化学成分、熔炼及热处理特点.针对高韧性等温淬火球铁铸件,采用高C、Si,低Mn,严格控制P、S,采取有效的熔炼工艺并严格控制奥氏体化温度和等温淬火温度,使铸件本体力学性能平均达到抗拉强度970MPa,伸长率12.7%.

  13. 等温淬火温度对奥贝球墨铸铁力学性能的影响%Effect of lsothermal Quenching Temperature on Mechanical Properties of Austempered Ductile Iron

    Institute of Scientific and Technical Information of China (English)

    刘贯军; 王太轩

    2001-01-01

    研究表明,随着等温淬火温度的升高,奥贝球墨铸铁的抗拉强度和硬度均呈下降趋势,伸长率呈上升趋势,而冲击韧度则随等温淬火温度的升高先增后减,有峰值出现.

  14. Fatigue Strength of Graphite-Matrix Interface in Austempered Ductile Iron%奥氏体-贝氏体球墨铸铁中石墨与基体界面的疲劳强度

    Institute of Scientific and Technical Information of China (English)

    吴维青

    2004-01-01

    采用系统分析的方法,通过3点弯曲疲劳实验,跟踪监测了奥氏体-贝氏体球墨铸铁试样的疲劳损伤过程.实验结果表明,奥氏体-贝氏体球墨铸铁中石墨球与基体组织界面有一定的疲劳强度;在不同的疲劳载荷作用下,该处疲劳开裂的时间和程度存在差异,并对疲劳裂纹的萌生和扩展有不同的影响.

  15. Austempered Ductile Iron and Its Developing Prospect in Our Country%等温淬火球铁及其在国内开发应用前景展望

    Institute of Scientific and Technical Information of China (English)

    李可青; 杨迎东; 张喜; 杜玉柱; 张云鹏

    2004-01-01

    由于等温淬火球墨铸铁(ADI)具有优异的综合力学性能,已在工业发达国家得到了广泛应用.本文概述了ADI的等温淬火工艺和影响ADI性能的因素.在此基础上,针对国内的现实情况,展望了ADI在我国的发展趋势.

  16. Research on Microstructure and Mechanics Properties of Mn-Cu Alloyed Austempered Ductile Iron%锰钢合金奥贝球铁组织与力学性能研究

    Institute of Scientific and Technical Information of China (English)

    柳安民; 刘生发

    2010-01-01

    利用光学显微镜、扫描电镜和性能测试等手段研究了锰铜合金奥贝球铁标准试样的显微组织与力学性能.结果表明,锰铜合金奥贝球铁标准试样经等温淬火和回火后的力学性能范围为σb1007.4~1200MPa,65.2%~8.8%,HRC32~35,αk70~120J/cm2,达到了EN1564-97/EN-CJS-1000-5欧洲标准.

  17. 奥贝球铁蜗轮在阀门电动装置上的应用%Application of Austempered Ductile Iron Worm Gear in Electric Valve Actuator

    Institute of Scientific and Technical Information of China (English)

    唐涛

    2013-01-01

    分析了热处理工艺中奥氏体化温度和时间、等温淬火温度和时间对奥贝球铁性能的影响.确定了阀门驱动装置用奥贝球铁材料蜗轮的生产工艺.通过装机试验验证,研制的奥贝球铁材料蜗轮满足使用性能要求,降低了生产成本.

  18. Advance of Research on Austempered Ductile Iron Weld Metal%等温热处理获得奥-贝球铁焊缝金属研究进展

    Institute of Scientific and Technical Information of China (English)

    李凤云; 邓鹏辉

    2001-01-01

    奥-贝球铁具有优异的综合力学性能和良好的耐磨性,引起了世界广泛关注.本文重点对我国在奥-贝球铁研究中有关合金元素在铸铁焊缝中的冶金行为,奥-贝球铁的组织与力学性能,焊缝金属通过等温热处理获得奥-贝球铁组织及奥-贝球铁焊接新材料的研究进展给以介绍.

  19. 铁型覆砂铸造生产的等温淬火球墨铸铁坯件%Application of Sand-Lined Metal Mold to Production of Austempered Ductile Iron Castings

    Institute of Scientific and Technical Information of China (English)

    沈永华

    2008-01-01

    稳定、高质量的球墨铸铁件是生产等温淬火球墨铸铁(ADI)件的基础.利用铁型覆砂铸造在球铁件生产中的优势,稳定生产高质量的球铁件是可行的.列举了部分ADI曲轴、齿轮、斜楔等球铁坯件采用铁型覆砂铸造,取得了较好效果.

  20. Effect of austempering isothermal-time at bainite field on retained austenite and mechanical properties in TRIP steel%贝氏体区等温时间对TRIP钢残奥及力学性能影响

    Institute of Scientific and Technical Information of China (English)

    高绪涛; 孙蓟泉; 赵爱民; 张明明; 唐荻

    2011-01-01

    为研究贝氏体区等温时间对热轧TRIP钢残余奥氏体和力学性能的影响,采用金相显微镜、X射线衍射、拉伸实验等方法对3种不同贝氏体区等温时间下制备的热轧TRIP钢进行分析.结果表明:随着贝氏体等温时间的延长,残余奥氏体量减少而残余奥氏体碳含量增加,残余奥氏体晶粒尺寸及残余奥氏体形貌变化不大;热轧TRIP钢的力学性能随着贝氏体等温时间的延长.表现为低抗拉强度、高延伸率和高屈服强度.

  1. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the abrasive wear of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2009-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular,ocupa en la actualidad, uno de los lugares más importantes entre los hierros fundidos de altaresistencia, y con la introducción del tratamiento térmico de austemperado, aplicado a estasfundiciones, se da lugar a una nueva familia de materiales, caracterizados por su alta resistenciamecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de lasfundiciones nodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteosde nódulos, a los que les fue aplicado el tratamiento de austemperado, y posteriormente se lessometió a ensayos de desgaste abrasivo.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichaspropiedades, así como también, de la interrelación del conteo de nódulos, con las variables detratamiento térmico utilizadas en las muestras ensayadas.Palabras claves: hierro nodular, conteo de nódulos, austemperado.__________________________________________________________________________AbstractBetween the metallic materials of greater demand, the iron production with nódular graphiteoccupies at the present time, one of the most important places between fused irons of highresistance, and with the introduction of the austemperado heat treatment of, applied to thesesmeltings, gives rise to a new family of materials, characterized by its high resistance mechanicaland elevated tenacity, that the economy and facility of production of the smeltings maintainnodulares. This work, makes a valuation of the iron behavior nodulares, with different counts fromnodules, to which the austemperado was applied treatment to them of, and later it was put underto them tests of abrasive wearing down. Of the obtained results, an analysis takes control of theinfluence of the count of nodules in these properties, as well as, of the interrelation of the count ofnodules, with the used variables of heat treatment in the tried samples.Key words: iron to nodular, count of nodules

  2. Electron microstructure and mechanical properties of silicon and aluminum ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, L. (Univ. of Novi Sad (Yugoslavia). Dept. of Production Engineering); Smallman, R.E.; Young, J.M. (Univ. of Birmingham (United Kingdom). School of Metallurgy and Materials)

    1994-09-01

    Samples of unalloyed silicon and aluminum spheroidal graphite cast iron have been studied in the austempered condition. Austempering times of up to 3 h at 400 C for Al SG and 1 h at 350 C for Si SG gives a typical ADI microstructure consisting of carbide-free bainitic ferrite and stable, high carbon enriched, retained austenite. This has an attractive combination of elongation and strength. For longer austempering times transition carbides are precipitated in the bainitic ferrite, [eta]-carbide in the upper bainitic range, i.e. 400 C for Al SG and 350 C for Si SG, and [epsilon]-carbide in the lower bainite range. Increasing amounts of transition carbide reduce the ductility and produce a mixed mode of fracture. For longer austempering times [chi]-carbide is precipitated at the ferrite/austenite boundaries leading to a more brittle fracture mode.

  3. Development of a High Strength Isothermally Heat-Treated Nodular Iron Road Wheel Arm

    Science.gov (United States)

    1985-03-31

    Ductile Iron . ADI = Austempered Ductile I ron. 19. ABSTRACT (Continue on...Characterization. 23 HAYES-ALBION CORP AUSTEMPERED DUCTILE IRON 200 KSI loo0 U’T.S 20o 1 YIELD KS oo" 10_ 10 - S% * . " ’"ELONGATION E-. I 50 HARDNESS 300 FT.LBS...manufacture, and testing of a proposed road wheel arm for the Ml tank. The material selected is bainitic ductile iron (BDI). This material made by the

  4. Final report of `research on advanced uses of cast materials`; Chusho kigyo taisaku gijutsu tokubetsu kenkyu `chuzo zairyo no kodo riyo gijutsu ni kansuru kenkyu` shuryo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    Tada, S.; Takahashi, T.; Abe, T. [Tohoku National Industrial Research Institute, Sendai (Japan)

    1997-03-31

    For the advanced utilization of casting iron, temperature differential austempering and partial austempering with the gradient mechanical properties of ADI (austempered ductile iron) by local electric method were experimentally investigated. For the former, gradient mechanical properties are obtained by giving temperature difference to the material in the process of austempering of casting iron, to add the strength and toughness. For the latter, mechanical properties are controlled by repeating partial austempering with changing the isothermal transformation condition by means of local electric method, to obtain the strength characteristics with appropriate balance. As a result of the former experiment, function gradient materials could be obtained with continuously changing internal mechanical properties. The fabricated material provided different properties depending on the direction of load. Radial crushing strength constant of the ring material depended on the treatment temperature of inside surface of the specimen. Fatigue and yield strengths can be simultaneously improved. As a result of the latter experiment, it was found that the mechanical properties can be improved at arbitrary part by the partial austempering. 13 refs., 25 figs., 4 tabs.

  5. Tratamiento isotérmico de los aceros aleados al silicio Tipo SAE 92XX

    Directory of Open Access Journals (Sweden)

    Páez, J. L.

    1996-02-01

    Full Text Available SAE 9260 type steels have silicon and carbon contents similar to those of the ductile iron matrix, and present a bainitic transformation with the same characteristics as ADI (Austempered Ductile Iron. The hypothesis is that excellent mechanical properties can be obtained by means of austempering (in times so short as to be accessible from the industrial point of view, the same as in ADI and even better because it is a rolling material instead of a cast material. It will be compared with the mechanical properties obtained by quenching and tempering at different temperatures.

    La composición química de los aceros SAE 92XX es similar a la de la matriz metálica de una fundición esferoidal, por lo que se pensó en someter a un acero de ese tipo a tratamientos de austempering similares a los que se aplican para lograr una ADI (Austempered Ductile Iron, y verificar si se alcanzaban valores aceptables de plasticidad con elevados valores de resistencia a la tracción para el mismo acero, tal y como sucede con aquellas fundiciones, y comparar dichos resultados con los obtenidos en el mismo acero con tratamientos convencionales de temple y revenido. Se alcanzaron valores que demostraron que, por austempering, se logran excelentes valores de plasticidad, muy superiores a los alcanzados por temple y revenido para durezas del mismo orden.

  6. Carbon Concentration of Austenite

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The investigation was carried out to examine the influence of temperature and times of austempering process on the maximum extend towhich the bainite reaction can proceed and the carbon content in retained austenite. It should be noted that a small percentage change in theaustenite carbon content can have a significant effect on the subsequent austempering reaction changing the volume fraction of the phasespresent and hence, the resulting mechanical properties. Specimens were prepared from an unalloyed ductile cast iron, austenitised at 950oCfor 60 minutes and austempered by the conventional single-step austempering process at four temperatures between BS and MS, eg., 250,300, 350 and 400oC. The samples were austempered at these temperatures for 15, 30, 60, 120 and 240 minutes and finally quenched toambient temperature. Volume fractions of retained austenite and carbon concentration in the residual austenite have been observed byusing X-ray diffraction. Additionally, carbon concentration in the residual austenite was calculated using volume fraction data of austeniteand a model developed by Bhadeshia based on the McLellan and Dunn quasi-chemical thermodynamic model. The comparison ofexperimental data with the T0, T0' and Ae3' phase boundaries suggests the likely mechanism of bainite reaction in cast iron is displacive rather than diffusional. The carbon concentration in retained austenite demonstrates that at the end of bainite reaction the microstructure must consist of not only ausferrite but additionally precipitated carbides.

  7. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  8. Analysis of carbon partitioning during ausferritic reaction in ADI

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2008-10-01

    Full Text Available The investigation was carried out to examine the influence of temperature and times of austempering process on the maximum extend towhich the ausferritic reaction can proceed and the carbon content in retained austenite. Specimens prepared from ductile cast iron wereaustenitised at 950oC for 60 minutes and austempered at four temperatures: 250, 300, 350 and 400oC. The samples were austempered atthese temperatures for 15, 30, 60, 120 and 240 minutes and finally quenched to ambient temperature. Volume fractions of retainedaustenite and carbon concentration in the residual austenite have been observed by using X-ray diffraction. Additionally, carbonconcentration in the residual austenite was calculated using volume fraction data of austenite and a model developed by Bhadeshia basedon the McLellan and Dunn quasi-chemical thermodynamic model. It was found that the obtained extend of ausferritic transformation isonly possible when the microstructure consists of not only ausferrite but additionally precipitated carbides.

  9. Metallographic investigation of ADU materials; Metallographische Charakterisierung von ADI-Werkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, L. [Novi Sad Univ. (Yugoslavia). Dept. for Production Engineering; Novovic, M. [Novi Sad Univ. (Yugoslavia). Dept. for Production Engineering; Smallman, R.E. [Birmingham Univ. (United Kingdom). School of Metallurgy and Materials

    1996-01-01

    The microstructure of austempered ductile ion (ADI) was investigated using conventional light microscopy as well as scanning and transmission electron microscopy. The microstructural variations arising from variations of composition and austempering processing parameters are discussed. Specimens with a microstructure consisting of carbide-free bainitic ferrite and retained austenite show promising mechanical properties. (orig.) [Deutsch] Das Gefuege von zwischenstufenverguetetem Gusseisen mit Kugelgraphit (ADI) wird licht-, rasterelektronen- und transmissionselektronenmikroskopisch untersucht. Die Gefuegeaenderungen, die durch unterschiedliche Zusammensetzung und Veraenderungen der Waermebehandlungsparamter verursacht werden, werden diskutiert. Die guenstigsten mechanischen Eigenschaften liefert ein Gefuege aus carbidfreiem bainitischem Ferrit und Restaustenit. (orig.)

  10. Study of Manufacturing Technology and Properties of AVGCI with Rare Earths

    Institute of Scientific and Technical Information of China (English)

    盛达; 颜丙祥

    2001-01-01

    By vermicularizing agent containing RE (REFeSi), austempered vermicular graphite cast iron (AVGCI) with RE can be produced with austempered treatment. The process of austenitization of vermicular graphite cast iron (VGCI) with RE and the transformation of AVGCI with RE with temperature increasing were studied by SEM with heating device. Properties of AVGCI with RE, such as tensile strength, elongation, impact toughness, hardness, thermal fatigue resistance, thermal expansive coefficient and weight increasing by oxidation were measured by electron universal testing machine with heating device. Experimental results indicate that AVGCI with RE possesses good comprehensive properties at room and elevated temperatures.

  11. OPTIMIZATION OF CHEMICAL COMPOSITION AND HEAT TREATMENT TO AUSTEMPERED DUCTILE IRON BASED ON ARTIFICIALNEURAL NETWORKS%基于人工神经网络的奥贝球铁化学成分及热处理工艺优化设计

    Institute of Scientific and Technical Information of China (English)

    周小平

    2003-01-01

    以奥贝球铁的力学性能指标为输入,化学成分及热处理工艺为输出,建立了7×5×7结构的BP神经网络,经过训练学习,网络输出具有较高的精度,适用于奥贝球铁化学成分及热处理工艺的优化设计.

  12. 硅锰对室温油分级等温淬火贝氏体球墨铸铁组织和性能的影响%Effects of Si and Mn on Microstructure and Mechanical Properties of Bainite Ductile Iron by Step Austempering in Room-Temperature Machine Oil

    Institute of Scientific and Technical Information of China (English)

    魏德强; 恽志东; 刘军

    2008-01-01

    研究了室温油分级等温淬火时,硅和锰对贝氏体球墨铸铁磨球组织和性能的影响.试验结果表明:硅含量在3.3%~3.8%时,对贝氏体相变具有诱发作用,使贝氏体球铁组织细化,力学性能提高,锰使贝氏体球墨铸铁的硬度提高韧性降低,合理的硅锰量可提高贝氏体球墨铸铁的力学性能.

  13. 贝氏体区等温时间对低硅TRIP钢组织和力学性能的影响%Effect of Austempering Isothermal-Time at Bainite Field on Structure and Mechanical Properties of Low Silicon TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    景财年; 陈晓辉; 刘在学; 谭启忠; 李亮

    2009-01-01

    研究了0.15C-1.5Mn-1.5Al-0.3Si TRIP钢820 ℃ 2 min加热后快冷至450℃盐浴中保温5~300 s空冷的组织和力学性能.结果表明.随在贝氏体转变区450 ℃等温时间的增加,该钢的屈服强度和伸长率增加,抗拉强度降低,等温时间60 S时强塑积最佳,为23 000 MPa%;等温时间≤60 s时随等温时间增加钢中残余奥氏体含量增加,>60 s时随等温时间的增加钢中残余奥氏体含量降低,60 s时钢中残余奥氏体达到最高值,为14%.

  14. 渗碳

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Carbo-Austempering - A new wrinkle?;Carburization Resistance of Austenitic Alloys in CH{sub}4-CO{sub}2-H{sub}2 Gas Mixtures at Elevated Temperatures;Causes of variability in gear fatigue testing; Change of the structure and mechanical properties of carburized layer as a result of its plastic deformation

  15. The forty years of vermicular graphite cast iron development in China (Part Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 5 Heat treatment of VGCI Research work has shown that the microstructure of VGCI can be modified by heat treatment to give improved properties;martensitic, bainitic, sorbitic and pearlitic structures can be produced by quenching, quenching plus tempering,austempering and normalisation respectively.

  16. Development of a high strength high toughness ausferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Putatunda, Susil K., E-mail: sputa@eng.wayne.edu [Department of Chemical Engineering and Material Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202 (United States); Singar, Arjun V. [Department of Chemical Engineering and Material Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202 (United States); Tackett, Ronald; Lawes, Gavin [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States)

    2009-07-15

    A new ausferritic steel with high strength and exceptionally high fracture toughness has been developed. This steel has been synthesized integrating concepts from Austempered Ductile Cast Iron (ADI) technology. The influence of the austempering temperature on the microstructure and mechanical properties of this steel at room temperature and ambient atmosphere has been examined. The effect of microstructure on the plane strain fracture toughness and on the magnetic, electrical, and thermal properties was also investigated. Compact tension and cylindrical tensile specimens prepared from the low alloy medium carbon steel with high silicon content were initially austenitized at 927 deg. C for 2 h and then subsequently austempered at several temperatures between 260 deg. C (500 F) and 400 deg. C (750 F) to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. A combination of exceptionally high yield strength (1336 MPa) and a high fracture of toughness of 116 MPa{radical}m (a value comparable to maraging steel) was obtained in this steel after austempering at 316 deg. C (600 F) for 2 h. Potential applications of this steel include the inexpensive fabrication of armored plates and components requiring high reliability and durability.

  17. iMAST FY2000 Annual Report

    Science.gov (United States)

    2000-01-01

    Ductile Iron •Effect of Lubricant on Durability •High-Hot-Hardness Gear Steels •Induction Hardening of Gears •Utilization of Boron Toughened Steels...individual companies. Since its inception in 1982, the Gear Research Institute has conducted technology programs in the following areas: • Austempered

  18. 表面淬火

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    SY508-3-146[篇名]Characterization of austempered ductile iron through Barkhausen noise measurements,SY508-3-147[篇名]Characterization of metallic and metal oxide nanoparticles produced by electrothermal-chemical synthesis……

  19. iMAST FY2005 Annual Report

    Science.gov (United States)

    2005-01-01

    Since its inception in 1982, the Gear Research Institute has conducted technology programs in the following areas: ◆ Austempered Ductile Iron ◆ Effect...is currently producing high-strength alloys with yield strengths of 100 ksi and ductility between 9 and 13%. Advanced Manufacturing Processes for

  20. Navy MANTECH Program Fiscal Year 2002 Annual Report

    Science.gov (United States)

    2003-04-01

    components. Army MANTECH (Army ARL) $424,600 Austempered ductile iron ausforming of various components on M1A2 Abrams vehicle. NASA $80,000...to change bulb. Implementation of digital photogrammetry to improve process control of plate cutting at Bath Iron Works. Typically

  1. Mechanical, physical, and corrosion characteristics of 2% vanadium alloyed ductile iron

    Science.gov (United States)

    Abdullah, Bulan; Jaffar, Ahmed; Alias, Siti Khadijah; Jaafar, Roseleena; Ramli, Abdullah; Faitullah, Ahmad

    2010-03-01

    This study was to investigate the effect of 2% vanadium alloyed austempered ductile iron on mechanical properties and microstructure and also to determine the desired austempering temperatures of vanadium alloyed ductile iron. In this study, specimens of 2%vanadium DI were produced by using the Y-block casting in the foundry lab. The specimen produced were machine according to the tensile and impact dimension followed the TSEN1002-1 and ASTM E23 standard. Then, austempering process was performed at the three different temperatures to the sample which are 500°, 600° and 700° in high temperature furnace. The specimens has been machine were undergoes the tensile, impact, density and hardness test. The microstructures were observed by using Olympus BX 41 M Microscopes image analysis system before and after etching by Nital 15%. Polarization test also were conduct between commercial DI and 2%V-DI. The results show that 2% vanadium alloyed ductile iron (2% V-DI) not only increases the nodule count and ferrite content in the microstructure, but also improves the mechanical properties such as tensile strength, impact toughness proportional to the austempered temperature as compared to unalloyed DI. The low corrosion rates also show for the 2% of vanadium alloyed compare to the commercial DI.

  2. iMAST FY2004 Annual Report

    Science.gov (United States)

    2004-01-01

    Since its inception in 1982, the Gear Research Institute has conducted technology programs in the following areas: ◆ Austempered Ductile Iron ◆ Effect...alloys. ARL is currently producing high-strength alloys with yield strengths of 100 ksi and ductility between 9 and 13%. Advanced Manufacturing

  3. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  4. CADI材料的热处理优化及其对耐磨性能的影响%Optimization of heat treatment and its influence on wear resistance for CADI material

    Institute of Scientific and Technical Information of China (English)

    胡小锋; 闫德胜; 戎利建

    2013-01-01

    采用正交试验对含碳化物的等温淬火球墨铸铁(CADI)的热处理工艺进行了优化,分析了热处理参数对CADI组织及耐磨性的影响.结果表明:等温淬火温度对CADI的耐磨性影响最大,较高的等温淬火温度会使奥铁体中富碳奥氏体粗化从而影响耐磨性,而较低的淬火温度则会降低韧性容易脆裂.奥氏体化温度、奥氏体化时间和等温淬火时间对CADI材料耐磨性的影响基本相当,较高的奥氏体化温度会粗化富碳奥氏体,对耐磨性不利.优化后的热处理制度为900℃奥氏体化1h,然后在280℃下盐浴保温1.5h,采用该制度处理后的CADI材料性能不低于进口商业化CADI犁铧产品的性能.%The heat treatment for carbidic austempered ductile iron (CADI) was optimized by orthogonal test and the influence of heat treatment parameters on the microstructure and wear resistance was discussed.The results show that the austempering temperature has the greatest impact on the wear resistance of CADI.While the austempering temperature is higher,the carbon enriched austenite in ausferrite will become more coarsening and decrease the wear resistance.On the contrary,the lower austempering temperature will decrease the toughness and it is easy to crack.The austenitizing temperature,austenitizing time and austempering time almost have the same influence on the wear resistance.Higher austenitizing temperature will coarsen the carbon enriched austenite and affect the wear resistance.The optimized heat treatment is austeniting at 900 ℃ for 1 h and then austempering at 280 ℃ for 1.5 h,at which the properties of CADI treated are not less than that of import and commerciatlized CADI product.

  5. Nanocrystalline Steels’ Resistance to Hydrogen Embrittlement

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of this study is to determine the susceptibility to hydrogen embrittlement in X37CrMoV5-1 steel with two different microstructures: a nanocrystalline carbide-free bainite and tempered martensite. The nanobainitic structure was obtained by austempering at the bainitic transformation zone. It was found, that after hydrogen charging, both kinds of microstructure exhibit increased yield strength and strong decrease in ductility. It has been however shown that the resistance to hydrogen embrittlement of X37CrMoV5-1 steel with nanobainitic structure is higher as compared to the tempered martensite. After hydrogen charging the ductility of austempered steel is slightly higher than in case of quenched and tempered (Q&T steel. This effect was interpreted as a result of phase composition formed after different heat treatments.

  6. A study on the effects of artifacts on fatigue limit of ductile cast iron with ferritic structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hak [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Min Gun [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2000-10-01

    In this study, fatigue tests were performed to examine the effects of micro drill hole on fatigue limit of as cast and Austempered Ductile cast Iron (ADI) using the rotary bending fatigue tester. As results, micro drill holes (diameter{<=}0.4mm) did not influence the fatigue limit of ADI, compared to annealed ductile cast iron; the critical defect size of crack initiation, in ADI was larger than as cast. If the {radical}areas of micro drill hole and graphite nodule in ADI are comparable, crack initiates at the graphite nodule. When the ruggedness develops through austempering treatment process, microstructure on crack initiation at micro drill hole is tougher than that of as cast ductile cast iron.

  7. Development and use of ADI materials at DB AG; Entwicklung und Einsatz von ADI-Werkstoffen bei der DB AG

    Energy Technology Data Exchange (ETDEWEB)

    Maedler, K. [Deutsche Bahn AG, Brandenburg-Kirchmoeser (Germany). Forschungs- und Technologie-Zentrum

    1999-07-01

    ADI (austempered ductile iron) has many interesting properties and can replace steel in many applications in railwy engineering provided that the life cycle cost and noise emissions can be minimized on the one hand and that material producers are able on the other hand to produce ADI materials of constant quality. [German] Der Werkstoff ADI (austempered ductile iron) bietet ein breites Spektrum guenstiger Eigenschaften, die sich fuer zahlreiche, bisher aus Stahl hergestellte Bauteile im schienengebundenen Verkehr anbieten. Gelingt es, diese Eigenschaften gezielt zur Verminderung der Lebenszykluskosten ueber die Verringerung der Kosten fuer Herstellung, Wartung, Instandhaltung und Energieverbrauch einzusetzen und nicht zuletzt die Schallabstrahlung zu minimieren, dann ist dieser Werkstoff eine Alternative zu bislang bei der Bahn eingesetzten Materialien. Voraussetzung fuer eine Werkstoffsubstitution ist neben dem Nachweis der technischen und wirtschaftlichen Ueberlegenheit beim Einsatz dieses Materials eine hohe Prozesssicherheit beim Hersteller, um auch grosse Serien in gleichbleibend hoher Qualitaet zu erzeugen. (orig.)

  8. The role of graphite morphology and matrix structure on low frequency thermal cycling of cast irons

    Indian Academy of Sciences (India)

    S Y Buni; N Raman; S Seshan

    2004-02-01

    Low frequency thermal cycling tests were carried out on four types of cast iron (viz., austempered ductile iron, pearlitic ductile iron, compacted/vermicular graphite iron and grey cast iron) at predetermined ranges of thermal cycling temperatures. The specimens were unconstrained. Results show that austempered ductile iron has the highest thermal cycling resistance, followed by pearlitic ductile iron and compacted graphite iron, while grey cast iron exhibits the lowest resistance. Microstructural analysis of test specimens subjected to thermal cycling indicates that matrix decomposition and grain growth are responsible for the reduction in hardness while graphite oxidation, de-cohesion and grain boundary separation are responsible for the reduction in the modulus of elasticity upon thermal cycling.

  9. Effect Of Heat Treatment Parameters On The Formation Of ADI Microstructure With Additions Of Ni, Cu, Mo

    Directory of Open Access Journals (Sweden)

    Mrzygłód B.

    2015-09-01

    Full Text Available Metallographic examinations and mechanical tests were carried out on the ductile iron with additions of Ni, Cu and Mo in as-cast state and after austempering. TTT and CCT diagrams were plotted. The heat treatment was performed in six different variants. Studies included qualitative assessment of the microstructure and testing of mechanical properties such as R0,2, Rm, A, Z, HRC, KC. An analysis of the obtained results was also presented.

  10. iMAST Annual Report FY06

    Science.gov (United States)

    2006-01-01

    Austempered Ductile Iron ° Effect of Lubricant on Durability ° High-Hot-Hardness Gear Steels ° Induction Hardening of Gears ° Utilization of Boron...strength aluminum alloys. ARL is currently producing high-strength alloys with yield strengths up to 105 ksi and ductility between 9 and 13%, high...i.e., sand). Selective ductile metallic coatings show increased erosion resistance at these higher angles, but poor resistance at low impingement

  11. Ultrahigh Carbon Steel.

    Science.gov (United States)

    1984-10-01

    Steels have been utilized to prepare compacted powders of white cast iron (2 to 3%C) which exhibit superplastic be- havior at 650 0C and which are ductile ...strength and ductility than many of these commercially-avail- able steels. In particular, austempered fine-grained UHC steels exhibit good co7,binations of... Ductility of Rapidly Solidified White Cast Irons ", Powd. Metall., 26 (1983), pp. 155-160. (29) L. E. Eiselstein, 0. A. Ruano, J. Wadsworth, and 0. D

  12. 等温淬火球铁(ADI)基本知识

    Institute of Scientific and Technical Information of China (English)

    刘光华

    2007-01-01

    @@ 1什么叫等温淬火球铁(ADI) 采用等温淬火热处理工艺获得的针状铁素体和高碳奥氏体为主要基体组织的球铁称为等温淬火球铁.它的英文名称为Austempered Ductile Iron,缩写为ADI.

  13. Fatigue behavior of ADI: Some specific features

    Energy Technology Data Exchange (ETDEWEB)

    Svejcar, J.; Vechet, S.; Pokluda, J. [Technical Univ. of Brno (Czech Republic). Faculty of Mechanical Engineering

    1997-12-31

    The paper summarizes the results of fatigue tests on austempered ductile iron. Attention is mainly focused on the effect of graphite on crack propagation and on some irregularities exhibited by ADI and other ductile irons, e.g., some specific features of fatigue fracture (especially the occurrence of fatigue striations on intergranular facets), decrease of fatigue limit with increasing UTS, and anomalous dependence of loading cycle amplitude on mean cycle stress.

  14. The recommendation system knowledge representation and reasoning procedures under uncertainty for metal casting

    Directory of Open Access Journals (Sweden)

    S. Kluska-Nawarecka

    2015-01-01

    Full Text Available The paper presents an information system dedicated to requirements recommendation and knowledge sharing. It presents methodology of constructing domain knowledge base and application procedure on the example of production technology of Austempered Ductile Iron (ADI. For knowledge representation and reasoning Logic of Plausible Reasoning (LPR is used. Both equally applicable LPR for formalization the knowledge of foundry technology, as well as the described system solution have the unique character.

  15. Relationships between microstructure and mechanical properties in ductile cast irons: a review; Relaciones entre la microestructura y las propiedades mecanicas en fundiciones nodulares: revison bibliografica

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, R.; Bermont, V. [Universidad de La Serena. La Serena. Chile (Chile); Martinez, V. [Universidad de Santiago. Santiago Chile (Chile)

    1999-07-01

    The progress achieved in the understanding of the relationships between the microstructure and the mechanical properties of ductile cast iron is reviewed. It is also described the applications of heat treatment of austempered to ductile irons (ADI), which have allowed to improve substantially the mechanical properties of these materials. It is proposed a research program to obtain the crack growth resistance under corrosive atmospheres and to model the mechanical properties. (Author) 83 refs.

  16. Recent development of ductile cast iron production technology in China

    OpenAIRE

    Cai Qizhou; Wei Bokang

    2008-01-01

    Recent progress in the production and technology of ductile cast iron castings in China is reviewed. The manufacture and process control of as-cast ductile iron are discussed. The microstructure, properties and application of partial austenitization normalizing ductile iron and austempered ductile iron (ADI) are briefl y depicted. The new development of ductile iron production techniques, such as cored-wire injection (wire-feeding nodularization) process, tundish cover ladle nodularizing proc...

  17. Relaciones entre la microestructura y las propiedades mecánicas en fundiciones nodulares: revisión bibliográfica

    OpenAIRE

    Castillo, R; Bermont, V.; Martínez, V.

    1999-01-01

    The progress achieved in the understanding of the relationships between the microstructure and the mechanical properties of ductile cast iron is reviewed. It is also described the applications of heat treatment of austempered to ductile irons (ADI), which have allowed to improve substantially the mechanical properties of these materials. It is proposed a research program to obtain the crack growth resistance under corrosive atmospheres and to model the mechanical properties.

  18. Effect of Temperature on the Toughness of Locally Manufactured Low Alloy Steel SUP9 Used for Manufacturing Leaf Springs

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-10-01

    Full Text Available The effect of heat treatment on locally manufactured low alloy steel grade SUP9 most frequently used in making leaf springs for automobiles was studied. While for determination of toughness and hardness Charpy impact testing machine and Rockwell hardness tester were used. The cryogenic test temperatures were achieved by soaking the samples in liquid nitrogen and temperature was measured using digital thermometer capable of reading the temperature from -40-200oC. Hardening, tempering and austempering treatments were conducted using muffle furnace and salt bath furnace. After heat treatment samples were quenched in oil. The results of present work confirmed that toughness and hardness are inversely related with each other and are highly dependent on the type of heat treatment employed. Highest toughness was measured after austempering at 450oC. Effect of test temperature revealed that toughness of the samples increased significantly with decreasing temperature. DBTT (Ductile to Brittle Transition Temperature of the austempered samples was observed at -10oC, whereas, that of tempered samples could not be determined. Based on the test results authors wish to recommend the 600oC tempering temperature in place of 450oC where normally tempering is practiced in Alwin industry Karachi during manufacturing of leaf spring.

  19. Retained austenite thermal stability in a nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Avishan, Behzad, E-mail: b_avishan@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain); Yazdani, Sasan, E-mail: yazdani@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain)

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.

  20. Property enhancement of cast iron used for nuclear casks

    Science.gov (United States)

    Behera, R. K.; Mahto, B. P.; Dubey, J. S.; Mishra, S. C.; Sen, S.

    2016-01-01

    Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than annealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was characterized by the presence of dimples.

  1. Property enhancement of cast iron used for nuclear casks

    Institute of Scientific and Technical Information of China (English)

    RK Behera; BP Mahto; JS Dubey; SC Mishra; S Sen

    2016-01-01

    Ductile iron (DI) is a preferred material for use in various structural, automotive, and engineering fields because of its excellent combination of strength, toughness, and ductility. In the current investigation, we elucidate the relationship between the morphological and mechanical properties of DI intended for use in safety applications in the nuclear industry. DI specimens with various alloying elements were subjected to annealing and austempering heat treatment processes. A faster cooling rate appeared to increase the nodule count in austempered specimens, compensating for their nodularity value and subsequently decreasing their ductility and impact strength. The ductility and impact energy values of annealed specimens increased with increasing ferrite area fraction and nodularity, whereas an increase in the amounts of Ni and Cr resulted in an increase of hardness via solid solution strengthening. Austempered specimens were observed to be stronger than an-nealed specimens and failed in a somewhat brittle manner characterized by a river pattern, whereas the ductile failure mode was character-ized by the presence of dimples.

  2. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T. Z. Wozniak

    2010-10-01

    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon, steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperature estimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology also accelerates the bainitic transformation.

  3. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T.Z. Woźniak

    2010-07-01

    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon,steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperatureestimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology alsoaccelerates the bainitic transformation.

  4. Corrosion Resistance of The Bearing Steel 67SiMnCr6-6-4 with Nanobainitic Structure

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The paper describes a comparative study of the corrosion resistance of bearing steel 67SiMnCr6-6-4 after two kinds of nanostructuring treatments and two kinds of conventional quenching and tempering treatments. The nanostructuring treatment consisted of austempering with an isothermal quenching at 240°C and 300°C. The conventional heat treatment consisted on quenching and tempering at 350°C for 1 h and quenching and tempering at 550°C for 1 h. Time and temperature of tempering was chosen so that the hardness of both samples (nanostructured as well as quenched and tempered was similar. The microstructure of steel after each heat treatment was described with the use of transmission electron microscopy (TEM. It was shown, that the austempering conducted at 240°C produced homogenous nanobainitic structure consisting of carbide-free bainite plates with nanometric thickness separated by the layers of retained austenite. The austempering at 300°C produced a sub-micrometric carbide-free bainite with retained austenite in form of layers and small blocks. The conventional heat treatments led to a tempered martensite microstructure. The corrosion resistance study was carried out in Na2SO4 acidic and neutral environment using potentiodynamic and electrochemical impedance spectroscopy (EIS methods. The corrosion resistance of nanostructured steel samples were compared to the steel samples with tempered martensite. The obtained results indicate, that the corrosion resistance of bearing steel with nanobainitic structure is similar to steel with tempered martensite in both acidic and neutral environment. This means that the high density of intercrystalline boundaries in nanobinite does not deteriorate the corrosion properties of the bearing steel.

  5. Estudio de la influencia del Cu y Ni en la cinética de transformación martensítica inducida por deformación en fundiciones nodulares austemperadas

    Directory of Open Access Journals (Sweden)

    Guzmán, D.

    2013-06-01

    Full Text Available The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability.El objetivo de este trabajo fue estudiar el efecto del cobre y níquel en la cinética de la transformación martensítica inducida por deformación en fundiciones nodulares austemperadas. Las fundiciones utilizadas se fabricaron mediante austemperado, a partir de dos fundiciones nodulares, con diferentes contenidos de cobre y níquel. La deformación se realizó en un laminador de rodillo. La cuantificación de las fases se realizó mediante difracción de rayos X, mientras que la caracterización microestructural se efectuó utilizando microscopía óptica y electrónica de barrido. Se comprobó que la cinética de transformación martensítica inducida por deformación en fundiciones nodulares austemperadas puede ser modelada mediante los modelos de Olson-Cohen y Chang et al. Basándose en los resultados obtenidos de estos ajustes, se concluye que tanto el níquel como el cobre dificultan la transformación martensítica debido a que estos elementos aumentan la energía de falla de

  6. Low alloy steel versus ADI – differences and similarities

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2009-01-01

    Full Text Available The results of comparison between the microstructure of selected bainitic low alloy steel and austempered ductile iron ADI are presented. The aim of the comparison was to find out differences and similarities existing in these iron carbon commercial alloys. In this paper our own results on ADI structure and literature data were used. It follows from discussion presented here that both microstructure and properties of ADI are very close that which are observed in low alloy carbon steel. Moreover, we suggest that there is no so doubt to treat ADI mechanical properties as steel containing nodular inclusions of graphite.

  7. Recent development of ductile cast iron production technology in China

    Institute of Scientific and Technical Information of China (English)

    Cai Qizhou; Wei Bokang

    2008-01-01

    Recent progress in the production and technology of ductile cast iron castings in China is reviewed.The manufacture and process control of as-cast ductile iron are discussed.The microstructure.properties and application of partial austenitization normalizing ductile iron and austempered duclile iron(ADI)are briefly depicted.The new development of duclile iron production techniques,such as cored-wire injection(wire-feeding nodularization)process,tundish cover ladle nodularizing process,horizontal continuous casting,and EPC process (lost foam)for ductile iron castings,etc.,are summarized.

  8. 奥贝球墨铸铁力学性能综合指标模糊数学评价法%Synthetic Evaluation on Indices of Mechanics Properties of Ductile Iron by Fuzzy Mathematics

    Institute of Scientific and Technical Information of China (English)

    何希杰; 张勇; 劳学苏

    2014-01-01

    分析了奥贝球墨铸铁在不同奥氏体化温度参数ATP,奥氏体化时间参数AtP,等温温度参数ITP和等温时间参数ItP等热处理条件下力学性能的技术指标,提出了奥贝球铁力学性能指标模糊数学综合评价方法,通过大量计算得出了综合评价结果。计算结果表明,力学性能在奥氏体化温度920℃,奥氏体化时间90min等温温度380和等温时间60min时综合指标最好,在奥氏体化温度940℃,奥氏体化时间30min等温温度350℃和等温时间120min时综合指标最差。本文研究结果为进一步研究球墨铸铁力学性能和新性能球墨铸铁提供了重要的依据。本评价方法对于工程技术方案评价也具有实用价值。%The technical indices of mechanics properties of ductile iron with different heat treatment parameters have been researched.The synthetic evaluating method by fuzzy mathematics on those indices has been offered.The evaluating result of technical indices of mechanics properties has been obtained with lot of calculation,resulting in that the best mechanics property occured in conditions of austempering temperature 920 ℃,austempering holding time 90 min,isothermal temperature 380 ℃and isothermal holding time 60 min while the worst occured with austempering temperature 940 ℃,austempering holding time 30 min,isothermal temperature 350℃and isothermal holding time 120 min.23 others samples were between them successively.The result may have an important practical signiifcance for further research of mechanics properties of ductile iron and for developing new properties of ductile iron.The evaluating method in this paper may have an important practical signiifcance for the evaluating on the other project.

