WorldWideScience

Sample records for auroral hiss

  1. Whistler-Langmuir oscillitons and their relation to auroral hiss

    Directory of Open Access Journals (Sweden)

    K. Sauer

    2011-10-01

    Full Text Available A new type of oscilliton (soliton with superimposed spatial oscillations is described which arises in plasmas if the electron cyclotron frequency Ωe is larger than the electron plasma frequency ωe, which is a typical situation for auroral regions in planetary magnetospheres. Both high-frequency modes of concern, the Langmuir and the whistler wave, are completely decoupled if they propagate parallel to the magnetic field. However, for oblique propagation two mixed modes are created with longitudinal and transverse electric field components. The lower mode (in the literature commonly called the whistler mode, e.g. Gurnett et al., 1983 has whistler wave characteristics at small wave numbers and asymptotically transforms into the Langmuir mode. As a consequence of the coupling between these two modes, with different phase velocity dependence, a maximum in phase velocity appears at finite wave number. The occurrence of such a particular point where phase and group velocity coincide creates the condition for the existence of a new type of oscillating nonlinear stationary structure, which we call the whistler-Langmuir (WL oscilliton. After determining, by means of stationary dispersion theory, the parameter regime in which WL oscillitons exist, their spatial profiles are calculated within the framework of cold (non-relativistic fluid theory. Particle-in-cell (PIC simulations are used to demonstrate the formation of WL oscillitons which seem to play an important role in understanding electron beam-excited plasma radiation that is observed as auroral hiss in planetary magnetospheres far away from the source region.

  2. Investigation of Io's Auroral Hiss Emissions Due To Its Motion in Jupiter's Magnetosphere

    CERN Document Server

    Moghimi, M H

    2011-01-01

    The left-hand side of the auroral hiss emission observed by Galileo has a frequency time shaped very similar to the funnel shape observed in the earth's auroral region. This close similarity indicates that we can use the whistler-mode propagation near resonance cone to locate the emission source. In this paper the general characteristic of the whistler mode are discussed. Then the position of the emission source has been investigated using a geometry method that takes into account the Galileo's trajectory. Initially it is assumed the source is a point. Then the possibility of sheet source aligned along the magnetic field lines which are tangent to the surface of Io is investigated. Both of two types of sources show that the whistler mode radiation originates very close to the surface of the Io.

  3. Investigation of Io's auroral hiss emissions due to its motion in Jupiter's magnetosphere

    Institute of Scientific and Technical Information of China (English)

    Mohsen H. Moghimi

    2012-01-01

    The left-hand side of the auroral hiss emission observed by Galileo has a frequency time profile shaped very similar to the funnel shape observed in the Earth's auroral region.This close similarity indicates that we can use the theory of whistlermode propagation near the resonance cone to locate the emission source.The general characteristics of the whistler mode are discussed.Then the position of the emission source is investigated using a geometrical method that takes into account the trajectory of Galileo.Initially a point source is assumed.Then the possibility of a sheet source aligned along the magnetic field lines which are tangent to the surface of Io is investigated.Both types of sources show that the whistler mode radiation originates very close to the surface of Io.

  4. Mapping the HISS Dipole

    International Nuclear Information System (INIS)

    The principal component of the Bevalac HISS facility is a large super-conducting 3 Tesla dipole. The facility's need for a large magnetic volume spectrometer resulted in a large gap geometry - a 2 meter pole tip diameter and a 1 meter pole gap. Obviously, the field required detailed mapping for effective use as a spectrometer. The mapping device was designed with several major features in mind. The device would measure field values on a grid which described a closed rectangular solid. The grid would be a regular with the exact measurement intervals adjustable by software. The device would function unattended over the long period of time required to complete a field map. During this time, the progress of the map could be monitored by anyone with access to the HISS VAX computer. Details of the mechanical, electrical, and control design follow

  5. Hiss emissions during quiet and disturbed periods

    Indian Academy of Sciences (India)

    D K Singh; R P Singh

    2002-10-01

    The characteristic features of VLF hiss emissions during quiet and disturbed conditions observed at ground stations and on-board satellites are summarized. The increased intensity of the hiss emissions during magnetic storm period is explained by considering the enhanced flux of energetic electrons during magnetic storm period. The generation and propagation mechanism of VLF hiss are also briefly discussed.

  6. Auroral pulsations and accompanying VLF emissions

    Directory of Open Access Journals (Sweden)

    V. R. Tagirov

    Full Text Available Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions · Space plasma physics (wave-particle interactions

  7. Status of the HISS MUSIC detector

    International Nuclear Information System (INIS)

    This note describes the status of a new type of high resolution large area charged particle detector constructed for use at the Bevalac HISS facility. High charge resolution is attained by measuring many samples of the ionization produced along the path of a particle as it traverses 144 cm of P10 gas. A Multiple Sampling Ionization Chamber (MUSIC) detector was selected for use at HISS because it can cover a large area(1M x 1M) at relatively low cost and return individual charge identification for multiple fragments emitted from relativistic heavy ion interactions

  8. Evidence for Significant Local Generation of Plasmaspheric Hiss

    Science.gov (United States)

    Kletzing, C.; Kurth, W. S.; Bounds, S. R.; Hospodarsky, G. B.; Santolik, O.; Wygant, J. R.; Bonnell, J. W.; Omura, Y.; Summers, D.

    2014-12-01

    The source of plasmaspheric hiss has been an outstanding problem in inner magnetospheric radiation belt physics since the discovery of this whistler-mode emission. The generation mechanism for plasmaspheric hiss has been suggested to come from one of three possible mechanisms: 1) local generation and amplification, 2) whistlers from lightning, and 3) chorus emissions which have refracted into the plasmasphere. The latter two mechanisms are external sources which produce an incoherent hiss signature as the original waves mix in a stochastic manner, propagating in both directions along the background magnetic field. In contrast, local generation of plasmaspheric hiss within the plasmasphere should produce a signature of waves propagating away from the source region. We report observations from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves insturment on the Van Allen Probes that clearly indicate that the Poynting flux associated with plasmaspheric hiss is frequently propagating away from the equator in the outer region of the plasmasphere. Initial statistics suggest that for more than 40% of the orbits of the Van Allen Probes, the plasmaspheric hiss is generated by a local source within the plasmasphere. We present examples of the signature of locally generated plasmaspheric hiss and show additional statistics of locally generated hiss occurrence.

  9. Forecast of auroral activity

    International Nuclear Information System (INIS)

    A new technique is developed to predict auroral activity based on a sample of over 9000 auroral sites identified in global auroral images obtained by an ultraviolet imager on the NASA Polar satellite during a 6-month period. Four attributes of auroral activity sites are utilized in forecasting, namely, the area, the power, and the rates of change in area and power. This new technique is quite accurate, as indicated by the high true skill scores for forecasting three different levels of auroral dissipation during the activity lifetime. The corresponding advanced warning time ranges from 22 to 79 min from low to high dissipation levels

  10. Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes

    Science.gov (United States)

    Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Wygant, J. R.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.

    2016-05-01

    The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observations form Van Allen Probes that chorus and hiss emissions occurred in the same range ˜300-1500 Hz with the peak wave power density about 10-5 nT2/Hz during a weak storm on 3 July 2014. Chorus emissions propagate in a broad region outside the plasmapause. Meanwhile, hiss emissions are confined inside the plasmasphere, with a higher intensity and a broader area at a lower frequency. A sum of bi-Maxwellian distribution is used to model the observed anisotropic electron distributions and to evaluate the instability of waves. A three-dimensional ray tracing simulation shows that a portion of chorus emission outside the plasmasphere can propagate into the plasmasphere and evolve into plasmaspheric hiss. Moreover, hiss waves below 1 kHz are more intense and propagate over a broader area than those above 1 kHz, consistent with the observation. The current results can explain distributions of the observed hiss emission and provide a further support for the mechanism of evolution of chorus into hiss emissions.

  11. Auroral Tomography Workshop, Proceedings

    International Nuclear Information System (INIS)

    In ionospheric and atmospheric physics the importance of multi-station imaging has grown as a consequence of the availability of scientific grade CCD cameras with digital output and affordable massive computing power. Tomographic inversion techniques are used in many different areas, e.g. medicine, plasma research and space physics. The tomography workshop was announced to gather a limited group of people interested in auroral tomography or tomographic inversion methods in general. ALIS (Auroral Large Imaging System) is a multi-station ground-based system developed primarily for three-dimensional auroral imaging, however other non-auroral objects can be studied with ALIS, e.g. stratospheric clouds. Several of the contributions in the workshop dealt with problems related to geometries similar to the ALIS-configuration. The Proceedings contain written contributions received either in abstract form or as full papers. The Proceedings also contain contributions intended for the Workshop but not presented due to the absence of the speaker. Separate abstracts have been prepared for 15 of the 17 papers

  12. The Sound and the Fury—Bees Hiss when Expecting Danger

    Science.gov (United States)

    Galizia, C. Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees’ sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees’ hissing remain to be investigated. PMID:25747702

  13. The sound and the fury--bees hiss when expecting danger.

    Directory of Open Access Journals (Sweden)

    Henja-Niniane Wehmann

    Full Text Available Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.

  14. The sound and the fury--bees hiss when expecting danger.

    Science.gov (United States)

    Wehmann, Henja-Niniane; Gustav, David; Kirkerud, Nicholas H; Galizia, C Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.

  15. Far ultraviolet auroral imager

    Institute of Scientific and Technical Information of China (English)

    FU LiPing; WANG YongMei; WANG YingJian; ZHANG ZhongMou; LU JianGong

    2009-01-01

    Reviewing the technology development of imaging the global FUV auroral morphology,we introduce a space-based FUV auroral imager prototype developed by the Center for Space Science and Applied Research(CSSAR).It is designed to obtain continuous observations on the temporal and spatial morphology of the aurora which occupies highly elliptical high-altitude near-polar orbits.Primarily composed of a telescope system,image intensifier system,CCD,and collection and control system,the instrument works in the spectral region from 140-190 nm in the field of view 25°×25°,and the spatial resolution is better than 0.1°.

  16. Cluster observations of mid-latitude hiss near the plasmapause

    Directory of Open Access Journals (Sweden)

    A. Masson

    2004-07-01

    Full Text Available In the vicinity of the plasmapause, around the geomagnetic equator, the four Cluster satellites often observe banded hiss-like electromagnetic emissions (BHE; below the electron gyrofrequency but above the lower hybrid resonance, from 2kHz to 10kHz. We show that below 4kHz, these waves propagate in the whistler mode. Using the first year of scientific operations of WHISPER, STAFF and WBD wave experiments on Cluster, we have identified the following properties of the BHE waves: (i their location is strongly correlated with the position of the plasmapause, (ii no MLT dependence has been found, (iii their spectral width is generally 1 to 2kHz, and (iv the central frequency of their emission band varies from 2kHz to 10kHz. All these features suggest that BHE are in fact mid-latitude hiss emissions (MLH. Moreover, the central frequency was found to be correlated with the Kp index. This suggests either that these banded emissions are generated in a given f/fce range, or that there is a Kp dependent Doppler shift between the satellites and a possible moving source of the MLH.

  17. Altitude Variations of the Peak Auroral Emissions within Auroral Structures

    Science.gov (United States)

    Sangalli, L.

    2015-12-01

    The MIRACLE network monitors auroral activity in the Fennoscandian sector of Europe. Network stations cover the range of 55° to 57° magnetic latitude North and span two hours in magnetic local time. Some of the MIRACLE network stations include digital all-sky cameras (ASC) with overlapping field-of-views located at the latitude aurora occurs. The ASCs in this network operate at three different wavelengths: 427.8 nm (blue line), 557.7 nm (green line) and 630.0 nm (red line). These wavelengths are selected using narrow band filters. The new ASC systems are based on electron multiplying CCDs (emCCD), which allow higher time and spatial resolutions. The peak auroral emission altitude is determined using two ASC images from a station pair. Different auroral events are used to evaluate the altitude variations of the peak auroral emissions within auroral structures and its evolution in time.

  18. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  19. The Wave-Like Auroral Structure around Auroral Expansion Onset

    Institute of Scientific and Technical Information of China (English)

    TANG Chao-Ling

    2011-01-01

    We present the direct connection between the wave-like auroral structure around the time of auroral expansion onset and the ballooning mode waves in the near-Earth magnetotail. Based on the NASA mission time history of events and macroscale interactions during substorms (THEMIS) ground-based all-sky imagers, we show that around the time of auroral expansion onset, a wave-like auroral structure first has four luminosity peaks separated by 2-3° magnetic longitude (MLON). Subsequently, the wave-like structure propagates in the azimuthal direction and an overall bright arc spans approximately 1 h magnetic local time. The wavelength is estimated to be 120-180 km. Finally, a noticeable poleward auroral expansion is observed. The ballooning mode waves are identified by two THEMIS probes in the near-Earth magnetotail. The observed wavelength of the ballooning mode waves is approximately equal to the order of the ion Larmor radius. The wavelength of 1500 3000 km in the near-Earth magnetotail is comparable with the wave-like auroral structure estimate. This study suggests that the ballooning mode waves might play a crucial role in auroral expansion onset, corresponding to the wave-like auroral structure in this study.%We present the direct connection between the wave-like auroral structure around the time of auroral expansion onset and the ballooning mode waves in the near-Earth magnetotail.Based on the NASA mission time history of events and macroscale interactions during substorms (THEMIS) ground-based all-sky imagers,we show that around the tirne of auroral expansion onset,a wave-like auroral structure first has four luminosity peaks separated by 2-3° magnetic longitude (MLON).Subsequently,the wave-like structure propagates in the azimuthal direction and an overall bright arc spans approximately 1 h magnetic local time.The wavelength is estimated to be 120-180 km.Finally,a noticeable poleward auroral expansion is observed.The ballooning mode waves are identified by two

  20. Auroral Spatial Structures Probe Project

    Data.gov (United States)

    National Aeronautics and Space Administration —    Methodology Fly a high altitude sounding rocket with multiple sub-payloads to measure electric and magnetic fields during an auroral event. Use...

  1. Equatorial magnetospheric particles and auroral precipitations

    Science.gov (United States)

    McIlwain, C. E.

    The injection boundary beyond which fresh hot plasma appears each magnetospheric substorm is generalized and extended to circle the Earth. The concept of an auroral shell representing the inner limit of active auroral processes is introduced. It is proposed that at low altitudes, this shell marks the equatorward edge of the auroral ovals, and that at high altitudes, it marks the injection boundary. The auroral ring is defined as the intersection of the auroral shell with the magnetic equator. A simple equation for computing the expected location of the auroral ring as a function of local time and magnetic disturbance level is obtained. Tests indicate that the model is valid and reasonably accurate.

  2. Hiss induced radiation belt electron loss timescales in the plasmasphere based on ray tracings of wave propagation angle

    Science.gov (United States)

    Zhou, C.; Ni, B.; Li, W.; Bortnik, J.; Gu, X.; Zhao, Z.

    2015-12-01

    Plasmaspheric hiss plays an important role in driving resonant scattering losses of radiation belt electrons and thereby largely controls the lifetimes of electrons in the plasmasphere. Besides the spectral information of waves, an accurate investigation of hiss induced radiation belt electron loss timescales requires the details of wave normal angle distribution during propagation along the field line, which however is difficult to obtain directly from in situ measurements but can be reasonably evaluated from ray tracing of hiss propagation on basis of reasonable setups of background field and plasma density. By assuming a nominal and suitable plasmapause location at L = 4.5, we report the ray tracing results of hiss wave propagation angles for various hiss wave frequencies at various L-shells in the plasmasphere. Subsequently, we construct the improved model of hiss wave normal angle distribution with dependence on both wave frequency, magnetic latitude and L-shell, which is used to compute the quasi-linear bounce-averaged rates of electron scattering due to plasmaspheric hiss and perform the pure pitch angle diffusion simulations. Hiss induced radiation belt electron loss timescales are then determined from the simulated temporal evolution of electron fluxes after reaching the equilibrium state, as a function of electron kinetic energy and L-shell, which is of importance for incorporation into future simulations of the radiation belt electron dynamics under various geomagnetic conditions to comprehend the exact contribution of plasmaspheric hiss.

  3. High Resolution Spectral Analysis of Hiss and Chorus Emissions in Ground Based Data

    Science.gov (United States)

    Hosseini Aliabad, S. P.; Golkowski, M.; Gibby, A. R.

    2015-12-01

    The dynamic evolution of the radiation belts is believed to be controlled in large part by two separate but related classes of naturally occurring plasma waves: ELF/VLF chorus and hiss emissions. Although whistler mode chorus has been extensively studied since the first reports by Storey in 1953, the source mechanism and properties are still subjects of active research. Moreover, the origin of plasmaspheric hiss, the electromagnetic emission believed to be responsible for the gap between the inner and outer radiation belts, has been debated for over four decades. Although these waves can be observed in situ on spacecraft, ground-based observing stations can provide orders of magnitude higher data volumes and decades long data coverage essential for certain long-term and statistical studies of wave properties. Recent observational and theoretical works suggest that high resolution analysis of the spectral features of both hiss and chorus emissions can provide insight into generation processes and be used to validate existing theories. Application of the classic Fourier (FFT) technique unfortunately yields a tradeoff between time and frequency resolution. In additional to Fourier spectra, we employ novel methods to make spectrograms with high time and frequency resolutions, independently using minimum variance distortionless response (MVDR). These techniques are applied to ground based data observations of hiss and chorus made in Alaska. Plasmaspheric hiss has been widely regarded as a broadband, structure less, incoherent emission. We quantify the extent to which plasmaspheric hiss can be a coherent emission with complex fine structure. Likewise, to date, researchers have differentiated between hiss and chorus coherency primarily using qualitative "naked eye" approaches to amplitude spectra. Using a quantitative approach to observed amplitude and we present more rigorous classification criteria for these emissions.

  4. Characteristics of Extreme Auroral Charging Events

    Science.gov (United States)

    Minow, Joseph I.; Willis, Emily; Parker, Linda Neergaard

    2014-01-01

    Today’s presentation describes preliminary results from a study of extreme auroral charging in low Earth orbit. Goal of study is to document characteristics of auroral charging events of importance to spacecraft design, operations, and anomaly investigations.

  5. Home Sweet Home: How to Build a Madagascar Hissing Cockroach Habitat out of Recycled Materials

    Science.gov (United States)

    Wagler, Ron

    2010-01-01

    Madagascar hissing cockroaches (MHC) are amazing insects that can be an integral part of an effective science learning and teaching environment. MHCs have a fascinating social structure. They make excellent pets, teach students how to properly care for animals, and their large size adds to their "wow" factor. These characteristics make them unique…

  6. Auroral Electrojet Index Designed to Provide a Global Measure, Hourly Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet (AE) index is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  7. Calculating Auroral Oval Pattern by AE Index

    Institute of Scientific and Technical Information of China (English)

    CHEN Anqin; LI Jiawei; YANG Guanglin; WANG Jingsong

    2008-01-01

    The relationship between the auroral oval pattern, i.e., location, size, shape, and intensity, and the auroral electrojet activity index (AE index) is studied. It is found that the maximal auroral intensity is elliptically distributed, and the lengths of semimajor and semiminor axes are positively correlated to AE.The intensity along the normal of the auroral oval can be satisfyingly described by a Gaussian distribution,and the maximum and the full width at half maximum of the Gaussian distribution are both positively correlated to AE. Based on these statistical results, a series of experimental formulas as a function of AE are developed to calculate the location, size, shape, and intensity of the auroral oval. These formulas are validated by the auroral images released by SWPC/NOAA.

  8. Mapping auroral activity with Twitter

    Science.gov (United States)

    Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.

    2015-05-01

    Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.

  9. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    Science.gov (United States)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to

  10. Reconstruction of Fine Scale Auroral Dynamics

    CERN Document Server

    Hirsch, Michael; Zettergren, Matthew; Dahlgren, Hanna; Goenka, Chhavi; Akbari, Hassanali

    2015-01-01

    We present a feasibility study for a high frame rate, short baseline auroral tomographic imaging system useful for estimating parametric variations in the precipitating electron number flux spectrum of dynamic auroral events. Of particular interest are auroral substorms, characterized by spatial variations of order 100 m and temporal variations of order 10 ms. These scales are thought to be produced by dispersive Alfv\\'en waves in the near-Earth magnetosphere. The auroral tomography system characterized in this paper reconstructs the auroral volume emission rate to estimate the characteristic energy and location in the direction perpendicular to the geomagnetic field of peak electron precipitation flux using a distributed network of precisely synchronized ground-based cameras. As the observing baseline decreases, the tomographic inverse problem becomes highly ill-conditioned; as the sampling rate increases, the signal-to-noise ratio degrades and synchronization requirements become increasingly critical. Our a...

  11. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    International Nuclear Information System (INIS)

    This thesis contains the setup, analysis and results of experiment E684H ''Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment

  12. Wave Distribution Functions of Plasmaspheric Hiss and their Effects on Radiation Belt Dynamics

    Science.gov (United States)

    Santolik, O.; Ripoll, J. F.; Kurth, W. S.; Hospodarsky, G. B.; Kletzing, C.

    2015-12-01

    Plasmaspheric hiss is formed by whistler-mode waves which play an important role in the dynamics the Earth's radiation belts, specifically in connection with the slot region between the inner and outer Van Allen belts. The origin of plasmaspheric hiss is still a subject of discussions and these waves are known for their complex propagation properties. They are often far from a single plane wave approximation, forming a continuous distribution of the wave energy density with respect to the wave vector direction (wave distribution function). Analysis of polarization and propagation parameters of these waves provides us with inputs for modeling of radiation belt dynamics. We use the data of the Waves instrument of Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft, to analyze simultaneous measurements of all electric and magnetic field components, together with measurements of the plasma density based on the determination of the upper hybrid resonance frequency. Using this unique data set we estimate the wave distribution functions of plasmaspheric hiss and we model the effects of these waves on the decay rates of radiation belt electrons through quasilinear pitch angle diffusion.

  13. Advanced Stellar Compass Summary for the Auroral Lites mission

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1998-01-01

    This document provides technical and managerial information about the Advanced Stellar Compass and its possible use in the Auroral Lites Project.The Auroral Lites is a NASA project.......This document provides technical and managerial information about the Advanced Stellar Compass and its possible use in the Auroral Lites Project.The Auroral Lites is a NASA project....

  14. Hemispheric Assymeries in Auroral Precipitation

    Science.gov (United States)

    Mende, S. B.

    2014-12-01

    It is widely accepted that the space weather related electrodynamic forcing of the geospace environment acts through the high geomagnetic latitude regions. At high latitudes inter-hemispheric asymmetries are largely due to the differences in solar illumination, the direction of the solar wind and interplanetary magnetic field components and to a lesser extent, due to differences between the two hemispheric internal fields. So far most research regarding interhemispheric differences concentrated on learning about the basic magnetosphere-ionosphere coupling mechanisms. It has been well established that sunlit conditions affect the energy flux of auroral precipitation resulting from the reduction in the mean energy of the auroral electrons in the sunlit summer hemisphere. This can be explained by the partial shorting out of the particle accelerating fields by the sunlight induced conductivity. It has also been found that sunlit conditions reduce the particle fluxes and therefore the associated field aligned currents. Unless the precipitation-induced conductivities overwhelm the sunlit component of conductivity, this would imply that the magnetospheric current generator responds to the ionospheric load in a highly non-linear manner. Interhemispheric currents may also play an important role that has not been fully explored. Interhemispheric asymmetries in substorm morphology have been explored critically because conjugacy implies that substorms have a common source at equatorial latitudes. In some cases the lack of conjugacy of substorms could be explained by considering the magnitude and direction of the IMF.

  15. Turbulent acceleration of auroral electrons

    International Nuclear Information System (INIS)

    It is shown that the characteristic peak in the auroral electron velocity distribution can be generated stochastically through resonant interactions with lower-hybrid electrostatic turbulence. The peak itself is shown to be a direct consequence of restrictions imposed on reflexion of electron velocities in the frame of reference of individual wave packets by the limitation in group velocity. A Monte-Carlo model demonstrates how the various properties of the acceleration region are reflected in the resultant electron distribution. It is shown, in particular, that the width of the peak is governed by the amplitude of the turbulence, while the amplitude of the peak reflects the column density of wave energy. Electron distributions encountered within three auroral arcs are interpreted to yield order of magnitude estimates of the amplitude and rms electric field of lower-hybrid wave packets. The velocities and frequencies of the resonant waves, the net electric field, the column density of wave energy and the electric-field energy density are also estimated. The results are found to be consistent with available electric-field measurements. A general broadening of the electron distribution caused by less systematic interactions between electrons and wave packets is shown to have a negligible effect on the peak resulting from the reflexion process; it does, though, lead to the creation of a characteristic high-energy tail. (author)

  16. Auroral Phenomena in Brown Dwarf Atmospheres

    Science.gov (United States)

    Pineda, J. Sebastian; Hallinan, Gregg

    2016-01-01

    Since the unexpected discovery of radio emission from brown dwarfs some 15 years ago, investigations into the nature of this emission have revealed that, despite their cool and neutral atmospheres, brown dwarfs harbor strong kG magnetic fields, but unlike the warmer stellar objects, they generate highly circularly polarized auroral radio emission, like the giant planets of the Solar System. Our recent results from Keck LRIS monitoring of the brown dwarf LSR1835+32 definitively confirm this picture by connecting the auroral radio emission to spectroscopic variability at optical wavelengths as coherent manifestations of strong large-scale magnetospheric auroral current systems. I present some of the results of my dissertation work to understand the nature brown dwarf auroral phenomena. My efforts include a survey of Late L dwarfs and T dwarfs, looking for auroral Hα emission and a concurrent survey looking for the auroral emission of H3+ from brown dwarfs with radio pulse detections. I discuss the potential connection of this auroral activity to brown dwarf weather phenomena and how brown dwarf aurorae may differ from the analogous emission of the magnetized giant planets in the Solar System.

  17. Waterhole: An auroral-ionosphere perturbation experiment

    Science.gov (United States)

    Whalen, B. A.; Yau, A. W.; Creutzberg, F.; Pongratz, M. B.

    A sounding rocket carrying 100 kg of high explosives and plasma diagnostic instrumentation was launched from Churchill Research Range on 6 April 1980 over a premidnight auroral arc. The object of the experiment was to produce an ionospheric hole or plasma density depletion at about 300 km altitude on field lines connected to an auroral arc. The plasma depletion is produced when the explosive by-products (mostly water) charge-exchange with the ambient O+ ions and then rapidly recombine. It was speculated that the presence of the "hole" would interfere with the field-aligned current systems associated with the arc and would in turn perturb the auroral source mechanism. The release occurred about 10 km poleward of the auroral arc fieldlines. As expected, a large ionospheric hole was detected by rocket-borne plasma sensors. Within a few seconds following the release (a) the energetic electron precipitation observed in the hole dropped to background levels, (b) the luminosity of the auroral arc observed by a ground-based auroral scanning photometer decreased by a factor of two, and (c) the ionospheric E region density below the hole decayed at a rate consistent with a sudden reduction in particle precipitation. The simultaneous onset of these gross changes in electron precipitation coincident with the release strongly suggests a cause and effect relationship. In particular, these results suggest that the ionospheric plasma and the field-aligned current systems play a crucial role in the auroral acceleration process.

  18. Statistical analysis of extreme auroral electrojet indices

    Science.gov (United States)

    Nakamura, Masao; Yoneda, Asato; Oda, Mitsunobu; Tsubouchi, Ken

    2015-09-01

    Extreme auroral electrojet activities can damage electrical power grids due to large induced currents in the Earth, degrade radio communications and navigation systems due to the ionospheric disturbances and cause polar-orbiting satellite anomalies due to the enhanced auroral electron precipitation. Statistical estimation of extreme auroral electrojet activities is an important factor in space weather research. For this estimation, we utilize extreme value theory (EVT), which focuses on the statistical behavior in the tail of a distribution. As a measure of auroral electrojet activities, auroral electrojet indices AL, AU, and AE, are used, which describe the maximum current strength of the westward and eastward auroral electrojets and the sum of the two oppositely directed in the auroral latitude ionosphere, respectively. We provide statistical evidence for finite upper limits to AL and AU and estimate the annual expected number and probable intensity of their extreme events. We detect two different types of extreme AE events; therefore, application of the appropriate EVT analysis to AE is difficult.

  19. Auroral Morphologies of Jupiter and Saturn

    OpenAIRE

    Grodent, Denis

    2015-01-01

    We review the principal differences and similarities of the morphologies of Jupiter and Saturn's auroral emissions. We then show some examples of UV images that are expected to be acquired with Cassini UVIS at Saturn and Juno UVS at Jupiter.

  20. Auroral electrodynamics of plasma boundary regions

    OpenAIRE

    Liléo, Sónia

    2009-01-01

    The electrodynamic coupling between the auroral ionosphere and the magnetosphere is the main subject of this thesis. Satellite measurements of electric and magnetic fields and of charged particles are used to explore three distinct plasma boundaries, magnetically linked to the nightside auroral ionosphere. These boundaries are the inner edge of the plasma sheet (PS), and the inner and the outer edges of the plasma sheet boundary layer (PSBL). Strong ionospheric electric fields with amplitudes...

  1. Highly resolved effects of whistler-mode hiss waves in March 2013

    Science.gov (United States)

    Ripoll, J. F.; Santolik, O.; Reeves, G. D.; Kurth, W. S.; Kletzing, C.

    2015-12-01

    We present a simulation of effects of whistler-mode waves on radiation belt electrons for the entire month of March 2013. Frequency dependent wave intensities as well as ambient plasma density are obtained from the EMFISIS Waves instrument onboard the Van Allen Probes using fine temporal (8 hours) and spatial (0.1L) resolutions. Pitch angle diffusion that produces electron scattering is computed using the Lyons et al. [1972] model, from L=1.8 to L=5.5 and energy in [0.05, 6] MeV. Electron lifetimes are deduced from the steady state of electron pitch angle diffusion. Such a computation requires 4000 thousands processors during 10 hours. It leads to a fine description of the hiss effects in the plasmasphere and in its exterior neighborhood. Losses follow a complex and dynamic filamentary structure, imposed by the wave properties (mainly frequency and amplitude), that sculpts the slot as such. Their daily structure in the (E-L) plane is characteristic [Lyons & Thorne, 1973], dynamic, and similar to recent slot observations from the Van Allen probes [Reeves et al., 2015]. Low energy electrons are less influenced by intense hiss scattering below L=4, which favors their travel down to the vicinity of the Earth, explaining thus the existence of a wide inner belt. On the other hand MeV electrons evolve in a more hostile environment that will depopulate them as they migrate from L~5 down to L~2.5. Ultra-relativistic electrons are not sensible to hiss waves before two and three Earth radii.

  2. Origins of the Earth's Diffuse Auroral Precipitation

    Science.gov (United States)

    Ni, Binbin; Thorne, Richard M.; Zhang, Xiaojia; Bortnik, Jacob; Pu, Zuyin; Xie, Lun; Hu, Ze-jun; Han, Desheng; Shi, Run; Zhou, Chen; Gu, Xudong

    2016-04-01

    The Earth's diffuse auroral precipitation provides the major source of energy input into the nightside upper atmosphere and acts as an essential linkage of the magnetosphere-ionosphere coupling. Resonant wave-particle interactions play a dominant role in the scattering of injected plasma sheet electrons, leading to the diffuse auroral precipitation. We review the recent advances in understanding the origin of the diffuse aurora and in quantifying the exact roles of various magnetospheric waves in producing the global distribution of diffuse auroral precipitation and its variability with the geomagnetic activity. Combined scattering by upper-and lower-band chorus accounts for the most intense inner magnetospheric electron diffuse auroral precipitation on the nightside. Dayside chorus can be responsible for the weaker dayside electron diffuse auroral precipitation. Pulsating auroras, the dynamic auroral structures embedded in the diffuse aurora, can be mainly caused by modulation of the excitation of lower band chorus due to macroscopic density variations in the magnetosphere. Electrostatic electron cyclotron harmonic waves are an important or even dominant cause for the nightside electron diffuse auroral precipitation beyond {˜}8Re and can also contribute to the occurrence of the pulsating aurora at high L-shells. Scattering by electromagnetic ion cyclotron waves could quite possibly be the leading candidate responsible for the ion precipitation (especially the reversed-type events of the energy-latitude dispersion) in the regions of the central plasma sheet and ring current. We conclude the review with a summary of current understanding, outstanding questions, and a number of suggestions for future research.

  3. The Auroral Zone: A citizen science project to classify auroral imaging data

    Science.gov (United States)

    Chaddock, D.; Spanswick, E.; Gillies, D. M.; Quinney, A.; Donovan, E.; Murray, M. S.

    2015-12-01

    Currently, over 40 million images of the aurora have been recorded by University of Calgary all-sky imagers. Analysis of these images is an important and crucial step in the advancement of auroral physics. The number of images waiting to be analyzed is expected to increase dramatically with the introduction of TREx (Transition Region Explorer), a new high resolution imaging network set to be deployed in late 2016. In order to classify large amounts of images in a short period of time, we have designed a citizen science project aimed at engaging the general public in auroral science, called "The Auroral Zone". This project facilitates a symbiotic relationship between the scientific community and the general public. Using the data from this website, a large database of classified auroral images will be created and then used for future analysis by the scientific community. In exchange, the general public can learn about the aurora and contribute to auroral physics in a tangible way. The ultimate aim of this project is to create an ever expanding database of all-sky images classified by arc type (i.e. single arc, diffuse aurora, multiple arc, etc.) and filtered for adverse viewing conditions (i.e. snow, rain, light pollution, etc). We aim to introduce "The Auroral Zone" into the school systems to interest young scientists in the spectacular natural phenomenon that defines the Canadian North. "The Auroral Zone" is a collaborative project between the University of Calgary, Canadian Space Agency, AuroraMAX, and Aurorasaurus.

  4. Auroral Electrojet Indices Designed to Provide a Global Measure, 2.5-Minute Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  5. Auroral Electrojet Index Designed to Provide a Global Measure, l-minute Intervals, of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  6. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 1: Diffusion coefficients and timescales

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.

    1994-01-01

    Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.

  7. Solar Wind Compression Generation of Coincident EMIC and Whistler Mode Chorus and Hiss Waves

    Science.gov (United States)

    Halford, Alexa; Mann, Ian

    2016-07-01

    Electron radiation belt dynamics are controlled by the competition of multiple acceleration and loss mechanisms. Electromagnetic ion cyclotron (EMIC), chorus, and hiss waves have all been implicated as potential loss mechanisms of radiation belt electrons along with Chorus waves proposed as a mechanism for accelerating the lower energy source population to MeV energies. Understanding the relative importance of these waves as well as where and under what conditions they are generated is vital to predicting radiation belt dynamics. Although the size of the solar wind compression on 9 January 2014 event discussed here was modest, it has given us an opportunity to observe clearly how a magnetospheric compression can lead to the generation of EMIC, chorus, and hiss waves. The ICME generated shock encountered the Earth's magnetosphere on 9 January 2014 at ~20:11 UT, and the Van Allen Probes observe the coincident excitation of EMIC and Chorus waves outside the plasmasphere, and hiss weaves inside the plasmasphere. As the shock encountered the magnetosphere, an electric field impulse was observed to generate an increase in temperature anisotropy for both ions and electrons. This increased temperature anisotropy led to increased wave growth on both the ion and electron cyclotron branches. The simultaneous generation of multiple types of waves may lead to significant impacts on the acceleration and loss of radiation belt electrons, especially during geomagnetic compressions observed during the substorms, and the storm sudden commencement and main phases of geomagnetic storms, as well as during quiet time sudden impulse events. For example, the excitation of both EMIC and chorus waves at the same place, and at the same time, may complicate studies seeking a causal connection between specific individual plasma wave bursts and observations of particle precipitation into the atmosphere. During this relatively small event BARREL had three payloads in conjunction with the Van

  8. Auroral Electrojet (AE, AL, AO, AU) - A Global Measure of Auroral Zone Magnetic Activity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AE index is derived from geomagnetic variations in the horizontal component observed at selected (10-13) observatories along the auroral zone in the northern...

  9. Investigating the auroral electrojets using Swarm

    Science.gov (United States)

    Smith, Ashley; Macmillan, Susan; Beggan, Ciaran; Whaler, Kathy

    2016-04-01

    The auroral electrojets are large horizontal currents that flow within the ionosphere in ovals around the polar regions. They are an important aspect of space weather and their position and intensity vary with solar wind conditions and geomagnetic activity. The electrojet positions are also governed by the Earth's main magnetic field. During more active periods, the auroral electrojets typically move equatorward and become more intense. This causes a range of effects on Earth and in space, including geomagnetically induced currents in power transmission networks, disturbance to radio communications and increased drag on satellites due to expansion of the atmosphere. They are also indicative of where the aurora are visible. Monitoring of the auroral electrojets in the pre-satellite era was limited to the network of ground-based magnetic observatories, from which the traditional AE activity indices are produced. These suffer in particular from the stations' poor distribution in position and so this motivates the use of satellite-based measurements. With polar low-Earth orbit satellites carrying magnetometers, all latitudes can be sampled with excellent resolution. This poster presents an investigation using Swarm's magnetometer data to detect the electrojets as the spacecraft move above them. We compare and contrast two approaches, one which uses vector data and the other which uses scalar data (Hamilton and Macmillan 2013, Vennerstrom and Moretto, 2013). Using ideas from both approaches we determine the oval positions and intensities from Swarm and earlier satellites. The variation in latitude and intensity with solar wind conditions, geomagnetic activity and secular variation of the main field is investigated. We aim to elucidate the relative importance of these factors. Hamilton, B. and Macmillan, S., 2013. Investigation of decadal scale changes in the auroral oval positions using Magsat and CHAMP data. Poster at IAGA 12th Scientific Assembly, 2013. http

  10. HISS-dependent insulin resistance (HDIR) in aged rats is associated with adiposity, progresses to syndrome X, and is attenuated by a unique antioxidant cocktail

    OpenAIRE

    Lautt, W. Wayne; Ming, Zhi; Macedo, M Paula; Legare, Dallas J.

    2008-01-01

    The hypotheses were: HISS-dependent insulin resistance (HDIR) accounts for insulin resistance that occurs with aging; HDIR is the initiating metabolic defect that leads progressively to type 2 diabetes and the metabolic syndrome; a synergistic antioxidant cocktail in chow confers protection against HDIR, subsequent symptoms of diabetes, and the metabolic syndrome. Male Sprague Dawley rats were tested at 9, 26, and 52 weeks to determine their dynamic response to insulin, the HISS (hepatic insu...

  11. Ground and satellite observations of auroral fragmentation into patches

    Science.gov (United States)

    Shiokawa, Kazuo; Nishi, Katsuki

    2016-07-01

    We review characteristic auroral fragmentation which is the process by which uniform aurora is broken into several fragments to form auroral patches, based on the all-sky camera observations at Tromsoe, Norway and THEMIS chain in Canada. The auroral fragmentation occurs as finger-like structures developing predominantly in meridional direction with speeds of several tens m/s and scale sizes of several tens kilometers without any shearing motion. These features suggest that pressure-driven instability in the balance between the earthward magnetic-tension force and the tailward pressure gradient force in the magnetosphere is the main driving force of the auroral fragmentation. Thus, these observations indicate that auroral fragmentation associated with pressure-driven instability is a process that creates auroral patches. Auroral fragmentation is seen from midnight to dawn local time and usually appears at the beginning of the substorm recovery phase, near the low latitude boundary of the auroral region. One example of plasma and magnetic field observations by the THEMIS satellite in the conjugate magnetosphere shows diamagnetic anti-phase variations of magnetic and plasma pressures with time scales of several to tens minutes associated with the auroral fragmentation. This observation also supports the idea of pressure-driven instability to cause the auroral fragmentation into patches.

  12. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector

  13. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  14. Auroral backscatter observed at HF from Ottawa

    International Nuclear Information System (INIS)

    Bistatic HF radar recordings of auroral scattering sources north of Ottawa are reported. Doppler frequency spreads over + or - 100 Hz were obtained at least 35 percent of the time. The peak of the Doppler frequency distribution was sometimes shifted from zero by as much as 50 Hz, and significant contributions often occurred at Doppler frequencies greater than 150 Hz. Signals received simultaneously on both arms of a two-arm direction-finding array were used to identify the specific elevations and bearings of the backscatter signals. A detailed study of a particular hour-long period is reported, and a large number of 'apparent' auroral backscatter sources are identified. The source regions, probably located in the F layer, were elongated mainly in the north-south direction and extended over at least 3 deg of latitude. North-south corridors were found between such sources in which echo returns were either absent or very weak. 14 references

  15. A numerical simulation of auroral ionospheric electrodynamics

    Science.gov (United States)

    Mallinckrodt, A. J.

    1985-01-01

    A computer simulation of auroral ionospheric electrodynamics in the altitude range 80 to 250 km has been developed. The routine will either simulate typical electron precipitation profiles or accept observed data. Using a model background ionosphere, ion production rates are calculated from which equilibrium electron densities and the Hall and Pedersen conductivities may be determined. With the specification of suitable boundary conditions, the entire three-dimensional current system and electric field may be calculated within the simulation region. The results of the application of the routine to a typical inverted-V precipitation profile are demonstrated. The routine is used to explore the observed anticorrelation between electric field magnitude and peak energy in the precipitating electron spectrum of an auroral arc.

  16. Sophus Peter Tromholt: an outstanding pioneer in auroral research

    OpenAIRE

    Moss, K.; P. Stauning

    2012-01-01

    The Danish school teacher Sophus Peter Tromholt (1851–1896) was self-taught in physics, astronomy, and auroral sciences. Still, he was one of the brightest auroral researchers of the 19th century. He was the first scientist ever to organize and analyse correlated auroral observations over a wide area (entire Scandinavia) moving away from incomplete localized observations. Tromholt documented the relation between auroras and sunspots and demonstrated the daily, seasonal and solar cyc...

  17. Cluster in situ studies of the auroral acceleration region

    OpenAIRE

    Li, Bin

    2014-01-01

    This thesis addresses a central topic in auroral physics, namely particle accelerationproducing intense aurora as well as energetic plasma outflow. Cluster satellitemeasurements of electric and magnetic fields, electrons and ions, collected across auroralfield lines, are used to study various aspects of the quasi-static auroral accelerationregion (AAR), its relation to the auroral density cavity, and the relative role of quasistaticand Alfvénic acceleration for producing aurora.The accelerati...

  18. Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations

    Science.gov (United States)

    Nishimura, Y.; Lyons, L. R.; Xing, X.; Angelopoulos, V.; Donovan, E. F.; Mende, S. B.; Bonnell, J. W.; Auster, U.

    2013-09-01

    sheet flow bursts have been suggested to correspond to different types of auroral activity, such as poleward boundary intensifications (PBIs), ensuing auroral streamers, and substorms. The flow-aurora association leads to the important question of identifying the magnetotail source region for the flow bursts and how this region depends on magnetic activity. The present study uses the ARTEMIS spacecraft coordinated with conjugate ground-based auroral imager observations to identify flow bursts beyond 45 RE downtail and corresponding auroral forms. We find that quiet-time flows are directed dominantly earthward with a one-to-one correspondence with PBIs. Flow bursts during the substorm recovery phase and during steady magnetospheric convection (SMC) periods are also directed earthward, and these flows are associated with a series of PBIs/streamers lasting for tens of minutes with similar durations to that of the series of earthward flows. Presubstorm onset flows are also earthward and associated with PBIs/streamers. The earthward flows during those magnetic conditions suggest that the flow bursts, which lead to PBIs and streamers, originate from further downtail of ARTEMIS, possibly from the distant-tail neutral line (DNL) or tailward-retreated near-Earth neutral line (NENL) rather than from the nominal NENL location in the midtail. We find that tailward flows are limited primarily to the substorm expansion phase. They continue throughout the period of auroral poleward expansion, indicating that the expansion-phase flows originate from the NENL and that NENL activity is closely related to the auroral expansion of the substorm expansion phase.

  19. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  20. Effective Stimulus Parameters for Directed Locomotion in Madagascar Hissing Cockroach Biobot.

    Directory of Open Access Journals (Sweden)

    Jonathan C Erickson

    Full Text Available Swarms of insects instrumented with wireless electronic backpacks have previously been proposed for potential use in search and rescue operations. Before deploying such biobot swarms, an effective long-term neural-electric stimulus interface must be established, and the locomotion response to various stimuli quantified. To this end, we studied a variety of pulse types (mono- vs. bipolar; voltage- vs. current-controlled and shapes (amplitude, frequency, duration to parameters that are most effective for evoking locomotion along a desired path in the Madagascar hissing cockroach (G. portentosa in response to antennal and cercal stimulation. We identified bipolar, 2 V, 50 Hz, 0.5 s voltage controlled pulses as being optimal for evoking forward motion and turns in the expected contraversive direction without habituation in ≈50% of test subjects, a substantial increase over ≈10% success rates previously reported. Larger amplitudes for voltage (1-4 V and current (50-150 μA pulses generally evoked larger forward walking (15.6-25.6 cm; 3.9-5.6 cm/s but smaller concomitant turning responses (149 to 80.0 deg; 62.8 to 41.2 deg/s. Thus, the radius of curvature of the initial turn-then-run locomotor response (≈10-25 cm could be controlled in a graded manner by varying the stimulus amplitude. These findings could be used to help optimize stimulus protocols for swarms of cockroach biobots navigating unknown terrain.

  1. Investigations of the auroral luminosity distribution and the dynamics of discrete auroral forms in a historical retrospective

    Science.gov (United States)

    Feldstein, Y. I.; Vorobjev, V. G.; Zverev, V. L.; Förster, M.

    2014-05-01

    Research results about planetary-scale auroral distributions are presented in a historical retrospective, beginning with the first "maps of isochasms" - lines of equal visibility of auroras in the firmament (Fig. 2) - up to "isoaurora maps" - lines of equal occurrence frequency of auroras in the zenith (Fig. 4). The exploration of auroras in Russia from Lomonosov in the 18th century (Fig. 1) until the start of the International Geophysical Year (IGY) in 1957 is shortly summed up. A generalised pattern of discrete auroral forms along the auroral oval during geomagnetically very quiet intervals is presented in Fig. 5. The changes of discrete auroral forms versus local time exhibit a fixed pattern with respect to the sun. The auroral forms comprise rays near noon, homogeneous arcs during the evening, and rayed arcs and bands during the night and in the morning. This fixed auroral pattern is unsettled during disturbances, which occur sometimes even during very quiet intervals. The azimuths of extended auroral forms vary with local time. Such variations in the orientation of extended forms above stations in the auroral zone have been used by various investigators to determine the position of the auroral oval (Fig. 9). Auroral luminosity of the daytime and nighttime sectors differ owing to different luminosity forms, directions of motion of the discrete forms, the height of the luminescent layers, and the spectral composition (predominant red emissions during daytime and green emissions during the night). Schemes that summarise principal peculiarities of daytime luminosity, its structure in MLT (magnetic local time) and MLat (magnetic latitude) coordinates, and the spectral composition of the luminosity are presented in Figs. 15 and 19. We discuss in detail the daytime sector dynamics of individual discrete forms for both quiet conditions and auroral substorms. The most important auroral changes during substorms occur in the nighttime sector. We present the evolution of

  2. Effect of Energetic Electrons on Quiet Auroral Arc Formation

    Science.gov (United States)

    Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya

    2010-11-01

    The theory of feedback instability between the magnetosphere and ionosphere is believed as one of the candidate to explain the formation of quiet auroral arc. Then, some magneto-hydro- dynamics simulations showed the arc formation by this macroscopic instability, while the effect of auroral energetic electrons on the arc formation was neglected or given as a macroscopic parameter in these simulations. On the other hand, because of the recent development of particle simulations, auroral energetic electrons are thought to be produced by the super ion-acoustic double layer that should be created by microscopic instability. To make close investigation of auroral arc formation, it is necessary to consider the interaction with microscopic instability. In this paper, we numerically study the effect of energetic electrons on quiet auroral arc formation by means of the Macro-Micro Interlocked simulation.

  3. Auroral ion outflow: low altitude energization

    OpenAIRE

    Lynch, K.A.; Semeter, J. L.; Zettergren, M.; Kintner, P.; R. Arnoldy; Klatt, E.; J. LaBelle; Michell, R. G.; Macdonald, E. A.; Samara, M.

    2007-01-01

    International audience; The SIERRA nightside auroral sounding rocket made observations of the origins of ion upflow, at topside F-region altitudes (below 700 km), comparatively large topside plasma densities (above 20 000/cc), and low energies (10 eV). Upflowing ions with bulk velocities up to 2 km/s are seen in conjunction with the poleward edge of a nightside substorm arc. The upflow is limited within the poleward edge to a region (a) of northward convection, (b) where Alfvénic and Pedersen...

  4. Two theories of auroral electron acceleration

    International Nuclear Information System (INIS)

    Two theories of auroral electron acceleration are discussed. The first is the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. The second is a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  5. Strange VLF bursts in northern Scandinavia: case study of the afternoon "mushroom-like" hiss on 8 December 2013

    Science.gov (United States)

    Manninen, J.; Kleimenova, N. G.; Kozlovsky, A.; Kornilov, I. A.; Gromova, L. I.; Fedorenko, Y. V.; Turunen, T.

    2015-08-01

    We investigate a non-typical very low frequency (VLF) 1-4 kHz hiss representing a sequence of separated noise bursts with a strange "mushroom-like" shape in the frequency-time domain, each one lasting several minutes. These strange afternoon VLF emissions were recorded at Kannuslehto (KAN, ϕ = 67.74° N, λ = 26.27° E; L ∼ 5.5) in northern Finland during the late recovery phase of the small magnetic storm on 8 December 2013. The left-hand (LH) polarized 2-3 kHz "mushroom caps" were clearly separated from the right-hand (RH) polarized "mushroom stems" at the frequency of about 1.8-1.9 kHz, which could match the lower ionosphere waveguide cutoff (the first transverse resonance of the Earth-ionosphere cavity). We hypothesize that this VLF burst sequence could be a result of the modulation of the VLF hiss electron-cyclotron instability from the strong Pc5 geomagnetic pulsations observed simultaneously at ground-based stations as well as in the inner magnetosphere by the Time History of Events and Macroscale Interactions during Substorms mission probe (THEMIS-E; ThE). This assumption is confirmed by a similar modulation of the intensity of the energetic (1-10 keV) electrons simultaneously observed by the same ThE spacecraft. In addition, the data of the European Incoherent Scatter Scientific Association (EISCAT) radar at Tromsø show a similar quasi-periodicity in the ratio of the Hall-to-Pedersen conductance, which may be used as a proxy for the energetic particle precipitation enhancement. Our findings suggest that this strange mushroom-like shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF-VLF (ultra low frequency-very low frequency) wave interaction and the ionosphere waveguide propagation.

  6. Carl Størmer Auroral Pioneer

    CERN Document Server

    Egeland, Alv

    2013-01-01

    This biography summarizes the seminal contributions to auroral and space science of Carl Størmer (1874 - 1957). He was the first to develop precise photographic methods to calculate heights and morphologies of diverse auroral forms during four solar cycles. Størmer independently devised numerical techniques to determine the trajectories of high-energy charged particles allowed and forbidden in the Earth’s magnetic field. His theoretical analyses explained cosmic ray access to the upper atmosphere, 20 years before they were identified by other scientists. Størmer’s crowning achievement, “The Polar Aurora,” published when he was 81 years old, stands to this day as a regularly cited guide in graduate-level courses on space physics.   The authors present the life of this prodigious scientist in relation to the cultural life of early 20th century in Norway and to the development of the space sciences in the post-Sputnik era.

  7. Preliminary results from Project Waterhole - an auroral modification experiment

    International Nuclear Information System (INIS)

    A sounding rocket carrying 100 kg of high explosives and plasma diagnostic instrumentation was launched from Churchill Research Ranch on 6 April 1980 over a premidnight auroral arc. The object of the experiment was to produce an ionospheric hole or plasma density depletion near 300 km altitude on field lines connected to an auroral arc. The plasma depletion is produced when the explosive by-products (mostly water) charge-exchange with the ambient O+ ions and then rapidly recombine. It was speculated that the presence of the 'hole' would interfere with the field-aligned current systems associated with the arc and would in turn perturb the auroral source mechanism. The release occurred about 10 km poleward of the auroral arc field lines. As expected, a large ionospheric hole was detected by the rocket-borne plasma sensors. Within a few seconds following the release, (a) the energetic electron precipitation observed in the hole dropped to background levels, (b) the luminosity of the auroral arc observed by a ground-based auroral scanning photometer decreased by a factor of two, and (c) the ionospheric E region density below the hole decayed at a rate consistent with a sudden reduction in particle precipitation. The simultaneous onset of these gross changes in electron precipitation coincident with the release strongly suggests a cause and effect relationship and demonstrates the intimate relationship that exists between the state of the ionospheric plasma and the auroral acceleration mechanism

  8. Sophus Peter Tromholt: an outstanding pioneer in auroral research

    Directory of Open Access Journals (Sweden)

    K. Moss

    2012-03-01

    Full Text Available The Danish school teacher Sophus Peter Tromholt (1851–1896 was self-taught in physics, astronomy, and auroral sciences. Still, he was one of the brightest auroral researchers of the 19th century. He was the first scientist ever to organize and analyse correlated auroral observations over a wide area (entire Scandinavia moving away from incomplete localized observations. Tromholt documented the relation between auroras and sunspots and demonstrated the daily, seasonal and solar cycle-related variations in high-latitude auroral occurrence frequencies. Thus, Tromholt was the first ever to deduce from auroral observations the variations associated with what is now known as the auroral oval termed so by Khorosheva (1962 and Feldstein (1963 more than 80 yr later. He made reliable and accurate estimates of the heights of auroras several decades before this important issue was finally settled through Størmer's brilliant photographic technique. In addition to his three major scientific works (Tromholt, 1880a, 1882a, and 1885a, he wrote numerous short science notes and made huge efforts to collect historical auroral observations (Tromholt, 1898. Furthermore, Tromholt wrote a large number of popular science articles in newspapers and journals and made lecture tours all over Scandinavia and Germany, contributing to enhance the public educational level and awareness. He devoted most of his life to auroral research but as a self-taught scientist, he received little acclaim within the contemporary academic scientific society. With his non-academic background, trained at a college of education – not a university – he was never offered a position at a university or a research institution. However, Sophus Tromholt was an outstanding pioneer in auroral research.

  9. Sophus Peter Tromholt: an outstanding pioneer in auroral research

    Science.gov (United States)

    Moss, K.; Stauning, P.

    2012-03-01

    The Danish school teacher Sophus Peter Tromholt (1851-1896) was self-taught in physics, astronomy, and auroral sciences. Still, he was one of the brightest auroral researchers of the 19th century. He was the first scientist ever to organize and analyse correlated auroral observations over a wide area (entire Scandinavia) moving away from incomplete localized observations. Tromholt documented the relation between auroras and sunspots and demonstrated the daily, seasonal and solar cycle-related variations in high-latitude auroral occurrence frequencies. Thus, Tromholt was the first ever to deduce from auroral observations the variations associated with what is now known as the auroral oval termed so by Khorosheva (1962) and Feldstein (1963) more than 80 yr later. He made reliable and accurate estimates of the heights of auroras several decades before this important issue was finally settled through Størmer's brilliant photographic technique. In addition to his three major scientific works (Tromholt, 1880a, 1882a, and 1885a), he wrote numerous short science notes and made huge efforts to collect historical auroral observations (Tromholt, 1898). Furthermore, Tromholt wrote a large number of popular science articles in newspapers and journals and made lecture tours all over Scandinavia and Germany, contributing to enhance the public educational level and awareness. He devoted most of his life to auroral research but as a self-taught scientist, he received little acclaim within the contemporary academic scientific society. With his non-academic background, trained at a college of education - not a university - he was never offered a position at a university or a research institution. However, Sophus Tromholt was an outstanding pioneer in auroral research.

  10. Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    Science.gov (United States)

    Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; Rowland D. E.; Jones, S.; Heinselman, C. J.

    2012-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine if it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.

  11. Monitoring auroral electrojets with satellite data

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.

    2013-01-01

    The strong horizontal ionospheric currents in the auroral oval constitute an important space weather parameter. Here we present a method to estimate the latitude location and intensity of these currents from measurements of variations in the magnetic field magnitude made by low Earth polar orbiting...... of the satellite orbit and how it varies with local time and season in both hemispheres. Statistically, the strongest currents are observed in the predawn and predusk local time quadrants at latitudes that depend on the general magnetic activity level. We also show how the satellite-derived parameters relate......, this does not significantly affect the utility of the method for space weather applications even for satellites at substantially higher altitudes. The results for several individual magnetic storm periods demonstrate that large variability can exist in both the latitude and intensity of the currents during...

  12. RFP for the Auroral Multiscale Midex (AMM) Mission star tracker

    DEFF Research Database (Denmark)

    Riis, Troels; Betto, Maurizio; Jørgensen, John Leif;

    1999-01-01

    This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker.......This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker....

  13. Look at That!: Using Madagascar Hissing Cockroaches to Develop and Enhance the Scientific Inquiry Skill of Observation in Middle School Students

    Science.gov (United States)

    Wagler, Ron

    2011-01-01

    Middle school students can develop and enhance their observation skills by participating in teacher-guided scientific inquiry (NRC 1996) activities where they observe animals that tend to act in known, predictable ways. Madagascar hissing cockroaches ("Gromphadorhina portentosa") are one such animal. This article presents beginning, intermediate,…

  14. Ionospheric heating, upwelling, and depletions in auroral current systems

    Science.gov (United States)

    Zettergren, M. D.; Semeter, J. L.

    2010-12-01

    This research investigates aspects of ionospheric dynamics relevant to magnetosphere-ionosphere coupling in auroral arc current systems. Auroral electric fields and particle precipitation deposit energy in the ionosphere, often resulting in enhanced ion or electron temperatures. This heating has a wide variety of consequences for the ionosphere. High ion temperatures alter chemical balance in the lower F-region, resulting in conversion to a molecular ion plasma, faster recombination, and plasma depletions. Pressure enhancements resulting from both ion and electron heating are capable of generating intense ion upflows. Ion upflow and depletion processes redistribute and structure the auroral plasma in ways that are likely of consequence to wave coupling of the magnetosphere and ionosphere. These implications are examined through the use of a fluid-kinetic model of the auroral ionosphere and new incoherent scatter radar data analysis techniques. Results indicate that enhanced recombination of molecular ions in auroral downward current regions may work in concert with well-known electrodynamic depletion processes, in the F-region ionosphere. Furthermore, ionospheric upflows in auroral upward and downward current regions may be quite different in terms of intensity and types of upflowing ions.

  15. Astrid-2, an advanced microsatellite for auroral research

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    Full Text Available The successful launch of the Swedish microsatellite Astrid-2 in December 1998 began a new era of auroral research, with advanced microprobes of 30 kg or less used as research tools. Innovative technologies and low-mass solutions were used for the sensors and deployment systems to allow a fairly complete set of scientific instruments within the 10 kg allocated for the scientific payload. A newly developed wire boom deployment system proved to function excellently. During its seven month lifetime Astrid-2 collected more than 26 Gbytes of high-quality data of auroral electric and magnetic fields, and auroral particle and plasma characteristics from approximately 3000 orbits at an inclination of 83° and an altitude of about 1000 km. Scientific results cover a broad range of topics, from the physics of energization of auroral particles to how the magnetosphere responds to the energy input from the solar wind and global magnetic field modelling. The fulfilment of both the technological and the scientific mission objectives has opened entirely new possibilities to carry out low-budget multipoint measurements in near-Earth space.

    Key words. Ionosphere (auroral ionosphere; instruments and techniques – Magnetospheric physics (auroral phenomena

  16. Dayside Auroral Activity During Solar Maximum and Minimum Periods

    Science.gov (United States)

    Rawie, M.; Fasel, G. J.; Flicker, J.; Angelo, A.; Bender, S.; Alyami, M.; Sibeck, D. G.; Sigernes, F.; Lorentzen, D. A.; Green, D.

    2014-12-01

    It is well documented that the dayside auroral oval shifts equatorward when the interplanetary magnetic field (IMF) Bz-component turns southward [Burch, 1973; Akasofu, 1977; Horwitz and Akasofu, 1977; Sandholt et al., 1986, 1988]. During these periods of oval expansion dayside transients are observed to move away from the poleward edge of the auroral oval and drift poleward. These poleward-moving auroral forms are believed to be ionospheric signatures of dayside merging. The dayside auroral oval usually begins to contract when the interplanetary magnetic field turns sharply northward, Bz>0. Eighteen years of meridian scanning photometer (MSP) data from the Kjell Henriksen Observatory in Longyearbyen, Norway are analyzed. During the boreal winter the Sun is several degrees below the horizon. This permits optical observations throughout the daytime period. The MSP Data is selected two hours before and after local noon in Longyearbeyn. Solar wind data (solar wind pressure and speed, along with the IMF Bx, By, Bz components) are collected for each interval and combined with the MSP observations. This data is then separated using solar maximum and minimum periods. Auroral activity (oval expansions and contractions along with the frequency and number of poleward-moving auroral forms) is documented for both solar maximum and minimum periods.

  17. A rocket-borne investigation of auroral electrodynamics within the auroral-ionosphere

    Science.gov (United States)

    Kaeppler, Stephen Roland

    This dissertation focuses on data analyzed from the Auroral Current and Electrodynamics Structure (ACES) sounding rocket mission. ACES consisted of two payloads launched nearly simultaneously in 2009 into a dynamic multiple-arc aurora. The mission was designed to observe the three-dimensional current system of an auroral arc system. To constrain the spatial-temporal ambiguity, the payloads were flown along nearly conjugate magnetic field footpoints, at various altitudes with small temporal separation. The high altitude payload took in situ measurements of the plasma parameters above the current closure region to measure the input signature into the lower ionosphere. The low-altitude payload took similar observations within the current closure region, where perpendicular cross-field currents can flow. A detailed description of the experimental configuration is presented, including operational details of the fields and plasma instruments flown on both payloads. The methods used to process data from the electrostatic particle detectors and the fluxgate magnetometer on both payloads are presented. Data from the all-sky imager details the auroral configuration at the time of launch. In situ data are presented detailing observations of the electric fields, magnetic fields, and the electron differential energy flux, as the payloads crossed nearly conjugate magnetic field lines. Field-aligned currents were calculated from magnetometer observations on the high altitude payload. These data were combined with electron flux data to show that the high altitude payload traversed regions of upward and downward field-aligned current. The low altitude payload observed signatures in the residual magnetic field components consistent with perpendicular closure current. Ionospheric collisionality is investigated to determine if it is a significant mechanism to explain observed differences in the low energy electron flux between the high altitude and low altitude payload. As a result of

  18. Hisse Senedi Piyasasında Teknik Analiz Yönteminin Güvenilirliğinin Test Edilmesi

    OpenAIRE

    Akça, Önder

    2005-01-01

    Çalışmada teknik analiz yöntemiyle hisse senedi getirilerinin analizi teorik olarak incelenmiş ve konular İMKB uygulamaları ile açıklanmaya çalışılmıştır. Teknik analizin tanımı,doğuşu, tarihsel gelişimi, temel prensipleri ve varsayımları açıklanmıştır. Teknik analiz yönteminde kullanımı, anlaşılabilirliği kolay, en çok kullanılan ve bilinen teknik analiz araç ve yöntemleri açıklanmış, İMKB uygulamaları ile konu incelenmiştir. Çalışmada farklı yöntemler ve uygulamalar ile oluşturulan sisteml...

  19. Influence of auroral streamers on rapid evolution of SAPS flows

    Science.gov (United States)

    Gallardo-Lacourt, B.; Nishimura, T.; Lyons, L. R.; Ruohoniemi, J. M.; Donovan, E.; Angelopoulos, V.; Nishitani, N.

    2015-12-01

    An important manifestation of plasma transport in the ionosphere is Subauroral Polarization Streams or SAPS, which are strong westward flow lying just equatorward of the electron auroral oval and thus of enhanced ionospheric conductivities of the auroral oval. While SAPS are known to intensify due to substorm injections, recent studies showed that large variability of SAPS flow can occur well after substorm onset and even during non-substorm times. These SAPS enhancements have been suggested to occur in association with auroral streamers that propagate equatorward, a suggestion that would indicate that plasma sheet fast flows propagate into the inner magnetosphere and increase subauroral flows. We present auroral images from the THEMIS ground-based all-sky-imager array and 2-d line-of-sight flow observations from the SuperDARN radars that share fields of view with the imagers to investigate systematically the association between SAPS and auroral streamers. We surveyed events from December 2007 to April 2013 for which high or mid-latitude SuperDARN radars were available to measure the SAPS flows, and identified 60 events. For streamers observed near the equatorward boundary of the auroral oval, we find westward flow enhancements of ~200 m/s slightly equatorward of the streamers. A preliminary survey suggests that >90% of the streamers that reach close to the equatorward boundary lead to westward flow enhancements. We also characterize the SAPS flow channel width and timing relative to streamers reaching radar echo meridians. The strong influence of auroral streamers on rapid SAPS flow evolution suggests that transient fast earthward plasma sheet flows can lead to westward SAPS flow enhancements in the subauroral region, and that such enhancements are far more common than only during substorms because of the frequent occurrences of streamers under various geomagnetic conditions.

  20. Observations of magnetic field dipolarization during auroral substorm onset

    Science.gov (United States)

    Frank, L. A.; Paterson, W. R.; Sigwarth, J. B.; Kokubun, S.

    2000-07-01

    The dynamical behavior of plasmas and magnetic fields in the vicinity of the equatorial crossing of magnetic field lines threading the onset auroral arc is examined for two substorms on November 26, 1997. The locations of the initial brightenings of the auroral arcs were determined with the cameras for visible and far-ultraviolet wavelengths on board the Polar spacecraft. The equatorial positions of the field lines were in the range of radial distances of 8-12RE as computed with models of Earth's global magnetic field. The radial distance of the Geotail spacecraft was 14 RE at a position in the premidnight sector that was 2RE below the current sheet. This spacecraft was embedded in a low-β plasma that was located adjacent to the central hot plasma sheet. For the first substorm, with onset at 1310 UT, no substantial effect was observed in the plasmas and magnetic fields, although the Geotail spacecraft was located only about 2 hours in magnetic local time from the field lines threading the onset auroral arc. For the second substorm onset, at 1354 UT, the spacecraft was positioned within tens of minutes in local time of the position of the magnetic field lines threading the onset auroral arc. This fortuitous spacecraft position in the relatively quiescent plasma and magnetic fields adjacent to the central plasma sheet and within several Earth radii of the position of the onset mechanism allowed determination of the beginning time of the dipolarization of the magnetic fields. This time was simultaneous with the onset brightening of the auroral arc within the approximately 1-min time resolution of the auroral images. The simultaneity of the initial brightening of the auroral arc and of the initiation of the dipolarization of the magnetic field, presumably due to diversion of current from the equatorial current sheet to the ionosphere, provides an important guideline for global dynamical MHD models of Earth's magnetosphere.

  1. Stochastic modeling of the auroral electrojet index

    Science.gov (United States)

    Anh, V. V.; Yong, J. M.; Yu, Z. G.

    2008-10-01

    Substorms are often identified by bursts of activities in the magnetosphere-ionosphere system characterized by the auroral electrojet (AE) index. The highly complex nature of substorm-related bursts suggests that a stochastic approach would be needed. Stochastic models including fractional Brownian motion, linear fractional stable motion, Fokker-Planck equation and Itô-type stochastic differential equation have been suggested to model the AE index. This paper provides a stochastic model for the AE in the form of fractional stochastic differential equation. The long memory of the AE time series is represented by a fractional derivative, while its bursty behavior is modeled by a Lévy noise with inverse Gaussian marginal distribution. The equation has the form of the classical Stokes-Boussinesq-Basset equation of motion for a spherical particle in a fluid with retarded viscosity. Parameter estimation and approximation schemes are detailed for the simulation of the equation. The fractional order of the equation conforms with the previous finding that the fluctuations of the magnetosphere-ionosphere system as seen in the AE reflect the fluctuations in the solar wind: they both possess the same extent of long-range dependence. The introduction of a fractional derivative term into the equation to capture the extent of long-range dependence together with an inverse Gaussian noise input describe the right amount of intermittency inherent in the AE data.

  2. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  3. About the relationship between auroral electrojets and ring currents

    Directory of Open Access Journals (Sweden)

    A. Grafe

    Full Text Available The relationship between the storm-time ring current and the auroral electrojets is investigated using IMAGE magnetometer data, DSt and H-SYM, and solar wind data. Statistical results as well as the investigation of single events show that the auroral electrojets occur also during nonstorm conditions without storm-time ring current development and even during the storm recovery phase of increasing DSt. A close correlation between electrojet intensity and ring current intensity was not found. Though the eastward electrojet moves equatorward during the storm main phase there is no unequivocal relationship between the movement of the westward electrojet and the ring current development. All these results suggest that the auroral electrojets and the ring current develop more or less independently of each other.

    Key words: Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms

  4. Analysis of auroral infrared emissions observed during the ELIAS experiment

    Directory of Open Access Journals (Sweden)

    G. E. Caledonia

    Full Text Available The ELIAS (Earth Limb Infrared Atmospheric Structure experiment was flown from the Poker Flat Research Range, Alaska in 1983 and successfully monitored visible and infrared emissions from an IBC III+ aurora. Measurements were performed in both staring and scanning modes over several hundred seconds. The data for short- and mid-wave infrared regions have been analyzed in terms of auroral excitation of the NO and NO+ vibrational bands. Auroral excitation efficiencies and kinetic implications are presented.

  5. Jupiter's Various Auroral Emission Enhancements Observed by Hisaki/EXCEED

    Science.gov (United States)

    Tao, Chihiro

    2016-07-01

    Onboard a JAXA Earth-orbiting platform, the planetary telescope Hisaki monitors extreme ultraviolet emissions from Jovian aurora and Io plasma torus continuously. Hisaki succeeded to detect sporadic, large auroral power enhancements displaying both short- (a few rotations) variations and their modulations by Io's volcanic activity over several weeks. The spectral information taken by Hisaki enables us to investigate (1) the time variation of the auroral electron precipitating fluxes during these emission enhancements, (2) the occurrence statistics of polar-dominant events, and (3) the associated magnetospheric dynamics for these emission enhancement events using Knight's aurora acceleration theory. Expected collaborative observations with Juno will be discussed.

  6. V and V Efforts of Auroral Precipitation Models: Preliminary Results

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Rastaetter, Lutz; Hesse, Michael

    2011-01-01

    Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models.

  7. Feedback between neutral winds and auroral arc electrodynamics

    Science.gov (United States)

    Lyons, L. R.; Walterscheid, R. L.

    1986-01-01

    The feedback between neutral atmospheric winds and the electrodynamics of a stable, discrete auroral arc is analyzed. The ionospheric current continuity equation and the equation for neutral gas acceleration by ion drag are solved simultaneously, as a function of time. The results show that, in general, the electric field in the ionosphere adjusts to neutral wind acceleration so as to keep auroral field-aligned currents and electron acceleration approximately independent of time. It is thus concluded that the neutral winds that develop as a result of the electrodynamical forcing associated with an arc do not significantly affect the intensity of the arc.

  8. Factor structure of the happiness-increasing strategies scales (H-ISS: activities and coping strategies in relation to positive and negative affect

    Directory of Open Access Journals (Sweden)

    Ali Al Nima

    2015-07-01

    Full Text Available Background. Previous research (Tkach & Lyubomirsky, 2006 shows that there are eight general happiness-increasing strategies: social affiliation, partying, mental control, goal pursuit, passive leisure, active leisure, religion, and direct attempts. The present study investigates the factor structure of the happiness-increasing strategies scales (H-ISS and their relationship to positive and negative affect. Method. The present study used participants’ (N = 1,050 and age mean = 34.21 sd = 12.73 responses to the H-ISS in structural equation modeling analyses. Affect was measured using the Positive Affect Negative Affect Schedule. Results. After small modifications we obtained a good model that contains the original eight factors/scales. Moreover, we found that women tend to use social affiliation, mental control, passive leisure, religion, and direct attempts more than men, while men preferred to engage in partying and clubbing more than women. The H-ISS explained significantly the variance of positive affect (R2 = .41 and the variance of negative affect (R2 = .27. Conclusions. Our study is an addition to previous research showing that the factor structure of the happiness-increasing strategies is valid and reliable. However, due to the model fitting issues that arise in the present study, we give some suggestions for improving the instrument.

  9. Fractal approach to the description of the auroral region

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshov, A. A., E-mail: achernyshov@iki.rssi.ru; Mogilevsky, M. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Kozelov, B. V. [Russian Academy of Sciences, Polar Geophysical Institute, Kola Science Center (Russian Federation)

    2013-07-15

    The plasma of the auroral region, where energetic particles precipitate from the magnetosphere into the ionosphere, is highly inhomogeneous and nonstationary. In this case, traditional methods of classical plasma physics turn out to be inapplicable. In order to correctly describe the dynamic regimes, transition processes, fluctuations, and self-similar scalings in this region, nonlinear dynamics methods based of the concepts of fractal geometry and percolation theory can be used. In this work, the fractal geometry and percolation theory are used to describe the spatial structure of the ionospheric conductivity. The topological properties, fractal dimensions, and connective indices characterizing the structure of the Pedersen and Hall conductivities on the nightside auroral zone are investigated theoretically. The restrictions imposed on the fractal estimates by the condition of ionospheric current percolation are analyzed. It is shown that the fluctuation scalings of the electric fields and auroral glow observed in the auroral zone fit well the restrictions imposed by the critical condition on the percolation of the Pedersen current. Thus, it is demonstrated that the fractal approach is a promising and convenient method for studying the properties of the ionosphere.

  10. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.;

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  11. Evolution of Jupiter's auroral-related stratospheric heating and chemistry

    Science.gov (United States)

    Sinclair, James; Orton, Glenn S.; Greathouse, Thomas K.; Fletcher, Leigh N.; Moses, Julianne I.; Hue, Vincent; Irwin, Patrick Gerard Joseph; Melin, Henrik; Giles, Rohini Sara

    2016-10-01

    Auroral processes on Jupiter are evident over a large range of wavelengths. Emission at X-ray, UV and near-infrared wavelengths highlights the precipitation of charged particles in Jupiter's ionosphere. Jupiter's auroral regions also exhibit enhanced mid-infrared emission of CH4 (7.8-μm), C2H2 (13-μm), C2H4 (10.5-μm) and C2H6 (12.2-μm), which indicates auroral processes modify the thermal structure and chemistry of the neutral stratosphere at pressures from 10 mbar to 10 μbar. In Sinclair et al., 2016a (submitted), 2016b (in preparation), we investigated these processes further by performing a retrieval analysis of Voyager-IRIS (Infrared Interferometer Spectrometer) observations measured in November 1979, Cassini-CIRS (Composite Infrared Spectrometer) observations measured in January 2001 and IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) spectra measured in December 2014. These datasets however captured Jupiter at significantly different epochs and thus the overall global evolution of atmospheric conditions as well as differences in spatial sampling, spectral resolution (and therefore vertical resolution in the atmosphere) have made inferences of the temporal evolution in auroral regions a challenge. However, in April 2016, we acquired IRTF-TEXES observations of Jupiter's high latitudes, using observing parameters very similar to those in December 2014. By performing a similar analysis of these observations and comparing results between December 2014 and April 2016, we can investigate the evolution of the thermal structure and chemistry in Jupiter's auroral regions over a 15 month timescale. The magnitude of temperature/composition changes and the altitudes at which they occur will provide insights into how auroral processes in the ionosphere propagate to the stratosphere. In particular, we can assess whether the evolution of stratospheric conditions in auroral regions is related to the decrease in solar activity

  12. Residual analysis of the water resonance signal in breast lesions imaged with high spectral and spatial resolution (HiSS) MRI: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, William A., E-mail: willw00@uchicago.edu; Medved, Milica; Karczmar, Gregory S.; Giger, Maryellen L. [Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2014-01-15

    Purpose: High spectral and spatial resolution magnetic resonance imaging (HiSS MRI) yields information on the local environment of suspicious lesions. Previous work has demonstrated the advantages of HiSS (complete fat-suppression, improved image contrast, no required contrast agent, etc.), leading to initial investigations of water resonance lineshape for the purpose of breast lesion classification. The purpose of this study is to investigate a quantitative imaging biomarker, which characterizes non-Lorentzian components of the water resonance in HiSS MRI datasets, for computer-aided diagnosis (CADx). Methods: The inhomogeneous broadening and non-Lorentzian or “off-peak” components seen in the water resonance of proton spectra of breast HiSS images are analyzed by subtracting a Lorentzian fit from the water peak spectra and evaluating the difference spectrum or “residual.” The maxima of these residuals (referred to hereafter as “off-peak components”) tend to be larger in magnitude in malignant lesions, indicating increased broadening in malignant lesions. The authors considered only those voxels with the highest magnitude off-peak components in each lesion, with the number of selected voxels dependent on lesion size. Our voxel-based method compared the magnitudes and frequencies of off-peak components of all voxels from all lesions in a database that included 15 malignant and 8 benign lesions (yielding ∼3900 voxels) based on the lesions’ biopsy-confirmed diagnosis. Lesion classification was accomplished by comparing the average off-peak component magnitudes and frequencies in malignant and benign lesions. The area under the ROC curve (AUC) was used as a figure of merit for both the voxel-based and lesion-based methods. Results: In the voxel-based task of distinguishing voxels from malignant and benign lesions, off-peak magnitude yielded an AUC of 0.88 (95% confidence interval [0.84, 0.91]). In the lesion-based task of distinguishing malignant and

  13. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    Science.gov (United States)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  14. Variations of auroral hydrogen emission near substorm onset

    Directory of Open Access Journals (Sweden)

    L. P. Borovkov

    2005-07-01

    Full Text Available The results of coordinated optical ground-based observations of the auroral substorm on 26 March 2004 in the Kola Peninsula are described. Imaging spectrograph data with high spectral and temporal resolution recorded the Doppler profile of the Hα hydrogen emission; this allows us to estimate the average energy of precipitating protons and the emission intensity of the hydrogen Balmer line. Two different populations of precipitating protons were observed during an auroral substorm. The first of these is associated with a diffuse hydrogen emission that is usually observed in the evening sector of the auroral oval and located equatorward of the discrete electron arcs associated with substorm onset. The average energy of the protons during this precipitation was ~20–35 keV, and the energy flux was ~3x10–4Joule/m2s. The second proton population was observed 1–2min after the breakup during 4–5min of the expansion phase of substorm into the zone of bright, discrete auroral structures (N-S arcs. The average energy of the protons in this population was ~60 keV, and the energy flux was ~2.2x10–3Joule/m2s. The observed spatial structure of hydrogen emission is additional evidence of the higher energy of precipitated protons in the second population, relative to the protons in the diffuse aurora. We believe that the most probable mechanism of precipitation of the second population protons was pitch-angle scattering of particles due to non-adiabatic motion in the region of local dipolarization near the equatorial plane.

    Keywords. Auroral ionosphere; Particle precipitation; Storms and substorms

  15. LHR band emissions at mid-latitude and their relationship to ionospheric ELF hiss and relativistic electrons

    Directory of Open Access Journals (Sweden)

    A. Morioka

    2005-03-01

    Full Text Available LHR band emissions observed at mid-latitude were investigated using data from the EXOS-C (Ohzora satellite. A typical feature of the LHR band emissions is a continuous banded structure without burst-like and cut-off features whose center frequency decreases as the satellite moves to higher latitudes. A statistical analysis of the occurrence characteristics of the phenomena showed that mid-latitude LHR emissions are distributed inside the plasmapause during magnetically quiet periods, and the poleward boundary of the emission region moves to lower latitudes as the magnetic activity increases. The altitude distribution of the waves suggests that the propagation in the LHR duct formed horizontally in the mid-latitude upper-ionosphere. The emission is closely related to the occurrence of ionospheric ELF hiss. It is also shown that LHR emissions are commonly observed in the slot region of the radiation belt, and they sometimes accompany the enhancement of the ionospheric electron temperature. The generation of the LHR band emissions is discussed based on the observed characteristics.

  16. Auroral kilometric radiation source characteristics using ray tracing techniques

    Science.gov (United States)

    Schreiber, R.; Santolik, O.; Parrot, M.; Lefeuvre, F.; Hanasz, J.; Brittnacher, M.; Parks, G.

    2002-11-01

    3-D ray tracing to the presumed auroral kilometric radiation (AKR) source region has been performed using the input data from wave distribution function (WDF) based on the AKR waveforms recorded on board the Interball 2 satellite by the French wave experiment MEMO. Both the direction of the WDF maximum and the WDF form and angular size have been taken into account. Two instances of AKR emissions were observed on 28 January 1997 at 2037 and 2107 UT. Rays traced in R-X mode out of the s/c point toward two different active regions on the auroral oval (as seen with Polar UV imager after projection of the source region along the magnetic field lines down to the ionosphere level). Source region apparent angular sizes based on WDF are compatible with sizes estimated from signal modulation produced by electric antenna system rotation.

  17. Auroral substorm response to solar wind pressure shock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two cases of auroral substorms have been studied with the Polar UVI data, which were associated with solar wind pressure shock arriving at the Earth. The global aurora activities started bout 1-2 min after pressure shocks arrived at dayside magnetopause, then nightside auroras intensified rapidly 3-4 min later, with auroral substorm onset. The observations in synchronous orbit indicated that the compressing effects on magnetosphere were observed in their corresponding sites about 2 min after the pressure shocks impulse magnetopause. We propose that the uroral intensification and substorm onset possibly result from hydromagnetic wave produced by the pressure shock.The fast-mode wave propagates across the magnetotail lobes with higher local Alfven velocity, magnetotail was compressed rapidly and strong lobe field and cross-tail current were built in about 1-2 min, and furthermore the substorm was triggered due to an instability in current sheet.

  18. Threshold of auroral intensification reduced by electron precipitation effect

    CERN Document Server

    Hiraki, Yasutaka

    2016-01-01

    It has been known that discrete aurora suddenly intensifies and deforms from an arc-like to a variety of wavy/vortex structures, especially during a substorm period. The instability of Alfv$\\acute{\\rm e}$n waves reflected from the ionosphere has been analyzed in order to comprehend the ignition process of auroral intensification. It was presented that the prime key is an enhancement of plasma convection, and the convection electric field has a threshold. This study examined effects of auroral electron precipitation, causing the ionization of neutral atmosphere, on the linear instability of Alfv$\\acute{\\rm e}$n waves. It was found that the threshold of convection electric fields is significantly reduced by increasing the ionization rate, the realistic range of which could be estimated from observed electron energy spectra.

  19. Hollowness of the observed auroral kilometric radiation pattern

    International Nuclear Information System (INIS)

    Presumably also generated by electron cyclotron emission, the earth's auroral kilometric radiation would be expected to exhibit a hollow pattern in the direction of the source magnetic field, similar to that reported for the comparable emissions from Jupiter. Although previously overlooked, such hollowness is clearly present in the new pattern measurements of Green and Gallagher (1985) at 56 kHz, occupying source-centered latitudes of 30 degree to 45 degree and hence occurring exactly where it was predicted and previously observed. Being distributed in longitude and spanning the entire evening sector, presumably reflecting a similar longitudinal distribution of auroral zone sources, this hollowness is attributed to sources beamed preferentially in the poleward magnetic meridian

  20. Auroral Undulations During Magnetic Storms: TIMED/GUVI Observations

    Science.gov (United States)

    Zhang, Y.; Paxton, L. J.; Morrison, D.; Lui, T.; Kil, H.; Wolven, B.; Meng, C. I.

    2005-05-01

    Giant undulations on the equatorward edge of the diffuse aurora have been identified in TIMED/GUVI auroral images in the far ultraviolet wavelengths. Some new features have been observed: (1) The GUVI 121.6nm auroral images provide direct optical evidence that the undulations occur in the proton aurora, (2) Undulations are not limited to the dusk sector, they can occur in all local time sectors, (3) Both large ionospheric ion drift velocity (1000 m/s and above) and strong velocity shear (> 0.1 1/s) appear to be a necessary condition for the undulation to occur, (4) While almost all of the undulation events are observed during magnetic storms (Dst K-H instability.

  1. A simple kinetic theory of auroral arc scales

    Science.gov (United States)

    Chiu, Y. T.

    1986-01-01

    A kinetic theory of the origins of the auroral arc scale spectrum is presented in this paper. The conceptual basis of the theory is current conservation in a turbulent plasma at the magnetospheric equatorial region in which a field-aligned current is generated and the local electrostatic potential structure is forced to adjust to the presence of the field-aligned current. This simple model uses an ad hoc Ohm's law relationship between the perpendicular current and the perpendicular electric field, but with a negative conductance in the generator region so that J(perpendicular) x E(perpendicular) is less than 0. An exact solution of a simple model of the concept yields a bistatic auroral generator for which multiple-arc formation is predicted if the field-aligned current exceeds a critical value. The predicted scale spectrum is inversely proportional to the square root of the field-aligned current strength spectrum.

  2. Auroral electrostatic solitons and supersolitons in a magnetized nonthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R. [Council for Scientific and Industrial Research, NRE, Pretoria (South Africa)

    2015-05-15

    Exploiting the spacecraft measurements in the auroral region, finite amplitude nonlinear low frequency electrostatic solitons and supersolitons in a magnetized plasma consisting of cold ions fluid, Boltzmann protons, and nonthermal hot electrons are studied by applying a pseudo-potential technique. The localized solution of the nonlinear structures is obtained through the charge neutrality condition. Further numerical investigation shows the existence of supersoliton solutions at supersonic Mach numbers regime. The amplitude of ion-acoustic structures decreased with an increase in nonthermal electrons and ion density ratio. For the plasma parameters relevant to the auroral zone of the Earth's magnetosphere, the electric field amplitude of supersolitons is found to be about 9 mV/m, which is in agreement with satellite observations.

  3. Fine structural description of the compound eye of the Madagascar 'hissing cockroach' Gromphadorhina portentosa(Dictyoptera: Blaberidae)

    Institute of Scientific and Technical Information of China (English)

    Monalisa Mishra; Victor Benno Meyer-Rochow

    2008-01-01

    The compound eyes of the wingless adults of the Madagascar' hissing cockroach' Gromphador hina portentosa Sachum, 1853 were examined by light and electron microscopy.Each eye contains 2 400-2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally-fused, tiered rhabdom. The distal end of the latter is funnel-shaped and accommodates the proximal end of the cone in its midst. Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right-angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3-4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G.portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of rnicrovillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e-vector discrimination in the environment of down-welling light that reaches the forest floor.

  4. Control factor of solar cycle variation of auroral kilometric radiation

    OpenAIRE

    Kumamoto,Atsushi/Ono, Takayuki/Oya,Hiroshi

    2003-01-01

    Solar cycle variations of auroral kilometric radiation (AKR) observed by the Akebono satellite have been compared with the variations of F10.7 and solar wind dynamic pressure. F10.7 and solar wind dynamic pressure show different solar cycle variations: F10.7 increases during solar maximum and decreases during solar minimum. Solar wind dynamic pressure suddenly increases in the declining phase of solar activity and gradually decreases. The pressure minimum occurs during solar maximum. Statisti...

  5. Particle simulation of auroral double layers. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L.

    1992-06-01

    Externally driven magnetic reconnection has been proposed as a possible mechanism for production of auroral electrons during magnetic substorms. Fluid simulations of magnetic reconnection lead to strong plasma flows towards the increasing magnetic field of the earth. These plasma flows must generate large scale potential drops to preserve global charge neutrality. We have examined currentless injection of plasma along a dipole magnetic field into a bounded region using both analytic techniques and particle simulation.

  6. Saturation and energy-conversion efficiency of auroral kilometric radiation

    Science.gov (United States)

    Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.

    1981-01-01

    A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.

  7. Ion cyclotron harmonics in the Saturn downward current auroral region

    OpenAIRE

    Menietti, J.D.; Schippers, P.; Santolík, O; Gurnett, D. A.; Crary, F.; Coates, A. J.

    2011-01-01

    Observations of intense upgoing electron beams and diffuse ion beams have been reported during a pass by Cassini in a downward current auroral region, nearby a source region of Saturn kilometric radiation. Using the Cassini Radio and Plasma Wave Science (RPWS) instrument low frequency waveform receiver and the Cassini Plasma Spectrometer Investigation (CAPS) instrument we have been able to identify ion cyclotron harmonic waves associated with the particle beams. These observations indicate si...

  8. Effects of interplanetary shock inclinations on auroral power intensity

    CERN Document Server

    Oliveira, D M; Tsurutani, B T; Gjerloev, J W

    2015-01-01

    We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectivness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and WIND spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earths magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some...

  9. Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity

    Science.gov (United States)

    Oliveira, D. M.; Raeder, J.; Tsurutani, B. T.; Gjerloev, J. W.

    2016-02-01

    We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectiveness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and Wind spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earth's magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some potential mechanisms will be discussed.

  10. Auroral Spatial Structures Probe Sub-Orbital Mission Preliminary Results

    Science.gov (United States)

    Pratt, J.; Swenson, C.; Martineau, R. J.; Fish, C. S.; Conde, M.; Hampton, D.; Crowley, G.

    2015-12-01

    The NASA Auroral Spatial Structures Probe, 49.002, was launched January 28, 2015 from the Poker Flat Research Range into active aurora over the northern coast of Alaska. The primary objective of this mission was to determine the contribution of small spatial and temporal scale fluctuations of the electric fields to the larger-scale energy deposition processes associated with the aurora. The Auroral Spatial Structures Probe Sub-Orbital Mission consisted of a formation of 7 spacecraft (a main payload with 6 deployable sub-payloads) designed for multiple temporally spaced co-located measurements of electric and magnetic fields in the earth's ionosphere. The mission was able to make observations at a short time scale and small spatial scale convergence that is unobservable by either satellite or ground-based observations. The payloads included magnetometers, electric field double probes, and Langmuir probes as well as a sweeping impedance probe on the main payload. We present here preliminary results from the measurements taken that hint at the underlying spatial structure of the currents and energy deposition in the aurora. The Poynting flux derived from the observations is shown and implications are discussed in terms of the contribution of small spatial scale, rapid temporal scale fluctuations in the currents that deposit energy in the auroral region. Funding provided by NASA Grants NNX11AE23G and NNX13AN20A.

  11. A hybrid simulation model for a stable auroral arc

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.

    Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies

  12. 3D-modelling of the stellar auroral radio emission

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of the coherent pulses, and to learn more about the detectability of such...

  13. Testing the Auroral Current-Voltage Relation in Multiple Arcs

    Science.gov (United States)

    Cameron, T. G.; Knudsen, D. J.; Cully, C. M.

    2013-12-01

    The well-known current-voltage relation within auroral inverted-V regions [Knight, Planet. Space Sci., 21, 741, 1973] predicts current carried by an auroral flux tube given the total potential drop between a plasma-sheet source region and the ionosphere. Numerous previous studies have tested this relation using spacecraft that traverse auroral arcs at low (ionospheric) or mid altitudes. Typically, the potential drop is estimated at the peak of the inverted-V, and field-aligned current is estimated from magnetometer data; statistical information is then gathered over many arc crossings that occur over a wide range of source conditions. In this study we use electron data from the FAST satellite to examine the current-voltage relation in multiple arc sets, in which the key source parameters (plasma sheet density and temperature) are presumed to be identical. We argue that this approach provides a more sensitive test of the Knight relation, and we seek to explain remaining variability with factors other than source variability. This study is supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

  14. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.

    Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  15. 3D modelling of stellar auroral radio emission

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  16. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.

    Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  17. The auroral and ionospheric flow signatures of dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2006-11-01

    Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.

  18. Quasi-Stationary Global Auroral Ionospheric Model: E-layer

    Science.gov (United States)

    Nikolaeva, Vera; Gordeev, Evgeny; Kotikov, Andrey; Makarova, Ludmila; Shirochkov, Aleksander

    2014-05-01

    E-layer Auroral Ionospheric Model (E-AIM) is developed to provide temporal and spatial density distribution of the main ionosphere neutral species (NO, N(4S),N(2D)), and ions (N2+, NO+,O2+,O+) in the altitude range from 90 to 150 km. NRLMSISE-00 model [Picone et al., JGR 2003] is used for neutral atmosphere content and temperature determination, that is the input for the E-AIM model. The E-AIM model based on chemical equilibrium state in E-layer that reaches in chemical reactions between ionospheric species considering solar radiation ionization source, superposed with sporadic precipitation of magnetospheric electrons. The chemical equilibrium state in each location under specific solar and geomagnetic activity conditions reaches during numerical solution of the continuity equations for the neutrals and ions using the high-performance Gear method [Gear, 1971] for ordinary differential equation (ODE) systems. Applying the Gear method for solving stiff ODE system strongly reduce the computation time and machine resources comparing to widely used methods and provide an opportunity to calculate the global spatial E-layer ion content distribution. In contrast to the mid-latitude ionosphere, structure and dynamics of the auroral zone ionosphere (φ ≡ 60-75° MLat) associated not only with shortwave solar radiation. Precipitating magnetospheric particle flux is the most important ionization source and is the main cause of E-layer disturbances. Precipitated electrons with initial energies of 1 - 30 keV influence the auroral ionosphere E-layer. E-AIM model can estimate ionization rate corresponds to auroral electron precipitation in two different ways: 1. with direct electron flux satellite data; 2. with differential energy spectrum reconstructed from OVATION-Prime empirical model [Newell, JGR 2009] average values, that allows to estimate ionosphere ion content for any time and location in the auroral zone. Comparison of E-AIM results with direct ionospheric observations

  19. On the occurrence and motion of decametre-scale irregularities in the sub-auroral, auroral, and polar cap ionosphere

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    Full Text Available The statistical occurrence of decametre-scale ionospheric irregularities, average line-of-sight (LOS Doppler velocity, and Doppler spectral width in the sub-auroral, auroral, and polar cap ionosphere ( - 57°L to - 88°L has been investigated using echoes recorded with the Tasman International Geospace Environment Radar (TIGER, a SuperDARN radar located on Bruny Island, Tasmania (147.2° E, 43.4° S geographic; - 54.6 °L. Results are shown for routine soundings made on the magnetic meridian beam 4 and the near zonal beam 15 during the sunspot maximum interval December 1999 to November 2000. Most echoes were observed in the nightside ionosphere, typically via 1.5-hop propagation near dusk and then via 0.5-hop propagation during pre-midnight to dawn. Peak occurrence rates on beam 4 were often > 60% near magnetic midnight and ~ - 70 °L. They increased and shifted equatorward and toward pre-midnight with increasing Kp (i.e. Bz southward. The occurrence rates remained very high for Kp > 4, de-spite enhanced D-region absorption due to particle precipitation. Average occurrence rates on beam 4 exhibited a relatively weak seasonal variation, consistent with known longitudinal variations in auroral zone magnetic activity (Basu, 1975. The average echo power was greatest between 23 and 07 MLT. Two populations of echoes were identified on both beams, those with low spectral width and a mode value of ~ 9 ms-1 (bin size of 2 ms-1 concentrated in the auroral and sub-auroral ionosphere (population A, and those with high spectral width and a mode value of ~ 70 ms-1 concentrated in the polar cap ionosphere (population B. The occurrence of population A echoes maximised post-midnight because of TIGER’s lower latitude, but the subset of the population A echoes observed near dusk had characteristics

  20. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis

    Directory of Open Access Journals (Sweden)

    Fisher Nathan A

    2012-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC. Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50 is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. Results Madagascar hissing cockroaches (MH cockroaches possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was 50 for Escherichia coli in MH cockroaches was >105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1 mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs with intracellular B. pseudomallei, which indicates that infected hemocytes can

  1. A Monte Carlo model of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    J.-C. Gérard

    2005-06-01

    Full Text Available Hydrogen line profiles measured from space-borne or ground-based instruments provide useful information to study the physical processes occurring in the proton aurora and to estimate the proton flux characteristics. The line shape of the hydrogen lines is determined by the velocity distribution of H atoms along the line-of-sight of the instrument. Calculations of line profiles of auroral hydrogen emissions were obtained using a Monte Carlo kinetic model of proton precipitation into the auroral atmosphere. In this model both processes of energy degradation and scattering angle redistribution in momentum and charge transfer collisions of the high-energy proton/hydrogen flux with the ambient atmospheric gas are considered at the microphysical level. The model is based on measured cross sections and scattering angle distributions and on a stochastic interpretation of such collisions. Calculations show that collisional angular redistribution of the precipitating proton/hydrogen beam is the dominant process leading to the formation of extended wings and peak shifts in the hydrogen line profiles. All simulations produce a peak shift from the rest line wavelength decreasing with increasing proton energy. These model predictions are confirmed by analysis of ground-based H-β line observations from Poker Flat, showing an anti-correlation between the magnitude of the peak shift and the extent of the blue wing of the line. Our results also strongly suggest that the relative extension of the blue and red wings provides a much better indicator of the auroral proton characteristic energy than the position of the peak wavelength.

  2. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  3. Spectral distribution of auroral energy according to model representation

    International Nuclear Information System (INIS)

    Examples of high-altitude distributions of the auroral energy radiation in the central oval line for τG = 0 and 12 hours within the spectrum interval 0.02-0.1 μm, 0.1-0.2 μm, 0.2-0.3 μm, 0.3-0.4 μm, 0.3-0.7 μmn, 0.3-1.3 μm for various Kp-values under moderate solar activity F10.7 = 150 at the time of the winter solstice are presented. 30 refs., 3 figs., 2 tabs

  4. Ground and space observations of medium frequency auroral radio emissions

    Science.gov (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  5. Auroral phenomenology and magnetospheric processes earth and other planets

    CERN Document Server

    Keiling, Andreas; Bagenal, Fran; Karlsson, Tomas

    2013-01-01

    Published by the American Geophysical Union as part of the Geophysical Monograph Series. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the diffe

  6. Multi-Spacecraft Observations of the Auroral Acceleration Region

    OpenAIRE

    Sadeghi, Soheil

    2012-01-01

    The two major agents for producing aurora are generally believed to be the quasi-static parallel electric fields, accelerating electrons in the auroral acceleration region (AAR), and Alfvén waves. The Cluster spacecraft quartet has made multi-spacecraft measurements in the AAR possible for the first time. Four event studies are included and discussed in this thesis, using Cluster data inside and at the top of the AAR, to address various open issues regarding the nature of the quasistatic elec...

  7. Response of northern winter polar cap to auroral substorms

    Science.gov (United States)

    Liou, Kan; Sotirelis, Thomas

    2016-05-01

    The three-phase substorm sequence has been generally accepted and is often tied to the Dungey cycle. Although previous studies have mostly agreed on the increase and decrease in the polar cap area during an episode of substorm, there are disparate views on when the polar cap starts to contract relative to substorm onset. Here we address this conflict using high-resolution (~1-3 min) snapshot global auroral images from the ultraviolet imager on board the Polar spacecraft. On the basis of 28 auroral substorm events, all observed in the Northern Hemispheric winter, it is found that the polar cap inflated prior to onset in all events and it attained the largest area ~6 min prior to the substorm expansion phase onset, while the dayside polar cap area remained steady around the onset. The onset of nightside polar cap deflation is found to be attributed to intensifications of aurora on the poleward edge of the nightside oval, mostly in the midnight sector. Although this result supports the loading-unloading and reconnection substorm models, it is not clear if the initial polar cap deflation and the substorm expansion are parts of the same process.

  8. Studies of the auroral ionosphere with the MITHRAS

    Science.gov (United States)

    Foster, J. C.

    1986-06-01

    The extensive MITHRAS radar data set was the object of extensive analyses of the processes and characteristics of the auroral latitude ionosphere and thermosphere: (1) High-Latitude Electrodynamics: Ionospheric response to substorms at widely separated local times was investigated. (2) Ionospheric Plasma Transport: The effects of plasma convection on the formation of the midlatitude trough were studied utilizing the wide spatial field of view of the Millstone radar. (3) Convection Snapshots: Simultaneous data from spaced instruments were combined to produce snapshots of the polar and auroral convection pattern. (4) Comparisons with Models. (5) Data Bases Studies and Empirical Models: The extensive data set which resulted from the MITHRAS experimental program was incorporated into a multi-instrument, common format data base. (6) Azimuth Scan Experiments: Analysis of the complex data during MITHRAS azimuth scanning experiments resulted in the capability of mapping the convection electric field within the extended field of the radar. (7) Thermosphere and Exosphere: The diurnal variation of exospheric temperature over 30 degrees of latitude around Millstone Hill has been investigated using MITHRAS elevation scan data.

  9. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  10. Effects of solar wind density on auroral electrojets and brightness under influence of substorms

    Directory of Open Access Journals (Sweden)

    J.-H. Shue

    2009-01-01

    Full Text Available Using the auroral electrojet indices and Polar Ultraviolet Imager auroral images, we examined two fortuitous events during which the solar wind density had clear enhancements while the other solar wind parameters were relatively constant. Two electrojet enhancements were found in each event. The first electrojet enhancement was likely to be related to a substorm in which an auroral bulge appeared at premidnight. The second electrojet enhancement was driven by the density enhancement in the solar wind. The auroral oval became wider in latitude and the auroral distribution became dispersed after the density enhancement arrived at the Earth. The total auroral power integrated over the entire nightside region from 50 to 80° MLAT, however, did not increase significantly in response to the density enhancement. Our interpretation is that the substorm that occurred prior to the solar wind density enhancement had drained out a significant portion of the stored energy in the magnetotail; therefore, less precipitation energy was deposited into the auroral ionosphere by the density enhancement.

  11. Influence of the ionosphere on the altitude of discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    C. S. Deehr

    2005-03-01

    Full Text Available The altitude of the maximum luminosity of single, discrete auroral arcs was measured by photometric triangulation from two stations (College and Fort Yukon, Alaska located 226km apart on nearly the same magnetic meridian. The average height of the evening aurora decreases smoothly with increasing solar depression angle (sda from 160km near 12° sda to 100km after 18° sda. The average height remains constant until around 12° sda in the morning. This diurnal variation is similar to that of the electron density in the F region of the ionosphere. Thus, the behavior is consistent with the concept that the mean auroral electron energy increases as the ionospheric conductivity decreases due to ionospheric recombination in the evening twilight. However, the mean electron energy decreases in magnitude at dawn when the solar ionizing radiation returns and the electron density in the F region increases. The magnetospheric acceleration mechanism associated with discrete auroral arcs thus appears to be inversely proportional to the ionospheric conductivity, because the time variation of the acceleration mechanism coincides with the local F region electron density and not with any obvious magnetospheric process. Previous auroral altitude observations, using similar triangulation methods, showed that the altitude of discrete auroral arcs increases as a function of latitude. When these data are corrected for the twilight effect, the dependence of altitude on latitude disappears. Thus, the average altitude of discrete auroral arcs and, by inference the magnetospheric auroral electron acceleration mechanism, is significantly influenced by the initial ionospheric conductance.

  12. Coordinated rocket and satellite measurements of an auroral event. I - Satellite observations and analysis

    Science.gov (United States)

    Rees, M. H.; Stewart, A. I.; Sharp, W. E.; Hays, P. B.; Hoffman, R. A.; Brace, L. H.; Doering, J. P.; Peterson, W. K.

    1977-01-01

    Results of a coordinated auroral experiment involving the Atmosphere Explorer C satellite and a sounding rocket are reported. Auroral primary electron fluxes and neutral gas densities measured by instruments on the satellite are used in a model calculation of the thermospheric manifestation of the aurora. There is encouraging agreement between the calculated and measured electron density, electron temperature, secondary electron flux, and O I emissions at 5577 and 6300 A. A discrepancy between the calculated and the rocket-measured 3914-A emission profile is discussed in terms of experiment geometry and auroral physics. The coordinated measurements are used to infer vertical fluxes of ionization and of electron thermal energy at high altitudes

  13. Simultaneous auroral observations described in the historical records of China, Japan and Korea from ancient times to AD 1700

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    Full Text Available Early auroral observations recorded in various oriental histories are examined in order to search for examples of strictly simultaneous and indisputably independent observations of the aurora borealis from spatially separated sites in East Asia. In the period up to ad 1700, only five examples have been found of two or more oriental auroral observations from separate sites on the same night. These occurred during the nights of ad 1101 January 31, ad 1138 October 6, ad 1363 July 30, ad 1582 March 8 and ad 1653 March 2. The independent historical evidence describing observations of mid-latitude auroral displays at more than one site in East Asia on the same night provides virtually incontrovertible proof that auroral displays actually occurred on these five special occasions. This conclusion is corroborated by the good level of agreement between the detailed auroral descriptions recorded in the different oriental histories, which furnish essentially compatible information on both the colour (or colours of each auroral display and its approximate position in the sky. In addition, the occurrence of auroral displays in Europe within two days of auroral displays in East Asia, on two (possibly three out of these five special occasions, suggests that a substantial number of the mid-latitude auroral displays recorded in the oriental histories are associated with intense geomagnetic storms.

    Key words. Magnetospheric physics (auroral phenomena; storms and substorms

  14. AKR breakup and auroral particle acceleration at substorm onset

    Science.gov (United States)

    Morioka, A.; Miyoshi, Y.; Tsuchiya, F.; Misawa, H.; Yumoto, K.; Parks, G. K.; Anderson, R. R.; Menietti, J. D.; Donovan, E. F.; Honary, F.; Spanswick, E.

    2008-09-01

    The dynamical behavior of auroral kilometric radiation (AKR) is investigated in connection with auroral particle acceleration at substorm onsets using high-time-resolution wave spectrograms provided by Polar/PWI electric field observations. AKR develops explosively at altitudes above a preexisting low-altitude AKR source at substorm onsets. This "AKR breakup" suggests an abrupt formation of a new field-aligned acceleration region above the preexisting acceleration region. The formation of the new acceleration region is completed in a very short time (amplitude increases 10,000 times in 30 seconds), suggesting that the explosive development is confined to a localized region. AKR breakups are usually preceded (1-3 minutes) by the appearance and/or gradual enhancement of the low-altitude AKR. This means that the explosive formation of the high-altitude electric field takes place in the course of the growing low-altitude acceleration. The development of the low-altitude acceleration region is thus a necessary condition for the ignition of the high-altitude bursty acceleration. The dH/dt component from a search-coil magnetometer at ground shows that a few minutes prior to substorm onsets, the quasi-DC component begins a negative excursion that is nearly synchronized with the start of the gradual enhancement of the low-altitude AKR, indicating a precursor-like behavior for the substorm. This negative variation of dH/dt suggests an exponentially increasing ionospheric current induced by the upward field-aligned current. At substorm onsets, the decrease in the quasi-DC variation of dH/dt further accelerates, indicating a sudden reinforcement of the field-aligned current.

  15. Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone

    Science.gov (United States)

    Mottez, Fabrice

    2016-02-01

    There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.

  16. Field line projections of 6300 AA auroral emissions into the outer magnetosphere

    International Nuclear Information System (INIS)

    An empirical magnetospheric model is employed to project auroral intensity boundaries into the magnetosphere. The auroral data are in the form of instantaneous maps of 6300AA emission, acquired with the ISIS-II spacecraft and correspond to fluxes of low energy electrons. These are specific to a particular universal time and date. The magnetospheric model used is a purely empirical one, designed by Mead and Fairfield (1975) from 44.76 x 106 magnetic measurements made by 4 IMP satellites. Their model includes the dipole tilt as a variable, and permits selection from four different disturbance levels, so is particularly suited to these data. In a general way, the auroral projections agree with what is expected, giving some confidence in this application of the model. But a number of features appear that were not predicted, and which should permit new insights into the relationship of specific auroral boundaries to the structure of the magnetosphere. (author)

  17. M and X Class Flares During 2011 to 2013 and their Connection to Auroral Electrojet Indices

    Directory of Open Access Journals (Sweden)

    Debojyoti Halder

    2014-07-01

    Full Text Available Solar bursts recorded in the frequency range 50 to 300 MHz by using log periodic dipole array over Kalyani (22°58´N, 88°46´E have been statistically analyzed for the years 2011-2013. Scatter plots of flare intensity for both M- and X-class flares as well as the number of occurrences of the two categories have been examined. The characteristics of the auroral electrojet indices are correlated directly to the solar flare activity. The auroral indices data obtained from various sources are sorted accordingly. The daily averaged data of the auroral indices are plotted for a period of 5 years, 2009 to 2013. Regression analysis of the indices data has been done meticulously. The regression analysis data are also plotted as residual plots and line fit plots. We have tried to discuss the possible connection between the occurrences of solar flares and the auroral electrojet indices

  18. Wave-particle interaction in the auroral ionosphere in LF and HF range

    International Nuclear Information System (INIS)

    Plasma wave observations using the sounding rockets, S-310JA-11 and S-310JA-12 have disclosed the following new aspects of wave-particle interaction processes in the auroral ionosphere: 1) generation of intense Z-mode waves by auroral particles through the inverse Landau damping, 2) confirmation of the leaked components of auroral kilometric radiation, and 3) detection of naturally generated electrostatic electron cyclotron harmonic (ESCH) waves in the frequency range lower than the local electron cyclotron frequency. It is pointed out that Z-mode waves in the auroral region have a very important role because the waves are easily generated being coupled with the particle precipitation. The leaked component of AKR is an important manifestation of the mode conversion processes. The generation of ESCH waves are associated with the nonlinear wave-particle interaction. The newly detected ESCH wave phenomena correspond to n = 0 case of the fDn emissions. (author)

  19. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2005-03-01

    Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma

  20. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Science.gov (United States)

    Willis, D. M.; Armstrong, G. M.; Ault, C. E.; Stephenson, F. R.

    2005-03-01

    Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic) solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma. European telescopic

  1. The discovery and the first studies of the auroral oval: A review

    Science.gov (United States)

    Feldstein, Y. I.

    2016-03-01

    The auroral oval concept radically changed the view that existed for a century in geophysics on the patterns in aurora planetary spatial-temporal distributions. The auroral zone, which is located around the geomagnetic pole as a continuous ring at a constant angular distance of ~23°, was replaced by the auroral oval in 1960. The auroral oval spatial position reflects the shape of the Earth's magnetosphere, which is compressed by the solar wind on the dayside and stretches into the magnetotail on the nightside. The oval is fixed relative to the direction toward the Sun and is located around the geomagnetic pole at altitudes of the upper atmosphere at an angular distance of ~12° at noon and ~23° at midnight. After an animated discussion over several subsequent years, the existence of the auroral oval was accepted by the scientific community as a paradigm of a new science, i.e., solar-terrestrial physics. The oval location indicates the zone where electron fluxes with energies varying from ~100 eV to ~20 keV precipitate into the upper atmosphere and is related to the structure of plasma domains in the Earth's magnetosphere. The paper describes the scientific studies that resulted in the concept of the auroral oval existence. It has been shown how this concept was subsequently justified in the publications by Y.I. Feldstein and O.B. Khorosheva. The issue of the priority of the auroral oval concept introduction into geophysics has been considered. The statement that the concept of the oval is an archaic paradigm of solar-terrestrial physics has been called into question. Some scientific fields in which the term auroral oval or simply oval was and is the paradigm have been listed.

  2. 2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation

    Science.gov (United States)

    Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.

    2006-12-01

    The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193

  3. Plasma physics on auroral field lines - The formation of ion conic distributions

    Science.gov (United States)

    Ashour-Abdalla, M.; Okuda, H.

    1983-01-01

    The formation of the conical distribution function and the acceleration of ions on aurora field lines are considered. Ion cyclotron waves were assumed to be excited by drifting electrons associated with the return current in the auroral zone. A theoretical analysis of ion cyclotron waves is given, and a simulation model is described. Simulation results are presented. The heating of ions and the evolution of ion cyclotron waves on auroral field lines and in the magnetosphere are discussed.

  4. Auroral electrojets during deep solar minimum at the end of solar cycle 23

    OpenAIRE

    Pulkkinen, Tuija I.; Tanskanen, E. I.; Viljanen, A.; N. Partamies; Kauristie, K.

    2011-01-01

    We investigate the auroral electrojet activity during the deep minimum at the end of solar cycle 23 (2008–2009) by comparing data from the IMAGE magnetometer chain, auroral observations in Fennoscandia and Svalbard, and solar wind and interplanetary magnetic field (IMF) observations from the OMNI database from that period with those recorded one solar cycle earlier. We examine the eastward and westward electrojets and the midnight sector separately. The electrojets during 2008–2009 were found...

  5. Longitudinal and Hemispheric Variations of Nighttime E-Layer Electron Density in the Auroral Zone

    Science.gov (United States)

    Luan, X.; Wang, W.; Dou, X.; Burns, A. G.; Yue, X.

    2014-12-01

    The longitudinal patterns of nighttime E layer electron density in the auroral zone are analyzed in both hemispheres using COSMIC observation under quiet and solar minimum conditions. These l patterns are compared with the variations of particle precipitating energy flux from TIMED/GUVI under similar geophysical conditions, and also the solar radiation source of the auroral E layer are discussed. Our main conclusions are: (1) the nighttime maximum E-layer electron density presents pronounced longitudinal variations in the auroral zone, which depends on seasons and hemispheres. In local winter of both hemispheres and in northern equinox, maximum electron density is located in most western sectors within magnetic longitudes of 120-360°E. In local summer of both hemispheres and in southern equinox, greater the electron density occurs in a wide longitudinal sector centered at 0°E. (2) Hemispheric asymmetry occurs in auroral E layer electron density in all seasons, including equinox. In local winter, the maximum density of the northern hemisphere is much higher than that of southern hemisphere. In equinox, the longitudinal patterns of the electron density are out of phase between the two hemispheres. (3) The effects of the auroral precipitation are dominant in building the E layer electron density in the auroral zone for all seasons, except in southern summer in sector of 300-90°E MLON, where strong solar radiation takes place.

  6. Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics

    Science.gov (United States)

    Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina

    2016-07-01

    We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.

  7. Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora

    CERN Document Server

    van der Meeren, Christer; Lorentzen, Dag A; Rietveld, Michael T; Clausen, Lasse B N

    2016-01-01

    In this paper we study how GPS, GLONASS, and Galileo navigation signals are compromised by strong irregularities causing severe phase scintillation ($\\mathit{\\sigma }_{\\phi }$ > 1) in the nightside high-latitude ionosphere during a substorm on 3 November 2013. Substorm onset and a later intensification coincided with polar cap patches entering the auroral oval to become auroral blobs. Using Global Navigation Satellite Systems (GNSS) receivers and optical data, we show severe scintillation driven by intense auroral emissions in the line of sight between the receiver and the satellites. During substorm expansion, the area of scintillation followed the intense poleward edge of the auroral oval. The intense auroral emissions were colocated with polar cap patches (blobs). The patches did not contain strong irregularities, neither before entering the auroral oval nor after the aurora had faded. Signals from all three GNSS constellations were similarly affected by the irregularities. Furthermore, two receivers space...

  8. Variation of Jupiter's aurora observed by Hisaki/EXCEED:2. estimations of auroral parameters and magnetospheric dynamics

    OpenAIRE

    Tao, Chihiro; Kimura, Tomoki; Badman, Sarah V.; André, Nicolas; Tsuchiya, Fuminori; Murakami, Go; Yoshioka, Kazuo; Yoshikawa, Ichiro; Yamazaki, Atsushi; Fujimoto, Masaki

    2016-01-01

    Jupiter's auroral parameters are estimated from observations by a spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki. EXCEED provides continuous auroral spectra covering the wavelength range over 80–148 nm from the whole northern polar region. The auroral electron energy is estimated using a hydrocarbon color ratio adopted for the wavelength range of EXCEED, and the emission power in the long wavelength...

  9. Temporal and spatial evolution of discrete auroral arcs as seen by Cluster

    Science.gov (United States)

    Figueiredo, S.; Marklund, G. T.; Karlsson, T.; Johansson, T.; Ebihara, Y.; Ejiri, M.; Ivchenko, N.; Lindqvist, P.-A.; Nilsson, H.; Fazakerley, A.

    2005-10-01

    Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval. Event 1 occurs during the end of the recovery phase of a strong substorm. A system of auroral arcs associated with convergent electric field structures, with a maximum perpendicular potential drop of about ~10 kV, and upflowing field-aligned currents with densities of 3 µA/m2 (mapped to the ionosphere), was detected at the boundary between the Plasma Sheet Boundary Layer (PSBL) and the Plasma Sheet (PS). The auroral arc structures evolve in shape and in magnitude on a timescale of tens of minutes, merging, broadening and intensifying, until finally fading away after about 50 min. Throughout this time, both the PS region and the auroral arc structure in its poleward part remain relatively fixed in space, reflecting the rather quiet auroral conditions during the end of the substorm. The auroral upward acceleration region is shown for this event to extend beyond 3.9 Earth radii altitude. Event 2 occurs during a more active period associated with the expansion phase of a moderate substorm. Images from the Defense Meteorological Satellite Program (DMSP) F13 spacecraft show that the Cluster spacecraft crossed the horn region of a surge-type aurora. Conjugated with the Cluster spacecraft crossing above the surge horn, the South Pole All Sky Imager recorded the motion and the temporal evolution of an east-west aligned auroral arc, 30 to 50 km wide. Intense electric field variations are measured by the Cluster spacecraft when crossing above the auroral arc structure, collocated with the density gradient at the PS poleward boundary, and coupled to intense upflowing field-aligned currents with

  10. Reformed Solitary Kinetic Alfvén Waves due to Dissipations and Auroral Electron Acceleration

    Institute of Scientific and Technical Information of China (English)

    WU De-Jin; CHAO Jih-Kwin; LEE Luo-Chuan; FENG Xue-Shang

    2001-01-01

    The physical nature of the auroral electron acceleration has been an outstanding problem in space physics for decades.Some recent observations from the auroral orbit satellites,FREJA and FAST,showed that large amplitude solitary kinetic Alfvén waves (SKAWs) are a common electromagnetic active phenomenon in the auroral magnetosphere. In a Iow-ββ/2 (i.e.,β/2 < me/mi < 1) plasma,the drift velocity of electrons relative to ions within SKAWs is much larger than thermal velocities of both electrons and ions.This leads to instabilities and causes dissipations of SKAWs.In the present work,based on the analogy of classical particle motion in a potential well,it is shown that a shock-like structure can be formed from SKAWs if dissipation effects are included.The reformed SKAWs with a shock-like structure have a local density jump and a net field-aligned electric potential drop of order of mev2A/e over a characteristic width of several )e.As a consequence,the reformed SKAWs can efficiently accelerate electrons field-aligned to the order of the local Alfvén velocity.In particular,we argue that this electron acceleration mechanism by reformed SKAWs can play an important role in the auroral electron acceleration problem.The result shows that not only the location of acceleration regions predicted by this model is well consistent with the observed auroral electron acceleration region of I 2 RE above the auroral ionosphere,but also the accelerated electrons from this region can obtain an energy of several keV and carry a field-aligned current of several/A/m2 which are comparable to the observations of auroral electrons.

  11. Height-integrated conductivity in auroral substorms. 1. Data

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2000-01-01

    instrument (LAPI) carried on DE 2 and the monoenergetic conductance model by Reiff [1984]. This method is shown to effectively minimize undesirable smearing of parameters in statistical substorm studies. Large spatial gradients in the conductance profiles are common in high-latitude part of the premidnight...... substorm region. The conductances maximizes in the high-latitude part of the surge with average Hall and Pedersen conductances of 38 and 18 mho respectively. During six different DE 2 passes we found Hall conductance peaks exceeding 100 mho in the high-latitude part of the surge or surge hem. These peaks...... are highly localized with a typical scale size of similar to 20 km and are associated with energetic (>10 keV) inverted V events. Except in the low-latitude part of the auroral oval the Hall to Pedersen ratio equals or exceeds 1.0, and it peaks in the high-latitude part of the surge where values of 3 or more...

  12. Generation of Z mode radiation by diffuse auroral electron precipitation

    Science.gov (United States)

    Dusenbery, P. B.; Lyons, L. R.

    1985-01-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  13. Velocities of auroral coherent echoes at 12 and 144 MHz

    Directory of Open Access Journals (Sweden)

    A. V. Koustov

    Full Text Available Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at ~144 MHz and ~12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5, providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider an event when STARE radar echoes are detected at the same ranges as CUT-LASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and electron density behaviour at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS-CAT measurements, while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUT-LASS velocities agree well with the convection component along the CUTLASS radar beam, while STARE velocities are typically smaller by a factor of 2–3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on the range. Plasma physics of E-and F-region irregularities is discussed in attempt to explain the inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere

  14. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  15. Juno's Earth flyby: the Jovian infrared Auroral Mapper preliminary results

    Science.gov (United States)

    Adriani, A.; Moriconi, M. L.; Mura, A.; Tosi, F.; Sindoni, G.; Noschese, R.; Cicchetti, A.; Filacchione, G.

    2016-08-01

    The Jovian InfraRed Auroral Mapper, JIRAM, is an image-spectrometer onboard the NASA Juno spacecraft flying to Jupiter. The instrument has been designed to study the aurora and the atmosphere of the planet in the spectral range 2-5 μm. The very first scientific observation taken with the instrument was at the Moon just before Juno's Earth fly-by occurred on October 9, 2013. The purpose was to check the instrument regular operation modes and to optimize the instrumental performances. The testing activity will be completed with pointing and a radiometric/spectral calibrations shortly after Jupiter Orbit Insertion. Then the reconstruction of some Moon infrared images, together with co-located spectra used to retrieve the lunar surface temperature, is a fundamental step in the instrument operation tuning. The main scope of this article is to serve as a reference to future users of the JIRAM datasets after public release with the NASA Planetary Data System.

  16. Impulsive ion injections in the morning auroral region

    Science.gov (United States)

    Clemmons, J. H.; Carlson, C. W.; Boehm, M. H.

    1995-01-01

    Low altitude (less than 1000 km) measurements of ions precipitating into the morning auroral region are presented and analyzed. The ion fluxes exhibited time-energy signatures consistent with impulsive injection onto high-altitude field lines, followed by time-of-flight dispersion. The origin of these ions is investigated through the detailed examination of these signatures in conjunction with simultaneous measurements of precipitating electrons and a magnetic field model. A model is developed which indicates that the source for these particles was located in or near the magnetopause boundary layer, with the position deduced to be in the midlatitude flank region about 20-30 R(sub E) tailward of the Earth. The model explains the existence of multiple injections on a given field line as due to a quasi-periodic source, with the periodicity being about 100-200 s at the source. Several mechanisms are examined in an attempt to explain the injections, with a mechanism related to the propagation of waves on the surface of the boundary layer found to be the most plausible. The observations and results are compared to those of similar experiments and some unifying ideas are discussed.

  17. Langmuir turbulence in the auroral ionosphere 1: Linear theory

    Science.gov (United States)

    Newman, D. L.; Goldman, M. V.; Ergun, R. E.; Boehm, M. H.

    1994-01-01

    Intense bursts of Langmuir waves with electric fields of 50 to 500 mV / m have been frequently observed at altitudes greater than 500 km in the auroral ionosphere. These bursts are driven by 20 eV to 4 keV field-aligned electrons, which are embedded in an approximately isotropic nonthermal tail of scattered electrons. The Langmuir bursts are often observed at altitudes where the ionosphere is moderately magnetized (OMEGA (sub e) approximately equals omega (sub pe)). Both the moderate magnetization and the scattered electrons have a major influence on the linear dispersion and damping of Langmuir waves. In particular, the linear dispersion is topologically different depending on whether the magnetic field is subcritical (OMEGA (sub e) less than omega (sub pe)) or supercritical (OMEGA (sub e) greater than omega (sub pe)). The correct dispersion and damping can account for the observed polarization of the Langmuir waves, which is very nearly parallel to the geomagnetic field. Inferred properties of the linear instability driven by the field-aligned electrons are discussed. The linear dispersion and damping derived here provide the basis for a nonlinear turbulence study described in a companion paper (Newman et al., this issue).

  18. MITHRAS studies of the auroral oval and polar cap

    Science.gov (United States)

    Delabeaujardiere, Odile; Watermann, Juergen; Johnson, Robert M.

    1991-01-01

    MITHRAS is a program of coordinated experiments dedicated to studying the coupling between the magnetosphere, the ionosphere, and the thermosphere. MITHRAS observations mostly involve the Sondrestrom radar in Greenland, but other incoherent scatter radars around the world were also used. Contract highlights include the following items. (1) The most extensive comparisons ever made between incoherent scatter radar data and numerical simulation models were performed. These comparisons were based on both individual case studies and averaged data, and included observations from all the incoherent scatter radars. The comparisons showed general agreement between observations and model calculations but they also showed significant differences. (2) During solar maximum conditions, the contribution to the height integrated Pederson conductivity from solar produced F-region ionization can be as large as 60 pct. of the total. (3) Under certain geophysical conditions it appears possible to identify the low altitude cusp and distinguish it from the cleft. The cusp proper appears to be characterized by enhanced F region plasma density collocated with elevated F region electron temperature; it does not appear to be associated with a particular plasma flow pattern signature. (4) A new mechanism was proposed to explain how auroral surges might be formed. It was suggested that the surge was associated with a distortion of the poleward boundary of the aurora, and that this distortion was caused by the field aligned current.

  19. Ionospheric current system accompanied by auroral vortex streets

    CERN Document Server

    Hiraki, Yasutaka

    2016-01-01

    High resolution optical measurements have revealed that a sudden brightening of aurora and its deformation from an arc-like to a vortex street structure appear just at the onset of substorm. The instability of Alfv$\\acute{\\rm e}$n waves reflected from the ionosphere has been studied by means of magnetohydrodynamic simulations in order to comprehend the formation of auroral vortex streets. Our previous work reported that an initially placed arc intensifies, splits, and deforms into a vortex street during a couple of minutes, and the prime key is an enhancement of the convection electric field. This study elaborated physics of the ionospheric horizontal currents related to the vortex street in the context of so-called Cowling polarization. One component is due to the perturbed electric field by Alfv$\\acute{\\rm e}$n waves, and the other is due to the perturbed electron density (or polarization) in the ionosphere. It was found that, when a vortex street develops, upward/downward pair currents in its leading/trail...

  20. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF BZ. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers

  1. Role of ionospheric effects and plasma sheet dynamics in the formation of auroral arcs

    Science.gov (United States)

    Prakash, Manju; Rankin, R.

    2001-01-01

    At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6-15 R_E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6-15 R_E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is

  2. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs

    Science.gov (United States)

    Jin, Yaqi; Moen, Jøran I.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Oksavik, Kjellmar

    2016-05-01

    This study surveys space weather effects on GNSS (Global Navigation Satellite System) signals in the nighttime auroral and polar cap ionosphere using scintillation receivers, all-sky imagers, and the European Incoherent Scatter Svalbard radar. We differentiate between two types of auroral blobs: blob type 1 (BT 1) which is formed when islands of high-density F region plasma (polar cap patches) enter the nightside auroral oval, and blob type 2 (BT 2) which are generated locally in the auroral oval by intense particle precipitation. For BT 1 blobs we have studied 41.4 h of data between November 2010 and February 2014. We find that BT 1 blobs have significantly higher scintillation levels than their corresponding polar cap patch; however, there is no clear relationship between the scintillation levels of the preexisting polar cap patch and the resulting BT 1 blob. For BT 2 blobs we find that they are associated with much weaker scintillations than BT 1 blobs, based on 20 h of data. Compared to patches and BT 2 blobs, the significantly higher scintillation level for BT 1 blobs implies that auroral dynamics plays an important role in structuring of BT 1 blobs.

  3. Precipitating Electron Population Inversion from Auroral Optical Data during the MICA Rocket Launch

    Science.gov (United States)

    Ahrns, J.; Hampton, D. L.; Stenbaek-Nielsen, H.; Michell, R. G.; Samara, M.; Powell, S.; Lynch, K. A.; Fernandes, P. A.; Lessard, M.

    2012-12-01

    The MICA (Magnetosphere-Ionosphere Coupling in the Alfvèn Resonator) sounding rocket was launched from Poker Flat, AK on Feb 19, 2012, into a series of discrete auroral arcs immediately following auroral breakup. We operated a set of ground-based optical imagers in support of the launch which captured the event, including more than an hour of auroral activity in the eventual rocket trajectory prior to launch at a variety of temporal (~1 second cadence to video frame rate) and spatial (all-sky to sub-kilometer) resolutions and in several spectral emission lines. Our imagers were located at Poker Flat, Fort Yukon, and Venetie AK (the last of which viewed the auroral conjugate of the rocket at magnetic zenith with sub-kilometer resolution) which allows a 3-dimensional reconstruction of certain auroral features from the optical data. We use this data, along with an electron transport model, to estimate the precipitating electron population and its effect on the background plasma to characterize the energy input prior to and during the rocket flight.

  4. Simultaneous ground-satellite observations of meso-scale auroral arc undulations

    Science.gov (United States)

    Motoba, T.; Hosokawa, K.; Ogawa, Y.; Sato, N.; Kadokura, A.; Milan, S. E.; Lester, M.

    2012-06-01

    We present simultaneous ground-based and in situ measurements of a train of meso-scale (about 100-300 km) auroral arc undulations, occurring in the postmidnight sector (˜1 MLT) between 0040 UT and 0054 UT on September 21, 2009. The undulations appeared at the auroral poleward boundary, and then moved eastward with a speed of 0.9-2.2 km s-1. Dynamic behaviors of the associated meso-scale ionospheric plasma flows and current systems were also detected with the ground-based magnetometer and radar measurements within the all-sky camera field-of-view. During the interval of interest, simultaneous Cluster observations in the central near tail region (11-14 RE down tail) were available, and especially the ionospheric footprint of Cluster 2 (CL2) was close to the optical auroral forms. CL2 observed strong fluctuations in the in situ magnetic field with amplitude of 5-10 nT whenever a bright arc area, and its trailing adjacent area, of the auroral undulations passed its ionospheric footprint. Such in situ magnetic field changes at CL2 could be considered as a manifestation of localized upward and downward field-aligned current sheets moving eastward at the central near-Earth tail boundary, linked to the meso-scale auroral undulation structures.

  5. Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots

    Science.gov (United States)

    Dessler, A. J.; Chamberlain, J. W.

    1979-01-01

    Auroral emissions generated by the Jovian moons Io and Europa, originating at the foot of the magnetic flux tubes of the satellites, may be largely limited to longitudes where the planet's ionospheric conductivity is enhanced. The enhanced conductivity is produced by trapped energetic electrons that drift into the Jovian atmosphere in regions where the planet's magnetic field is anomalously weak. The most active auroral hot-spot emissions lie in a sector of the northern hemisphere defined by decametric radio emission. Weaker auroral hot spots are found in the southern hemisphere along a magnetic conjugate trace. The brightness and the longitude of the Jovian hot spots predicted in this paper are in agreement with observations reported by Atreya et al. (1977).

  6. Highlights in the studies of the relationship of geomagnetic field changes to auroral luminosity

    International Nuclear Information System (INIS)

    In the middle of the 18th century Celsius observed that there was a correspondence between a great aurora in Europe and the extreme motion of his observed compass needle. By the nineteenth century it was well established that the geomagnetic field always fluctuated violently at the height of an auroral display, that the high latitude zones of peak field disturbance and luminosity and similar locations, and that there were concurrent solar cycle changes in activity levels for the two phenomena. After the International Geophysical Year of 1957 to 1959 the correspondence of the ionospheric electrojet currents and auroral forms became a focus of observational programs. In these recent times the studies of a relationship between short-period pulsations of the geomagnetic field and luminosity pulsations (or the pulsations of bombarding, low energy electrons causing the auroral intensity changes) appeared prominently in the literature. A summary of the scientific progress in the study of these phenomena is presented in this paper. (author)

  7. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    International Nuclear Information System (INIS)

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating

  8. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    Science.gov (United States)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  9. Current-voltage relationship in the auroral particle acceleration region

    Directory of Open Access Journals (Sweden)

    M. Morooka

    2004-11-01

    Full Text Available The current-voltage relationship in the auroral particle acceleration region has been studied statistically by the Akebono (EXOS-D satellite in terms of the charge carriers of the upward field-aligned current. The Akebono satellite often observed field-aligned currents which were significantly larger than the model value predicted by Knight (1973. We compared the upward field-aligned current estimated by three different methods, and found that low-energy electrons often play an important role as additional current carriers, together with the high-energy primary electrons which are expected from Knight's relation. Such additional currents have been observed especially at high and middle altitudes of the particle acceleration region. Some particular features of electron distribution functions, such as "cylindrical distribution functions" and "electron conics", have often been observed coinciding with the additional currents. They indicated time variability of the particle acceleration region. Therefore, we have concluded that the low-energy electrons within the "forbidden" region of electron phase space in the stationary model often contribute to charge carriers of the current because of the rapid time variability of the particle acceleration region. "Cylindrical distribution functions" are expected to be found below the time-varying potential difference. We statistically examined the locations of "cylindrical distribution function", and found that their altitudes are related to the location where the additional currents have been observed. This result is consistent with the idea that the low-energy electrons can also carry significant current when the acceleration region changes in time.

  10. Velocity of small-scale auroral ionospheric current systems over Indian Antarctic station Maitri

    Indian Academy of Sciences (India)

    Girija Rajaram; A N Hanchinal; R Kalra; K Unnikrishnan; K Jeeva; M Sridharan; A Dhar

    2002-03-01

    The Indian Antarctic station Maitri (geog. 70° 45/S, 11° 45/E, geom. 66° .03S, 53°.21E) occupies a sub-auroral location during magnetically quiet conditions ( Kp < 10), but attains an auroral position when the auroral oval shifts equatorwards with increasing strength of magnetic disturbance. At the latter times, triangulation with 3 uxgate magnetometers located at the vertices of a suitable triangle provides a means of monitoring mobile auroral ionospheric current systems over Maitri. The spacing between the magnetometers is typically kept at 75-200 km, keeping in mind the scale-sizes of ∼100 km for these mobile current systems. This work reports the results of two triangulation experiments carried out around Maitri in January 1992 and January 1995, both during Antarctic summer. The velocities estimated for pulsations of the Pc4 and Pc5 type were about 0.59 km/sec in the direction 102°.7 east of due north, in the first case, and about 1-3 km/sec in the second case in the east-west direction. While several magnetometer arrays exist in the northern auroral regions (e.g., the Alberta array in Canada, the Alaskan array in the U.S. and the IMS Scandinavian array), there is no report in literature of triangulation through arrays in Antarctica, except for a one-day study by Neudegg et al 1995 for ULF pulsations of the Pc1 and Pc2 type. The velocities obtained for the Pi3 type of irregular pulsations over Antarctica in the present study tally well with those obtained for northern auroral locations.

  11. THEMIS ground-space observations during the development of auroral spirals

    Directory of Open Access Journals (Sweden)

    A. Keiling

    2009-11-01

    Full Text Available A simultaneous observation of an auroral spiral and its generator region in the near-Earth plasma sheet is rather unlikely. Here we present such observations using the THEMIS spacecraft as well as the THEMIS ground network of all-sky imagers and magnetometers. Two consecutive auroral spirals separated by approximately 14 min occurred during a substorm on 19 February 2008. The spirals formed during the expansion phase and a subsequent intensification, and were among the brightest features in the aurora with diameters of 200–300 km. The duration for the formation and decay of each spiral was less than 60 s. Both spirals occurred shortly after the formation of two oppositely rotating plasma flow vortices in space, which were also accompanied by dipolarizations and ion injections, at ~11 RE geocentric distance. Observations and model calculations also give evidence for a magnetic-field-aligned current generation of approximately 0.1 MA via the flow vortices, connecting the generator region of the spirals with the ionosphere, during the formation of both spirals. In the ionosphere, a pair of equivalent ionospheric current (EIC vortices with opposite rotations (corresponding to upward and downward currents was present during both auroral spirals with enhanced EICs and ionospheric flows at the locations of the auroral spirals and along the auroral arcs. The combined ground and space observations suggest that each auroral spiral was powered by two oppositely rotating plasma flow vortices that caused a current enhancement in the substorm current wedge.

  12. Plasma sheet fast flows and auroral dynamics during substorm: a case study

    Directory of Open Access Journals (Sweden)

    N. L. Borodkova

    Full Text Available Interball-1 observations of a substorm development in the mid-tail on 16 December 1998 are compared with the auroral dynamics obtained from the Polar UV imager. Using these data, the relationship between plasma flow directions in the tail and the location of the auroral activation is examined. Main attention is given to tailward and earth-ward plasma flows, interpreted as signatures of a Near Earth Neutral Line (NENL. It is unambiguously shown that in the mid-plasma sheet the flows were directed tailward when the auroral bulge developed equatorward of the spacecraft ionospheric footprint. On the contrary, when active auroras moved poleward of the Interball-1 projection, earthward fast flow bursts were observed. This confirms the concept that the NENL (or flow reversal region is the source of auroras forming the poleward edge of the auroral bulge. The observed earthward flow bursts have all typical signatures of Bursty Bulk Flows (BBFs, described by Angelopolous et al. (1992. These BBFs are related to substorm activations starting at the poleward edge of the expanded auroral bulge. We interpret the BBFs as a result of reconnection pulses occurring tail-ward of Interball-1. In addition, some non-typically observed phenomena were detected in the plasma sheet during this substorm: (i tailward/earthward flows were superimposed on a very strong duskward flow, and (ii wavy structures of both magnetic field and plasma density were registered. The latter observation is probably linked to the filamentary structure of the current sheet.

    Key words. Magnetospheric physics (auroral phenomena; plasma sheet; storms and substorms

  13. Prospect of China's Auroral Fine-structure Imaging System (CAFIS) at Zhongshan station in Antarctica

    Institute of Scientific and Technical Information of China (English)

    LIU Shun-lin; HAN De-sheng; HU Hong-qiao; HUANG De-hong; ZHANG Bei-chen; YANG Hui-gen

    2008-01-01

    A new auroral imaging system is reported which is planned to be deployed at Zhongshan Station in Antarctica in the end of 2009. The system will focus on study of optical auroras in small scales and be called China' s Auroral Fine-structure Imaging System (CAFIS). The project of CAFIS is carried out by support of 'the tenth five-year plan for capacity building' of China. CAFIS will be a powerful groundbased platform for aurora observational experiments. Composing and advantages of CAFIS are introduced in this brief report. Some potential study topics involved CAFIS are also considered.

  14. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J

    1964-01-01

    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  15. Temporal and spatial evolution of discrete auroral arcs as seen by Cluster

    OpenAIRE

    Figueiredo, S.; G. T. Marklund; Karlsson, T.; Johansson, T.; Ebihara, Y.; Ejiri, M.; Ivchenko, N.; Lindqvist, P.-A.; Nilsson, H.; A. Fazakerley

    2005-01-01

    Two event studies are presented in this paper where intense convergent electric fields, with mapped intensities up to 1350 mV/m, are measured in the auroral upward current region by the Cluster spacecraft, at altitudes between 3 and 5 Earth radii. Both events are from May 2003, Southern Hemisphere, with equatorward crossings by the Cluster spacecraft of the pre-midnight auroral oval.

    Event 1 occurs during the end of the recove...

  16. Solar and auroral evidence for an intense recurrent geomagnetic storm during December in AD 1128

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    Full Text Available The earliest known drawing of sunspots appears in The Chronicle of John of Worcester, which was compiled in the first half of the twelfth century. In this medieval chronicle, the Latin text describing the sunspots is accompanied by a colourful drawing, albeit idealised, which shows the apparent positions and sizes of two sunspots on the solar disk. The date of this observation of sunspots from Worcester, England is firmly established as AD 1128 December 8. Assuming that the drawing was prepared fairly carefully, the angular diameters of the two sunspots are at least about 3 arcmin and 2 arcmin in the northern and southern hemispheres, respectively. Similarly, the heliographic latitudes of both sunspots are within the approximate range of 25°–35°. About five days after this observation of sunspots on the solar disk, on the night of AD 1128 December 13, a red auroral display was observed from Songdo, Korea (the modern city of Kaesong. This auroral observation was recorded in the Koryo-sa, the official Korean chronicle of the period. In addition, five Chinese and five Korean descriptions of auroral displays were recorded in various East-Asian histories between the middle of AD 1127 and the middle of AD 1129. The ten oriental auroral records in this particular interval correspond to six distinct auroral events, which provide evidence for recurrent, though possibly intermittent, auroral activity on a timescale almost exactly equal to the synodic-solar-rotation period (approximately 27 days. The six distinct auroral events were apparently associated with two series of recurrent geomagnetic storms, both of which were sufficiently intense to produce mid-latitude auroral displays in East Asia. These ancient solar and auroral observations are interpreted in terms of present-day understanding of solar-terrestrial physics. Con-temporary ground-based and satellite measurements during the last few decades have indicated that recurrent

  17. Analogue model studies of induction effects at auroral latitudes

    Directory of Open Access Journals (Sweden)

    A. Viljanen

    Full Text Available In addition to field observations and numerical models, geomagnetic induction effects can be studied by scaled analogue model experiments. We present here results of analogue model studies of the auroral electrojet with an Earth model simulating the Arctic Ocean and inland conductivity structures in northern Fennoscandia. The main elements of the analogue model used were salt water simulating the host rock, an aluminium plate corresponding to the ocean and graphite pieces producing the inland highly conducting anomalies. The electrojet was a time-harmonic line current flowing at a (simulated height of 100 km above northern Fennoscandia. The period simulated was 9 min.

    The analogue model results confirmed the well-known rapid increase of the vertical field when the coast is approached from the continent. The increase of the horizontal field due to induced ocean currents was demonstrated above the ocean, as well as the essentially negligible effect of these currents on the horizontal field on the continent.

    The behaviour of the magnetic field is explained with a simple two-dimensional thin-sheet model. The range, or the adjustment distance, of the ocean effect inland was found to be some hundreds of kilometers, which also agrees with earlier results of the Siebert-Kertz separation of IMAGE magnetometer data. The modelled inland anomalies evidently had too large conductivities, but on the other hand, their influence decayed on scales of only some tens of kilometers.

    Analogue model results, thin-sheet calculations, and field observations show that the induction effect on the horizontal magnetic field Bx near the electrojet is negligible. On the other hand, the vertical component Bz is clearly affected by induced currents in the ocean. Evidence of this is the shift of the zero point of Bz 0-1° southwards

  18. Using citizen science reports to define the equatorial extent of auroral visibility

    Science.gov (United States)

    Case, N. A.; MacDonald, E. A.; Viereck, R.

    2016-03-01

    An aurora may often be viewed hundreds of kilometers equatorward of the auroral oval owing to its altitude. As such, the NOAA Space Weather Prediction Center (SWPC) Aurora Forecast product provides a "view line" to demonstrate the equatorial extent of auroral visibility, assuming that it is sufficiently bright and high in altitude. The view line in the SWPC product is based upon the latitude of the brightest aurora, for each hemisphere, as specified by the real-time oval variation, assessment, tracking, intensity, and online nowcasting (OVATION) Prime (2010) aurora precipitation model. In this study, we utilize nearly 500 citizen science auroral reports to compare with the view line provided by an updated SWPC aurora forecast product using auroral precipitation data from OVATION Prime (2013). The citizen science observations were recorded during March and April 2015 using the Aurorasaurus platform and cover one large geomagnetic storm and several smaller events. We find that this updated SWPC view line is conservative in its estimate and that the aurora is often viewable further equatorward than is indicated by the forecast. By using the citizen reports to modify the scaling parameters used to link the OVATION Prime (2013) model to the view line, we produce a new view line estimate that more accurately represents the equatorial extent of visible aurora. An OVATION Prime (2013) energy flux-based equatorial boundary view line is also developed and is found to provide the best overall agreement with the citizen science reports, with an accuracy of 91%.

  19. Auroral research at the Tromsø Northern Lights Observatory: the Harang directorship, 1928-1946

    Science.gov (United States)

    Egeland, Alv; Burke, William J.

    2016-03-01

    The Northern Lights Observatory in Tromsø began as Professor Lars Vegard's dream for a permanent facility in northern Norway, dedicated to the continuous study of auroral phenomenology and dynamics. Fortunately, not only was Vegard an internationally recognized spectroscopist, he was a great salesman and persuaded the Rockefeller Foundation that such an observatory represented an important long-term investment. A shrewd judge of talent, Vegard recognized the scientific and managerial skills of Leiv Harang, a recent graduate from the University of Oslo, and recommended that he become the observatory's first director. In 1929, subsequent to receiving the Rockefeller Foundation grant, the University of Oslo established a low temperature laboratory to support Vegard's spectroscopic investigations. This paper follows the scientific accomplishments of observatory personnel during the 18 years of Harang's directorship. These include: identifying the chemical sources of auroral emissions, discovering the Vegard-Kaplan bands, quantifying height distributions of different auroral forms, interpreting patterns of magnetic field variations, remotely probing auroral electron distribution profiles in the polar ionosphere, and monitoring the evolving states of the ozone layer. The Rockefeller Foundation judges got it right: the Tromsø Nordlysobservatoriet was, and for decades remained, an outstanding scientific investment.

  20. Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm

    Science.gov (United States)

    Ieda, A.; Nishimura, Y.; Miyashita, Y.; Angelopoulos, V.; Runov, A.; Nagai, T.; Frey, H. U.; Fairfield, D. H.; Slavin, J. A.; Vanhamäki, H.; Uchino, H.; Fujii, R.; Miyoshi, Y.; Machida, S.

    2016-05-01

    Auroral stepwise poleward expansions were clarified by investigating a multiple-onset substorm that occurred on 27 February 2009. Five successive auroral brightenings were identified in all-sky images, occurring at approximately 10 min intervals. The first brightening was a faint precursor. The second brightening had a wide longitude; thus, it represented the Akasofu substorm onset. Other brightenings expanded poleward; thus, they were interpreted to be auroral breakups. These breakups occurred stepwise; that is, later breakups were initiated at higher latitudes. Corresponding reconnection signatures were studied using Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations between 8 and 24 RE down the magnetotail. The Akasofu substorm onset was not accompanied by a clear reconnection signature in the tail. In contrast, the three subsequent auroral breakups occurred simultaneously (within a few minutes) with three successive fast flows at 24 RE; thus, these were interpreted to be associated with impulsive reconnection episodes. These three fast flows consisted of a tailward flow and two subsequent earthward flows. The flow reversal at the second breakup indicated that a tailward retreat of the near-Earth reconnection site occurred during the substorm expansion phase. In addition, the earthward flow at the third breakup was consistent with the classic tailward retreat near the end of the expansion phase; therefore, the tailward retreat is likely to have occurred in a stepwise manner. We interpreted the stepwise characteristics of the tailward retreat and poleward expansion to be potentially associated by a stepwise magnetic flux pileup.

  1. Observations of Auroral Ionopheric Response Effects As Seen By the MICA Sounding Rocket

    Science.gov (United States)

    Lynch, K. A.; Horak, P.; Fernandes, P. A.; Zettergren, M. D.; Hampton, D. L.; Conde, M.; Hysell, D. L.; Miceli, R. J.; Powell, S.; Lessard, M.; Moen, J. I.; Michell, R.; Samara, M.; Nicolls, M. J.

    2014-12-01

    The auroral sounding rocket mission MICA provides an observational case study of nightside auroral ionospheric conductivity and field structuring, and the relationship of this structure to small-scale downward (return) currents. A large-scale current sheet is observed within an auroral arc, with a scale size comparable to that of the arc. Fine-scale return current structures are seen poleward of the visible arc, with scale sizes comparable to the structuring seen at the boundary of the visible arc. Interpretation of the field signatures as indicators of curl B and div E requires careful consideration of the arc geometry and the obliqueness of the measurement trajectory. Ground imaging data and collocated PFISR observations provide context for the in situ observations. The in situ observations starkly illustrate the inability of the radar to capture the small-scale structuring involved in the ionospheric feedback as indicated by the in situ observations. Upgoing Poynting flux and downward currents in the return current region have scale sizes of kilometers or less in the perpendicular-to-B direction, compared to a PFISR resolution of tens of km (limited by beam spacing for our experiment.) We present comparisons of the observed field-aligned current strengths to terms of the current continuity equation involving gradients of the Pedersen conductivity and the divergence of E, and discuss ionospheric sourcing of return currents. We compare the observations to the calculations of an ionospheric electrostatic model, and discuss the requirements for capturing the ionospheric responses to auroral drivers.

  2. Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots

    Energy Technology Data Exchange (ETDEWEB)

    Dessler, A.J.; Chamberlain, J.W.

    1979-06-15

    Jupiter's internal magnetic field is markedly non-dipolar. We propose that Io- or Europa-generated auroral emissions (originating at the foot of either Io's or Europa's magnetic flux tube) are largely restricted to longitudes where Jupiter's ionospheric conductivity is enhanced. Trapped, energetic electrons that drift into Jupiter's atmosphere, in regions where the Jovian magnetic field is anomalously weak, produce the increased conductivity. The longitude range of enchanced auroral hot-spot emissions is thus restricted to an active sector that is determined from dekametric radio emission to lie in the northern hemisphere in the Jovian System III (1965) longitude range of 205/sup 0/ +- 30/sup 0/. Relatively weaker auroral hot spots should occur in the southern hemisphere along the mgnetic conjugate trace covering the longitude range of 215/sup 0/ +- 55/sup 0/. At other longitudes, the brightness of the hot spot should decrease by at least one order of magnitude. These results, with respect to both brightness and longitude, are in accord with the observations of Jovian auroral hot spots reported by Atreya et al. We show that the northern hemisphere foot of either Io's or Europa's magnetic flux tube was in the preferred longitude range (the active sector) at the time of each observation.

  3. Auroral Current and Electrodynamics Structure Measured by Two SOunding Rockets in Flight Simultaneously

    Science.gov (United States)

    Bounds, Scott R.; Kaeppler, Steve; Kletzing, Craig; Lessard, Marc; Cohen, Ian J.; Jones, Sarah; Pfaff, Robert F.; Rowland, Douglas E.; Anderson, Brian Jay; Gjerloev, Jesper W.; Labelle, James W.; Dombrowski, Micah P.; Dudok de Wit, Thierry; Heinselman, Craig J.

    2011-01-01

    On January 29, 2009, two identically instrumented sounding rockets were launched into a sub-storm auroral arc from Poker Flat Alaska. Labeled the Auroral Currents and Electrodynamics Structure (ACES) mission, the payloads were launched to different apogees (approx.350km and approx.120km) and staggered in time so as to optimize their magnetic conjunctions. The different altitudes provided simultaneous in-situ measurements of magnetospheric input and output to the ionosphere and the ionospheric response in the lower F and E region. Measurements included 3-axis magnetic field, 2-axis electric field nominally perpendicular to the magnetic field, energetic particles, electron and ion, up to 15keV, cold plasma temperature and density. In addition, PFISR was also operating in a special designed mode to measure electric field and density profiles in the plane defined by the rocket trajectories and laterally to either side of the trajectories. Observation of the measured currents and electrodynamics structure of the auroral form encountered are presented in the context of standard auroral models and the temporal/spatial limitations of mission designs.

  4. Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics

    Science.gov (United States)

    Tao, Chihiro; Kimura, Tomoki; Badman, Sarah V.; André, Nicolas; Tsuchiya, Fuminori; Murakami, Go; Yoshioka, Kazuo; Yoshikawa, Ichiro; Yamazaki, Atsushi; Fujimoto, Masaki

    2016-05-01

    Jupiter's auroral parameters are estimated from observations by a spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on board Japanese Aerospace Exploration Agency's Earth-orbiting planetary space telescope Hisaki. EXCEED provides continuous auroral spectra covering the wavelength range over 80-148 nm from the whole northern polar region. The auroral electron energy is estimated using a hydrocarbon color ratio adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. The quasi-continuous observations by Hisaki provide the auroral electron parameters and their relation under different auroral activity levels. Short- (within one planetary rotation) enhancements of auroral power accompany increases of the electron number flux rather than the electron energy variations. The relationships between the auroral electron energy (~70-400 keV) and flux (1026-1027/s, 0.08-0.9 μA/m2) estimated from the observations over a 40 day interval are in agreement with field-aligned acceleration theory when incorporating probable magnetospheric parameters. Applying the electron acceleration theory to each observation point, we explore the magnetospheric source plasma variation during these power-enhanced events. Possible scenarios to explain the derived variations are (i) an adiabatic variation of the magnetospheric plasma under a magnetospheric compression and/or plasma injection, and (ii) a change of the dominant auroral component from the main emission (main aurora) to the emission at the open-closed boundary.

  5. Substorm associated radar auroral surges: a statistical study and possible generation model

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available Substorm-associated radar auroral surges (SARAS are a short lived (15–90 minutes and spatially localised (~5° of latitude perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE, in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 m s–1 and within the range 500 m s–1 and 3500 m s–1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs. The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event.

    Key words. Substorms · Auroral surges · Plasma con-vection · Sub-auroral ion drifts

  6. Energy deposition and non-equilibrium infared radiation of energetic auroral electrons

    Science.gov (United States)

    Wu, Yadong; Gao, Bo; Zhu, Guangsheng; Li, Ziguang

    2016-07-01

    Infrared radiation caused by energetic auroral electrons plays an important role in the thermospheric hear budget, and may be seen as background by infrared surveillance sensors. The auroral electron deposition leads to the ionization, excitation, and dissociation of neutral species(N2,O2,and O), and initiates a series of chemical reaction in the upper atmosphere, finally causes the optical emission of infared excited emitters. In this study, the whole progress from the initial auroral electrons energy deposition to the final infrared emissions has been modeled, which including space plasma, atmospheric physical chemistry, and radiative transfer. The initial atmosphere parameters before auroral disturbing are given by MSIS00 model. The primary electron flux at the top of atmosphere is given by a statistical fitting with the sum of three distribution terms, a power law, a Maxwellian and a Guassian. A semi-emprical model is used in the calculation of energy depositon of single primary electron. The total integral ion pairs production rate is obtained after combining with the initial primary electron flux. The production rate and flux of secondary electrons are modeled with a continuous slow down approximation, using different excitation, ionization, dissociation cross sections of N2, O2, and O to electrons. The photochemical reactions with auroral disturbance is analysed, and its calculation model is established. A "three-step" calculation method is created to obtain number densities of eleven species in the hight between 90-160 km, which containing N2+, O2+, O+, O2+(a4Π), O+(2D), O+(2P), N2(A3Σ), N(2D), N(4S), NO+, and N+. Number densities of different vibraional levels of NO and NO+ are got with steady state assumption, considering 1-12 vibrational levels of NO and 1-14 vibrational levels of NO+. The infared emissions and the spectral lines of the two radiating bodies are calculated with a fuzzy model of spectral band.

  7. Nonlinear model of short-scale electrodynamics in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J.-M. A. Noël

    Full Text Available The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work. We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.

    Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions

  8. Nightside auroral zone and polar cap ion outflow as a function of substorm size and phase

    Science.gov (United States)

    Wilson, G. R.; Ober, D. M.; Germany, G. A.; Lund, E. J.

    2004-02-01

    Because the high latitude ionosphere is an important source of plasma for the magnetosphere under active conditions, we have undertaken a study of the way ion outflow from the nightside auroral zone and polar cap respond to substorm activity. We have combined data from the Ultraviolet Imager (UVI) on Polar with ion upflow measurements from the TEAMS instrument on the FAST spacecraft to construct a picture of ion upflow from these regions as a function of substorm size and as a function of time relative to substorm onset. We use data taken during solar minimum in the northern hemisphere between December 1996 and February 1997. We find that the total nightside auroral zone ion outflow rate (averaged over substorm phase) depends on the size of the substorm, increasing by about a factor of 10 for both O+ and H+ from the smallest to the largest substorms in our study. The combined outflow rate from both the polar cap and the nightside auroral zone goes up by a factor of 7 for both ions for the same change in conditions. Regardless of storm size, the nightside auroral zone outflow rate increases by about a factor of 2 after onset, reaching its peak level after about 20 min. These results indicate that the change in the nightside auroral zone ion outflow rate that accompanies substorm onset is not as significant as the change from low to high magnetic activity. As a consequence, the prompt increase in the near earth plasma sheet energy density of O+ and H+ ions that accompanies onset [, 1996] is likely due to local energization of ions already present rather than to the sudden arrival and energization of fresh ionospheric plasma.

  9. Lower thermospheric wind variations in auroral patches during the substorm recovery phase

    Science.gov (United States)

    Oyama, Shin-ichiro; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Watkins, Brenton J.; Kurihara, Junichi; Tsuda, Takuo T.; Fallen, Christopher T.

    2016-04-01

    Measurements of the lower thermospheric wind with a Fabry-Perot interferometer (FPI) at Tromsø, Norway, found the largest wind variations in a night during the appearance of auroral patches at the substorm recovery phase. Taking into account magnetospheric substorm evolution of plasma energy accumulation and release, the largest wind amplitude at the recovery phase is a fascinating result. The results are the first detailed investigation of the magnetosphere-ionosphere-thermosphere coupled system at the substorm recovery phase using comprehensive data sets of solar wind, geomagnetic field, auroral pattern, and FPI-derived wind. This study used three events in November 2010 and January 2012, particularly focusing on the wind signatures associated with the auroral morphology, and found three specific features: (1) wind fluctuations that were isolated at the edge and/or in the darker area of an auroral patch with the largest vertical amplitude up to about 20 m/s and with the longest oscillation period about 10 min, (2) when the convection electric field was smaller than 15 mV/m, and (3) wind fluctuations that were accompanied by pulsating aurora. This approach suggests that the energy dissipation to produce the wind fluctuations is localized in the auroral pattern. Effects of the altitudinal variation in the volume emission rate were investigated to evaluate the instrumental artifact due to vertical wind shear. The small electric field values suggest weak contributions of the Joule heating and Lorentz force processes in wind fluctuations. Other unknown mechanisms may play a principal role at the recovery phase.

  10. La evolución de la obligación de extraditar o juzgar a través del caso Hissène Habré

    Directory of Open Access Journals (Sweden)

    Marta Sosa Navarro

    2013-12-01

    Full Text Available El inicio del procedimiento contra el ex dictador chadiano Hissène Habré puede retrotraerse al año 2000, con la presentación de la primera denuncia por parte de las víctimas ante los tribunales senegaleses. Este hecho actuó como detonante para que el caso comenzara una larga peregrinación por tribunales nacionales y organismos internacionales y regionales, que culminó con la sentencia de la Corte Internacional de Justicia dictada el 20 de julio de 2012. El objetivo principal de este artículo es estudiar la forma en que este asunto ha contribuido a modelar el derecho penal internacional moderno, fundamentalmente desde el punto de vista procesal, para lograr, en última instancia, poner fin a la impunidad de la que el ex mandatario chadiano se ha venido beneficiando desde que escapó de su país en 1990. Se analizan, asimismo, las contribuciones del Comité contra la Tortura, la Unión Africana y algunos tribunales regionales africanos en la creación de las Cámaras Extraordinarias Africanas, el primer tribunal penal africano creado exclusivamente para conocer de las violaciones de derechos humanos perpetradas bajo el régimen de Hissène Habré entre 1982 y 1990

  11. İki Spor Kulübünün Hisse Senedi Getirileri Üzerine Bir İnceleme

    Directory of Open Access Journals (Sweden)

    Deniz PARLAK

    2014-12-01

    Full Text Available Futbol, günümüz dünyasında bir eğlence unsuru olmaktan çıkarak endüstri kolu haline gelmiştir. Bu sporun Türkiye’deki en önemli temsilcileri olan Fenerbahçe ve Galatasaray’ın arasındaki rekabet hem takım düzeyinde sahada hem de şirket düzeyinde borsada yaşanmaktadır. Çalışmanın amacı bu iki futbol takımının yaptıkları karşılaşmalarda aldıkları sonuçların borsada işlem gören hisselerine ait fiyatlara etkisini incelemektir. Takımların kendi sonuçlarının yanı sıra rakibinin aldığı sonuçların da şirketin hisse senedi getirisine etki edip etmediği araştırılmıştır. Kullanılan üç günlük olay etüdü analizi ile maç sonuçlarına ait beklentilerin maçtan bir gün önce, maç sonuçlarının ise maçtan bir gün sonra kümülatif anormal getiri yarattığını göstermiştir. Kümülatif anormal getirinin rakibin elde ettiği sonuçlara göre farklılık göstermediği saptanmıştır.

  12. A real-time hybrid aurora alert system: Combining citizen science reports with an auroral oval model

    Science.gov (United States)

    Case, N. A.; Kingman, D.; MacDonald, E. A.

    2016-06-01

    Accurately predicting when, and from where, an aurora will be visible is particularly difficult, yet it is a service much desired by the general public. Several aurora alert services exist that attempt to provide such predictions but are, generally, based upon fairly coarse estimates of auroral activity (e.g., Kp or Dst). Additionally, these services are not able to account for a potential observer's local conditions (such as cloud cover or level of darkness). Aurorasaurus, however, combines data from the well-used, solar wind-driven, OVATION Prime auroral oval model with real-time observational data provided by a global network of citizen scientists. This system is designed to provide more accurate and localized alerts for auroral visibility than currently available. Early results are promising and show that over 100,000 auroral visibility alerts have been issued, including nearly 200 highly localized alerts, to over 2000 users located right across the globe.

  13. A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune - Implications for auroral haze formation

    International Nuclear Information System (INIS)

    The present investigation of the dark hazes of Jupiter, Saturn, Uranus, and Neptune on the basis of Voyager 2 UV data notes a geographic correlation between the auroral zones of Jupiter and Saturn and UV-dark polar regions. While the auroral fluxes and penetration depths on Jupiter and Saturn may suffice for a darkening of the polar regions by auroras' action on methane, Uranus and Neptune are found to be bright at all latitudes. In the former case, this brightness is in keeping with auroral electron energies too small to reach the CH4 homopause at which haze production occurs; in the latter case, a UV-dark band exists from 30 deg S to 5 deg N which is probably unrelated to auroral processes. 63 refs

  14. Equatorial ionospheric response to isolated auroral substorms over a solar cycle (1980-85): evidence of longitudinal anomaly

    Science.gov (United States)

    Hajkowicz, L. A.

    1996-09-01

    The equatorial ionospheric response to 228 isolated, rapid-onset auroral substorms (as defined from the auroral electrojet index AE) was found from enhancements of the virtual (minimum) height of the F-region (h(') F) in the declining phase of a solar cycle (1980-85). The responses, found for three longitudinal sectors at the equator: Africa (Ouagadougou and Dakar), Asia (Manila) and America (Huancayo), were compared with the response close to the auroral source region at Yakutsk (northern Siberia). The auroral substorm onsets were centered at 17 and 15 UT at sunspot maximum (1980-82) and minimum (1983-85), preceding by 3-5 h the period of post-sunset height rise in the African sector whereas other sectors were in the early afternoon (Huancayo) and morning (Manila). The African response, particularly at Ouagadougou, was distinctly different from other sectors. In the sunspot maximum years (1980-81) the auroral surges were followed after about 3 h by a sharp depression (h(') Fh(') F=0) in 1982. A response polarity reversal (h(') F>0) was noted in this sector for sunspot minimum (1983-85) when large h(') F enhancements were observed at the sunset region. The responses in the Asian and American sector were positive except for a case in Huancayo when response was negative, following an auroral surge before the sunset at this station. It appears that the aurorally generated large-scale travelling ionospheric disturbances (LSTIDs), which first cause positive height enhancements in a sub-auroral location (Yakutsk), subsequently affect the unstable post-sunset ionosphere in the equatorial Africa.

  15. Equatorial ionospheric response to isolated auroral substorms over a solar cycle (1980−85: evidence of longitudinal anomaly

    Directory of Open Access Journals (Sweden)

    L. A. Hajkowicz

    Full Text Available The equatorial ionospheric response to 228 isolated, rapid-onset auroral substorms (as defined from the auroral electrojet index AE was found from enhancements of the virtual (minimum height of the F-region (∆h$^prime$F in the declining phase of a solar cycle (1980–85. The responses, found for three longitudinal sectors at the equator: Africa (Ouagadougou and Dakar, Asia (Manila and America (Huancayo, were compared with the response close to the auroral source region at Yakutsk (northern Siberia. The auroral substorm onsets were centered at 17 and 15 UT at sunspot maximum (1980–82 and minimum (1983–85, preceding by 3–5 h the period of post-sunset height rise in the African sector whereas other sectors were in the early afternoon (Huancayo and morning (Manila. The African response, particularly at Ouagadougou, was distinctly different from other sectors. In the sunspot maximum years (1980–81 the auroral surges were followed after about 3 h by a sharp depression (∆h$^prime$F<0 in the post-sunset height rise, with a period of little or no response (∆h$^prime$F=0 in 1982. A response polarity reversal (∆h$^prime$F>0 was noted in this sector for sunspot minimum (1983–85 when large h$^prime$F enhancements were observed at the sunset region. The responses in the Asian and American sector were positive except for a case in Huancayo when response was negative, following an auroral surge before the sunset at this station. It appears that the aurorally generated large-scale travelling ionospheric disturbances (LSTIDs, which first cause positive height enhancements in a sub-auroral location (Yakutsk, subsequently affect the unstable post-sunset ionosphere in the equatorial Africa.

  16. Characteristics of Poker Flat Incoherent Scatter Radar (PFISR) naturally enhanced ion-acoustic lines (NEIALs) in relation to auroral forms

    OpenAIRE

    Michell, R. G.; T. Grydeland; Samara, M.

    2014-01-01

    Naturally enhanced ion-acoustic lines (NEIALs) have been observed with the Poker Flat Incoherent Scatter Radar (PFISR) ever since it began operating in 2006. The nearly continuous operation of PFISR since then has led to a large number of NEIAL observations from there, where common-volume, high-resolution auroral imaging data are available. We aim to systematically distinguish the different types of auroral forms that are associated with different NEIAL features, including s...

  17. Coordinated rocket and satellite measurements of an auroral event. II - The rocket observations and analysis

    Science.gov (United States)

    Sharp, W. E.; Rees, M. H.; Stewart, A. I.

    1979-01-01

    A rocket-borne payload launched into an aurora and a simultaneous overpass of the Atmosphere Explorer C satellite yielded measurements of auroral optical emission rates, thermal ion and electron densities, and low-energy electron fluxes. Model calculations of the thermospheric manifestation of the aurora were performed through use of rocket-determined auroral ionization rates and satellite-determined neutral gas densities. Measured oxygen densities provided a means of assessing the quenching rate of an excited state of N2. Energy transfer from this excited state appears to be the major source of 5577-A emission. Optical emission at 6300 A cannot be explained either by electron impact on atomic oxygen or by dissociative recombination of O2(+).

  18. Simulation of double layers in a model auroral circuit with nonlinear impedance

    Science.gov (United States)

    Smith, R. A.

    1986-01-01

    A reduced circuit description of the U-shaped potential structure of a discrete auroral arc, consisting of the flank transmission line plus parallel-electric-field region, is used to provide the boundary condition for one-dimensional simulations of the double-layer evolution. The model yields asymptotic scalings of the double-layer potential, as a function of an anomalous transport coefficient alpha and of the perpendicular length scale l(a) of the arc. The arc potential phi(DL) scales approximately linearly with alpha, and for alpha fixed phi (DL) about l(a) to the z power. Using parameters appropriate to the auroral zone acceleration region, potentials of phi (DPL) 10 kV scale to projected ionospheric dimensions of about 1 km, with power flows of the order of magnitude of substorm dissipation rates.

  19. Unusual rainbow and white rainbow: A new auroral candidate in oriental historical sources

    Science.gov (United States)

    Hayakawa, Hisashi; Isobe, Hiroaki; Davis Kawamura, Akito; Tamazawa, Harufumi; Miyahara, Hiroko; Kataoka, Ryuho

    2016-06-01

    Solar activity has been recorded as auroras or sunspots in various historical sources. These records are of great importance for investigating both long-term solar activities and extremely intense solar flares. According to previous studies, they were recorded as "vapor," "cloud," or "light," especially in oriental historical sources; however, this terminology has not been discussed adequately, and remains still quite vague. In this paper, we suggest the possibility of using "unusual rainbow" and "white rainbow" as candidates of historical auroras in oriental historical sources, and examine if this is probable. This discovery will help us to make more comprehensive historical auroral catalogues, and require us to add these terms to auroral candidates in oriental historical sources.

  20. Ion distribution effects of turbulence on a kinetic auroral arc model

    Science.gov (United States)

    Cornwall, J. M.; Chiu, Y. T.

    1982-03-01

    An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.

  1. The far-ultraviolet main auroral emission at Jupiter. Pt. 1. Dawn-dusk brightness asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bonfond, B.; Gustin, J.; Gerard, J.C.; Grodent, D.; Radioti, A. [Liege Univ. (Belgium). Lab. de Physique Atmospherique et Planetaire; Palmaerts, B. [Liege Univ. (Belgium). Lab. de Physique Atmospherique et Planetaire; Max-Planck-Institut fuer Sonnensystemforschung, Goettingen (Germany); Badman, S.V. [Lancaster Univ. (United Kingdom). Dept. of Physics; Khurana, K.K. [California Univ., Los Angeles, CA (United States); Tao, C. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France)

    2015-07-01

    The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ∝ 3 times brighter than the dawn side in the southern hemisphere and ∝ 1:1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements.We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere.

  2. Mode-coupling and nonlinear Landau damping effects in auroral Farley-Buneman turbulence

    CERN Document Server

    Hamza, Abdelaziz M

    2015-01-01

    The fundamental problem of Farley-Buneman turbulence in the auroral $E$-region has been discussed and debated extensively in the past two decades. In the present paper we intend to clarify the different steps that the auroral $E$-region plasma has to undergo before reaching a steady state. The mode-coupling calculation, for Farley-Buneman turbulence, is developed in order to place it in perspective and to estimate its magnitude relative to the anomalous effects which arise through the nonlinear wave-particle interaction. This nonlinear effect, known as nonlinear ``Landau damping'' is due to the coupling of waves which produces other waves which in turn lose energy to the bulk of the particles by Landau damping. This leads to a decay of the wave energy and consequently a heating of the plasma. An equation governing the evolution of the field spectrum is derived and a physical interpration for each of its terms is provided.

  3. The far-ultraviolet main auroral emission at Jupiter. Pt. 1. Dawn-dusk brightness asymmetries

    International Nuclear Information System (INIS)

    The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ∝ 3 times brighter than the dawn side in the southern hemisphere and ∝ 1:1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements.We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere.

  4. Cluster observations and theoretical identification of broadband waves in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Backrud-Ivgren

    2005-12-01

    Full Text Available Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves, while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.

  5. "Unusual Rainbow and White Rainbow" A new auroral candidate in oriental historical sources

    CERN Document Server

    Hayakawa, Hisashi; Kawamura, Akito Davis; Tamazawa, Harufumi; Miyahara, Hiroko; Kataoka, Ryuho

    2016-01-01

    Solar activity has been recorded as auroras or sunspots in various historical sources. These records are of much importance for investigating both long-term solar activities and extremely intense solar flares. In previous studies, they were recorded as "vapor," "cloud," or "light," especially in oriental historical sources; however, the terminology was not discussed adequately and is still quite vague. In this paper, we suggest the possibility of "unusual rainbow" and "white rainbow" as candidates of historical auroras in oriental historical sources and examine if it is probable. This discovery will help us to make more comprehensive historical auroral catalogues and require us to add these terms to auroral candidates in oriental historical sources.

  6. Ion distribution effects of turbulence on a kinetic auroral arc model

    Science.gov (United States)

    Cornwall, J. M.; Chiu, Y. T.

    1982-01-01

    An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.

  7. Right-hand polarized 4fce auroral roar emissions: 2. Nonlinear generation theory

    Science.gov (United States)

    Yoon, P. H.; LaBelle, J.; Weatherwax, A. T.

    2016-08-01

    Auroral roar emissions are commonly interpreted as Z (or upper hybrid) mode naturally excited by precipitating auroral electrons. Subsequent conversion to escaping radiation makes it possible for these emissions to be detected on the ground. Most emissions are detected as having left-hand (L) circular (or ordinary O) polarization, but the companion paper presents a systematic experimental study on the rare occurrence of the right-hand polarized, or equivalently, extraordinary (X) mode 4fce emission. A similar observation was reported earlier by Sato et al. (2015). The suggested emission mechanism is the nonlinear coalescence of two upper hybrid roars at 2fce. The present paper formulates a detailed theory for such an emission mechanism.

  8. Observations of the auroral hectometric radio emission onboard the INTERBALL-1 satellite

    Science.gov (United States)

    Kuril'Chik, V. N.

    2007-06-01

    The results of five-year (1995 2000) continuous observations of the auroral radio emission (ARE) in the hectometric wavelength range on the high-apogee INTERBALL-1 satellite are presented. Short intense bursts of the auroral hectometric radio emission (AHR) were observed at frequencies of 1463 and 1501 kHz. The bursts were observed predominantly at times when the terrestrial magnetosphere was undisturbed (in the quiet Sun period), and their number decreased rapidly with increasing solar activity. The bursts demonstrated seasonal dependence in the Northern and Southern hemispheres (dominating in the autumn-winter period). Their appearance probably depends on the observation time (UT). A qualitative explanation of the AHR peculiarities is given.

  9. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Science.gov (United States)

    Grocott, A.; Lester, M.; Parkinson, M. L.; Yeoman, T. K.; Dyson, P. L.; Devlin, J. C.; Frey, H. U.

    2006-12-01

    At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV) instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER) moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003). At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a way which has

  10. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2006-12-01

    Full Text Available At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003. At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a

  11. Inhomogeneous transverse electric fields and wave generation in the auroral region : a statistical study

    OpenAIRE

    Hamrin, Maria; ANDRE, M; Ganguli, G; Gavrishchaka, VV; Koepke, ME; Zintl, MW; Ivchenko, N.; Karlsson, T.; Clemmons, JH

    2001-01-01

    We use data from the Freja satellite to investigate the importance of localized transverse DC electric fields for the generation of broadband waves responsible for ion heating in the auroral region. Theoretical models indicate that shear in the plasma Row perpendicular to the geomagnetic field can generate waves in a broad range around the ion gyrofrequency for parallel currents significantly below the threshold of the current-driven electrostatic ion cyclotron instability. We compare in situ...

  12. Nonlinear wave structures in collisional plasma of auroral E-region ionosphere

    Directory of Open Access Journals (Sweden)

    A. V. Volosevich

    Full Text Available Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.

  13. Thermospheric Control of the Auroral Source of O+Ions for the Magnetosphere

    OpenAIRE

    Lockwood, Mike

    1984-01-01

    Linear theory, model ion-density profiles and MSIS neutral thermospheric predictions are used to investigate the stability of the auroral, topside ionosphere to oxygen cyclotron waves: variations of the critical height, above which the plasma is unstable, with field-aligned current, thermal ion density and exospheric temperature are considered. In addition, probabilities are assessed that interactions with neutral atomic gases prevent O+ ions from escaping into the magnetosphere after they ha...

  14. Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison

    Directory of Open Access Journals (Sweden)

    H. Wang

    2008-03-01

    Full Text Available We investigate variations of the location and intensity of auroral currents during two magnetic storm periods based on magnetic field measurements from CHAMP separately for both hemispheres, as well as for the dayside and nightside. The corresponding auroral electrojet current densities are on average enhanced by about a factor of 7 compared to the quiet time current strengths. The nightside westward current densities are on average 1.8 (2.2 times larger than the dayside eastward current densities in the Northern (Southern Hemisphere. Both eastward and westward currents are present during the storm periods with the most intense electrojets appearing during the main phase of the storm, before the ring current maximizes in strength. The eastward and westward electrojet centers can expand to 55° MLat during intense storms, as is observed on 31 March 2001 with Dst=−387 nT. The equatorward shift of auroral currents on the dayside is closely controlled by the southward IMF, while the latitudinal variations on the nightside are better described by the variations of the Dst index. However, the equatorward and poleward motion of the nightside auroral currents occur earlier than the Dst variations. The Space Weather Modeling Framework (SWMF can capture the general dynamics of the storm time current variations. Both the model and the actual data show that the currents tend to saturate when the merging electric field is larger than 10 mV/m. However, the exact prediction of the temporal development of the currents is still not satisfactory.

  15. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels

    Science.gov (United States)

    Newell, P. T.; Liou, K.; Zhang, Y.; Sotirelis, T.; Paxton, L. J.; Mitchell, E. J.

    2014-06-01

    OVATION Prime (OP) is an auroral precipitation model parameterized by solar wind driving. Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦMP/dt) which predicts auroral power significantly better than Kp or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each magnetic latitude (MLAT) × magnetic local time (MLT) bin, thus permitting each type of aurora and each location to have differing responses to season and solar wind input—as indeed they do. We here introduce OVATION Prime-2013, an upgrade to the 2010 version currently widely available. The most notable advantage of OP-2013 is that it uses UV images from the GUVI instrument on the satellite TIMED for high disturbance levels (dΦMP/dt > 1.2 MWb/s which roughly corresponds to Kp = 5+ or 6-). The range of validity is approximately 0 power from Polar UVI. Over the common range of validity of OP-2010 and OP-2013, the two models predict auroral power essentially identically, primarily because hemispheric power calculations were done in a way to minimize the impact of OP-2010s noise. To quantitatively demonstrate the improvement at high disturbance levels would require multiple very large substorms, which are rare, and insufficiently present in the limited data set of Polar UVI hemispheric power values. Nonetheless, although OP-2010 breaks down in a variety of ways above Kp = 5+ or 6-, OP-2013 continues to show the auroral oval advancing equatorward, at least to 55° MLAT or a bit less, and OP-2013 does not develop spurious large noise patches. We will also discuss the advantages and disadvantages of other precipitation models more generally, as no one model fits best all possible uses.

  16. The cyclotron maser theory of AKR and Z-mode radiation. [Auroral Kilometric Radiation

    Science.gov (United States)

    Wu, C. S.

    1985-01-01

    The cyclotron maser mechanism which may be responsible for the generation of auroral kilometric radiation and Z-mode radiation is discussed. Emphasis is placed on the basic concepts of the cyclotron maser theory, particularly the relativistic effect of the cyclotron resonance condition. Recent development of the theory is reviewed. Finally, the results of a computer simulation study which helps to understand the nonlinear saturation of the maser instability are reported.

  17. Cassini UVIS Saturn Auroral Images from the 2013 HST/Cassini Campaign

    OpenAIRE

    Pryor, Wayne; Jouchoux, Alain; Esposito, Larry; Crary, Franck; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gérard, Jean-Claude; Kurth, William; Mitchell, Donald; Nichols, Jonathan; Badman, Sarah

    2013-01-01

    In 2013 coordinated observations of Saturn by the Cassini spacecraft and Hubble Space Telescope (HST) were obtained. During these observations the Cassini spacecraft provided a high-latitude view of Saturn's auroras. Intense auroras were observed by the Ultraviolet Imaging Spectrograph (UVIS) from close range (about 5 Saturn radii away). A 6-frame UVIS movie has been constructed from some of the observations from May 20- 21, 2013 showing the evolution of two bright auroral features. We report...

  18. Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF had predominantly a positive Bz component (northward IMF but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By approx 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.

    Key words: Magnetospheric physics (auroral phenomena; magnetopause · cusp · and boundary layers; plasma convection

  19. Optical and radar analysis of auroral curls at high spatial resolution

    Science.gov (United States)

    Dahlgren, Hanna; Kaila, Kari; Ivchenko, Nickolay; Lanchester, Betty; Whiter, Daniel; Marklund, Göran; Aikio, Anita

    Auroral arcs can develop small-scale distortions known as vortex streets or curls. Optical ground-based observations of this phenomenon have indicated that curls are often associated with shear flows. For a comprehensive analysis of the temporal and spatial characteristics associated with the formation and evolution of curls, high resolution optical measurements are required. We report here on an event study of an arc evolving into curls and associated with counter-streaming structures, observed on 23 November 2006 by ground-based optical instrumentation and measured by the European Incoherent Scatter Radar (EISCAT) located outside Tromso, Norway. The optical Instrumentation consisted of three, narrow field-of-view (3 deg x 3 deg) imagers (Auroral Structure and Kinetics), each equipped with different passband filters, together with a white light video camera (FOV: 45 deg x 60 deg, 25 Hz) providing the large-scale context of the event. The temporal evolution of the smallest structures was recorded at a time resolution of 20 Hz. Shear velocities between the center and the edge of the arc are investigated, and the origin and evolution of the observed small-scale auroral features are discussed in the light of existing theories.

  20. Study of AKR hollow pattern characteristics at sub-auroral regions

    Science.gov (United States)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick; Berthelier, Jean-Jacques; Schwingenschuh, Konrad

    2014-05-01

    The Earth's auroral kilometric radiation (AKR) is expected to exhibit a hollow pattern similar to that reported for the comparable emissions from Jupiter (e.g. Jovian decametric emissions - DAM). The hollow pattern is a hollow cone beam with apex at the point of AKR emission, axis tangent to the magnetic field direction, and an opening angle of the order of 80°. The properties of the hollow cone can be derived from the so-called dynamic spectrum which displays the radiation versus the observation time and the frequency. We analyze the auroral kilometric radiation recorded by the electric field experiment (ICE) onboard DEMETER micro-satellite. The dynamic spectra lead us to study the occurrence of the AKR recorded in the sub-auroral regions when the micro-satellite was at altitudes of about 700 km. We address in this contribution issues concerning the characteristics (occurrence, latitude and longitude) of the AKR hollow beam and their relations to the seasonal and solar activity variations.

  1. Some features of auroral electric fields as seen in 2D numerical simulations

    Science.gov (United States)

    Thiemann, H.; Singh, N.; Schunk, R. W.

    1984-01-01

    Results of 2D plasma simulations are presented and related to auroral observations. The formation of V-shaped potentials is studied with a 2 1/2 dimensional electrostatic particle-in-cell code for a magnetized plasma. It is shown that amplitudes for perpendicular electric fields are larger than for parallel electric fields, and for Te less than 100 eV, the amplitudes are comparable to the electric fields associated with the electrostatic shocks observed from the S3-3 satellite. The excitation of electrostatic ion-cyclotron EIC waves which occurs in the region below the parallel potential drop is discussed. In auroral plasmas EIC waves are observed above the V-shaped double layers in association with ion beams and field-aligned currents. The results also show that oppositely directed electric fields in the center and at the edges of the simulation region produce oppositely directed currents. Precipitating auroral ions in association with electron inverted-V events are seen by the DMSP-F6 satellite.

  2. Using spectral characteristics to interpret auroral imaging in the 731.9 nm O+ line

    Directory of Open Access Journals (Sweden)

    A. Strømme

    2008-07-01

    Full Text Available Simultaneous observations were made of dynamic aurora during substorm activity on 26 January 2006 with three high spatial and temporal resolution instruments: the ASK (Auroral Structure and Kinetics instrument, SIF (Spectrographic Imaging Facility and ESR (EISCAT Svalbard Radar, all located on Svalbard (78° N, 16.2° E. One of the narrow field of view ASK cameras is designed to detect O+ ion emission at 731.9 nm. From the spectrographic data we have been able to determine the amount of contaminating N2 and OH emission detected in the same filter. This is of great importance to further studies using the ASK instrument, when the O+ ion emission will be used to detect flows and afterglows in active aurora. The ratio of O+ to N2 emission is dependent on the energy spectra of electron precipitation, and was found to be related to changes in the morphology of the small-scale aurora. The ESR measured height profiles of electron densities, which allowed estimates to be made of the energy spectrum of the precipitation during the events studied with optical data from ASK and SIF. It was found that the higher energy precipitation corresponded to discrete and dynamic features, including curls, and low energy precipitation corresponded to auroral signatures that were dominated by rays. The evolution of these changes on time scales of seconds is of importance to theories of auroral acceleration mechanisms.

  3. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  4. Average and worst-case specifications of precipitating auroral electron environment

    Science.gov (United States)

    Hardy, D. A.; Burke, W. J.; Gussenhoven, M. S.; Holeman, E.; Yeh, H. C.

    1985-01-01

    The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts.

  5. An empirical determination of the production efficiency for auroral 6300 AA emmission by energetic electrons

    International Nuclear Information System (INIS)

    Auroral data from the Soft Particle Spectrometer and the Red Line Photometer on the ISIS-2 spacecraft have been selected to form an electron energy flux and optical auroral emission data base. The energy fluxes are stored as integrated fluxes over four energy bands, and the corresponding stored optical emission rates are corrected for airglow and for albedo. Because of the variety of electron energy spectra represented in the data base it was possible to perform a regression analysis that yielded the production efficiency for the production of emission for each of the four bands. While the results of this analysis are interesting to compare with theoretical predictions of 6300 AA excitation processes, these statistical results are not as precise as the comparisons of individual experiments where all parameters, such as the atmospheric composition and temperature profiles are measured. The significance of this approach is that it permits a multiparameter description of an electron energy spectrum, and its relationship to a specific optical emission, by purely empirical means. This is particularly useful in the interpretation of ISIS-2 data from the instruments which provided the results, but should find further application in optical-particle auroral studies. (author)

  6. GREECE -- Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment: High resolution rocket and ground-based investigations of small-scale auroral structure and dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Methodology The methodology is based on making comparisons between downward electron flux, DC electric fields, electromagnetic waves, and auroral morphology. The...

  7. Measurements of auroral particles by means of sounding rockets of mother-daughter type

    International Nuclear Information System (INIS)

    The scientific objective of the S17 payloads was to study the ionosphere during auroral situations and especially with regards to the local fine structure and a possible separation of spatial and temporal variations of auroral phenomena. The intensities of 8 keV and 2 keV electrons have been measured from one sounding rocket launched into a breakup aurora of moderate activity and from another rocket launched into a very active substorm situation. Both the rockets were of mother-daughter type i.e. had two separated payloads. The general features in the data of different particle energies were very similar over the whole flight time of the rockets. Special events and gradients and well identifiable shapes in the particle intensities were studied to see if the intensity fluctuations obtained from two detectors in one payload or from detectors into separate payloads were time delayed. Such time delays in the particle flux intensities were obvious in both of the rocket measurements and most of these time shifts could be understood as caused by spatial variations in the particle precipitation. In parts of the rocket flights the particle intensity variations were true temporal changes. The time lags between 8 keV and 2 keV electron intensities detected in the same payload, which could be observed and were obtained by crosscorrelation analyses, were in the range less than 0.3 s and most of them less than 0.1 s. If the time differences are assumed to be caused by the velocity dispersion of the particles, the particle data reported here placed the modulation source at a distance of less than 10 000 km from the rocket position. Measurements at the S17-1 mother payload of the electric field have been compared with data of precipitating electrons and low-light-level-TV-recording of the auroral situation. An inverted-V precipitation event was observed and was associated with auroral arcs and with reversals of the measured electric field components implicating the possibility of

  8. Substorm and Magnetosphere Characteristic Scales Inferred from the SuperMAG Auroral Electrojet Indices

    Science.gov (United States)

    Newell, P.; Gjerloev, J.

    2012-04-01

    A generalization of the traditional 12-station auroral electrojet index, AE, to include more than 100 magnetometer stations, SME, is an excellent predictor of global auroral power, even at high cadence (1-min). We use this index, and a data base of more than 53,000 substorms derived from it, covering 1980-2009, to investigate time and energy scales in the magnetosphere, during substorms and otherwise. We find, contrary to common opinion, that substorms do not have a preferred recurrence rate, but instead have two distinct dynamic regimes, each following a power law. The number of substorms recurring after a time Δt, N(Δt), varies as Δt -1.19 for short times (3 hr). Other evidence also shows these distinct regimes for the magnetosphere, including a break in the power law spectra for SME at about 3 h. The time between two consecutive substorms is only weakly correlated (r=0.18 for isolated and r=0.06 for recurrent) with the time until the next, suggesting quasi-periodicity is not common. However substorms do have a preferred size, with the typical peak SME magnitude reaching 400-600 nT, but with a mean of 656 nT, corresponding to a bit less than 40 GW auroral power. More surprisingly, another characteristic scale exists in the magnetosphere, namely a peak in the SME distribution around 61 nT, corresponding to about 5 GW precipitating auroral power. The dominant form of auroral precipitation is diffuse aurora, thus these values are properties of the magnetotail thermal electron distribution. The characteristic 5 GW value specifically represents a preferred minimum below which the magnetotail rarely drops. The magnetotail experiences continuous loss by precipitation, so the existence of a preferred minimum implies driving which rarely disappears altogether. Finally, the distribution of SME values across all times, in accordance with earlier work on AE, is best fit by the sum of two distributions, each normal in log(SME). The lower distribution (with a 40% weighting

  9. PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features

    Directory of Open Access Journals (Sweden)

    R. G. Michell

    2008-11-01

    Full Text Available We present results from a coordinated camera and radar study of the auroral ionosphere conducted during March of 2006 from Poker Flat, Alaska. The campaign was conducted to coincide with engineering tests of the first quarter installation of the Poker Flat Incoherent Scatter Radar (PFISR. On 31 March 2006, a moderately intense auroral arc, (~10 kR at 557.7 nm, was located in the local magnetic zenith at Poker Flat. During this event the radar observed 7 distinct periods of abnormally large backscattered power from the F-region. These were only observed in the field-aligned radar beam, and radar spectra from these seven times show naturally enhanced ion-acoustic lines (NEIALs, the first observed with PFISR. These times corresponded to (a when the polar cap boundary of the auroral oval passed through the magnetic zenith, and (b when small-scale filamentary dark structures were visible in the magnetic zenith. The presence of both (a and (b was necessary for their occurrence. Soft electron precipitation occurs near the magnetic zenith during these same times. The electron density in the vicinity where NEIALs have been observed by previous studies is roughly between 5 and 30×1010 m−3. Broad-band extremely low frequency (BBELF wave activity is observed in situ by satellites and sounding rockets to occur with similar morphology, during active auroral conditions, associated with the poleward edge of the aurora and soft electron precipitation. The observations presented here suggest further investigation of the idea that NEIALs and BBELF wave activity are differently-observed aspects of the same wave phenomenon. If a connection between NEIALs and BBELF can be established with more data, this could provide a link between in situ measurements of downward current regions (DCRs and dynamic aurora, and ground-based observations of dark auroral structures and NEIALs. Identification of in situ processes, namely wave activity, in ground

  10. Auroral signatures of Bursty Bulk Flows from magnetosphere-ionosphere coupling models

    Science.gov (United States)

    Echim, M.; de Keyser, J. M.; Roth, M. A.

    2010-12-01

    The relationship between bursty bulk flows (BBFs) in the magnetospheric tail and the activation of auroral forms is well established from satellite and ground-based observations. Starting from a self-consistent description of BBFs based on a Vlasov equilibrium we provide a quantitative evaluation of the associated auroral effects by using a quasi-stationary magnetosphere-ionosphere (MI) coupling model. The self-consistent BBF model is based on a kinetic description of a 1-D plasma slab moving in background plasma and electromagnetic field. The model considers two exact constants of motion and one adiabatic invariant (the magnetic moment). It solves the coupled Vlasov-Maxwell system of equations in one spatial dimension (perpendicular to the BBFs plasma bulk velocity and the main magnetic field) assuming the BBF is a 1D structure elongated in the direction of the background magnetic field. The BBF model provides the self-consistent profile of Φm, the electric potential, showing the formation of convergent electric fields at the dawnward flank of the Earth-ward oriented BBFs. It has been shown that magnetospheric convergent electric fields drive field-aligned (FA) potential drops, FA currents and electron precipitation and acceleration. A stationary MI coupling model developed for discontinuity-like magnetospheric generators with convergent electric fields developed earlier is adapted to describe the coupling between the BBFs and the auroral ionosphere. The kernel of the MI coupling model is the condition of current continuity at the topside ionosphere, from which we compute the electric potential in the ionosphere for a given Φm. The MI coupling model is based on a Knight-type current-voltage relationship and a height-integrated conductivity model that depends on the energy deposited in the ionosphere by precipitating electrons. We show that the convergent electric field formed at the flanks of the BBF drive a FA potential drop and downward electron acceleration

  11. Interhemispheric asymmetries in the occurrence of magnetically conjugate sub-auroral polarisation streams

    Science.gov (United States)

    Parkinson, M. L.; Pinnock, M.; Wild, J. A.; Lester, M.; Yeoman, T. K.; Milan, S. E.; Ye, H.; Devlin, J. C.; Frey, H. U.; Kikuchi, T.

    2005-06-01

    Earthward injections of energetic ions and electrons mark the onset of magnetospheric substorms. In the inner magnetosphere (L{sim}4), the energetic ions drift westward and the electrons eastward, thereby enhancing the equatorial ring current. Wave-particle interactions can accelerate these particles to radiation belt energies. The ions are injected slightly closer to Earth in the pre-midnight sector, leading to the formation of a radial polarisation field in the inner magnetosphere. This maps to a poleward electric field just equatorward of the auroral oval in the ionosphere. The poleward electric field is subsequently amplified by ionospheric feedback, thereby producing auroral westward flow channels (AWFCs). In terms of electric field strength, AWFCs are the strongest manifestation of substorms in the ionosphere. Because geomagnetic flux tubes are essentially equi-potentials, similar AWFC signatures should be observed simultaneously in the Northern and Southern Hemispheres. Here we present magnetically conjugate SuperDARN radar observations of AWFC activity observed in the pre-midnight sector during two substorm intervals including multiple onsets during the evening of 30 November 2002. The Northern Hemisphere observations were made with the Japanese radar located at King Salmon, Alaska (57circLambda ), and the Southern Hemisphere observations with the Tasman International Geospace Environment Radar (TIGER) located at Bruny Island, Tasmania (-55circLambda ). LANL geosynchronous satellite observations of energetic ion and electron fluxes monitored the effects of substorms in the inner magnetosphere (L{sim}6). The radar-observed AWFC activity was coincident with activity observed at geosynchronous orbit, as well as westward current surges in the ionosphere observed using ground-based magnetometers. The location of AWFCs with respect to the auroral oval was inferred from FUV auroral images recorded on board the IMAGE spacecraft. DMSP SSIES ion drift measurements

  12. Longitudinal (UT effect in the onset of auroral disturbances over two solar cycles as deduced from the AE-index

    Directory of Open Access Journals (Sweden)

    L. A. Hajkowicz

    Full Text Available Statistical study on the universal time variations in the mean hourly auroral electrojet index (AE-index has been undertaken for a 21 y period over two solar cycles (1957–1968 and 1978–1986. The analysis, applied to isolated auroral substorm onsets (inferred from rapid variations in the AE-index and to the bulk of the AE data, indicates that the maximum in auroral activity is largely confined to 09–18 UT, with a distinct minimum at 03–06 UT. The diurnal effect was clearly present throughout all seasons in the first cycle but was mainly limited to northern winter in the second cycle. Severe storms (AE > 1000 nT tended to occur between 9–18 UT irrespective of the seasons whereas all larger magnetic disturbances (AE > 500 nT tended to occur in this time interval mostly in winter. On the whole the diurnal trend was strong in winter, intermediate at equinox and weak in summer. The implication of this study is that Eastern Siberia, Japan and Australia are mostly at night, during the period of maximum auroral activity whereas Europe and Eastern America are then mostly at daytime. The minimum of auroral activity coincides with near-midnight conditions in Eastern America. It appears that the diurnal UT distribution in the AE-index reflects a diurnal change between interplanetary magnetic field orientation and the Earth's magnetic dipole inclination.

    Key words. Ionosphere (auroral ionosphere · Magnetospheric physics (auroral phenomena; storms and substorms.

  13. Coordinated use of ground-based auroral and high-precision LEO magnetic and electric field measurements to investigate auroral electrodynamics

    Science.gov (United States)

    Donovan, E.

    2008-12-01

    There are now dozens of sensitive All-Sky Imagers (ASIs) deployed in networks spanning latitudes from the subauroral zone into the polar cap and many hours of magnetic local time. These new networks are collecting data with unprecedented spatial coverage and temporal resolution and in numerous scientifically interesting wavelength ranges. As well, direct satellite overflights of ground-based images that were once rare occurrences are becoming increasingly commonplace. This talk will focus on the scientific opportunities afforded by the integrated use of ground-based auroral images and magnetic and electric field data from existing and planned LEO missions including CHAMP, Oersted, and Swarm. These opportunities include exploring the relationship between field-aligned current and Poynting flux and different types of aurora, as well as reducing spatio-temporal ambiguity in the in situ measurements.

  14. The Plausibility of the Stationary Inertial Alfven Wave in Explaining Important Morphological and Temporal Signatures of Auroral Arcs based on Laboratory Experiments and Auroral Observations

    Science.gov (United States)

    Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.

    2015-12-01

    The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.

  15. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  16. Observations of the upper frequency cutoffs of the auroral kilometric radiation

    Directory of Open Access Journals (Sweden)

    J. Hanasz

    Full Text Available Intense auroral kilometric radiation (AKR is being frequently observed with POLRAD from the Auroral Probe (Interball-2. Observations of the abrupt upper frequency cutoffs (UFCs in the spectra of AKR are reported. The UFCs can be observed at a frequency range from 300 to 700 kHz, corresponding to AKR generation altitudes from approximately 4800 to 2100 km, and are distributed in magnetic local time (MLT hours similarly to the AKR events, with a maximum at 1 h MLT. The observed frequency extent of the UFCs is ≤12 kHz, and is often determined by the instrumental resolution (4 kHz. It is suggested that the UFC may be associated with an abrupt switching on of the generation mechanism, when the electron density becomes sufficiently low inside a plasma depletion at an altitude where the ratio of fpe/fce crosses some threshold value. The steepness of the UFCs can imply a non-linear process of generation. The estimated distance of the e-folding field aligned wave amplification is between 3 and 8 km. The UFCs are sometimes, though very seldom (<10%, accompanied by narrow band (less than 4 kHz "ridges" of radiation observed at the cutoff frequency. They are smoothly drifting in frequncy for several minutes. The power density of radiation in the "ridge" can be up to 2 orders of magnitude stronger than in the accompanying wide band emission of AKR. The "ridge" at UFC can imply either energy concentration at the source bottom, or focusing, if specific conditions for the escape of the radiation are assumed.

    Key words. Magnetospheric physics (auroral phenomena; plasma waves and instabilities · Radio science (magnetospheric physics

  17. A Rocket-Base Study of Auroral Electrodynamics Within the Current Closure Ionosphere

    Science.gov (United States)

    Kaeppler, Stephen R.; Kletzing, Craig; Bounds, Scott R.; Sigsbee, Kristine M.; Gjerloev, Jesper W.; Anderson, Brian Jay; Korth, Haje; Lessard, Marc; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Douglas E.; Jones, Sarah; Heinselman, Craig J.; DudokdeWit, Thierry

    2011-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission, in conjunction with the PFISR Radar, was designed to observe the three-dimensional current system of a stable auroral arc system. ACES utilized two well instrumented payloads flown along very similar magnetic field footprints, at various altitudes with small temporal separation between both payloads. ACES High, the higher altitude payload (apogee 360 km), took in-situ measurements of the plasma parameters above the current closure region to provide the input signature into the lower ionosphere. ACES Low, the low-altitude payload (apogee 130 km), took similar observations within the current closure region, where cross-field currents can flow. We present results comparing observations of the electric fields, magnetic fields, electron flux, and the electron temperature at similar magnetic footpoints between both payloads. We further present data from all-sky imagers and PFISR detailing the evolution of the auroral event as the payloads traversed regions connected by similar magnetic footpoints. Current measurements derived from the magnetometers on both payloads are further compared. We examine data from both PFISR and observations on the high-altitude payload which we interpreted as a signature of electron acceleration by means of Alfv n waves. We further examine all measurements to understand ionospheric conductivity and how energy is being deposited into the ionosphere through Joule heating. Data from ACES is compared against models of Joule heating to make inferences regarding the effect of collisions at various altitudes.

  18. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  19. Observations of E region irregularities generated at auroral latitudes by a high-power radio wave

    Science.gov (United States)

    Djuth, F. T.; Jost, R. J.; Noble, S. T.; Gordon, W. E.; Stubbe, P.

    1985-01-01

    The initial results of a series of observations made with the high-power HF heating facility near Tromso, Norway are reported. During these experiments, attention was focused on the production of artificial geomagnetic field-aligned irregularities (AFAIs) in the auroral E region by HF waves. A mobile 46.9-MHz radar was used to diagnose the formation of AFAIs having spatial scales of 3.2 across geomagnetic field lines. The dynamic characteristics of the AFAIs are discussed within the context of current theoretical work dealing with the natural production of AFAIs in the ionosphere.

  20. Kilometric radio waves generated along auroral field lines observed by ground facilities - A theoretical model

    Science.gov (United States)

    Ziebell, L. F.; Wu, C. S.; Yoon, Peter H.

    1991-01-01

    A theory of generation of radio waves observed by ground-based facilities in the frequency range 150-700 kHz is discussed. This work is a continuation of an earlier discussion (Wu et al., 1989) in which it was proposed that the trapped electrons along the auroral field lines can lead to a cyclotron instability which amplifies the whistler waves observed at ground level. The objective of the present study is to investigate the propagation effect on the wave amplification and to examine whether the proposed mechanism is indeed viable.

  1. Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storm

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    Full Text Available The relationship between the auroral electrojet indices (AE and the ring current magnetic field (DR was investigated by observations obtained during the magnetic storm on 1-3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE'. To determine AE' during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE' which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE' values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE' and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence of saturation for minimum (maximum AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current.

  2. Jupiter's auroral-related thermal infrared emission from IRTF-TEXES

    Science.gov (United States)

    Sinclair, James; Orton, Glenn; Greathouse, Thomas; Fletcher, Leigh; Irwin, Patrick

    2015-11-01

    Auroral processes on Jupiter can be observed at a large range of wavelengths. Charged particles of the solar wind are deflected by Jupiter’s magnetic field and penetrate the atmosphere at high latitudes. This results in ion and/or electron precipitation, which produces emission at X-ray, UV, visible, near-infrared and even radio wavelengths. These observations indicate three distinct features of the aurora: 1) filament-like oval structures fixed at the magnetic poles (~80°W (System III) in the south, ~180°W in the north), 2) spatially-continuous but transient aurora that fill these oval regions and 3) discrete spots associated with the magnetic footprints of Io and other Galilean satellites. However, observations in the thermal infrared indicate the aurora also modify the neutral atmosphere. Enhanced emission of CH4 is observed coincident with the auroral ovals and indicates heightened stratospheric temperatures possibly as a result of joule heating by the influx of charged particles. Stronger emission is also observed of C2H2, C2H4, C2H6 and even C6H6 though previous work has struggled to determine whether this is a temperature or compositional effect. In order to quantify the auroral effects on the neutral atmosphere and to support the 2016 Juno mission (which has no thermal infrared instrument) we have performed a retrieval analysis of IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph, 5- to 25-μm) spectra obtained on Dec 11th 2014 near solar maximum. The instrument slit was scanned east-west across high latitudes in each hemisphere and Jupiter’s rotation was used to obtain ~360° longitudinal coverage. Spectra of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission were measured at a resolving power of R = 85000, allowing a large vertical range in the atmosphere (100 - 0.001 mbar) to be sounded. Preliminary retrievals of the vertical temperature profile from H2 S(1) and CH4 measurements at 60°N, 180°W (on aurora), in comparison to 60°N, 60°W (quiescent

  3. What high altitude observations tell us about the auroral acceleration: A Cluster/DMSP conjunction

    OpenAIRE

    A. Vaivads; ANDRE, M; S. Buchert; Eriksson, A.; Olsson, A; Wahlund, J. E.; Janhunen, P.; Marklund, G.; Kistler, L. M.; Mouikis, S.; Winningham, D.; Fazakerley, A.N.; Newell, P.

    2003-01-01

    Magnetic conjugate observations by Cluster and DMSP F14 satellites are used to study the field lines of auroral arc. Cluster is well above the acceleration region and observes upward keV ion beams and bipolar electric structures. The integrated potential at Cluster altitudes shows a dip that is consistent with the keV electron acceleration energy at low altitude. The earthward Poynting flux at Cluster altitudes is comparable to the electron energy flux at low altitudes. Thus, for this event t...

  4. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism

    Science.gov (United States)

    Omidi, N.; Gurnett, D. A.; Wu, C. S.

    1984-01-01

    The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.

  5. Magnetosphere-ionosphere coupling during periods of extended high auroral activity: a case study

    Directory of Open Access Journals (Sweden)

    S. Liléo

    2008-03-01

    Full Text Available Results are presented from a case study of a plasma boundary crossing by the Cluster spacecraft during an extended period of high auroral activity. The boundary between the magnetotail lobe region of the Southern Hemisphere and the plasma sheet boundary layer, was characterized by intense electric and magnetic field variations, structured upward accelerated ion beams, narrow-scale large field-aligned Poynting fluxes directed upward away from the ionosphere, and a relatively sharp plasma density gradient.

    The observations are shown to be consistent with the concept of a multi-layered boundary with temporal and/or spatial variations in the different layers. H+ and O+ ion beams are seen to be accelerated upwards both by means of a field-aligned electric field and by magnetic pumping caused by large-amplitude and low-frequency electric field fluctuations. The peak energy of the ion beams may here be used as a diagnostic tool for the temporal evolution of the spatial structures, since the temporal changes occur on a time-scale shorter than the times-of-flight of the detected ion species.

    The case study also shows the boundary region to be mainly characterized by a coupling of the detected potential structures to the low ionosphere during the extended period of high auroral activity, as indicated by the intense field-aligned Poynting fluxes directed upward away from the ionosphere.

  6. Coordinated data on auroral electrodynamics from ground based radar diagnostics and Aureol-3 satellite

    International Nuclear Information System (INIS)

    Coordinated ground-satellite measurements of VHF radar arcs, magnetic variations and all-sky auroral imagery were performed from Kola-peninsula and from Finland together with direct particle and field measurements from AUREOL-3 satellite. The detailed analysis of two satellite passes in the evening (midnight) MLT sector in the conditions of predominantly northward (westward) ionospheric electric field show that inverted V-associated electrodynamical pattern was the same in both events. Model calculations summarizing all the above ionosphere-satellite results within the limits of unified electrodynamical scheme show that a) meridional ionospheric (Hall+Pedersen) closing current direction is a decisive factor controlling the direction of currents in the meridional Birkeland current loop of the inverted V. A summarizing interpretative scheme is proposed of the hierarchy of meridional Birkeland current loops, larger one encircling single, or multiple, smaller ones: zone 2/zone 1 large-scale current loop, inverted V current loops, and auroral arc-associated current loops, all with the same direction of the ionospheric closing current, northward in the evening and southward in the morning

  7. Auroral and magnetic variations in the polar cusp and cleft. Signatures of magnetopause boundary layer dynamics

    International Nuclear Information System (INIS)

    By combining continous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationships with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships, simultaneous groundbased observations of the midday and evening-midnight sectors of the auroral oval, is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMF Bz is repeated occurrence of certain short-lived auroral structures moving in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath

  8. An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone

    Science.gov (United States)

    Nabong, C.; Fritz, T. A.; Semeter, J. L.

    2014-12-01

    An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.

  9. Alaskan Auroral All-Sky Images on the World Wide Web

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  10. Zakharov simulations of beam-induced turbulence in the auroral ionosphere

    Science.gov (United States)

    Akbari, H.; Guio, P.; Hirsch, M. A.; Semeter, J. L.

    2016-05-01

    Recent detections of strong incoherent scatter radar echoes from the auroral F region, which have been explained as the signature of naturally produced Langmuir turbulence, have motivated us to revisit the topic of beam-generated Langmuir turbulence via simulation. Results from one-dimensional Zakharov simulations are used to study the interaction of ionospheric electron beams with the background plasma at the F region peak. A broad range of beam parameters extending by more than 2 orders of magnitude in average energy and electron number density is considered. A range of wave interaction processes, from a single parametric decay, to a cascade of parametric decays, to formation of stationary density cavities in the condensate region, and to direct collapse at the initial stages of turbulence, is observed as we increase the input energy to the system. The effect of suprathermal electrons, produced by collisional interactions of auroral electrons with the neutral atmosphere, on the dynamics of Langmuir turbulence is also investigated. It is seen that the enhanced Landau damping introduced by the suprathermal electrons significantly weakens the turbulence and truncates the cascade of parametric decays.

  11. In-situ observation of electron kappa distributions associated with discrete auroral arcs

    Science.gov (United States)

    Ogasawara, Keiichi; Livadiotis, George; Samara, Marilia; Michell, Robert; Grubbs, Guy

    2016-04-01

    The Medium-energy Electron SPectrometer (MESP) sensor aboard a NASA sounding rocket was launched from Poker Flat Research Range on 3 March 2014 as a part of Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission. GREECE targeted to discover convergent E-field structures at low altitude ionosphere to find their contribution to the rapid fluid-like structures of aurora, and MESP successfully measured the precipitating electrons from 2 to 200 keV within multiple discrete auroral arcs with the apogee of 350 km. MESP's unprecedented electron energy acceptance and high geometric factor made it possible to investigate precise populations of the suprathermal components measured in the inverted-V type electron energy distributions. The feature of these suprathermal electrons are explained by the kappa distribution functions with the parameters (densty, temperature, and kappa) consistent with the near-Earth tail plasma sheet, suggesting the source population of the auroral electrons. The kappa-values are different between each arc observed as a function of latitude, but are almost stable within one discrete arc. We suggest that this transition of kappa reflects the probagation history of source electrons through the plasma sheet by changing its state from non-equilibrium electron distributions to thermal ones.

  12. The far-ultraviolet main auroral emission at Jupiter. Pt. 2. Vertical emission profile

    International Nuclear Information System (INIS)

    The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as it accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range. The energy of the precipitating electrons is a crucial parameter to characterize the processes at play which give rise to these auroral emissions, and the altitude of the emissions directly depends on this energy. Here we make use of far-UV (FUV) images acquired with the Advanced Camera for Surveys on board the Hubble Space Telescope and spectra acquired with the Space Telescope Imaging Spectrograph to measure the vertical profile of the main emissions. The altitude of the brightness peak as seen above the limb is ∝ 400 km, which is significantly higher than the 250 km measured in the post-dusk sector by Galileo in the visible domain. However, a detailed analysis of the effect of hydrocarbon absorption, including both simulations and FUV spectral observations, indicates that FUV apparent vertical profiles should be considered with caution, as these observations are not incompatible with an emission peak located at 250 km. The analysis also calls for spectral observations to be carried out with an optimized geometry in order to remove observational ambiguities.

  13. The far-ultraviolet main auroral emission at Jupiter. Pt. 2. Vertical emission profile

    Energy Technology Data Exchange (ETDEWEB)

    Bonfond, B.; Gustin, J.; Gerard, J.C.; Grodent, D.; Radioti, A. [Liege Univ. (Belgium). Lab. de Physique Atmospherique et Planetaire; Palmaerts, B. [Liege Univ. (Belgium). Lab. de Physique Atmospherique et Planetaire; Max-Planck-Institut fuer Sonnensystemforschung, Goettingen (Germany); Badman, S.V. [Lancaster Univ. (United Kingdom). Dept. of Physics; Khurana, K.K. [California Univ., Los Angeles, CA (United States); Tao, C. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France)

    2015-07-01

    The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as it accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range. The energy of the precipitating electrons is a crucial parameter to characterize the processes at play which give rise to these auroral emissions, and the altitude of the emissions directly depends on this energy. Here we make use of far-UV (FUV) images acquired with the Advanced Camera for Surveys on board the Hubble Space Telescope and spectra acquired with the Space Telescope Imaging Spectrograph to measure the vertical profile of the main emissions. The altitude of the brightness peak as seen above the limb is ∝ 400 km, which is significantly higher than the 250 km measured in the post-dusk sector by Galileo in the visible domain. However, a detailed analysis of the effect of hydrocarbon absorption, including both simulations and FUV spectral observations, indicates that FUV apparent vertical profiles should be considered with caution, as these observations are not incompatible with an emission peak located at 250 km. The analysis also calls for spectral observations to be carried out with an optimized geometry in order to remove observational ambiguities.

  14. EISCAT observations of plasma patches at sub-auroral cusp latitudes

    Directory of Open Access Journals (Sweden)

    J. Moen

    2006-09-01

    Full Text Available A sequence of 3 patches of high-density (1012 m−3 cold plasma on a horizontal scale-size of 300–700 km was observed near magnetic noon by the EISCAT VHF radar above Svalbard on 17 December 2001. The patches followed a trajectory towards the cusp inflow region. The combination of radar and all-sky observations demonstrates that the patches must have been segmented equatorward of the cusp/cleft auroral display, and hence their properties had not yet been influenced by cusp particle showers and electrodynamics on open flux tubes. The last patch in the sequence was intersected by radio tomography observations, and was found to be located adjacent to a broader region of the same high electron density further south. The patches occurred under moderately active conditions (Kp=3 and the total electron content (TEC of the high-density plasma was 45 TEC units. The train of patches appeared as a segmentation of the tongue of ionization. The sequence of patches occurred in association with a sequence of flow bursts in the dusk cell return flow. It is proposed that reconnection driven pulsed convection is able to create sub-auroral patches in the region where high density mid-latitude plasma is diverted poleward toward the cusp. It is the downward Birkeland current sheet located at the equatorward boundary of the flow disturbance that represents the actual cutting mechanism.

  15. Multiscale and cross entropy analysis of auroral and polar cap indices during geomagnetic storms

    Science.gov (United States)

    Gopinath, Sumesh; Prince, P. R.

    2016-01-01

    In order to improve general monoscale information entropy methods like permutation and sample entropy in characterizing the irregularity of complex magnetospheric system, it is necessary to extend these entropy metrics to a multiscale paradigm. We propose novel multiscale and cross entropy method for the analysis of magnetospheric proxies such as auroral and polar cap indices during geomagnetic disturbance times. Such modified entropy metrics are certainly advantageous in classifying subsystems such as individual contributions of auroral electrojets and field aligned currents to high latitude magnetic perturbations during magnetic storm and polar substorm periods. We show that the multiscale entropy/cross entropy of geomagnetic indices vary with scale factor. These variations can be attributed to changes in multiscale dynamical complexity of non-equilibrium states present in the magnetospheric system. These types of features arise due to imbalance in injection and dissipation rates of energy with variations in magnetospheric response to solar wind. We also show that the multiscale entropy values of time series decrease during geomagnetic storm times which reveals an increase in temporal correlations as the system gradually shifts to a more orderly state. Such variations in entropy values can be interpreted as the signature of dynamical phase transitions which arise at the periods of geomagnetic storms and substorms that confirms several previously found results regarding emergence of cooperative dynamics, self-organization and non-Markovian nature of magnetosphere during disturbed periods.

  16. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    Science.gov (United States)

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  17. Studies of the auroral ionosphere with the MITHRAS. Final report, October 1982-October 1985

    Energy Technology Data Exchange (ETDEWEB)

    Foster, J.C.

    1986-06-26

    The extensive MITHRAS radar data set was the object of extensive analyses the processes and characteristics of the auroral-latitude ionosphere and thermosphere: 1) High-Latitude Electrodynamics: Ionospheric response to substorms at widely separated local times was investigated. 2) Ionospheric Plasma Transport: The effects of plasma convection on the formation of the midlatitude trough were studied utilizing the wide spatial field of view of the Millstone radar. 3) Convection Snapshots: Simultaneous data from spaced instruments were combined to produce 'snapshots' of the polar and auroral convection pattern. 4) Comparisons with Models: 5) Data Bases Studies and Empirical Models: The extensive data set which resulted from the MITHRAS experimental program was incorporated into a multi-instrument, common format data base. 6) Azimuth Scan Experiments: Analysis of the complex data during MITHRAS azimuth scanning experiments resulted in the capability of mapping the convection electric field within the extended field of the radar. 7) Thermosphere and Exosphere: The diurnal variation of exospheric temperature over 30 degrees of latitude around Millstone Hill was investigated using MITHRAS elevation scan data.

  18. Development and performance of a suprathermal electron spectrometer to study auroral precipitations.

    Science.gov (United States)

    Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G; Samara, Marilia; Stange, Jason L; Trevino, John A; Webster, James; Jahn, Jörg-Micha

    2016-05-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora. PMID:27250414

  19. Auroral Current and Electrodynamics Structure (ACES) Observations of Ionospheric Feedback in the Alfven Resonator

    Science.gov (United States)

    Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Doug; Jones, Sarah; Anderson, Brian Jay; Heinselman, Craig J.; Gjerloev, Jesper W.; Dudok de Wit, Thierry

    2011-01-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  20. Interhemispheric asymmetries in the occurrence of magnetically conjugate sub-auroral polarisation streams

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2005-06-01

    Full Text Available Earthward injections of energetic ions and electrons mark the onset of magnetospheric substorms. In the inner magnetosphere (L${sim}$4, the energetic ions drift westward and the electrons eastward, thereby enhancing the equatorial ring current. Wave-particle interactions can accelerate these particles to radiation belt energies. The ions are injected slightly closer to Earth in the pre-midnight sector, leading to the formation of a radial polarisation field in the inner magnetosphere. This maps to a poleward electric field just equatorward of the auroral oval in the ionosphere. The poleward electric field is subsequently amplified by ionospheric feedback, thereby producing auroral westward flow channels (AWFCs. In terms of electric field strength, AWFCs are the strongest manifestation of substorms in the ionosphere. Because geomagnetic flux tubes are essentially equi-potentials, similar AWFC signatures should be observed simultaneously in the Northern and Southern Hemispheres. Here we present magnetically conjugate SuperDARN radar observations of AWFC activity observed in the pre-midnight sector during two substorm intervals including multiple onsets during the evening of 30 November 2002. The Northern Hemisphere observations were made with the Japanese radar located at King Salmon, Alaska (57$^{circ}$$Lambda $, and the Southern Hemisphere observations with the Tasman International Geospace Environment Radar (TIGER located at Bruny Island, Tasmania (

  1. Combined ESR and EISCAT observations of the dayside polar cap and auroral oval during the May 15, 1997 storm

    Directory of Open Access Journals (Sweden)

    H. Liu

    Full Text Available The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.

    Key words: Ionosphere (auroral ionosphere; polar ionosphere - Magnetospheric physics (storms and substorms

  2. GPS phase scintillation associated with optical auroral emissions:first statistical results from the geographic South Pole

    OpenAIRE

    Kinrade, Joe; Mitchell, Cathryn N; Smith, Nathan D.; Ebihara, Yusuke; Weatherwax, Allan T.; Bust, Gary S.

    2013-01-01

    Ionospheric irregularities affect the propagation of Global Navigation Satellite System (GNSS) signals, causing radio scintillation. Particle precipitation from the magnetosphere into the ionosphere, following solar activity, is an important production mechanism for ionospheric irregularities. Particle precipitation also causes the aurorae. However, the correlation of aurorae and GNSS scintillation events is not well established in literature. This study examines optical auroral events during...

  3. Ion shell distributions as free energy source for plasma waves on auroral field lines mapping to plasma sheet boundary layer

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-06-01

    Full Text Available Ion shell distributions are hollow spherical shells in velocity space that can be formed by many processes and occur in several regions of geospace. They are interesting because they have free energy that can, in principle, be transmitted to ions and electrons. Recently, a technique has been developed to estimate the original free energy available in shell distributions from in-situ data, where some of the energy has already been lost (or consumed. We report a systematic survey of three years of data from the Polar satellite. We present an estimate of the free energy available from ion shell distributions on auroral field lines sampled by the Polar satellite below 6 RE geocentric radius. At these altitudes the type of ion shells that we are especially interested in is most common on auroral field lines close to the polar cap (i.e. field lines mapping to the plasma sheet boundary layer, PSBL. Our analysis shows that ion shell distributions that have lost some of their free energy are commonly found not only in the PSBL, but also on auroral field lines mapping to the boundary plasma sheet (BPS, especially in the evening sector auroral field lines. We suggest that the PSBL ion shell distributions are formed during the so-called Velocity Dispersed Ion Signatures (VDIS events. Furthermore, we find that the partly consumed shells often occur in association with enhanced wave activity and middle-energy electron anisotropies. The maximum downward ion energy flux associated with a shell distribution is often 10mWm-2 and sometimes exceeds 40mWm-2 when mapped to the ionosphere and thus may be enough to power many auroral processes. Earlier simulation studies have shown that ion shell distributions can excite ion Bernstein waves which, in turn, energise electrons in the parallel direction. It is possible that ion shell distributions are the link between the X-line and the auroral wave activity and electron

  4. 24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations

    Science.gov (United States)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter

    2011-01-01

    During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably

  5. Thermal ion measurements on board Interball Auroral Probe by the Hyperboloid experiment

    Directory of Open Access Journals (Sweden)

    N. Dubouloz

    Full Text Available Hyperboloid is a multi-directional mass spectrometer measuring ion distribution functions in the auroral and polar magnetosphere of the Earth in the thermal and suprathermal energy range. The instrument encompasses two analyzers containing a total of 26 entrance windows, and viewing in two almost mutually perpendicular half-planes. The nominal angular resolution is defined by the field of view of individual windows ≈13° × 12.5°. Energy analysis is performed using spherical electrostatic analyzers providing differential measurements between 1 and 80 eV. An ion beam emitter (RON experiment and/or a potential bias applied to Hyperboloid entrance surface are used to counteract adverse effects of spacecraft potential and thus enable ion measurements down to very low energies. A magnetic analyzer focuses ions on one of four micro-channel plate (MCP detectors, depending on their mass/charge ratio. Normal modes of operation enable to measure H+, He+, O++, and O+ simultaneously. An automatic MCP gain control software is used to adapt the instrument to the great flux dynamics encountered between spacecraft perigee (700 km and apogee (20 000 km. Distribution functions in the main analyzer half-plane are obtained after a complete scan of windows and energies with temporal resolution between one and a few seconds. Three-dimensional (3D distributions are measured in one spacecraft spin period (120 s. The secondary analyzer has a much smaller geometrical factor, but offers partial access to the 3D dependence of the distributions with a few seconds temporal resolution. Preliminary results are presented. Simultaneous, local heating of both H+ and O+ ions resulting in conical distributions below 80 eV is observed up to 3 Earth's radii altitudes. The thermal ion signatures associated with large-scale nightside magnetospheric boundaries are investigated and a new ion outflow feature is

  6. On the current-voltage relationship in auroral breakups and westwards-travelling surges

    Directory of Open Access Journals (Sweden)

    A. Olsson

    Full Text Available Auroral precipitating electrons pass through an acceleration region before entering the atmosphere. Regardless of what produces it, a parallel electric field is assumed to cause the acceleration. It is well known that from kinetic theory an expression for the corresponding upward field-aligned current can be calculated, which under certain assumptions can be linearized to j=KV. The K constant, referred to as the Lyons-Evans-Lundin constant, depends on the source density and thermal energy of the magnetospheric electrons; it is an important parameter in magnetosphere-ionosphere coupling models. However, the K parameter is still rather unknown, and values are found in a wide range of 10–8–10–10 S m–2. In this study, we investigated how the type of auroral structure affects the K values. We look at onset and westwards-travelling surge (WTS events and make comparisons with earlier results from observations of more stable auroral arcs. A new analysis technique for studying those magnetospheric parameters using ground-based measurements is introduced. Electron density measurements are taken with the EISCAT radar, and through an inversion technique the flux-energy spectra are calculated. Source densities, thermal energies and potential drops are estimated from fittings of accelerated Maxwellian distributions. With this radar technique we have the possibility to study the changes of the mentioned parameters during the development of onsets and the passage of surges over EISCAT. The study indicates that the linearization of the full Knight formulation holds even for the very high potential drops and thermal temperatures found in the dynamic onset and WTS events. The values of K are found to be very low, around 10–11 S m–2 in onset cases as well as WTS events. The results may establish a new technique where ionospheric

  7. Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers

    CERN Document Server

    Nichols, J D

    2016-01-01

    We present calculations of the auroral radio powers expected from exoplanets with magnetospheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically, we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers resulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection, as a function of planetary orbital distance and magnetic field strength. We include saturation of the magnetospheric convection, as observed at the terrestrial magnetosphere, and we present power law approximations for the convection potentials, radio powers and spectral flux densities. We specifically consider a solar-age system and a young (1 Gyr) system. We show that the radio power increases with magnetic field strength for magnetospheres with saturated convection potential, and broadly decreases with increasing orbital distance. We show that the magnetospheric convection at hot Jupiters will be saturated, and thus unable to dissipate the full av...

  8. Contributions of Q-machine experiments to understanding auroral particle acceleration processes

    International Nuclear Information System (INIS)

    Experiments performed over the past 40 years on Q-machine plasma devices [N. Rynn and N. D'Angelo, Rev. Sci. Instrum. 31, 1326 (1960)] have contributed significantly to the basic understanding of plasma behavior. Many of these laboratory results are relevant to plasma processes in the Earth's ionosphere and magnetosphere. Here are reviewed examples in which Q-machine experiments contributed to understanding particle acceleration in the Earth's auroral energization region by discovering unexpected behavior, developing physical insight, benchmarking theoretical models, and establishing observational signatures relevant to space plasmas. Magnetic-field-aligned (parallel) electric fields, solitary structures, ion-cyclotron waves, ion-acoustic waves, Kelvin-Helmholtz waves, and lower-hybrid waves are discussed. The legacy of these contributions is a tribute to the Q-machine design

  9. Modulation of auroral electrojet currents using dual HF beams with ELF phase offset

    Science.gov (United States)

    Golkowski, M.; Cohen, M.; Moore, R. C.

    2012-12-01

    The modulation of naturally occuring ionospheric currents with high power radio waves in the high frequency (HF, 3-10 MHz) band is a well known technique for generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) waves. We use the heating facility of the High Frequency Active Auroral Research Program (HAARP) to investigate the effect of using dual HF beams with an ELF/VLF phase offset between the modulation waveforms. Experiments with offset HF beams confirm the model of independent ELF/VLF sources. Experiments with co-located HF beams exhibit interaction between the first and second harmonics of the modulated tones when square and sine wave modulation waveforms are employed. Using ELF/VLF phase offsets for co-loacted beams is also shown to be a potential diagnostic for the D-region ionospheric profile.

  10. Artificial stimulation of auroral electron acceleration by intense field aligned currents

    International Nuclear Information System (INIS)

    A cesium doped high explosion was detonated at 165 km altitude in the auroral ionosphere during quiet conditions. An Alfven wave pulse with a 200 mV/m electric field was observed with the peak occurring 135 ms after the explosion at a distance of about 1 km. The count rate of fixed energy 2 keV electron detectors abruptly increased at 140 ms, peaked at 415 ms and indicated a downward field aligned beam of accelerated electrons. An anomalously high field aligned beam of backscattered electrons was also detected. We interpret the acceleration as due to a production of an electrostatic shock or double layer between 300 and 800 km altitude. The structure was probably formed by an instability of the intense field aligned currents in the Alfven wave launched by the charge separation electric field due to the explosion

  11. The Ionospheric Model Adaptation to the Auroral Latitudes With UHF EISCAT Radar and Tromso Magnetometer Data

    Science.gov (United States)

    Nikolaeva, Vera; Gordeev, Evgeny; Kotikov, Andrey

    E-layer Auroral Ionosphere Model (E-AIM) developed in Arctic and Antarctic Research Institute can provide temporal and spatial distribution of the main ionosphere parameters: ion and electron density distribution in the altitude range from 90 to 150 km. The statistical study of E-layer electron density dependence on substorm activity was made to improve model results in high latitudes. About fifty substorms were included to the data analysis. Particular attention was paid to the dynamics of magnetic disturbances and ionospheric parameters measured by the radar. Correlation of electron density values measured by the UHF EISCAT incoherent scattering radar with geomagnetic indices was determined. Applicability of geomagnetic indices as input parameters of the local E-AIM model was estimated.

  12. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    Full Text Available We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of

  13. On the importance of doubly charged ions in the auroral ionosphere

    International Nuclear Information System (INIS)

    Consideration has been given to the auroral ionospheric O+ density dilemma as discussed by Donahue et al. (1970). If the temperature dependences of the reactions O++O2→O2++O and O++N2→NO++N are of the type found by Stubbe (1969) and Johnsen and Biondi (1973), the line of explanation invoking intense electric fields and high ion temperature faces serious trouble. This would make the O+ density problem all the more pathological. However, a simple explanation was possible in terms of O2++ and N2++ ion chemistry. The beauty of this explanation lay in the fact that neither high temperatures nor electric fields need be invoked. Physicochemical problems connected with the new explanation are discussed, and it is suggested that the properties of the doubly charged ions deserve a closer study in the laboratory

  14. Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere

    CERN Document Server

    Oksavik, K; Lorentzen, D A; Baddeley, L J; Moen, J

    2016-01-01

    We present two examples from the cusp ionosphere over Svalbard,where poleward moving auroral forms (PMAFs) are causing significant phase scintillation in signals from navigation satellites. The data were obtained using a combination of ground-based optical instruments and a newly installed multiconstellation navigation signal receiver at Longyearbyen. Both events affected signals from GPS and Global Navigation Satellite System (GLONASS). When one intense PMAF appeared, the signal from one GPS spacecraft also experienced a temporary loss of signal lock. Although several polar cap patches were also observed in the area as enhancements in total electron content, the most severe scintillation and loss of signal lock appear to be attributed to very intense PMAF activity. This shows that PMAFs are locations of strong ionospheric irregularities, which at times may cause more severe disturbances in the cusp ionosphere for navigation signals than polar cap patches.

  15. Kinetic model for an auroral double layer that spans many gravitational scale heights

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Scott [Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States)

    2014-12-15

    The electrostatic potential profile and the particle densities of a simplified auroral double layer are found using a relaxation method to solve Poisson's equation in one dimension. The electron and ion distribution functions for the ionosphere and magnetosphere are specified at the boundaries, and the particle densities are found from a collisionless kinetic model. The ion distribution function includes the gravitational potential energy; hence, the unperturbed ionospheric plasma has a density gradient. The plasma potential at the upper boundary is given a large negative value to accelerate electrons downward. The solutions for a wide range of dimensionless parameters show that the double layer forms just above a critical altitude that occurs approximately where the ionospheric density has fallen to the magnetospheric density. Below this altitude, the ionospheric ions are gravitationally confined and have the expected scale height for quasineutral plasma in gravity.

  16. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    Directory of Open Access Journals (Sweden)

    B. A. Shand

    Full Text Available A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE. The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s–1, the backscatter intensity (measured in decibels remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels and Doppler velocity for velocities between 200 m s–1 and 700 m s–1. At velocities greater than 700 m s–1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  17. Auroral ionospheric F region density cavity formation and evolution: MICA campaign results

    Science.gov (United States)

    Zettergren, M.; Lynch, K.; Hampton, D.; Nicolls, M.; Wright, B.; Conde, M.; Moen, J.; Lessard, M.; Miceli, R.; Powell, S.

    2014-04-01

    Auroral ionospheric F region density depletions observed by PFISR (Poker Flat Incoherent Scatter Radar) during the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket campaign are critically examined alongside complementary numerical simulations. Particular processes of interest include cavity formation due to intense frictional heating and Pedersen drifts, evolution in the presence of structured precipitation, and refilling due to impact ionization and downflows. Our analysis uses an ionospheric fluid model which solves conservation of mass, momentum, and energy equations for all major ionospheric species. These fluid equations are coupled to an electrostatic current continuity equation to self-consistently describe auroral electric fields. Energetic electron precipitation inputs for the model are specified by inverting optical data, and electric field boundary conditions are obtained from direct PFISR measurements. Thus, the model is driven in as realistic a manner as possible. Both incoherent scatter radar (ISR) data and simulations indicate that the conversion of the F region plasma to molecular ions and subsequent recombination is the dominant process contributing to the formation of the observed cavities, all of which occur in conjunction with electric fields exceeding ˜90 mV/m. Furthermore, the cavities often persist several minutes past the point when the frictional heating stops. Impact ionization and field-aligned plasma flows modulate the cavity depth in a significant way but are of secondary importance to the molecular generation process. Informal comparisons of the ISR density and temperature fits to the model verify that the simulations reproduce most of the observed cavity features to a reasonable level of detail.

  18. Separating spatial and temporal variations in auroral electric and magnetic fields by Cluster multipoint measurements

    Directory of Open Access Journals (Sweden)

    T. Karlsson

    2004-07-01

    Full Text Available Cluster multipoint measurements of the electric and magnetic fields from a crossing of auroral field lines at an altitude of 4RE are used to show that it is possible to resolve the ambiguity of temporal versus spatial variations in the fields. We show that the largest electric fields (of the order of 300mV/m when mapped down to the ionosphere are of a quasi-static nature, unipolar, associated with upward electron beams, stable on a time scale of at least half a minute, and located in two regions of downward current. We conclude that they are the high-altitude analogues of the intense return current/black auroral electric field structures observed at lower altitudes by Freja and FAST. In between these structures there are temporal fluctuations, which are shown to likely be downward travelling Alfvén waves. The periods of these waves are 20-40s, which is not consistent with periods associated with either the Alfvénic ionospheric resonator, typical field line resonances or substorm onset related Pi2 oscillations. The multipoint measurements enable us to estimate a lower limit to the perpendicular wavelength of the Alfvén waves to be of the order of 120km, which suggests that the perpendicular wavelength is similar to the dimension of the region between the two quasi-static structures. This might indicate that the Alfvén waves are ducted within a wave guide, where the quasi-static structures are associated with the gradients making up this waveguide.

  19. Experimental investigation of auroral generator regions with conjugate Cluster and FAST data

    Directory of Open Access Journals (Sweden)

    O. Marghitu

    2006-03-01

    Full Text Available Here and in the companion paper, Hamrin et al. (2006, we present experimental evidence for the crossing of auroral generator regions, based on conjugate Cluster and FAST data. To our knowledge, this is the first investigation that concentrates on the evaluation of the power density, E·J, in auroral generator regions, by using in-situ measurements. The Cluster data we discuss were collected within the Plasma Sheet Boundary Layer (PSBL, during a quiet magnetospheric interval, as judged from the geophysical indices, and several minutes before the onset of a small substorm, as indicated by the FAST data. Even at quiet times, the PSBL is an active location: electric fields are associated with plasma motion, caused by the dynamics of the plasma-sheet/lobe interface, while electrical currents are induced by pressure gradients. In the example we show, these ingredients do indeed sustain the conversion of mechanical energy into electromagnetic energy, as proved by the negative power density, E·J<0. The plasma characteristics in the vicinity of the generator regions indicate a complicated 3-D wavy structure of the plasma sheet boundary. Consistent with this structure, we suggest that at least part of the generated electromagnetic energy is carried away by Alfvén waves, to be dissipated in the ionosphere, near the polar cap boundary. Such a scenario is supported by the FAST data, which show energetic electron precipitation conjugated with the generator regions crossed by Cluster. A careful examination of the conjunction timing contributes to the validation of the generator signatures.

  20. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    Science.gov (United States)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  1. Substorm related changes in precipitation in the dayside auroral zone – a multi instrument case study

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    Full Text Available A period (08:10–14:40 MLT, 11 February 1997 of enhanced electron density in the D- and E-regions is investigated using EISCAT, IRIS and other complementary instruments. The precipitation is determined to be due to substorm processes occurring close to magnetic midnight. Energetic electrons drift eastward after substorm injection and precipitate in the morning sector. The precipitation is triggered by small pulses in the solar wind pressure, which drive wave particle interactions. The characteristic energy of precipitation is inferred from drift timing on different L-shells and apparently verified by EISCAT measurements. The IMF influence on the precipitation in the auroral zone is also briefly discussed. A large change in the precipitation spectrum is attributed to increased numbers of ions and much reduced electron fluxes. These are detected by a close passing DMSP satellite. The possibility that these ions are from the low latitude boundary layer (LLBL is discussed with reference to structured narrow band Pc1 waves observed by a search coil magnetometer, co-located with IRIS. The intensity of the waves grows with increased distance equatorward of the cusp position (determined by both satellite and HF radar, contrary to expectations if the precipitation is linked to the LLBL. It is suggested that the ion precipitation is, instead, due to the recovery phase of a small geomagnetic storm, following on from very active conditions. The movement of absorption in the later stages of the event is compared with observations of the ionospheric convection velocities. A good agreement is found to exist in this time interval suggesting that E × B drift has become the dominant drift mechanism over the gradient-curvature drift separation of the moving absorption patches observed at the beginning of the morning precipitation event.

    Key words. Ionosphere (auroral ionosphere; particle precipitation Magnetospheric physics (storms and substorms

  2. Upstream drivers of poleward moving auroral forms by satellite-imager coordinated observations

    Science.gov (United States)

    Wang, B.; Nishimura, T.; Lyons, L. R.; Angelopoulos, V.; Frey, H. U.; Mende, S. B.

    2015-12-01

    Poleward moving auroral forms (PMAFs) are observed near the dayside poleward auroral oval boundary. PMAFs are thought to be an ionospheric signature of dayside reconnection and flux transfer events. PMAFs tend to occur when the IMF is southward. Although a limited number of PMAFs has been found in association with IMF southward turning, events without appreciable changes in IMF have also been reported. While those PMAFs could be triggered spontaneously, many of the past studies used solar wind measurements far away from the bow shock nose and may have used inaccurate time shift or missed small-scale structures in the solar wind. To examine how often PMAFs are triggered by upstream structures using solar wind measurements close to the bow shock nose, we use the AGO all sky imager in Antarctic and THEMIS B and C satellites in 2008, 2009 and 2011. We identified 24 conjunction events, where at least one of the THEMIS satellites is in the solar wind and the AGO imager is located within 3 MLT from the THEMIS MLT. We found that, in 14 out of 24 conjunction events, PMAFs occur soon after IMF southward turning, indicating that IMF southward turning could be the major triggering of PMAFs. Interestingly, among these 14 cases, there are 7 cases with different IMF structures between THEMIS B/C and OMNI, which obtained IMF information from WIND and ACE. And the larger correlation coefficients between PMAFs and IMFs observed by THMEIS B/C than OMNI present the advantages of THEMIS B/C. Among the 10 cases without correlating with IMF structures, PMAFs in two events are shown to have good correlation with reflected ions in the foreshock. Based on all the conjunction events we identified, IMF southward turning is the major trigger of PMAFs and reflected ions have minor effects. The rest of the cases could be spontaneous PMAFs, although foreshock activities, even if exists, may be missed due to the IMF orientation.

  3. Reconstruction of three-dimensional auroral ionospheric conductivities via an assimilative technique

    Science.gov (United States)

    McGranaghan, R. M.; Knipp, D. J.; Matsuo, T.; Solomon, S. C.

    2015-12-01

    Energy redistribution in the magnetosphere-ionosphere-thermosphere (MIT) system is largely controlled by a complex system of field-aligned, Hall, and Pedersen currents, and the electrodynamics underlying their distributions. Application of Ohm's law to the auroral zone requires knowledge of the ionospheric conductivity, whose estimation has often been simplified by invoking Maxwellian behavior of the impacting particles and height independent conductance. Though these assumptions have allowed us to study height-integrated conductivities (conductances), they have also limited our ability to understand how the MIT system operates as a whole. We are now in a position to address conductivity variations, and thus energy redistribution, in three dimensions. We present an objective analysis of the fully three-dimensional (3-D) ionospheric Hall and Pedersen auroral conductivities for the November 30, 2011 coronal mass ejection event. We show: 1) a fundamental picture of ionospheric conductivity variability organized into empirical orthogonal functions [McGranaghan et al., 2015; accepted] and 2) an event reconstruction of the ionospheric conductivities. Figure 1 provides a proof of concept for part 1 by showing the first primary mode of variability (EOF1) of the Hall conductivity at four altitudes through the E- and lower F-regions. Our reconstruction relies on a data assimilation scheme that optimally combines Defense Meteorological Satellite Program (DMSP) satellite observations with an error covariance model created from the conductivity EOFs. We find significant 3-D structure in the ionospheric conductivities that can drastically modify the E- and lower F-region behavior. We suggest an exciting opportunity to extend these analyses to other data sets, such as the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC).

  4. The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis

    Directory of Open Access Journals (Sweden)

    Moen Joran

    2013-01-01

    Full Text Available The thermospheric atomic oxygen red line is among the brightest in the auroral spectrum. Previous observations in Longyearbyen, Svalbard, indicated that it may be intrinsically polarized, but a possible contamination by light pollution could not be ruled out. During the winter 2010/2011, the polarization of the red line was measured for the first time at the Polish Hornsund polar base without contamination. Two methods of data analysis are presented to compute the degree of linear polarization (DoLP and angle of linear polarization (AoLP: one is based on averaging and the other one on filtering. Results are compared and are in qualitative agreement. For solar zenith angles (SZA larger than 108° (with no contribution from Rayleigh scattering, the DoLP ranges between 2 and 7%. The AoLP is more or less aligned with the direction of the magnetic field line, in agreement with the theoretical predictions of Bommier et al. (2010. However, the AoLP values range between ±20° around this direction, depending on the auroral conditions. Correlations between the polarization parameters and the red line intensity I were considered. The DoLP decreases when I increases, confirming a trend observed during the observations in Longyearbyen. However, for small values of I, DoLP varies within a large range of values, while for large values of I, DoLP is always small. The AoLP also varies with the red line intensity, slightly rotating around the magnetic field line.

  5. Inductive electric fields in the magnetotail and their relation to auroral and substorm phenomena

    International Nuclear Information System (INIS)

    The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly distrubed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale elctrostatic field directed from dawn to dusk over the magentotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudical energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field. An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area wiht dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge

  6. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the EISCAT radar

    International Nuclear Information System (INIS)

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the Coordinated EISCAT and Balloon Observations (CEBO) campaign in August 1984. The energy spectral variations of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the mordning side of the auroral zone. 96 refs., 70 figs., 11 tabs

  7. Position of projections of the nightside auroral oval equatorward and poleward edges in the magnetosphere equatorial plane

    Science.gov (United States)

    Kirpichev, I. P.; Yagodkina, O. I.; Vorobjev, V. G.; Antonova, E. E.

    2016-07-01

    The position of the auroral oval poleward and equatorward boundary projections on the equatorial plane in the nightside MLT sector during magnetically quiet periods (| AL| balance of pressures during the nighttime have been taken into account. The morphological mapping method has been used to map the oval poleward and equatorward edges without the use of any magnetic field model on the assumption that the condition of magnetostatic equilibrium is valid. Ion pressures at ionospheric altitudes and in the equatorial plane have been compared. It has been shown that the auroral oval equatorward boundary in the midnight sector is localized at geocentric distances of ~7 R E , which is in good agreement with the position of the energetic particle injection boundary in the equatorial plane. The oval poleward edge is localized at the ~10 R E geocentric distance, which is in good agreement with the position of the equatorward boundary of the region with a high turbulence level in the Earth's magnetosphere plasma sheet.

  8. H3(+) fundamental band in Jupiter's auroral zones at high resolution from 2400 to 2900 inverse centimeters

    International Nuclear Information System (INIS)

    Following the previous detection of H3(+) in the southern auroral zone of Jupiter from its 2nu2 band, a search was made for the fundamental at 4 microns. Up to 42 lines of this band were detected in emission, at high resolution, on the auroral spot of each hemisphere. A rotational temperature was derived for the southern and northern zones, respectively, of 1000 + or - 40K and 835 + or - 50 K. The intensity of the lines was on the average two times stronger in the south than in the north. The 2nu2 band, which was sought in the north only on this occasion, was not detectable. A purely thermal mechanism for the H3(+) production is implied. Spatial extension and temporal variability of the excitation is discussed. 20 refs

  9. Generation of Alfven-ion cyclotron waves on auroral field lines in the presence of heavy ions

    Science.gov (United States)

    Lysak, R. L.; Temerin, M. A.

    1983-01-01

    Observation of electromagnetic waves in the low-altitude auroral zone at frequencies between the proton and helium gyrofrequencies suggests that Alfven-ion cyclotron waves modified by the presence of helium ions are being excited. Estimates of the growth rates for this mode indicate that the auroral electron beam can provide the free energy for the instability. The effect of the heavy ions is to decrease the group velocity of the waves, leading to larger convective growth. Theoretical wave spectra are computed in the local approximation, which assumes that the gradient scale lengths in density and magnetic field are constant over the ray paths. Narrow banded spectral peaks similar to observations may be produced when the thickness of the electron beam is small (200 m at 3000 km altitude). Narrow beams also limit growth of whistler mode waves, which compete for the free energy of the electron beam.

  10. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  11. Ion and electron injection in ionosphere and magnetosphere. Application to the parallel electric field measurement in auroral zones

    International Nuclear Information System (INIS)

    New methods of measuring parallel electric field in auroral zones are investigated in this thesis. In the studied methods, artificial injection of ions Li+ and electrons from a spacecraf is used. Measurements obtained during the ARAKS experiment are also presented. The behaviour of the ionospheric plasma located few hundred meters from a 0,5A electron beam injected in ionosphere from a rocket is studied, together with the behaviour of a Cs plasma artificially injected from the same spacecraft

  12. Enhanced E-layer ionization in the auroral zones observed by radio occultation measurements onboard CHAMP and Formosat-3/COSMIC

    OpenAIRE

    Mayer, C.; Jakowski, N.

    2009-01-01

    Particle precipitation of magnetospheric origin causes additional ionization in the auroral zone at E-layer heights. During night-time, in particular at winter-night, the E-layer ionization may dominate over the F2-layer ionization level. To study the geophysical conditions and characteristics of the related ionospheric processes in more detail, we use GPS radio occultation electron density profile retrievals from CHAMP and Formosat-3/COSMIC to extract thos...

  13. Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2008-12-01

    Full Text Available We develop two related models of magnetosphere-ionosphere coupling in the jovian system by combining previous models defined at ionospheric heights with magnetospheric magnetic models that allow system parameters to be extended appropriately into the magnetosphere. The key feature of the combined models is thus that they allow direct connection to be made between observations in the magnetosphere, particularly of the azimuthal field produced by the magnetosphere-ionosphere coupling currents and the plasma angular velocity, and the auroral response in the ionosphere. The two models are intended to reflect typical steady-state sub-corotation conditions in the jovian magnetosphere, and transient super-corotation produced by sudden major solar wind-induced compressions, respectively. The key simplification of the models is that of axi-symmetry of the field, flow, and currents about the magnetic axis, limiting their validity to radial distances within ~30 RJ of the planet, though the magnetic axis is appropriately tilted relative to the planetary spin axis and rotates with the planet. The first exploration of the jovian polar magnetosphere is planned to be undertaken in 2016–2017 during the NASA New Frontiers Juno mission, with observations of the polar field, plasma, and UV emissions as a major goal. Evaluation of the models along Juno planning orbits thus produces predictive results that may aid in science mission planning. It is shown in particular that the low-altitude near-periapsis polar passes will generally occur underneath the corresponding auroral acceleration regions, thus allowing brief examination of the auroral primaries over intervals of ~1–3 min for the main oval and ~10 s for narrower polar arc structures, while the "lagging" field deflections produced by the auroral current systems on these passes will be ~0.1°, associated with azimuthal fields above the ionosphere of a few hundred nT.

  14. The spatial structure and temporal variability of Ganymede’s auroral ovals from Hubble Space Telescope observations

    Science.gov (United States)

    Musacchio, Fabrizio; Saur, Joachim; Roth, Lorenz; Retherford, Kurt D.; McGrath, Melissa A.; Feldman, Paul D.; Strobel, Darrel F.

    2015-11-01

    We analyze spectrally and spatially resolved images of Ganymede’s FUV-auroral ovals obtained during the past two decades by Hubble’s Space Telescope Imaging Spectrograph (HST/STIS). We find both, spatial inhomogeneities of the brightness-distribution on the observed disk as well as temporal variation as a function of Ganymede’s position relative to the Jovian current sheet. The brightness of the ovals is not equally distributed along the ovals, i.e., the Jupiter-facing side is always brighter than the anti-Jupiter side at least by ~60%. When Ganymede moves from high elevated magnetic latitudes towards the center region of the Jovian current sheet, the brightness of the aurora on the leading side increases by over 30% from ~80 Rayleigh up to ~108 Rayleigh. Simultaneously, inside the current sheet center the auroral ovals are displaced by an average of ~6° of planetographic latitude, i.e., the ovals shift furthermore down towards the planetographic equator on the leading side, and up towards the poles on the trailing side. Both effects, the increase of brightness and the moving of the ovals, are correlated to increased plasma interaction inside the current sheet. Ganymede’s electron-impact-excited auroral emissions are thought to be driven by electron acceleration by strong field-aligned currents at the boundary area between open and closed magnetic field lines of Ganymede’s mini-magnetosphere. The change of the auroral morphology is a direct response to the changing plasma environment, i.e., changing ram and thermal pressures. Thus, the investigation of the aurora proves to be a suitable diagnostic tool of the various processes that contribute to Ganymede’s complex plasma and magnetic field environment.

  15. Forecasting of DST index from auroral electrojet indices using time-delay neural network + particle swarm optimization

    Science.gov (United States)

    Lazzús, J. A.; López-Caraballo, C. H.; Rojas, P.; Salfate, I.; Rivera, M.; Palma-Chilla, L.

    2016-05-01

    In this study, an artificial neural network was optimized with particle swarm algorithm and trained to predict the geomagmetic DST index one hour ahead using the past values of DST and auroral electrojet indices. The results show that the proposed neural network model can be properly trained for predicting of DST(t + 1) with acceptable accuracy, and that the geomagnetic indices used have influential effects on the good training and predicting capabilities of the chosen network.

  16. An interpretation for the bipolar electric field structures parallel to the magnetic field observed in the auroral ionosphere

    OpenAIRE

    Jiankui Shi; M. N. S. Qureshi; K. Torkar; Dunlop, M.; Zhenxing Liu; Zhang, T. L.

    2008-01-01

    A physical model for the existence of bipolar structures in the electric field that are parallel to the magnetic field and observed in the auroral ionosphere, is established by deriving the "Sagdeev potential" from the two-fluid equations in a cylindrical coordinate system. The model shows that the bipolar electric field structure can develop not only from an ion acoustic wave, but also from an ion cyclotron wave, when the Mach number and the initial electric field satisfy certain c...

  17. Ion acoustic instability of HPT particles, FAC density, anomalous resistivity and parallel electric field in the auroral region

    Indian Academy of Sciences (India)

    C S Jayasree; G Renuka; C Venugopal

    2003-12-01

    During the magnetic storm of 21st March 1990, the DE-1 spacecraft encountered the auroral region at high invariant latitude at altitudes ranging from a few thousand kilometers in the ionosphere to many earth radii in the magnetosphere. The magnetic field perturbations interpretable as field aligned current (FAC) layers and the electrostatic turbulence possibly due to electrostatic ion acoustic instability driven by these currents are shown. The critical drift velocity of Hot Plasma Torus (HPT) electrons and the growth rate of ion acoustic wave as a function of electron to ion temperature ratio (/) for low and high current densities and energy of HPT electrons are found out. The intense FAC destabilizes the ion acoustic wave and the resultant electrostatic turbulence creates an anomalous resistivity. The current driven resistivity produces parallel electric field and high power dissipation. The anomalous resistivity , potential differnece along the auroral field lines ∥, intensity of electric field turbulence ∥ and power produced per unit volume are computed. It is found that the change in westward magnetic perturbation increases ∥; ; ∥ ;∥ and . Hence HPT electrons are heated and accelerated due to power dissipation during magnetically active periods in the auroral region. Concerning, applications, such HPT electrons can be used in particle accelerators like electron ring accelerator, smokatron etc.

  18. Intensity asymmetries in the dusk sector of the poleward auroral oval due to IMF $\\mathit{B}_{x}$

    CERN Document Server

    Reistad, J P; Laundal, K M; Haaland, S; Tenfjord, P; Snekvik, K; Oksavik, K; Milan, S E

    2016-01-01

    In the exploration of global-scale features of the Earth's aurora, little attention has been given to the radial component of the Interplanetary Magnetic Field (IMF). This study investigates the global auroral response in both hemispheres when the IMF is southward and lies in the $\\textit{xz}$ plane. We present a statistical study of the average auroral response in the 12-24 magnetic local time (MLT) sector to an $\\textit{x}$ component in the IMF. Maps of auroral intensity in both hemispheres for two IMF $\\mathit{B}_{x}$ dominated conditions($ \\pm $ IMF $\\mathit{B}_{x}$) are shown during periods of negative IMF $\\mathit{B}_{z}$, small IMF $\\mathit{B}_{y}$, and local winter. This is obtained by using global imaging from the Wideband Imaging Camera on the IMAGE satellite. The analysis indicates a significant asymmetry between the two IMF $\\mathit{B}_{x}$ dominated conditions in both hemispheres. In the Northern Hemisphere the aurora is brighter in the 15-19 MLT region during negative IMF $\\mathit{B}_{x}$. In th...

  19. The presence of large sunspots near the central solar meridian at the times of modern Japanese auroral observations

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2006-10-01

    Full Text Available The validity of a technique developed by the authors to identify historical occurrences of intense geomagnetic storms, which is based on finding approximately coincident observations of sunspots and aurorae recorded in East Asian histories, is corroborated using more modern sunspot and auroral observations. Scientific observations of aurorae in Japan during the interval 1957–2004 are used to identify geomagnetic storms that are sufficiently intense to produce auroral displays at low geomagnetic latitudes. By examining white-light images of the Sun obtained by the Royal Greenwich Observatory, the Big Bear Solar Observatory, the Debrecen Heliophysical Observatory and the Solar and Heliospheric Observatory spacecraft, it is found that a sunspot large enough to be seen with the unaided eye by an "experienced" observer was located reasonably close to the central solar meridian immediately before all but one of the 30 distinct Japanese auroral events, which represents a 97% success rate. Even an "average" observer would probably have been able to see a sunspot with the unaided eye before 24 of these 30 events, which represents an 80% success rate. This corroboration of the validity of the technique used to identify historical occurences of intense geomagnetic storms is important because early unaided-eye observations of sunspots and aurorae provide the only possible means of identifying individual historical geomagnetic storms during the greater part of the past two millennia.

  20. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  1. Magnetopause erosion during the 17 March 2015 magnetic storm: Combined field-aligned currents, auroral oval, and magnetopause observations

    Science.gov (United States)

    Le, G.; Lühr, H.; Anderson, B. J.; Strangeway, R. J.; Russell, C. T.; Singer, H.; Slavin, J. A.; Zhang, Y.; Huang, T.; Bromund, K.; Chi, P. J.; Lu, G.; Fischer, D.; Kepko, E. L.; Leinweber, H. K.; Magnes, W.; Nakamura, R.; Plaschke, F.; Park, J.; Rauberg, J.; Stolle, C.; Torbert, R. B.

    2016-03-01

    We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents. The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as ~60° magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.

  2. Possible evidence for partial demagnetization of electrons in the auroral E-region plasma during electron gas heating

    Directory of Open Access Journals (Sweden)

    C. Haldoupis

    Full Text Available A previous study, based on incoherent and coherent radar measurements, suggested that during auroral E-region electron heating conditions, the electron flow in the auroral electrojet undergoes a systematic counterclockwise rotation of several degrees relative to the E×B direction. The observational evidence is re-examined here in the light of theoretical predictions concerning E-region electron demagnetization caused by enhanced anomalous cross-field diffusion during strongly-driven Farley-Buneman instability. It is shown that the observations are in good agreement with this theory. This apparently endorses the concept of wave-induced diffusion and anomalous electron collision frequency, and consequently electron demagnetization, under circumstances of strong heating of the electron gas in the auroral electrojet plasma. We recognize, however, that the evidence for electron demagnetization presented in this report cannot be regarded as definitive because it is based on a limited set of data. More experimental research in this direction is thus needed.

  3. The peak altitude of H3+ auroral emission: comparison with the ultraviolet

    Science.gov (United States)

    Blake, J.; Stallard, T.; Miller, S.; Melin, H.; O'Donoghue, J.; Baines, K.

    2013-09-01

    The altitude of Saturn's peak auroral emission has previously been measured for specific cases in both the ultraviolet (UV) and the infrared (IR). Gerard et al [2009] concludes that the night side H2 UV emission is within the range of 800 to 1300 km above the 1-bar pressure surface. However, using colour ratio spectroscopy, Gustin et al [2009] located the emission layer at or above 610 km. Measurements of the infrared auroral altitude was conducted by Stallard et al [2012] on H3+ emissions from nine VIMS Cassini images, resulting in a measurement of 1155 ± 25 km above the 1-bar pressure surface. Here we present data analysed in a manner similar to Stallard et al [2012] on the observations of H3+ emission in twenty images taken by the Visual Infrared Mapping Spectrometer (VIMS) aboard the spacecraft Cassini from the years 2006, 2008 and 2012. The bins covered were 3.39872, 3.51284, 3.64853, 4.18299 and 4.33280 μm. These observations were selected from a set of 15,000 as they contained a useful alignment of the aurorae on the limb and the body of the planet. The specific conditions that had to be met for each image were as follows; minimum integration time of 75 milliseconds per pixel, minimum number of pixels in the x and y direction of 32, the image must include the latitude range of 70 to 90 degrees for either hemisphere and the sub spacecraft angle must be between 0 and 20 degrees. This alignment allowed for the altitudinal profiles to be analysed in terms of the difference between the latitude of aurorae on the limb and on the body of Saturn; thus permitting an investigation into the effects of misalignment. In this instance, misalignment was defined as the difference between the latitude of the peak emission latitude on the planet and the latitude of the limb; assuming the aurorae to be approximately circular. A statistical study by Badman et al [2011] showed that centre of the oval is on average offset anti sunward of the pole by about 1.6 degrees. To

  4. Interferometric radar observations of filamented structures due to plasma instabilities and their relation to dynamic auroral rays

    Directory of Open Access Journals (Sweden)

    T. Grydeland

    2004-04-01

    Full Text Available Several explanations have been proposed for Naturally Enhanced ion-acoustic Echoes observed at mid- and high-latitude Incoherent Scatter observatories. A decisive measure for distinguishing between these explanations is whether or not simultaneously observed up- and down-shifted enhancement occur simultaneously, or if they are the result of temporal and/or spatial averaging.

    The EISCAT Svalbard Radar has two antennas in the same radar system, which can be used as an interferometer when pointed parallel. In observations from 17 January 2002, between 06:46:10 and 06:46:30 UT, we used this possibility, in combination with direct sampling of the received signals, to yield measurements of "naturally enhanced ion-acoustic echoes" with sufficiently high resolution to resolve such averaging, if any. For the first time, radar interferometry has been employed to estimate the sizes of coherent structures. The observations were coordinated with an image intensified video camera with a narrow field of view. Together, this forms the initial study on the causal relationships between enhanced echoes and fine structure in the auroral activity on sub-kilometer, sub-second scales.

    The results confirm that the enhanced echoes originate from very localised regions (~300m perpendicular to the magnetic field at 500km altitude with varying range distribution, and with high time variability (≈200ms. The corresponding increase in scattering cross section, up to 50dB above incoherent scattering, eliminates theoretical explanations based on marginal stability. The simultaneously observed up- and down-shifted enhanced shoulders, when caused by sufficiently narrow structures to be detected by the interferometer technique, originate predominantly from the same volume. These results have significant impact on theories attempting to explain the enhancements, in particular it is found that the ion

  5. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    Full Text Available

    Abstract. Simultaneous DMSP F7 and Viking satellite measurements of the dawnside high-latitude auroral energy electron and ion precipitation show that the region of the low and middle altitude auroral precipitation consists of three characteristic plasma regimes. The recommendation of the IAGA Working Group IIF/III4 at the IAGA Assembly in Boulder, July 1995 to decouple the nomenclature of ionospheric populations from magnetospheric population is used for their notation. The most equatorial regime is the Diffuse Auroral Zone (DAZ of diffuse spatially unstructured precipitating electrons. It is generated by the plasma injection to the inner magnetosphere in the nightside and the subsequent drift plasma to the dawnside around the Earth. Precipitating particles have a hard spectrum with typical energies of electrons and ions of more than 3 keV. In the DAZ, the ion pitch-angle distribution is anisotropic, with the peak near 90°. The next part is the Auroral Oval (AO, a structured electron regime which closely resembles the poleward portion of the night-side auroral oval. The typical electron energy is several keV, and the ion energy is up to 10 keV. Ion distributions are pre-dominantly isotropic. In some cases, this plasma regime may be absent in the pre-noon sector. Poleward of the Auroral Oval, there is the Soft Small Scale Luminosity (SSSL regime. It is caused by structured electron and ion precipitation with typical electron energy of about 0.3 keV and ion energy of about 1 keV. The connection of these low-altitude regimes with plasma domains of the distant magnetosphere is discussed. For mapping of the plasma regimes to the equatorial plane of the magnetosphere, the empirical model by Tsyganenko (1995 and the conceptual model by Alexeev et al. (1996 are used. The DAZ is mapped along the magnetic field lines to the Remnant Layer (RL, which is located in the outer radiation belt region; the zone of structured

  6. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    Energy Technology Data Exchange (ETDEWEB)

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  7. Dynamics of polar boundary of the auroral oval derived from the IMAGE satellite data

    Science.gov (United States)

    Lukianova, R.; Kozlovsky, A.

    2013-01-01

    Based on a new database on positions of the auroral oval boundaries including measurements made by the IMAGE satellite in 2000-2002 with correct determination of the glow boundaries, statistical estimations of the latitudinal position of the polar cap boundary (PCB) are obtained depending on the IMF B y and B z , and the PCB evolution during a magnetic storm is analyzed. At zero IMF in the noon (midnight) sector, PCB is located approximately at 80° (76°) CGMLat. The PCB displacement along the noon-midnight meridian is controlled by the IMF B z , and in the noon (midnight) sector it is equal to 0.45° (0.15°) CGMLat when B z changes by 1 nT. The PCB displacement along the dawn-dusk meridian depends on the IMF B y , and it equals 0.1° CGMLat when B y changes by 1 nT. Accordingly, the north polar cap as a whole is shifted to the dawn (dusk) side at B y > 0 ( B y night boundary requires 25 h or more in order to be shifted to the pole to a latitude corresponding to B z > 0.

  8. Numerical study of the auroral particle transport in the polar upper atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Starting from the Boltzmann equation and with some reasonable assumptions, a one-dimensional transport equation of charged energetic particles is derived by taking account of major interactions with neutral species in the upper atmosphere, including the processes of elastic scattering, the excitation, the ionization and the secondary electron production. The transport equation is numerically solved, for a simplified atmosphere consisting only of nitrogen molecules (N2), to obtain the variations of incident electron fluxes as a function of altitude, energy and pitch angle. The model results can describe fairly the transport characteristics of pre-cipitating auroral electron spectra in the polar upper atmosphere; meanwhile the N2 ionization rates calculated from the modeled differential flux spectra also exhibit good agreements with existing empirical models in terms of several key parameters. Taking the energy flux spectra of precipitating electrons observed by FAST satellite flying over EISCAT site on May 15, 1997 as model inputs, the model-calculated ionization rate profile of neutral atmosphere consists reasonably with that recon-structed from electron density measurements by the radar.

  9. Climatology of the Ionospheric Scintillations over the Auroral and Cusp European Regions

    Science.gov (United States)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.

    2009-04-01

    Under perturbed conditions coming from the outer space, the ionosphere may become highly turbulent and small scale (from centimeters to meters) irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form causing diffraction effects on the satellites signals passing through them. Such effect can abruptly corrupt the performance of the positioning systems affecting, in turn, the awareness and safety of the modern devices. In this paper we analyze data of ionospheric scintillation in the latitudinal range 57°- 88° N during the period October, November and December 2003 as a first step to develop a "scintillation climatology" over the Northern Europe. The behavior of the scintillation occurrence as function of the magnetic local time and of the corrected magnetic latitude is investigated to characterize the scintillation conditions. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC monitor) receivers over the European middle and high latitude regions. The results here shown and obtained merging observations from three GISTM, highlight also the possibility to investigate the dynamics of irregularities causing scintillation by combining the information coming from auroral to cusp latitudes. The findings, even if at a very preliminary stage, are here presented also in the frame of possible Space Weather implications.

  10. Auroral ion acoustic wave enhancement observed with a radar interferometer system

    Science.gov (United States)

    Schlatter, N. M.; Belyey, V.; Gustavsson, B.; Ivchenko, N.; Whiter, D.; Dahlgren, H.; Tuttle, S.; Grydeland, T.

    2015-07-01

    Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EISCAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 × 500 m, and at times less than 160 m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.

  11. Right-hand polarized 4fce auroral roar emissions: 1. Observations

    Science.gov (United States)

    LaBelle, J.; Chen, Y.

    2016-08-01

    A receiving system installed at Sondrestrom, Greenland, was used to monitor all detectable auroral radio emissions at the fourth harmonic of the electron cyclotron frequency (called 4fce roar emissions) between May 2015 and March 2016. Of 88 events detected, 86 occurred during daylit conditions and were left-hand polarized. Two occurred during darkness conditions and were right-hand polarized. The left-hand and right-hand polarized events had entirely different frequency distributions. One of the right-hand polarized 4fce emissions occurred at the same time as and at exactly twice the frequency of a second harmonic emission (2fce roar). The occurrence rate of 4fce emissions during premidnight hours under daylit conditions at Sondrestrom is 5%, comparable to previously reported occurrence rates of 2fce roar in darkness conditions at optimum latitudes of occurrence, but the occurrence rate of 4fce emissions during dark conditions is much lower, suggesting that if the right-hand polarized events arise from coalescence of 2fce waves, only for a small fraction of nighttime 2fce roar emissions does such a process yield 4fce emissions detectable at ground level.

  12. Negative ions in the auroral mesosphere during a PCA event around sunset

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    Full Text Available This is a study of the negative ion chemistry in the mesosphere above Tromsø using a number of EISCAT observations of high energy proton precipitation events during the last solar maximum, and in particular around sunset on 23 October, 1989. In these conditions it is possible to look at the relative importance of the various photodetachment and photodissociation processes controlling the concentration of negative ions. The data analysed are from several UHF GEN11 determinations of the ion-plasma ACF together with the pseudo zero-lag estimate of the `raw' electron density, at heights between 55 km and 85 km, at less than 1 km resolution. The power profiles from the UHF are combined with the 55-ion Sodankylä model to obtain consistent estimates of the electron density, the negative ion concentrations, and the average ion mass with height. The neutral concentrations and ion temperature are given by the MSIS90 model. These parameters are then used to compare the calculated widths of the ion-line with the GEN11 determinations. The ion-line spectrum gives information on the effects of negative ions below 70 km where they are dominant; the spectral width is almost a direct measure of the relative abundance of negative ions.

    Key words. Ionosphere (auroral ionosphere; ion chemistry and composition; particle precipitation.

  13. Non-magnetic aspect sensitive auroral echoes from the lower E region observed at 50 MHz

    Directory of Open Access Journals (Sweden)

    R. Rüster

    Full Text Available Backscatter from E-region irregularities was observed at aspect angles close to 90° (almost parallel to the direction of the magnetic field using the ALOMAR SOUSY radar at Andoya/Norway. Strong electric fields and increased E-region electron temperatures simultaneously measured with the incoherent scatter facility EISCAT proved that the Farley-Buneman plasma instability was excited. In addition, strong particle precipitation was present as inferred from EISCAT electron densities indicating that the gradient drift instability may have been active, too. Backscatter at such large aspect angles was not expected and has not been observed before. The characteristics of the observed echoes, however, are in many aspects completely different from usual auroral radar results: the Doppler velocities are only of the order of 10 m/s, the half-width of the spectra is around 5 m/s, the echoes originate at altitudes well below 100 km, and they seem to be not aspect-sensitive with respect to the magnetic field direction. We, therefore, conclude that the corresponding irregularities are not caused by the mentioned instabilities and that other mechanism have to be invoked.

    Key words. Ionosphere (plasma waves and instabilities; ionosphere irregularities; particle precipitaion · Meteorology and atmospheric dynamics (middle atmosphere dynamics

  14. First Terrestrial Soft X-Ray Auroral Observation by the Chandra X-Ray Observatory

    Science.gov (United States)

    Bhardwaj, Anil; Gladstone, G. Randall; Elsner, Ronald F.; Oestgaard, Nikolai; Waite, J. Hunter, Jr.; Cravens, Thomas E.; Chang, Shen-Wu; Majeed, Tariq; Metzger, Albert E.

    2007-01-01

    Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each approx.20 min duration) between mid- December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft (X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray "hot-spot" has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable 0ntense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

  15. Magnetic Storm Effects in the Auroral Ionosphere Observed with EISCAT Radar -Two Case Studies

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMF Bz component. Strong hard particle precipitation occurred in the initial phase for both storma,associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMF Bz. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly in E- and F-region, but the electron temperature did quite different, with a strong increase in the lower E-region relating to plasma instability excited by strong electric field and a slight decrease in the F-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity.

  16. The MITHRAS: A program of simultaneous radar observations of the high-latitude auroral zone

    Science.gov (United States)

    Delabeaujardiere, O.; Baron, M. J.; Wickwar, V. B.; Senior, C.; Evans, J. V.

    1982-11-01

    An intensive campaign of coordinated incoherent-scatter radar experiments took place in 1981-1982. It was planned to take advantage of the short period during which three incoherent-scatter radars could probe the auroral zone simultaneously. The three incoherent-scatter radars that participated in the MITHRAS experiments were Chatanika, Millstone-Hill, and EISCAT. Collaborative studies were undertaken using data from the DE spacecraft and the stare radar. There were three main types of MITHRAS experiments, each with a different scientific purpose. MITHRAS 1 was aimed at large latitudinal coverage of F-region drifts, electron-densities and temperatures. MITHRAS 2 was designed for very good height and time resolution. MITHRAS 3 was intermediate between the other two modes. It provided both E- and F-region coverage over several degrees in latitude. Under the MITHRAS project, substantial changes and additions were made to the software and hardware systems at Millstone and Chatanika. Thirty-three MITHRAS experiments were performed. Most of the data have been reduced. The analysis and interpretation of the date are well underway.

  17. Tests of Sunspot Number Sequences: 2. Using Geomagnetic and Auroral Data

    CERN Document Server

    Lockwood, Mike; Barnard, Luke A; Scott, Chris J; Usoskin, Ilya G; Nevanlinna, Heikki

    2016-01-01

    We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC composite of Wolf-Zurich-International sunspot number [$R_{ISNv1}$], the group sunspot number [$R_{G}$] by Hoyt and Schatten (Solar Phys., 1998), the new "backbone" group sunspot number [$R_{BB}$] by Svalgaard and Schatten (Solar Phys., 2016), and the "corrected" sunspot number [$R_{C}$] by Lockwood at al. (J.G.R., 2014). Each sunspot number is fitted with terrestrial observations, or parameters derived from terrestrial observations to be linearly proportional to sunspot number, over a 30-year calibration interval of 1982-2012. The fits are then used to compute test sequences, which extend further back in time and which are compared to $R_{ISNv1}$, $R_{G}$, $R_{BB}$, and $R_{C}$. To study the long-term trends, comparisons are made using averages over whole solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) using the IDV(1d) an...

  18. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region

    Energy Technology Data Exchange (ETDEWEB)

    Ilyasov, Askar A., E-mail: asjosik@mail.ru [Space Research Institute of the Russian Academy of Science, Moscow 117997 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Chernyshov, Alexander A., E-mail: achernyshov@iki.rssi.ru; Mogilevsky, Mikhail M., E-mail: mogilevsky@romance.iki.rssi.ru [Space Research Institute of the Russian Academy of Science, Moscow 117997 (Russian Federation); Golovchanskaya, Irina V., E-mail: golovchanskaya@pgia.ru; Kozelov, Boris V., E-mail: boris.kozelov@gmail.com [Polar Geophysical Institute of the Russian Academy of Science, Apatity, Murmansk region 184209 (Russian Federation)

    2015-03-15

    Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.

  19. Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Golovchanskaya, Irina V.; Kozelov, Boris V. [Polar Geophysical Institute, Apatity 184209 (Russian Federation); Chernyshov, Alexander A.; Mogilevsky, Mikhail M. [Space research Institute, Moscow 117997 (Russian Federation); Ilyasov, Askar A. [Moscow Institute of Physics and Technology, Moscow 141700 (Russian Federation); Space research Institute, Moscow 117997 (Russian Federation)

    2014-08-15

    The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ∼10{sup 2}–10{sup 3} m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominating branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.

  20. Hint of star exoplanet interaction by modelling the stellar auroral radio emission of the M8.5 dwarf TVLM 513-46546

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The stellar auroral radio emission has been recognized in some early-type magnetic stars and in many ultra-cool dwarfs. The typical features are the highly polarized pulses explained in terms of Electron Cyclotron Maser emission mechanism. The A0 type star CU Virginis is the prototype of the stars showing this coherent emission; the repeatability and stability of its auroral radio emission allow us to well study this elusive phenomenon. Taking advantage of the CU Vir insights, we built a 3D-model able to reproduce the timing and pulse profile of the auroral radio emission from a dipolar magnetosphere. This model can be applied to stars with an overall symmetric magnetic field topology and showing auroral radio emission, like the ultra-cool dwarfs. In this paper, we simulate the cyclic circularly-polarized pulses of the ultra-cool dwarf TVLM 513-46546, observed with the VLA at 4.88 and 8.44 GHz on May 2006. The auroral radio emission originates in polar rings located at different elevations as a function of th...

  1. The Auroral Spatial Structures Probe: magnetic and electric field measurements during an active aurora at fine spatial and temporal scales

    Science.gov (United States)

    Martineau, R. J.; Pratt, J.; Swenson, C.

    2015-12-01

    The Auroral Spatial Structures Probe was a rocket campaign that launched from Poker Flat on January 28, 2015 at 10:41:01 UTC to make multi-point vector observations of the magnetic and electric fields during an active aurora. With 6 instrumented payloads deployed from the rocket in addition to the main payload, each payload making simultaneous measurements of the magnetic and electric fields, the goals of this mission are to resolve the temporal-spatial ambiguity concerning the structures of the electric and magnetic fields during an active auroral event. The vector nature of these measurements requires an accurate knowledge of attitude throughout the flight. Each payload was equipped with gyroscopes to obtain a post-processed attitude solution after the flight. While the main payload's inertial sensors functioned well, the spin axis gyroscope on the subpayloads saturated due to a design flaw. To obtain the attitude and render the vector measurements useful, a least-squares based approach to estimate the attitude history of the payloads was devised using the magnetic and electric field measurements. Once the attitude solution was applied the temporal structures seen in the magnetic and electric fields while flying through the auroral arc are strongly correlated between payloads. We present the new attitude history estimation approach and discuss its strengths and weaknesses compared to traditional attitude methods. We also present preliminary findings from the magnetic and electric field instruments.The Auroral Spatial Structures Probe was a rocket campaign that launched from Poker Flat on January 28, 2015 at 10:41:01 UTC to make multi-point vector observations of the magnetic and electric fields during an active aurora. With 6 instrumented payloads deployed from the rocket in addition to the main payload, each payload making simultaneous measurements of the magnetic and electric fields, the goals of this mission are to resolve the temporal-spatial ambiguity

  2. Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers

    Science.gov (United States)

    Nichols, J. D.; Milan, S. E.

    2016-09-01

    We present calculations of the auroral radio powers expected from exoplanets with magnetospheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically, we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers resulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection, as a function of planetary orbital distance and magnetic field strength. We include saturation of the magnetospheric convection, as observed at the terrestrial magnetosphere, and we present power-law approximations for the convection potentials, radio powers and spectral flux densities. We specifically consider a solar-age system and a young (1 Gyr) system. We show that the radio power increases with magnetic field strength for magnetospheres with saturated convection potential, and broadly decreases with increasing orbital distance. We show that the magnetospheric convection at hot Jupiters will be saturated, and thus unable to dissipate the full available incident Poynting flux, such that the magnetic Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio powers for hot Jupiters. Our radio powers for hot Jupiters are ˜5-1300 TW for hot Jupiters with field strengths of 0.1-10 BJ orbiting a Sun-like star, while we find that competing effects yield essentially identical powers for hot Jupiters orbiting a young Sun-like star. However, in particular, for planets with weaker magnetic fields, our powers are higher at larger orbital distances than given by the RBL, and there are many configurations of planet that are expected to be detectable using SKA.

  3. Equivalent currents associated with morning-sector geomagnetic Pc5 pulsations during auroral substorms

    Science.gov (United States)

    Kauristie, K.; Uspensky, M. V.; Kleimenova, N. G.; Kozyreva, O. V.; Van De Kamp, M. M. J. L.; Dubyagin, S. V.; Massetti, S.

    2016-04-01

    Space and time variations of equivalent currents during morning-sector Pc5 pulsations (T ˜ 2-8 min) on 2 days (18 January and 19 February 2008) are studied in the context of substorm activity with THEMIS and MIRACLE ground-based instruments and THEMIS P3, P5, and P2 probes. These instruments covered the 22:00-07:00 magnetic local time during the analyzed events. In these cases abrupt changes in the Pc5 amplitudes, intensifications and/or weakenings, were recorded some minutes after auroral breakups in the midnight sector. We analyze three examples of Pc5 changes with the goal to resolve whether substorm activity can have an effect on Pc5 amplitude or not. In two cases (on 19 February) the most likely explanation for Pc5 amplitude changes comes from the solar wind (changes in the sign of interplanetary magnetic field Bz). In the third case (on 18 January) equivalent current patterns in the morning sector show an antisunward-propagating vortex which replaced the Pc5-related smaller vortices and consequently the pulsations weakened. We associate the large vortex with a field-aligned current system due to a sudden, although small, drop in solar wind pressure (from 1 to 0.2 nPa). However, the potential impact of midnight substorm activity cannot be totally excluded in this case, because enhanced fluxes of electrons with high enough energies (˜ 280 keV) to reach the region of Pc5 within the observed delay were observed by THEMIS P2 at longitudes between the midnight and morning-sector instrumentation.

  4. On the collocation between dayside auroral activity and coherent HF radar backscatter

    Directory of Open Access Journals (Sweden)

    J. Moen

    Full Text Available The 2D morphology of coherent HF radar and optical cusp aurora has been studied for conditions of predominantly southward IMF conditions, which favours low-latitude boundary layer reconnection. Despite the variability in shape of radar cusp Doppler spectra, the spectral width criterion of > 220 m s–1 proves to be a robust cusp discriminator. For extended periods of well-developed radar backscatter echoes, the equatorward boundary of the > 220 m s–1 spectral width enhancement lines up remarkably well with the equatorward boundary of the optical cusp aurora. The spectral width boundary is however poorly determined during development and fading of radar cusp backscatter. Closer inspection of radar Doppler profile characteristics suggests that a combination of spectral width and shape may advance boundary layer identification by HF radar. For the two December days studied the onset of radar cusp backscatter occurred within pre-existing 630.0 nm cusp auroral activity and appear to be initiated by sunrise, i.e. favourable radio wave propagation conditions had to develop. Better methods are put forward for analysing optical data, and for physical interpretation of HF radar data, and for combining these data, as applied to detection, tracking, and better understanding of dayside aurora. The broader motivation of this work is to develop wider use by the scientific community, of results of these techniques, to accelerate understanding of dynamic high-latitude boundary-processes. The contributions in this work are: (1 improved techniques of analysis of observational data, yielding meaningfully enhanced accuracy for deduced cusp locations; (2 a correspondingly more pronounced validation of correlation of boundary locations derived from the observational data set; and (3 a firmer physical rationale as to why the good correlation observed should theoretically be expected.

    Key words: Ionosphere (ionospheric

  5. Two types of ion energy dispersions observed in the nightside auroral regions during geomagnetically disturbed periods

    Science.gov (United States)

    Hirahara, M.; Mukai, T.; Nagai, T.; Kaya, N.; Hayakawa, H.; Fukunishi, H.

    1996-04-01

    The Akebono satellite has observed two types of energy dispersion signatures of discrete ion precipitation event in the nightside auroral regions during active geomagnetic conditions. The charged particle experiments and electric and magnetic field detectors on board Akebono provide us with essential clues to characterize the source regions and acceleration and/or injection processes associated with these two types of ion signatures. The magnetic field data obtained simultaneously by the geosynchronous GOES 6 and 7 satellites and the ground magnetograms are useful to examine their relationships with geomagnetic activity. Mass composition data and pitch angle distributions show that different sources and processes should be attributed to two types (Types I and II) of energy dispersion phenomena. Type I consists of multiple bouncing ion clusters constituted by H+. These H+ clusters tend to be detected at the expansion phase of substorms and have characteristic multiple energy-dispersed signatures. Type II consists of O+ energy dispersion(s), which is often observed at the recovery phase. It is reasonable to consider that the H+ clusters of Type I are accelerated by dipolarization at the equator, are injected in the field-aligned direction, and bounce on closed field lines after the substorm onset. We interpret these multiple energy dispersion events as mainly due to the time-of-flight (TOF) effect, although the convection may influence the energy-dispersed traces. Based of the TOF model, we estimate the source distance to be 20-30 RE along the field lines. On the other hand, the O+ energy dispersion of Type II is a consequence of reprecipitation of terrestrial ions ejected as an upward flowing ion (UFI) beam from the upper ionosphere by a parallel electrostatic potential difference. The O+ energy dispersion is induced by the E×B drift during the field-aligned transport from the source region to the observation point.

  6. Combined optical, EISCAT and magnetic observations of the omega bands/Ps6 pulsations and an auroral torch in the late morning hours: a case study

    Directory of Open Access Journals (Sweden)

    V. Safargaleev

    2005-07-01

    Full Text Available We present here the results of multi-instrument observations of auroral torch and Ps6 magnetic pulsations, which are assumed to be the magnetic signature of the spatially periodic optical auroras known as omega bands. Data from TV and ASC cameras in Barentsburg and Ny Ålesund, EISCAT radars in Longyearbyen and Tromsø, as well as IMAGE network were used in this study. The auroral phenomenon which was considered differed from that previously discussed, as it occurred both in an unusual place (high latitudes and at an unusual time (late morning hours. We show that this might occur due to specific conditions in the interplanetary medium, causing the appropriate deformation of the magnetosphere. In such a case, the IMF turned out to be an additional factor in driving the regime of Ps6/omega bands, namely, only by acting together could a substorm onset in the night sector and Bz variations result in their generation. Since the presumable source of Ps6/omega bands does not co-locate with convection reversal boundaries, we suggest the interpretation of the phenomena in the frame of the interchange instability instead of the Kelvin-Helmholtz instability that is widely discussed in the literature in connection with omega auroras. Some numerical characteristics of the auroral torch were obtained. We also emphasize to the dark hole in the background luminosity and the short-lived azimuthally-restricted auroral arc, since their appearance could initiate the auroral torch development.

    Keywords. Magnetospheric physics (Auroral phenomena; Plasma convection; Solar wind-magnetosphere interaction

  7. Temporal evolution of pump beam self-focusing at the High-Frequency Active Auroral Research Program

    OpenAIRE

    Kosch, Mike J.; Pedersen, T.; Mishin, E.; Starks, M; Gerken-Kendall, E.; D. Sentman; Oyama, S.; Watkins, B.

    2007-01-01

    On 4 February 2005 the High-Frequency Active Auroral Research Program (HAARP) facility was operated at 2.85 MHz to produce artificial optical emissions in the ionosphere while passing through the second electron gyroharmonic. All-sky optical recordings were performed with 15 s integration, alternating between 557.7 and 630 nm. We report the first optical observations showing the temporal evolution of large-scale pump wave self-focusing in the magnetic zenith, observed in the 557.7 nm images. ...

  8. Crowd-sourcing, Communicating, and Improving Auroral Science at the Speed of Social Media through Aurorasaurus.org

    Science.gov (United States)

    Patel, K.; MacDonald, E.; Case, N.; Hall, M.; Clayton, J.; Heavner, M.; Tapia, A.; Lalone, N.; McCloat, S.

    2015-12-01

    On March 17, 2015, a geomagnetic storm—the largest of the solar cycle to date— hit Earth and gave many sky watchers around the world a beautiful auroral display. People made thousands of aurora-related tweets and direct reports to Aurorasaurus.org, an interdisciplinary citizen science project that tracks auroras worldwide in real-time through social media and the project's apps and website. Through Aurorasaurus, researchers are converting these crowdsourced observations into valuable data points to help improve models of where aurora can be seen. In this presentation, we will highlight how the team communicates with the public during these global, sporadic events to help drive and retain participation for Aurorasaurus. We will highlight some of the co-produced scientific results and increased media interest following this event. Aurorasaurus uses mobile apps, blogging, and a volunteer scientist network to reach out to aurora enthusiasts to engage in the project. Real-time tweets are voted on by other users to verify their accuracy and are pinned on a map located on aurorasaurus.org to help show the instantaneous, global auroral visibility. Since the project launched in October 2014, hundreds of users have documented the two largest geomagnetic storms of this solar cycle. In some cases, like for the St. Patrick's Day storm, users even reported seeing aurora in areas different than aurora models suggested. Online analytics indicate these events drive users to our page and many also share images with various interest groups on social media. While citizen scientists provide observations, Aurorasaurus gives back by providing tools to help the public see and understand the aurora. When people verify auroral sightings in a specific area, the project sends out alerts to nearby users of possible auroral visibility. Aurorasaurus team members around the world also help the public understand the intricacies of space weather and aurora science through blog articles

  9. Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshov, A. A., E-mail: achernyshov@iki.rssi.ru; Ilyasov, A. A., E-mail: asjosik@mail.ru; Mogilevskii, M. M., E-mail: mogilevsky@romance.iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation); Golovchanskaya, I. V., E-mail: golovchanskaya@pgia.ru; Kozelov, B. V., E-mail: boris.kozelov@gmail.com [Russian Academy of Sciences, Polar Geophysical Institute (Russian Federation)

    2015-03-15

    In order to study instabilities caused by inhomogeneities of the electric field and plasma density in the auroral zone, numerical algorithms are developed and numerical simulations are performed for different conditions in the background plasma. To this end, a nonlocal dispersion relation for a given type of wave is analyzed. It is shown that the dispersion relation has unstable solutions in a wide range of frequencies and wavenumbers. These solutions manifest themselves in satellite observations as a broadband spectrum of electrostatic perturbations. Two mechanisms of broadband noise generation related to the gradients of the density and electric field are compared.

  10. Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2008-05-01

    Full Text Available We discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (ΣP. Here we introduce an ionospheric feedback as the variation of ΣP with the energy flux of precipitating magnetospheric electrons (εem. One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φm, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j||, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φi (and implicitely ΔΦ is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j|| of the order of tens of μA/m2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j|| and εem are higher than in the case of a uniform ΣP. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and

  11. A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents

    Science.gov (United States)

    Lee, S.; Shiokawa, K.; McFadden, J. P.

    2010-12-01

    The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field

  12. Letter to the EditorOn the use of the sunspot number for the estimation of past solar and upper atmosphere conditions from historical and modern auroral observations

    Directory of Open Access Journals (Sweden)

    J. M Vaquero

    2005-07-01

    Full Text Available In this short contribution the use of different sunspot numbers for the estimation of past solar and upper atmosphere conditions from historical and modern auroral observations realised by Schröder et al. (2004 is analysed. Moreover, some comments are made on the relationships between mean annual visual observations of the auroras at middle latitudes of Europe and the mean annual sunspot number during 1780–1829. Keywords. Atmospheric composition and structure (Airglow and aurora – Magnetospheric physics (Auroral phenomena, solar wind-magnetosphere interactions – History of geophysics (Solar-planetary relationship

  13. Wave and Particle Interactions in the High and Low-Altitude Auroral Region During Rising Solar Activity

    Science.gov (United States)

    Gurnett, Donald A.; Menietti, J. D.

    2003-01-01

    The project has resulted in four separate investigations, which are each in various stages of publication in the refereed scientific journals. The first investigation was of the generation of electrostatic electron cyclotron waves observed by the Polar spacecraft throughout the auroral regions, dayside cusp, and polar magnetosphere. We have since discovered that these waves are also present within the magnetopause and magnetosheath, which is one of the topics of a second study, entitled: 'Polar observations of plasma waves in and near the dayside magnetopause/magnetosheath.' A third study of plasma waves focussed on kilometric continuum (KC) emission. This work is reported in a paper entitled 'Near-source and Remote Observations of Kilometric Continuum Radiation From Multi-spacecraft Observations'.The final investigation of this program concerns the possible transverse heating of auroral ions by impulsive wave structures. We summarize that substantial transverse ion heating has already occurred at lower altitudes. Abstracts of the above four studies are included in the Appendix to this final report.

  14. Tomography-like retrieval of auroral volume emission ratios for the 31 January 2008 Hotel Payload 2 event

    Science.gov (United States)

    Enell, C.-F.; Gustavsson, B.; Brändström, B. U. E.; Sergienko, T. I.; Verronen, P. T.; Rydesäter, P.; Sandahl, I.

    2012-01-01

    Quantitative tomography-like volume estimates of the N2+(1N) emission at 427.8 nm, the O(1S) emission at 557.7 nm and the O(1D) emission at 630.0 nm can be retrieved from data from the Auroral Large Imaging System (ALIS) remote-controlled spectral imagers operated at field stations in northern Sweden and Norway. This paper presents a case study of a quiet auroral arc passing over the common volume of the imagers in the evening of 31 January 2008, before the launch of the Hotel Payload 2 (HotPay 2) rocket from Andøya Rocket Range. The reconstructed spectroscopic ratios at the lower altitudes close to the mesopause region can be used as indicators of the NO and O profiles, as the atomic oxygen O(1S) and O(1D) states are excited partly through chemical reactions. The profiles of the ratios of the volume emission rates ɛ557.7 and ɛ427.8 observed by ALIS over northern Norway show nothing unambiguously unusual within the accuracy of the calibration and retrieval, whereas HotPay 2 indicated subsidence of lower thermospheric air, with higher NO concentrations. This is consistent with observations of NO and CO by satellite instruments, which indicate subsidence in vortex filaments only in the NW as seen from the Scandinavian mainland.

  15. Tomography-like retrieval of auroral volume emission ratios for the 31 January 2008 Hotel Payload 2 event

    Directory of Open Access Journals (Sweden)

    C.-F. Enell

    2012-01-01

    Full Text Available Quantitative tomography-like volume estimates of the N2+(1N emission at 427.8 nm, the O(1S emission at 557.7 nm and the O(1D emission at 630.0 nm can be retrieved from data from the Auroral Large Imaging System (ALIS remote-controlled spectral imagers operated at field stations in northern Sweden and Norway. This paper presents a case study of a quiet auroral arc passing over the common volume of the imagers in the evening of 31 January 2008, before the launch of the Hotel Payload 2 (HotPay 2 rocket from Andøya Rocket Range. The reconstructed spectroscopic ratios at the lower altitudes close to the mesopause region can be used as indicators of the NO and O profiles, as the atomic oxygen O(1S and O(1D states are excited partly through chemical reactions. The profiles of the ratios of the volume emission rates ε557.7 and ε427.8 observed by ALIS over northern Norway show nothing unambiguously unusual within the accuracy of the calibration and retrieval, whereas HotPay 2 indicated subsidence of lower thermospheric air, with higher NO concentrations. This is consistent with observations of NO and CO by satellite instruments, which indicate subsidence in vortex filaments only in the NW as seen from the Scandinavian mainland.

  16. Auroral radio emission from late L and T dwarfs: A new constraint on dynamo theory in the substellar regime

    CERN Document Server

    Kao, Melodie M; Pineda, J Sebastian; Escala, Ivanna; Burgasser, Adam; Bourke, Stephen; Stevenson, David

    2015-01-01

    We have observed 6 late-L and T dwarfs with the Karl G. Jansky Very Large Array (VLA) to investigate the presence of highly circularly polarized radio emission, associated with large-scale auroral currents. Previous surveys encompassing ~60 L6 or later targets in this spectral range have yielded only one detection. Our sample includes the previously detected T6.5 dwarf 2MASS 10475385+2124234 as well as 5 new targets selected for the presence of H-alpha emission or optical/infrared photometric variability, which are possible manifestations of auroral activity. We detect 2MASS 10475385+2124234, as well as 4 of the 5 targets in our biased sample, including the strong IR variable SIMP J01365662+0933473 and bright H-alpha emitter 2MASS 12373919+6526148, reinforcing the possibility that activity at these disparate wavelengths is related. The radio emission frequency corresponds to a precise determination of the lower-bound magnetic field strength near the surface of each dwarf and this new sample provides robust co...

  17. The location of the open-closed magnetic field line boundary in the dawn sector auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2004-11-01

    Full Text Available As a measure of the degree of coupling between the solar wind-magnetosphere-ionosphere systems, the rate at which the size of the polar cap (the region corresponding to ionospheric termini of open magnetic flux tubes varies is of prime importance. However, a reliable technique by which the extent of the polar cap might be routinely monitored has yet to be developed. Current techniques provide particularly ambiguous indications of the polar cap boundary in the dawn sector. We present a case study of space- and ground-based observations of the dawn-sector auroral zone and attempt to determine the location of the polar cap boundary using multi-wavelength observations of the ultraviolet aurora (made by the IMAGE FUV imager, precipitating particle measurements (recorded by the FAST, DMSP, and Cluster 1 and 3 satellites, and SuperDARN HF radar observations of the ionospheric Doppler spectral width boundary. We conclude that in the dawn sector, during the interval presented, neither the poleward edge of the wideband auroral UV emission (140-180nm nor the Doppler spectral width boundary were trustworthy indicators of the polar cap boundary location, while narrow band UV emissions in the range 130-140nm appear to be much more reliable.

  18. Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Bharuthram, R. [University of the Western Cape, Bellville (South Africa); Pillay, S. R. [School of Physics, University of Kwazulu-Natal, Durban (South Africa)

    2011-12-15

    Electrostatic solitary waves (ESWs) have been observed by satellites in the auroral region of the Earth's magnetosphere. These ESWs are found to be having both positive and negative electrostatic potentials. Using the Sagdeeev psuedo-potential technique, arbitrary amplitude electron-acoustic solitary waves/double layers are studied in an unmagnetized plasma consisting of non-thermally distributed hot electrons, fluid cold electrons, a warm electron beam, and ions. The inertia of the warm electrons, and not the beam speed, is essential for the existence of positive potential solitary structures. Existence domains for positive as well as negative potential electrostatic solitons/double layers are obtained. For the typical auroral region parameters, the electric field amplitude of the negative potential solitons is found to be in the range {approx}(3-30) mV/m and {approx}(5-80) mV/m for the positive potential solitons. For the negative potential solitons/double layers, the amplitudes are higher when their widths are smaller. On the other hand, the amplitude of the positive potential structures increase with their widths.

  19. Auroral Radio Emission from Late L and T Dwarfs: A New Constraint on Dynamo Theory in the Substellar Regime

    Science.gov (United States)

    Kao, Melodie M.; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam; Bourke, Stephen; Stevenson, David

    2016-02-01

    We have observed six late L and T dwarfs with the Karl G. Jansky Very Large Array (VLA) to investigate the presence of highly circularly polarized radio emission, associated with large-scale auroral currents. Previous surveys encompassing ∼60 L6 or later targets have yielded only one detection. Our sample includes the previously detected T6.5 dwarf 2MASS 10475385+2124234, as well as five new targets selected for the presence of Hα emission and/or optical infrared photometric variability, which are possible manifestations of auroral activity. We detect 2MASS 10475385+2124234, as well as four of the five targets in our biased sample, including the strong IR-variable source SIMP J01365662+0933473 and bright Hα emitter 2MASS 12373919+6526148, reinforcing the possibility that activity at these disparate wavelengths is related. The radio emission frequency corresponds to a precise determination of the lower-bound magnetic field strength near the surface of each dwarf, and this new sample provides robust constraints on dynamo theory in the low-mass brown dwarf regime. Magnetic fields ≳ 2.5 kG are confirmed for five of six targets. Our results provide tentative evidence that the dynamo operating in this mass regime may be inconsistent with predicted values from a recently proposed model. Further observations at higher radio frequencies are essential for verifying this assertion.

  20. Tests of Sunspot Number Sequences: 2. Using Geomagnetic and Auroral Data

    Science.gov (United States)

    Lockwood, M.; Owens, M. J.; Barnard, L.; Scott, C. J.; Usoskin, I. G.; Nevanlinna, H.

    2016-06-01

    We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original Solar Influences Data Center (SIDC) composite of Wolf/Zürich/International sunspot number [ R_{ISNv1}], the group sunspot number [ RG] by Hoyt and Schatten (Solar Phys. 181, 491, 1998), the new "backbone" group sunspot number [ R_{BB}] by Svalgaard and Schatten (Solar Phys., DOI 10.1007/s11207-015-0815-8, 2016), and the "corrected" sunspot number [ RC] by Lockwood, Owens, and Barnard (J. Geophys. Res. 119, 5172, 2014a). Each sunspot number is fitted with terrestrial observations, or parameters derived from terrestrial observations to be linearly proportional to sunspot number, over a 30-year calibration interval of 1982 - 2012. The fits are then used to compute test sequences, which extend further back in time and which are compared to R_{ISNv1}, RG, R_{BB}, and RC. To study the long-term trends, comparisons are made using averages over whole solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) using the IDV(1d) and IDV geomagnetic indices (for 1845 - 2013) fitted over the calibration interval using the various sunspot numbers and the phase of the solar cycle; ii) from the open solar flux (OSF) generated for 1845 - 2013 from four pairings of geomagnetic indices by Lockwood et al. (Ann. Geophys. 32, 383, 2014a) and analysed using the OSF continuity model of Solanki, Schüssler, and Fligge (Nature, 408, 445, 2000), which employs a constant fractional OSF loss rate; iii) the same OSF data analysed using the OSF continuity model of Owens and Lockwood (J. Geophys. Res. 117, A04102, 2012), in which the fractional loss rate varies with the tilt of the heliospheric current sheet and hence with the phase of the solar cycle; iv) the occurrence frequency of low-latitude aurora for 1780 - 1980 from the survey of Legrand and Simon (Ann. Geophys. 5, 161, 1987). For all cases, R_{BB} exceeds the test

  1. On the relationship between auroral absorption, electrojet currents and plasma convection

    Directory of Open Access Journals (Sweden)

    A. C. Kellerman

    2009-02-01

    Full Text Available In this study, the relationship between auroral absorption, electrojet currents, and ionospheric plasma convection velocity is investigated using a series of new methods where temporal correlations are calculated and analysed for different events and MLT sectors. We employ cosmic noise absorption (CNA observations obtained by the Imaging Riometer for Ionospheric Studies (IRIS system in Kilpisjärvi, Finland, plasma convection measurements by the European Incoherent Scatter (EISCAT radar, and estimates of the electrojet currents derived from the Tromsø magnetometer data. The IRIS absorption and EISCAT plasma convection measurements are used as a proxy for the particle precipitation component of the Hall conductance and ionospheric electric field, respectively. It is shown that the electrojet currents are affected by both enhanced conductance and electric field but with the relative importance of these two factors varying with magnetic local time (MLT. The correlation between the current and electric field (absorption is the highest at 12:00–15:00 MLT (00:00–03:00 MLT. It is demonstrated that the electric-field-dominant region is asymmetric with respect to magnetic-noon-midnight meridian extending from 09:00 to 21:00 MLT. This may be related to the recently reported absence of mirror-symmetry between the effects of positive and negative IMF By on the high-latitude plasma convection pattern. The conductivity-dominant region is somewhat wider than previously thought extending from 21:00 to 09:00 MLT with correlation slowly declining from midnight towards the morning, which is interpreted as being in part due to high-energy electron clouds gradually depleting and drifting from midnight towards the morning sector. The conductivity-dominant region is further investigated using the extensive IRIS riometer and Tromsø magnetometer datasets with results showing a distinct seasonal dependence. The region of high current

  2. Dynamics of ionosphere disturbances along the Eastern-Asian meridian from auroral to equatorial latitudes

    Science.gov (United States)

    Pirog, Olga; Zherebtsov, Gelii; Kurkin, Vladimir; Shi, J. K.; Wang, Xiao

    The research results of ionosphere variation in the Eastern-Asian sector observed at the decay and minimum of solar activity (SA) in the period 2004-2007 during geomagnetic disturbances are presented. Data from ionospheric stations located within the latitude-longitude sector (20-70N, 90-160E), oblique-incidence sounding on the radio paths Magadan-Irkutsk and No-rilsk -Irkutsk and results of total electron content (TEC) measurements at the network of GPS ground-based receivers are used to analyze the variations in ionospheric parameters. Data of zenith photometers are applied to investigate the disturbances of atmospheric emissions. Four groups of anomalous ionospheric disturbances observed during the low solar activity are re-vealed: falls of electron density in the evening hour connected with the formation of equatorial wall of MIT, large-scale ionospheric disturbances, wavelike disturbances with the period of two days, and sharp short-term fluctuations in the electron density more intensive at the middle latitudes during the storm main phase. It was also found that often there was no direct con-nection between ionospheric disturbances and geomagnetic activity during moderate magnetic storms in solar minimum. Observed disturbances can be induced by the joint action of a few factors: the increase in electric field of magnetospheric convection, the generation of AGWs in the auroral zone and their propagation southwestward, and the disturbed neutral winds generated by the large-scale storm-induced thermospheric circulation in addition to TADs as-sociated with winds. The reason for occurrence of the wavelike disturbance with the periods from two till seven days can be the planetary atmospheric waves. The numerical model for ionosphere-plasmasphere coupling was used to interpret the certain of observed data. It is ob-tained that use of empirical models of electron precipitation, magnetospheric convection and thermospheric parameters with the correction by the observed

  3. Plasma flows, Birkeland currents and auroral forms in relation to the Svalgaard-Mansurov effect

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2012-05-01

    Full Text Available The traditional explanation of the polar cap magnetic deflections, referred to as the Svalgaard-Mansurov effect, is in terms of currents associated with ionospheric flow resulting from the release of magnetic tension on newly open magnetic field lines. In this study, we aim at an updated description of the sources of the Svalgaard-Mansurov effect based on recent observations of configurations of plasma flow channels, Birkeland current systems and aurorae in the magnetosphere-ionosphere system. Central to our description is the distinction between two different flow channels (FC 1 and FC 2 corresponding to two consecutive stages in the evolution of open field lines in Dungey cell convection, with FC 1 on newly open, and FC 2 on old open, field lines. Flow channel FC 1 is the result of ionospheric Pedersen current closure of Birkeland currents flowing along newly open field lines. During intervals of nonzero interplanetary magnetic field By component FC 1 is observed on either side of noon and it is accompanied by poleward moving auroral forms (PMAFs/prenoon and PMAFs/postnoon. In such cases the next convection stage, in the form of flow channel FC 2 on the periphery of the polar cap, is particularly important for establishing an IMF By-related convection asymmetry along the dawn-dusk meridian, which is a central element causing the Svalgaard-Mansurov effect. FC 2 flows are excited by the ionospheric Pedersen current closure of the northernmost pair of Birkeland currents in the four-sheet current system, which is coupled to the tail magnetopause and flank low-latitude boundary layer. This study is based on a review of recent statistical and event studies of central parameters relating to the magnetosphere-ionosphere current systems mentioned above. Temporal-spatial structure in the current systems is obtained by ground-satellite conjunction studies. On this point we emphasize the important information derived

  4. The dynamics and relationships of precipitation, temperature and convection boundaries in the dayside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    J. Moen

    2004-06-01

    Full Text Available A continuous band of high ion temperature, which persisted for about 8h and zigzagged north-south across more than five degrees in latitude in the dayside (07:00-15:00MLT auroral ionosphere, was observed by the EISCAT VHF radar on 23 November 1999. Latitudinal gradients in the temperature of the F-region electron and ion gases (Te and Ti, respectively have been compared with concurrent observations of particle precipitation and field-perpendicular convection by DMSP satellites, in order to reveal a physical explanation for the persistent band of high Ti, and to test the potential role of Ti and Te gradients as possible markers for the open-closed field line boundary. The north/south movement of the equatorward Ti boundary was found to be consistent with the contraction/expansion of the polar cap due to an unbalanced dayside and nightside reconnection. Sporadic intensifications in Ti, recurring on ~10-min time scales, indicate that frictional heating was modulated by time-varying reconnection, and the band of high Ti was located on open flux. However, the equatorward Ti boundary was not found to be a close proxy of the open-closed boundary. The closest definable proxy of the open-closed boundary is the magnetosheath electron edge observed by DMSP. Although Te appears to be sensitive to magnetosheath electron fluxes, it is not found to be a suitable parameter for routine tracking of the open-closed boundary, as it involves case dependent analysis of the thermal balance. Finally, we have documented a region of newly-opened sunward convecting flux. This region is situated between the convection reversal boundary and the magnetosheath electron edge defining the open-closed boundary. This is consistent with a delay of several minutes between the arrival of the first (super-Alfvénic magnetosheath electrons and the response in the ionospheric

  5. Origin of type-2 thermal-ion upflows in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    L. M. Kagan

    2005-01-01

    Full Text Available The origin of thermal ion outflows exceeding 1km/s in the high-latitude F-region has been a subject of considerable debate. For cases with strong convection electric fields, the "evaporation" of the ions due to frictional heating below 400-500km has been shown to provide some satisfactory answers. By contrast, in the more frequent subclass of outflow events observed over auroral arcs, called type-2, there is no observational evidence for ion frictional heating. Instead, an electron temperature increase of up to 6000° K is observed over the outflow region. In this case, field-aligned electric fields have long been suspected to be involved, but this explanation did not seem to agree with expectations from the ion momentum balance. In the present work we provide a consistent scenario for the type-2 ion upflows based on our case study of an event that occurred on 20 February 1990. We introduce, for the first time, the electron energy balance in the analysis. We couple this equation with the ion momentum balance to study the salient features of the observations and conclude that type-2 ion outflows and the accompanying electron heating events are indeed consistent with the existence of a field-aligned electric field. However, for our explanation to work, we have to require that an allowance be made for electron scattering by high frequency turbulence. This turbulence could be generated at first by the very fast response of the electrons themselves to a newly imposed electric field that would be partly aligned with the geomagnetic field. The high frequencies of the waves would make it impossible for the ions to react to the waves. We have found the electron collision frequency associated with scattering from the waves to be rather modest, i.e. comparable to the ambient electron-ion collision frequency. The field-aligned electric field inferred from the observations is likewise of the same order of magnitude as the normal ambipolar field, at least for

  6. Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm

    Science.gov (United States)

    Cherniak, Iurii; Zakharenkova, Irina

    2015-09-01

    The magnetosphere substorm plays a crucial role in the solar wind energy dissipation into the ionosphere. We report on the intensity of the high-latitude ionospheric irregularities during one of the largest storms of the current solar cycle—the St. Patrick's Day storm of 17 March 2015. The database of more than 2500 ground-based Global Positioning System (GPS) receivers was used to estimate the irregularities occurrence and dynamics over the auroral region of the Northern Hemisphere. We analyze the dependence of the GPS-detected ionospheric irregularities on the auroral activity. The development and intensity of the high-latitude irregularities during this geomagnetic storm reveal a high correlation with the auroral hemispheric power and auroral electrojet indices (0.84 and 0.79, respectively). Besides the ionospheric irregularities caused by particle precipitation inside the polar cap region, evidences of other irregularities related to the storm enhanced density (SED), formed at mid-latitudes and its further transportation in the form of tongue of ionization (TOI) towards and across the polar cap, are presented. We highlight the importance accounting contribution of ionospheric irregularities not directly related with particle precipitation in overall irregularities distribution and intensity.

  7. Analyse de la compétence juridictionnelle à partir de la première décision de la Cour Africaine des Droits de l’Homme et des Peuples : l’affaire Hissène Habré

    OpenAIRE

    Ilich Felipe Corredor Carvajal

    2012-01-01

    Si l’on évoque l’affaire Hissène Habré, il semble que l'itinéraire vers un véritable procès judiciaire est plutôt l’un des plus complexes, sinueux[1] et mal gérés de l’histoire récente. En effet, il s’agit tant de l’ingérence d’intérêts politiques que de l’existence de problèmes juridiques sérieux qui vont depuis l’application des normes pénales jusqu’à remettre en cause la relation[2] entre le droit interne et le droit international dans les domaines pénal et de la protection des droits de l...

  8. Auroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2008-09-01

    Full Text Available The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space Telescope (HST in January 2007. These data have shown that the southern auroral oval near noon maps to the dayside cusp boundary between open and closed field lines, associated with a major layer of upward-directed field-aligned current (Bunce et al., 2008. The results thus support earlier theoretical discussion and quantitative modelling of magnetosphere-ionosphere coupling at Saturn (Cowley et al., 2004, that suggests the oval is produced by electron acceleration in the field-aligned current layer required by rotational flow shear between strongly sub-corotating flow on open field lines and near-corotating flow on closed field lines. Here we quantitatively compare these modelling results (the "CBO" model with the Cassini-HST data set. The comparison shows good qualitative agreement between model and data, the principal difference being that the model currents are too small by factors of about five, as determined from the magnetic perturbations observed by Cassini. This is suggested to be principally indicative of a more highly conducting summer southern ionosphere than was assumed in the CBO model. A revised model is therefore proposed in which the height-integrated ionospheric Pedersen conductivity is increased by a factor of four from 1 to 4 mho, together with more minor adjustments to the co-latitude of the boundary, the flow shear across it, the width of the current layer, and the properties of the source electrons. It is shown that the revised model agrees well with the combined Cassini-HST data, requiring downward acceleration of outer magnetosphere electrons through a ~10 kV potential in the current layer at the open-closed field line boundary to produce an auroral oval of ~1° width with UV emission intensities of a few tens of kR.

  9. Modeling of Mutiscale Electromagnetic Magnetosphere-Ionosphere Interactions near Discrete Auroral Arcs Observed by the MICA Sounding Rocket

    Science.gov (United States)

    Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.

    2012-12-01

    The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.

  10. On the lifetime and extent of an auroral westward flow channel (AWFC observed during a magnetospheric substorm

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    Full Text Available A -190-nT negative bay in the geomagnetic X component measured at Macquarie Island ( -65° L showed that an ionospheric substorm occurred during 09:58 to 11:10 UT on 27 February 2000. Signatures of an auroral westward flow channel (AWFC were observed nearly simultaneously in the backscatter power, LOS Doppler velocity, and Doppler spectral width measured using the Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar. Many of the characteristics of the AWFC were similar to those occurring during a polarisation jet (PJ, or subauroral ion drift (SAID event, and suggest that it may have been a pre-cursor to a fully developed, intense westward flow channel satisfying all of the criteria defining a PJ/SAID. A beam-swinging analysis showed that the westward drifts (poleward electric field associated with the flow channel were very structured in time and space, but the smoothed velocities grew to ~ 800 ms-1 (47 mVm-1 during the 22-min substorm onset interval 09:56 to 10:18 UT. Maximum west-ward drifts of >1.3 km s-1 (>77 mVm-1 occurred during a ~ 5-min velocity spike, peaking at 10:40 UT during the expansion phase. The drifts decayed rapidly to ~ 300 ms-1 (18 mVm-1 during the 6-min recovery phase interval, 11:04 to 11:10 UT. Overall, the AWFC had a lifetime of 74 min, and was located near -65° L in the evening sector west of the Harang discontinuity. The large westward drifts were confined to a geographic zonal channel of longitudinal ex-tent >20° (>1.3 h magnetic local time, and latitudinal width ~2° L. Using a half-width of ~ 100 km in latitude, the peak electric potential was >7.7 kV. However, a transient velocity of >3.1 km s-1 with potential >18.4 kV was observed further poleward at the end of the recovery phase. Auroral oval boundaries determined

  11. Intensification of dayside diffuse auroral precipitation: contribution of dayside Whistler-mode chorus waves in realistic magnetic fields

    Directory of Open Access Journals (Sweden)

    R. Shi

    2012-09-01

    Full Text Available Compared to the recently improved understanding of nightside diffuse aurora, the mechanism(s responsible for dayside diffuse aurora remains poorly understood. While dayside chorus has been thought as a potential major contributor to dayside diffuse auroral precipitation, quantitative analyses of the role of chorus wave scattering have not been carefully performed. In this study we investigate a dayside diffuse auroral intensification event observed by the Chinese Arctic Yellow River Station (YRS all-sky imagers (ASI on 7 January 2005 and capture a substantial increase in diffuse auroral intensity at the 557.7 nm wavelength that occurred over almost the entire ASI field-of-view near 09:24 UT, i.e., ~12:24 MLT. Computation of bounce-averaged resonant scattering rates by dayside chorus emissions using realistic magnetic field models demonstrates that dayside chorus scattering can produce intense precipitation losses of plasma sheet electrons on timescales of hours (even approaching the strong diffusion limit over a broad range of both energy and pitch angle, specifically, from ~1 keV to 50 keV with equatorial pitch angles from the loss cone to up to ~85° depending on electron energy. Subsequent estimate of loss cone filling index indicates that the loss cone can be substantially filled, due to dayside chorus driven pitch angle scattering, at a rate of ≥0.8 for electrons from ~500 eV to 50 keV that exactly covers the precipitating electrons for the excitation of green-line diffuse aurora. Estimate of electron precipitation flux at different energy levels, based on loss cone filling index profile and typical dayside electron distribution observed by THEMIS spacecraft under similar conditions, gives a total precipitation electron energy flux of the order of 0.1 erg cm−2 s−1 with ~1 keV characteristic energy (especially when using T01s, which can be very likely to cause intense green-line diffuse aurora activity on the

  12. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    Science.gov (United States)

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D. G.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M. G.; Kletzing, C.; Reeves, G. D.

    2015-12-01

    Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe-B spacecraft crossing L values of ~5.0-5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. The observations strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via a local upward FAC.

  13. E and F region study of the evening sector auroral oval: A Chatanika/Dynamics Explorer 2/NOAA 6 comparison

    International Nuclear Information System (INIS)

    Simultaneous data obtained with the Chatanika incoherent scatter radar and the Dynamics Explorer 2 (DE 2) and NOAA 6 satellites are used to relate the locations of the precipitating particles, field-aligned currents, and E and F region ionization structures in the evening-sector auroral oval. The auroral E layer observed by the radar extends about 2 degree equatorward of the electron precipitation region, and its equatorward edge coincides with the equatorward edges of the region 2 field-aligned current and intense convection region (E ≅ 50 mV/m). It is shown that precipitating protons are responsible for part of the E region ionization within the electron precipitation region as well as south of it. E region density profiles calculated from ion spectra measured by the DE 2 and NOAA 5 satellites are in fairly good agreement with the Chatanika data. in the F region, a channel of enhanced ionization density, elongated along the east-west direction and having a width of about 100 km, marks the poleward edge of the main trough. it is colocated with the equatorward boundary of the electron precipitation from the central plasma sheet. Although enhanced fluxes of soft electrons are observed at this boundary, the energy input to the ionospheric electron gas, calculated from the radar data, shows that this ionization channel is not locally produced by this soft precipitation, but that it is rather a convected feature. In fact, both the trough and the ionization channel are located in a region where the plasma flows sunward at high speed, but the flux tubes associated with theses two features have different convective time histories. Keeping in mind that several processes operate together in the F region, the data set is consistent with the included trough and ionization channel formation mechanisms

  14. 3D model of small-scale density cavities in the auroral magnetosphere with field-aligned current

    Science.gov (United States)

    Bespalov, P. A.; Misonova, V. G.; Savina, O. N.

    2016-09-01

    We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.

  15. Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?

    Science.gov (United States)

    Kita, Hajime; Kimura, Tomoki; Tao, Chihiro; Tsuchiya, Fuminori; Misawa, Hiroaki; Sakanoi, Takeshi; Kasaba, Yasumasa; Murakami, Go; Yoshioka, Kazuo; Yamazaki, Atsushi; Yoshikawa, Ichiro; Fujimoto, Masaki

    2016-07-01

    While the Jovian magnetosphere is known to have the internal source for its activity, it is reported to be under the influence of the solar wind as well. Here we report the statistical relationship between the total power of the Jovian ultraviolet aurora and the solar wind properties found from long-term monitoring by the spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on board the Hisaki satellite. Superposed epoch analysis indicates that auroral total power increases when an enhanced solar wind dynamic pressure hits the magnetosphere. Furthermore, the auroral total power shows a positive correlation with the duration of a quiescent interval of the solar wind that is present before a rise in the dynamic pressure, more than with the amplitude of dynamic pressure increase. These statistical characteristics define the next step to unveil the physical mechanism of the solar wind control on the Jovian magnetospheric dynamics.

  16. Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter Svalbard radar (ESR, and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996; however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.

    Key words: Ionosphere (polar ionosphere - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions

  17. The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?

    Directory of Open Access Journals (Sweden)

    G. J. Sofko

    2009-01-01

    Full Text Available Cases of mesoscale cloud bands in extratropical cyclones are observed a few hours after atmospheric gravity waves (AGWs are launched from the auroral ionosphere. It is suggested that the solar-wind-generated auroral AGWs contribute to processes that release instabilities and initiate slantwise convection thus leading to cloud bands and growth of extratropical cyclones. Also, if the AGWs are ducted to low latitudes, they could influence the development of tropical cyclones. The gravity-wave-induced vertical lift may modulate the slantwise convection by releasing the moist symmetric instability at near-threshold conditions in the warm frontal zone of extratropical cyclones. Latent heat release associated with the mesoscale slantwise convection has been linked to explosive cyclogenesis and severe weather. The circumstantial and statistical evidence of the solar wind influence on extratropical cyclones is further supported by a statistical analysis of high-level clouds (<440 mb extracted from the International Satellite Cloud Climatology Project (ISCCP D1 dataset. A statistically significant response of the high-level cloud area index (HCAI to fast solar wind from coronal holes is found in mid-to-high latitudes during autumn-winter and in low latitudes during spring-summer. In the extratropics, this response of the HCAI to solar wind forcing is consistent with the effect on tropospheric vorticity found by Wilcox et al. (1974 and verified by Prikryl et al. (2009. In the tropics, the observed HCAI response, namely a decrease in HCAI at the arrival of solar wind stream followed by an increase a few days later, is similar to that in the northern and southern mid-to-high latitudes. The amplitude of the response nearly doubles for stream interfaces associated with the interplanetary magnetic field BZ component shifting southward. When the IMF BZ after the stream interface shifts northward, the autumn-winter effect weakens or shifts to lower (mid latitudes

  18. New type of ensemble of quasi-periodic, long-lasting VLF emissions at the auroral zone

    Directory of Open Access Journals (Sweden)

    J. Manninen

    2012-12-01

    Full Text Available A new type of the series of quasi-periodic (QP very low frequency (VLF emissions in frequency range of 1–5 kHz, and not associated with geomagnetic pulsations, has been discovered at auroral latitudes (L = 5.3 during the Finnish VLF campaign (held in December 2011. At least five unusually spectacular events, each with a duration of several hours, have been observed during the night under conditions of quiet geomagnetic activity (Kp = 0–1, although QPs usually occur during the daytime. Contrary to the QP emissions typically occurring during the day, the spectral structure of these QP events represented an extended, complicated sequence of repeated discrete rising VLF signals. Their duration was about 2–3 min each, with the repetition periods ranging from ~1 min to ~10 min. Two such nighttime non-typical events are reported in this paper. The fine structure of the separated QP elements may represent a mixture of the different frequency band signals, which seem to have independent origins. It was found that the periodic signals with lower frequency appear to trigger the strong dispersive upper frequency signals. The temporal dynamics of the spectral structure of the QPs studied were significantly controlled by some disturbances in the solar wind and interplanetary magnetic field (IMF. This finding is very important for future theoretical investigations because the generation mechanism of this new type of QP emissions is not yet understood.

  19. Effect of upflowing field-aligned electron beams on the electron cyclotron waves in the auroral magnetosphere

    Indian Academy of Sciences (India)

    Sushil Kumar; S K Singh; A K Gwal

    2007-04-01

    The role of low density upflowing field-aligned electron beams (FEBs) on the growth rate of the electron cyclotron waves at the frequencies r < ­e, propagating downward in the direction of the Earth's magnetic field, has been analysed in the auroral region at e/e < 1 where e is the plasma frequency and ­e is the gyrofrequency. The FEBs with low to high energy (b) but with low temperature (∥b) have no effect on these waves. The FEBs with b < 1 keV and ∥b (> 1.5 keV) have been found to have significant effect on the growth rate. Analysis has revealed that it is mainly the ∥b which inhibits the growth rate (magnitude) and the range of frequency (bandwidth) of the instability mainly in the higher frequency spectrum. The inhibition in the growth rate and bandwidth increases with increase in ∥b. The FEBs with less b (giving drift velocity) reduce growth rate more than the beams with larger b. The inhibition of growth rate increases with the increase in the ratio e/e indicating that the beams are more effective at higher altitudes.

  20. Transport of thermal plasma above the auroral ionosphere in the presence of electrostatic ion-cyclotron turbulence

    Directory of Open Access Journals (Sweden)

    V. E. Zakharov

    Full Text Available The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of ΔV≈1–10 kV at altitudes of 500 < h < 10 000 km above the Earth's surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.

    Key words. Magnetospheric physics (electric fields; plasma waves and instabilities

     

  1. Eastward-expanding auroral surges observed in the post-midnight sector during a multiple-onset substorm

    CERN Document Server

    Tanaka, Yoshimasa; Kadokura, Akira; Partamies, Noora; Whiter, Daniel; Enell, Carl-Fredrik; Brändström, Urban; Sergienko, Tima; Gustavsson, Björn; Kozlovsky, Alexander; Miyaoka, Hiroshi; Yoshikawa, Akimasa

    2016-01-01

    We present three eastward-expanding auroral surge (EEAS) events that were observed intermittently at intervals of about 15 min in the post-midnight sector (01:55-02:40 MLT) by all-sky imagers and magnetometers in northern Europe. It was deduced that each surge occurred just after each onset of a multiple-onset substorm, which was small-scale and did not clearly expand westward, because they were observed almost simultaneously with Pi 2 pulsations at the magnetic equator and magnetic bay variations at middle-to-high latitudes associated with the DP-1 current system. The EEASs showed similar properties to omega bands or torches reported in previous studies, such as recurrence intervals of about 15 min, concurrence with magnetic pulsations with amplitudes of several tens of nanotesla, horizontal scales of 300-400 km, and occurrence of a pulsating aurora in a diffuse aurora after the passage of the EEASs. Furthermore, the EEASs showed similar temporal evolution to the omega bands, during which eastward-propagatin...

  2. A Simulation Study of Ionization Depletion in the Auroral Ionospheric F-Region Caused by Strong Convection Electric Field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of strong convection electric field on the electron density in the auroral ionospheric F region have been simulated numerically by means of a physical model. It is found that an enhancement of electric field directed west-northward in post-noon or west-southward in pre-noon results in an ionization de pletion with its maximum at altitudes 40-50 km higher than that of the F2 peak. When the enhanced electric field lasts for 45 min and has a maximum about 32 mV/m, the resulted ionization depletions reach their max imum at the time just ~ 10 min behind the time when the convection electric field and ion temperature en hancements reach their maximum. This is consistent well with EISCAT observations. The magnitudes of thepercentage ionization depletions and their recovery time are dependent not only on the intensity of the electric field, but also on the diurnal variation phase of the background electron density.

  3. D- and E-region effects in the auroral zone during a moderately active 24-h period in July 2005

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2007-08-01

    Full Text Available The effects of energetic electron precipitation into the auroral region at a time of enhanced solar wind have been investigated during a continuous period of 24 h, using the European Incoherent Scatter (EISCAT radar, an imaging riometer, and particle measurements on an orbiting satellite. The relative effects in the E region (120 km and D region (90 km are found to vary during the day, consistent with a gradual hardening of the incoming electron spectrum from pre-midnight to morning. Whereas the night spectra are single peaked, the daytime spectra are found to be double peaked, suggesting the presence of two distinct populations.

    A comparison between the radiowave absorption observed with the riometer and values estimated from the radar data shows generally good agreement, but with some discrepancies suggesting the occurrence of some small-scale features. The height and thickness of the absorbing region are estimated. Two periods of enhanced precipitation and the related radio absorption, one near magnetic midnight and one in the early morning, are studied in detail, including their horizontal structure and movement of the absorption patches.

    A sharp reduction of electron flux recorded on a POES satellite is related to the edge of an absorption region delineated by the imaging riometer. The observed particle flux is compared with a value deduced from the radar data during the overpass, and found to be in general agreement.

  4. Simulations of resonant Alfvén waves generated by artificial HF heating of the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2004-09-01

    Full Text Available Numerical two-dimensional two-fluid MHD simulations of dynamic magnetosphere-ionosphere (MI coupling have been performed to model the effects imposed on the auroral ionosphere by a powerful HF radio wave transmitter. The simulations demonstrate that modifications of the ionospheric plasma temperature and recombination due to artificial heating may trigger the ionospheric feedback instability when the coupled MI system is close to the state of marginal stability. The linear dispersion analysis of MI coupling has been performed to find the favorable conditions for marginal stability of the system. The development of the ionospheric feedback instability leads to the generation of shear waves which resonate in the magnetosphere between the heated ionospheric E-region and the strong gradient in the speed at altitudes of 1-2 RE. The application of the numerical results for the explanation of observations performed by low-orbiting satellites above the high-latitude ionosphere heated with a high power ground-based HF transmitter is discussed.

  5. MITHRAS studies of the auroral oval and polar cap. Final report, 1 May 87-31 Dec 90

    Energy Technology Data Exchange (ETDEWEB)

    De la Beaujardiere, O.; Watermann, J.; Johnson, R.M.

    1991-01-01

    MITHRAS is a program of coordinated experiments dedicated to studying the coupling between the magnetosphere, the ionosphere, and the thermosphere. MITHRAS observations mostly involve the Sondrestrom radar in Greenland, but other incoherent scatter radars around the world were also used. Contract highlights include: (1) The most extensive comparisons ever made between incoherent scatter radar data and numerical simulation models were performed. These comparisons were based on both individual case studies and averaged data, and included observations from all the incoherent scatter radars. The comparisons showed general agreement between observations and model calculations but they also showed significant differences. (2) During solar-maximum conditions, the contribution to the height integrated Pederson conductivity from solar-produced F-region ionization can be as large as 60% of the total. (3) Under certain geophysical conditions it appears possible to identify the low-altitude cusp and distinguish it from the cleft. The cusp proper appears to be characterized by enhanced F region plasma density collocated with elevated F region electron temperature; it does not appear to be associated with a particular plasma flow pattern signature. (4) A new mechanism was proposed to explain how auroral surges might be formed. It was suggested that the surge was associated with a distortion of the poleward boundary of the aurora, and that this distortion was caused by the field aligned currents within the head of the surge.

  6. A case study of HF radar spectra and 630.0 nm auroral emission in the pre-midnight sector

    Directory of Open Access Journals (Sweden)

    M. Lester

    Full Text Available A comparison of HF radar backscatter observed by the CUTLASS Finland radar, meridian scanning photometer data from Longyearbyen, magnetic field variations from IMAGE stations, and particle precipitation measured by the DMSP F12 spacecraft is presented. The interval under discussion occurred in the pre-midnight local time sector, during a period of weakly northward interplanetary magnetic field. A region of HF backscatter, typically 8 degrees wide, occurred in the field of view of the CUTLASS Finland radar. A well defined gradient in the spectral width parameter was present, with mainly low (< 200 m s - 1 spectral widths in the lower latitude part of the scatter and predominantly large (> 200 ms - 1 spectral widths in the higher latitude part. The relationship between the spectral width and the red line (630.0 nm emission measured by the meridian scanning photometer is considered. The poleward border of the red line emission, which has, in the past, been proposed as being representative of the polar cap boundary, was co-located to within 1° of magnetic latitude with the gradient in spectral width for part of the interval. Statistically, large spectral widths occurred poleward of the red line emission, while small spectral widths occurred within or equatorward of the red line emission. Near simultaneous DMSP particle observations in the 20 eV to 20 keV range indicate that the poleward border of the red line emission and the gradient in spectral width occurred at the same latitude as the transition from auroral oval to polar rain particle energies. We conclude that the large spectral widths were not caused by particle precipitation associated with the auroral oval. There were two periods of special interest when the relationship between the red line and the spectral width broke down. The first of these happened during enhanced red line and green line (557.7 nm emission, with a drop out of the radar scatter and an enhanced, narrow westward

  7. Observed and modelled effects of auroral precipitation on the thermal ionospheric plasma: comparing the MICA and Cascades2 sounding rocket events

    Science.gov (United States)

    Lynch, K. A.; Gayetsky, L.; Fernandes, P. A.; Zettergren, M. D.; Lessard, M.; Cohen, I. J.; Hampton, D. L.; Ahrns, J.; Hysell, D. L.; Powell, S.; Miceli, R. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    Auroral precipitation can modify the ionospheric thermal plasma through a variety of processes. We examine and compare the events seen by two recent auroral sounding rockets carrying in situ thermal plasma instrumentation. The Cascades2 sounding rocket (March 2009, Poker Flat Research Range) traversed a pre-midnight poleward boundary intensification (PBI) event distinguished by a stationary Alfvenic curtain of field-aligned precipitation. The MICA sounding rocket (February 2012, Poker Flat Research Range) traveled through irregular precipitation following the passage of a strong westward-travelling surge. Previous modelling of the ionospheric effects of auroral precipitation used a one-dimensional model, TRANSCAR, which had a simplified treatment of electric fields and did not have the benefit of in situ thermal plasma data. This new study uses a new two-dimensional model which self-consistently calculates electric fields to explore both spatial and temporal effects, and compares to thermal plasma observations. A rigorous understanding of the ambient thermal plasma parameters and their effects on the local spacecraft sheath and charging, is required for quantitative interpretation of in situ thermal plasma observations. To complement this TRANSCAR analysis we therefore require a reliable means of interpreting in situ thermal plasma observation. This interpretation depends upon a rigorous plasma sheath model since the ambient ion energy is on the order of the spacecraft's sheath energy. A self-consistent PIC model is used to model the spacecraft sheath, and a test-particle approach then predicts the detector response for a given plasma environment. The model parameters are then modified until agreement is found with the in situ data. We find that for some situations, the thermal plasma parameters are strongly driven by the precipitation at the observation time. For other situations, the previous history of the precipitation at that position can have a stronger

  8. A self-consistent synthesis description of magnetosphere-ionosphere coupling and scale-dependent auroral process using shear Alfvén wave

    Science.gov (United States)

    Yoshikawa, A.; Amm, O.; Vanhamäki, H.; Fujii, R.

    2011-08-01

    In order to correctly describe the dynamical behavior of the magnetosphere-ionosphere (MI) coupling system and the scale-dependent auroral process, we develop a synthesis formulation that combines the process of (1) the inverse Walen separation of MHD disturbance into parallel- and antiparallel-propagating shear Alfvén wave to the ambient magnetic field, (2) the shear Alfvén wave reflection process including (3) the scale-dependent electrostatic coupling process through the linearized Knight relation, (4) two-layer ionosphere model, and (5) dynamic conductance variations. A novel procedure that applies the inverse Walen relation to the incompressional MHD disturbances at the inner boundary of the MHD region enables to extract the component of the shear Alfvén wave incident to the ionosphere. The extracted incident electric field supplies an electromotive force for the generation of the MI coupling system, and the reflected electric field is generated such that it totally satisfies the synthesis MI-coupling equation. A three-dimensional ionospheric current system is represented by a two-layer model in which the Pedersen and the Hall current are confined in the separated layers, which are connected by field-aligned currents driven by the linear current-voltage relation between two layers. Hence, our scheme possibly reproduces two types of the scale-dependent MI-decoupling process of the perpendicular potential structure: due to the parallel potential drop at the auroral acceleration region and the other due to the parallel potential differences inside the ionosphere. Our newly formulation may be well suited for description of scale-dependent auroral process and mesoscale ionospheric electrodynamics interlocked with the dynamical development of magnetospheric processes.

  9. A parametric study of the coupling between sheared flows at the magnetopause and field-aligned currents, precipitating energy flux and auroral arcs

    Science.gov (United States)

    Echim, M.; De Keyser, J. M.; Maggiolo, R.

    2012-12-01

    In the topside ionosphere the field-aligned currents connect to perpendicular, Pedersen and Hall, currents. The current continuity provides a mathematical closure condition that "couples" field-aligned properties, like the parallel electric fields, to ionospheric properties, like the height-integrated Pedersen conductivity. The current-voltage relation (CVR) describes the field-aligned current density (j||) as a function of the field-aligned potential drop (ΔΦ) between the magnetosphere and the ionosphere, as well as the plasma properties in the magnetosphere and in the ionosphere. The CVR is generally obtained from a kinetic treatment of the adiabatic motion of particles in a mirroring magnetic field and a field-aligned electric field. We investigate the coupling between sheared flows at the magnetopause, described by a Vlasov equilibrium solution, and field aligned currents and auroral arcs. The model solves the current continuity equation and neglects the divergence of the Hall currents. The solutions evidence channels of precipitating accelerated particles producing auroral arcs, upward field-aligned currents and regions of enhanced Pedersen conductance. We investigate the effects due to variations of generator properties, particularly of the velocity shear at the magnetopause, and of the gradient of the kinetic pressure, on the characteristics of the auroral structures. An increased shear of velocity at the magnetopause generates brighter arcs and larger field-aligned current densities due to the increasing of the field-aligned potential drop. The solutions of the parametric study are discussed in the context of the mechanisms for polar cap arcs formation.

  10. Characteristics of field-aligned density depletion irregularities in the auroral ionosphere that duct Z- and X-mode waves

    Science.gov (United States)

    James, H. G.

    2006-09-01

    The small-scale and two-point nature of the Observations of Electric-field Distributions in the Ionospheric Plasma—A Unique Strategy C (OEDIPUS-C, OC) dual-payload propagation experiment in the auroral ionosphere in 1995 has permitted improved measurements of the parameters of magnetic field-aligned density irregularities. Comparatively strong and dispersed pulses were observed at frequencies f just above the electron plasma frequency fp when the electron gyrofrequency fc was less than fp. The waves are interpreted as quasielectrostatic Z-mode propagation with dispersion surfaces close to those of the Langmuir solutions in wave vector space, albeit at somewhat lower refractive indices of about 50. If mission length surveys of the Z-wave intensities are aligned with histories of fp at the payload and of the strength of X- and fast Z-mode ionospheric reflection echoes, a strong positive correlation is found at momentary relative depletions of the ambient density. These observations are taken as evidence of ducting in the field-aligned depletions. The spectra of these strong Z-mode transmissions are similar to those of slow Z ducted spectra observed at similar f, fp, and fc values in the OEDIPUS-A experiment in 1989. The magnitudes of the density depletions are found to lie in the range 7-21% and to have cross-field dimensions of a few kilometers. The present duct dimensions are of the same order as the previous findings from ionospheric X-mode electromagnetic echoes on OC, but the depletions are up to 10 times deeper. Measurements of ducting irregularities can lead to insights into their formation. This will be important for our understanding of the interfaces of the ionospheric or magnetospheric topologies where irregularity formation is an important link in the large-scale flow of energy.

  11. The effect of strong pitch angle scattering on the use of artificial auroral streaks for echo detection - Echo 5

    Science.gov (United States)

    Swanson, R. L.; Steffen, J. E.; Winckler, J. R.

    1986-05-01

    During the Echo 5 experiment, launched November 13, 1979 from the Poker Flat Research Range (Fairbanks, AK), a 0.75 A, 37 keV electron beam was injected both up and down the field line. The objective of the experiment was to test the use of optical and X-ray methods to detect the beam as it interacted with the atmosphere below the rocket for both the downward injections (markers) and the upward injected electrons which mirrored at the Southern Hemisphere and returned echoes. A ground-based TV system, rocket-borne photometers, and X-ray detectors viewed the interaction region. The artificial auroral streaks created by the markers were easily visible on the ground TV system but the large intensity of photons produced around the rocket masked any response to the markers by the on-board photometers and X-ray detectors. No echoes were detected with any of the detection systems although the power in some of the upward injections was 7.6 times the power in a detected downward injection, thus setting an upper limit on the loss-cone echo flux. The magnitude of the bounce averaged pitch-angle-diffusion coefficient necessary to explain the lack of observable echoes was found to be 0.0004/s. Comparison with calculations done by Lyons (1974) for the pitch angle diffusion of electrons by electrostatic waves revealed that an equatorial wave electric field of 11 mV/m would account for the lack of echoes. Such fields should cause strong pitch angle scattering of up to 10 keV natural electrons and thus be consistent with the presence of diffuse aurora on the Echo 5 trajectory. Direct measurements have also revealed such fields in equatorial regions.

  12. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  13. Response in electrostatic analyzers due to backscattered electrons: case study analysis with the Juno Jovian Auroral Distribution Experiment-Electron instrument.

    Science.gov (United States)

    Clark, G; Allegrini, F; Randol, B M; McComas, D J; Louarn, P

    2013-10-01

    In this study, we introduce a model to characterize electron scattering in an electrostatic analyzer. We show that electrons between 0.5 and 30 keV scatter from internal surfaces to produce a response up to ~20% of the ideal, unscattered response. We compare our model results to laboratory data from the Jovian Auroral Distribution Experiment-Electron sensor onboard the NASA Juno mission. Our model reproduces the measured energy-angle response of the instrument well. Understanding and quantifying this scattering process is beneficial to the analysis of scientific data as well as future instrument optimization. PMID:24182165

  14. Observation of large-scale density cavities and parametric-decay instabilities in the high-altitude discrete auroral ionosphere under pulsed electromagnetic radiation.

    Science.gov (United States)

    Wong, A Y; Chen, J; Lee, L C; Liu, L Y

    2009-03-13

    A large density cavity that measured 2000 km across and 500 km in height was observed by DEMETER and Formosat/COSMIC satellites in temporal and spatial relation to a new mode of propagation of electromagnetic (em) pulses between discrete magnetic field-aligned auroral plasmas to high altitudes. Recorded positive plasma potential from satellite probes is consistent with the expulsion of electrons in the creation of density cavities. High-frequency decay spectra support the concept of parametric instabilities fed by free energy sources. PMID:19392121

  15. A synthesis of star calibration techniques for ground-based narrowband electron-multiplying charge-coupled device imagers used in auroral photometry

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-06-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 Å) ground-based imager data with multiple fields of view (19, 47, and 180°) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  16. Statistical study of interplanetary condition influence on the geomagnetic substorm onset location inferred from SuperMAG auroral electrojet indices

    Science.gov (United States)

    Huang, Sheng; Du, Aimin; Cao, Xin

    2015-04-01

    It is well known that the magnetospheric substorm occurs every few hours, in response with the interplanetary condition variation and the increase of energy transfer from the solar wind to the magnetosphere. Since the substorm activity correlated well with the geomagnetic index, Newell and Gjerloev [2011] identified the substorm onset and its contributing station, using the SuperMag auroral electrojet indices. In this study, we investigate the distribution of these substorm onset locations and its response to the varied interplanetary condition. It is surprise that the substorm onset locations show double-peak structure with one peak around pre-midnight sector and the other at the dawn side. The substorm onset tends to occur in pre-midnight sector during non-storm time while it often takes place in late morning sector (~4 MLT) during storm time. Furthermore, substorms, appearing in magnetic storm main phase predominate in late morning. As the geomagnetic index Dst decreases, the substorm onset occurs in late morning more frequently. The substorm onset locations were also classified based on the solar wind parameters. It is shown that the peak number ratio of the substorm onset location in late morning over pre-midnight increases as IMF Bz decreases from positive to negative and the solar wind velocity Vsw enhances. The more intense interplanetary electric field E promotes the substorm onset occurring in late morning. It is widely accepted that both the directly driven (DD) and loading/unloading (LL/UL) processes play an essential role in the energy dispensation from the solar wind into the magnetosphere-ionosphere system. In general, the former one corresponds to the DP2 current system, which consists of the eastward electrojet centered near the dusk and the westward electrojet centered in the dawn, while the latter one corresponds to the DP1 current system, which is dominated by the westward electrojet in the midnight sector. Our statistical results of substorm

  17. Ground-based observations of the auroral zone and polar cap ionospheric responses to dayside transient reconnection

    Directory of Open Access Journals (Sweden)

    J. A. Davies

    Full Text Available Observations from the EISCAT VHF incoherent scatter radar system in northern Norway, during a run of the common programme CP-4, reveal a series of poleward-propagating F-region electron density enhancements in the pre-noon sector on 23 November 1999. These plasma density features, which are observed under conditions of a strongly southward interplanetary magnetic field, exhibit a recurrence rate of under 10 min and appear to emanate from the vicinity of the open/closed field-line boundary from where they travel into the polar cap; this is suggestive of their being an ionospheric response to transient reconnection at the day-side magnetopause (flux transfer events. Simultaneous with the density structures detected by the VHF radar, poleward-moving radar auroral forms (PMRAFs are observed by the Finland HF coherent scatter radar. It is thought that PM-RAFs, which are commonly observed near local noon by HF radars, are also related to flux transfer events, although the specific mechanism for the generation of the field-aligned irregularities within such features is not well understood. The HF observations suggest, that for much of their existence, the PMRAFs trace fossil signatures of transient reconnection rather than revealing the footprint of active reconnection itself; this is evidenced not least by the fact that the PMRAFs become narrower in spectral width as they evolve away from the region of more classical, broad cusp scatter in which they originate. Interpretation of the HF observations with reference to the plasma parameters diagnosed by the incoherent scatter radar suggests that as the PMRAFs migrate away from the reconnection site and across the polar cap, entrained in the ambient antisunward flow, the irregularities therein are generated by the presence of gradients in the electron density, with these gradients having been formed through structuring of the ionosphere in the cusp region in response to transient reconnection

  18. Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-07-01

    Full Text Available We study the wave-related (AC and static (DC parallel Poynting vector (Poynting energy flux as a function of altitude in auroral field lines using Polar EFI and MFE data. The study is statistical and contains 5 years of data in the altitude range 5000–30000 km. We verify the low altitude part of the results by comparison with earlier Astrid-2 EMMA Poynting vector statistics at 1000 km altitude. The EMMA data are also used to statistically compensate the Polar results for the missing zonal electric field component. We compare the Poynting vector with previous statistical DMSP satellite data concerning the electron precipitation power. We find that the AC Poynting vector (Alfvén-wave related Poynting vector is statistically not sufficient to power auroral electron precipitation, although it may, for Kp>2, power 25–50% of it. The statistical AC Poynting vector also has a stepwise transition at R=4 RE, so that its amplitude increases with increasing altitude. We suggest that this corresponds to Alfvén waves being in Landau resonance with electrons, so that wave-induced electron acceleration takes place at this altitude range, which was earlier named the Alfvén Resonosphere (ARS. The DC Poynting vector is ~3 times larger than electron precipitation and corresponds mainly to ionospheric Joule heating. In the morning sector (02:00–06:00 MLT we find that the DC Poynting vector has a nontrivial altitude profile such that it decreases by a factor of ~2 when moving upward from 3 to 4 RE radial distance. In other nightside MLT sectors the altitude profile is more uniform. The morning sector nontrivial altitude profile may be due to divergence of the perpendicular Poynting vector field at R=3–4 RE.

    Keywords. Magnetospheric physics (Auroral phenomena; Magnetosphere-ionosphere interactions – Space plasma physics (Wave-particle interactions

  19. A proposal to the dissipated energy budget in the auroral ionosphere at the substorm recovery phase: Challenge from thermospheric wind variations in the pulsating aurora

    Science.gov (United States)

    Oyama, S. I.; Hosokawa, K.; Miyoshi, Y.; Shiokawa, K.; Kurihara, J.; Tsuda, T. T.; Watkins, B. J.

    2014-12-01

    Pulsating aurora is a typical phenomenon of the recovery phase of magnetic substorm and is frequently observed in the morning sector. The widely accepted generation mechanism of pulsations in precipitating electrons is related to wave-particle interactions around the equatorial plane in the magnetospheric tail. This mechanism is completely different from the discrete-arc case, which generates high-energy auroral electrons by the inverted-V type potential structure in the magnetospheric acceleration region. This potential structure induces the perpendicular electric field. The electric field is mapped down to the ionosphere, and enhances the Pedersen current as the ionospheric closure current. Since the perpendicular electric field directly relates to the Joule heating rate and the Lorentz force, thermal and kinetic energies in the thermosphere are locally increased in the vicinity of the arc rather than the inside, resulting in wind variations in the thermosphere. However, this scenario cannot be simply applied to the pulsating-auroral case because of the completely different mechanism of the auroral-electron generation, and we have believed that large energies are not dissipated in the pulsating aurora and there should be no obvious wind variations in the thermosphere. However, we found thermospheric-wind variations in the pulsating aurora during simultaneous observations with a Fabry-Perot Interferometer (557.7 nm), several cameras, and incoherent-scatter radars. This is a significantly important finding in evaluating our understanding of the energy budget in the substorm recovery phase. As mentioned above, the Joule heating process and the Lorentz force play important roles for thermospheric-wind variations. While the both cases need enhancements of the perpendicular electric field, we well know that a typical level of the convection electric field is too low to generate the wind variations in a same level as the observed in the pulsating aurora. Thus the

  20. Comparison study between coherent echoes at VHF range and electron density estimated by Ionosphere Model for Auroral Zone

    Science.gov (United States)

    Nishiyama, Takanori; Nakamura, Takuji; Tsutsumi, Masaki; Tanaka, Yoshi; Nishimura, Koji; Sato, Kaoru; Tomikawa, Yoshihiro; Kohma, Masashi

    2016-07-01

    Polar Mesosphere Winter Echo (PMWE) is known as back scatter echo from 55 to 85 km in the mesosphere, and it has been observed by MST and IS radar in polar region during non-summer period. Since density of free electrons as scatterer is low in the dark mesosphere during winter, it is suggested that PMWE requires strong ionization of neutral atmosphere associated with Energetic Particles Precipitations (EPPs) during Solar Proton Events [Kirkwood et al., 2002] or during geomagnetically disturbed periods [Nishiyama et al., 2015]. However, studies on relationship between occurrence of PMWE and background electron density has been limited yet [Lübken et al., 2006], partly because the PMWE occurrence rate is known to be quite low (2.9%) [Zeller et al., 2006]. The PANSY (Program of the Antarctic Syowa MST/IS) radar, which is the largest MST radar in Antarctica, observed many PMWE events since it has started mesosphere observations in June 2012. We established an application method of the PANSY radar as riometer, which makes it possible to estimate Cosmic Noise Absorptions (CNA) as proxy of relative variations on background electron density. In addition, electron density profiles from 60 to 150 km altitude are calculated by Ionospheric Model for the Auroral Zone (IMAZ) [McKinnell and Friedrich, 2007] and CNA estimated by the PANSY radar. In this presentation, we would like to focus on strong PMWE during two big geomagnetic storm events, St. Patrick's Day and the Summer Solstice 2015 Event, in order to compare observed PMWE characteristics to model background electron density. On March 19 and 22, recovery phase of St. Patrick's Day Storm, sudden PMWE intensification was detected near 60 km by the PANSY radar. At the same time, strong Cosmic Noise Absorptions (CNA) of 0.8 dB and 1.0 dB were measured, respectively. However, calculated electron density profiles did not show high electron density at the altitude where the PMWE intensification were observed. On June 22, the

  1. Rotational temperature of N2+ (0,2 ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

    Directory of Open Access Journals (Sweden)

    D. Lummerzheim

    2008-05-01

    Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular

  2. A statistical study of diurnal, seasonal and solar cycle variations of F-region and topside auroral upflows observed by EISCAT between 1984 and 1996

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures.

    Key words. Ionosphere (auroral ionosphere; particle acceleration

  3. Reconfiguration and closure of lobe flux by reconnection during northward IMF: possible evidence for signatures in cusp/cleft auroral emissions

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available Observations are presented of the response of the dayside cusp/cleft aurora to changes in both the clock and elevation angles of the interplanetary magnetic field (IMF vector, as monitored by the WIND spacecraft. The auroral observations are made in 630 nm light at the winter solstice near magnetic noon, using an all-sky camera and a meridian-scanning photometer on the island of Spitsbergen. The dominant change was the response to a northward turning of the IMF which caused a poleward retreat of the dayside aurora. A second, higher-latitude band of aurora was seen to form following the northward turning, which is interpreted as the effect of lobe reconnection which reconfigures open flux. We suggest that this was made possible in the winter hemisphere, despite the effect of the Earth's dipole tilt, by a relatively large negative X component of the IMF. A series of five events then formed in the poleward band and these propagated in a southwestward direction and faded at the equatorward edge of the lower-latitude band as it migrated poleward. It is shown that the auroral observations are consistent with overdraped lobe flux being generated by lobe reconnection in the winter hemisphere and subsequently being re-closed by lobe reconnection in the summer hemisphere. We propose that the balance between the reconnection rates at these two sites is modulated by the IMF elevation angle, such that when the IMF points more directly northward, the summer lobe reconnection site dominates, re-closing all overdraped lobe flux and eventually becoming disconnected from the Northern Hemisphere.

    Key words. Magnetospheric physics (magnetopause · cusp and boundary layers; solar-wind-magnetosphere interactions · Space plasma physics (magnetic reconnection

  4. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    Science.gov (United States)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  5. Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies

    Science.gov (United States)

    Aryal, S.; Hewawasam, K.; Maguire, R.; Chakrabarti, S.; Cook, T.; Martel, J.; Baumgardner, J. L.

    2015-12-01

    Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies Saurav Aryal1 , Kuravi Hewawasam1, Ryan Maguire1, Supriya Chakrabarti1, Timothy Cook1, Jason Martel1 and Jeffrey L Baumgardner2, (1) University of Massachusetts Lowell, Lowell, MA, United States, (2)Boston University, Boston, MA, United StatesA High-Throughput and Multi-slit Imaging Spectrograph (HiT&MIS) has been developed by our group. The spectrograph uses an echelle grating that operates at high dispersion orders (28-43) such that extended sources for airglow and auroral emissions can be observed at high resolution (about 0.02 nm). By using four slits (instead of the conventional one slit setup), with the appropriate foreoptics it images extended emissions along a long field of view of about 0.1° × 50°. It observes spectral regions around six prominent atmospheric emission lines (HI 656.3 nm, HI 486.1 nm, OI 557.7 nm, OI 630.0 nm, OI 777.4 nm and N+2 427.8 nm) using order sorting interference filters at the entrance slits and a filter mosaic on an image plane. We present observations from the instrument during the June 22, 2015 G4 storm. OI 557.7 nm (green line) and OI 630.0 nm (red line) showed strong brightness enhancements that lasted throughout the night from 8 P.M June 22, 2015 to 3 AM June 23,2015 when compared to the same times after the storm had passed.

  6. Rotational modulation of Saturn's radio emissions after equinox

    Science.gov (United States)

    Ye, Shengyi; Fischer, Georg; Kurth, William; Gurnett, Donald

    2016-04-01

    The modulation rate of Saturn kilometric radiation (SKR), originally thought to be constant, was found to vary with time by comparing the Voyager and Ulysses observations. More recently, Cassini RPWS observations of SKR revealed two different modulation rates, one associated with each hemisphere of Saturn, and it was proposed that the rotation rates are subject to seasonal change. The almost continuous observations of SKR, Saturn narrowband emission, and auroral hiss by RPWS provide a good method of tracking the rotation rates of the planet's magnetosphere. We will show that the rotation rate of the northern SKR is slower than that of the southern SKR in 2015. Auroral hiss provides another unambiguous method of tracking the rotation signals from each hemisphere because the whistler mode wave cannot cross the equator. Rotation rates of auroral hiss are shown to agree with those of SKR when both are observed at high latitudes. The dual rotation rates of 5 kHz narrowband emissions reappeared after a long break since equinox and they agree with those of auroral hiss in 2013.

  7. Highly Structured Plasma Density and Associated Electric and Magnetic Field Irregularities at Sub-Auroral, Middle, and Low Latitudes in the Topside Ionosphere Observed with the DEMETER and DMSP Satellites

    Science.gov (United States)

    Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre

    2007-01-01

    Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.

  8. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  9. M-I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    Science.gov (United States)

    Sandholt, P. E.; Farrugia, C. J.; Denig, W. F.

    2014-04-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) "snapshot" satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the cross

  10. M-I coupling across the auroral oval at dusk and midnight. Repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Sandholt, P.E. [Oslo Univ. (Norway). Dept. of Physics; Farrugia, C.J. [New Hampshire Univ., Durham (United Kingdom). Space Science Center; Denig, W.F. [NOAA, Boulder, CO (United States)

    2014-07-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostroem type I centered at midnight and Bostroem type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) 'snapshot' satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δB{sub z}/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the

  11. Characteristics of merging at the magnetopause inferred from dayside 557.7-nm all-sky images: IMF drivers of poleward moving auroral forms

    Directory of Open Access Journals (Sweden)

    N. C. Maynard

    2006-11-01

    Full Text Available We combine in situ measurements from Cluster with high-resolution 557.7 nm all-sky images from South Pole to investigate the spatial and temporal evolution of merging on the dayside magnetopause. Variations of 557.7 nm emissions were observed at a 6 s cadence at South Pole on 29 April 2003 while significant changes in the Interplanetary Magnetic Field (IMF clock angle were reaching the magnetopause. Electrons energized at merging sites are the probable sources for 557.7 nm cusp emissions. At the same time Cluster was crossing the pre-noon cusp in the Northern Hemisphere. The combined observations confirm results of a previous study that merging events can occur at multiple sites simultaneously and vary asynchronously on time scales of 10 s to 3 min (Maynard et al., 2004. The intensity of the emissions and the merging rate appear to vary with changes in the IMF clock angle, IMF BX and the dynamic pressure of the solar wind. Most poleward moving auroral forms (PMAFs reflect responses to changes in interplanetary medium rather than to local processes. The changes in magnetopause position required by increases in dynamic pressure are mediated by merging and result in the generation of PMAFs. Small (15–20% variations in dynamic pressure of the solar wind are sufficient to launch PMAFs. Changes in IMF BX create magnetic flux compressions and rarefactions in the solar wind. Increases (decreases in IMF BX strengthens |B| near northern (southern hemisphere merging sites thereby enhancing merging rates and triggering PMAFs. When correlating responses in the two hemispheres, the presence of significant IMF BX also requires that different lag-times be applied to ACE measurements acquired ~0.1 AU upstream of Earth. Cluster observations set lag times for merging at Northern Hemisphere sites; post-noon optical emissions set times of Southern Hemisphere merging. All-sky images and

  12. Ground-based observations of Saturn's auroral ionosphere over three days: Trends in H3+ temperature, density and emission with Saturn local time and planetary period oscillation

    Science.gov (United States)

    O'Donoghue, James; Melin, Henrik; Stallard, Tom S.; Provan, G.; Moore, Luke; Badman, Sarah V.; Cowley, Stan W. H.; Baines, Kevin H.; Miller, Steve; Blake, James S. D.

    2016-01-01

    On 19-21 April 2013, the ground-based 10-m W.M. Keck II telescope was used to simultaneously measure H3+ emissions from four regions of Saturn's auroral ionosphere: (1) the northern noon region of the main auroral oval; (2) the northern midnight main oval; (3) the northern polar cap and (4) the southern noon main oval. The H3+ emission from these regions was captured in the form of high resolution spectral images as the planet rotated. The results herein contain twenty-three H3+ temperatures, column densities and total emissions located in the aforementioned regions - ninety-two data points in total, spread over timescales of both hours and days. Thermospheric temperatures in the spring-time northern main oval are found to be cooler than their autumn-time southern counterparts by tens of K, consistent with the hypothesis that the total thermospheric heating rate is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than it is at noon, in agreement with a nearby peak in the electron influx in the post-dawn sector and a minimum flux at midnight. Finally, when arranging the northern main oval H3+ parameters as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ∼115° northern phase, with a full-width at half-maximum (FWHM) of ∼44°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. A combination of the H3+ production and loss timescales and the ±10° uncertainty in the location of a given PPO phase are likely, at least in part, to be responsible for the observed peaks in H3+ density and emission occurring at a later time than the peak precipitation expected at 90° PPO phase.

  13. Asthma of difficult handling, not all that hiss is asthma

    International Nuclear Information System (INIS)

    The paper tries about a patient of masculine sex 13 years old who consults initially for square that begins in February of 1999, consistent in cough, breathlessness and difficulty to breathe, he consults to one hospital where it is managed with beta two micronebulized, corticoids endovenous and oxygen being obtained improvement, reason why they give exit. Three days later he consults again for similar square; receiving the same treatment; a week later he presents cough and severe breathing difficulty, for that again consult and he is remitted to the Hospital San Rafael (Bogota) for no-improvement of the square. The paper includes the antecedents, exams, clinical evolution and paraclinics

  14. Modulation of auroral electrojet currents using dual modulated HF beams with ELF phase offset, a potential D-region ionospheric diagnostic

    Science.gov (United States)

    GołKowski, M.; Cohen, M. B.; Moore, R. C.

    2013-05-01

    Experiments at the ionospheric heating facility of the High Frequency Active Auroral Research Program (HAARP) are performed employing dual HF beams amplitude modulated at ELF/VLF with a phase offset between the two modulation waveforms. The amplitude of the observed ELF/VLF waves is strongly dependent on the imposed ELF/VLF phase offset, the modulation waveform, and the orientation of the HF beams. Data from two ground stations are interpreted using simulations of modulated heating power envelopes as well as a comprehensive model of ionospheric ELF/VLF generation. It is found that two colocated vertical beams HF beams excite a single ionospheric ELF/VLF source, but independent ELF/VLF sources can be induced in the ionospheric region above the heater if the HF beams are offset from zenith to intersect at their 3 dB points. Furthermore, the use of two vertical HF beams with ELF phase offset is found to be a potential diagnostic method for the ionospheric D region.

  15. Statistical altitude distribution of Cluster auroral electric fields, indicating mainly quasi-static acceleration below 2.8 RE and Alfvénic above

    Science.gov (United States)

    Li, B.; Marklund, G.; Alm, L.; Karlsson, T.; Lindqvist, P.-A.; Masson, A.

    2014-11-01

    Results are presented from a statistical study of high-altitude electric fields and plasma densities using Cluster satellite data collected during 9.5 years between 2 and 4 RE. The average electric fields are most intense on the nightside and associated with an extensive plasma density cavity, with densities of 1 cm-3 or less. The intense electric fields are concentrated in two regions, separated by an altitude gap at about 2.8 RE. Below this, the average electric field magnitudes reach about 50 mV/m (mapped to the ionosphere) between 22 and 01 magnetic local time (MLT). Above 3 RE, the fields are about twice as high and spread over a broader MLT range. These fields occur in a region where the (ΔE/ΔB)/VA ratio is close to unity, which suggests an Alfvénic origin. The intense low-altitude electric fields are interpreted to be quasi-static, associated with the auroral acceleration region. This is supported by their location in MLT and altitude, and by a (ΔE/ΔB)/VA ratio much below unity. The local electric field minimum between the two regions indicates a partial closure of the electrostatic potentials in the lower region. These results show similarities with model results of reflected Alfvén waves by Lysak and Dum (1983), and with the O-shaped potential model, with associated wave-particle interaction at its top, proposed by Janhunen et al. (2000).

  16. Dependence of the relative backscatter cross section of 1-m density fluctuations in the auroral electrojet on the angle between electron drift and radar wave vector

    International Nuclear Information System (INIS)

    With the STARE radar system it is possible to measure, with high spatial and temporal resolution the electron drift velocity V/sub D/ and the relative amplitude of electron density fluctuations of 1-m wavelength in the auroral electrojet. These density fluctuations are generated by the combined effects of the two-stream and the gradient drift instabilities. We have determined the angular dependence of the backscatter intensity (which is proportional to the square of the amplitude of the density fluctuations) on the angle theta betweeen the electron drift direction and the direction from the scattering volume to the radar in the plane perpendicular to the magnetic field. We find a fluctuation minimum for theta = 900 and an increase towards theta = 00 over the whole velocity range up to 1000 m/s. This increase is small for velocities below the ion acoustic velocity C/sub N/ but reaches over 20 dB gain in the backscatter intensity (corresponding to a density fluctuation more than 10 times as great) for higher velocities. We explain that the backscatter is caused mainly by two-stream instability in the range cos theta>C/sub S//V/sub d/ and by secondary gradient drift instability elsewhere

  17. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  18. A fresh look at the mechanisms behind auroral E region irregularities, based on interferometry results from the March 17 storm of 2015.

    Science.gov (United States)

    St-Maurice, Jean-Pierre; Chau, Jorge

    2016-07-01

    During the strong magnetic storm of March 17, 2015, auroral echoes were detected by mid latitude radars operating at 32.5MHz and 36.2 MHz in Northern Germany. As shown in a separate presentation, thanks to several interferometry links, the retrieved spectra could be localized and superposed spectra could be separated in the presence of multiple spectral signatures from different locations with similar ranges. The radars detected four types of spectra. The first type consisted of spectra with moderate widths with a mean Doppler shift comparable to the expected ion-acoustic speed. Those are the often observed so-called Type I waves. They are Farley-Buneman waves at their peak amplitude. The second type had broad spectra with mean Doppler shifts typically less than 200 m/s. Such so-called Type II waves are routinely observed in auroral and equatorial E regions. Those waves are from Farley-Buneman waves observed from a direction perpendicular to their leading wave fronts and are therefore seen at large flow angles. The third class of echoes observed during the storm consisted of very narrow spectra with a Doppler shift that varied little from 180 m/s. These have been described as Type III waves in the literature and were never fully understood, in large part owing to a lack of localization technique. For our observations, interferometry revealed that they came from altitudes well below 100 km, with a target motion of 800 m/s or more in spite of the small Doppler shift. This contrasted with the fourth type, which came from the upper part of the unstable E region and was made once again of very narrow spectra moving at close to the line-of-sight velocity (as found through target motion) when the plasma drift was particularly large, of the order of 1400 m/s. This presentation will show that the Type III waves were in great agreement with the notion of maximum amplitude unstable Farley-Buneman waves excited by very large electric fields in a region strongly affected by non

  19. MICA sounding rocket observations of conductivity-gradient-generated auroral ionospheric responses: Small-scale structure with large-scale drivers

    Science.gov (United States)

    Lynch, K. A.; Hampton, D. L.; Zettergren, M.; Bekkeng, T. A.; Conde, M.; Fernandes, P. A.; Horak, P.; Lessard, M.; Miceli, R.; Michell, R.; Moen, J.; Nicolls, M.; Powell, S. P.; Samara, M.

    2015-11-01

    A detailed, in situ study of field-aligned current (FAC) structure in a transient, substorm expansion phase auroral arc is conducted using electric field, magnetometer, and electron density measurements from the Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA) sounding rocket, launched from Poker Flat, AK. These data are supplemented with larger-scale, contextual measurements from a heterogeneous collection of ground-based instruments including the Poker Flat incoherent scatter radar and nearby scanning doppler imagers and filtered all-sky cameras. An electrostatic ionospheric modeling case study of this event is also constructed by using available data (neutral winds, electron precipitation, and electric fields) to constrain model initial and boundary conditions. MICA magnetometer data are converted into FAC measurements using a sheet current approximation and show an up-down current pair, with small-scale current density and Poynting flux structures in the downward current channel. Model results are able to roughly recreate only the large-scale features of the field-aligned currents, suggesting that observed small-scale structures may be due to ionospheric feedback processes not encapsulated by the electrostatic model. The model is also used to assess the contributions of various processes to total FAC and suggests that both conductance gradients and neutral dynamos may contribute significantly to FACs in a narrow region where the current transitions from upward to downward. Comparison of Poker Flat Incoherent Scatter Radar versus in situ electric field estimates illustrates the high sensitivity of FAC estimates to measurement resolution.

  20. VLF effects in the outer ionosphere from the underground nuclear explosion of 24 October 1990 on the New Land island (Interkosmos-24 satellite data)

    International Nuclear Information System (INIS)

    Results on numerical treatment of the VLF auroral hiss and whistling atmospherics, registered at the height approximately 900 km on board of the Interkosmos-24 satellite over the New Land island 17 minutes after the underground nuclear explosion are presented. As the result of powerful acoustic effect there took place sharp increase (∼ 20 db) in the VLF hiss within the narrow range of invariant latitudes including the excitation source. Simultaneously decrease in the low frequency of the noise spectrum cut-off, coinciding with the frequency of the low hybrid resonance was observed

  1. Dependence of the open-closed field line boundary in Saturn's ionosphere on both the IMF and solar wind dynamic pressure: comparison with the UV auroral oval observed by the HST

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2008-02-01

    Full Text Available We model the open magnetic field region in Saturn's southern polar ionosphere during two compression regions observed by the Cassini spacecraft upstream of Saturn in January 2004, and compare these with the auroral ovals observed simultaneously in ultraviolet images obtained by the Hubble Space Telescope. The modelling employs the paraboloid model of Saturn's magnetospheric magnetic field, whose parameters are varied according to the observed values of both the solar wind dynamic pressure and the interplanetary magnetic field (IMF vector. It is shown that the open field area responds strongly to the IMF vector for both expanded and compressed magnetic models, corresponding to low and high dynamic pressure, respectively. It is also shown that the computed open field region agrees with the poleward boundary of the auroras as well as or better than those derived previously from a model in which only the variation of the IMF vector was taken into account. The results again support the hypothesis that the auroral oval at Saturn is associated with the open-closed field line boundary and hence with the solar wind interaction.

  2. IMF dependence of the open-closed field line boundary in Saturn's ionosphere, and its relation to the UV auroral oval observed by the Hubble Space Telescope

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2007-06-01

    Full Text Available We study the dependence of Saturn's magnetospheric magnetic field structure on the interplanetary magnetic field (IMF, together with the corresponding variations of the open-closed field line boundary in the ionosphere. Specifically we investigate the interval from 8 to 30 January 2004, when UV images of Saturn's southern aurora were obtained by the Hubble Space Telescope (HST, and simultaneous interplanetary measurements were provided by the Cassini spacecraft located near the ecliptic ~0.2 AU upstream of Saturn and ~0.5 AU off the planet-Sun line towards dawn. Using the paraboloid model of Saturn's magnetosphere, we calculate the magnetospheric magnetic field structure for several values of the IMF vector representative of interplanetary compression regions. Variations in the magnetic structure lead to different shapes and areas of the open field line region in the ionosphere. Comparison with the HST auroral images shows that the area of the computed open flux region is generally comparable to that enclosed by the auroral oval, and sometimes agrees in detail with its poleward boundary, though more typically being displaced by a few degrees in the tailward direction.

  3. Approximating ambient D-region electron densities using dual-beam HF heating experiments at the high-frequency Active Auroral Research Program (HAARP)

    Science.gov (United States)

    Agrawal, Divya

    Dual-beam ELF/VLF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are critically compared with the predictions of a newly developed ionospheric high frequency (HF) heating model that accounts for the simultaneous propagation and absorption of multiple HF beams. The dual-beam HF heating experiments presented herein consist of two HF beams transmitting simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere in the extremely low frequency (ELF, 30 Hz to 3 kHz) and/or very low frequency (VLF, 3 kHz to 30 kHz) band while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF/VLF conductivity modulation and thereby the efficiency of ELF/VLF wave generation. Ground-based experimental observations are used together with the predictions of the theoretical model to identify the property of the received ELF/VLF wave that is most sensitive to the effects of multi-beam HF heating, and that property is determined to be the ELF/VLF signal magnitude. The dependence of the generated ELF/VLF wave magnitude on several HF transmission parameters (HF power, HF frequency, and modulation waveform) is then experimentally measured and analyzed within the context of the multi-beam HF heating model. For all cases studied, the received ELF/VLF wave magnitude as a function of transmission parameter is analyzed to identify the dependence on the ambient D-region electron density (Ne) and/or electron temperature ( Te), in turn identifying the HF transmission parameters that provide significant independent information regarding the ambient conditions of the D-region ionosphere. A theoretical analysis is performed to determine the conditions under which the effects of Ne and Te can be decoupled, and the results of this analysis are applied to identify an electron density profile that can reproduce the unusually high level of ELF

  4. The role of ring current nose events in producing stable auroral red arc intensifications during the main phase: Observations during the September 19--24, 1984, equinox transition study

    International Nuclear Information System (INIS)

    This article reports on a study of the characteristics of stable auroral red (SAR) arcs. These arcs are characterized by 6300-angstrom emission which normally appears near F region heights. In particular the authors study observations made in September, 1984. These studies showed that oxygen ion collisions in the ring current were responsible for the recovery phase enhancement of the SAR. Satellite observations showed and enhanced 15 to 25 keV proton component in the ring current during the main phase of the SAR which is responsible for the enhancement during this phase of the event. This enhanced high energy proton flux appears to have come from ion injection into the inner magnetosphere in response to an abrupt change in the electric field across the magnetotail

  5. Vertical distribution of vibrational energy of molecular nitrogen in a stable auroral red arc and its effect on ionospheric electron densities. Ph.D. Thesis - Catholic Univ. of Am.

    Science.gov (United States)

    Newton, G. P.

    1973-01-01

    Previous solutions of the problem of the distribution of vibrationally excited molecular nitrogen in the thermosphere have either assumed a Boltzmann distribution and considered diffusion as one of the loss processes or solved for the energy level populations and neglected diffusion. Both of the previous approaches are combined by solving the time dependent continuity equations, including the diffusion process, for the first six energy levels of molecular nitrogen for conditions in the thermosphere corresponding to a stable auroral red arc. The primary source of molecular nitrogen excitation was subexcitation, and inelastic collisions between thermal electrons and molecular nitrogen. The reaction rates for this process were calculated from published cross section calculations. The loss processes for vibrational energy were electron and atomic oxygen quenching and vibrational energy exchange. The coupled sets of nonlinear, partial differential equations were solved numerically by employing finite difference equations.

  6. The Madagascar Hissing Cockroach: A New Model for Learning Insect Anatomy

    Science.gov (United States)

    Heyborne, William H.; Fast, Maggie; Goodding, Daniel D.

    2012-01-01

    Teaching and learning animal anatomy has a long history in the biology classroom. As in many fields of biology, decades of experience teaching anatomy have led to the unofficial selection of model species. However, in some cases the model may not be the best choice for our students. Our struggle to find an appropriate model for teaching and…

  7. Information and intrigue from index cards to Dewey decimals to Alger Hiss

    CERN Document Server

    Burke, Colin B

    2014-01-01

    In Information and Intrigue ; Colin Burke tells the story of one man's plan to revolutionize the world's science information systems and how science itself became enmeshed with ideology and the institutions of modern liberalism. In the 1890s, the idealistic American Herbert Haviland Field established the Concilium Bibliographicum, a Switzerland-based science information service that sent millions of index cards to American and European scientists. Field's radical new idea was to index major ideas rather than books or documents. In his struggle to create and maintain his system, Field became entangled with nationalistic struggles over the control of science information, the new system of American philanthropy (powered by millionaires), the politics of an emerging American professional science, and in the efforts of another information visionary, Paul Otlet, to create a pre-digital worldwide database for all subjects. World War I shuttered the Concilium, and postwar efforts to revive it failed. Field himself di...

  8. Svante Arrhenius, cosmical physicist and auroral theorist

    OpenAIRE

    H. Kragh

    2013-01-01

    Many scientists in the fin de siècle era saw a need to coordinate and unify the increasing amount of data relating the physical conditions of the Earth and the Sun; or more generally to establish a synthetic perspective that covered the earth sciences in relation to the new astrophysical sciences. Promoted under the label "cosmical physics'', the unifying solar–terrestrial perspective was in vogue for a decade or two. Perhaps more than any other scientist in the period...

  9. Artificial periodic irregularities in the auroral ionosphere

    Science.gov (United States)

    Rietveld, M. T.; Turunen, E.; Matveinen, H.; Goncharov, N. P.; Pollari, P.

    1996-12-01

    Artificial periodic irregularities (API) are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Tromsø, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHF incoherent-scatter-radar (ISR) data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75-115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50-70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the data below 60 km but is larger above 60 km by a factor of up to 2 at 64 km. The comparisons with the model are considered to be a good basis for more refined comparisons. Acknowledgements. This work has been supported by the UK Particle-Physics and Astronomy Research Council. The assistance of the director and staff of the EISCAT Scientific Association, the staff of the Norsk Polarinstitutt and the director and staff of the Swedish Institute of Space Physics is gratefully acknowledged. In addition the authors would like to thank Professor Evgeny Tereshchenko of the Polar Geophysical Institute in Mumansk, Russia and Dr Tuomo Nygrén of the University of Oulu, Finland for provision of data from EISCAT special program time during the November 1995 campaign. Topical Editor D. Alcaydé thanks E. J. Fremouw and another referee for their help in evaluating this paper.--> Correspondence to: I. K. Walker-->

  10. First-Generation Jet Propulsion Laboratory "Hockey-Puck" Free-Flying Magnetometers for Distributed In-Situ Multiprobe Measurement of Current Density Filamentation in the Northern Auroral Zone: Enstrophy Mission

    Science.gov (United States)

    Javadi, H.; Blaes, B.; Boehm, M.; Boykins, K.; Gibbs, J.; Goodman, W.; Lieneweg, U.; Lux, J.; Lynch, K.; Narvaez, P.

    2000-01-01

    The sub-orbital rocket mission was a collaborative project between the University of New Hampshire, Cornell University, and the Jet Propulsion Laboratory (JPL) to study filamentation phenomena in the northern Auroral zone. The Enstrophy mission test flies the JPL Free-Flying Magnetometer (FFM) concept. The FFM technology development task has been funded by NASA develop miniaturized, low-power, integrated "sensorcrafts". JPL's role was to design, integrate, test, and deliver four FFMs for deployment from the sounding rocket, allowing a unique determination of curl-B. This provides a direct measurement of magnetic-field-aligned current density along the rocket trajectory. A miniaturized three-axis fluxgate magnetometer was integrated with a 4-channel 22-bit sigma-delta Analog to Digital Converter (ADC), four temperature sensors, digital control electronics, seven (Li-SOCl2) batteries, two (4 deg x 170 deg field of view) sun-sensors, a fan-shaped-beam laser diode beacon, a (16 MHz) stable Temperature Compensated Crystal Oscillator (TCXO) clock, Radio Frequency (RF) communication subsystem, and an antenna for approximately 15 minutes of operation where data was collected continuously and transmitted in three (3) bursts (approximately 26 seconds each) to ground station antennas at Poker Flat, Alaska. FFMs were stowed within two trays onboard the rocket during the rocket launch and were released simultaneously using the spinning action of the rocket at approximately 300 km altitude (approximately 100 sec. into the flight). FFMs were deployed with spin rate of approximately 17 Hz and approximately 3 m/sec linear velocity with respect to the rocket. For testing purposes while the rocket was in the launch pad and during flight prior to release of FFMs from the rocket, commands (such as "power on", "test", "flight", "power off', and clock "Reset" signal) were transmitted via a infrared Light Emitting Diode to an infrared detector in the FFM. Special attention was paid to low

  11. An autonomous receiver/digital signal processor applied to ground-based and rocket-borne wave experiments

    Science.gov (United States)

    Dombrowski, M. P.; LaBelle, J.; McGaw, D. G.; Broughton, M. C.

    2016-07-01

    The programmable combined receiver/digital signal processor platform presented in this article is designed for digital downsampling and processing of general waveform inputs with a 66 MHz initial sampling rate and multi-input synchronized sampling. Systems based on this platform are capable of fully autonomous low-power operation, can be programmed to preprocess and filter the data for preselection and reduction, and may output to a diverse array of transmission or telemetry media. We describe three versions of this system, one for deployment on sounding rockets and two for ground-based applications. The rocket system was flown on the Correlation of High-Frequency and Auroral Roar Measurements (CHARM)-II mission launched from Poker Flat Research Range, Alaska, in 2010. It measured auroral "roar" signals at 2.60 MHz. The ground-based systems have been deployed at Sondrestrom, Greenland, and South Pole Station, Antarctica. The Greenland system synchronously samples signals from three spaced antennas providing direction finding of 0-5 MHz waves. It has successfully measured auroral signals and man-made broadcast signals. The South Pole system synchronously samples signals from two crossed antennas, providing polarization information. It has successfully measured the polarization of auroral kilometric radiation-like signals as well as auroral hiss. Further systems are in development for future rocket missions and for installation in Antarctic Automatic Geophysical Observatories.

  12. Correlation between convection electric fields in the nightside magnetosphere and several wave and particle phenomena during two isolated substorms.

    Science.gov (United States)

    Carpenter, D. L.; Fraser-Smith, A. C.; Unwin, R. S.; Hones, E. W., Jr.; Heacock, R. R.

    1971-01-01

    Correlation of several magnetoionospheric wave and particle phenomena previously linked observationally to magnetospheric substorms and inferred to involve convection electric fields with whistler measurements of convection activity during two relatively isolated substorms. The events occurred at about 0600 UT on July 15, 1965, and about 0500 UT on Oct. 13, 1965. The correlated phenomena include cross-L inward plasma drifts near midnight within the plasmaphere, diffuse auroral radar echoes observed near the dusk meridian, IPDP micropulsations (intervals of pulsations of diminishing period) in the premidnight sector, apparent contractions and expansions of the plasma sheet at about 20 earth radii in the magnetotail, and Pc 1/Pi 1 micropulsation events near or before midnight. Two new vlf phenomena occurred during the October 13 event - a noise band within the plasmasphere associated with a convecting whistler path, and ?hisslers,' falling-tone auroral-hiss forms repeated at intervals of about 2 sec.

  13. Modeling ionospheric electron precipitation due to wave particle scattering in the magnetosphere and the feedback effect on the magnetospheric dynamics

    Science.gov (United States)

    Yu, Y.; Jordanova, V.; Ridley, A. J.; Albert, J.; Horne, R. B.; Jeffery, C. A.

    2015-12-01

    Electron precipitation down to the atmosphere caused by wave-particle scattering in the magnetosphere contribute significantly to the enhancement of auroral ionospheric conductivity. Global MHD models that are incapable of capturing kinetic physics in the inner magnetosphere usually adopt MHD parameters to specify the precipitation flux to estimate auroral conductivity, hence losing self-consistency in the global circulation of the magnetosphere-ionosphere system. In this study we improve the coupling structure in global models by connecting the physics-based (wave-particle scattering) electron precipitation with the ionospheric electrodynamics and investigate the feedback effect on the magnetospheric dynamics. We use BATS-R-US coupled with a kinetic ring current model RAM-SCB that solves pitch angle dependent particle distributions to study the global circulation dynamics during the Jan 25-26, 2013 storm event. Following tail injections, we found enhanced precipitation number and energy fluxes of tens of keV electrons being scattered into loss cone due to interactions with enhanced chorus and hiss waves in the magnetosphere. This results in a more profound auroral conductance and larger electric field imposing on the plasma transport in the magnetosphere. We also compared our results with previous methods in specifying the auroral conductance, such as empirical relation used in Ridley et al. (2004). It is found that our physics-based method develops a larger convection electric field in the near-Earth region and therefore leads to a more intense ring current.

  14. Of Hissing Snakes and Angry Voices: Human Infants Are Differentially Responsive to Evolutionary Fear-Relevant Sounds

    Science.gov (United States)

    Erlich, Nicole; Lipp, Ottmar V.; Slaughter, Virginia

    2013-01-01

    Adult humans demonstrate differential processing of stimuli that were recurrent threats to safety and survival throughout evolutionary history. Recent studies suggest that differential processing of evolutionarily ancient threats occurs in human infants, leading to the proposal of an inborn mechanism for rapid identification of, and response to,…

  15. Experiments on the TASS and HISS spectrometers at the Bevalac. Annual progress report, April 1, 1983-March 31, 1984

    International Nuclear Information System (INIS)

    Achievements during the period from April 1, 1983 to March 31, 1984 by the intermediate energy nuclear physics group at Louisiana State University are discussed. These include: backward-forward proton correlation measurements, search for pionic instability, search for anomalous target fragments, and mid-rapidity pions in Ca-Ca collisions at 1.05 GeV

  16. Cassini Imaging of Auroral Emissions on the Galilean Satellites

    Science.gov (United States)

    Geissler, P.; McEwen, A.; Porco, C.

    2001-05-01

    Cassini captured several sequences of images showing Io, Europa and Ganymede while the moons were eclipsed by Jupiter. Io was the best studied of the satellites, with 4 eclipses successfully recorded. Earlier eclipse imaging by Galileo (Geissler et al., Science 295, 870-874) had shown colorful atmospheric emissions from Io and raised questions concerning their temporal variability and the identity of the emitting species. With its high data rate and numerous filter combinations, Cassini was able to fill some of the gaps in our knowledge of Io's visible aurorae. Io's bright equatorial glows were detected at previously unknown wavelengths and were also seen in motion. One eclipse took place on 12/29/2000 while Io was far from the plasma torus center. The pair of equatorial glows near the sub-Jupiter and anti-Jupiter points appeared about equal in brightness and changed little in location or intensity over a two hour period. Io crossed the plasma torus center during the next eclipse on 1/01/2001, as it passed through System III magnetic longitudes from 250 to 303 degrees. The equatorial glows were seen to shift in latitude during this eclipse, tracking the tangent points of the jovian magnetic field lines. This behaviour is similar to that observed for ultraviolet and other atomic emissions, and confirms that these visible glows are powered by Birkeland currents connecting Io and Jupiter. The eclipse on 1/05/2001 provided the best spectral measurements of the aurorae. The equatorial glows were detected at near ultraviolet wavelengths, consistent with their interpretation as molecular SO2 emissions. More than 100 kR were recorded in the ISS UV3 filter (300-380 nm) along with a similar intensity in BL1 (290-500 nm), comparable to Galileo estimates. At least 50 kR were detected in UV2 images (265-330 nm). No detection was made in UV1 (235-280 nm), allowing us to place an upper limit of about 100 kR. A new detection of the equatorial glows was made in the IR1 band (670-850 nm), possibly due to singly ionized oxygen ([OII] 732,733 nm). Limb glows distinct from the equatorial emissions were detected in the CB1 (595-645 nm) and RED (570-730) filters, consistent with [OI] 630,636 nm emissions. A small "knot" or concentration of emission near the north pole of Io was seen in all three eclipses, probably caused by a plume erupting from the volcano Tvashtar (McEwen et al., this meeting). Ganymede and Europa were detected in eclipses on 1/10 and 1/11/2001. Results of preliminary analyses will be presented.

  17. Infrared Interferometry of Auroral Ionosphere-Thermosphere Energetics Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  The FWMI prototype development is underway at USU/SDL. To develop the FWMI, USU/SDL is leveraging the successful implementation of a rocket-borne Michelson...

  18. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  19. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.;

    2002-01-01

    Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in...

  20. Co-Investigator Proposal for Enstrophy - - Filamentation of Auroral Currents

    Science.gov (United States)

    Kintner, Paul M.

    2000-01-01

    Cornell University provided three instruments for the Enstrophy experiment: an electric field meter, a plasma wave receiver, and a magnetometer for measuring FAC. The electric field meter consisted of a 6 m Weitzmann boom system with analog signal processing and 12 bit ADC, which yielded one electric field component instantaneously and a two dimensional electric field every half spin. The plasma wave receiver used the same sensing system with the addition of pre-amplifiers in the spheres to sense plasma waves up to and including the electron Langmuir frequency. Signal processing employed a variety of continuous and snap shot techniques depending on the frequency range and band width. The science magnetometer provided by Cornell University was a Billingsly design fluxgate previously used on spacecraft missions but without radiation hardening. The magnetometer was mounted on a one meter, stiff aluminum "flop-down" boom. The Enstrophy payload was launched on february 11, 1999. Because of a design flaw in the event timers, the magnetometer boom was deployed before the payload despun. As a result the magnetometer separated mechanically from the boom but maintained electrical connection. This was confirmed by the calculation of the scalar magnetic field from all three vector components of the magnetic field. However, the individual vector values had no scientific value. The electric field and plasma wave instrumentation worked as designed. The data from these instruments was provided to the University of New Hampshire and to the Principal Investigator, as proposed.

  1. Height-integrated conductivity in auroral substorms - 2. Modeling

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2000-01-01

    interpolation between these, two-dimensional conductance models were compiled. The characteristics of our models are (1) the Hall conductance maximizes in the high-latitude part of the surge at 48 mho with a Hall to Pedersen ratio of 2.4; (2) two channels of enhanced conductance are overlapping in local time...... near midnight and are fairly separated in latitude; (3) the conductance has a sharp gradient at the high-latitude boundary in the premidnight sector while in the postmidnight sector a broad region of low conductance stretches up to 10 degrees invariant latitude poleward of the local peak; and finally...

  2. Measuring Auroral and Arctic Ozone Using Student Made Hardware

    Science.gov (United States)

    Pina, M.

    2015-12-01

    This project is twofold to test the feasibility of student made hardware and teach students more about atmospheric instrumentation by providing students with education and materials, instructing them in design and building of hardware, and testing the hardware against commercial models in terms of weight, cost, and features. The Gaseous Compounds team of the University of Houston Undergraduate Student Instrument Project (USIP) selected the parts and the students of the team are assembling the payload. The payload will launch on a latex balloon in Houston and Fairbanks, Alaska. The instrument will gather data on the concentration of certain gases in the atmosphere as well as a meteorological profile of the atmosphere. The students plan to have the instrument collect and transmit data on carbon monoxide, nitric oxide, nitrogen dioxide, and ozone, as well as temperature, humidity, and barometric pressure. The data will also be stored on an SD card as a backup in case transmission fails. These payloads will fly at night and day to get an accurate vertical profile of the atmosphere and these results will be tested against the results of commercial hardware with the same capabilities.

  3. Quadrant photometer for satellite-borne auroral and optical measurements.

    Science.gov (United States)

    Criswell, D R; O'Brien, B J

    1967-06-01

    A multichannel photometer has been developed for space applications requiring low weight and power, no moving parts, and high sensitivity. The photocathode of a special phototube is divided into four electrically and optically distinct quadrants. The system operates without degradation after exposure to full sunlight, and has a sensitivity down to the order of rayleighs (10(6) photons cm(-2) sec(-1)). The complete photometer, including high voltage and control circuitry and signal conditioning with A/D converter and three lenses and interference filters, has a weight of 1.7 kg, power consumption of less than 0.3 W, and switching speeds up to 30 cycles/sec. These are to be compared with a previous multichannel photometer with a moving filter wheel, whose corresponding characteristics were 9 kg, 7-9 W, and 0.1 cycles/sec.

  4. On the ionospheric coupling of auroral electric fields

    OpenAIRE

    G. T. Marklund

    2009-01-01

    The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC) region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred fro...

  5. Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.; Haspodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

  6. Hisse Senetleri Fiyatlarının Belirlenmesinde Finansal Oranların Rolü(The Role of Financial Ratios in Determining the Stock Prices

    Directory of Open Access Journals (Sweden)

    Oğuzhan AYDEMİR

    2012-01-01

    Full Text Available In this study, financial ratios being effective in determining stock prices are investigated by panel data analysis. In this aim, data set belonging to 73 companies indexed in Istanbul Stock Exchange (ISE and operating in manufacturing sector over the period of 1990-2000 is used. Empirical results suggest that profitability and liquidity ratios have a positive effect on stock returns. Moreover, leverage ratio taken as an indicator of indebtedness has the same effect. However, it is seen that operating ratios have no impact on stock returns. Consequently, it may be said that the role of financial ratios in determining the stock returns is low.

  7. Stock Markets and Economic Growth : A Causality Test = Hisse Senedi Pazarı ve Ekonomik Büyüme: Bir Nedensellik Testi

    Directory of Open Access Journals (Sweden)

    Alövsat MÜSLÜMOV

    2000-06-01

    Full Text Available This article examines causality relationships between stock markets and economic growth based on the time series data compiled from 20 countries for the years 1981 through 1994 . Sims' causality test based on Granger definition of causality was used . At first, panel data covering all countries over the entire analysis period were used to detect the direction of causation. Secondly, causal relations were investigated for each country, in isolation, using the respective time series data.Analysis based on the panel data revealed a two-way causation between stock market development and economic growth. Country analyses, on the other hand, could not lead to precise conclusions, but suggested a somewhat stronger link between stock market development and economic growth in developing countries.

  8. Quasielectrostatic wave propagation in a hot anisotropic plasma

    International Nuclear Information System (INIS)

    A general analysis is presented for quasielectrostatic wave propagation at wave normal angles theta close to the resonance cone angle thetasub(R). A general dispersion equation is simplified and presented as a cubic equation with respect to squared refractive index N2. The solutions of this equation at theta close to thetasub(R) depend on the sign of the coefficient before N6, taken at theta=thetasub(R). A distinction is made between ''main mode'' which reduces to the corresponding solution for a cold plasma when electron temperature tends to zero and ''additional mode'' which does not reduce to a cold plasma solution. The obtained analytical results are compared with the results of numerical analyses and are applied for determination of the direction of whistler-mode energy propagation and for estimating the energy of auroral electrons responsible for auroral hiss excitation. Interpretation of the observed frequency separation between attenuation bands at the harmonics of the proton gyrofrequency in saucer emissions is presented. (author)

  9. Türkiye Hisse Senedi Piyasasında Likidite Ölçülerinin Karşılaştırılması ve Likidite Volatilitesi Hisse Senedi Getirisi Arasındaki İlişki (Comparison of Liquidity Measures and The Relationship Between Volatility of Liquidity and Stock Returns in Turkish Stock Market

    Directory of Open Access Journals (Sweden)

    Cüneyt AKAR

    2015-06-01

    Full Text Available This paper aims to determine the relationship between stock returns and volatility of liquidity in Turkish Stock Market. It is also investigated whether various liquidity measures sort the stocks in the same way according to their liquidities. The data used in the study contains the closing prices, trading volumes and free floating of the stocks that are included in Borsa Istanbul 100 Index (BIST100 and covers the period from 28.02.2011 to 18.11.2014. Generalized Autoregressive Conditional Heteroscedasticity (GARCH and Autoregressive Moving Average models (ARMA are used to perform empirical analysis. According to the results, it can not be determined the clear significant relationship between stock returns and volatility of liquidity. Results also show that while stock size and Amihud illiquidity criteria sort the stocks in the same way, stock return standard deviation criterion produces different ranking.

  10. Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments

    Directory of Open Access Journals (Sweden)

    M. Barthélémy

    2011-06-01

    Full Text Available The polarisation of the atomic oxygen red line in the Earth's thermosphere is observed in different configurations with respect to the magnetic field line at high latitude during several coordinated Incoherent Scatter radar/optical experiment campaigns. When pointing northward with a line-of-sight nearly perpendicular to the magnetic field, we show that, as expected, the polarisation is due to precipitated electrons with characteristic energies of a few hundreds of electron Volts. When pointing toward the zenith or southward with a line-of-sight more parallel to the magnetic field, we show that the polarisation practically disappears. This confirms experimentally the predictions deduced from the recent discovery of the red line polarisation. We show that the polarisation direction is parallel to the magnetic field line during geomagnetic activity intensification and that these results are in agreement with theoretical work.

  11. On the efficiency of ELF/VLF generation using HF heating of the auroral electrojet

    International Nuclear Information System (INIS)

    Using experimental measurements and theoretical analysis, it is shown that the HF/ELF conversion efficiency is controlled by the timescale for electron temperature saturation. This is a function of the ERP and frequency of the heater and the ionospheric electron density profile. For the current HAARP parameters, this corresponds to frequencies between 2 and 4 kHz. Efficiency optimization techniques as applied to the projected upgrading of the HAARP heater to its design power of 3.6 MW are discussed

  12. Global effect of auroral particle and Joule heating in the undisturbed thermosphere

    Science.gov (United States)

    Hinton, B. B.

    1978-01-01

    From the compositional variations observed with the neutral atmosphere composition experiment on OGO 6 and a simplified model of thermospheric dynamics, global average values of non-EUV heating are deduced. These are 0.19-0.25 mW/sq m for quiet days and 0.44-0.58 mW/sq m for ordinary days.

  13. Response of the auroral lower ionosphere to solar flares in March 2012 according to ELF observations

    Science.gov (United States)

    Lebed', O. M.; Fedorenko, Yu. V.; Larchenko, A. V.; Pil'gaev, S. V.

    2015-11-01

    The response of the lower ionosphere to the solar flares that occurred in March 2012 is considered. Measurements of the propagation velocity and wave impedance of ELF electromagnetic pulses (atmospherics) performed at Lovozero and Barentsburg high-latitude observatories were used to estimate this response. It was shown that the daily average propagation velocity of atmospherics decreased by 20-30 thousand km/s under disturbed heliogeophysical conditions as compared to the velocity measured under quiet conditions. This is related to a decrease in the effective waveguide height that results from the change in the ionospheric conductivity profile during a solar flare. It was detected that pronounced bursts of wave impedance, the maximums of which exceed the impedance average value by a factor of more than 2, are observed during strong heliogeophysical disturbances. This fact cannot be explained in the scope of a spherically layered model; consequently, such deviations indicate an increase in the D-layer conductivity inhomogeneities.

  14. Radar observations of auroral zone flows during a multiple-onset substorm

    Directory of Open Access Journals (Sweden)

    J. P. Morelli

    Full Text Available We present an analysis of ground magnetic field, ionospheric flow, geosynchronous particle, and interplanetary data during a multiple-onset substorm on 12 April 1988. Our principal results concern the modulations of the ionospheric flow which occur during the impulsive electrojet activations associated with each onset. During the first hour of the disturbance these take place every ~12.5 min and involve the formation of a new intense westward current filament in the premidnight sector, just poleward of the pre-existing extended current system driven by the large-scale flow. These filaments are ~1 h MLT wide (~600 km, and initially expand poleward to a width of ~300 km before contracting equatorward and coalescing with the pre-existing current, generally leaving the latter enhanced in magnitude and/or expanded in latitude. Within the impulsive electrojets the flow is found to be suppressed to values 50–100 m s–1 or less during the first few minutes, before surging equatorward at 0.5–1.0 km s–1 during the phase of rapid coalescence. The implication is that the precipitation-induced Hall conductivity within the impulsive electrojet initially rises to exceed ~100 mho, before decaying over a few minutes. This value compares with Hall conductivities of ~20 mho in the quasi-steady current regions, and a few mho or less in the regions poleward of the electrojets and in the preonset ionosphere. Preliminary evidence has also been found that the flow surges propagate from midnight to the morning sector where they are associated with arrested equatorward motion or poleward contractions of the current system. These observations are discussed in terms of present theoretical paradigms of the global behaviour of fields and flows which occur during substorms.

  15. Investigations on diurnal and seasonal variations of Schumann resonance intensities in the auroral region

    Directory of Open Access Journals (Sweden)

    F. Rispoli

    2007-06-01

    Full Text Available Measurements of the magnetic component of the Schumann resonance in the frequency range 6-14 Hz were performed at high latitude location (TNB Antarctica; geographic coordinates: 74.7°S, 164.1°E; geomagnetic coordinates: 80.0°S, 307.7°E; LT=UT+13; MLT=UT–8; altitude=28 m a.s.l., during the two years 1996-1997. TNB is a particularly important observation site located in a region characterised by a high electromagnetic activity in the ELF and VLF bands. Moreover its remote location in Antarctica provides the important advantage that electromagnetic background noise is not corrupted by anthropogenic noise and that the continental lightning activity is very low. The combination of low additional anthropogenic electromagnetic radiation and low atmospheric noise in this area allows detailed investigations into wave generation and amplification in the polar ionosphere and magnetosphere not possible anywhere else in the world. This paper reports the study of the magnetic power of the 8 Hz Schumann resonance mode. For both the years considered diurnal and long-term seasonal variations were observed.

  16. Thermospheric vertical winds in the auroral oval/polar cap region

    OpenAIRE

    Greet, P. A.; Innis, J. L.; P. L. Dyson

    2002-01-01

    Thermospheric mean vertical winds from high-resolution Fabry-Perot Spectrometer observations of the l630 nm emission (from ~ 240 km altitude), over a four year interval 1997–2000, from Mawson (67.6° S, 62.9° E, Inv 70.5° S) and Davis (68.6° S, 78.0° E, Inv 74.6° S) are presented. Combining the four years of data shows Mawson mean hourly vertical winds vary between -10 ms-1 and +4 ms-1, while D...

  17. Climatology of the Ionospheric Scintillations over the Auroral and Cusp European Regions

    OpenAIRE

    Spogli, Luca; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Alfonsi, Lucilla; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; De Franceschi, Giorgiana; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Romano, Vincenzo; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Aquino, Marcio H. O.; Institute of Engineering Surveying and Space Geodesy (IESSG), University of Nottingham; Dodson, Alan; Institute of Engineering Surveying and Space Geodesy (IESSG) - University of Nottingham

    2009-01-01

    Under perturbed conditions coming from the outer space, the ionosphere may become highly turbulent and small scale (from centimeters to meters) irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form causing diffraction effects on the satellites signals passing through them. Such effect can abruptly corrupt the performance of the positioning systems affecting, in turn, the awareness and safety of the modern devices....

  18. La teoria di Halley sul magnetismo terrestre e sulle aurore polari.

    Science.gov (United States)

    D'Amico, S.

    1999-10-01

    This paper contains a brief description of some theories developed by Edmund Halley during the last years of the 17th century and the beginning of the 18th. This theories tried to explain the origin of terrestrial magnetism and its changes during the time, and gives a description of how magnetic force by the Earth could influence polar aurorae.

  19. Boreal winter comparison of auroral images from Polar UVI and IMAGE FUV

    Science.gov (United States)

    Spann, J. F.; Germany, G.; Maddox, W.; Fillingim, M.; Parks, G.; Mende, S.

    2004-12-01

    Same-scene images made with Polar UVI and IMAGE FUV are compared for the boreal winter of 2000-2001. The results of the comparison are used to determine whether the use of both instruments could lead to a better evaluation of the average precipitation and total energy input than with either one individually. These results are a part of a broader investigation to quantitatively compare conjugate images using both instruments and to correlate observed asymmetries with solar wind and seasonal parameters.

  20. Auroral counterpart of magnet ic dipolarizations in Saturn’s tail

    OpenAIRE

    Jackman, Caitriona; Achilleos, Nicholas; Cowley, Stan; Bunce, Emma; Radioti, Aikaterini; Grodent, Denis; Badman, Sarah; Dougherty, Michele; Pryor, Wayne

    2012-01-01

    Following magnetic reconnection in a planetary magnetotail, newly closed field lines can be rapidly accelerated back towards the planet, becoming “dipolarized” in the process. At Saturn, dipolarizations are initially identified in magnetometer data by looking for a southward turning of the magnetic field, indicating the transition from a radially stretched configuration to a more dipolar field topology. The highly stretched geometry of the kronian magnetotail lobes gives rise to a tail curren...

  1. Doppler-shifted auroral H β emission: a comparison between observations and calculations

    Directory of Open Access Journals (Sweden)

    K. Aarsnes

    Full Text Available Two sounding rockets equipped with photometers and particle detectors have been flown into proton auroras. The measured altitude dependence of the proton flux is compared with calculations based upon known energy-range relations for protons in air. Expressions suitable for numerical calculations of Doppler profiles at arbitrary angles to the geomagnetic field and at different heights within an aurora are developed. Profiles due to some typical proton spectra have been calculated and it is shown that altitude profiles at some wavelengths are more sensitive to the shape of the proton spectrum than are profiles at other wavelengths. Variations in the Hβ Doppler profile versus height for several angles with the magnetic field is studied. Profiles, as generated by the actually measured protons in the energy range 1 keV to 1 MeV, have been calculated and are compared with direct optical measurements made by ground and rocket photometers. The rocket photometers took measurements at different wavelengths within the Doppler profile. The correspondence between calculations and measurements is generally good. The total Hβ is calculated and fair agreement with the measured intensity is found.

  2. Sub-Auroral Ion Drifts as a Source of Mid-Latitude Plasma Density Irregularities

    Science.gov (United States)

    Sotnikov, V.; Kim, T.; Mishin, E.; Paraschiv, I.; Rose, D.

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At midlatitudes, such space weather events are caused mainly by subauroral electric field structures (SAID/SAPS) [1, 2]. SAID/SAPS -related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code was used to analyze competition between interchange and Kelvin Helmholtz instabilities in the equatorial region [3]. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ Defence Military Satellite Program (DMSP) satellite low-resolution data [2] during UHF/GPS L-band subauroral scintillation events. [1] Mishin, E. (2013), Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID, J. Geophys. Res. Space Phys., 118, 5782-5796, doi:10.1002/jgra.50548. [2] Mishin, E., and N. Blaunstein (2008), Irregularities within subauroral polarization stream-related troughs and GPS radio interference at midlatitudes. In: T. Fuller-Rowell et al. (eds), AGU Geophysical Monograph 181, MidLatitude Ionospheric Dynamics and Disturbances, pp. 291-295, doi:10.1029/181GM26, Washington, DC, USA. [3] V. Sotnikov, T. Kim, E. Mishin, T. Genoni, D. Rose, I. Paraschiv, Development of a Flow Velocity Shear Instability in the Presence of Finite Larmor Radius Effects, AGU Fall Meeting, San Francisco, 15 - 19 December, 2014.

  3. Multi-frequency Measurements of Hf Doppler Velocity In The Auroral E Region

    Science.gov (United States)

    Makarevitch, R. A.; Koustov, A. V.; Sofko, G. J.; Andre, D.; Ogawa, T.

    HF measurements in Prince George, British Columbia (Canada) at 5 radar frequencies between 9.3 and 15.7 MHz are considered to study the Doppler velocity of E-region coherent echoes. One event showing a regular variation of velocity with radar fre- quency, slant range and azimuth of observations is analyzed in detail. For this event, plasma drifts were in access of 700 ms-1, but the observed velocities were below 250 ms-1 since measurements were performed at large flow angles (L-shell angles 45 < <100). We show that measured Doppler velocity depends on irregular- ity scale but only within the Farley-Buneman instability cone (45 < <75). We demonstrate that maximum velocities measured at the highest radar frequency are about 1.3 times larger than those at the lowest frequency. We also show that, for ob- servations inside the instability cone, the velocity magnitude strongly decreases with aspect angle and the rate of the decrease is scale sensitive. The effect can be described by the fluid theory formula if the nominal electron collision frequencies are replaced by anomalous collision frequencies that are 5 times larger. However, for observa- tions outside the F-B instability cone (75 < <100), the Doppler velocity does not show significant variation with aspect angle. For these directions, velocity change with flow angle was insignificant, very similar at all radar frequencies, and not consistent with the expected "cosine" law. The implications of the measurements on the theory of electrojet instabilities and the processes of coherent echo formation are discussed.

  4. Multifrequency measurements of HF Doppler velocity in the auroral E region

    Science.gov (United States)

    Makarevitch, R. A.; Koustov, A. V.; Sofko, G. J.; André, D.; Ogawa, T.

    2002-08-01

    HF measurements in Prince George, British Columbia (Canada), at five radar frequencies between 9.3 and 15.7 MHz are considered to study the Doppler velocity of E region coherent echoes. One event showing a regular variation of velocity with radar frequency, slant range, and azimuth of observations is analyzed in detail. For this event, plasma drifts were in access of 700 m s-1, but the observed velocities were below 250 m s-1 since measurements were performed at large flow angles (L shell angles 45°< φ< 100°). We show that measured Doppler velocity depends on irregularity scale but only within the Farley-Buneman (F-B) instability cone (45°< φ< 75°). We demonstrate that maximum velocities measured at the highest radar frequency are ~1.3 times larger than those at the lowest frequency. We also show that for observations inside the instability cone, the velocity magnitude strongly decreases with aspect angle and the rate of the decrease is scale sensitive. The effect can be described by the fluid theory formula if the nominal electron collision frequencies are replaced by anomalous collision frequencies that are ~5 times larger. However, for observations outside the F-B instability cone (75°< φ< 100°), the Doppler velocity does not show significant variation with aspect angle. For these directions, velocity change with flow angle was insignificant, very similar at all radar frequencies, and not consistent with the expected ``cosine'' law. The implications of the measurements on the theory of electrojet instabilities and the processes of coherent echo formation are discussed.

  5. Structured waves near the plasma frequency observed in three auroral rocket flights

    Directory of Open Access Journals (Sweden)

    M. Samara

    2006-11-01

    Full Text Available We present observations of waves at and just above the plasma frequency (fpe from three high frequency electric field experiments on three recent rockets launched to altitudes of 300–900 km in active aurora. The predominant observed HF waves just above fpe are narrowband, short-lived emissions with amplitudes ranging from <1 mV/m to 20 mV/m, often associated with structured electron density. The nature of these HF waves, as determined from frequency-time spectrograms, is highly variable: in some cases, the frequency decreases monotonically with time as in the "HF-chirps" previously reported (McAdams and LaBelle, 1999, but in other cases rising frequencies are observed, or features which alternately rise and fall in frequency. They exhibit two timescales of amplitude variation: a short timescale, typically 50–100 ms, associated with individual discrete features, and a longer timescale associated with the general decrease in the amplitudes of the emissions as the rocket moves away from where the condition f~fpe holds. The latter timescale ranges from 0.6 to 6.0 s, corresponding to distances of 2–7 km, assuming the phenomenon to be stationary and using the rocket velocity to convert time to distance.

  6. Observations of fast magnetospheric echoes of artificially injected electrons above an auroral arc

    International Nuclear Information System (INIS)

    Electron beam experiments using rocket-borne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. These experiments were jointly carried out by the University of Minnesota, the National Research Council of Canada and the Max-Planck-Institut fuer Aeronomie. A total of 234 echoes have been observed in a pitch angle range from 00 to 1100 at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by approximately 50 ms. No echoes have been found in the 7.9 keV-detector channels. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is briefly discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection. Two consequences of this interaction, namely, strong energy and pitch angle diffusion and electron acceleration are illustrated with several examples. (orig.)

  7. Studies of the auroral zone ionosphere using the MITHRAS data base, fiscal years 1983-1985

    Science.gov (United States)

    1986-06-01

    The Autospheric Science group participated in the multi-radar MITHRAS experimental campaign. Coordinated observations of the Earth's ionosphere, magnetosphere, and thermosphere were conducted using the Millstone Hill, Massachusetts, Chatanika, Alaska, and European EISCAT incoherent scatter radars in conjunction with a variety of ground based and satellite experiments. Chatanika and EISCAT are about 11 hours apart in magnetic local time, and Millstone Hill precedes Chatanika and follows EISCAT by more than 6 hours. Each of the three radars was able to study aruroal zone latitudes, but at widely spaced longitudes. Hence the MITHRAS program was well suited to study the class of problems which involve universal time/local time ambiguities, or equivalenty, space/time differences. Set operating modes were used at the radar sites to best match the requirements of the several campaign objectives. The overall MITHRAS program was motivated by a desire to provide a well documented set of radar observations of the mid and high latitude ionosphere during the brief interval when three incoherent scatter facilities would be available. At Millstone Hill the MITHRAS program involved the development of specific radar operating modes and analysis techniques appropriate for multi-instrument studies. An extensive data set resulted from the campaign.

  8. Detection of H3+ auroral emission in Jupiter's 5-micron window

    CERN Document Server

    Giles, Rohini S; Irwin, Patrick G J; Melin, Henrik; Stallard, Tom S

    2016-01-01

    We use high-resolution ground-based observations from the VLT CRIRES instrument in December 2012 to identify sixteen previously undetected H3+ emission lines from Jupiter's ionosphere. These emission lines are located in Jupiter's 5-micron window (4.5-5.2 {\\mu}m), an optically-thin region of the planet's spectrum where the radiation mostly originates from the deep troposphere. The H3+ emission lines are so strong that they are visible even against this bright background. We measure the Doppler broadening of the H3+ emission lines in order to evaluate the kinetic temperature of the molecules, and we obtain a value of 1390$\\pm$160 K. We also measure the relative intensities of lines in the {\

  9. A measurement of auroral electrons in the 1–10 MeV range

    NARCIS (Netherlands)

    Gils, J.N. van; Beek, H.F. van; Fetter, L.D. de; Hendrickx, R.V.

    1969-01-01

    Particle fluxes have been measured by means of shielded Geiger-Müller telescopes mounted m a rocket, which was launched from ESRANGE(Kiruna) into a diffuse aurora. The analysis of the dependence of the counting rates on altitude indicates that a weak flux of energetic electrons, 1–10 MeV, has been d

  10. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    Science.gov (United States)

    Forsyth, C.; Fazakerley, A. N.; Walsh, A. P.; Watt, C. E.; Garza, K.; Owen, C. J.; Constantinescu, D. O.; Dandouras, I. S.; Fornacon, K.; Lucek, E. A.; Marklund, G. T.; Sadeghi, S. S.; Khotyaintsev, Y. V.; Masson, A.; Doss, N.

    2013-12-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.

  11. Characteristics of quasi-static potential structures observed in the auroral return current region by Cluster

    OpenAIRE

    G. T. Marklund; Karlsson, T.; Figueiredo, S.; Johansson, T.; Lindqvist, P.-A.; André, M.; S. Buchert; Kistler, L. M.; A. Fazakerley

    2004-01-01

    Temporal and spatial characteristics of intense quasi-static electric fields and associated electric potential structures in the return current region are discussed using Cluster observations at geocentric distances of about 5 Earth radii. Results are presented from four Cluster encounters with such acceleration structures to illustrate common as well as different features of such structures. The electric field structures are characterized by (all values are projected to 100 km altitude) peak...

  12. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    OpenAIRE

    Forsyth, C.; Fazakerley, A.N.; Walsh, A. P.; Watt, Clare E. J.; Garza, K. J.; Owen, C. J.; Constantinescu, D.; I. Dandouras; Fornaçon, K.-H.; E. Lucek; G. T. Marklund; Sadeghi, S. S.; Khotyaintsev, Y.; Masson, A.; N. Doss

    2012-01-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multi-spacecraft observations from Cluster we have examined two upward current regions on 14 December 2009. Our observations show that ...

  13. Cassini Radio and Plasma Wave Observations at Saturn

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.

  14. Pitch angle scattering and particle precipitation in a pulsating aurora - an experimental study

    International Nuclear Information System (INIS)

    A pulsating aurora occurring during the recovery phase of a substorm on January 27, 1979 was monitored by a large set of instruments. The Swedish sounding rocket S23-L2 was launched at magnetic midnight over pulsating patches, some of which exhibited 3+-1 Hz modulation. The ground based instrumentation included auroral TV cameras, all sky cameras, photometers and magnetometers. The geostationary satellite GEOS-2 was located in the equatorial plane, approximately conjugate to the rocket. The central experiment of this study is the particle experiment on the rocket. Several aspects of pulsating auroras have been investigated. The auroral luminosity variations were very well correlated to variations in the flux of precipitating hot electrons. The 1-20 second pulsations were caused by increased fluxes of 4-40 keV electrons. The 3+-1 Hz modulation was detected in 7-200 keV electrons, but the biggest energy flux modulation occurred for electrons of about 60 keV. Model calculations involving the electron distributions measured by the sounding rocket and GEOS-2, consistently show that the electrons may have been scattered into the loss cone through the Doppler shifted gyroresonance with whistler mode waves. The scattering was not a pure pitch angle scattering as in the classical Coroniti and Kennel theory, but involved also a systematic energy loss from the particles. The waves were probably hiss with some chorus elements. The equatorial plane plasma density was estimated in two independent ways to be about 2x106 m-3. The 3+-1 Hz modulation was measured both by the particle experiment on the rocket and by the wave experiment on GEOS-2. Properties of the modulated fluxes are described and a qualitative model for the cause of the modulation is proposed. (author)

  15. Preliminary results from the MEMO multicomponent measurements of waves on-board INTERBALL 2

    Directory of Open Access Journals (Sweden)

    F. Lefeuvre

    Full Text Available The MEMO (MEsure Multicomposante des Ondes experiment is a part of the INTERBALL 2 wave consortium. It is connected to a total of six electric and nine magnetic independent sensors. It provides waveforms associated with the measurement of two to five components in three frequency bands: ELF (5–1000 Hz, VLF (1–20 kHz, LF (20–250 kHz. Preliminary analyses of low and high resolution data are presented. The emphasis is put on the estimation of the propagation characteristics of the observed waves.VLF hiss emissions are shown to be mainly whistler mode emissions, but other modes are present. An accurate estimation of the local plasma frequency is proposed when the low L = 0 cutoff frequency is identified. AKR emissions observed just above source regions are studied. R-X and L-O modes are found: the first at the lowest frequencies and the second at the highest. Both propagate with wave normal directions weakly oblique or quasi-parallel to the Earth's magnetic field direction. Propagation characteristics are also determined for a (non-drifting fine structure of AKR. There is no fundamental difference with structurless events. Nightside and dayside bursts of ELF electromagnetic emissions are presented. It is not clear whether the two emissions belong to the "lion roar" emissions or not.

    Key words. Magnetospheric physics (auroral phenomena; plasma waves and instabilities; instruments and techniques

  16. Thunderstorm coupling to the magnetosphere and associated ionospheric effects. Semiannual Report, 1 November 1991-30 April 1992

    International Nuclear Information System (INIS)

    This project deals with the coupling of electromagnetic energy released during a thunderstorm to the magnetosphere and the ionosphere. Both the effects of an individual lightning event as well the aggregate of all the lightning events during a thunderstorm are considered. Energy in the very low frequency (VLF) band can play a variety of roles in the magnetospheric and ionospheric physics: generation of plasmaspheric hiss believed to be responsible for the slot region in the radiation belts, generation of lower hybrid waves that can heat ions in the auroral and subauroral regions, precipitation of energetic electrons, ionospheric heating etc. While these phenomena have been identified, and characterized to some extent, the influence and role of thunderstorm energy on the magnetosphere and ionosphere at a global scale is not known. Only recently, simultaneous high resolution (temporal and spatial) data sets from ground based lightning detectors and space and ground based VLF detectors have become available, and thus it has become possible to raise a question of the kind mentioned above and try to answer it quantitatively. Work on the correlation between individual lightning discharges in a thunderstorm as detected by the lightning network and the whistlers observed on the DE-1 satellite continued during this period. Results are summarized

  17. Ulysses radio and plasma wave observations in the Jupiter environment

    Science.gov (United States)

    Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.

    1992-01-01

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  18. United States History Simulations, 1925-1964: The Scopes Trial, Dropping the Atomic Bomb on Japan, United States versus Alger Hiss, Mississippi--Summer 1964. ETC Simulations Number Three.

    Science.gov (United States)

    Hostrop, Richard W.

    This booklet provides instructions for simulation and role play of historical events in U.S. history from 1925-1964. Included for student research and participation are: the Scopes trial in Tennessee involving supporters of the teaching of evolution in the schools and of creationism; the decision to drop the atomic bomb on Japan ending World War…

  19. Diagnostic imaging in terrestrial invertebrates: Madagascar hissing cockroach (Gromphadorhina portentosa), desert millipede (Orthoporus sp.), emperor scorpion (Pandinus imperator), Chilean rosehair tarantula (Grammostola spatulata), Mexican fireleg tarantula (Brachypelma boehmei), and Mexican redknee tarantula (Brachypelma smithi).

    Science.gov (United States)

    Davis, Michelle R; Gamble, Kathryn C; Matheson, Jodi S

    2008-03-01

    Limited veterinary information is available for invertebrates. The purpose of this study was to improve baseline knowledge of invertebrate radiology and radiographic anatomy by evaluating diagnostic imaging modalities in six terrestrial invertebrate species. For each species, variably sized individuals were radiographed using multiple techniques to obtain optimal images, and radiographic technique charts were formulated using this data. To evaluate anatomy and compare gastrointestinal transit information among carnivores, omnivores, and herbivores, gastrointestinal contrast radiography was employed. Individuals were fed radiographic contrast media or contrast-containing food items. Contrast radiography resulted in improved visualization of gastrointestinal anatomy in all species. Radiographic contrast media was visualized in gastrointestinal tracts in at least one individual of all taxa for greater than 60 days, substantially longer than expected. Survey and gastrointestinal contrast radiographs of cockroaches were superior to those studies in other species. Zoo Biol 27:109-125, 2008. (c) 2008 Wiley-Liss, Inc. PMID:19360609

  20. On President Bill Clinton's Multi-identity revealed in hiss speech "I Have Sinned"%比尔·克林顿的"我犯了罪"讲话中体现的多重身份

    Institute of Scientific and Technical Information of China (English)

    温晴

    2009-01-01

    这篇论文以美国前总统比尔·克林顿就其与莫尼卡·莱温斯基的性丑闻事件所发表的公开演说"我犯了罪"为例,分析了总统认同的复杂性.克林顿运用宗教和公共讲话文体把其身份与各种听众区分开来,从而保持其作为总统的身份.%This article reveals the complexity of a president's identities he performsin public discourses with the example of a case study onthe speech "I Have Sinned"by Bill Clinton concerning the sexual affair with Monica Lewinsky. Clinton distinguishes himself from one identity to another in correspondence with the diver-sity of the audience using religious genre along with the genre of public speech to serve the purpose of preser-ving the identity as a president.[Key Words]identity; multi-identity; genre

  1. Spor Kulüpleri Performanslarının Hisse Senedi Fiyatlarına Etkisi: BIST’de Bir Uygulama(The Effect of Sport Clubs’ Performances on Stock Prices: An Application on BIST

    Directory of Open Access Journals (Sweden)

    Abdulkadir KAYA

    2013-12-01

    Full Text Available Today, sports activities with increasing levels of traceability have become an economic sector on a large scale. Especially the process of going public of sports clubs, including football, the results of these companies competition contribution to the economies of the club moved to a size that attracts the attention of researchers. The aim of this study is to determine whether sports clubs’ stock price is affected by the results of football matches. For this purpose, whether the matches results of sports organizations of Besiktaş, Fenerbahçe, Galatasaray and Trabzonspor Inc. that are traded in Istanbul Stock Exchange in 2008-2009 and 2009-2010 seasons in Super League, Turkey Cup and European Cups are causing the abnormal return will investigated.

  2. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  3. High Frequency Active Auroral Research Program (HAARP) imager. Final report, 29 August 1991-29 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lance, C.; Eather, R.

    1993-09-30

    A low-light-level monochromatic imaging system was designed and fabricated which was optimized to detect and record optical emissions associated with high-power rf heating of the ionosphere. The instrument is capable of detecting very low intensities, of the order of 1 Rayleigh, from typical ionospheric atomic and molecular emissions. This is achieved through co-adding of ON images during heater pulses and subtraction of OFF (background) images between pulses. Images can be displayed and analyzed in real time and stored in optical disc for later analysis. Full image processing software is provided which was customized for this application and uses menu or mouse user interaction.

  4. Ion composition changes during F-region density depletions in the presence of electric fields at auroral latitudes

    Science.gov (United States)

    Häggström, I.; Collis, P. N.

    1991-01-01

    The following sections are included: * Introduction * Short description of TRIGA reactors * Calculational model * TRIGAP code * Power (flux) distributions and burnup calculations * Flux and power distribution in mixed core * Burnup calculations in mixed core * Mixed core optimization and fuel management * Optimization of irradiation facilities * Optimization of experiments * Irradiation of power reactor pressure vessel specimens * Conclusions * References

  5. GPS phase scintillation during the geomagnetic storm of March 17, 2015: The relation to auroral electrojet currents

    DEFF Research Database (Denmark)

    Prikryl, Paul; Ghoddousi-Fard, Reza; Connors, Martin;

    and magnetometers. GPS phase scintillation index is computed for L1 signal sampled at the rate of 50 Hz by specialized GPS scintillation receivers of the Expanded Canadian High Arctic Ionospheric Network (ECHAIN). To further extend the geographic coverage, the phasescintillation proxy index is obtained from...... geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling to the magnetosphere-ionosphere system, it has been demonstrated that GPS phase scintillation is primarily enhanced in the cusp, tongue of ionization (TOI) broken into patches drawn into the polar cap from the dayside storm...

  6. Relationship of dayside auroral precipitations to the open-closed separatrix and the pattern of convective flow

    OpenAIRE

    Lockwood, Mike

    1997-01-01

    The implications are discussed of acceleration of magnetospheric ions by reflection off two magnetopause Alfvén waves, launched by the reconnection site into the inflow regions on both sides of the boundary. The effects of these waves on the ion populations, predicted using the model described by Lockwood et al. [1996], offer a physical interpretation of all the various widely used classifications of precipitation into the dayside ionosphere, namely, central plasma sheet, dayside boundary pla...

  7. Space-time structure of auroral radio absorption events observed with the imaging riometer at South Pole

    International Nuclear Information System (INIS)

    An imaging riometer system comprising 49 independent beams has been operating at South Pole station since January 1988. A study of intense, short-duration events from the premidnight sector has defined their typical shape as elliptical, with axial ratio 2.3 oriented along the local L shell. The space-time evolution shows rapid intensifications of the moving absorption patches. 15 refs

  8. Ionospheric storms at geophysically-equivalent sites – Part 2: Local time storm patterns for sub-auroral ionospheres

    Directory of Open Access Journals (Sweden)

    M. Mendillo

    2010-07-01

    Full Text Available The response of the mid-latitude ionosphere to geomagnetic storms depends upon several pre-storm conditions, the dominant ones being season and local time of the storm commencement (SC. The difference between a site's geographic and geomagnetic latitudes is also of major importance since it governs the blend of processes linked to solar production and magnetospheric input, respectively. Case studies of specific storms using ionospheric data from both hemispheres are inherently dominated by seasonal effects and the various local times versus longitude of the SCs. To explore inter-hemispheric consistency of ionospheric storms, we identify "geophysically-equivalent-sites" as locations where the geographic and geomagnetic latitudes have the same relationship to each other in both hemispheres. At the longitudes of the dipole tilt, the differences between geographic and geomagnetic latitudes are at their extremes, and thus these are optimal locations to see if pre-conditioning and/or storm-time input are the same or differ between the hemispheres.

    In this study, we use ionosonde values of the F2-layer maximum electron density (NmF2 to study geophysical equivalency at Wallops Island (VA and Hobart (Tasmania, using statistical summaries of 206 events during solar cycle #20. We form average patterns of ΔNmF2 (% versus local time over 7-day storm periods that are constructed in ways that enhance the portrayal of the average characteristic features of the positive and negative phases of ionospheric storms. The results show a consistency between four local time characteristic patterns of storm-induced perturbations, and thus for the average magnitudes and time scales of the processes that cause them in each hemisphere. Subtle differences linked to small departures from pure geophysical equivalency point to a possible presence of hemispheric asymmetries governed by the non-mirror-image of geomagnetic morphology in each hemisphere.

  9. Upcoming observations of whistler-mode waves in the outer Van Allen belt: multicomponent wave analyzer ELMAVAN for the Resonance mission

    Science.gov (United States)

    Santolik, Ondrej; Korepanov, Valery; Chugunin, Dmitriy; Kolmasova, Ivana; Uhlir, Ludek; Pronenko, Vira; Mogilevsky, Mikhail; Lan, Radek; Boychev, Boycho

    The instrument ELMAVAN is being prepared at the Institute of Atmospheric Physics, Prague in the frame of the Russian Resonance project with international participation. The aim of this four-spacecraft mission is to investigate properties of wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth with the focus on phenomena occurring within the same flux tube of the Earth's magnetic field. The wave emissions attract increasing attention because of their influence on the dynamics of the Earth’s radiation belts. The Resonance project therefore represents an excellent opportunity for the magnetospheric research, and together with the recently launched two-spacecraft US mission Van Allen Probes, it will contribute to our understanding of the Earth’s Van Allen radiation belts and the inner magnetosphere. ELMAVAN will measure intensity, polarization, coherence, and propagation properties of waves in magnetospheric plasmas. Three orthogonal magnetic search coil antennas and four electric monopoles will be used for the measurements. The instrument will measure fluctuations of the electric and magnetic field in the frequency range 10 Hz - 20 kHz. The scientific motivation is to investigate properties of whistler-mode chorus and hiss, and both equatorial and auroral emissions. Nonlinear wave-particle interactions will be the main target of these measurements. The input signals of ELMAVAN will consist of 3 analog signals from orthogonal magnetic search coil antennas and 4 analog signals from electric monopoles. The instrument ELMAVAN uses the state of the art electronics and mechanical design taking into account specific requirements for the orbit inside the radiation belts. From this point of view this instrument will also be important as a technological experiment. Engineering model of the analyzer was developed and tested in 2012-2013. Qualification model and the flight models are under preparation.

  10. Demeter high resolution observations of the ionospheric thermal plasma response to magnetospheric energy input during the magnetic storm of November 2004

    Directory of Open Access Journals (Sweden)

    E. Séran

    2008-01-01

    , these ions are expected to comprise ~50% of the positive charge, indicates that the thermospheric balance between atomic oxygen and hydrogen was re-established in favour of oxygen. As a consequence, the charge exchange between oxygen and hydrogen does not effectively limit the O+ production in the regions of the electron precipitation. According to Demeter observations, the O+ concentration is doubled inside the layers with upward currents (downward electrons. Such a density excess creates the pressure gradient which drives the plasma away from the overdense regions, i.e. first, from the layers of precipitating electrons and then upward along the layers of downward current.

    In addition, the downward currents are identified to be the source regions of hiss emissions, i.e. electron acoustic mode excited via the Landau resonance in the multi-component electron plasma. Such instabilities, which are often observed in the auroral region at 2–5 Earth radii, but rarely at ionospheric altitudes, are believed to be generated by an electron beam which moves through the background plasma with a velocity higher than its thermal velocity.

  11. Observations of Electrostatic and Electromagnetic Waves in the Earth's Magnetosphere.

    Science.gov (United States)

    Filbert, Paul Charles

    Using data from the University of Minnesota Plasma Wave Experiment aboard the IMP-6 (Explorer 43) satellite, three topics are addressed. The first concerns the wave lengths of certain electrostatic waves in the earth's magnetosphere. Using the fact that the X and Y dipole antennas on IMP-6 are of unequal length, the antenna response to electrostatic waves is calculated as a function of wavelength. This result is used to experimentally determine the wavelengths of Bernstein mode waves observed just beyond the plasmapause. These wavelengths are then used in conjunction with present theoretical models to determine the energy of the electrons driving these waves and a range of energies between (TURN) several tens to (TURN) several hundreds of electron volts is found. This procedure is also applied to Langmuir waves observed upstream of the earth's bow shock and the results are in good agreement with theoretical predictions. Second it is demonstrated that enhanced levels of the so-called continuum radiation are correlated with AE enhancements. In addition, a source region of continuum radiation is directly observed and movement of the source region is seen which is consistent with a cloud of electrons having been injected into the night side magnetosphere and undergoing gradient drifts in an eastward direction towards local dawn. This drift movement is then used to estimate the energy of the electrons which produce the observed continuum enhancement and a range between 10 kev to 50 kev is found. Spectral properties of the directly observed source are also presented, and indicate a high frequency spectral index of (TURN)f('-5.5). A new type of continuum radiation which correlates with TKR on a time scale of (TURN)1 minute is also observed and is found to have a source region distinct from that mentioned above. Third, a correlation between TKR and VLF auroral hiss has been observed for several high latitude passes of IMP-6 through the midnight auroral zone. This

  12. Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn's outer magnetosphere

    Science.gov (United States)

    Palmaerts, B.; Roussos, E.; Krupp, N.; Kurth, W. S.; Mitchell, D. G.; Yates, J. N.

    2016-06-01

    and Plasma Wave Science (RPWS) instrument and the magnetometer (MAG). Correlated pulsed signatures are observed in the plasma wave emissions, especially in the auroral hiss, for 12% of the electron injections identified in the LEMMS data. Additionally, in about 20% of the events, such coincident pulsed signatures have been also observed in the magnetic field measurements, some of them being indicative of field-aligned currents. This analysis combined with the multi-instrument approach sets constraints on the origin and significance of the pulsed events. Hence, our results suggest that the acceleration process providing the quasi-periodic relativistic electrons takes place at high-latitudes.

  13. The Little mice

    Institute of Scientific and Technical Information of China (English)

    张淑红

    2004-01-01

    Once upon a time, a mother mouse and her young children went for a walk in the garden. They were looking around for something to eat when they suddenly heard a loud noise. “Hiss, Hiss, Meow !”It was the voice of,the cat.

  14. Whistler Wave Energy Flow in the Plasmasphere

    Science.gov (United States)

    Kletzing, Craig; Santolik, Ondrej; Kurth, William; Hospodarsky, George; Christopher, Ivar; Bounds, Scott

    2016-07-01

    The measured wave properties of plasmaspheric hiss are important to constrain models of the generation of hiss as well as its propagation and amplification. For example, the generation mechanism for plasmaspheric hiss has been suggested to come from one of three possible mechanisms: 1) local generation and amplification, 2) whistlers from lightning, and 3) chorus emissions which have refracted into the plasmasphere. The latter two mechanisms are external sources which produce an incoherent hiss signature as the original waves mix in a stochastic manner, propagating in both directions along the background magnetic field. In contrast, local generation of plasmaspheric hiss within the plasmasphere should produce a signature of waves propagating away from the source region. For all three mechanisms scattering of energetic particles into the loss cone transfers some energy from the particles to the waves. By examining the statistical characteristics of the Poynting flux of plasmaspheric hiss, we can determine the properties of wave energy flow in the plasmasphere. We report on the statistics of observations from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves instrument on the Van Allen Probes for periods when the spacecraft is inside the plasmasphere. We find that the Poynting flux associated with plasmaspheric hiss has distinct and unexpected radial structure which shows that there can be significant energy flow towards the magnetic equator. We show the properties of this electromagnetic energy flow as a function of position and frequency.

  15. Theoretical support to NRL's upper atmospheric branch: Physics and chemistry of the upper and middle atmospheres with emphasis on daytime, nighttime, and auroral optical emissions

    Science.gov (United States)

    1991-06-01

    Significant advances were made in the ability to model physical processes in the thermosphere (airglow and aurora) and middle atmosphere. These advances came in the form of code development and improved methods for updating input parameters (most notably, cross sections). Important advances were also made in the development of an algorithm for deducing O3 and O2 density profiles from full solar disk extinction measurements to be made by the instrument Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on board the upper atmosphere research satellite (UARS).

  16. Response to 'Comment on 'The superposition of rotating and stationary magnetic sources: Implications for the auroral region'' [Phys. Plasmas 11, 1738 (2004)

    International Nuclear Information System (INIS)

    Vasyliunas [Phys. Plasmas 11, 1738 (2004)] claims that the co-rotation electric field must be derived from the generalized Ohm's law to be physically correct. However, laboratory results show that the rotation of a magnetic source produces electric fields without a plasma being present. With a plasma present these electric fields, which can be explained by Faraday's law and the transformation of the electromagnetic field between reference frames [Phys. Plasmas 10, 2971 (2003)], form the co-rotation electric field. Therefore, a magnetohydrodynamic approach, as argued by Vasyliunas, is not required to derive the co-rotation electric field. In this Response the relevant laboratory experiments will be described in more detail, as well as their application to the Earth's co-rotation electric field. Also, it is suggested that plasma neutrality and the inertia of the co-rotating plasma maintain Eparallel≠0. In response to a second round of communications, the applicability of a paper by Schiff [Proc. Natl. Acad. Sci. 25, 391 (1939)] is discussed

  17. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.

    Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  18. Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2011-07-01

    Full Text Available We determine the field-aligned mapping of Saturn's auroras into the magnetosphere by combining UV images of the southern dayside oval obtained by the Hubble Space Telescope (HST with a global model of the magnetospheric magnetic field. The model is tailored to simulate prevailing conditions in the interplanetary medium, corresponding to high solar wind dynamic pressure and variable interplanetary magnetic field (IMF strength and direction determined from suitably lagged field data observed just upstream of Saturn's dayside bow shock by the Cassini spacecraft. Two out of four images obtained in February 2008 when such simultaneous data are available are examined in detail, exemplifying conditions for northward and southward IMF. The model field structure in the outer magnetosphere and tail is found to be very different in these cases. Nevertheless, the dayside UV oval is found to have a consistent location relative to the field structure in each case. The poleward boundary of the oval is located close to the open-closed field boundary and thus maps to the vicinity of the magnetopause, consistent with previous results. The equatorward boundary of the oval then maps typically near the outer boundary of the equatorial ring current appropriate to the compressed conditions prevailing. Similar results are also found for related images from the January 2004 HST data set. These new results thus show that the mapped dayside UV oval typically spans the outer magnetosphere between the outer part of the ring current and the magnetopause. It does not encompass the region of primary corotation flow breakdown within the inner Enceladus torus.

  19. Studies of the auroral-zone ionosphere using the MITHRAS data base. Fiscal years 1983-1985. Final report, October 1982-October 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-26

    The Autmospheric Science group participated in the multi-radar MITHRAS experimental campaign. Coordinated observations of the earth's ionosphere, magnetosphere, and thermosphere were conducted using the Millstone Hill, Massachusetts, Chatanika, Alaska, and European EISCAT incoherent scatter radars in conjunction with a variety of ground-based and satellite experiments. Chatanika and EISCAT are about 11 hours apart in magnetic local time, and Millstone Hill precedes Chatanika and follows EISCAT by more than 6 hours. Each of the three radars was able to study aruroal-zone latitudes, but at widely spaced longitudes. Hence the MITHRAS program was well suited to study the class of problems which involve universal time/local time ambiguities, or equivalenty, space/time differences. Set operating modes were used at the radar sites to best match the requirements of the several campaign objectives. The overall MITHRAS program was motivated by a desire to provide a well documented set of radar observations of the mid- and high-latitude ionosphere during the brief interval when three incoherent scatter facialities would be available. At Millstone Hill the MITHRAS program involved the development of specific radar operating modes and analysis techniques appropriate for multi-instrument studies. An extensive data set resulted from the campaign.

  20. ÜTRIS ja RIS / Ingmar Roos

    Index Scriptorium Estoniae

    Roos, Ingmar

    2010-01-01

    Maanteeamet on projekti „Ühistranspordi infosüsteemi arendamine“ (ÜTRIS) raames välja töötamas ühissõidukite reaalaja infosüsteemi (RIS). Nimetatud süsteemi abil tekib võimalus jälgida ühissõidukite sõiduplaani järgset teenindamist ning tuvastada kõrvalekalded plaanilisest sõidugraafikust

  1. US national report to the International Union of Geodesy and Geophysics

    International Nuclear Information System (INIS)

    This paper highlights progress by U.S. authors during 1983-1986 in the broad area of auroral research. Atmospheric emissions and their use as a tool for remote-sensing the dynamics, energetics, and effects of auroral activity is a subject which is emphasized here because of the vast progress made in this area on both observational and theoretical fronts. The evolution of primary auroral electrons, the acceleration of auroral ions, small-scale electric fields, auroral kilometric radiation, auroral empirical models and activity indices are also reviewed. An extensive bibliography is supplied

  2. Compression and Processing of Space Image Sequences of Northern Lights and Sprites

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Martins, Bo; Jensen, Ole Riis;

    1999-01-01

    Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated.......Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated....

  3. İstanbul Menkul Kıymetler Borsası’nda (İMKB Sektör Bazında İşlem Gören Hisse Senetlerinin Alım-Satım Kararlarında En Yüksek Getirili Stratejinin Belirlenmesi(Determination of Maximum Gainful Strategy in Exchange of Stocks Traded on Sectoral Basis in Istanbul Stock Exchange

    Directory of Open Access Journals (Sweden)

    Tuncer ÖZDİL

    2006-01-01

    Full Text Available Today economic units supply their long-term fund demands from capital markets. Firms can obtain funds to issue stocks and bonds in stock exchanges in accordance with market conditions. Particularly going public stocks in primary market are traded in secondary market due to market conditions. Investors in these markets desire to generate earnings from movement of prices and actually it is the main objective in capital markets. In this context, investors want to obtain information about prospective price changes in order to achieve their earning objective. However many time, it is not possible to get such an information because of uncertainty and risks in markets. Individual investors settle some strategies about stock exchange by the help of their personal experiences, observations and information, with an aim to overcome this uncertainty. It is important to decide accurate time of taking and selling stocks. It is not possible to estimate accuracy of timing. The same difficulty appears in strategy process, either. In this study, adequate timing decision of individual investors in stock exchange was examined by a simulation application. Investors’ possible strategies were determined. These strategies applied the closing values of sectoral indexes defined in Istanbul Stock Exchange and advisable strategies for each sector were determined.

  4. A Synergistic, Balanced Antioxidant Cocktail, Protects Aging Rats from Insulin Resistance and Absence of Meal-Induced Insulin Sensitization (AMIS Syndrome

    Directory of Open Access Journals (Sweden)

    Hui Helen Wang

    2015-01-01

    Full Text Available A series of in vivo and in vitro studies using animal and human models in the past 15 years have demonstrated that approximately 55% (~66% in humans of the glucose disposal effect of an i.v. injection of insulin in the fed state is dependent on the action of a second hormone, hepatic insulin sensitizing substance (HISS, which is released from the liver and stimulates glucose uptake in muscle, heart and kidneys. Sensitization of the insulin response by a meal through release of HISS is called meal-induced insulin sensitization (MIS. Absence of HISS action results in postprandial hyperglycemia, hyperinsulinemia, hyperlipidemia, adiposity, increased free radical stress and a cluster of progressive metabolic and cardiovascular dysfunctions referred to as the AMIS (absence of meal-induced insulin sensitization syndrome. Reduced HISS release accounts for the insulin resistance that occurs with aging and is made worse by physical inactivity and diets high in sucrose or fat. This brief review provides an update of major metabolic disturbances associated with aging due to reduction of HISS release, and the protection against these pathological changes in aging animals using a balanced synergistic antioxidant cocktail SAMEC (S-adenosylmethionine, vitamins E and C. The synergy amongst the components is consistent with the known benefits of antioxidants supplied by a mixed diet and acting through diverse mechanisms. Using only three constituents, SAMEC appears suitable as an antioxidant specifically targeting the AMIS syndrome.

  5. Hazelwood Interim Storage Site environmental report for calendar year 1989, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    The environmental monitoring program, begun in 1984, was continued during 1989 at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. HISS is currently used for storage of soils contaminated with residual radioactive material. HISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive material remains from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The monitoring program at HISS measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. This report presents the findings of the environmental monitoring conducted at HISS during calendar year 1989. 19 refs., 14 figs., 13 tabs

  6. Hazelwood Interim Storage Site annual site environmental report: Calendar year 1986

    International Nuclear Information System (INIS)

    During 1986, the environmental monitoring program was continued at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. Originally known as the Cotter Corporation site on Latty Avenue in Hazelwood, the HISS is presently used for the storage of soils contaminated with residual radioactive material. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring program are being conducted at the site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the HISS measures radon gas concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 2% of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles. The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 11 refs., 6 figs., 10 tabs

  7. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-07-01

    Full Text Available Abstract Background Pelobacter carbinolicus, a bacterium of the family Geobacteraceae, cannot reduce Fe(III directly or produce electricity like its relatives. How P. carbinolicus evolved is an intriguing problem. The genome of P. carbinolicus contains clustered regularly interspaced short palindromic repeats (CRISPR separated by unique spacer sequences, which recent studies have shown to produce RNA molecules that interfere with genes containing identical sequences. Results CRISPR spacer #1, which matches a sequence within hisS, the histidyl-tRNA synthetase gene of P. carbinolicus, was shown to be expressed. Phylogenetic analysis and genetics demonstrated that a gene paralogous to hisS in the genomes of Geobacteraceae is unlikely to compensate for interference with hisS. Spacer #1 inhibited growth of a transgenic strain of Geobacter sulfurreducens in which the native hisS was replaced with that of P. carbinolicus. The prediction that interference with hisS would result in an attenuated histidyl-tRNA pool insufficient for translation of proteins with multiple closely spaced histidines, predisposing them to mutation and elimination during evolution, was investigated by comparative genomics of P. carbinolicus and related species. Several ancestral genes with high histidine demand have been lost or modified in the P. carbinolicus lineage, providing an explanation for its physiological differences from other Geobacteraceae. Conclusions The disappearance of multiheme c-type cytochromes and other genes typical of a metal-respiring ancestor from the P. carbinolicus lineage may be the consequence of spacer #1 interfering with hisS, a condition that can be reproduced in a heterologous host. This is the first successful co-introduction of an active CRISPR spacer and its target in the same cell, the first application of a chimeric CRISPR construct consisting of a spacer from one species in the context of repeats of another species, and the first report of

  8. Operating experience with the hydrogen isotope separation system at MOUND

    International Nuclear Information System (INIS)

    The Hydrogen Isotope Separation System (HISS) is a general-purpose tritium recovery and enrichment processor that uses low-temperature distillation as the separation process. HISS processes feed mixtures containing all three isotopes of hydrogen (H, D, T) and yields an enriched tritium product up to 99.95% tritium, while producing a discardable raffinate. The three-column system operates continuously with unattended overnight operation and limited operation during weekends. Production runs with a full still inventory were started in October 1987, with individual runs lasting up to seven weeks

  9. Selective High Impedance Surface Active Region Loading of Archimedean Spiral Antenna

    OpenAIRE

    Mohamad, Sarah; Cahill, Robert; Fusco, Vincent

    2014-01-01

    We show that a significant increase in the gain and front-to-back ratio is obtained when different high impedance surface (HIS) sections are placed below the active regions of an Archimedean spiral antenna. The principle of operation is demonstrated at 3, 6, and 9 GHz for an antenna design that employs a ground plane composed of two dissimilar HISs. The unit cells of the HISs are collocated and resonant at the same frequency as the 3- and 6-GHz active regions of the wideband spiral. It is sho...

  10. Quasi-periodic VLF emissions observed during daytime at a low latitude Indian ground station Jammu

    Indian Academy of Sciences (India)

    K K Singh; J Singh; R P Patel; A K Singh; R P Singh; Rejesh Singh; P A Ganai

    2009-06-01

    This paper reports quasi-periodic pulsing hiss emissions recorded during daytime in the frequency range of 50 Hz –15 kHz at low latitude station Jammu (geomag.lat.=22° 26′N; =1.17). It is noted that pulsing VLF emissions are a rare phenomena at low latitudes.The various spectrograms of pulsing VLF hiss emissions presented in this paper clearly show band limited spectrums regularly pulsing with almost equal period of the order of few seconds in the frequency range of ∼3-8 kHz. Generation and propagation mechanism of these emissions are briefly discussed.

  11. The clinical adoption meta-model: a temporal meta-model describing the clinical adoption of health information systems.

    Science.gov (United States)

    Price, Morgan; Lau, Francis

    2014-01-01

    Health information systems (HISs) hold the promise to transform health care; however, their adoption is challenged. We have developed the Clinical Adoption Meta-Model (CAMM) to help describe processes and possible challenges with clinical adoption. The CAMM, developed through an action research study to evaluate a provincial HIS, is a temporal model with four dimensions: availability, use, behaviour changes, and outcome changes. Seven CAMM archetypes are described, illustrating classic trajectories of adoption of HISs over time. Each archetype includes an example from the literature. The CAMM and its archetypes can support HIS implementers, evaluators, learners, and researchers. PMID:24884588

  12. Hazelwood Interim Storage Site, Hazelwood, Missouri: Annual site environmental report, Calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    The monitoring program at the HISS measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. The results of 1987 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 12 refs., 6 figs., 11 tabs

  13. Glomus jugulare (Type A: A case review

    Directory of Open Access Journals (Sweden)

    Vinod T Kandakure

    2012-01-01

    Full Text Available We report a glomus jugulare tumor in a 60 yrs old female; non diabetic, non hypertensive who presented with continuous pulsatile hissing tinnitus in right ear with progressive hearing impairment and fullness in the ear. Detailed history and examination with aid of investigations it turned out to be glomus jugulare, treated by surgical excision by post auricular hypotympanotomy approach.

  14. "Television" Artists

    Science.gov (United States)

    Szekely, George

    2010-01-01

    In an art class, children browse through space-age knobs, robot antennas and gyroscopic signal searchers. They extend space needle antennas before turning on an old TV. They discover the sights and sounds of televisions past, hearing the hiss, the gathering power, and seeing the blinking eye, the black-and-white light and blurry images projected…

  15. Factors influencing nurses' acceptance of hospital information systems in Iran: application of the Unified Theory of Acceptance and Use of Technology.

    Science.gov (United States)

    Sharifian, Roxana; Askarian, Fatemeh; Nematolahi, Mohtaram; Farhadi, Payam

    2014-01-01

    User acceptance is a precondition for successful implementation of hospital information systems (HISs). Increasing investment in information technology by healthcare organisations internationally has made user acceptance an important issue in technology implementation and management. Despite the increased focus on hospital information systems, there continues to be user resistance. The present study aimed to investigate the factors affecting hospital information systems nurse-user acceptance of HISs, based on the Unified Theory of Acceptance and Use of Technology (UTAUT), in the Shiraz University of Medical Sciences teaching hospitals. A descriptive-analytical research design was employed to study nurses' adoption and use of HISs. Data collection was undertaken using a cross-sectional survey of nurses (n=303). The research model was examined using the LISREL path confirmatory modeling. The results demonstrated that the nurses' behavioural intention (BI) to use hospital information systems was predicted by Performance Expectancy (PE) (β= 2.34, pinformation systems (R2 = 0.728). Application of the research model suggested that nurses' acceptance of HISs was influenced by performance expectancy, effort expectancy, social influence and facilitating conditions, with performance expectancy having the strongest effect on user intention.

  16. The Nature of Unintended Benefits in Health Information Systems

    DEFF Research Database (Denmark)

    Kuziemsky, Craig E.; Borycki, Elizabeth; Nøhr, Christian;

    2012-01-01

    Health information systems (HISs) have been shown to introduce unintended consequences post implementation. Much of the current research on these consequences has focused on the negative aspects of them. However unintended consequences of HIS usage can also be beneficial to various aspects of hea...

  17. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    International Nuclear Information System (INIS)

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed

  18. Chad – Dakar: Habré trial is litmus test for Pan-African justice

    NARCIS (Netherlands)

    Bouwknegt, Thijs

    2015-01-01

    From July 20th 2015, the former Chadian dictator, Hissène Habré, will stand in the dock on charges of crimes against humanity, torture and war crimes before the Extraordinary African Chambers (EAC) in the Senegalese court system. His trial will be Africa’s first to proceed to trial under the guise o

  19. Chad – Dakar: Extraordinary Habré trial is litmus test for Pan-African justice

    NARCIS (Netherlands)

    Bouwknegt, Thijs

    2015-01-01

    From 20 July onwards, Chad’s previous despot, Hissène Habré, will be in the dock on charges of crimes against humanity, torture and war crimes before the Extraordinary African Chambers (EAC) in the Senegalese court system. His trial will be Africa’s first to proceed to trial under the guise of unive

  20. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri

    International Nuclear Information System (INIS)

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment