Sample records for aurothioglucose

  1. Hypolipidemic effect of pantothenic acid derivatives in mice with hypothalamic obesity induced by aurothioglucose. (United States)

    Naruta, E; Buko, V


    The hypolipidemic effects of pantothenic acid derivatives (phosphopantothenate, panthenol and pantethine) were studied in mice with hypothalamic obesity. Hypothalamic obesity in mice was induced by single injection of aurothioglucose (300 mg/kg body wt, i.p.). All the tested substances were administered during the last 10 days before decapitation (i.m., of dosage equivalent to 150 mg/kg body wt of phosphopantothenate). The studied substances inhibited the weight gain of the animals with hypothalamic obesity over the last 10 days of the experiment. The treatment with aurothioglucose increased food intake and mean body weight, blood glucose level; insulin, serum total cholesterol, triglyceride, the sum of LDL + VLDL and LDL-cholesterol concentration; triglyceride and cholesterol fractions in the liver; triglyceride and FFA content as well as lipoprotein lipase activity in adipose tissue of experimental mice. The administration of the assay compounds lowered food intake and mean body weight, insulin and glucose levels and decreased the content of triglycerides, total cholesterol and cholesterol esters in serum and adipose tissue as well as raised the activity of lipoprotein lipase in adipose tissue and serum lipolytic activity in obese mice. Among the compounds studied the reverse effect of panthenol was especially pronounced. The mechanism of hypolipidemic effects of pantothenic acid derivatives can be related to the reduced resistance to insulin and activation of lipolysis in serum and adipose tissue. PMID:11817109

  2. Do thyroid hormones function in insects? (United States)

    Davey, K G


    Earlier work demonstrated that phenoxy-phenyl compounds such as fenoxycarb and thyroxine mimicked the effects of JH III in causing a reduction in volume of the follicle cells of Locusta migratoria. While these compounds were only moderately effective, a derivative of thyroxine, 3,3',5-triiodothyronine (T3) was as effective as JH III, and T3 has been shown to bind to the same membrane receptor and activate the same pathway as JH III. The current paper shows that other thyroxine derivatives vary in activity. 3,3', 5'-Triiodothyronine (reverse T3) is inactive. 3,5-Diiodothyronine (T2) is more active than JH III, while its relatives (iodines at 3', 5' or at 3,3') are inactive. When follicles are exposed in vitro to rhodamine conjugated T3, the fluorescent compound can be seen to enter the cells and accumulate there: this process is inhibited by cycloheximide or by a temperature of 0 degrees C. The accumulation is antagonised by JH III but not JH I (which does not bind to the JH III membrane receptor) and by an antiserum raised against the putative membrane receptor protein. The action of T3, but not T2, is inhibited by 6-n-propyl-2-thiouracil or by aurothioglucose, both known to inhibit deiodinases. The activity of T3, but not of T2, increases with time of exposure to the follicle cells. These facts suggest that T3 enters the cells by receptor mediated endocytosis and is converted to a more active compound. Immunoreactivity to T3, but not thyroxine, can be detected in the haemolymph of locusts, and the titre varies slightly with the gonotrophic cycle. The food shows immunoreactivity for both thyroxine and T3. These findings suggest that thyroid hormones are ingested by locusts and have the potential to be used as hormonal signals in the control of egg production.