  9. Thermomechanical processing and mechanical properties of hypereutectoid steels and cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D. (eds.)

    1998-01-01

    Recent advances in metallurgy of hypereutectoid steels and cast irons show that unique properties, such ultrahigh hardness and strength, and superplasticity, are achievable. This book focuses on the mechanical properties of hypereutectoid steels and cast irons as influenced by thermomechanical processing and microstructure. Some topics covered are: (1) Hot workability of hypereutectoid tool steels; (2) Thermomechanical processing of austempered ductile iron: An overview; (3) Mechanical behavior of ultrahigh strength, ultrahigh carbon steel wire and rod; and (4) Tensile elongation behavior of fine-grained Fe-C alloys at elevated temperatures.

  10. Recent development of ductile cast iron production technology in China

    Directory of Open Access Journals (Sweden)

    Cai Qizhou

    2008-05-01

    Full Text Available Recent progress in the production and technology of ductile cast iron castings in China is reviewed. The manufacture and process control of as-cast ductile iron are discussed. The microstructure, properties and application of partial austenitization normalizing ductile iron and austempered ductile iron (ADI are briefl y depicted. The new development of ductile iron production techniques, such as cored-wire injection (wire-feeding nodularization process, tundish cover ladle nodularizing process, horizontal continuous casting, and EPC process (lost foam for ductile iron castings, etc., are summarized.

  11. Fatigue behaviour of cast iron with globular graphite

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, P.; Pusch, G.; Krodel, L. [Institut fuer Werkstofftechnik, TU Bergakademie Freiberg, Gustav-Zeuner-Strasse 5, 09599 Freiberg (Germany)

    2004-07-01

    Cast iron with bainitic matrix and globular graphite, so called austempered ductile iron (ADI), allows the substitution of heat-treatable steels. The use of ADI in safety-relevant components requires knowledge of the fracture and fatigue behaviour. Cyclic stress strain behaviour and fatigue life at total strain control and random loading have been investigated at ADI (EN-GJS-1000-5) and pearlitic cast iron (EN-GJS-600-3). In addition fracture mechanic tests at cyclic loading at various stress ratios were carried out. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Intercritical heat treatments in ductile iron and steel

    Science.gov (United States)

    Aristizabal, Ricardo E.

    Materials such as dual phase (DP) steels, transformation induced plasticity (TRIP) steels and dual phase ductile irons are produced by intercritical heat treatments. These materials can provide significant weight savings in the automotive industry. The goal of this dissertation is to study intercritical heat treatments in ductile iron and steel to optimize the production parameters. Three different aspects were addressed. First, common steels were intercritically austenitized and austempered (intercritically austempered) under a variety conditions. The results showed that common grade steels that were intercritically austempered exhibited tensile properties in the same range as DP and TRIP steels. The second study consisted of determining the effect of heat treatment conditions on the tensile properties of intercritically austenitized, quenched and tempered ductile iron (IAQ&TDI). The results showed that (1) ultimate tensile strength (UTS) and yield strength (YS) were determined by the volume fraction of martensite, (2) tempering improved the elongation 1.7-2.5 times with only a slight decrease in strength, (3) the carbon in austenite formed during the intercritical heat treatment of ductile iron with a ferritic-pearlitic matrix came from the carbon available in the matrix and that carbon diffusion from the graphite nodules was restricted, and (4) limited segregation of substitutional elements occurred during intercritical austenitizing. Finally, intercritically austempered ductile iron (IADI) alloyed with different amounts of manganese and nickel was produced. Tensile properties and microstructure were determined. Also, the stability of the austenite during deformation and the lattice strains of the ferrite and the austenite phases were determined using x-ray diffraction (XRD) and neutron diffraction. The results indicated that: 1) high manganese concentrations produced materials with large blocky, low carbon austenite particles at the intercellular boundaries

  13. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  14. The factors influencing microstructure and mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2009-01-01

    Full Text Available The paper deals with the influence of different conditions of isothermal heat treatment on microstructure and mechanical properties of austempered ductile iron (ADI. Different temperature of isothermal transformation of austenite and different holding time at this temperature were used for heat treatment of specimens. The microstructure of specimens after casting and after heat treatment was evaluated by STN EN ISO 945 and by image analysis (using Lucia software. Mechanical properties were evaluated by the tensile test, the Rockwell hardness test and fatigue tests.

  15. Thermal Stability of Nanocrystalline Structure In X37CrMoV5-l Steel

    Directory of Open Access Journals (Sweden)

    Skołek E.

    2015-04-01

    Full Text Available The aim of the study was to investigate the thermal stability of the nanostructure produced in X37CrMoV5-1 tool steel by austempering heat treatment consisted of austenitization and isothermal quenching at the range of the bainitic transformation. The nanostructure was composed of bainitic ferrite plates of nanometric thickness separated by thin layers of retained austenite. It was revealed, that the annealing at the temperature higher than temperature of austempering led to formation of cementite precipitations. At the initial stage of annealing cementite precipitations occurred in the interfaces between ferritic bainite and austenite. With increasing temperature of annealing, the volume fraction and size of cementite precipitations also increased. Simultaneously fine spherical Fe7C3 carbides appeared. At the highest annealing temperature the large, spherical Fe7C3 carbides as well as cementite precipitates inside the ferrite grains were observed. Moreover the volume fraction of bainitic ferrite and of freshly formed martensite increased in steel as a result of retained austenite transformation during cooling down to room temperature.

  16. Prediction of Microstructure in ADI Castings

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2016-12-01

    Full Text Available Tests were carried out on samples of low-alloy ductile iron with additions of Ni, Cu and Mo, subjected to austempering heat treatment. The samples were austenitized at 850, 900 and 950 °C, and then austempered at T = 210, 240, 270, 300 and 330 °C. The ausferritizing treatment was carried out in a salt bath for the time τ = 2 - 8 hours. Additionally, tests and studies covered samples subjected to the ausferritizing treatment at 270 °C with the time of holding castings in a bath from 2 to 24 hours. Evaluation covered the results of the ADI microstructure examinations and hardness measurements. The ADI matrix morphology was identified counting the average number of ausferrite plates and measuring their width and spacing. The regression equations HB = f (τ, T and τ = f (HB, T were derived to establish the, so-called, “process window”, allowing obtaining a priori the required microstructure of ADI and, consequently, the required mechanical properties, mainly hardness, shaping the functional properties of castings, abrasion wear resistance – in particular.

  17. Analysis of Carbon Diffusion during Bainite Transformation in ADI

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The paper presents an investigation of the time required for the diffusion of carbon out of supersaturated sub-units of ferrite into the retained austenite. The analytical model estimates the decarburisation time of the sub-units of supersaturated bainitic ferrite. The purpose of the present paper is to demonstrate how a thermodynamic method can be used for solving a problem of the decarburisation of bainite subunits and carbon diffusion distances in the matrix of ADI. This should in principle enable to examine the partitioning of carbon from supersaturated ferrite plates into adjacent austenite and the carbon content in retained austenite using analytical method. The diffusion coefficient of carbon in austenite is very sensitive to the carbon concentration and this has to be taken into account in treating the large concentration gradients that develop in the austenite. The results are discussed in the context of displacive mechanism of bainite transformation. Experimental measurements of volume fraction of bainitic ferrite and volume of the untransformed austenite indicate that there is a necessity of carbides precipitation from austenite. The necessary carbon diffusion distance in austenite also illustrates that the estimated time is not capable of decarburising the ferrite subunits during the period of austempering. A consequence of the precipitation of cementite from austenite during austempering is that the growth of bainitic ferrite can continue to larger extent and that the resulting microstructure is not an ausferrite but is a mixture of bainitic ferrite, retained austenite and carbides.

  18. Study of the isothermal transformation of ductile iron with 0.5% Cu by electrical resistance measurement

    Science.gov (United States)

    Lin, B. Y.; Chen, E. T.; Lei, T. S.

    1995-10-01

    A computer-controlled system for measuring electrical resistance has been developed and used to study the isothermal transformation of austenite in a ductile iron (3.31 % C, 3.12 % Si, 0.22 % Mn, 0.55 % Cu). The ability of the technique to follow the isothermal decomposition of austenite was established by measurements on an AISI4340 steel. The times at which the austenite decomposed to primary ferrite, pearlite, and bainite were accurately detected. In the ductile iron, the formation of pearlite and of bainite was easily detected, and an isothermal transformation diagram was constructed from the results. The temperature range for the formation of bainite is especially important in producing austempered ductile iron (ADI) and was mapped. An initial stage of decomposition of austenite to ferrite and high-carbon austenite is followed by a time delay; then the high-carbon austenite decomposes to bainite. The formation of ADI requires austempering to a structure of ferrite and high-carbon austenite, then quenching to retain this structure, thus avoiding the formation of bainite. This is achieved by isothermal transformation into the time-delay region. For the ductile iron studied here, this time region was about 2.6 h at 400 °C and increased to 277 h at 300 °C.

  19. Study of the isothermal transformation of ductile iron with 0.5% Cu by electrical resistance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lin, B.Y.; Chen, E.T.; Lei, T.S. [National Taiwan Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering and Technology

    1995-10-01

    A computer-controlled system for measuring electrical resistance has been developed and used to study the isothermal transformation of austenite in a ductile iron (3.31% C, 3.12% Si, 0.22% mn, 0.55% Cu). The ability of the technique to follow the isothermal decomposition of austenite was established by measurements on an AISI 4340 steel. The times at which the austenite decomposed to primary ferrite, pearlite, and bainite were accurately detected. In the ductile iron, the formation of pearlite and of bainite was easily detected, and an isothermal transformation diagram was constructed from the results. The temperature range for the formation of bainite is especially important in producing austempered ductile iron (ADI) and was mapped. An initial stage of decomposition of austenite to ferrite and high-carbon austenite is followed by a time delay; then the high-carbon austenite decomposes to bainite. The formation of ADI requires austempering to a structure of ferrite and high-carbon austenite, then quenching to retain this structure, thus avoiding the formation of bainite. This is achieved by isothermal transformation into the time-delay region. For the ductile iron studied here, this time region was about 2.6 h at 400 C and increased to 277 h at 300 C.

  20. Transmission electron microscopy study of high temperature bainitic transformation in 1 wt.% Mn ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadabadi, M.N. [Tohoku Univ., Sendai (Japan); Niyama, E. [Tohoku Univ., Sendai (Japan); Echigoya, J. [Tohoku Univ., Sendai (Japan)

    1995-04-01

    A 1 wt.% Mn ductile iron austenitized at 900 C for 90 min and austempered at 375 C for different periods was used to study some aspects of bainitic reaction in high Mn austempered ductile iron with reference to carbide precipitation in bainitic ferrite. Transmission electron microscopy (TEM) energy-dispersive X-ray analysis (EDXA) study shows that precipitation of carbide in the ferritic component of bainite is a function of the local concentration of alloying elements. In other words, in the region near graphite where Si segregates and there is negative Mn segregation as well as carbon, the bainitic ferrite is carbide free. However, in the intercellular region where Mn segregates and Si is depleted, the ferritic component of bainite occurs together with very fine and almost uniformly distributed carbide. Furthermore, TEM-EDXA results show that the increase in Mn content not only delays stage I (the initial transformation of austenite to ferrite and retained austenite) of the bainitic reaction, but also delays stage II (decomposition of retained austenite to ferrite and carbide). ((orig.))

  1. The Performance Evalution of Ceramic And Carbide Cutting Tools In Machining of Austemepered Ductile Irons

    Directory of Open Access Journals (Sweden)

    Yahya IŞIK

    2014-12-01

    Full Text Available The aim of this research is to compare TiN (PVD coated Al2O3+Ti[C,N] mixed alumina-based (KY4400 ceramic and CVD coated carbide TiC+AI2O3+TiN (ISO P25 cutting tools in turning austempered ductile irons. Ductile cast iron samples were austenitized at 927°C and subsequently austempered for 1 hour at 400°C. The hardness of the workpiece material was measured and found to be 43.5 HRC. In the present work a series of tests were conducted in order to evaluate the tool performances by adopting tool life. In all experiments cutting forces, flank wear and surface roughness values were measured throughout the tool life. No cutting fluid was used during the turning operations. Study of the tool life and failure modes shows that tool life was determined by the flank wear and surface roughness generated on the workpiece. The main conclusion is that tool life of ceramic insert was longer than the coated carbide insert although much higher cutting speeds were used. 

  2. Microstructural characterization of ADI and AVI alloys by means of Rietveld analysis

    Energy Technology Data Exchange (ETDEWEB)

    Garin, J.L.; Mannheim, R.L. [Chile Univ., Santiago (Chile). Dept. of Metall. Eng.

    2000-10-01

    Retained austenite and other microstructural components in a series of Cu-Mo-Ni-alloyed austempered ductile iron, ADI, and V-Cu-bearing austempered vermicular iron, AVI, have been determined by means of Rietveld analysis, as a promising alternative to the usual technique based on the integrated intensities of X-ray diffraction patterns. The Rietveld method utilizes all measured points of the diffraction pattern and minimizes the residual S = w{sub i} (y{sub i}-y{sub c}){sup 2} with w{sub i} = 1/y{sub i}, y{sub i} = observed intensity and y{sub c}=calculated intensity. For the sake of this research the analytical reflection profiles were modeled according to the Pearson VII and pseudo-Voigt functions. The described refinement procedure yielded highly precise results, as compared with the traditional techniques; besides, very useful corrections for preferred orientations, background and micro displacement of the specimen can be mathematically modeled. (orig.)

  3. The influence of the hardening conditions on the mechanical properties of ductile cast iron

    Directory of Open Access Journals (Sweden)

    T. Giętka

    2010-01-01

    Full Text Available Ductile cast iron has been austempered according to two variants. The first treatment variant was austenitizing at a temperature tγ = 830, 860 and 900 0C and holding at a temperature tpi = 400 and 300 0C for 8 ÷ 64 min. Second variant treatment was two-phase austenitizing. Firstly, it was heated at a temperature tγ = 950 0C and after forecooling and chilling at a temperature tγ’ = 900, 860 and 830 0C isothermal process was conducted in the same conditions as in the first variant. The cast iron with ferritic matrix was austempered. After hardening the mechanical (Rp0,2, Rm and plastic (A5 properties were examined as well as the microstructure of matrix and hardness. It was noticed that the heat treatment carried out according to variants I and II lead to attaining cast iron of grade: ADI EN-GJS-800-8, EN-GJS-1200-2, EN-GJS-1400-1 according to PN–EN 1564 : 2000; in addition, ductility of these grades was 1,5÷4 times bigger than the mini-mum standard material requirements.

  4. Influence of High Strength Steel Microstructure on Fatigue Crack Growth Rate

    Directory of Open Access Journals (Sweden)

    Enefola S. Ameh

    2016-07-01

    Full Text Available This study examines the effect of high strength steel microstructure morphology on fatigue crack growth rate (FCGR. To achieve this aim, three different heat treatment methods (normalizing, austempering quenching and tempering were considered and all the steel specimens were initially heated to 9500C austenization temperature for ninety minutes and then processed via the different heat treatment methods before viewing the resultant microstructures under light optical microscope (LOM. Fatigue crack growth rate tests were conducted on the resultant microstructures with compact tension specimens at room temperature as prescribed by American standard testing method E647. Results of FCGR tests showed normalized microstructure has the lowest FCGR (6.2698E-06, followed by quenched and tempered (7.9519E-06, asreceived (8.15E-06 and austempered (9.6667E-06 microstructure considering a low stress intensity factor range. The trend of results showed insignificant effect of microstructure over the Paris regime growth indicating fatigue crack growth rate is not a reliable parameter for correlating rate of crack propagation to microstructure

  5. Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel

    Institute of Scientific and Technical Information of China (English)

    Yang Li; Gui-yong Xiao; Lu-bin Chen; Yu-peng Lu

    2014-01-01

    Acoustic emission (AE) monitored tensile tests were performed on 35CrMnSiA steel subjected to different heat treatments. The results showed that quenching and partitioning (Q−P) heat treatments enhanced the combined mechanical properties of high strength and high ductility for commercial 35CrMnSiA steel, as compared with traditional heat treatments such as quenching and tempering (Q−T) and austempering (AT). AE signals with high amplitude and high energy were produced during the tensile deformation of 35CrMnSiA steel with retained austenite (RA) in the microstructure (obtained via Q−P and AT heat treatments) due to an austenite-to-martensite phase transforma-tion. Moreover, additional AE signals would not appear again and the mechanical properties would degenerate to a lower level once RA de-generated by tempering for the Q−P treated steel.

  6. Mechanical And Microstructural Evaluation Of A Wear Resistant Steel; Avaliacao mecanica e microestrutural de um aco resistente ao desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.L.F. dos; Vieira, A.G.; Correa, E.C.S.; Pinheiro, I.P., E-mail: falletti@hotmail.co [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    In the present work, the analysis of the mechanical properties and the microstructural features of a high strength low alloy steel, containing chromium, molybdenum and boron, subjected to different heat treatments, was conducted. After austenitizing at 910 deg C for 10 minutes, three operations were carried out: oil quenching, oil quenching followed by tempering at 200 deg C for 120 minutes and austempering at 400 deg C for 5 minutes followed by water cooling. The analysis was performed through tensile and hardness tests, optical microscopy and X-ray diffraction. The bainitic structure led to high strength and toughness, both essential mechanical properties for wear resistant steels. The occurrence of allotriomorphic ferrite and retained austenite in the samples also increased the wear resistance. This phenomenon is related to the fact that both structures are able to be deformed and, in the case of the retained austenite, the transformation induced plasticity TRIP effect may take place as the material is used. (author)

  7. Cutting performance and wear mechanisms of PVD coated carbide tools during dry drilling of newly produced ADI

    Science.gov (United States)

    Meena, Anil; El Mansori, Mohamed

    2016-10-01

    The austempered ductile iron (ADI) material is widely used for automotive and structural applications. However, it is considered a difficult to machine material due to its strain hardening behavior and low thermal conductivity characteristics; thus delivering higher mechanical and thermal loads at the tool-chip interface, which significantly affects the tool wear and surface quality. The paper thus overviews the cutting performance and wear behavior of different cutting tools during dry drilling of newly produced ADI material. Cutting performance was evaluated in terms of specific cutting energy, workpiece surface integrity and tool wear behavior. Tool wear behavior shows crater wear mode and workpiece adhesion. The surface alteration at the machined subsurface was confirmed from the hardness variation. Multilayer (Ti,Al,Cr)N coated tool shows improved cutting performance and wear behavior due to its enhanced tribological adaptability as compared to another PVD coating leading to the reduction in specific cutting energy by 25%.

  8. Homogeneous formation of epsilon carbides within the austenite during the isothermal transformation of a ductile iron at 410 °C

    Science.gov (United States)

    Gutierrez, I.; Aranzabal, J.; Castro, F.; Urcola, J. J.

    1995-05-01

    The transformation of a ductile iron at 410 °C for different times, after austenitization for 30 minutes at 900 °C, is analyzed in detail. Upper bainite and a high volume fraction of austenite are formed for intermediate annealing times. A certain amount of martensite is observed after quenching not only for short transformation times but also for intermediate times. The formation of the martensite on cooling after intermediate transformation times is due to the decrease in carbon concentration of the retained austenite because of the homogeneous precipitation of epsilon carbides within. This homogeneous precipitation of epsilon carbide inside austenite is unambiguously observed. The epsilon carbide, pre-precipitated in austenite, which transforms to martensite on cooling, continues growing in the martensite after transformation. For long times of austempering at 410 °C, some complex large carbides or silicocarbides are formed, probably from the epsilon carbide, which result in the total decomposition of austenite.

  9. Effects of structure and defect on fatigue limit in high strength ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hak; Kim, Min Gun [Kangwon National Univ., Chunchon (Korea, Republic of)

    2000-05-01

    In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits({sigma}{sub {omega}}) and the maximum defect size({radical}area{sub max}) was expressed as {sigma}{sub {omega}}{sup n} {center_dot} {radical}area{sub max}=C{sub 2}. Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates.

  10. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  11. Research Progress of Gear Steel for Automobiles%汽车齿轮钢的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈晖; 周细应

    2011-01-01

    The performance requirements of automobile gear steel are put forward, then the current applications of gear materials and some of the domestic and abroad research results, which focused on aircooling bainitic steel, meta-bainite steel and austempered ductile iron, are summarized. Finally, the prospects of domestic automotive gear materials are prospected as well.%本文提出了汽车齿轮钢的性能要求,然后概述了近年来国内外汽车齿轮材料的应用现状和研究成果,主要介绍了空冷贝氏体钢、准贝氏体钢、奥-贝球铁.最后对国内汽车齿轮材料的发展方向作了展望.

  12. ADI After Austenitising From Intercritical Temperature

    Directory of Open Access Journals (Sweden)

    A. Kowalski

    2013-01-01

    Full Text Available ADI subjected to austenitising at intercritical temperatures contains in its matrix the precipitates of pre-eutectoid ferrite. Studies were carried out on the ductile iron of the following chemical composition: C = 3,80%, Si = 2,30%, Mn = 0,28%, P = 0,060%, S = 0,010%, Mg = 0,065%, Ni = 0,60%, Cu = 0,70%, Mo = 0,21% This cast iron was austenitised at three different temperatures, i.e. 800, 815 and 830oC and austempered at 360 and 380oC. For each variant of the cast iron heat treatment, the mechanical properties, i.e. YS, TS, EL and Hardness, were measured, and structure of the matrix was examined. Higher plastic properties were obtained owing to the presence of certain amount of pre-eutectoid ferrite. The properties were visualised using fuzzy logic model in a MATLAB. software.

  13. Testing of heating and cooling process of ADI cast iron with use of ATND method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-10-01

    Full Text Available ADI (Austempered Ductile Iron cast iron, owing to its unique combination of high tensile strength and abrasion resistance with very goodplasticity, founds implementation in many branches of industry as a substitute of alloy cast steel and carburized or heat treated steels. Inspite of its solid position among producers and recipients of castings, there are still undertaken studies aimed at perfection of its propertiesand recognition of mechanisms enabling obtaining such properties.The paper presents implementation of thermal-voltage-derivative (ATND method to registration of heating and cooling course of ADIcast iron with EN-GJS-1200-2 grade. ADI cast iron with EN-GJS-1200-2 grade underwent the study. Heat treatment of the cast iron wasperformed in Foundry Institute with use of LT ADI-350/1000 processing line. Results obtained from the testing illustrate in graphic formregistered heating and cooling curves of investigated cast irons obtained with use of the ATND method.

  14. Influence of Shot Peening on Abrasion Wear in Real Conditions of Ni-Cu-Ausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Wieczorek A. N.

    2016-12-01

    Full Text Available The paper presents results of the wear tests of chain wheels made of austempered ductile iron with various content of residual austenite. The aim of this study was to demonstrate the impact of the dynamic surface treatment (shot peening on wear properties of surface layers of the chain wheels tested that were subjected to the action of quartz abrasive. Apart from determining the value of the abrasive wear, examinations of the magnetic phase content in the microstructure were carried out and plots of hardness of the surface layer as a function of the distance from the surface and microstructure of the materials were prepared. Based on the results, the following was found: an increase in the abrasive wear and a reduction in the hardness of the surface layer of chain wheels subjected to shot peening, as well as reduction of susceptibility to negative action of the shot for cast irons with the structure of upper ausferrite.

  15. Development of process technologies for improvement of electroless nickel coatings properties

    Science.gov (United States)

    Barba-Pingarrón, A.; Bolarín-Miró, A.; Sánchez – de Jesús, F.; Vargas-Mendoza, L.; Trujillo-Barragán, M.; Molera-Sola, P.; Hernandez-Gallegos, M. A.; Valdez-Navarro, R.

    2013-06-01

    This paper describes research and technology developments that enable to improve nickel electroless coating properties. This work deals with: (a) different methods in order to achieve Ni-P-Mo coatings. (b) Other development is related with coatings with addition of hard particles such as SiC, WC or Al2O3,(c) Electroless nickel deposits on PBT and austempered ductile iron (ADI). (d) In addition, nickel coatings were deposited on powder metallic pieces and finally, electroless nickel coatings, in conjunction with layers from thermal spray process were formed. Characterization of all coatings by means of optical microscopy, scanning electron microscopy, micro-hardness, wear and corrosion tests were carried out. Results indicate positive increment in both mechanical and electrochemical properties which enhance field applications in Mexican industry.

  16. Tests and studies on improved innovativeness of sand reclamation units

    Directory of Open Access Journals (Sweden)

    F. Pezarski

    2007-04-01

    Full Text Available The aim of the present study was raising the innovativeness of sand reclamation units through application of a new material - austempered ductile iron (ADI - for elements exposed to abrasion wear and impacts. Methods used for casting of ADI blades for disk-type reclamation units were described along with the results of tests and measurements of the obtained hardness, strength and microstructure. The ready ADI castings of blades were next subjected to performance tests to compare them with the conventionally made cast steel blades operating under industrial conditions. The obtained results of the tests confirmed high properties and numerous benefits offered by ADI respetive of cast steel used as a material for elements of sand reclamation units.

  17. Initiation and propagation life distributions of fatigue cracks and the life evaluation in high cycle fatigue of ADI; ADI zai no ko cycle hiro kiretsu hassei shinten jumyo bunpu tokusei to jumyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Y.; Ishii, A. [University of Electro Communications, Tokyo (Japan); Ogata, T. [Hitachi Metals, Ltd., Tokyo (Japan); Kubota, M. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-15

    Rotating bending fatigue tests were carried out on austempered ductile cast iron (ADI) in order to investigate the statistical properties of life distributions of crack initiation and propagation, and also the evaluation of fatigue life. The results are summarized as follows: (1) The size of crack initiation sites of the material was represented by a Weibull distribution without regarding to the kinds of crack initiation sites such as microshrinkage and graphite grain. The crack initiation life scattered widely, but the scatter became much smaller as soon as the cracks grew. (2) The crack propagation life Nac which was defined as the minimum crack propagation rate showed lower scatter than the crack initation life. (3) The fatigue life of the material was evaluated well by Nac and the propagation rate after Nac. It was clear that the fatigue life of ductile cast iron was goverened by the scatter of Nac. 8 refs., 13 figs., 4 tabs.

  18. ADI after Austenitising from Intercritical Temperature

    Directory of Open Access Journals (Sweden)

    Kowalskia A.

    2013-03-01

    Full Text Available ADI subjected to austenitising at intercritical temperatures contains in its matrix the precipitates of pre-eutectoid ferrite. Studies were carried out on the ductile iron of the following chemical composition: C = 3,80%, Si = 2,30%, Mn = 0,28%, P = 0,060%, S = 0,010%, Mg = 0,065%, Ni = 0,60%, Cu = 0,70%, Mo = 0,21% This cast iron was austenitised at three different temperatures, i.e. 800, 815 and 830oC and austempered at 360 and 380oC. For each variant of the cast iron heat treatment, the mechanical properties, i.e. YS, TS, EL and Hardness, were measured, and structure of the matrix was examined. Higher plastic properties were obtained owing to the presence of certain amount of pre-eutectoid ferrite. The properties were visualised using fuzzy logic model in a MATLAB. software.

  19. Threading on ADI Cast Iron, Developing Tools and Conditions

    Science.gov (United States)

    Elósegui, I.; de Lacalle, L. N. López

    2011-01-01

    The present work is focussed on the improvement of the design and performance of the taps used for making threaded holes in ADI (Austempered Ductile Iron). It is divided in two steps: a) The development of a method valid to compare the taps wear without reaching the end of their life, measuring the required torque to make one threaded hole, after having made previously a significant number of threaded holes. The tap wear causes some teeth geometrical changes, that supposes an increase in the required torque and axial force. b) The taps wear comparison method is open to apply on different PVD coated taps, AlTiN, AlCrSiN, AlTiSiN, , and to different geometries.

  20. Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di

    2007-01-01

    Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS× TEL) are obtained at 20 min.

  1. Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress

    Science.gov (United States)

    Yi, H. L.

    2014-09-01

    Novel alloys with high aluminum addition, so-called δ-transformation-induced plasticity (TRIP), have been developed recently for the third generation of advanced high strength steels for automotive applications, which are promising owing to the potential weldability as well as the combination of strength and ductility. In addition, the high aluminum addition results in a density reduction of approximately 5% in these δ-TRIP alloys without sacrificing the Young's modulus in uniaxial tensile tests. The origin of δ-TRIP concept is introduced first with a review of the published work on δ-TRIP alloys. This review will include methodology for retention of δ-ferrite in casting, rolling and welding conditions, microstructure evolution by austempering, as well as microstructures-properties relationship involving the roles of blocky and lath retained austenite. In addition, currently unresolved problems will be discussed regarding the fundamentals of materials design, automotive application, and industrial manufacturing.

  2. Effects of Carbide on Hardness and Impact Toughness of CADI%碳化物对CADI硬度和冲击韧度的影响

    Institute of Scientific and Technical Information of China (English)

    张其飞; 刘兰俊; 祖方遒; 刘建升; 周鹏

    2012-01-01

    对于含碳化物等温淬火球墨铸铁(CADI),加入以铬为主的碳化物形成元素,并采用奥氏体化工艺来控制组织中碳化物的量.结果显示,随着试样中的铬的加入量从0.553%增加到0.997%,基体中碳化物量增多,经920℃保温100 min奥氏体化、然后在280.℃进行等温淬火处理90 min,后其硬度从42.7 HRC提高到50.5 HRC,但冲击韧度从61.4 J/cm2下降到37.8 J/cm2.%With regard to carbide austempered ductile iron(C ADI), some carbide forming elements primarily chromium were added to, and took the austenitic process to control the amount of carbide in the matrix of CADI. With the amount of chromium in the samples increased, the amount of carbide increased in the matrix, the results showed that the as-cast samples were austenited at 920 ℃ for l00min and then austempered at 280℃ for 90 min, the hardness rose from 39.2 HRC to 47.5 HRC, but the impact toughness declined from 68.4 J/cm2 to 44.8 J/cm2.

  3. Monitoreo de la transformación bainítica por medio de permeabilidad magnética

    Directory of Open Access Journals (Sweden)

    Páez, J. L.

    1996-06-01

    Full Text Available A system was developed which consists of an axial pump to stir the austempering liquid, and an L-C oscillator of a very low and checked amplitude level whose frequency depends on the coil test sample system. The test was performed at a temperature between 180 and 500 °C. Along the time, the austenite transformation of the sample changes the coil inductance, and so the system oscillation frequency. The frequency is measured by a four digits counter that has a time base precision supplied by a piezoelectric quartz crystal. So, the transformation is monitored as it is going on. An interface was constructed in order to make possible data to be downloaded to a computer in order to have an automatic measurement. To contrast the method a SAE 4140 steel was tested and good results were achieved.

    Se desarrolló un sistema que consta de una bomba axial de agitación del baño de sales de austempering y de un oscilador senoidal L-C de muy bajo nivel y amplitud controlada, cuya frecuencia depende de la inductancia formada por el conjunto bobina-probeta de ensayo. Los ensayos se realizaron entre 180 y 500 °C. La transformación de la austenita de la probeta en el tiempo provoca variación en la inductancia de la bobina y, por lo tanto, la frecuencia de oscilación del sistema. Ésta se mide con un contador de cuatro dígitos cuya base de tiempos tiene la precisión aportada por un cristal de cuarzo piezoeléctrico. De esta forma, se logra monitorear la transformación simultáneamente con su desarrollo. Se construyó una interfase que permite leer los datos de la pantalla desde un ordenador para implementar una medición automática. Para contrastar el método, se ensayó el acero SAE 4140 con buenos resultados.

  4. Structural durability criteria for commercial vehicle components from the self strengthening cast ausferrite nodular iron EN-GJS-800-8 (ADI) in comparison to the ferritic EN-GJS-400-15

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, R.; Heinrietz, A.; Heim, R.; Hanselka, H. [Fraunhofer Institut fuer Betriebsfestigkeit LBF, Darmstadt (Germany); Streicher, M. [MAN Nutzfahrzeuge AG, Munich (Germany); Sonsino, C.M.

    2008-10-15

    The structural durability of safety components in the chassis comprises not only the fatigue behaviour under cyclic variable amplitude service loading, but also its interaction with prestrains caused by special events and the rupture behaviour under impact loading due to misuse. From this background, the structural durability behaviour of Panhard rods made from ferritic cast nodular iron EN-GJS-400-15 was compared with the behaviour of rods made from the austempered EN-GJS-800-8. The components investigated, Panhard rods and cast plugs, made from the austempered material revealed a higher impact resistance than the components made from the ferritic cast nodular iron. Due to their ausferrite microstructure, Panhard rods made from EN-GJS-800-8 display a significantly superior fatigue strength behaviour, especially under spectrum loading, and offer a potential for lightweight design. Prestrains do not affect the fatigue behaviour under variable amplitude loading and the plastic deformation of the component under impact loading can be increased by appropriate design reducing the stiffness in the shaft area and achieving a weight reduction by 15 %. (Abstract Copyright [2008], Wiley Periodicals, Inc.) [German] Die Betriebsfestigkeit von Fahrwerksbauteilen wird nicht nur von der Schwingfestigkeit unter zyklischen Betriebsbelastungen und Missbrauchsbelastungen bestimmt, sondern auch durch die Interaktion mit Sonderbelastungen und Missbrauchsbelastungen. Vor diesem Hintergrund wird anhand eines Panhard-Stabes, ein stabilisierendes Element im Fahrwerk von Nutzfahrzeugen, gezeigt, wie zunaechst durch eine Werkstoffsubstitution, naemlich des konventionellen Eisengraphitgusses EN-GJS-400-15 (GGG 40), durch die ADI (Ausferrite Ductile Iron)-Variante EN-GJS-800-8 mit der entsprechenden Waermebehandlung eine deutlich hoehere Schwingfestigkeit erzielt wird. Zu bemerken ist, dass der ADI-Guss gefuegebedingt gegenueber dem konventionellen ferritischen Werkstoff unter variablen

  5. Transformation of Ferrite in Lower Bainite of 1.5%C UHCS During Tempering Process%1.5%C超高碳钢等温淬火组织在回火过程中的转变

    Institute of Scientific and Technical Information of China (English)

    赵芳霞; 陈强; 石淑琴; 张振忠

    2012-01-01

    Fe-1.5C-1.5Cr-2.0A1 UHCS austempering at 300 ℃ was treated with tempering treatment at 400-550 ℃. The microstructure was observed by SEM and the micro-zone composition was analyzed by EDS, transformation of ferrite in lower bainite and composition changes during temper process were studied. The results indicate that the dislocations between pieces and pieces of lower bainite disappeares firstly when the Fe-1.5C-1.5Cr-2.0A1 UHCS austempering was treated by temper process, most of these dislocations comes into cystiform structure, and the lower bainite pieces broadens and merges to polygon ferrite, this kind of complex phases microstructure is completely changed to precipitated phase and matrix finally. Nonisometric blocky ferrite and polygon ferrite appears during the tempering process, the blocky ferrite comes from the decomposition of retained austenite, and the polygon ferrite comes from the lower bainite pieces.%对经300℃等温淬火的Fe-1.5C-1.5Cr-2.0A1超高碳钢进行400~550℃回火处理,利用SEM进行组织观察,用EDS能谱分析仪进行微区成分分析,研究了下贝氏体铁素体在回火过程中的组织及其成分变化.结果表明,经等温淬火的超高碳钢中的下贝氏体复相组织在回火过程中发生的变化是按针片组织内部分位错消失,大部分位错形成胞状结构、下贝氏体针片展宽并发生合并形成多边形铁素体,最后转变为完全的析出相和基体组织的顺序进行的;在回火过程中出现非等轴状的条块状和多边形铁素体,其中条块状铁素体由残余奥氏体分解而成,多边形铁素体由片状组织转变而来.

  6. Influence of matrix structure on the fatigue properties of an alloyed ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Toktas, Guelcan [Department of Mechanical Engineering, Balikesir University, 10145 Balikesir (Turkey)], E-mail: gzeytin@balikesir.edu.tr; Toktas, Alaaddin; Tayanc, Mustafa [Department of Mechanical Engineering, Balikesir University, 10145 Balikesir (Turkey)

    2008-07-01

    Rotary bending fatigue tests were conducted on ductile iron containing 1.25 wt% nickel, 1.03 wt% copper and 0.18 wt% molybdenum with various matrix structures. Several heat treatments were applied to obtain ferritic, pearlitic/ferritic, pearlitic, tempered martensitic, lower and upper ausferritic structures in the matrix of a pearlitic as-cast alloyed ductile iron. The tensile properties (ultimate tensile strength, 0.2% yield strength and percent elongation), the hardness and the microstructures of the matrixes were also investigated in addition to fatigue properties. Fractured surfaces of the fatigue specimens were examined by the scanning electron microscope. The results showed that the lowest hardness, tensile and fatigue properties were obtained for the ferritic structure and the values of these properties seemed to increase with rising pearlite content in the matrix. While the lower ausferritic structure had the highest fatigue strength, the upper ausferritic one showed low fatigue and tensile properties due to the formation of the second reaction during the austempering process.

  7. 新一代汽车后桥奥贝球铁螺旋锥齿轮研制成功

    Institute of Scientific and Technical Information of China (English)

    徐才安

    2008-01-01

    奥贝球铁又称等温淬火球墨铸铁(Austempered Ductile Iron),是20世纪70年代由芬兰等国研发的一种新型工程材料。通过等温淬火热处理,能使球墨铸铁的基体组织发生转变,由铁索体、球光体转变贝氏体和残余奥氏体。由于奥贝球铁(ADI)较之普通球墨铸铁而言具有较高的强度、韧性、延伸率和耐磨性等特点,具有优异的综合性能,且成本较低,可代替锻钢件,尤其是适合于制造受力复杂的齿轮。

  8. ADI风镐缸体铸件生产工艺改进%Improvement on Casting Process for ADI Pneumatic Cylinder

    Institute of Scientific and Technical Information of China (English)

    黄之德

    2012-01-01

    Aiming al the defects existing in the pneumatic cylinder castings, the original casting process and the causes of defects were analyzed, the difficulty of ADI {Austempered Ductile Iron) cylinder in casting process was found, the improvement scheme was put forward. Using improved process, combining strengthening smelting and heat treatment operation standard, the casting defects reduce, the product quality and the qualified rate improve, the production cost reduces.%针对风镐缸体铸件存在的缺陷,分析了原铸造工艺及产生缺陷的原因,找出ADI风镐缸体铸件铸造过程中的难点,提出了改进工艺方案,并通过加强熔炼及热处理的操作规范性,减少了铸件缺陷的产生,提高了产品的质量和合格率,降低了生产成本.

  9. 我国ADI的发展思路探讨%Exploration to the Path of Development of ADI in China

    Institute of Scientific and Technical Information of China (English)

    陈国栋; 龚文邦; 向纲玉

    2011-01-01

    综述了等温淬火球墨铸铁(Austempered Ductile Iron,简称ADI)的基本性能优点及国内外的现状;分析了我国ADI与工业发达国家的差距;提出了我国ADI在发展过程中存在的主要问题和建议;阐述了大力发展我国ADI产业的迫切性,并探讨了发展我国ADI产业的思路与对策.%The basic performance advantages and domestic and international situation of ADI have been summarized with analysis of distance between our country and industrially developed ones, putting forward the main problems and suggestions to the development of ADI. The urgency to strive to develop our ADI industry has been elaborated with discussion about the path and strategies to develop it.

  10. Development of Cast Iron in China in the Past Sixty Years%六十年来我国铸铁材料的发展

    Institute of Scientific and Technical Information of China (English)

    张伯明

    2012-01-01

    我国是铸造生产大国,2010年铸件年产量已近4 000万吨,连续11年位居世界首位.铸造新材料,新技术不断得到推广和应用,铸件质量逐渐提高,我国的铸造业正在向铸造强国挺进.本文简要论述了铸铁材料的发展历程、现状以及未来发展趋势.详细介绍了我国在灰铸铁、球墨铸铁、等温淬火球墨铸铁(ADI)、蠕墨铸铁、可锻铸铁以及特种性能铸铁方面的发展及应用情况,并指出了未来的发展方向.%With the promotion and application of new foundry materials and technologies, the castings' quality has been improved gradually. This paper presents the development history, status and tendency of cast iron. Hie development and application of cast iron in China, including gray cast iron, ductile iron, austempered ductile iron, vermicular cast iron, malleable cast iron, as well as cast irons with special performance, were introduced in detail, and the development direction of cast irons was pointed out.

  11. Comparison of Bending Fatigue Strength among Spur Gears Manufactured by Various Methods

    Science.gov (United States)

    Yamanaka, Masashi; Matsushima, Yu; Miwa, Shinji; Narita, Yukihito; Inoue, Katsumi; Kawasaki, Yoshiki

    This paper deals with an experimental evaluation of bending fatigue strengths for hobbed, forged, sintered and austempered ductile iron (ADI) spur gears. The module is 2.5 and the number of teeth is 26 in the test gears. The materials of the test gears are SCr420H for hobbed and forged gears, prealloyed powder metal with 1.5 wt.% Mo for sintered gears, and FCAD 1100-15 for ADI gears. All gears except ADI gears were carburized. The pulsator bending fatigue tests were carried out for the test gears. Then the relationship between the strength and the manufacturing cost is obtained. The forged gear has the high strength of 3% and low cost compared with the hobbed gear. It is the best among the four gears. The sintered and ADI gears have approximately half the strength and cost of the hobbed gear. These gears are effective when cost is a high priority. In the progress of the fatigue tests, comparisons of strength among gears having different tooth-root forms were needed. The nominal stress obtained from actual measured profile data using a noncontact-type measuring machine is suitable for comparing the fatigue strength in gears having different root forms.

  12. Development competence of an iron/steel foundry in the field of tension between material selection and production technology for engine components; Entwicklungskompetenz einer Eisen-/Stahlgiesserei im Spannungsfeld von Werkstoffauswahl und Fertigungstechnologie fuer Motorenbauteile

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R. [Eisenwerk Bruehl GmbH, Bruehl (Germany)

    2007-07-01

    If we had to summarize all aspects of the combustion engine subject, engine development is - from the viewpoint of an iron and steel foundry specialist - mainly controlled by environmental protection (CO{sub 2}) and saving energy (raw material shortage). We will always consider today's development targets, which are based on fuel reduction and power increase. To focus on development today means to focus on emission sources, on exhaust treatment and on a medium term change to alternative driving systems. Implementing these targets will always be in the focus and solutions will have to be found in the automotive industry on a continuous basis. Some of the initial phases are directly linked to the foundry and their production technology and casting material. Being foundry specialists we have to adjust our efforts for new strategies to these requirements. ERW group together with Eisenwerk Bruehl GmbH and Eisenwerk Hasenclever are going to show their methodology with the help of three examples for developing material- / production technology in CGI with vermicular-type graphite, ADI - austempered ductile iron and cast steel. (orig.)

  13. OBSERVATION OF FATIGUE CRACK PATHS IN NODULAR CAST IRON AND ADI MICROSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2009-07-01

    Full Text Available When speaking about quality of construction materials, fatigue crack propagation resistance is one of the most important considered properties. That is essentially influenced by character of matrix. Here presented contribution deals with the fatigue crack propagation mode through the matrix of as-cast nodular cast iron (NCI and austempered ductile iron (ADI, whereas influence of microstructure has been considered and discussed. Experimental materials used in presented contribution were pearlitc-ferritic NCI and heat treated ADI 800. Pearlitic-ferritic NCI was used as the base for ADI production. Experiments were performed on mini round compact tension (RCT specimens using an Amsler vibrophore. Fatigue crack paths in both materials were investigated and compared. Light microscopy was used to analyze the microstructure, crack initiation and propagation within broken specimens. In both tested materials fatigue cracks always initiated at graphite-matrix interface, while graphite nodules remained generally unbroken, eventually only surface of nodules was damaged. Though, comparing two materials with different microstructures, the diversity of fatigue crack propagation modes at high deltaK and low deltaK was observed.

  14. Development of (Ti, Al)N coated cBN tool for ADI machining; ADI zai kakoyo (Ti, Al) N coated cBN kogu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shintani, K.; Sugiyama, H.; Kato, H. [Kanazawa Institute of Technology, Ishikawa (Japan); Goto, M. [Sumitomo Electric Industries, Ltd., Osaka (Japan)

    1998-06-25

    Concerning cBN tools used for machining austempered ductile cast iron (ADI), the effects of difference in the strength of cBN particles themselves on tool life and the tool life extending effects of a (Ti, Al)N coating formed on the tool surface are discussed. In the experiment, three kinds of tool materials, which are C60-F, C60-M, and C60-T, are prepared, which contain 60vol% cBN particles different in strength. The flank abrasion inhibiting effect of the coating is also studied. In this study, C60c and C20c tools are tested, built of parent materials containing 20% 1{mu}m T particles and 60% 3{mu}m T particles and coated by (Ti, Al)N. Some of the conclusions reached are outlined below. The strength of cBN particles present in the specimens exerts virtually no influence on the improvement of flank abrasion characteristics. In a tool provided with a (Ti, Al)N coating, some of the (Ti, Al)N coating is retained between the cutting face near the cutting edge and the flank lower edge, and this suppresses the progress of flank abrasion. A tool provided with a (Ti, Al)N coating has a life which is more than three times the life of uncoated cBN tools. 9 refs., 12 figs., 2 tabs.

  15. The changes of ADI structure during high temperature annealing

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2010-01-01

    Full Text Available The results of structure investigations of ADI during it was annealing at elevated temperature are presented. Ductile iron austempered at temperature 325oC was then isothermally annealed 360 minutes at temperature 400, 450, 500 and 550oC. The structure investigations showed that annealing at these temperatures caused substantial structure changes and thus essential hardness decrease, which is most useful property of ADI from point of view its practical application. Degradation advance of the structure depends mainly on annealing temperature, less on the time of the heat treatment. It was concluded that high temperature annealing caused precipitation of Fe3C type carbides, which morphology and distribution depend on temperature. In case of 400oC annealing the carbides precipitates inside bainitic ferrite lath in specific crystallographic planes and partly at the grain boundaries. The annealing at the temperature 550oC caused disappearing of characteristic for ADI needle or lath – like morphology, which is replaced with equiaxed grains. In this case Fe3C carbides take the form very fine precipitates with spheroidal geometry.

  16. Hot Cutting of Real-Time Cast-Forged GS Ductile Iron for Automotive Rods

    Science.gov (United States)

    Fouilland, Laurence; Mansori, Mohamed El

    2011-01-01

    In the global economy context, automotive industry suppliers have to keep a constant advance on products design and manufacturing process. Concerning automotive rods, the substitution of forged steel by spherical graphite iron (SG iron) with high mechanical properties constitutes a valid economic alternative. Such rods are produced using a complex coupled process: casting and forging followed by an austempered heat treatment. The forging operation is capable to shape the cast rod which introduces hot deformation to increase mechanical properties of net-shape SG iron rod. However, the intermediate re-heating between casting and forging must be avoided to keep competitive manufacturing costs. A major concern of this new process development is the cracks produced in rod's surface which are consecutive to hot spruing involved after casting operations. This issue is addressed in this paper which discusses the physical mechanisms involved in the hot ductile damage of SG iron. Hot cutting tests were performed to simulate the spruing operation which shows the close interactions between microstructure, machining parameters and resulting damages. The damage mechanisms in terms of crack initiation and its growth have been studied with respect to the constituent phases (austenite+graphite nodules), the cut surface morphology and the hot cutting performance.

  17. Erosion charcteristics of ductile iron with various matrix structures

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kazumichi (Oita National Coll. of Technology (Japan)); Noguchi, Toru (Faculty of Engineering, Hokkaido Univ., Sapporo (Japan))

    1994-08-01

    Erosive wear tests were performed on austempered ductile iron (ADI), ferritic ductile iron (FDI) and pearlitic ductile iron (PDI) using a shot blast machine. Erosion damage was measured by the removed material volume at impact angles between 10 and 90 . The surface metal flow in vertical sections was also observed. The mechanism of erosive wear, the effect of impact angles, and differences in wear features of specimens were discussed. Experiment showed that, after an initial stage, the eroded volume increases almost linearly with blasting time in ADI, FDI and PDI. The erosion rate for ADI is about 1/10-1/25 of that for FDI and PDI. The surface hardness of eroded ADI specimens increased from the initial HV350 to HV700 after 600 s of blasting. The amount of retained austenite was measured as about 40% before the test, but decreased to about 3-5% by transformation of austenite to martensite, hardening the surface and lowering the erosion rate. It was shown that ADI has excellent erosion resistance and it is expected to find wide applications as a wear-resistant material. (orig.)

  18. Relaciones entre la microestructura y las propiedades mecánicas en fundiciones nodulares: revisión bibliográfica

    Directory of Open Access Journals (Sweden)

    Castillo, R.

    1999-10-01

    Full Text Available The progress achieved in the understanding of the relationships between the microstructure and the mechanical properties of ductile cast iron is reviewed. It is also described the applications of heat treatment of austempered to ductile irons (ADI, which have allowed to improve substantially the mechanical properties of these materials. It is proposed a research program to obtain the crack growth resistance under corrosive atmospheres and to model the mechanical properties.

    En este trabajo se revisan los avances realizados en el conocimiento de las relaciones entre la microestructura y las propiedades mecánicas de las fundiciones nodulares. Se consideran las aplicaciones de los tratamientos térmicos de austemperizado o temple bainítico que han permitido mejorar sustancialmente las propiedades mecánicas de estas fundiciones (ADI. Se propone un programa de investigación para la caracterización de la resistencia al crecimiento de grietas bajo corrosión y modelización de las propiedades mecánicas.

  19. The Use of Nitriding to Enhance Wear Resistance of Cast Irons and 4140 Steel

    Science.gov (United States)

    Yang, Zaidao

    This research is focused on using nitriding to enhance the wear resistance of austempered ductile iron (ADI), ductile iron (DI), and gray iron (GI), and 4140 steel. Three gas nitriding processes, namely "Gas nitriding + nitrogen cooled down to 800°F (Blue)", "Gas nitriding + cooled down to 300°F (Gray)", and "Gas nitriding + oil quenched (Oil)" were used for the cast irons. Three salt bath nitriding processes, namely Isonite, QP (Quench, Polish) and QPQ (Quench, Polish, Quench) were used for the 4140 steel. This study was carried out through optical metallography, roughness measurements, microhardness, and SEM. The ball-on-disc wear tests were conducted under lubricated conditions. It was found that COF for all materials in all nitrided conditions was small (<0.045). The best wear performance was seen for ADI processed using the Gray and Oil gas nitriding processes. For the 4140 steel, The surface microhardness of the ISONITE specimen was around 1400HV. QP and QPQ processes produce a surface microhardness of 2000-2200HV, which suggests that they may show improved wear behaviour compared to ISONITE- treated steels.

  20. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  1. Effects of TIG Surface Melting and Chromium Surface Alloying on Microstructure,Hardness and Wear Resistance of ADI

    Institute of Scientific and Technical Information of China (English)

    A Amirsadeghi; M Heydarzadeh Sohi; S F Kashani Bozorg

    2008-01-01

    Microhardness and wear resistance of different mierostruetures formed by TIG (tungsten inert gas) surface melting and chromium surface alloying (using ferrochromium) of ADI (austempered ductile iron) were studied.Surface melting resulted in the formation of a ledeburitic structure in the melted zone,and this structure has a hardness up to 896 HV as compared to 360 HV in that of ADI.Moreover,chromium surface alloying resulted in the formation of different structures including:(1) a hypereuteetic structure consisting of primary (Fe,Cr)7C3 carbides and a eutectie matrix of transformed austenite (into martensite and retained austenite),as also (Fe,Cr)7C3 carbides,with a hardness of 1 078 HV;(2) a hypoeutectic structure consisting of the same eutectic along with transformed primary austenite,with a hardness of 755 HV;and (3) a ledeburitic structure with an acieular morphology and a hardness of 896 HV.The results also indicated that surface melting reduced the wear rate of the ADI by approximately 37%.Also,chromium surface alloying yielded a superior wear behavior and reduced the wear rate of the treated specimens by about 38% and 70%,depending on the structures formed.

  2. Phenomena Discovered During Immersion of Steel Parts into Liquid Quenchants (Overview)

    Science.gov (United States)

    Kobasko, Nikolai I.

    2014-12-01

    In the paper, new phenomena are discussed which were discovered during investigation of the intensive quenching processes. It is shown that in many cases film boiling is prevented completely during quenching of steel parts in cold liquids, especially in water salt solutions. In this case, the part surface temperature drops almost immediately to the liquid boiling point at the beginning of the quench and then maintains at this level for a relatively long time, i.e., the so-called self-regulated thermal process is established. A simple equation for determining the duration of the self-regulated thermal process is proposed. Thermal waves are generated during an immersion of steel parts into a cold liquid and after the self-regulated thermal process is completed. The thermal waves move in opposite direction from where the cooling process starts. The self-regulated thermal process was used to develop an original intensive quenching technology (IQ-2 process). It can be a basis for developing other new technologies such as an austempering and a martempering in cold liquids under pressure. Discovered effects of thermal waves can be used for determining a duration of the self-regulated thermal process and for reconstructing an existing theory on the double electrical layer. Practical examples of calculations of the duration of the self-regulated thermal process are provided in the paper.

  3. Stress-induced transformation of retained austenite and residual stress in polishing and grinding of ADI. ADI no kenma kensaku kako ni okeru zanryu austenite no kako yuki hentai to zanryu oryoku

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Tada, S.; Abe, T. (Government Industrial Research Institute, Tohoku, Sendai (Japan)); Kurihana, S. (Fukushima Prefectural Office, Fukushima (Japan))

    1993-06-25

    In the present research, relation between the retained austenite ([gamma]) and residual stress (Sr) on the mechanically worked surface was investigated by an X-ray diffraction to furthermore reform the ADI (Austempered Ductile Iron) which is high toughness automobile part material. As samples, selected were two types of ductile iron which are equivalent to FCD450 and FCD600, respectively. In the main process of thermal treatment, they are austenitized in argon at 1173K in the furnace, held quickly cooled (to between 573 and 648K) a cooled at room temperatures. After the treatment, both of them have no structural differences. As a result of investigating the relation of [gamma]'s stress-induced transformation on the polished and ground surface to both Sr and carbon concentration, the vol% of [gamma] on the worked surface by silicon carbide waterproof abrasive paper and buff is small on the surface where the Sr is high, and both of them are mutually correlative. The [gamma] is so quasi-stable as to be martensitized, if worked, and degraded in mechanical properties. The low carbon ductile iron (less than 1.4% in carbon content) is easy to transform, while the high carbon ductile iron (more than 1.6% in carbon content) is difficult to transform and its [gamma] is stable for the working. 16 refs., 8 figs., 2 tabs.

  4. Effects of bainitic transformation temperature on microstructure and tensile properties of 0.6C-Si-Mn steel; 0.6C-Si-Mn ko no bisai soshiki to hippari tokusei ni oyobosu benaito hentai ondo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Y. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1995-06-15

    To acquire excellent mechanical properties of Si-Mn steel by using an austempering treatment to have the steel undergo a bainitic transformation, it is important to identify the effect of its transformation temperature. This paper describes a transformation of 0.6% C-Si-Mn steel at temperatures ranging from 593 K to 673 K, and discussions on the effect of the transformation temperature on the microstructure and tensile properties. The following results were obtained: bainitic ferrite containing very little carbon is produced in layers at any transformation temperature, but a trend was shown that the bainitic ferrite is produced with its width grown larger and denser as the transformation temperature rises; the {gamma}R amount increases remarkably with increasing transformation temperature, and at the same time massive {gamma}R begins to remain in addition to thin film {gamma}R that exists between individual bainitic ferrites; and the result of this experiment revealed that when the transformation temperature is sufficiently high, the fracture elongation increases notably because of the transformation induced plasticity (TRIP) effect of the {gamma}R that occurs effectively during the transformation. 12 refs., 7 figs., 4 tabs.

  5. HEAT TREATING OF SINTERED Fe-1.5Mo-0.7C STEELS AND THEIR SLIDING WEAR BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    J.A. Wang; Y. He; H. Danninger

    2003-01-01

    The influence of heat treating on mechanical properties as well as on the sliding wearbehavior of sintered Fe-1.SMo-0.7C steels was experimentally studied. The microstruc-tures of sintered steels change from upper bainite to martensite, tempered martensite,pearlite and lower bainite depending on the heat treating conditions. Heat treatingincreases the hardness of sintered steels but high tempering temperature, i.e. 700℃,causes the hardness to be even lower than that of the as-sintered ones. The impactenergy of sintered steels increases with increasing tempering temperature and arrivesthe highest at 700℃, while the steels tempered at 200℃ have the highest transverserupture strength. Austempering results in fair good overall properties, such as hard-ness, impact energy, and transverse rupture strength. When the sintered steels wereaustempered, oil-quenched or tempered below 400℃ after quenched, the wear coef-ficient becomes considerably lower. Fair high hardness, such as HV30 > 380, andstructures of martensite, tempered martensite or lower bainite are beneficial to low-ering the wear coefficient. Under the wear test conditions given, delamination andoxidational wear are the main wear regimes for sintered Fe-1.5Mo-0.7C steels. Fe3O4in the wear debris is beneficial to lowering wear coefficient.

  6. Effects of Warm Deformation on Mechanical Properties of TRIP Aided Fe-C-Mn-Si Multiphase Steel

    Institute of Scientific and Technical Information of China (English)

    TIAN Yong; LI Zhuan~

    2012-01-01

    Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investiga- ted by using LOM (light optical microscopy), SEM and XRD. The results indicated that the microstructure contai- ning polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through hot deformation and subsequent austempering. Warm deformation temperature affects the mechanical prop- erties of the hot rolled TRIP steels. Ultimate tensile strength balance reached maximum (881 MPa) when the speci- men was deformed at 250 ~C, and the total elongation and strength-ductility reached maximum (38% and 28 614 MPa ~ ~, respectively) at deforming temperature of 100 ~C. Martensite could nucleate when austenite was deformed above M~, because mechanical driving force compensates the decrease of chemical driving force. The TRIP effect occurs in the Fe-C-Mn-Si multiphase steel at deforming temperature ranging from 15 to 350 ~C. The results of the effects of warm deformation on the mechanical properties of the Fe-C-Mn-Si multiphase steel can provide theoretical basis for the ap- plications and the warm working of the hot rolled TRIP sheet steels in industrial manufacturing.

  7. Advanced industrial technologies by the Tohoku National Industrial Research Institute. ADI function grading by the temperature gradient type austenpering treatment; Tohoku kogyo gijutsu kenkyusho sentan kogyo gijutsu. Ondo kobaigata austenper shori ni yoru ADI keisha kinoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-15

    The advanced industrial technologies were introduced which are under research in the Tohoku National Industrial Research Institute. As for the research to grade the ADI function by the temperature gradient type austempering treatment, an ADI was produced which was graded in both hardness and toughness by austenpering-treating a graphite cast iron sphere. As for the research on the lamination by plating, a composite which was high in lamination strength and low in residual stress was produced by plating the base sheet with a thin film, giving a compressive force and heating it in vacuum in order to produce the composite with ceramics-metal or interceramics lamination. As for the research on the removing method of iron ions from the plating solution, a chelate resin was produced which contained multidentate ligands similar to the nitrirotriacetic acid selectively adsorbing the iron ions. As for the research to evaluate the corrosion of steel in the geothermal water, geothermal hot water in Miyagi Prefecture was experimentally evaluated in damaged quantity of carbon steel and stainless steel. Then, the damaged quantity even of carbon steel was shown to be within the usable limits as a construction structural material. 5 refs., 26 figs., 2 tabs.

  8. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    Science.gov (United States)

    Ramasagara Nagarajan, Varun

    hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the

  9. Study on Microstructure and Properties of ADI Pneumatic Cylinder Casting%ADI风镐缸体铸件组织与力学性能研究

    Institute of Scientific and Technical Information of China (English)

    黄之德; 王生玖

    2012-01-01

    研制了一种含Cu、Ni合金成分的风镐缸体铸件,比较了其厚壁和薄壁处铸态和等温淬火态的组织和性能.结果表明:奥贝球铁风镐缸体铸态基体组织为珠光体,存在少量铁素体,石墨比较细小,大部分为球形,圆整度较好,球状石墨数量多;加入适量的合金,采用合理的热处理工艺,等温淬火后,厚壁和薄壁处的金相组织皆由贝氏体、奥氏体和少量碳化物组成,此时ADI(等温淬火球墨铸铁)具有较高的强度和塑性,能满足风镐缸体的使用要求,提高风镐的使用寿命,具有良好的经济性.%The microstructurc and mechanical properties of thick and thin wall of austempeted ductile iron cylinder casting with Cu, Ni alloy as-cast and isothermal quenching state were compared. The results show that the as-cast microstructure consists of pearlite, and a small amount of ferrite, graphite is small, most of graphite is spherical shape, good round degree, nodular graphite number is many, microstructure of isothermal quenching consists of bainite, austenitic and a small amount of carbide, austempered ductile iron with high strength and plasticity after isothermal quenching, can meet the requirements for the use of pneumatic cylinder.

  10. Development of a Cast Iron Fatigue Properties Database for use with Modern Design Methods

    Energy Technology Data Exchange (ETDEWEB)

    DeLa' O, James, D.; Gundlach, Richard, B.; Tartaglia, John, M.

    2003-09-18

    A reliable and comprehensive database of design properties for cast iron is key to full and efficient utilization of this versatile family of high production-volume engineering materials. A database of strain-life fatigue properties and supporting data for a wide range of structural cast irons representing industry standard quality was developed in this program. The database primarily covers ASTM/SAE standard structural grades of ADI, CGI, ductile iron and gray iron as well as an austempered gray iron. Twenty-two carefully chosen materials provided by commercial foundries were tested and fifteen additional datasets were contributed by private industry. The test materials are principally distinguished on the basis of grade designation; most grades were tested in a 25 mm section size and in a single material condition common for the particular grade. Selected grades were tested in multiple sections-sizes and/or material conditions to delineate the properties associated with a range of materials for the given grade. The cyclic properties are presented in terms of the conventional strain-life formalism (e.g., SAE J1099). Additionally, cyclic properties for gray iron and CGI are presented in terms of the Downing Model, which was specifically developed to treat the unique stress-strain response associated with gray iron (and to a lesser extent with CGI). The test materials were fully characterized in terms of alloy composition, microstructure and monotonic properties. The CDROM database presents the data in various levels of detail including property summaries for each material, detailed data analyses for each specimen and raw monotonic and cyclic stress-strain data. The CDROM database has been published by the American Foundry Society (AFS) as an AFS Research Publication entitled ''Development of a Cast Iron Fatigue Properties Database for Use in Modern Design Methods'' (ISDN 0-87433-267-2).

  11. Influencia de los factores microestructurales en la resistencia al desgaste por deslizamiento de las fundiciones nodulares austemperadas

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2008-09-01

    Full Text Available Entre los materiales metálicos de mayor demanda, el hierro dúctil con grafito esferoidal o nodular ocupa en la actualidad uno de los lugares más importantes entre los hierros fundidos de alta resistencia. Desde hace unos veinticinco años la introducción del hierro nodular austemperado significó de hecho una revolución en el campo de las aleaciones ferrosas. En el presente trabajo se realiza un estudio de la influencia del conteo de nódulos de grafito del hierro nodular en el proceso de austemperado, a partir de las características de las estructuras obtenidas, por la variación de la cantidad de nódulos de grafito y de las variables de tratamiento térmico. Dichas estructuras son sometidas a la acción del desgaste, en este caso a un desgaste por deslizamiento mediante un ensayo típico disco-zapata. Con los resultados obtenidos, se realiza un análisis estadístico de la influencia del conteo de nódulos en dichas propiedades y de las causas de este comportamiento, tomando en consideración la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestras ensayadas y su incidencia en el mecanismo de desgaste.A study about the influence of the graphite nodules quantity and some heat treatment parameters in the characteristic of cast ductile iron is presented. Experimental investigation of wear resistance by sliding is applied to specimens tested of austempered ductile irons using a test machine based in the disc- plate system. Statistical analysis about the influence of the graphite nodule quantity in the wear resistance properties, so as well as, the causes of this behaviour taking into account the graphite nodule count and some heat treatment variables is don.

  12. 我国铸铁生产技术回顾与展望%Review and Prospect of Production Technology of Cast Iron in China

    Institute of Scientific and Technical Information of China (English)

    李克锐; 曾艺成; 张忠仇; 吴现龙

    2012-01-01

    我国是铸铁生产大国,铸铁件产量约占世界的40%; 2010年我国铸铁件产量达到2 950万t(其中,灰铸铁1 900万t,球墨铸铁990万t),铸铁件占全部铸件产量的74.5%.本文回顾了60年来我国球墨铸铁、等温淬火球墨铸铁(ADI)、蠕墨铸铁和灰铸铁在生产技术、性能水平、技术标准、应用领域、质量检测和控制等方面的进展;对比分析了与国外先进工业国家在铸铁材质结构、生产规模、成分和性能波动、熔炼造型和质量控制等方面的差距;展望了铸铁生产技术发展趋势,供同行探讨和参考.%The annual output of iron castings in China has increased to 29.5 million tons in 2010 (including 19 million tons gray cast iron and 9.9 million tons ductile iron), which is about 40% of the world total. The production technology, mechanical properties, standard, application field, and quality control about ductile iron (DI), austempered ductile iron (ADI), compacted graphite cast iron (CGCI) and gray cast iron (GCI) castings in China were briefly reviewed and described. The gap in cast iron, production scale, component and properties consistency, process control etc. between China and industrial developed countries is compared and analyzed. The development trend of production technology of iron castings was forecasted, which provided the discussion and reference for the practitioners in the foundry field.

  13. 合金球墨铸铁的渗硼动力学研究%Study of Boriding Kinetics for Alloyed Ductile Irons

    Institute of Scientific and Technical Information of China (English)

    Fábio Edson Mariani; Galtiere Correa Rego; Luiz Carlos Casteletti; Amadeu Lombardi Neto; George Edward Totten3

    2016-01-01

    Boriding thermochemical treatment produces layers with high hardness which improves the tribological performance of ductile cast iron while the austempering treatment improves the mechanical performance of the substrate.In this work,samples of the ductile cast iron alloyed with copper,copper-nickel and copper-nickel-molybdenum were borided in a salt bath (borax +aluminum)at temperatures of 850,900 and 950 ℃ during 2 and 4 hours.The data for the layers obtained were used to determine the diffusion coefficients and activation energies of this process.The results of the calculated diffusion coefficients were similar to those obtained by the direct measurements of the layer thicknesses.For the sample alloyed with Cu or Cu-Ni the activation energy obtained was 141.27 kJ/mol,and for the sample alloyed with Cu-Ni-Mo the value was 212.98 kJ/mol.The statistical parameters and the correlation coefficients (R)showed satisfactory agreement.%渗硼层硬度高,能改善球墨铸铁(以下简称球铁)的摩擦学性能,而等温淬火能提高基体的力学性能。对含Cu、Cu-Ni和Cu-Ni-Mo的合金球铁试样进行了盐浴(硼砂+铝)渗硼,渗硼温度分别为850℃、900℃和950℃,时间2 h和4 h。通过所获得的渗层数据确定合金球铁渗硼的扩散系数和激活能。计算求得的扩散系数与通过直接测定渗层厚度得出的扩散系数相接近。含Cu或Cu-Ni的试样激活能为141.27 kJ/mol,而含Cu-Ni-Mo的试样激活能为212.98 kJ/mol。统计参数与相关系数(R)吻合良好。

  14. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    Science.gov (United States)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger