WorldWideScience

Sample records for aureus surface protein

  1. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection.

    Science.gov (United States)

    Kwiecinski, Jakub; Jin, Tao; Josefsson, Elisabet

    2014-12-01

    Staphylococcus aureus is the most common cause of skin infections that range from mild diseases up to life-threatening conditions. Mechanisms of S. aureus virulence in those infections remain poorly studied. To investigate the impact of S. aureus surface proteins on skin infection, we used mouse models of skin abscess formation and skin necrosis, induced by a subcutaneous injection of bacteria. In the skin abscess model, a sortase-deficient S. aureus strain lacking all of its cell-wall anchored proteins was less virulent than its wild-type strain. Also, strains specifically lacking protein A, fibronecting binding proteins, clumping factor A or surface protein SasF were impaired in their virulence. When a model of dermonecrosis was studied, the S. aureus surface proteins could not be shown to be involved. In summary, surface proteins play an important role in virulence of S. aureus skin abscess infections, but not in formation of skin necrosis.

  2. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.

    Science.gov (United States)

    Yang, Yilong; Qian, Mengying; Yi, Shaoqiong; Liu, Shuling; Li, Bing; Yu, Rui; Guo, Qiang; Zhang, Xiaopeng; Yu, Changming; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.

  3. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.

  4. Staphylococcus pseudintermedius expresses surface proteins that closely resemble those from Staphylococcus aureus.

    Science.gov (United States)

    Geoghegan, Joan A; Smith, Emma J; Speziale, Pietro; Foster, Timothy J

    2009-09-18

    Staphylococcus pseudintermedius is a commensal of dogs that is implicated in the pathogenesis of canine pyoderma. This study aimed to determine if S. pseudintermedius expresses surface proteins resembling those from Staphylococcus aureus and to characterise them. S. pseudintermedius strain 326 was shown to adhere strongly to purified fibrinogen, fibronectin and cytokeratin 10. It adhered to the alpha-chain of fibrinogen which, along with binding to cytokeratin 10, is the hallmark of clumping factor B of S. aureus, a surface protein that is in part responsible for colonisation of the human nares. Ligand-affinity blotting with cell-wall extracts demonstrated that S. pseudintermedius 326 expressed a cell-wall anchored fibronectin binding protein which recognised the N-terminal 29kDa fragment. The ability to bind fibronectin is an important attribute of pathogenic S. aureus and is associated with the ability of S. aureus to colonise skin of human atopic dermatitis patients. S. pseudintermedius genomic DNA was probed with labelled DNA amplified from the serine-aspartate repeat encoding region of clfA of S. aureus. This probe hybridised to a single SpeI fragment of S. pseudintermedius DNA. In the cell-wall extract of S. pseudintermedius 326, a 180kDa protein was discovered which bound to fibrinogen by ligand-affinity blotting and reacted in a Western blot with antibodies raised against the serine-aspartate repeat region of ClfA and the B-repeats of SdrD of S. aureus. It is proposed that this is an Sdr protein with B-repeats that has an A domain that binds to fibrinogen. Whether it is the same protein that binds cytokeratin 10 is not clear.

  5. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface.

    Science.gov (United States)

    Ko, Ya-Ping; Kuipers, Annemarie; Freitag, Claudia M; Jongerius, Ilse; Medina, Eva; van Rooijen, Willemien J; Spaan, András N; van Kessel, Kok P M; Höök, Magnus; Rooijakkers, Suzan H M

    2013-01-01

    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a 'capsule'-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.

  6. Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH.

    Science.gov (United States)

    Krishna Kumar, Kaavya; Jacques, David A; Pishchany, Gleb; Caradoc-Davies, Tom; Spirig, Thomas; Malmirchegini, G Reza; Langley, David B; Dickson, Claire F; Mackay, Joel P; Clubb, Robert T; Skaar, Eric P; Guss, J Mitchell; Gell, David A

    2011-11-01

    Pathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, Staphylococcus aureus, captures Hb as the first step of an iron-scavenging pathway. The x-ray crystal structure of Hb bound to a domain from the Isd (iron-regulated surface determinant) protein, IsdH, is the first structure of a Hb capture complex to be determined. Surface mutations in Hb that reduce binding to the Hb-receptor limit the capacity of S. aureus to utilize Hb as an iron source, suggesting that Hb sequence is a factor in host susceptibility to infection. The demonstration that pathogens make highly specific recognition complexes with Hb raises the possibility of developing inhibitors of Hb binding as antibacterial agents.

  7. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids.

    Science.gov (United States)

    Omae, Yosuke; Hanada, Yuichi; Sekimizu, Kazuhisa; Kaito, Chikara

    2013-08-30

    We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS.

  8. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG.

    Science.gov (United States)

    Formosa-Dague, Cécile; Speziale, Pietro; Foster, Timothy J; Geoghegan, Joan A; Dufrêne, Yves F

    2016-01-12

    Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between β-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.

  9. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic.

    Directory of Open Access Journals (Sweden)

    Julia A Sharp

    Full Text Available Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism.

  10. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG–Au conjugates

    Directory of Open Access Journals (Sweden)

    Elena B. Tatlybaeva

    2013-11-01

    Full Text Available The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM. The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG allowed the visualization, localization and distribution of protein A–IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG–Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.

  11. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes.

    Science.gov (United States)

    Ythier, Mathilde; Resch, Grégory; Waridel, Patrice; Panchaud, Alexandre; Gfeller, Aurélie; Majcherczyk, Paul; Quadroni, Manfredo; Moreillon, Philippe

    2012-11-01

    Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence

  12. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    OpenAIRE

    Hermann, M.; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-01-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (m...

  13. Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence

    NARCIS (Netherlands)

    T.J. Foster (Timothy); D. McDevitt

    1994-01-01

    textabstractA class of proteins that are associated with the cell surface of Gram-positive bacteria has been recognised. Common structural features which are implicated in the proper secretion and attachment of these proteins to the cell surface occur in the C-termini. N-terminal domains interact wi

  14. Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence

    OpenAIRE

    Foster, Timothy; McDevitt, D

    1994-01-01

    textabstractA class of proteins that are associated with the cell surface of Gram-positive bacteria has been recognised. Common structural features which are implicated in the proper secretion and attachment of these proteins to the cell surface occur in the C-termini. N-terminal domains interact with the host by binding to soluble host proteins, to matrix proteins or to host cells. They probably have important roles in pathogenicity by allowing bacteria to avoid host defences and by acting a...

  15. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    Science.gov (United States)

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  16. Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins.

    Directory of Open Access Journals (Sweden)

    Yoshiki Misawa

    2015-07-01

    Full Text Available Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA mutant (ΔtagO failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin.

  17. [Protein toxins of Staphylococcus aureus].

    Science.gov (United States)

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented.

  18. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression.

    Directory of Open Access Journals (Sweden)

    Heidi A Crosby

    2016-05-01

    Full Text Available Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD. EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins.

  19. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    Science.gov (United States)

    Hermann, M; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-09-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (mean survival: 34.2% +/- 9.0% of albumin, P less than 0.0001) despite similar efficient ingestion of extracellular bacteria. Enhancement of killing was observed when surfaces were coated with purified constituents of extracellular matrix, i.e., fibronectin, fibrinogen, laminin, vitronectin, or type IV collagen. In addition to matrix proteins, the tetrapeptide RGDS (the sequence recognized by integrins) crosslinked to surface bound albumin was also active (survival: 74.5% +/- 5.5% of albumin, P less than 0.02), and fibronectin-increased killing was inhibited by soluble RGDS. Chemiluminescence measurements and experiments with CGD neutrophils revealed that both oxygen-dependent and -independent bactericidal mechanisms are involved. In conclusion, matrix proteins enhance intracellular bactericidal activity of adherent neutrophils, presumably by integrin recognition of RGDS-containing ligands. These results indicate a role for extracellular matrix proteins in the enhancement of the host defense against pyogenic infections.

  20. Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants.

    Science.gov (United States)

    Cincarova, Lenka; Polansky, Ondrej; Babak, Vladimir; Kulich, Pavel; Kralik, Petr

    2016-01-01

    Sublethal concentrations (sub-MICs) of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+) that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25-2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.

  1. Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants

    Directory of Open Access Journals (Sweden)

    Lenka Cincarova

    2016-01-01

    Full Text Available Sublethal concentrations (sub-MICs of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+ that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25–2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.

  2. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall.

    Science.gov (United States)

    Claes, J; Liesenborghs, L; Peetermans, M; Veloso, T R; Missiakas, D; Schneewind, O; Mancini, S; Entenza, J M; Hoylaerts, M F; Heying, R; Verhamme, P; Vanassche, T

    2017-02-09

    Essentials Staphylococcus aureus (S. aureus) binds to endothelium via von Willebrand factor (VWF). Secreted VWF-binding protein (vWbp) mediates S. aureus adhesion to VWF under shear stress. vWbp interacts with VWF and the Sortase A-dependent surface protein Clumping factor A (ClfA). VWF-vWbp-ClfA anchor S. aureus to vascular endothelium under shear stress.

  3. Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood

    Science.gov (United States)

    Uchiyama, Satoshi; Valderrama, J. Andrés; Ajayi, Clement; Sollid, Johanna U. E.; van Sorge, Nina M.; Nizet, Victor; van Strijp, Jos A. G.

    2016-01-01

    ABSTRACT Staphylococcus aureus expresses a panel of cell wall-anchored adhesins, including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the serine-aspartate repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus subsp. aureus strain NCTC8325-4 attenuated bacterial survival in human whole blood ex vivo, which was associated with increased killing by human neutrophils. Remarkably, SdrD was able to inhibit innate immune-mediated bacterial killing independently of other S. aureus proteins, since addition of recombinant SdrD protein and heterologous expression of SdrD in Lactococcus lactis promoted bacterial survival in human blood. SdrD contributes to bacterial virulence in vivo, since fewer S. aureus subsp. aureus NCTC8325-4 ΔsdrD bacteria than bacteria of the parent strain were recovered from blood and several organs using a murine intravenous infection model. Collectively, our findings reveal a new property of SdrD as an important key contributor to S. aureus survival and the ability to escape the innate immune system in blood. PMID:27795358

  4. Characterization of human and Staphylococcus aureus proteins in respiratory mucosa by in vivo- and immunoproteomics.

    Science.gov (United States)

    Schmidt, Frank; Meyer, Tanja; Sundaramoorthy, Nandakumar; Michalik, Stephan; Surmann, Kristin; Depke, Maren; Dhople, Vishnu; Gesell Salazar, Manuela; Holtappels, Gabriele; Zhang, Nan; Bröker, Barbara M; Bachert, Claus; Völker, Uwe

    2017-02-23

    Staphylococcus aureus is a Gram-positive opportunistic bacterium which can be found as a commensal in the nares of about 50% of the human population. Besides asymptomatic carriage, S. aureus has also been found to colonize nasal polyps, a subform of chronic rhinosinusitis, in 60 to 100% of cases, and even reside intracellularly in nasal polyp tissue. The aim of this study was to shed light on the behavior of S. aureus in the human airways by analyzing S. aureus-specific proteins in nasal polyp tissue from patients with chronic rhinosinusitis and to characterize the immunogenic potential of the identified (mainly secreted) proteins. As a result, in total >600 S. aureus proteins were identified by high resolution mass spectrometry or multiple reaction monitoring. Of those roughly 180 are typically localized in the membrane, surface exposed or secreted. For 115 S. aureus proteins, partially also detected in vivo by mass spectrometry, IgA- and IgG-specific antibody signals were profiled. Strong antibody signals were predominantly found for surface expose or secreted proteins.

  5. Human immunoglobulin G recognizing fibrinogen-binding surface proteins is protective against both Staphylococcus aureus and Staphylococcus epidermidis infections in vivo.

    Science.gov (United States)

    Vernachio, John H; Bayer, Arnold S; Ames, Brenda; Bryant, Dawn; Prater, Bradley D; Syribeys, Peter J; Gorovits, Elena L; Patti, Joseph M

    2006-02-01

    A human donor-selected immunoglobulin G for intravenous injection (IGIV) product with elevated titers against the staphylococcal fibrinogen-binding MSCRAMM proteins ClfA and SdrG (INH-A21) was tested in vitro and in vivo. INH-A21 contained a significantly increased ability to inhibit the fibrinogen-binding activity of recombinant forms of both ClfA and SdrG. Evaluation of the opsonizing potential of INH-A21 was evaluated using fluorescently labeled bacteria; this assay indicated an increase in phagocytic activity compared to normal IGIV. The prophylactic efficacy of INH-A21 against an intraperitoneal challenge of methicillin-resistant Staphylococcus epidermidis (MRSE) was evaluated in a neonatal rat model. INH-A21 was also evaluated for prophylactic and therapeutic efficacy in a rabbit model of catheter-induced aortic valve infective endocarditis caused by either MRSE or methicillin-resistant Staphylococcus aureus (MRSA). Results from the in vivo models demonstrated potent prophylactic and therapeutic efficacy against both MRSE and MRSA. These data suggest that INH-A21 may be an important tool for the prevention and treatment of staphylococcal infections, especially in high-risk populations.

  6. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression.

    Science.gov (United States)

    Alvarez, Lucía P; Barbagelata, María S; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2011-11-01

    One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.

  7. Lessons from the Crystal Structure of the S. aureus Surface Protein Clumping Factor A in Complex With Tefibazumab, an Inhibiting Monoclonal Antibody

    Directory of Open Access Journals (Sweden)

    Vannakambadi K. Ganesh

    2016-11-01

    Full Text Available The Staphylococcus aureus fibrinogen binding MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules, ClfA (clumping factor A is an important virulence factor in staphylococcal infections and a component of several vaccines currently under clinical evaluation. The mouse monoclonal antibody aurexis (also called 12-9, and the humanized version tefibazumab are therapeutic monoclonal antibodies targeting ClfA that in combination with conventional antibiotics were effective in animal models but showed less impressive efficacy in a limited Phase II clinical trial. We here report the crystal structure and a biochemical characterization of the ClfA/tefibazumab (Fab complex. The epitope for tefibazumab is located to the “top” of the N3 subdomain of ClfA and partially overlaps with a previously unidentified second binding site for fibrinogen. A high-affinity binding of ClfA to fibrinogen involves both an interaction at the N3 site and the previously identified docking of the C-terminal segment of the fibrinogen γ-chain in the N2N3 trench. Although tefibazumab binds ClfA with high affinity we observe a modest IC50 value for the inhibition of fibrinogen binding to the MSCRAMM. This observation, paired with a common natural occurring variant of ClfA that is not effectively recognized by the mAb, may partly explain the modest effect tefibazumab showed in the initial clinic trail. This information will provide guidance for the design of the next generation of therapeutic anti-staphylococcal mAbs targeting ClfA.

  8. The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance.

    Science.gov (United States)

    Cheng, Alice G; Missiakas, Dominique; Schneewind, Olaf

    2014-03-01

    Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.

  9. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control

    DEFF Research Database (Denmark)

    Solis, Nestor; Larsen, Martin Røssel; Cordwell, Stuart J

    2010-01-01

    Proteolytic treatment of intact bacterial cells is an ideal means for identifying surface-exposed peptide epitopes and has potential for the discovery of novel vaccine targets. Cell stability during such treatment, however, may become compromised and result in the release of intracellular proteins...... that complicate the final analysis. Staphylococcus aureus is a major human pathogen, causing community and hospital-acquired infections, and is a serious healthcare concern due to the increasing prevalence of multiple antibiotic resistances amongst clinical isolates. We employed a cell surface "shaving" technique...... lysis and were removed from the trypsin-shaved data set. We identified 42 predicted S. aureus COL surface proteins from 260 surface-exposed peptides. Trypsin and proteinase-K digests were highly complementary with ten proteins identified by both, 16 specific to proteinase-K treatment, 13 specific...

  10. Occurrence of methicillin-resistant Staphylococcus aureus in surface waters near industrial hog operation spray fields.

    Science.gov (United States)

    Hatcher, S M; Myers, K W; Heaney, C D; Larsen, J; Hall, D; Miller, M B; Stewart, J R

    2016-09-15

    Industrial hog operations (IHOs) have been identified as a source of antibiotic-resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). However, few studies have investigated the presence of antibiotic-resistant S. aureus in the environment near IHOs, specifically surface waters proximal to spray fields where IHO liquid lagoon waste is sprayed. Surface water samples (n=179) were collected over the course of approximately one year from nine locations in southeastern North Carolina and analyzed for the presence of presumptive MRSA using CHROMagar MRSA media. Culture-based, biochemical, and molecular tests, as well as matrix-assisted laser desorption/ionization-time of flight mass spectrometry were used to confirm that isolates that grew on CHROMagar MRSA media were S. aureus. Confirmed S. aureus isolates were then tested for susceptibility to 16 antibiotics and screened for molecular markers of MRSA (mecA, mecC) and livestock adaptation (absence of scn). A total of 12 confirmed MRSA were detected in 9 distinct water samples. Nine of 12 MRSA isolates were also multidrug-resistant (MDRSA [i.e., resistant to ≥3 antibiotic classes]). All MRSA were scn-positive and most (11/12) belonged to a staphylococcal protein A (spa) type t008, which is commonly associated with humans. Additionally, 12 confirmed S. aureus that were methicillin-susceptible (MSSA) were recovered, 7 of which belonged to spa type t021 and were scn-negative (a marker of livestock-adaptation). This study demonstrated the presence of MSSA, MRSA, and MDRSA in surface waters adjacent to IHO lagoon waste spray fields in southeastern North Carolina. To our knowledge, this is the first report of waterborne S. aureus from surface waters proximal to IHOs.

  11. Protective Role of Surfactant Protein D in Ocular Staphylococcus aureus Infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Zhang

    Full Text Available Staphylococcus aureus is one of the most common pathogens causing keratitis. Surfactant protein D (SP-D plays a critical role in host defense and innate immunity. In order to investigate the role of SP-D in ocular S. aureus infection, the eyes of wild-type (WT and SP-D knockout (SP-D KO C57BL/6 mice were infected with S. aureus (10(7 CFU/eye in the presence and absence of cysteine protease inhibitor(E64.Bacterial counts in the ocular surface were examined 3, 6, 12, 24 hrs after infection. Bacterial phagocytosis by neutrophils and bacterial invasion in ocular epithelial cells were evaluated quantitatively. S. aureus-induced ocular injury was determined with corneal fluorescein staining. The results demonstrated that SP-D is expressed in ocular surface epithelium and the lacrimal gland; WT mice had increased clearance of S. aureus from the ocular surface (p<0.05 and reduced ocular injury compared with SP-D KO mice. The protective effects of SP-D include increased bacterial phagocytosis by neutrophils (p<0.05 and decreased bacterial invasion into epithelial cells (p<0.05 in WT mice compared to in SP-D KO mice. In the presence of inhibitor (E64, WT mice showed enhanced bacterial clearance (p<0.05 and reduced ocular injury compared to absent E64 while SP-D KO mice did not. Collectively, we concluded that SP-D protects the ocular surface from S. aureus infection but cysteine protease impairs SP-D function in this murine model, and that cysteine protease inhibitor may be a potential therapeutic agent in S. aureus keratitis.

  12. Protective activity of the CnaBE3 domain conserved among Staphylococcus aureus Sdr proteins.

    Science.gov (United States)

    Becherelli, Marco; Prachi, Prachi; Viciani, Elisa; Biagini, Massimiliano; Fiaschi, Luigi; Chiarot, Emiliano; Nosari, Sarah; Brettoni, Cecilia; Marchi, Sara; Biancucci, Marco; Fontana, Maria Rita; Montagnani, Francesca; Bagnoli, Fabio; Barocchi, Michèle A; Manetti, Andrea G O

    2013-01-01

    Staphylococcus aureus is an opportunistic pathogen, commensal of the human skin and nares, but also responsible for invasive nosocomial as well as community acquired infections. Staphylococcus aureus adheres to the host tissues by means of surface adhesins, such as SdrC, SdrD, and SdrE proteins. The Sdr family of proteins together with a functional A domain, contain respectively two, three or five repeated sequences called B motifs which comprise the CnaB domains. SdrD and SdrE proteins were reported to be protective in animal models against invasive diseases or lethal challenge with human clinical S. aureus isolates. In this study we identified a 126 amino acid sequence containing a CnaB domain, conserved among the three Sdr proteins. The three fragments defined here as CnaBC2, D5 and E3 domains even though belonging to phylogenetically distinct strains, displayed high sequence similarity. Based on the sequence conservation data, we selected the CnaBE3 domain for further analysis and characterization. Polyclonal antibodies raised against the recombinant CnaBE3 domain recognized SdrE, SdrC and SdrD proteins of different S. aureus lineages. Moreover, we demonstrated that the CnaBE3 domain was expressed in vivo during S. aureus infections, and that immunization of this domain alone significantly reduces the bacterial load in mice challenged with S. aureus. Furthermore, we show that the reduction of bacteria by CnaBE3 vaccination is due to functional antibodies. Finally, we demonstrated that the region of the SdrE protein containing the CnaBE3 domain was resistant to trypsin digestion, a characteristic often associated with the presence of an isopeptide bond.

  13. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen

    DEFF Research Database (Denmark)

    Saederup, Kirstine Lindhardt; Stødkilde-Jørgensen, Kristian; Graversen, Jonas Heilskov;

    2016-01-01

    Hemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S. aureus iron-regulated surface determinant (Isd....... By binding and uptake studies, we now show that the IsdH protein, which serves as an Hb receptor in the Isd system, directly interferes with the CD163-mediated clearance by binding the Hb-Hp complex and inhibiting CD163 recognition. Analysis of truncated IsdH variants including one or more of three near iron...

  14. Rapid detection and semi-quantification of IgG-accessible Staphylococcus aureus surface-associated antigens using a multiplex competitive Luminex assay

    NARCIS (Netherlands)

    Hansenova Manaskova, S.; Bikker, F.J.; Veerman, E.C.I.; van Belkum, A.; van Wamel, W.J.B.

    2013-01-01

    The surface characterization of Staphylococcus aureus is currently labor intensive and time consuming. Therefore, we developed a novel method for the rapid yet comprehensive characterization of S. aureus cell-surface-associated proteins and carbohydrates, based on a competitive Luminex assay. In thi

  15. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction.

    Science.gov (United States)

    Sugimoto, Shinya; Iwamoto, Takeo; Takada, Koji; Okuda, Ken-Ichi; Tajima, Akiko; Iwase, Tadayuki; Mizunoe, Yoshimitsu

    2013-04-01

    Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (Esp(S235A)) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction.

  16. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease.

    Science.gov (United States)

    Kiedrowski, Megan R; Crosby, Heidi A; Hernandez, Frank J; Malone, Cheryl L; McNamara, James O; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc) enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2) that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET) assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme.

  17. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease.

    Directory of Open Access Journals (Sweden)

    Megan R Kiedrowski

    Full Text Available Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2 that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme.

  18. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureus Adhesion

    Directory of Open Access Journals (Sweden)

    Peifu Tang

    2011-01-01

    Full Text Available Despite the systemic antibiotics prophylaxis, orthopedic implants still remain highly susceptible to bacterial adhesion and resulting in device-associated infection. Surface modification is an effective way to decrease bacterial adhesion. In this study, we prepared surfaces with different wettability on titanium surface based on TiO2 nanotube to examine the effect of bacterial adhesion. Firstly, titanium plates were calcined to form hydrophilic TiO2 nanotube films of anatase phase. Subsequently, the nanotube films and inoxidized titaniums were treated with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES, forming superhydrophobic and hydrophobic surfaces. Observed by SEM and contact angle measurements, the different surfaces have different characteristics. Staphylococcus aureus (SA adhesion on different surfaces was evaluated. Our experiment results show that the superhydrophobic surface has contact angles of water greater than 150∘ and also shows high resistance to bacterial contamination. It is indicated that superhydrophobic surface may be a factor to reduce device-associated infection and could be used in clinical practice.

  19. Iron-regulated biofilm formation in Staphylococcus aureus Newman requires ica and the secreted protein Emp.

    Science.gov (United States)

    Johnson, Miranda; Cockayne, Alan; Morrissey, Julie A

    2008-04-01

    Staphylococcus aureus biofilm formation is induced in iron-restricted growth conditions in vitro. In this study, we showed that Emp and Eap play important roles in low-iron-induced biofilm formation of S. aureus Newman. Eap and Emp are secreted proteins which are non-covalently attached to the S. aureus cell surface and have previously been implicated in a number of aspects of S. aureus pathogenesis. We showed here that the transcription of these important virulence factors is induced by growth in low-iron medium, reflective of the in vivo environment. Our results show that iron regulation of Eap and Emp is Fur independent. However, Fur is required for full induction of eap and emp expression in low-iron conditions. In this study, we demonstrated that in addition to Fur, low-iron-induced biofilm formation requires Sae, Agr, and SarA. In iron-restricted growth conditions, Sae and Agr are essential for Emp and Eap expression and hence for biofilm formation, whereas SarA appears to have a less-significant role. We also showed that expression of the ica operon is required for biofilm formation in iron-restricted growth conditions. We demonstrated that in fact, ica is required for the expression of the important multifunctional virulence determinants eap and emp.

  20. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  1. Sequence diversity in the A domain of Staphylococcus aureus fibronectin-binding protein A

    Directory of Open Access Journals (Sweden)

    Speziale Pietro

    2008-05-01

    Full Text Available Abstract Background Fibronectin-binding protein A (FnBPA mediates adhesion of Staphylococcus aureus to fibronectin, fibrinogen and elastin. We previously reported that S. aureus strain P1 encodes an FnBPA protein where the fibrinogen/elastin-binding domain (A domain is substantially divergent in amino acid sequence from the archetypal FnBPA of S. aureus NCTC8325, and that these variations created differences in antigenicity. In this study strains from multilocus sequence types (MLST that spanned the genetic diversity of S.aureus were examined to determine the extent of FnBPA A domain variation within the S. aureus population and its effect on ligand binding and immuno-crossreactivity. Results Seven different isotype forms (I – VII of the FnBPA A domain were identified which were between 66 to 76% identical in amino acid sequence in any pair-wise alignment. The fnbA allelic variants in strains of different multilocus sequence type were identified by DNA hybridization using probes specific for sequences encoding the highly divergent N3 sub-domain of different isotypes. Several isotypes were not restricted to specific clones or clonal complexes but were more widely distributed. It is highly likely that certain fnbA genes have been transferred horizontally. Residues lining the putative ligand-binding trench were conserved, which is consistent with the ability of each A domain isotype to bind immobilized fibrinogen and elastin by the dock-latch-lock mechanism. Variant amino acid residues were mapped on a three-dimensional model of the FnBPA A domain and were predicted to be surface-exposed. Polyclonal antibodies raised against the recombinant isotype I A domain bound that protein with a 4 – 7 fold higher apparent affinity compared to the A domains of isotypes II – VII, while some monoclonal antibodies generated against the isotype I A domain showed reduced or no binding to the other isotypes. Conclusion The FnBPA A domain occurs in at least 7

  2. PSC: protein surface classification.

    Science.gov (United States)

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-07-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25,857 functional surfaces identified from 24,170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided.

  3. Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b.

    Directory of Open Access Journals (Sweden)

    Tina K Koch

    Full Text Available Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi and extracellular fibrinogen-binding protein (Efb bind C3/C3b simultaneously with plasminogen. Bound plasminogen is converted by bacterial activator staphylokinase or by host-specific urokinase-type plasminogen activator to plasmin, which in turn leads to degradation of complement C3 and C3b. Efb and to a lesser extend Sbi enhance plasmin cleavage of C3/C3b, an effect which is explained by a conformational change in C3/C3b induced by Sbi and Efb. Furthermore, bound plasmin also degrades C3a, which exerts anaphylatoxic and antimicrobial activities. Thus, S. aureus Sbi and Efb comprise platforms to recruit plasmin(ogen together with C3 and its activation product C3b for efficient degradation of these complement components in the local microbial environment and to protect S. aureus from host innate immune reactions.

  4. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins.

    Science.gov (United States)

    Lone, Abdul G; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R; Call, Douglas R

    2015-08-01

    A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MS(E)). S. aureus biofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P < 0.01) more antioxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  5. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning and household bleach

    NARCIS (Netherlands)

    Kusumaningrum, H.D.; Paltinaite, R.; Koomen, A.J.; Hazeleger, W.C.; Rombouts, F.M.; Beumer, R.R.

    2003-01-01

    Effective cleaning and sanitizing of food preparation sites is important because pathogens are readily spread to food contact surfaces after preparation of contaminated raw products. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning by wiping with regular, microfiber,

  6. Polymorphisms in Fibronectin Binding Protein A of Staphylococcus Aureus are Associated with Infection of Cardiovascular Devices

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Steven; Lamlertthon, Supaporn; Casillas-Ituarte, Nadia; Lins, Roberto D.; Yongsunthon, Ruchirej; Taylor, Eric S.; DiBartola, Alex; Edmondson, Catherine; McIntyre, Lauren M.; Reller, L. Barth; Que, Yok-Ai; Ros, Robert; Lower, Brian; Fowler, Vance

    2011-11-08

    Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a bio-film, a structured community of bacterial cells adherent to the surface of a solid substrate. Every bio-film begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct bindingforce signature and had speci!c single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.

  7. The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus.

    Science.gov (United States)

    Smith, Emma Jane; Visai, Livia; Kerrigan, Steven W; Speziale, Pietro; Foster, Timothy J

    2011-09-01

    The second immunoglobulin-binding protein (Sbi) of Staphylococcus aureus has two N-terminal domains that bind the Fc region of IgG in a fashion similar to that of protein A and two domains that can bind to the complement protein C3 and promote its futile consumption in the fluid phase. It has been proposed that Sbi helps bacteria to avoid innate immune defenses. By comparing a mutant defective in Sbi with mutants defective in protein A, clumping factor A, iron-regulated surface determinant H, and capsular polysaccharide, it was shown that Sbi is indeed an immune evasion factor that promotes bacterial survival in whole human blood and the avoidance of neutrophil-mediated opsonophagocytosis. Sbi is present in the culture supernatant and is also associated with the cell envelope. S. aureus strains that expressed truncates of Sbi lacking N-terminal domains D1 and D2 (D1D2) or D3 and D4 (D3D4) or a C-terminal truncate that was no longer retained in the cell envelope were analyzed. Both the secreted and envelope-associated forms of Sbi contributed to immune evasion. The IgG-binding domains contributed only when Sbi was attached to the cell, while only the secreted C3-binding domains were biologically active.

  8. Non-spa-typeable clinical Staphylococcus aureus strains are naturally occurring protein A mutants

    DEFF Research Database (Denmark)

    Baum, Cathrin; Haslinger-Löffler, Bettina; Westh, Henrik;

    2009-01-01

    Staphylococcus aureus is a major human pathogen responsible for increasing the prevalence of community- and hospital-acquired infections. Protein A (SpA) is a key virulence factor of S. aureus and is highly conserved. Sequencing of the variable-number tandem-repeat region of SpA (spa typing...

  9. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lone , Abdul G.; Atci, Erhan; Renslow, Ryan S.; Beyenal, Haluk; Noh, S.; Fransson, B.; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.; Call, Douglas R.

    2015-08-31

    A partial-thickness epidermal explant model was colonized with GFP-expressing S. aureus and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. Oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using MSE mass spectrometry. We found that S. aureus biofilm grows predominantly in sebum-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2-3 fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after four days of culture. The colonized explants released significantly (P< 0.01) more anti-oxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentration found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in media from infected explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  10. Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis.

    Science.gov (United States)

    den Reijer, P Martijn; Sandker, Marjan; Snijders, Susan V; Tavakol, Mehri; Hendrickx, Antoni P A; van Wamel, Willem J B

    2017-02-01

    Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine-aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets.

  11. Naturally occurring IgG antibody levels to the Staphylococcus aureus protein IsdB in humans.

    Science.gov (United States)

    Zorman, Julie K; Esser, Mark; Raedler, Michael; Kreiswirth, Barry N; Ala'Aldeen, Dlawer A A; Kartsonis, Nicholas; Smugar, Steven S; Anderson, Annaliesa S; McNeely, Tessie; Arduino, Jean Marie

    2013-09-01

    Staphylococcus aureus is a well-recognized, clinically important cause of nosocomial infections, and as such, a vaccine to prevent S. aureus infections would be an important achievement. A Phase IIB/III study of V710, a vaccine containing iron-regulated surface determinant B (IsdB), demonstrated significant sero-conversion rates in cardiovascular surgery patients following a single pre-surgery immunization. However, the vaccine was not efficacious in preventing bacteremia or deep sternal wound infection post-surgery, thus raising the possibility that IsdB might not be available for immune recognition during infection. The purpose of the work described herein was to evaluate and quantify the naturally occurring anti-IsdB levels at baseline and over time during infection, to understand whether IsdB is expressed during a S. aureus infection in hospitalized non-vaccinated patients. We evaluated baseline and follow-up titers in 3 populations: (1) healthy subjects, (2) hospitalized patients with non-S. aureus infections, and (3) hospitalized patients with S. aureus infections. Baseline anti-IsdB levels generally overlapped between the 3 groups, but were highly variable within each group. In healthy subjects, baseline and follow-up levels were highly correlated (Spearman's rho = 0.93), and the geometric mean fold-rise (GMFR) in anti-IsdB levels between study entry and last value was 0.9-fold (95% confidence interval (CI): 0.8 to 1.0 ; p = 0.09), showing no trend over time. The convalescent GMFR in anti-IsdB levels from baseline was 1.7-fold (95% CI: 1.3 to 2.2, p = 0.0008) during S. aureus infection, significantly different from the 1.0-fold GMFR (95% CI: 0.9-1.2, p = 0.60) in non-S. aureus infection, p = 0.005. Additionally, S. aureus isolates (51) obtained from the hospitalized patient group expressed the IsdB protein in vitro. Collectively, these data suggest that IsdB expression levels rise substantially following infection with S. aureus, but not with other pathogens

  12. Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate.

    Science.gov (United States)

    Delfani, Somayeh; Mohabati Mobarez, Ashraf; Imani Fooladi, Abbas Ali; Amani, Jafar; Emaneini, Mohammad

    2016-02-01

    Staphylococcus aureus is one of the most important causes of nosocomial infections. An effective vaccine to prevent S. aureus infections is urgently required due to the dramatic increase in the number of antibiotic-resistant strains. In this report, we evaluated a newly recombinant protein composed of selected antigenic regions of clumping factor A (ClfA), iron surface determinant B (IsdB) and gamma hemolysin B (HlgB) of S. aureus and sequence coding for hydrophobic linkers between three domains. The recombinant gene was constructed in pET-28a (+) and expressed in Escherichia coli BL21. In addition, sequence coding for a His(6)-tag was added followed by a hybrid procedure of nickel chelate protein purification. Immunization of BALB/c mice with the recombinant protein ClfA-IsdB-Hlg evoked antigen-specific antibodies that could opsonize S. aureus cells, enhancing in vitro phagocytosis by macrophages. Vaccination with the recombinant protein also reduced the bacterial load recovered from mice spleen samples and increased survival following the intraperitoneal challenge with pathogenic S. aureus compared to the control mice. Our results showed that the recombinant protein ClfA-IsdB-Hlg is a promising vaccine candidate for the prevention of S. aureus bacteremia infections.

  13. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus.

    Science.gov (United States)

    Beavers, William N; Skaar, Eric P

    2016-08-01

    Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.

  14. The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia

    Science.gov (United States)

    Salgado-Pabon, Wilmara; Meyerholz, David K.; White, Mark J.; Schlievert, Patrick M.

    2016-01-01

    ABSTRACT The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade

  15. Crystal structure of the capsular polysaccharide synthesizing protein CapE of Staphylococcus aureus.

    Science.gov (United States)

    Miyafusa, Takamitsu; Caaveiro, Jose M M; Tanaka, Yoshikazu; Tanner, Martin E; Tsumoto, Kouhei

    2013-06-11

    Enzymes synthesizing the bacterial CP (capsular polysaccharide) are attractive antimicrobial targets. However, we lack critical information about the structure and mechanism of many of them. In an effort to reduce that gap, we have determined three different crystal structures of the enzyme CapE of the human pathogen Staphylococcus aureus. The structure reveals that CapE is a member of the SDR (short-chain dehydrogenase/reductase) super-family of proteins. CapE assembles in a hexameric complex stabilized by three major contact surfaces between protein subunits. Turnover of substrate and/or coenzyme induces major conformational changes at the contact interface between protein subunits, and a displacement of the substrate-binding domain with respect to the Rossmann domain. A novel dynamic element that we called the latch is essential for remodelling of the protein-protein interface. Structural and primary sequence alignment identifies a group of SDR proteins involved in polysaccharide synthesis that share the two salient features of CapE: the mobile loop (latch) and a distinctive catalytic site (MxxxK). The relevance of these structural elements was evaluated by site-directed mutagenesis.

  16. Are gym surfaces reservoirs for Staphylococcus aureus? A point prevalence survey.

    Science.gov (United States)

    Markley, John Daniel; Edmond, Michael B; Major, Yvette; Bearman, Gonzalo; Stevens, Michael P

    2012-12-01

    We sought to identify staphylococcal contamination of gymnasium surfaces. Various environmental surfaces were cultured at a university fitness center. Ten out of 99 samples yielded Staphylococcus aureus, all of which were methicillin-susceptible. Gym surfaces may be colonized with staphylococci and could play a role in community transmission of staphylococcal species.

  17. Non-spa-typeable clinical Staphylococcus aureus strains are naturally occurring protein A mutants

    DEFF Research Database (Denmark)

    Baum, Cathrin; Haslinger-Löffler, Bettina; Westh, Henrik;

    2009-01-01

    Staphylococcus aureus is a major human pathogen responsible for increasing the prevalence of community- and hospital-acquired infections. Protein A (SpA) is a key virulence factor of S. aureus and is highly conserved. Sequencing of the variable-number tandem-repeat region of SpA (spa typing......) provides a rapid and reliable method for epidemiological studies. Rarely, non-spa-typeable S. aureus strains are encountered. The reason for this is not known. In this study, we characterized eight non-spa-typeable bacteremia isolates. Sequencing of the entire spa locus was successful for five strains...

  18. The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein

    Science.gov (United States)

    Pohlentz, Gottfried; Xia, Guoqing; Hussain, Muzaffar; Foster, Simon; Peters, Georg

    2017-01-01

    Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff’s staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl

  19. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces.

    Science.gov (United States)

    Gutiérrez, Diana; Delgado, Susana; Vázquez-Sánchez, Daniel; Martínez, Beatriz; Cabo, Marta López; Rodríguez, Ana; Herrera, Juan J; García, Pilar

    2012-12-01

    Biofilms are a common cause of food contamination with undesirable bacteria, such as pathogenic bacteria. Staphylococcus aureus is one of the major bacteria causing food-borne diseases in humans. A study designed to determine the presence of S. aureus on food contact surfaces in dairy, meat, and seafood environments and to identify coexisting microbiota has therefore been carried out. A total of 442 samples were collected, and the presence of S. aureus was confirmed in 6.1% of samples. Sixty-three S. aureus isolates were recovered and typed by random amplification of polymorphic DNA (RAPD). Profiles were clustered into four groups which were related to specific food environments. All isolates harbored some potential virulence factors such as enterotoxin production genes, biofilm formation-associated genes, antibiotic resistance, or lysogeny. PCR-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints of bacterial communities coexisting with S. aureus revealed the presence of bacteria either involved in food spoilage or of concern for food safety in all food environments. Food industry surfaces could thus be a reservoir for S. aureus forming complex communities with undesirable bacteria in multispecies biofilms. Uneven microbiological conditions were found in each food sector, which indicates the need to improve hygienic conditions in food processing facilities, particularly the removal of bacterial biofilms, to enhance the safety of food products.

  20. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands.

    Science.gov (United States)

    Wang, Liangliang; Si, Wei; Xue, Huping; Zhao, Xin

    2017-01-26

    Staphylococcus aureus (S. aureus) is a frequent cause of infections in both humans and animals. Probiotics are known to inhibit colonization of pathogens on host tissues. However, mechanisms for the inhibition are still elusive due to complex host-microbe and microbe-microbe interactions. Here, we show that reduced abilities of S. aureus to infect mammary glands in the presence of Weissella cibaria (W. cibaria) were correlated with its poor adherence to mammary epithelial cells. Such inhibition by W. cibaria isolates was at least partially attributed to a fibronectin-binding protein (FbpA) on this lactic acid bacterium. Three W. cibaria isolates containing fbpA had higher inhibitory abilities than other three LAB isolates without the gene. The fbpA-deficient mutant of W. cibaria isolate LW1, LW1ΔfbpA, lost the inhibitory activity to reduce the adhesion of S. aureus to mammary epithelial cells and was less able to reduce the colonization of S. aureus in mammary glands. Expression of FbpA to the surface of LW1ΔfbpA reversed its inhibitory activities. Furthermore, addition of purified FbpA inhibited S. aureus biofilm formation. Our results suggest that W. cibaria FbpA hinders S. aureus colonization and infection through interfering with the S. aureus invasion pathway mediated by fibronectin-binding proteins and inhibiting biofilm formation of S. aureus.

  1. Antibodies to Staphylococcus aureus Bone Sialoprotein-Binding Protein Indicate Infectious Osteomyelitis▿

    OpenAIRE

    Persson, Lena; Johansson, Christian; Rydén, Cecilia

    2009-01-01

    Discrimination of soft tissue infection from osteomyelitis in diabetic foot infections is a common clinical problem. Staphylococcus aureus isolates from patients with osteomyelitis express bone sialoprotein-binding protein (Bbp) that binds the bone matrix protein bone sialoprotein. The serological assay with Bbp discriminated cases of osteomyelitis from soft tissue infections in patients with diabetic foot ulcers.

  2. Protein A is released into the Staphylococcus aureus culture supernatant with an unprocessed sorting signal.

    Science.gov (United States)

    O'Halloran, Dara P; Wynne, Kieran; Geoghegan, Joan A

    2015-04-01

    The immunoglobulin binding protein A (SpA) of Staphylococcus aureus is synthesized as a precursor with a C-terminal sorting signal. The sortase A enzyme mediates covalent attachment to peptidoglycan so that SpA is displayed on the surface of the bacterium. Protein A is also found in the extracellular medium, but the processes involved in its release are not fully understood. Here, we show that a portion of SpA is released into the supernatant with an intact sorting signal, indicating that it has not been processed by sortase A. Release of SpA was reduced when the native sorting signal of SpA was replaced with the corresponding region of another sortase-anchored protein (SdrE). Similarly, a reporter protein fused to the sorting signal of SpA was released to a greater extent than the same polypeptide fused to the SdrE sorting signal. Released SpA protected bacteria from killing in human blood, indicating that it contributes to immune evasion.

  3. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation

    Science.gov (United States)

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Krishna Sarma, Potukuchi Venkata Gurunadha

    2017-01-01

    Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection. PMID:27695030

  4. Life and Death of Proteins: A Case Study of Glucose-starved Staphylococcus aureus*

    OpenAIRE

    Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael

    2012-01-01

    The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) ...

  5. A Staphylococcus aureus Proteome Overview: Shared and Specific Proteins and Protein Complexes from Representative Strains of All Three Clades.

    Science.gov (United States)

    Liang, Chunguang; Schaack, Dominik; Srivastava, Mugdha; Gupta, Shishir K; Sarukhanyan, Edita; Giese, Anne; Pagels, Martin; Romanov, Natalie; Pané-Farré, Jan; Fuchs, Stephan; Dandekar, Thomas

    2016-02-19

    Staphylococcus aureus is an important model organism and pathogen. This S. aureus proteome overview details shared and specific proteins and selected virulence-relevant protein complexes from representative strains of all three major clades. To determine the strain distribution and major clades we used a refined strain comparison combining ribosomal RNA, MLST markers, and looking at highly-conserved regions shared between strains. This analysis shows three sub-clades (A-C) for S. aureus. As calculations are complex and strain annotation is quite time consuming we compare here key representatives of each clade with each other: model strains COL, USA300, Newman, and HG001 (clade A), model strain N315 and Mu50 (clade B) and ED133 and MRSA252 (clade C). We look at these individual proteomes and compare them to a background of 64 S. aureus strains. There are overall 13,284 S. aureus proteins not part of the core proteome which are involved in different strain-specific or more general complexes requiring detailed annotation and new experimental data to be accurately delineated. By comparison of the eight representative strains, we identify strain-specific proteins (e.g., 18 in COL, 105 in N315 and 44 in Newman) that characterize each strain and analyze pathogenicity islands if they contain such strain-specific proteins. We identify strain-specific protein repertoires involved in virulence, in cell wall metabolism, and phosphorylation. Finally we compare and analyze protein complexes conserved and well-characterized among S. aureus (a total of 103 complexes), as well as predict and analyze several individual protein complexes, including structure modeling in the three clades.

  6. Colonization by Staphylococcus aureus of Nano-Structured Fluorinated Surfaces, Formed by Different Methods of Ion-Plasma Technology.

    Science.gov (United States)

    Elinson, V M; Didenko, L V; Shevlyagina, N V; Avtandilov, G A; Gaidarova, A Kh; Lyamin, A N

    2016-11-01

    Colonization of fluorinated surfaces produced by ion-plasma technology by Staphylococcus aureus was studied by scanning electron microscopy and surface energy analysis. It was shown that the intensity of colonization was determined by the surface relief and fluorine content. Formation of nanostructured surfaces accompanied by a sharp decrease in the surface energy prevented adhesion of Staphylococcus aureus cells to the fluorine-containing surface.

  7. Mechanical Strength and Inhibition of the Staphylococcus aureus Collagen-Binding Protein Cna

    Science.gov (United States)

    Herman-Bausier, Philippe; Valotteau, Claire; Pietrocola, Giampiero; Rindi, Simonetta; Alsteens, David; Foster, Timothy J.

    2016-01-01

    ABSTRACT The bacterial pathogen Staphylococcus aureus expresses a variety of cell surface adhesion proteins that bind to host extracellular matrix proteins. Among these, the collagen (Cn)-binding protein Cna plays important roles in bacterium-host adherence and in immune evasion. While it is well established that the A region of Cna mediates ligand binding, whether the repetitive B region has a dedicated function is not known. Here, we report the direct measurement of the mechanical strength of Cna-Cn bonds on living bacteria, and we quantify the antiadhesion activity of monoclonal antibodies (MAbs) targeting this interaction. We demonstrate that the strength of Cna-Cn bonds in vivo is very strong (~1.2 nN), consistent with the high-affinity “collagen hug” mechanism. The B region is required for strong ligand binding and has been found to function as a spring capable of sustaining high forces. This previously undescribed mechanical response of the B region is of biological significance as it provides a means to project the A region away from the bacterial surface and to maintain bacterial adhesion under conditions of high forces. We further quantified the antiadhesion activity of MAbs raised against the A region of Cna directly on living bacteria without the need for labeling or purification. Some MAbs are more efficient in blocking single-cell adhesion, suggesting that they act as competitive inhibitors that bind Cna residues directly involved in ligand binding. This report highlights the role of protein mechanics in activating the function of staphylococcal adhesion proteins and emphasizes the potential of antibodies to prevent staphylococcal adhesion and biofilm formation. PMID:27795393

  8. Mechanical Strength and Inhibition of the Staphylococcus aureus Collagen-Binding Protein Cna

    Directory of Open Access Journals (Sweden)

    Philippe Herman-Bausier

    2016-10-01

    Full Text Available The bacterial pathogen Staphylococcus aureus expresses a variety of cell surface adhesion proteins that bind to host extracellular matrix proteins. Among these, the collagen (Cn-binding protein Cna plays important roles in bacterium-host adherence and in immune evasion. While it is well established that the A region of Cna mediates ligand binding, whether the repetitive B region has a dedicated function is not known. Here, we report the direct measurement of the mechanical strength of Cna-Cn bonds on living bacteria, and we quantify the antiadhesion activity of monoclonal antibodies (MAbs targeting this interaction. We demonstrate that the strength of Cna-Cn bonds in vivo is very strong (~1.2 nN, consistent with the high-affinity “collagen hug” mechanism. The B region is required for strong ligand binding and has been found to function as a spring capable of sustaining high forces. This previously undescribed mechanical response of the B region is of biological significance as it provides a means to project the A region away from the bacterial surface and to maintain bacterial adhesion under conditions of high forces. We further quantified the antiadhesion activity of MAbs raised against the A region of Cna directly on living bacteria without the need for labeling or purification. Some MAbs are more efficient in blocking single-cell adhesion, suggesting that they act as competitive inhibitors that bind Cna residues directly involved in ligand binding. This report highlights the role of protein mechanics in activating the function of staphylococcal adhesion proteins and emphasizes the potential of antibodies to prevent staphylococcal adhesion and biofilm formation.

  9. Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes

    Science.gov (United States)

    Bagga, K.; Barchanski, A.; Intartaglia, R.; Dante, S.; Marotta, R.; Diaspro, A.; Sajti, C. L.; Brandi, F.

    2013-06-01

    A novel approach for nanofabricating protein-functionalized luminescent silicon nanoparticles based on infrared ultrafast laser ablation of silicon in an aqueous solution of Staphylococcus aureus protein A is reported. It is demonstrated that 8 nm protein A-capped silicon quantum dots with blue-green photoemissive properties are generated. The conjugation efficiency studies reveal a high percentage of protein A attached to the Si nanoparticle surface through physical adsorption phenomena during the in situ laser process. The biological functionality of laser-generated Staphylococcus aureus protein A-capped Si nanoparticles is investigated. Confocal and electron microscopy together with energy dispersive x-ray spectroscopy analysis show that these Si-based bio-nanostructures selectively bind IgG in the cells. Cell viability studies reveal that these protein A-capped Si nanoparticles are suitable for biological applications, demonstrating their potential as universal secondary biomarkers for in vivo applications such as long-term, real-time cell labeling, cell staining and controlled drug delivery.

  10. Acute phase proteins in bovine milk in an experimental model of Staphylococcus aureus subclinical mastitis

    DEFF Research Database (Denmark)

    Eckersall, P D; Young, F J; Nolan, A M

    2006-01-01

    The objectives were to establish the origin of 2 acute phase proteins in milk during subclinical bovine mastitis and to characterize the relationship between those proteins in milk and blood. Haptoglobin (Hp) and mammary-associated serum amyloid A (M-SAA3) appear in milk during mastitis, whereas Hp...... and serum amyloid A increase in serum during mastitis. The concentrations of these proteins were determined in an experimental model using a field strain of Staphylococcus aureus to induce subclinical mastitis in dairy cows. The expression of mRNA coding for these proteins was assessed and the presence of M......-SAA3 in mammary tissues was determined using immunocytochemistry. Increases of M-SAA3 and Hp in milk occurred within 12 h of Staphylococcus aureus infusion, with peak concentrations occurring 3 d after infusion of the bacteria. The increase of acute phase proteins in milk (15 h) preceded the increase...

  11. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability

    Directory of Open Access Journals (Sweden)

    García-Lara Jorge

    2009-12-01

    Full Text Available Abstract Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.

  12. Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase from Staphylococcus aureus.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Yap, Min Y; Perugini, Matthew A; Wallace, John C; Abell, Andrew D; Wilce, Matthew C J; Polyak, Steven W; Booker, Grant W

    2014-01-01

    Protein biotinylation is catalysed by biotin protein ligase (BPL). The most characterized BPL is from Escherichia coli where it functions as both a biotin ligase and a homodimeric transcriptional repressor. Here we investigated another bifunctional BPL from the clinically important Staphylococcus aureus (SaBPL). Unliganded SaBPL (apo) exists in a dimer-monomer equilibrium at low micromolar concentrations - a stark contrast to E. coli BPL (EcBPL) that is monomeric under the same conditions. EMSA and SAXS analysis demonstrated that dimeric apo SaBPL adopted a conformation that was competent to bind DNA and necessary for it to function as a transcription factor. The SaBPL dimer-monomer dissociation constant was 5.8-fold tighter when binding the inhibitor biotin acetylene, but unchanged with biotin. F123, located in the dimer interface, was critical for homodimerization. Inhibition studies together with surface plasmon resonance analyses revealed a strong correlation between inhibitor potency and slow dissociation kinetics. A 24-fold difference in Ki values for these two enzymes was explained by differences in enzyme:inhibitor dissociation rates. Substitution of F123 in SaBPL and its equivalent in EcBPL altered both inhibitor potency and dissociation. Hence, F123 in SaBPL has novel roles in both protein dimerization and ligand-binding that have not been reported in EcBPL.

  13. Ultrastructural alteration of the cell surface of Staphylococcus aureus cultured in a different salt condition

    Directory of Open Access Journals (Sweden)

    Kanemasa,Yasuhiro

    1974-10-01

    Full Text Available Staphylococcus aureus growing in a normal NaGI medium has a specific NaGI tolerance property to grow in the medium contain. ing NaGl in as high a concentration as over 10%. In our comparative study of the cells proliferating in the normal NaGI medium and 10% NaGl medium, we have observed the following differences aside from the changes of lipid composition in the cytoplasmic membrane previously reported. 1. S. aureus grown in high NaGl medium undergoes changes as to increase its size and reduce its surface area. 2. The thickness and weight of cell wall are increased to about 1. 7 times and 1. 32 times, respectively. 3. The protoplast prepared from S. aureus growing in the high NaGI medium shows a weaker resistance to hypotonic condition than that from normal cell.

  14. Improving time to optimal Staphylococcus aureus treatment using a penicillin-binding protein 2a assay.

    Science.gov (United States)

    Rao, Sonia N; Wang, Sheila K; Gonzalez Zamora, Jose; Hanson, Amy P; Polisetty, Radhika S; Singh, Kamaljit

    2016-12-01

    The penicillin-binding protein 2a (PBP2a) assay is a quick, accurate and inexpensive test for determining methicillin susceptibility in Staphylococcus aureus. A pre-post-study design was conducted using a PBP2a assay with and without the impact of an antimicrobial stewardship intervention to improve time to optimal therapy for methicillin-susceptible and methicillin-resistant S. aureus isolates. Our results demonstrate significantly improved time to optimal therapy and support the use of a PBP2a assay as part of an programme for all healthcare facilities, especially those with limited resources.

  15. Identification of Functional Regulatory Residues of the β-Lactam Inducible Penicillin Binding Protein in Methicillin-Resistant Staphylococcus aureus

    OpenAIRE

    Mbah, Andreas N.; Isokpehi, Raphael D

    2013-01-01

    Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA) isolates acquired a new protein called β -lactam inducible penicillin binding protein (PBP-2′). The PBP-2′ functions by substituting other penicillin binding proteins which have been inhibited by β -lactam antibiotics. Presently, there is no structural and regulatory information on PBP-2′ protein...

  16. Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Chen Yi-Hsing

    2012-09-01

    Full Text Available Abstract Background Staphylococcus aureus secretes EsxA and EsxB, two small polypeptides of the WXG100 family of proteins. Genetic analyses have shown that production and secretion of EsxA and EsxB require an intact ESAT-6 Secretion System (ESS, a cluster of genes that is conserved in many Firmicutes and encompasses esxA and esxB . Here, we characterize EssB, one of the proteins encoded by the ESS cluster. EssB is highly conserved in Gram-positive bacteria and belongs to the Cluster of Orthologous Groups of protein COG4499 with no known function. Results By generating an internal deletion in essB , we demonstrate that EssB is required for secretion of EsxA. We use a polyclonal antibody to identify EssB and show that the protein fractionates with the plasma membrane of S. aureus . Yet, when produced in Escherichia coli, EssB remains mostly soluble and the purified protein assembles into a highly organized oligomer that can be visualized by electron microscopy. Production of truncated EssB variants in wild-type S. aureus confers a dominant negative phenotype on EsxA secretion. Conclusions The data presented here support the notion that EssB may oligomerize and interact with other membrane components to form the WXG100-specific translocon in S. aureus .

  17. Staphylococcus aureus infection induces protein A–mediated immune evasion in humans

    Science.gov (United States)

    Pauli, Noel T.; Kim, Hwan Keun; Falugi, Fabiana; Huang, Min; Dulac, John; Henry Dunand, Carole; Zheng, Nai-Ying; Kaur, Kaval; Andrews, Sarah F.; Huang, Yunping; DeDent, Andrea; Frank, Karen M.; Charnot-Katsikas, Angella; Schneewind, Olaf

    2014-01-01

    Staphylococcus aureus bacterial infection commonly results in chronic or recurrent disease, suggesting that humoral memory responses are hampered. Understanding how S. aureus subverts the immune response is critical for the rescue of host natural humoral immunity and vaccine development. S. aureus expresses the virulence factor Protein A (SpA) on all clinical isolates, and SpA has been shown in mice to expand and ablate variable heavy 3 (VH3) idiotype B cells. The effects of SpA during natural infection, however, have not been addressed. Acutely activated B cells, or plasmablasts (PBs), were analyzed to dissect the ongoing immune response to infection through the production of monoclonal antibodies (mAbs). The B cells that were activated by infection had a highly limited response. When screened against multiple S. aureus antigens, only high-affinity binding to SpA was observed. Consistently, PBs underwent affinity maturation, but their B cell receptors demonstrated significant bias toward the VH3 idiotype. These data suggest that the superantigenic activity of SpA leads to immunodominance, limiting host responses to other S. aureus virulence factors that would be necessary for protection and memory formation. PMID:25348152

  18. Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance.

    Science.gov (United States)

    Navratna, Vikas; Nadig, Savitha; Sood, Varun; Prasad, K; Arakere, Gayathri; Gopal, B

    2010-01-01

    Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. Beta-lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.

  19. Iron-regulated surface determinant (Isd) proteins of Staphylococcus lugdunensis.

    Science.gov (United States)

    Zapotoczna, Marta; Heilbronner, Simon; Speziale, Pietro; Foster, Timothy J

    2012-12-01

    Staphylococcus lugdunensis is the only coagulase-negative Staphylococcus species with a locus encoding iron-regulated surface determinant (Isd) proteins. In Staphylococcus aureus, the Isd proteins capture heme from hemoglobin and transfer it across the wall to a membrane-bound transporter, which delivers it into the cytoplasm, where heme oxygenases release iron. The Isd proteins of S. lugdunensis are expressed under iron-restricted conditions. We propose that S. lugdunensis IsdB and IsdC proteins perform the same functions as those of S. aureus. S. lugdunensis IsdB is the only hemoglobin receptor within the isd locus. It specifically binds human hemoglobin with a dissociation constant (K(d)) of 23 nM and transfers heme on IsdC. IsdB expression promotes bacterial growth in an iron-limited medium containing human hemoglobin but not mouse hemoglobin. This correlates with weak binding of IsdB to mouse hemoglobin in vitro. Unlike IsdB and IsdC, the proteins IsdJ and IsdK are not sorted to the cell wall in S. lugdunensis. In contrast, IsdJ expressed in S. aureus and Lactococcus lactis is anchored to peptidoglycan, suggesting that S. lugdunensis sortases may differ in signal recognition or could be defective. IsdJ and IsdK are present in the culture supernatant, suggesting that they could acquire heme from the external milieu. The IsdA protein of S. aureus protects bacteria from bactericidal lipids due to its hydrophilic C-terminal domain. IsdJ has a similar region and protected S. aureus and L. lactis as efficiently as IsdA but, possibly due to its location, was less effective in its natural host.

  20. Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle

    Science.gov (United States)

    This study evaluated the efficacy of a lysostaphin-fusion protein (Lyso-PTD) as a dry-cow therapy for the treatment of experimentally-induced chronic, subclinical Staphylococcus aureus mastitis. Twenty-two Holstein dairy cows were experimentally infected with Staph. aureus in a single pair of diago...

  1. Cell surface hydrophobicity and charge of Staphylococcus aureus and coagulase-negative staphylococci from bovine mastitis.

    Science.gov (United States)

    Mamo, W; Rozgonyi, F; Brown, A; Hjertén, S; Wadström, T

    1987-03-01

    The effects of seven growth media on cell surface hydrophobicity of a collection of Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis were compared in the salt-aggregation test. Thirty-three per cent of Staph. aureus strains showed extremely high cell surface hydrophobicity (auto-aggregated) and 28% were moderately hydrophobic while 26% were hydrophilic after growth on horse blood agar at 37 degrees C for 18 h. There were great variations in the proportion and degree of the hydrophobicity depending on the medium used. Cultivations on/in capsule-inducing media caused a shift from a high to a low degree of hydrophobicity, although a microscopically detectable capsule or slime layer was seen in only one strain. This strain and encapsulated reference strains had a hydrophilic cell surface and migrated faster in free zone electrophoresis than cells of unencapsulated strains. Cells of strains grown on staphylococcus medium 110 agar migrated faster than those grown on horse blood agar regardless of their capsule production. Coagulase-negative staphylococci showed uniformly hydrophilic cell surface after cultivation on horse blood agar, but not when grown in tryptic soy broth or proteose peptone broth. It was concluded that most of the Staph. aureus strains from bovine mastitis under a variety of growth conditions in stationary phase culture constantly expressed hydrophobic cell surface.

  2. Frequency of Fibronectin Binding Protein A and Panton-Valentine Leukocidin in Methicillin-Resistant Staphylococcus aureus Collected From Educational Hospitals in Qazvin, Iran

    Directory of Open Access Journals (Sweden)

    Taromian

    2016-02-01

    Full Text Available Background Staphylococcus aureus is one of the most important organisms involved in nosocomial infection acquired by patients. In recent years, the appearance of methicillin-resistant S. aureus (MRSA has turned the treatment of these infections into a serious challenge. Surface proteins, such as fibronectin binding proteins (FnBP, and the ability to produce Panton-Valentine leukocidin (PVL are important factors in pathogenesis of this organism. Objectives The purpose of this study was to determine the prevalence of disease-associated genes in the clinical isolates of S. aureus encoding FNB and PVL, collected from the educational hospitals of Qazvin, Iran. Patients and Methods This was a descriptive, cross-sectional study in which a total of 103 isolates of methicillin-resistant S. aureus were collected from hospitalized patients in teaching hospitals of Qazvin, during 2013 - 2014. Initially, the identification of isolates was performed according to the standard laboratory methods, followed by confirming the presence of the femA gene, a gene specific to S. aureus. Later, the prevalence of virulence genes (fnb and pvl was investigated by the PCR method, using specific primers. PCR products were sequenced to confirm the presence of the target genes. Results The results of this study showed that among 103 isolates of S. aureus resistant to methicillin, 88 isolates were positive for the presence of the pvl and fnb genes, with the fnb gene present in 86 (83.5% isolates and the pvl gene only in 2 (1.9% isolates. Conclusions The results of the present study indicate the presence of the pvl and fnb genes in the strains of S. aureus isolated from clinical specimens collected from the patients admitted to teaching hospitals in Qazvin. Considering the clinical significance of these organisms, and their potential in threatening public health systems, the identification, treatment, and infection control management of patients infected with these organisms is

  3. Structure and substrate recognition of the Staphylococcus aureus protein tyrosine phosphatase PtpA.

    Science.gov (United States)

    Vega, Carolina; Chou, Seemay; Engel, Katherine; Harrell, Maria E; Rajagopal, Lakshmi; Grundner, Christoph

    2011-10-14

    Phosphosignaling through pSer/pThr/pTyr is emerging as a common signaling mechanism in prokaryotes. The human pathogen Staphylococcus aureus produces two low-molecular-weight protein tyrosine phosphatases (PTPs), PtpA and PtpB, with unknown functions. To provide the structural context for understanding PtpA function and substrate recognition, establish PtpA's structural relations within the PTP family, and provide a framework for the design of specific inhibitors, we solved the crystal structure of PtpA at 1 Å resolution. While PtpA adopts the common, conserved PTP fold and shows close overall similarity to eukaryotic PTPs, several features in the active site and surface organization are unique and can be explored to design selective inhibitors. A peptide bound in the active site mimics a phosphotyrosine substrate, affords insight into substrate recognition, and provides a testable substrate prediction. Genetic deletion of ptpA or ptpB does not affect in vitro growth or cell wall integrity, raising the possibility that PtpA and PtpB have specialized functions during infection.

  4. Staphylococcus aureus Manganese Transport Protein C (MntC) Is an Extracellular Matrix- and Plasminogen-Binding Protein

    Science.gov (United States)

    Salazar, Natália; Castiblanco-Valencia, Mónica Marcela; da Silva, Ludmila Bezerra; de Castro, Íris Arantes; Monaris, Denize; Masuda, Hana Paula; Barbosa, Angela Silva; Arêas, Ana Paula Mattos

    2014-01-01

    Infections caused by Staphylococcus aureus – particularly nosocomial infections - represent a great concern. Usually, the early stage of pathogenesis consists on asymptomatic nasopharynx colonization, which could result in dissemination to other mucosal niches or invasion of sterile sites, such as blood. This pathogenic route depends on scavenging of nutrients as well as binding to and disrupting extracellular matrix (ECM). Manganese transport protein C (MntC), a conserved manganese-binding protein, takes part in this infectious scenario as an ion-scavenging factor and surprisingly as an ECM and coagulation cascade binding protein, as revealed in this work. This study showed a marked ability of MntC to bind to several ECM and coagulation cascade components, including laminin, collagen type IV, cellular and plasma fibronectin, plasminogen and fibrinogen by ELISA. The MntC binding to plasminogen appears to be related to the presence of surface-exposed lysines, since previous incubation with an analogue of lysine residue, ε-aminocaproic acid, or increasing ionic strength affected the interaction between MntC and plasminogen. MntC-bound plasminogen was converted to active plasmin in the presence of urokinase plasminogen activator (uPA). The newly released plasmin, in turn, acted in the cleavage of the α and β chains of fibrinogen. In conclusion, we describe a novel function for MntC that may help staphylococcal mucosal colonization and establishment of invasive disease, through the interaction with ECM and coagulation cascade host proteins. These data suggest that this potential virulence factor could be an adequate candidate to compose an anti-staphylococcal human vaccine formulation. PMID:25409527

  5. Antimicrobial proteins from snake venoms: direct bacterial damage and activation of innate immunity against Staphylococcus aureus skin infection.

    Science.gov (United States)

    Samy, R P; Stiles, B G; Gopalakrishnakone, P; Chow, V T K

    2011-01-01

    The innate immune system is the first line of defense against microbial diseases. Antimicrobial proteins produced by snake venoms have recently attracted significant attention due to their relevance to bacterial infection and potential development into new therapeutic agents. Staphylococcus aureus is one of the major human pathogens causing a variety of infections involving pneumonia, toxic shock syndrome, and skin lesions. With the recent emergence of methicillin (MRSA) and vancomycin (VRSA) resistance, S. aureus infection is a serious clinical problem that will have a grave socio-economic impact in the near future. Although S. aureus susceptibility to innate antimicrobial peptides has been reported recently, the protective effect of snake venom phospholipase A₂ (svPLA₂) proteins on the skin from S. aureus infection has been understudied. This review details the protective function of svPLA₂s derived from venoms against skin infections caused by S. aureus. We have demonstrated in vivo that local application of svPLA₂ provides complete clearance of S. aureus within 2 weeks after treatment compared to fusidic acid ointment (FAO). In vitro experiments also demonstrate that svPLA₂ proteins have inhibitory (bacteriostatic) and killing (bactericidal) effects on S. aureus in a dose-dependant manner. The mechanism of bacterial membrane damage and perturbation was clearly evidenced by electron microscopic studies. In summary, svPLA₂s from Viperidae and Elapidae snakes are novel molecules that can activate important mechanisms of innate immunity in animals to endow them with protection against skin infection caused by S. aureus.

  6. The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase.

    Science.gov (United States)

    Woehl, Jordan L; Stapels, Daphne A C; Garcia, Brandon L; Ramyar, Kasra X; Keightley, Andrew; Ruyken, Maartje; Syriga, Maria; Sfyroera, Georgia; Weber, Alexander B; Zolkiewski, Michal; Ricklin, Daniel; Lambris, John D; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2014-12-15

    The pathogenic bacterium Staphylococcus aureus actively evades many aspects of human innate immunity by expressing a series of small inhibitory proteins. A number of these proteins inhibit the complement system, which labels bacteria for phagocytosis and generates inflammatory chemoattractants. Although the majority of staphylococcal complement inhibitors act on the alternative pathway to block the amplification loop, only a few proteins act on the initial recognition cascades that constitute the classical pathway (CP) and lectin pathway (LP). We screened a collection of recombinant, secreted staphylococcal proteins to determine whether S. aureus produces other molecules that inhibit the CP and/or LP. Using this approach, we identified the extracellular adherence protein (Eap) as a potent, specific inhibitor of both the CP and LP. We found that Eap blocked CP/LP-dependent activation of C3, but not C4, and that Eap likewise inhibited deposition of C3b on the surface of S. aureus cells. In turn, this significantly diminished the extent of S. aureus opsonophagocytosis and killing by neutrophils. This combination of functional properties suggested that Eap acts specifically at the level of the CP/LP C3 convertase (C4b2a). Indeed, we demonstrated a direct, nanomolar-affinity interaction of Eap with C4b. Eap binding to C4b inhibited binding of both full-length C2 and its C2b fragment, which indicated that Eap disrupts formation of the CP/LP C3 proconvertase (C4b2). As a whole, our results demonstrate that S. aureus inhibits two initiation routes of complement by expression of the Eap protein, and thereby define a novel mechanism of immune evasion.

  7. Two-plasmid vector system for independently controlled expression of green and red fluorescent fusion proteins in Staphylococcus aureus.

    Science.gov (United States)

    Brzoska, Anthony J; Firth, Neville

    2013-05-01

    We have constructed a system for the regulated coexpression of green fluorescent protein (GFP) and red fluorescent protein (RFP) fusions in Staphylococcus aureus. It was validated by simultaneous localization of cell division proteins FtsZ and Noc and used to detect filament formation by an actin-like ParM plasmid partitioning protein in its native coccoid host.

  8. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of exposing hydroph

  9. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus.

    Science.gov (United States)

    Cucarella, Carme; Tormo, M Angeles; Ubeda, Carles; Trotonda, M Pilar; Monzón, Marta; Peris, Critòfol; Amorena, Beatriz; Lasa, Iñigo; Penadés, José R

    2004-04-01

    Staphylococcus aureus is a common cause of intramammary infections, which frequently become chronic, associated with the ability of the bacteria to produce biofilm. Here, we report a relationship between the ability to produce chronic bovine mastitis and biofilm formation. We have classified bovine mastitis S. aureus isolates into three groups based on the presence of particular genetic elements required for biofilm formation: group 1 (ica(+) bap(+)), group 2 (ica(+), bap negative), and group 3 (ica negative, bap negative). Overall, animals naturally infected with group 1 and 2 isolates had a lower milk somatic cell count than those infected with isolates of group 3. In addition, Bap-positive isolates were significantly more able to colonize and persist in the bovine mammary gland in vivo and were less susceptible to antibiotic treatments when forming biofilms in vitro. Analysis of the structural bap gene revealed the existence of alternate forms of expression of the Bap protein in S. aureus isolates obtained under field conditions throughout the animal's life. The presence of anti-Bap antibodies in serum samples taken from animals with confirmed S. aureus infections indicated the production of Bap during infection. Furthermore, disruption of the ica operon in a bap-positive strain had no effect on in vitro biofilm formation, a finding which strongly suggested that Bap could compensate for the deficiency of the PIA/PNAG product (a biofilm matrix polysaccharide). Altogether, these results demonstrate that, in the bovine intramammary gland, the presence of Bap may facilitate a biofilm formation connected with the persistence of S. aureus.

  10. 新的细胞壁锚定蛋白SasX对金黄葡萄球菌生物膜形成和毒力的影响%The novel surface-anchored protein SasX promotes biofilm formation and is a virulence factor of Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    杜昕; 宋燕; 胡锦辉; 阮斐怡; 吕元; 李敏

    2011-01-01

    Objective To determine whether the novel surface-anchored protein SasX mediates biofilm formation of Staphylococcus aureus and to investigate the function of SasX in the virulence of S.aureus.Methods Methicillin-resistant Staphylococcus aureus(MRSA) ST-239 HS sasX gene mutant (HS770 △ sasX) and complement [ HS770 △sasX(pRBsasX) ] were gotten by gene knock out and complement methods.Semiquantitative biofilm assay was used for detection of the biofilm formation of wild type and mutant.By using abscess model in mice,we investigate the function of SasX in the virulence of S.aureus.Results The sasX gene mutant strain was gotten successfully by using pKOR1 plasmid.HS770 △sasX with a very clear reduction of biofilm formation compared to wild type and complement(P<0.05),there was no significant difference of biofilm formation between wild type and complement(P>0.05).Primary attachment assays demonstrated that comparing to wild type,there was significant reduction of initial accumulative phases of biofilm development in HS770△sasX(P<0.05),but there was no difference between wild type and complement(P>0.05).Both sasX wild type and mutant could cause abscess in the skin of mice,no abscess were forming in the PBS control group.The biggest abscess size was found on the second day after injection.The size of abscess was smaller with extension of the time.But on the same time,the wild type group produced significantly larger abscesses compared to mutant group( P<0.05 ).Conclusion It could improve the effect of gene knocking out by using pKOR1 plasmid.SasX promotes biofilm formation by influencing on the initial accumulative phases of biofilm development,SasX is a marker of invasive infection of S.aureus,it is very important for S.aureus persistence in the hospital setting.%目的 研究新的细胞壁锚定蛋白SasX对金黄葡萄球菌生物膜形成及毒力的影响.方法 采用基因敲除及基因互补技术获得耐甲

  11. Novel light-activated antimicrobial coatings are effective against surface-deposited Staphylococcus aureus.

    Science.gov (United States)

    Decraene, Valérie; Pratten, Jonathan; Wilson, Michael

    2008-10-01

    Aerosols constitute a major route of transmission for a wide range of infectious diseases in the hospital setting. The aim of this study was to determine the survival of Staphylococcus aureus on a light-activated antimicrobial coating. S. aureus suspended in phosphate-buffered saline (PBS), saliva, or horse serum was sprayed onto cellulose acetate coatings containing toluidine blue O and rose bengal and the survival of the organism on these surfaces was determined following 6 h of exposure to a 28-W domestic fluorescent lamp (light intensity = 3700 +/- 20 lux). Kills ranging from 78.9% (in horse serum) to 99.8% (in PBS) were obtained when the bacterial density on the coatings was approximately 10(5) colony-forming units/m(2). The results of this study have shown that a coating containing toluidine blue and rose bengal can achieve significant kills of S. aureus when illuminated by a domestic light source. Light-activated coatings could provide a simple, low-cost means of reducing the microbial load in hospitals and other facilities.

  12. Bap: a family of surface proteins involved in biofilm formation.

    Science.gov (United States)

    Lasa, Iñigo; Penadés, José R

    2006-03-01

    A group of surface proteins sharing several structural and functional features is emerging as an important element in the biofilm formation process of diverse bacterial species. The first member of this group of proteins was identified in a Staphylococcus aureus mastitis isolate and was named Bap (biofilm-associated protein). As common structural features, Bap-related proteins: (i) are present on the bacterial surface; (ii) show a high molecular weight; (iii) contain a core domain of tandem repeats; (iv) confer upon bacteria the capacity to form a biofilm; (v) play a relevant role in bacterial infectious processes; and (vi) can occasionally be contained in mobile elements. This review summarizes recent studies that have identified and assigned roles to Bap-related proteins in biofilm biology and virulence.

  13. Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms

    Science.gov (United States)

    Salehzadeh, Ali; Zamani, Hojjatolah; Langeroudi, Maedeh Keshtkar; Mirzaie, Amir

    2016-01-01

    Objective(s): Staphylococcus aureus is an important bacterial pathogen responsible for a variety numbers of nosocomial and community acquired infections. Biofilm formation is regarded as an important factor in the establishment of S. aureus infection. The contribution of the genetic background of S. aureus to biofilm formation is poorly understood. The aim of the present work was to genotype S. aureus strains associated to biofilm based on the coagulase and protein A genes and to evaluate the association between the genetic background and the biofilm forming ability of clinical S. aureus isolates. Materials and Methods: A total number of 100 S. aureus were isolated from nosocomial infections and biofilm formation capability was investigated using phenotypic assay and molecular detection of biofilm associated genes. The strains were genotyped based on coagulase (coa) and protein A (spa) gene polymorphisms using restriction fragments length polymorphism-polymerase chain reaction (RFLP-PCR). Results: RFLP-PCR of coa gene generated two types and three subtypes. Amplification of spa gene resulted in two banding patterns and their restriction digestion generated three subtypes. The combined coa and spa RFLP patterns generated nine genotypes (G1-G9). The genotypes G4 and G1 were the most prevalent (32.1% and 24.3%, respectively). Conclusion: High clonal diversity of S. aureus strains able to produce biofilm was observed. Biofilm formation correlates with the spa and coa clonal lineage in our population and testing for multiple gene polymorphisms could be employed for local epidemiologic purposes. PMID:28096965

  14. Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Ali Salehzadeh

    2016-12-01

    Full Text Available Objective(s: Staphylococcus aureus is an important bacterial pathogen responsible for a variety numbers of nosocomial and community acquired infections. Biofilm formation is regarded as an important factor in the establishment of S. aureus infection. The contribution of the genetic background of S. aureus to biofilm formation is poorly understood. The aim of the present work was to genotype S. aureus strains associated to biofilm based on the coagulase and protein A genes and to evaluate the association between the genetic background and the biofilm forming ability of clinical S. aureus isolates. Materials and Methods: A total number of 100 S. aureus were isolated from nosocomial infections and biofilm formation capability was investigated using phenotypic assay and molecular detection of biofilm associated genes. The strains were genotyped based on coagulase (coa and protein A (spa gene polymorphisms using restriction fragments length polymorphism-polymerase chain reaction (RFLP-PCR. Results: RFLP-PCR of coa gene generated two types and three subtypes. Amplification of spa gene resulted in two banding patterns and their restriction digestion generated three subtypes. The combined coa and spa RFLP patterns generated nine genotypes (G1-G9. The genotypes G4 and G1 were the most prevalent (32.1% and 24.3%, respectively. Conclusion: High clonal diversity of S. aureus strains able to produce biofilm was observed. Biofilm formation correlates with the spa and coa clonal lineage in our population and testing for multiple gene polymorphisms could be employed for local epidemiologic purposes.

  15. Antibacterial effect of silver nanoparticles along with protein synthesis-inhibiting antibiotics on Staphylococcus aureus isolated from cattle mastitis

    Directory of Open Access Journals (Sweden)

    Malahat Ahmadi

    2014-01-01

    Full Text Available Introduction: Staphylococcus aureus is an opportunistic pathogen in dairy ruminants which is also found in healthy carriage and can be a major cause of mastitis. Various mastitis control programs have been used to combat the problem but have not always been efficient. In most countries, antibiotic resistance is extremely common. Silver nanoparticles have shown antimicrobial activity against S. aureus. In the present study the effect of silver nanoparticles on S. aureus isolated from cattle mastitis along with antibiotics of operative on protein bacterial synthesis investigated. Materials and methods: Three hundred eleven milk samples were collected from the cow farms. Each milk sample was cultured on mannitol salt agar and was incubated. A total of 72 isolates of S. aureus were isolated from the bovine mastitis milk samples. S. aureus DNA extracted by DNA purification kit according to the manufacturer protocol. 58 isolates were confirmed as S. aureus by biochemical tests as well as nuc gene detection. MIC and MBC determined for silver nanoparticles with antibiotics on 50 isolates. Results: The resistance of S. aureus isolates against erythromycin, gentamicin, streptomycin and doxycycline were 100, 22, 100 and 8%, respectively. 8 of all isolates were sensitive to 25 µg/ml concentration of silver nanoparticles. The 92% growth of the samples were inhibited at concentrations between 50-100 µg/ml. Discussion and conclusion: The present study suggests that antibiotics which can inhibit protein synthesis have significant synergistic effect along with silver nanoparticles.

  16. Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Robert Claude

    2011-09-01

    Full Text Available Abstract Background Staphylococcus aureus is one of the most prevalent pathogens to cause mastitis in dairy cattle. Intramammary infection of dairy cows with S. aureus is often subclinical, due to the pathogen's ability to evade the innate defense mechanisms, but this can lead to chronic infection. A sub-population of S. aureus, known as small colony variant (SCV, displays atypical phenotypic characteristics, causes persistent infections, and is more resistant to antibiotics than parent strains. Therefore, it was hypothesized that the host immune response will be different for SCV than its parental or typical strains of S. aureus. In this study, the local and systemic immune protein responses to intramammary infection with three strains of S. aureus, including a naturally occurring bovine SCV strain (SCV Heba3231, were characterized. Serum and casein-depleted milk cytokine levels (interleukin-8, interferon-γ, and transforming growth factor-β1, as well as serum haptoglobin concentrations were monitored over time after intramammary infection with each of the three S. aureus strains. Furthermore, comparative proteomics was used to evaluate milk proteome profiles during acute and chronic phases of S. aureus intramammary infection. Results Serum IL-8, IFN-γ, and TGF-β1 responses differed in dairy cows challenged with different strains of S. aureus. Changes in overall serum haptoglobin concentrations were observed for each S. aureus challenge group, but there were no significant differences observed between groups. In casein-depleted milk, strain-specific differences in the host IFN-γ response were observed, but inducible IL-8 and TGF-β1 concentrations were not different between groups. Proteomic analysis of the milk following intramammary infection revealed unique host protein expression profiles that were dependent on the infecting strain as well as phase of infection. Notably, the protein, component-3 of the proteose peptone (CPP3, was

  17. Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate.

    Directory of Open Access Journals (Sweden)

    Wipawadee Sianglum

    Full Text Available The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC values ranged from 31.25-62.5 µg/ml, and the minimal bactericidal concentration (MBC was 250 µg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5-125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 µg/ml and 2 µg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 µg/ml affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections.

  18. Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus.

    Science.gov (United States)

    Tormo, M Angeles; Ubeda, Carles; Martí, Miguel; Maiques, Elisa; Cucarella, Carme; Valle, Jaione; Foster, Timothy J; Lasa, Iñigo; Penadés, José R

    2007-06-01

    A process of phase variation is described that affects the expression of Bap (biofilm-associated protein) in Staphylococcus aureus. Upon subculture of the Bap-positive S. aureus strain V329 on Congo red agar, spontaneous smooth biofilm-negative colonies appeared at a low frequency (5 x 10(-4)). Northern blot analysis of these variants with a bap-specific gene probe showed that transcription of the bap gene did not occur. However, DNA typing, Southern blot hybridization and DNA sequencing did not show any differences between the parent V329 strain and the biofilm-negative variants. The biofilm-negative phenotype reverted to wild-type at a similar frequency upon subculture of Bap-negative variants in liquid media. Experimental infection of ovine mammary glands with Bap-negative variants showed that phase variation occurred in vivo, because Bap-expressing, biofilm-positive revertants were isolated from infected mammary glands. The absence of Bap correlated with increased adherence to fibrinogen and fibronectin. It is possible that S. aureus can detach from a biofilm by switching to a Bap-negative state.

  19. Effective interaction studies for inhibition of DNA ligase protein from Staphylococcus aureus.

    Science.gov (United States)

    Vijayalakshmi, Periyasamy; Daisy, Pitchai

    2015-02-01

    Staphylococcus aureus has been recognized as an important human pathogen for more than 100 years. It is among the most important causative agent of human infections in the twenty-first century. DNA ligase is the main protein responsible for the replication of S. aureus. In order to control the replication mechanism, DNA ligase is a successive drug target, hence we have chosen this protein for this study. We performed virtual screening using ZINC database for identification of potent inhibitor against DNA ligase. Based on the scoring methods, we have selected best five compounds from the ZINC database. In order to improve the accuracy, selected compounds were subjected into Quantum Polarized Ligand Docking (QPLD) docking, for which the results showed high docking score, compared to glide docking score. QPLD is more accurate as it includes charges in the scoring function, which was not available in the glide docking. Binding energy calculation results also indicated that selected compounds have good binding capacity with the target protein. In addition, these compounds on screening have good absorption, distribution, metabolism, excretion and toxicity property. In this study, we identified few compounds that particularly work against DNA ligase protein, having better interaction phenomenon and it would help further the experimental analysis.

  20. The carriage of the serine-aspartate repeat protein-encoding sdr genes among Staphylococcus aureus lineages.

    Science.gov (United States)

    Liu, Huanle; Lv, Jingnan; Qi, Xiuqin; Ding, Yu; Li, Dan; Hu, Longhua; Wang, Liangxing; Yu, Fangyou

    2015-01-01

    The serine-aspartate repeat proteins (Sdr) are members of a family of surface proteins and contribute to the pathogenicity of Staphylococcus aureus. Among 288 S. aureus isolates including 158 and 130 associated with skin and soft tissue infections and bloodstream infection, respectively; 275 (95.5%) were positive for at least one of three sdr genes tested. The positivity rates for sdrC, sdrD, and sdrE among S. aureus isolates were 87.8% (253/288), 63.9% (184/288), and 68.1% (196/288), respectively. 224 (77.8%) of 288 isolates were concomitantly positive for two or three sdr genes. There was an association between carriage of sdrE and methicillin-resistant S. aureus (MRSA) isolates, while the carriage rates of sdrC and sdrD in MRSA isolates were similar to those in methicillin-sensitive S. aureus (MSSA) isolates. The prevalence of co-existence of sdrC and sdrE among MRSA isolates was significantly higher than that among MSSA isolates (p<0.05). All ST1, ST5, ST7, and ST25 isolates were positive for sdrD. While all ST121 and ST398 isolates were negative for sdrD. All ST59 and ST88 isolates were positive for sdrE. All ST1 isolates were concomitantly positive for sdrC and sdrD. Concomitant carriage of sdrC, sdrD, and sdrE was found among all ST5, 75.0% (9/12) of ST1, 69.2% (9/13) of ST6, 78.6% (11/14) of ST25, and 90.9% (20/22) of ST88 isolates. sdrD was linked to CC5, CC7 and CC88 isolates, especially CC88 isolates. There was a strong association between the presence of sdrE and CC59, CC88, and CC5 isolates. A significant correlation between concomitant carriage of sdrC, sdrD, and sdrE and CC88 isolates was found. sdrC-positive, sdrD-positive and sdrE-negative gene profile was significantly associated with CC7 clone. There was an association between sdrC-positive, sdrD-negative, and sdrE-positive gene profile and CC59 isolates. A correlation between sdrC-positive, sdrD-negative, and sdrE-negative gene profile and CC121 clone was found. More CC59 isolates carried sdr

  1. Purification and activity testing of the full-length YycFGHI proteins of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Michael Türck

    Full Text Available BACKGROUND: The YycFG two-component regulatory system (TCS of Staphylococcus aureus represents the only essential TCS that is almost ubiquitously distributed in gram-positive bacteria with a low G+C-content. YycG (WalK/VicK is a sensor histidine-kinase and YycF (WalR/VicR is the cognate response regulator. Both proteins play an important role in the biosynthesis of the cell envelope and mutations in these proteins have been involved in development of vancomycin and daptomycin resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here we present high yield expression and purification of the full-length YycG and YycF proteins as well as of the auxiliary proteins YycH and YycI of Staphylococcus aureus. Activity tests of the YycG kinase and a mutated version, that harbours an Y306N exchange in its cytoplasmic PAS domain, in a detergent-micelle-model and a phosholipid-liposome-model showed kinase activity (autophosphorylation and phosphoryl group transfer to YycF only in the presence of elevated concentrations of alkali salts. A direct comparison of the activity of the kinases in the liposome-model indicated a higher activity of the mutated YycG kinase. Further experiments indicated that YycG responds to fluidity changes in its microenvironment. CONCLUSIONS/SIGNIFICANCE: The combination of high yield expression, purification and activity testing of membrane and membrane-associated proteins provides an excellent experimental basis for further protein-protein interaction studies and for identification of all signals received by the YycFGHI system.

  2. Life and death of proteins: a case study of glucose-starved Staphylococcus aureus.

    Science.gov (United States)

    Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael

    2012-09-01

    The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis.

  3. Spread of Staphylococcus aureus between medical staff and high-frequency contact surfaces in a large metropolitan hospital

    Directory of Open Access Journals (Sweden)

    Li-sha Shi

    2015-12-01

    Conclusion: Cross-contamination of S. aureus or MRSA on medical workers' hands and contact surfaces was demonstrated within and between departments of a large metropolitan hospital. Improvements are needed in medical staff hygiene habits and in the cleaning of high-frequency contact surfaces to help prevent and control nosocomial infections.

  4. Effect of gamma irradiation on the expressed proteins in the foodborne pathogen Staphylococcus aureus

    Science.gov (United States)

    Trudeau, Karine; Dang Vu, Khanh; Shareck, François; Lacroix, Monique

    2012-08-01

    A capillary electrophoresis method with UV detection was developed to analyze protein composition of the foodborne pathogen Staphylococcus aureus. Bacterial samples containing 109 CFU/ml, obtained after two cycles of incubations of 24 h, were gamma irradiated at different doses of 1.2, 3.5 and 2.9 kGy to respectively create damage cells, to kill cells and to provoke viable but non cultivable cells (VBNC). It was observed that an irradiation at a sensitive dose of 1.2 kGy caused a significantly increase in the protein with molecular weight (MW) of 17.7 kDa (from 0.61% to 1.2%). This treatment also caused decreases in the expressed proteins with the MWs of 16.3 kDa (from 6.2% to 5.3%) and of 23.4 kDa (from 4.0% to 2.30%). Irradiation at a VBCN dose of 2.9 kGy caused increases in expressed proteins with the MWs of 17.7 kDa (from 0.61% to 3.43%), 18.7 kDa (from 1.04% to 4.30%), 19.5 kDa (from 0.71% to 2.30%), 21.1 kDa (from 1.20% to 3.80%). Moreover, this treatment (2.9 kGy) also caused significantly decreases (P≤0.05) in the expressed proteins with the MW of 30.7 kDa (from 8.6% to 5.15%), 36.3 kDa (from 3.1% to 2.7%) and 40.5 kDa (from 11.3% to 8.5%). Finally, for the irradiation at a lethal dose of 3.5 kGy, it can be found that the expressed proteins with the MW of 17.7 kDa, 18.7 kDa and 19.5 kDa were increased less than that of expressed proteins at the VCNC dose (2.9 kGy) and these might be the very important proteins which are responsible for the survival of the S. aureus. Further, there were also the decreases in expressed proteins with the MW of 30.7 kDa, 36.3 kDa and 75.1 kDa at this dose of treatment (3.5 kGy) which can be expected that these proteins are seriously affected at high dose of γ-irradiation treatment.

  5. Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B

    Science.gov (United States)

    Zhu, Shaoli; Du, ChunLei; Fu, Yongqi

    2009-09-01

    A triangular hybrid Au-Ag nanoparticles array was proposed for the purpose of biosensing in this paper. Constructing the hybrid nanoparticles, an Au thin film is capped on the Ag nanoparticles which are attached on glass substrate. The hybrid nanoparticles array was designed by means of finite-difference and time-domain (FDTD) algorithm-based computational numerical calculation and optimization. Sensitivity of refractive index of the hybrid nanoparticles array was obtained by the computational calculation and experimental detection. Moreover, the hybrid nanoparticles array can prevent oxidation of the pure Ag nanoparticles from atmosphere environment because the Au protective layer was deposited on top of the Ag nanoparticles so as to isolate the Ag particles from the atmosphere. We presented a novel surface covalent link method between the localized surface plasmon resonance (LSPR) effect-based biosensors with hybrid nanoparticles array and the detected target molecules. The generated surface plasmon wave from the array carries the biological interaction message into the corresponding spectra. Staphylococcus aureus enterotoxin B (SEB), a small protein toxin was directly detected at nanogramme per milliliter level using the triangular hybrid Au-Ag nanoparticles. Hence one more option for the SEB detection is provided by this way.

  6. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus.

    Science.gov (United States)

    Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua

    2016-08-15

    Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments.

  7. A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling.

    Science.gov (United States)

    Askarian, Fatemeh; van Sorge, Nina M; Sangvik, Maria; Beasley, Federico C; Henriksen, Jørn R; Sollid, Johanna U E; van Strijp, Jos A G; Nizet, Victor; Johannessen, Mona

    2014-01-01

    Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encoding a homologue of the human TIR domain in S. aureus MSSA476 which was named staphylococcal TIR domain protein (TirS). Ectopic expression of TirS in human embryonic kidney, macrophage and keratinocyte cell lines interfered with signaling through TLR2, including MyD88 and TIRAP, NF-κB and/or mitogen-activated protein kinase pathways. Moreover, the presence of TirS reduced the levels of cytokines MCP-1 and G-CSF secreted in response to S. aureus. The effects on NF-κB pathway were confirmed using S. aureus MSSA476 wild type, an isogenic mutant MSSA476ΔtirS, and complemented MSSA476ΔtirS +pTirS in a Transwell system where bacteria and host cells were physically separated. Finally, in a systematic mouse infection model, TirS promoted bacterial accumulation in several organs 4 days postinfection. The results of this study reveal a new S. aureus virulence factor that can interfere with PAMP-induced innate immune signaling in vitro and bacterial survival in vivo.

  8. ADHESION AND SURFACE GROWTH OF STAPHYLOCOCCUS AUREUS AND LACTOBACILLUS PLANTARUM ON VARIOUS METALS

    Directory of Open Access Journals (Sweden)

    Tsveteslava V. Ignatova-Ivanova

    2015-06-01

    Full Text Available Background: One of the major drawbacks in the use of biomedical materials is the occurrence of biomaterial-centered infections. Adhesion of microorganisms to an implant is mediated by their physico-chemical surface properties and the properties of the biomaterial surface itself. Subsequent surface growth of the microorganisms will lead to a mature biofilm and infection, which is difficult to eradicate by antibiotics. Objective: The purpose of this research is to examine the adhesion in the combined cultivation of Staphylococcus aureus and the Lactobacillus plantarum probiotic bacterium on the surface of different metals (copper, aluminium, low-carbon steel, and zinc. Methods: The precise weighing (with an allowance of 0,0001 g of the metal plates before and after the treatment found a minimum negative change in their weight, which may be caused by reduction resulting from corrosion processes, on one hand, or growth because of the forming of a biofilm, on the other. The structure of the layer over the metal plates was analysed by SEM (scanning electron microscopy JSM 5510. Results: The thinnest biofilm for both bacteria was registered on the surface of the copper plate. When a combined culture is used on the surface of the aluminium and the steel plates, the pathogenic bacterium is adhered predominantly. On the zinc plate it is only the probiotic bacterium that adheres. Conclusion: This is an initial research on this problem of significance for the doctors and it is about to be further examined

  9. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis.

    Science.gov (United States)

    Hasan, Md Anayet; Khan, Md Arif; Sharmin, Tahmina; Hasan Mazumder, Md Habibul; Chowdhury, Afrin Sultana

    2016-01-01

    Vancomycin-resistant Staphylococcus aureus (VRSA) is a Gram-positive, facultative aerobic bacterium which is evolved from the extensive exposure of Vancomycin to Methicillin resistant S. aureus (MRSA) that had become the most common cause of hospital and community-acquired infections. Due to the emergence of different antibiotic resistance strains, there is an exigency to develop novel drug targets to address the provocation of multidrug-resistant bacteria. In this study, in-silico genome subtraction methodology was used to design potential and pathogen specific drug targets against VRSA. Our study divulged 1987 proteins from the proteome of 34,549 proteins, which have no homologues in human genome after sequential analysis through CD-HIT and BLASTp. The high stringency analysis of the remaining proteins against database of essential genes (DEG) resulted in 169 proteins which are essential for S. aureus. Metabolic pathway analysis of human host and pathogen by KAAS at the KEGG server sorted out 19 proteins involved in unique metabolic pathways. 26 human non-homologous membrane-bound essential proteins including 4 which were also involved in unique metabolic pathway were deduced through PSORTb, CELLO v.2.5, ngLOC. Functional classification of uncharacterized proteins through SVMprot derived 7 human non-homologous membrane-bound hypothetical essential proteins. Study of potential drug target against Drug Bank revealed pbpA-penicillin-binding protein 1 and hypothetical protein MQW_01796 as the best drug target candidate. 2D structure was predicted by PRED-TMBB, 3D structure and functional analysis was also performed. Protein-protein interaction network of potential drug target proteins was analyzed by using STRING. The identified drug targets are expected to have great potential for designing novel drugs against VRSA infections and further screening of the compounds against these new targets may result in the discovery of novel therapeutic compounds that can be

  10. Action of peracetic acid on Escherichia coli and Staphylococcus aureus in suspension or settled on stainless steel surfaces

    Directory of Open Access Journals (Sweden)

    Kunigk Leo

    2001-01-01

    Full Text Available The efficiency of a commercial peracetic acid sanitizer on destruction of Staphylococcus aureus and Escherichia coli was evaluated using two distinct methods. The first method is the AOAC suspension test and the second is a method proposed by one of the authors in which the microbial cells are settled on a stainless steel surface and then treated with the sanitizer. The results showed that when in suspension S. aureus was more resistant to the sanitizer than E. coli. When S. aureus was settled on the stainless steel surface, the contact time between the sanitizer and the microorganisms to attain a 6.5 log reduction in the number of viable cells was three times greater than when the cells were in suspension.

  11. Investigation of signal transduction routes within the sensor/transducer protein BlaR1 of Staphylococcus aureus.

    Science.gov (United States)

    Staude, Michael W; Frederick, Thomas E; Natarajan, Sivanandam V; Wilson, Brian D; Tanner, Carol E; Ruggiero, Steven T; Mobashery, Shahriar; Peng, Jeffrey W

    2015-03-03

    The transmembrane antibiotic sensor/signal transducer protein BlaR1 is part of a cohort of proteins that confer β-lactam antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) [Fisher, J. F., Meroueh, S. O., and Mobashery, S. (2005) Chem. Rev. 105, 395-424; Llarrull, L. I., Fisher, J. F., and Mobashery, S. (2009) Antimicrob. Agents Chemother. 53, 4051-4063; Llarrull, L. I., Toth, M., Champion, M. M., and Mobashery, S. (2011) J. Biol. Chem. 286, 38148-38158]. Specifically, BlaR1 regulates the inducible expression of β-lactamases that hydrolytically destroy β-lactam antibiotics. The resistance phenotype starts with β-lactam antibiotic acylation of the BlaR1 extracellular domain (BlaRS). The acylation activates the cytoplasmic protease domain through an obscure signal transduction mechanism. Here, we compare protein dynamics of apo versus antibiotic-acylated BlaRS using nuclear magnetic resonance. Our analyses reveal inter-residue interactions that relay acylation-induced perturbations within the antibiotic-binding site to the transmembrane helix regions near the membrane surface. These are the first insights into the process of signal transduction by BlaR1.

  12. MreC and MreD Proteins Are Not Required for Growth of Staphylococcus aureus.

    Science.gov (United States)

    Tavares, Andreia C; Fernandes, Pedro B; Carballido-López, Rut; Pinho, Mariana G

    2015-01-01

    The transmembrane proteins MreC and MreD are present in a wide variety of bacteria and are thought to be involved in cell shape determination. Together with the actin homologue MreB and other morphological elements, they play an essential role in the synthesis of the lateral cell wall in rod-shaped bacteria. In ovococcus, which lack MreB homologues, mreCD are also essential and have been implicated in peripheral cell wall synthesis. In this work we addressed the possible roles of MreC and MreD in the spherical pathogen Staphylococcus aureus. We show that MreC and MreD are not essential for cell viability and do not seem to affect cell morphology, cell volume or cell cycle control. MreC and MreD localize preferentially to the division septa, but do not appear to influence peptidoglycan composition, nor the susceptibility to different antibiotics and to oxidative and osmotic stress agents. Our results suggest that the function of MreCD in S. aureus is not critical for cell division and cell shape determination.

  13. Staphylococcus aureus mutants lacking cell wall-bound protein A found in isolates from bacteraemia, MRSA infection and a healthy nasal carrier.

    Science.gov (United States)

    Sørum, Marit; Sangvik, Maria; Stegger, Marc; Olsen, Renate S; Johannessen, Mona; Skov, Robert; Sollid, Johanna U E

    2013-02-01

    Staphylococcus aureus is a major human pathogen and a multitude of virulence factors enables it to cause infections, from superficial lesions to life-threatening systemic conditions. Staphylococcal protein A (SpA) is a surface protein contributing to S. aureus pathogenesis by interfering with immune responses and activating inflammation. Seven isolates with frameshift mutations in the spa repeat region were investigated to determine whether these mutations lead to truncation and secretion of SpA into the extracellular environment. Five isolates originated from blood cultures, one from an MRSA infection and one from a persistent nasal carrier. Full-length spa genes from the seven isolates were sequenced, and Western blot experiments were performed to localize SpA. Three isolates had identical deviating 25-bp spa repeats, but all isolates displayed different repeat successions. The DNA sequence revealed that the frameshift mutations created premature stop codons in all seven isolates, resulting in truncated SpA of different lengths, however, all lacking the XC region with the C-terminal sorting signal. SpA was detected by Western blot in six of the seven isolates, mainly extracellularly. Our findings demonstrate that S. aureus isolates with truncated SpA, not anchored to the cell wall, can still be found in bacteraemia, infection and among carriers.

  14. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages.

    Science.gov (United States)

    Tawil, Nancy; Sacher, Edward; Mandeville, Rosemonde; Meunier, Michel

    2012-01-01

    Early diagnosis and appropriate treatment of Escherichia coli (E. coli) O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) are key elements in preventing resultant life-threatening illnesses, such as hemorrhagic colitis, hemolytic uremic syndrome, and septicemia. In this report, we describe the use of surface plasmon resonance (SPR) for the biodetection of pathogenic bacteria, using bacteriophages as the recognition elements. T4 bacteriophages were used to detect E. coli, while a novel, highly specific phage was used to detect MRSA. We found that the system permits label-free, real-time, specific, rapid and cost-effective detection of pathogens, for concentrations of 10(3) colony forming units/milliliter, in less than 20 min. This system promises to become a diagnostic tool for bacteria that cause major public concern for food safety, bioterrorism, and nosocomial infections.

  15. Triclosan promotes Staphylococcus aureus nasal colonization.

    Science.gov (United States)

    Syed, Adnan K; Ghosh, Sudeshna; Love, Nancy G; Boles, Blaise R

    2014-04-08

    The biocide triclosan is used in many personal care products, including toothpastes, soaps, clothing, and medical equipment. Consequently, it is present as a contaminant in the environment and has been detected in some human fluids, including serum, urine, and milk. Staphylococcus aureus is an opportunistic pathogen that colonizes the noses and throats of approximately 30% of the population. Colonization with S. aureus is known to be a risk factor for several types of infection. Here we demonstrate that triclosan is commonly found in the nasal secretions of healthy adults and the presence of triclosan trends positively with nasal colonization by S. aureus. We demonstrate that triclosan can promote the binding of S. aureus to host proteins such as collagen, fibronectin, and keratin, as well as inanimate surfaces such as plastic and glass. Lastly, triclosan-exposed rats are more susceptible to nasal colonization with S. aureus. These data reveal a novel factor that influences the ability of S. aureus to bind surfaces and alters S. aureus nasal colonization. IMPORTANCE Triclosan has been used as a biocide for over 40 years, but the broader effects that it has on the human microbiome have not been investigated. We demonstrate that triclosan is present in nasal secretions of a large portion of a test population and its presence correlates with Staphylococcus aureus nasal colonization. Triclosan also promotes the binding of S. aureus to human proteins and increases the susceptibility of rats to nasal colonization by S. aureus. These findings are significant because S. aureus colonization is a known risk factor for the development of several types of infections. Our data demonstrate the unintended consequences of unregulated triclosan use and contribute to the growing body of research demonstrating inadvertent effects of triclosan on the environment and human health.

  16. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor.

    Science.gov (United States)

    Valle, Jaione; Latasa, Cristina; Gil, Carmen; Toledo-Arana, Alejandro; Solano, Cristina; Penadés, José R; Lasa, Iñigo

    2012-01-01

    The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilm-associated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections.

  17. Staphylococcus aureus-fibronectin interactions with and without fibronectin-binding proteins and their role in adhesion and desorption

    NARCIS (Netherlands)

    Xu, Chun; Boks, Niels P; de Vries, Jacob; Kaper, Harm; Norde, Willem; Busscher, Hendrik; van der Mei, Henderina

    2008-01-01

    Adhesion and residence-time-dependent desorption of two Staphylococcus aureus strains with and without fibronectin (Fn) binding proteins (FnBPs) on Fn-coated glass were compared under flow conditions. To obtain a better understanding of the role of Fn-FnBP binding, the adsorption enthalpies of Fn wi

  18. Staphylococcus aureus-Fibronectin Interactions with and without Fibronectin-Binding Proteins and Their Role in Adhesion and Desorption

    NARCIS (Netherlands)

    Xu, C.P.; Boks, N.P.; Vries, de J.; Kaper, H.J.; Norde, W.; Busscher, H.J.; Mei, van der H.C.

    2008-01-01

    Adhesion and residence-time-dependent desorption of two Staphylococcus aureus strains with and without fibronectin (Fn) binding proteins (FnBPs) on Fn-coated glass were compared under flow conditions. To obtain a better understanding of the role of Fn-FnBP binding, the adsorption enthalpies of Fn wi

  19. Undetectable bacterial resistance to phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Science.gov (United States)

    The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we tested for the emergence of resistant Staphylococcus aureus to any of three phage lytic proteins constructs. The investigated cell wall lytic enzymes w...

  20. The Staphylococcus aureus Membrane Protein SA2056 Interacts with Peptidoglycan Synthesis Enzymes

    Directory of Open Access Journals (Sweden)

    Brigitte Berger-Bächi

    2013-01-01

    Full Text Available The yet uncharacterized membrane protein SA2056 belongs to the ubiquitous RND (Resistance-Nodulation-cell Division family of transmembrane efflux transporters. The sa2056 gene is located downstream of femX, the gene encoding the essential, non-ribosomal peptidyl-transferase adding the first glycine in the staphylococcal cell wall pentaglycine interpeptide. Due to its proximity to and weak co-transcription with femX, we assumed that sa2056 may somehow be involved in peptidoglycan synthesis. Specific antibodies against SA2056 showed that this protein is expressed during growth and present in the membrane fraction of cell preparations. Using a bacterial two hybrid system, SA2056 was shown to interact (i with itself, (ii with FemB, which adds glycines 4 and 5 to the peptidoglycan interpeptide and (iii with the essential penicillin binding proteins, PBP1 and PBP2, required for cell division and incorporation of the peptidoglycan into the cell wall. Unexpectedly, deletion of sa2056 led to no phenotype regarding growth, antibiotic resistances or cell morphology; nor did sa2056 deletion in combination with femB inactivation alter b-lactam and lysostaphin sensitivity and resistance, respectively, pointing to possible redundancy in the cell wall synthesis pathway. These results suggest an accessory role of SA2056 in S. aureus peptidoglycan synthesis, broadening the range of biological functions of RND proteins.

  1. The Staphylococcus aureus protein-coding gene gdpS modulates sarS expression via mRNA-mRNA interaction.

    Science.gov (United States)

    Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting

    2015-08-01

    Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway.

  2. Phospholipase C-related catalytically inactive protein participates in the autophagic elimination of Staphylococcus aureus infecting mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kae Harada-Hada

    Full Text Available Autophagy is an intrinsic host defense system that recognizes and eliminates invading bacterial pathogens. We have identified microtubule-associated protein 1 light chain 3 (LC3, a hallmark of autophagy, as a binding partner of phospholipase C-related catalytically inactive protein (PRIP that was originally identified as an inositol trisphosphate-binding protein. Here, we investigated the involvement of PRIP in the autophagic elimination of Staphylococcus aureus in infected mouse embryonic fibroblasts (MEFs. We observed significantly more LC3-positive autophagosome-like vacuoles enclosing an increased number of S. aureus cells in PRIP-deficient MEFs than control MEFs, 3 h and 4.5 h post infection, suggesting that S. aureus proliferates in LC3-positive autophagosome-like vacuoles in PRIP-deficient MEFs. We performed autophagic flux analysis using an mRFP-GFP-tagged LC3 plasmid and found that autophagosome maturation is significantly inhibited in PRIP-deficient MEFs. Furthermore, acidification of autophagosomes was significantly inhibited in PRIP-deficient MEFs compared to the wild-type MEFs, as determined by LysoTracker staining and time-lapse image analysis performed using mRFP-GFP-tagged LC3. Taken together, our data show that PRIP is required for the fusion of S. aureus-containing autophagosome-like vacuoles with lysosomes, indicating that PRIP is a novel modulator in the regulation of the innate immune system in non-professional phagocytic host cells.

  3. Rapid Exchange of Bound ADP on the Staphylococcus aureus Replication Initiation Protein DnaA*

    OpenAIRE

    2009-01-01

    In Escherichia coli, regulatory inactivation of the replication initiator DnaA occurs after initiation as a result of hydrolysis of bound ATP to ADP, but it has been unknown how DnaA is controlled to coordinate cell growth and chromosomal replication in Gram-positive bacteria such as Staphylococcus aureus. This study examined the roles of ATP binding and its hydrolysis in the regulation of the S. aureus DnaA activity. In vitro, S. aureus DnaA melted S. aureus oriC in the presence of ATP but n...

  4. Utilizing rabbit immunoglobulin G (IgG) protein for mark-capture studies on the desert subterranean termite, Heterotermes aureus (Snyder)

    Science.gov (United States)

    A series of mark-capture dispersal studies were conducted to investigate the feasibility of marking the southwestern desert subterranean termite, Heterotermes aureus (Snyder) with rabbit immunoglobulin G (IgG) protein. In turn, short-range dispersal patterns of H. aureus were measured across a 20-m ...

  5. Evaluation of different methods to recover methicillin-resistant Staphylococcus aureus from hospital environmental surfaces.

    LENUS (Irish Health Repository)

    Dolan, A

    2011-11-01

    The environment is implicated as a source of healthcare-associated infections (HAIs) and there is a need for evidence-based approaches to environmental sampling to assess cleanliness and improve infection prevention and control. We assessed, in vitro, different approaches to sampling the environment for meticillin-resistant Staphylococcus aureus (MRSA). In a laboratory-based investigation, the recovery of MRSA from two common hospital environments using six different sampling methods was evaluated, with a wild-type strain of MRSA. A 100 cm(2) section of mattress and a laboratory bench surface were contaminated with known inocula of MRSA. Bacteria were recovered by sampling at 30 min after inoculation, using either saline-moistened cotton swabs, neutralising buffer swabs, eSwabs or macrofoam swabs, which were all enriched in tryptone soya broth, or by sampling with direct contact plates or chromogenic \\'sweep\\' plates. The sensitivity (i.e. the minimum number of bacteria inoculated on to a surface which subsequently produced a positive result) of each method was determined for each surface. The most sensitive methods were eSwabs and macrofoam swabs, requiring 6.1 × 10(-1) and 3.9 × 10(-1) MRSA\\/cm(2), respectively, to produce a positive result from the bench surface. The least sensitive swabbing method was saline-moistened cotton swabs, requiring 1.1 × 10(3) MRSA\\/cm(2) of mattress. The recovery of bacteria from environmental samples varies with the swabs and methodology used and negative culture results do not exclude a pathogen-free environment. Greater standardisation is required to facilitate the assessment of cleanliness of healthcare environments.

  6. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers

    Directory of Open Access Journals (Sweden)

    Evandro Leite de Souza

    2014-01-01

    Full Text Available This study assessed the capacity of adhesion, the detachment kinetic and the biofilm formation by Staphylococcus aureus isolated from food services on stainless steel and polypropylene surfaces (2 x 2 cm when cultivated in a meat-based broth at 28 and 7 ºC. It was also to study the efficacy of the sanitizers sodium hypochlorite (250 mg/L and peracetic acid (30 mg/L in inactivating the bacterial cells in the preformed biofilm. S. aureus strains adhered in high numbers regardless the assayed surface kind and incubation temperature over 72 h. Cells detachment of surfaces revealed high persistence over the incubation period. Number of cells needed for biofilm formation was noted at all experimental systems already after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered on polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacity to adhere and form biofilm on polypropylene and stainless steel surfaces under different growth conditions. Moreover, the cells in biofilm matrix were resistant for total removal when submitted to the exposure to sanitizers.

  7. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers.

    Science.gov (United States)

    de Souza, Evandro Leite; Meira, Quênia Gramile Silva; de Medeiros Barbosa, Isabella; Athayde, Ana Júlia Alves Aguiar; da Conceição, Maria Lúcia; de Siqueira Júnior, José Pinto

    2014-01-01

    This study assessed the capacity of adhesion, the detachment kinetic and the biofilm formation by Staphylococcus aureus isolated from food services on stainless steel and polypropylene surfaces (2 × 2 cm) when cultivated in a meat-based broth at 28 and 7 °C. It was also to study the efficacy of the sanitizers sodium hypochlorite (250 mg/L) and peracetic acid (30 mg/L) in inactivating the bacterial cells in the preformed biofilm. S. aureus strains adhered in high numbers regardless the assayed surface kind and incubation temperature over 72 h. Cells detachment of surfaces revealed high persistence over the incubation period. Number of cells needed for biofilm formation was noted at all experimental systems already after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered on polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacity to adhere and form biofilm on polypropylene and stainless steel surfaces under different growth conditions. Moreover, the cells in biofilm matrix were resistant for total removal when submitted to the exposure to sanitizers.

  8. Molecular Detection of Methicillin-Resistant Staphylococcus aureus by Non-Protein Coding RNA-Mediated Monoplex Polymerase Chain Reaction

    Science.gov (United States)

    Soo Yean, Cheryl Yeap; Selva Raju, Kishanraj; Xavier, Rathinam; Subramaniam, Sreeramanan; Gopinath, Subash C. B.; Chinni, Suresh V.

    2016-01-01

    Non-protein coding RNA (npcRNA) is a functional RNA molecule that is not translated into a protein. Bacterial npcRNAs are structurally diversified molecules, typically 50–200 nucleotides in length. They play a crucial physiological role in cellular networking, including stress responses, replication and bacterial virulence. In this study, by using an identified npcRNA gene (Sau-02) in Methicillin-resistant Staphylococcus aureus (MRSA), we identified the Gram-positive bacteria S. aureus. A Sau-02-mediated monoplex Polymerase Chain Reaction (PCR) assay was designed that displayed high sensitivity and specificity. Fourteen different bacteria and 18 S. aureus strains were tested, and the results showed that the Sau-02 gene is specific to S. aureus. The detection limit was tested against genomic DNA from MRSA and was found to be ~10 genome copies. Further, the detection was extended to whole-cell MRSA detection, and we reached the detection limit with two bacteria. The monoplex PCR assay demonstrated in this study is a novel detection method that can replicate other npcRNA-mediated detection assays. PMID:27367909

  9. Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus.

    Science.gov (United States)

    Baik, Jung Eun; Jang, Young-Oh; Kang, Seok-Seong; Cho, Kun; Yun, Cheol-Heui; Han, Seung Hyun

    2015-05-01

    Peptidoglycan (PGN) is a major cell wall component of Gram-positive bacteria that contributes to the regulation of host immunity in the gastrointestinal tract (GIT). Although Gram-positive bacteria contain structurally distinct PGNs that are considered to differently interact with the GIT, PGN-binding proteins (PGN-BPs) in the GIT have been poorly understood. In the present study, we purified PGNs from Lactobacillus plantarum and Staphylococcus aureus (named as Lp.PGN and Sa.PGN, respectively) and identified Lp.PGN-BPs and Sa.PGN-BPs in the lysate of mouse GIT. Lp.PGN activated nucleotide-binding oligomerization domain (NOD) 1 and NOD2, whereas Sa.PGN activated NOD2, but not NOD1, implying that both PGNs retained the biological activity and were differently recognized by the host cells. PGN-BPs were isolated by precipitation with Lp.PGN or Sa.PGN and identified using LTQ-Orbitrap hybrid Fourier transform mass spectrometry. Three independent experiments demonstrated that 18 Lp.PGN-BPs and 6 Sa.PGN-BPs were reproducibly obtained with statistical significance (Pproteins which are related to cytoskeleton, microbial adhesion, and mucosal integrity. Lp.PGN selectively bound to proteins related to gene expression, chaperone, and antimicrobial function. However, Sa.PGN preferentially interacted with proteins involved in adherence and invasion of pathogens. Collectively, these results suggest that bacterial PGNs interact with the proteins regulating mucosal homeostasis and immunity in the gut and PGNs of commensals and pathogens might be also differentially recognized in the GIT.

  10. The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap

    NARCIS (Netherlands)

    Harraghy, Niamh; Hussain, Muzaffar; Haggar, Axana; Chavakis, Triantafyllos; Sinha, Bhanu; Herrmann, Mathias; Flock, Jan-Ingmar

    2003-01-01

    Adherence of Staphylococcus aureus to the host tissue is an important step in the initiation of pathogenesis. At least 10 adhesins produced by S. aureus have been described and it is becoming clear that the expression of these adhesins and their interactions with eukaryotic cells involve complex pro

  11. The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement Factor H and C3b.

    Directory of Open Access Journals (Sweden)

    Katrin Haupt

    2008-12-01

    Full Text Available The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1 from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG as a ligand that interacts with Factor H by a-to our knowledge-new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite SbiratioC3ratioFactor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and beta(2-glycoprotein I and interferes with innate immune recognition.

  12. The structure of SAV1646 from Staphylococcus aureus belonging to a new `ribosome-associated' subfamily of bacterial proteins.

    Science.gov (United States)

    Chirgadze, Yuri N; Clarke, Teresa E; Romanov, Vladimir; Kisselman, Gera; Wu-Brown, Jean; Soloveychik, Maria; Chan, Tiffany S Y; Gordon, Roni D; Battaile, Kevin P; Pai, Emil F; Chirgadze, Nickolay Y

    2015-02-01

    The crystal structure of the SAV1646 protein from the pathogenic microorganism Staphylococcus aureus has been determined at 1.7 Å resolution. The 106-amino-acid protein forms a two-layer sandwich with α/β topology. The protein molecules associate as dimers in the crystal and in solution, with the monomers related by a pseudo-twofold rotation axis. A sequence-homology search identified the protein as a member of a new subfamily of yet uncharacterized bacterial `ribosome-associated' proteins with at least 13 members to date. A detailed analysis of the crystal protein structure along with the genomic structure of the operon containing the sav1646 gene allowed a tentative functional model of this protein to be proposed. The SAV1646 dimer is assumed to form a complex with ribosomal proteins L21 and L27 which could help to complete the assembly of the large subunit of the ribosome.

  13. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus.

    Science.gov (United States)

    de Souza, Evandro Leite; de Barros, Jefferson Carneiro; de Oliveira, Carlos Eduardo Vasconcelos; da Conceição, Maria Lúcia

    2010-02-28

    This study evaluated the influence of the essential oil from Origanum vulgare L. on the enterotoxin production, membrane permeability and cell surface characteristics of Staphylococcus aureus. The suppression of enterotoxin production occurred totally in the broth added with the essential oil at subinhibitory concentrations (0.3 and 0.15 microL/mL). Loss of 260-nm-absorbing material and potassium ions occurred immediately after addition of the essential oil at 0.6 and 1.2 microL/mL and followed up to 120 min. Electron microscopy of essential oil-treated cells revealed the formation of roles in the cell surfaces and loss of cytoplasm material. According to these results, O. vulgare essential oil could be rationally applied in food products both to inhibit the growth of S. aureus and to suppress the synthesis of staphylococcal enterotoxins.

  14. Dissection of an old protein reveals a novel application: domain D of Staphylococcus aureus Protein A (sSpAD as a secretion - tag

    Directory of Open Access Journals (Sweden)

    Paal Michael

    2010-11-01

    Full Text Available Abstract Background Escherichia coli as a frequently utilized host organism for recombinant protein production offers different cellular locations with distinct qualities. The periplasmic space is often favored for the production of complex proteins due to enhanced disulfide bond formation, increased target product stability and simplified downstream processing. To direct proteins to the periplasmic space rather small proteinaceus tags that can be used for affinity purification would be advantageous. Results We discovered that domain D of the Staphylococcus aureus protein A was sufficient for the secretion of various target proteins into the periplasmic space of E. coli. Our experiments indicated the Sec pathway as the mode of secretion, although N-terminal processing was not observed. Furthermore, the solubility of recombinant fusion proteins was improved for proteins prone to aggregation. The tag allowed a straightforward affinity purification of recombinant fusion protein via an IgG column, which was exemplified for the target protein human superoxide dismutase 1 (SOD. Conclusions In this work we present a new secretion tag that combines several advantages for the production of recombinant proteins in E. coli. Domain D of S. aureus protein A protects the protein of interest against N-terminal degradation, increases target protein solubility and enables a straight-forward purification of the recombinant protein using of IgG columns.

  15. Structural and dynamical characterization of a biologically active unfolded fibronectin-binding protein from Staphylococcus aureus.

    Science.gov (United States)

    Penkett, C J; Redfield, C; Jones, J A; Dodd, I; Hubbard, J; Smith, R A; Smith, L J; Dobson, C M

    1998-12-01

    A 130-residue fragment (D1-D4) taken from a fibronectin-binding protein of Staphylococcus aureus, which contains four fibronectin-binding repeats and is unfolded but biologically active at neutral pH, has been studied extensively by NMR spectroscopy. Using heteronuclear multidimensional techniques, the conformational properties of D1-D4 have been defined at both a global and a local level. Diffusion studies give an average effective radius of 26.2 +/- 0.1 A, approximately 75% larger than that expected for a globular protein of this size. Analysis of chemical shift, 3JHNalpha coupling constant, and NOE data show that the experimental parameters agree well overall with values measured in short model peptides and with predictions from a statistical model for a random coil. Sequences where specific features give deviations from these predictions for a random coil have however been identified. These arise from clustering of hydrophobic side chains and electrostatic interactions between charged groups. 15N relaxation studies demonstrate that local fluctuations of the chain are the dominant motional process that gives rise to relaxation of the 15N nuclei, with a persistence length of approximately 7-10 residues for the segmental motion. The consequences of the structural and dynamical properties of this unfolded protein for its biological role of binding to fibronectin have been considered. It is found that the regions of the sequence involved in binding have a high propensity for populating extended conformations, a feature that would allow a number of both charged and hydrophobic groups to be presented to fibronectin for highly specific binding.

  16. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Science.gov (United States)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  17. Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle.

    Science.gov (United States)

    Hoernig, K J; Donovan, D M; Pithua, P; Williams, F; Middleton, J R

    2016-06-01

    This study evaluated the efficacy of a recombinant lysostaphin fused to a protein transduction domain (rLYS-PTD) as a dry-cow therapy for the treatment of experimentally induced chronic, subclinical Staphylococcus aureus mastitis. Twenty-two Holstein dairy cows were experimentally infected with Staph. aureus in a single pair of diagonal mammary quarters approximately 45d before dry off. Staphylococcus aureus-infected mammary quarters of cows were randomly assigned to 1 of 2 treatment groups at dry off: (1) 279mg of rLYS-PTD in 50mL of vehicle (n=11 cows; 22 quarters) or (2) 50mL of vehicle solution (n=11 cows; 22 quarters) by intramammary infusion. All cows were followed for 30d postpartum to determine cure rates using bacteriologic culture, somatic cell counts, and clinical mastitis scores. No cures were recorded in either the treatment or control groups. Milk somatic cell count, bacterial colony counts, and mastitis scores did not significantly differ between treatment groups. In conclusion, rLYS-PTD was not an effective dry-cow therapeutic for chronic, subclinical Staph. aureus mastitis at the tested dose and formulation.

  18. Expression of a hydrophilic surface protein in infective stages of Leishmania major.

    Science.gov (United States)

    Flinn, H M; Rangarajan, D; Smith, D F

    1994-06-01

    A family of differentially expressed genes from Leishmania major contains one sequence (Gene B) that encodes a novel, hydrophilic protein found on the surface of infective parasite stages. The 177-residue, acidic Gene B protein is characterised by an amino acid repetitive element, comprising 45% of the total molecule, that is related to the cell-wall binding domain of protein A from Staphylococcus aureus. No identifiable signal peptide, membrane-spanning domain or consensus for glycosylphosphatidylinositol anchor attachment to the cell surface is found elsewhere in the deduced protein sequence. In vitro, the Gene B protein fractionates with the parasite cell surface glycoconjugates, lipophosphoglycan and the glycoinositolphospholipids. This protein is the first characterised surface peptide marker for infective stages of the Leishmania life cycle.

  19. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus.

    Science.gov (United States)

    Matsui, Takashi; Yamane, Junji; Mogi, Nobuyuki; Yamaguchi, Hiroto; Takemoto, Hiroshi; Yao, Min; Tanaka, Isao

    2012-09-01

    FtsZ is a key molecule in bacterial cell division. In the presence of GTP, it polymerizes into tubulin-like protofilaments by head-to-tail association. Protofilaments of FtsZ seem to adopt a straight or a curved conformation in relation to the bound nucleotide. However, although several bacterial and archaeal FtsZ structures have been determined, all of the structures reported previously are considered to have a curved conformation. In this study, structures of FtsZ from Staphylococcus aureus (SaFtsZ) were determined in apo, GDP-bound and inhibitor-complex forms and it was found that SaFtsZ undergoes marked conformational changes. The accumulated evidence suggests that the GDP-bound structure has the features of the straight form. The structural change between the curved and straight forms shows intriguing similarity to the eukaryotic cytoskeletal protein tubulin. Furthermore, the structure of the apo form showed an unexpectedly large conformational change in the core region. FtsZ has also been recognized as a novel target for antibacterial drugs. The structure of the complex with the inhibitor PC190723, which has potent and selective antistaphylococcal activity, indicated that the inhibitor binds at the cleft between the two subdomains.

  20. The Staphylococcus aureus NuoL-like protein MpsA contributes to the generation of membrane potential.

    Science.gov (United States)

    Mayer, Sonja; Steffen, Wojtek; Steuber, Julia; Götz, Friedrich

    2015-03-01

    In aerobic microorganisms, the entry point of respiratory electron transfer is represented by the NADH:quinone oxidoreductase. The enzyme couples the oxidation of NADH with the reduction of quinone. In the type 1 NADH:quinone oxidoreductase (Ndh1), this reaction is accompanied by the translocation of cations, such as H(+) or Na(+). In Escherichia coli, cation translocation is accomplished by the subunit NuoL, thus generating membrane potential (Δψ). Some microorganisms achieve NADH oxidation by the alternative, nonelectrogenic type 2 NADH:quinone oxidoreductase (Ndh2), which is not cation translocating. Since these enzymes had not been described in Staphylococcus aureus, the goal of this study was to identify proteins operating in the NADH:quinone segment of its respiratory chain. We demonstrated that Ndh2 represents a NADH:quinone oxidoreductase in S. aureus. Additionally, we identified a hypothetical protein in S. aureus showing sequence similarity to the proton-translocating subunit NuoL of complex I in E. coli: the NuoL-like protein MpsA. Mutants with deletion of the nuoL-like gene mpsA and its corresponding operon, mpsABC (mps for membrane potential-generating system), exhibited a small-colony-variant-like phenotype and were severely affected in Δψ and oxygen consumption rates. The MpsABC proteins did not confer NADH oxidation activity. Using an Na(+)/H(+) antiporter-deficient E. coli strain, we could show that MpsABC constitute a cation-translocating system capable of Na(+) transport. Our study demonstrates that MpsABC represent an important functional system of the respiratory chain of S. aureus that acts as an electrogenic unit responsible for the generation of Δψ.

  1. Extracellular Fibrinogen-binding Protein (Efb) from Staphylococcus aureus Inhibits the Formation of Platelet-Leukocyte Complexes.

    Science.gov (United States)

    Posner, Mareike G; Upadhyay, Abhishek; Abubaker, Aisha Alsheikh; Fortunato, Tiago M; Vara, Dina; Canobbio, Ilaria; Bagby, Stefan; Pula, Giordano

    2016-02-05

    Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits platelet activation, although its mechanism of action has not been established. In this study, we discovered that the N-terminal region of Efb (Efb-N) promotes platelet binding of fibrinogen and that Efb-N binding to platelets proceeds via two independent mechanisms: fibrinogen-mediated and fibrinogen-independent. By proteomic analysis of Efb-interacting proteins within platelets and confirmation by pulldown assays followed by immunoblotting, we identified P-selectin and multimerin-1 as novel Efb interaction partners. The interaction of both P-selectin and multimerin-1 with Efb is independent of fibrinogen. We focused on Efb interaction with P-selectin. Excess of P-selectin extracellular domain significantly impaired Efb binding by activated platelets, suggesting that P-selectin is the main receptor for Efb on the surface of activated platelets. Efb-N interaction with P-selectin inhibited P-selectin binding to its physiological ligand, P-selectin glycoprotein ligand-1 (PSGL-1), both in cell lysates and in cell-free assays. Because of the importance of P-selectin-PSGL-1 binding in the interaction between platelets and leukocytes, we tested human whole blood and found that Efb abolishes the formation of platelet-monocyte and platelet-granulocyte complexes. In summary, we present evidence that in addition to its documented antithrombotic activity, Efb can play an immunoregulatory role via inhibition of P-selectin-PSGL-1-dependent formation of platelet-leukocyte complexes.

  2. Three-dimensional structure and biophysical characterization of Staphylococcus aureus cell surface antigen-manganese transporter MntC.

    Science.gov (United States)

    Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha; Parris, Kevin; Svenson, Kristine; Moran, Justin; Chu, Ling; Li, Sheng; Liu, Tong; Woods, Virgil L; Jansen, Kathrin U; Green, Bruce A; Anderson, Annaliesa S; Matsuka, Yury V

    2013-09-23

    MntC is a metal-binding protein component of the Mn²⁺-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensional structure of the protein was solved by X-ray crystallography at 2.2Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn²⁺-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn²⁺-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium-hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn²⁺.

  3. Three-Dimensional Structure and Biophysical Characterization of Staphylococcus aureus Cell Surface Antigen-Manganese Transporter MntC

    Energy Technology Data Exchange (ETDEWEB)

    Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha; Parris, Kevin; Svenson, Kristine; Moran, Justin; Chu, Ling; Li, Sheng; Liu, Tong; Woods, Jr., Virgil L.; Jansen, Kathrin U.; Green, Bruce A.; Anderson, Annaliesa S.; Matsuka, Yury V. [Pfizer; (UCSD)

    2013-08-23

    MntC is a metal-binding protein component of the Mn2 +-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensional structure of the protein was solved by X-ray crystallography at 2.2 Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn2 +-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn2 +-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium–hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn2 +.

  4. The Chaperone ClpX Stimulates Expression of Staphylococcus aureus Protein A by Rot Dependent and Independent Pathways

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Ingmer, Hanne; Valihrach, Lukás;

    2010-01-01

    The Clp ATPases (Hsp100) constitute a family of closely related proteins that have protein reactivating and remodelling activities typical of molecular chaperones. In Staphylococcus aureus the ClpX chaperone is essential for virulence and for transcription of spa encoding Protein A. The present...... study was undertaken to elucidate the mechanism by which ClpX stimulates expression of Protein A. For this purpose, we prepared antibodies directed against Rot, an activator of spa transcription, and demonstrated that cells devoid of ClpX contain three-fold less Rot than wild-type cells. By varying Rot...... expression from an inducible promoter we showed that expression of Protein A requires a threshold level of Rot. In the absence of ClpX the Rot content is reduced below this threshold level, hence, explaining the substantially reduced Protein A expression in the clpX mutant. Experiments addressed...

  5. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Science.gov (United States)

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  6. The Staphylococcus aureus extracellular adherence protein promotes bacterial internalization by keratinocytes independent of fibronectin-binding proteins.

    Science.gov (United States)

    Bur, Stephanie; Preissner, Klaus T; Herrmann, Mathias; Bischoff, Markus

    2013-08-01

    Staphylococcus aureus, the leading causal pathogen of skin infections, is strongly associated with skin atopy, and a number of bacterial adhesins allow the microbe to adhere to and invade eukaryotic cells. One of these adhesive molecules is the multifunctional extracellular adherence protein (Eap), which is overexpressed in situ in authentic human wounds and was shown to delay wound healing in experimental models. Yet, its role during invasion of keratinocytes is not clearly defined. By using a gentamicin/lysostaphin protection assay we demonstrate here that preincubation of HaCaT cells or primary keratinocytes with Eap results in a concentration-dependent significant increase in staphylococcal adhesion, followed by an even more pronounced internalization of bacteria by eukaryotic cells. Flow cytometric analysis revealed that Eap increased both the number of infected eukaryotic cells and the bacterial load per infected cell. Moreover, treatment of keratinocytes with Eap strongly enhanced the internalization of coagulase-negative staphylococci, as well as of E. coli, and markedly promoted staphylococcal invasion into extended-culture keratinocytes, displaying expression of keratin 10 and involucrin as differentiation markers. Thus, wound-related staphylococcal Eap may provide a major cellular invasin function, thereby enhancing the pathogen's ability to hide from the host immune system during acute and chronic skin infection.

  7. Soluble CD163 masks fibronectin-binding protein A-mediated inflammatory activation of Staphylococcus aureus infected monocytes.

    Science.gov (United States)

    Kneidl, Jessica; Mysore, Vijayashree; Geraci, Jennifer; Tuchscherr, Lorena; Löffler, Bettina; Holzinger, Dirk; Roth, Johannes; Barczyk-Kahlert, Katarzyna

    2014-03-01

    Binding to fibronectin (FN) is a crucial pathogenic factor of Staphylococcus aureus mediated by fibronectin-binding protein A (FnBP-A) and extracellular adherence protein (Eap). Recently, we have shown that binding of soluble CD163 (sCD163) to FN linked to these molecules exhibits anti-microbial effects by enhancing phagocytosis and killing activity of S. aureus-infected monocytes. However, it remained unclear whether sCD163 also influences the monocytic activation status. Using genetically modified staphylococcal strains we now identified FnBP-A, but not Eap, as activator of the inflammatory response of monocytes to infection. FnBP-A-mediated inflammatory activation was masked by sCD163 binding to S. aureus promoting efficient pathogen elimination. Thus, sCD163 protects monocytes from overwhelming activation upon staphylococcal infection by dampening the secretion of pro-inflammatory cytokines TNFα, IL-1β, IL-6 and IL-8 and DAMP molecule MRP8/14. Moreover, sCD163 limited expression of pro-apoptotic transcription factor NR4A1 induced during S. aureus infection and inhibited induction of chemokine CXCL2promoting survival of staphylococci in vivo. sCD163-mediated effects were not due to general immunosuppression since MAP kinase activation and ROS production were unaltered during infection of monocytes with sCD163-bound bacteria. Thus, sCD163 promotes a specific defence of the immune system against FnBP-A-mediated inflammatory activation enabling successful pathogen elimination, tissue recovery and resolution of inflammation.

  8. Identification of Functional Regulatory Residues of the β-Lactam Inducible Penicillin Binding Protein in Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Andreas N. Mbah

    2013-01-01

    Full Text Available Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA isolates acquired a new protein called β-lactam inducible penicillin binding protein (PBP-2′. The PBP-2′ functions by substituting other penicillin binding proteins which have been inhibited by β-lactam antibiotics. Presently, there is no structural and regulatory information on PBP-2′ protein. We conducted a complete structural and functional regulatory analysis of PBP-2′ protein. Our analysis revealed that the PBP-2′ is very stable with more hydrophilic amino acids expressing antigenic sites. PBP-2′ has three striking regulatory points constituted by first penicillin binding site at Ser25, second penicillin binding site at Ser405, and finally a single metallic ligand binding site at Glu657 which binds to Zn2+ ions. This report highlights structural features of PBP-2′ that can serve as targets for developing new chemotherapeutic agents and conducting site direct mutagenesis experiments.

  9. Identification of Functional Regulatory Residues of the β -Lactam Inducible Penicillin Binding Protein in Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Mbah, Andreas N; Isokpehi, Raphael D

    2013-01-01

    Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA) isolates acquired a new protein called β -lactam inducible penicillin binding protein (PBP-2'). The PBP-2' functions by substituting other penicillin binding proteins which have been inhibited by β -lactam antibiotics. Presently, there is no structural and regulatory information on PBP-2' protein. We conducted a complete structural and functional regulatory analysis of PBP-2' protein. Our analysis revealed that the PBP-2' is very stable with more hydrophilic amino acids expressing antigenic sites. PBP-2' has three striking regulatory points constituted by first penicillin binding site at Ser25, second penicillin binding site at Ser405, and finally a single metallic ligand binding site at Glu657 which binds to Zn(2+) ions. This report highlights structural features of PBP-2' that can serve as targets for developing new chemotherapeutic agents and conducting site direct mutagenesis experiments.

  10. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  11. Clonal distribution of bone sialoprotein-binding protein gene among Staphylococcus aureus isolates associated with bloodstream infections.

    Science.gov (United States)

    Wiśniewska, Katarzyna; Piórkowska, Anna; Kasprzyk, Joanna; Bronk, Marek; Świeć, Krystyna

    2014-11-01

    Staphylococcus aureus is a leading cause of bloodstream infections (BSI) and diseases that may be caused by hematogenous spread. The staphylococcal adhesin, for which the association with the infections emerging as a complication of septicemia has been well documented, is a bone sialoprotein-binding protein (Bbp). The aim of the study was to assess the prevalence of a bbp gene in S. aureus bloodstream isolates associated with BSI and to investigate to what degree the distribution of this gene is linked to the clonality of the population. Spa typing, used in order to explore the genetic population structure of the isolates, yielded 29 types. Six spa clusters and seven singletons were identified. The most frequent was spa clonal complex CC021 associated with MLST CC30 (38%). The bbp gene was found in 47% of isolates. Almost all isolates (95%) clustered in spa clonal complex CC021 were positive for this gene. All isolates carrying the bbp gene were sensitive to methicillin, and if clustered in the spa CC021, belonged to agr group III. Our study shows that Bbp is not strictly associated with BSI. However, one may conclude that for clonally related S. aureus strains most commonly causing BSI, the risk of Bbp-mediated complications of septicemia is expected to be higher than for other strains.

  12. Method for generation of peptide-specific IgY antibodies directed to Staphylococcus aureus extracellular fibrinogen binding protein epitope.

    Science.gov (United States)

    Walczak, Maciej; Grzywa, Renata; Łupicka-Słowik, Agnieszka; Skoreński, Marcin; Bobrek, Kamila; Nowak, Daria; Boivin, Stephane; Brown, Eric L; Oleksyszyn, Józef; Sieńczyk, Marcin

    2015-09-01

    The IgY antibodies offer an attractive alternative to mammalian IgGs in research, diagnosis and medicine. The isolation of immunoglobulin Y from the egg yolks is efficient and economical, causing minimal suffering to animals. Here we present the methodology for the production of IgY antibodies specific to Staphylococcus aureus fibrinogen binding protein (Efb) and its peptidyl epitope (spanning residues 127-140). The Efb is an extracellular, adhesion protein which binds both human fibrinogen and complement C3 protein thus contributing to the high infectious potential of this pathogen. The selected epitope of Efb protein is responsible for the interaction with C3. The immunochemical characterization of both anti-Efb and epitope-specific IgY antibodies revealed their similar avidity, titer, and reactivity profile, although some differences in the hen's immune response to administered antigens is discussed.

  13. Effect of pH on surface energy of glass and Teflon and theoretical prediction of Staphylococcus aureus adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Hamadi, F. [Equipe de recherche: Microbiologie et biochimie appliquee a l' agroalimentaire, l' environnement et la sante. Faculte de Sciences et Techniques, B. P 523, Beni, Mellal (Morocco); Latrache, H., E-mail: latracheh@yahoo.fr [Equipe de recherche: Microbiologie et biochimie appliquee a l' agroalimentaire, l' environnement et la sante. Faculte de Sciences et Techniques, B. P 523, Beni, Mellal (Morocco); Zekraoui, M. [Equipe de recherche: Genie industriel, agroalimentaire et environnement. Faculte de Sciences et Techniques, B. P 523, Beni, Mellal (Morocco); Ellouali, M. [Equipe de recherche: Microbiologie et biochimie appliquee a l' agroalimentaire, l' environnement et la sante. Faculte de Sciences et Techniques, B. P 523, Beni, Mellal (Morocco); Bengourram, J. [Equipe de recherche: Genie industriel, agroalimentaire et environnement. Faculte de Sciences et Techniques, B. P 523, Beni, Mellal (Morocco)

    2009-05-05

    The surface energy of glass and Teflon at various pH values was examined. Contact angle was used to determine physico-chemical substratum properties. The surface energy of both substratums including, hydrophobicity, and electron donor/electron acceptor (Lewis acid-base properties) were found to depend on pH of contact solution. The maximum of hydrophobicity (higher negative value of {Delta}G{sub iwi}) was obtained at pH 11 and pH 6.5 for glass and Teflon respectively. The electron donor property was higher at pH 5 and pH 3 for glass and Teflon respectively. Moreover, prediction of Staphylococcus aureus adhesion on both substratums was estimated by calculating the total interaction free energy ({Delta}G{sup Tot}). Based on the value of {Delta}G{sup Tot}, S. aureus should adhere to glass at pH 2, pH 3 and pH 11 with the maximal adhesion obtained at pH 3 and pH 11. For Teflon, regardless of pH values, S. aureus should be able to attach on this substratum with the high adhesion level at pH 5. The relation between surface energy of substratum and the total interaction free energy was also examined. Based on this relation and the value of the components of total interaction free energy, we show that adhesion to glass could be governed by both short range forces (Lewis acid-bases forces) and by long range forces (van der Waals forces) and the adhesion to Teflon could be mediated only by the short range forces.

  14. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae.

    Science.gov (United States)

    Kosowska-Shick, K; McGhee, P L; Appelbaum, P C

    2010-05-01

    We compared the affinities of ceftaroline for all penicillin-binding proteins (PBPs) with those of ceftriaxone and cefotaxime in 6 Staphylococcus aureus and 7 Streptococcus pneumoniae isolates with various resistance phenotypes. Ceftaroline MICs were pneumoniae. Ceftaroline affinities for penicillin-susceptible S. pneumoniae strains were in the order PBP2X and -3 > PBP1A, -1B, and -2A > PBP2B, and ceftaroline had >or=4-fold higher 50% inhibitory concentrations (IC(50)s) (0.1 to 4 microg/ml) for PBP2X, -2A, -2B, and -3 than those for the other cephalosporins tested. Among 3 penicillin-resistant S. pneumoniae strains, ceftaroline had a high affinity for PBP2X (IC(50), 0.1 to 1 microg/ml), a primary target for cephalosporin PBP binding activity, and high affinities for PBP2B (IC(50), 0.5 to 4 microg/ml) and PBP1A (IC(50), 0.125 to 0.25 microg/ml) as well, both of which are also known as major targets for PBP binding activity of cephalosporins. Ceftaroline PBP affinities in methicillin-susceptible S. aureus strains were greater than or equal to those of the 3 other beta-lactams tested. Ceftaroline bound to PBP2a in methicillin-resistant S. aureus (IC(50), 0.01 to 1 microg/ml) with up to 256-fold-higher affinity than those of other agents. Ceftaroline demonstrated very good PBP affinity against all S. aureus and S. pneumoniae strains tested, including resistant isolates.

  15. New shuttle vector-based expression system to generate polyhistidine-tagged fusion proteins in Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Schwendener, Sybille; Perreten, Vincent

    2015-05-01

    Four Staphylococcus aureus-Escherichia coli shuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcap contain the strong constitutive promoter of S. aureus type 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including the E. coli origin ColE1, five copies of terminator rrnB T1, and tetracycline resistance marker tet(L) for S. aureus and E. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand origin oriL from pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability in S. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcap offer the potential to generate C-terminal RGS-His6 translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links the rgs-his6 codons to the 3' end of the target gene. The generation of the rgs-his6 codon-fusion, gene expression, and protein purification were demonstrated in both S. aureus and E. coli using the macrolide-lincosamide-streptogramin B resistance gene erm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.

  16. Profiling the surfacome of Staphylococcus aureus

    NARCIS (Netherlands)

    Dreisbach, Annette; Hempel, Kristina; Buist, Girbe; Hecker, Michael; Becher, Doerte; van Dijl, Jan Maarten

    2010-01-01

    Staphylococcus aureus is a widespread opportunistic pathogen that can cause a wide variety of life-threatening diseases. Especially for the colonization of human tissues and the development of invasiveness, surface-exposed proteins are of major importance. In the present studies, we optimized a prot

  17. Neurocognitive derivation of protein surface property from protein aggregate parameters

    OpenAIRE

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as...

  18. Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus.

    Science.gov (United States)

    Hannauer, Mélissa; Sheldon, Jessica R; Heinrichs, David E

    2015-03-12

    A paucity of information exists concerning the mechanism(s) by which bacteria secrete siderophores into the extracellular compartment. We investigated the role of SfaA and SbnD, two major facilitator superfamily (MFS)-type efflux proteins, in the secretion of the Staphylococcus aureus siderophores staphyloferrin A (SA) and staphyloferrin B (SB), respectively. Deletion of sfaA resulted in a drastic reduction of SA secreted into the supernatant with a corresponding accumulation of SA in the cytoplasm and a significant growth defect in cells devoid of SB synthesis. In contrast, sbnD mutants showed transiently lowered levels of secreted SB, suggesting the involvement of additional efflux mechanisms.

  19. Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K.

    Science.gov (United States)

    Kumar Shukla, Sudhir; Rao, Toleti Subba

    2013-02-01

    The dominant role of biofilm-associated protein (Bap) in Staphylococcus aureus biofilm development prompted us to investigate Bap as a potential target for proteinase-mediated biofilm dispersion. Biofilm assay in microtitre plates showed that proteinase K hampered the early adhesion of cells as well as biofilm development. Proteinase K treatment of 24- and 48-h-old biofilms showed enhanced dispersion of bap-positive S. aureus biofilm; however, proteinase K did not affect the bap-negative S. aureus biofilm. When antibiotics were used in combination with proteinase K, significant enhancement in antibiotic action was noticed against bap-positive S. aureus biofilm. This study establishes that antibiotics in combination with proteinase K can be used for controlling S. aureus biofilms in whose development Bap surface protein has a major role. We propose that Bap protein could be a potential target for therapeutic control of S. aureus infections (for example, bovine mastitis).

  20. Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus

    OpenAIRE

    Chen Yi-Hsing; Anderson Mark; Hendrickx Antoni PA; Missiakas Dominique

    2012-01-01

    Abstract Background Staphylococcus aureus secretes EsxA and EsxB, two small polypeptides of the WXG100 family of proteins. Genetic analyses have shown that production and secretion of EsxA and EsxB require an intact ESAT-6 Secretion System (ESS), a cluster of genes that is conserved in many Firmicutes and encompasses esxA and esxB . Here, we characterize EssB, one of the proteins encoded by the ESS cluster. EssB is highly conserved in Gram-positive bacteria and belongs to the Cluster of ...

  1. Surface waves of Min-proteins

    Science.gov (United States)

    Fischer-Friedrich, Elisabeth; Nguyen van yen, Romain; Kruse, Karsten

    2007-03-01

    In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole oscillations. They are functional for suppressing cell division at the cell ends, leaving the center as the only possible site for division. Analyzing different models of Min-protein dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly, the surface wave solutions of different models belong to different symmetry classes. We suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing between different classes of models of Min-protein dynamics.

  2. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains

    NARCIS (Netherlands)

    Kneuper, Holger; Cao, Zhen Ping; Twomey, Kate B; Zoltner, Martin; Jäger, Franziska; Cargill, James S; Chalmers, James; van der Kooi - Pol, Magda; van Dijl, Jan Maarten; Ryan, Robert P; Hunter, William N; Palmer, Tracy

    2014-01-01

    The Type VII protein secretion system, found in Gram-positive bacteria, secretes small proteins, containing a conserved W-x-G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but r

  3. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules

    NARCIS (Netherlands)

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    2006-01-01

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including

  4. Neurocognitive derivation of protein surface property from protein aggregate parameters

    Science.gov (United States)

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as protein marker. The protocol used multiple ILMFD inputs obtained for a protein to produce a set of mapped outputs as possible SRI candidates. The outputs were further clustered and largest cluster centre after normalization was found to be a close approximation of expected SRI that was calculated from known PDB structure. The outcome showed that faster derivation of individual protein’s surface property might be possible using its bulk form, heat denatured aggregates. PMID:21572883

  5. Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli.

    Science.gov (United States)

    Turlin, Evelyne; Débarbouillé, Michel; Augustyniak, Katarzyna; Gilles, Anne-Marie; Wandersman, Cécile

    2013-01-01

    EfeUOB-like tripartite systems are widespread in bacteria and in many cases they are encoded by genes organized into iron-regulated operons. They consist of: EfeU, a protein similar to the yeast iron permease Ftrp1; EfeO, an extracytoplasmic protein of unknown function and EfeB, also an extracytoplasmic protein with heme peroxidase activity, belonging to the DyP family. Many bacterial EfeUOB systems have been implicated in iron uptake, but a prefential iron source remains undetermined. Nevertheless, in the case of Escherichia coli, the EfeUOB system has been shown to recognize heme and to allow extracytoplasmic heme iron extraction via a deferrochelation reaction. Given the high level of sequence conservations between EfeUOB orthologs, we hypothesized that heme might be the physiological iron substrate for the other orthologous systems. To test this hypothesis, we undertook characterization of the Staphylococcus aureus FepABC system. Results presented here indicate: i) that the S. aureus FepB protein binds both heme and PPIX with high affinity, like EfeB, the E. coli ortholog; ii) that it has low peroxidase activity, comparable to that of EfeB; iii) that both FepA and FepB drive heme iron utilization, and both are required for this activity and iv) that the E. coli FepA ortholog (EfeO) cannot replace FepA in FepB-driven iron release from heme indicating protein specificity in these activities. Our results show that the function in heme iron extraction is conserved in the two orthologous systems.

  6. Site-specific immobilization of protein layers on gold surfaces via orthogonal sortases.

    Science.gov (United States)

    Raeeszadeh-Sarmazdeh, Maryam; Parthasarathy, Ranganath; Boder, Eric T

    2015-04-01

    We report a site-specific, sortase-mediated ligation to immobilize proteins layer-by-layer on a gold surface. Recombinant fluorescent proteins with a Sortase A recognition tag at the C-terminus were immobilized on peptide-modified gold surfaces. We used two sortases with different substrate specificities (Streptococcus pyogenes Sortase A and Staphylococcus aureus Sortase A) to immobilize layers of GFP and mCherry site-specifically on the gold surface. Surfaces were characterized using fluorescence and atomic force microscopy after immobilizing each layer of protein. Fluorescent micrographs showed that both protein immobilization on the modified gold surface and protein oligomerization are sortase-dependent. AFM images showed that either homogenous protein monolayers or layers of protein oligomers can be generated using appropriately tagged substrate proteins. Using Sortase A variants with orthogonal peptide substrate specificities, site-specific immobilization of appropriately tagged GFP onto a layer of immobilized mCherry was achieved without disruption of the underlying protein layer.

  7. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  8. Proteomic analyses of nucleoid-associated proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ryosuke L Ohniwa

    Full Text Available BACKGROUND: The bacterial nucleoid contains several hundred kinds of nucleoid-associated proteins (NAPs, which play critical roles in genome functions such as transcription and replication. Several NAPs, such as Hu and H-NS in Escherichia coli, have so far been identified. METHODOLOGY/PRINCIPAL FINDINGS: Log- and stationary-phase cells of E. coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus were lysed in spermidine solutions. Nucleoids were collected by sucrose gradient centrifugation, and their protein constituents analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS. Over 200 proteins were identified in each species. Envelope and soluble protein fractions were also identified. By using these data sets, we obtained lists of contaminant-subtracted proteins enriched in the nucleoid fractions (csNAP lists. The lists do not cover all of the NAPs, but included Hu regardless of the growth phases and species. In addition, the csNAP lists of each species suggested that the bacterial nucleoid is equipped with the species-specific set of global regulators, oxidation-reduction enzymes, and fatty acid synthases. This implies bacteria individually developed nucleoid associated proteins toward obtaining similar characteristics. CONCLUSIONS/SIGNIFICANCE: Ours is the first study to reveal hundreds of NAPs in the bacterial nucleoid, and the obtained data set enabled us to overview some important features of the nucleoid. Several implications obtained from the present proteomic study may make it a landmark for the future functional and evolutionary study of the bacterial nucleoid.

  9. Crystal structure of YwpF from Staphylococcus aureus reveals its architecture comprised of a β-barrel core domain resembling type VI secretion system proteins and a two-helix pair.

    Science.gov (United States)

    Lee, Sang Jae; Lee, Kyu-Yeon; Lee, Ki-Young; Kim, Dong-Gyun; Kim, Soon-Jong; Lee, Bong-Jin

    2015-04-01

    The ywpF gene (SAV2097) of the Staphylococcus aureus strain Mu50 encodes the YwpF protein, which may play a role in antibiotic resistance. Here, we report the first crystal structure of the YwpF superfamily from S. aureus at 2.5-Å resolution. The YwpF structure consists of two regions: an N-terminal core β-barrel domain that shows structural similarity to type VI secretion system (T6SS) proteins (e.g., Hcp1, Hcp3, and EvpC) and a C-terminal two-helix pair. Although the monomer structure of S. aureus YwpF resembles those of T6SS proteins, the dimer/tetramer model of S. aureus YwpF is distinct from the functionally important hexameric ring of T6SS proteins. We therefore suggest that the S. aureus YwpF may have a different function compared to T6SS proteins.

  10. Green Fluorescent Protein (GFP-Based Overexpression Screening and Characterization of AgrC, a Receptor Protein of Quorum Sensing in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Shengdi Fan

    2013-09-01

    Full Text Available Staphylococcus aureus AgrC is an important component of the agr quorum-sensing system. AgrC is a membrane-embedded histidine kinase that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm. However, the difficulty of expressing and purifying functional membrane proteins has drastically hindered in-depth understanding of the molecular structures and physiological functions of these proteins. Here, we describe the high-yield expression and purification of AgrC, and analyze its kinase activity. A C-terminal green fluorescent protein (GFP fusion to AgrC served as a reporter for monitoring protein expression levels in real time. Protein expression levels were analyzed by the microscopic assessment of the whole-cell fluorescence. The expressed AgrC-GFP protein with a C-terminal His-tagged was purified using immobilized metal affinity chromatography (IMAC and size exclusion chromatography (SEC at yields of ≥10 mg/L, following optimization. We also assessed the effects of different detergents on membrane solubilization and AgrC kinase activity, and polyoxyethylene-(23-lauryl-ether (Brij-35 was identified as the most suitable detergent. Furthermore, the secondary structural stability of purified AgrC was analyzed using circular dichroism (CD spectroscopy. This study may serve as a general guide for improving the yields of other membrane protein preparations and selecting the appropriate detergent to stabilize membrane proteins for biophysical and biochemical analyses.

  11. Green fluorescent protein (GFP)-based overexpression screening and characterization of AgrC, a Receptor protein of quorum sensing in Staphylococcus aureus.

    Science.gov (United States)

    Wang, Lina; Quan, Chunshan; Liu, Baoquan; Xu, Yongbin; Zhao, Pengchao; Xiong, Wen; Fan, Shengdi

    2013-09-06

    Staphylococcus aureus AgrC is an important component of the agr quorum-sensing system. AgrC is a membrane-embedded histidine kinase that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm. However, the difficulty of expressing and purifying functional membrane proteins has drastically hindered in-depth understanding of the molecular structures and physiological functions of these proteins. Here, we describe the high-yield expression and purification of AgrC, and analyze its kinase activity. A C-terminal green fluorescent protein (GFP) fusion to AgrC served as a reporter for monitoring protein expression levels in real time. Protein expression levels were analyzed by the microscopic assessment of the whole-cell fluorescence. The expressed AgrC-GFP protein with a C-terminal His-tagged was purified using immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) at yields of ≥ 10 mg/L, following optimization. We also assessed the effects of different detergents on membrane solubilization and AgrC kinase activity, and polyoxyethylene-(23)-lauryl-ether (Brij-35) was identified as the most suitable detergent. Furthermore, the secondary structural stability of purified AgrC was analyzed using circular dichroism (CD) spectroscopy. This study may serve as a general guide for improving the yields of other membrane protein preparations and selecting the appropriate detergent to stabilize membrane proteins for biophysical and biochemical analyses.

  12. What is the best method? Recovery of methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing Escherichia coli from inanimate hospital surfaces.

    Science.gov (United States)

    Claro, Tânia; Galvin, Sandra; Cahill, Orla; Fitzgerald-Hughes, Deirdre; Daniels, Stephen; Humphreys, Hilary

    2014-07-01

    Environmental sampling in hospitals, when required, needs to be reliable. We evaluated different methods of sampling methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing Escherichia coli on 5 materials of the hospital setting. Petrifilms and contact plates were superior to swabs for all of the surfaces studied.

  13. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains.

    Science.gov (United States)

    Kneuper, Holger; Cao, Zhen Ping; Twomey, Kate B; Zoltner, Martin; Jäger, Franziska; Cargill, James S; Chalmers, James; van der Kooi-Pol, Magdalena M; van Dijl, Jan Maarten; Ryan, Robert P; Hunter, William N; Palmer, Tracy

    2014-09-01

    The Type VII protein secretion system, found in Gram-positive bacteria, secretes small proteins, containing a conserved W-x-G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but required for virulence. In this study we show that there are unexpected differences in the organization of the ess gene cluster between closely related strains of S. aureus. We further show that in laboratory growth medium different strains of S. aureus secrete the EsxA and EsxC substrate proteins at different growth points, and that the Ess system in strain Newman is inactive under these conditions. Systematic deletion analysis in S. aureus RN6390 is consistent with the EsaA, EsaB, EssA, EssB, EssC and EsxA proteins comprising core components of the secretion machinery in this strain. Finally we demonstrate that the Ess secretion machinery of two S. aureus strains, RN6390 and COL, is important for nasal colonization and virulence in the murine lung pneumonia model. Surprisingly, however, the secretion system plays no role in the virulence of strain SA113 under the same conditions.

  14. Crystal structure of Staphylococcus aureus exfoliative toxin D-like protein: Structural basis for the high specificity of exfoliative toxins.

    Science.gov (United States)

    Mariutti, Ricardo B; Souza, Tatiana A C B; Ullah, Anwar; Caruso, Icaro P; de Moraes, Fábio R; Zanphorlin, Leticia M; Tartaglia, Natayme R; Seyffert, Nubia; Azevedo, Vasco A; Le Loir, Yves; Murakami, Mário T; Arni, Raghuvir K

    2015-11-01

    Exfoliative toxins are serine proteases secreted by Staphylococcus aureus that are associated with toxin-mediated staphylococcal syndromes. To date, four different serotypes of exfoliative toxins have been identified and 3 of them (ETA, ETB, and ETD) are linked to human infection. Among these toxins, only the ETD structure remained unknown, limiting our understanding of the structural determinants for the functional differentiation between these toxins. We recently identified an ETD-like protein associated to S. aureus strains involved in mild mastitis in sheep. The crystal structure of this ETD-like protein was determined at 1.95 Å resolution and the structural analysis provide insights into the oligomerization, stability and specificity and enabled a comprehensive structural comparison with ETA and ETB. Despite the highly conserved molecular architecture, significant differences in the composition of the loops and in both the N- and C-terminal α-helices seem to define ETD-like specificity. Molecular dynamics simulations indicate that these regions defining ET specificity present different degrees of flexibility and may undergo conformational changes upon substrate recognition and binding. DLS and AUC experiments indicated that the ETD-like is monomeric in solution whereas it is present as a dimer in the asymmetric unit indicating that oligomerization is not related to functional differentiation among these toxins. Differential scanning calorimetry and circular dichroism assays demonstrated an endothermic transition centered at 52 °C, and an exothermic aggregation in temperatures up to 64 °C. All these together provide insights about the mode of action of a toxin often secreted in syndromes that are not associated with either ETA or ETB.

  15. Crustin protein Amk1 from black tiger shrimp (Penaeus monodon inhibits Vibrio harveyi and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Moltira Tonganunt1*

    2008-05-01

    Full Text Available A crustin gene (Amk1 was identified from a haemocyte library of the black tiger shrimp, Penaeus monodon. The full-length cDNA consists of 411 bp encoding a deduced precursor of 136 amino acids with a signal peptide of 17 aminoacids. Amk1 contains a hydrophobic and a Gly-rich region at the N-terminus and a 12 conserved cysteine domain (6-DSC at the C-terminus. Transcripts of Amk1 are mainly detected in haemocytes and gills by RT-PCR analysis. A recombinant Amk1was overexpressed and purified from Escherichia coli. This has a molecular mass of 43.66 kDa with a predicted pI of 8.23. Antibacterial assays demonstrated that recombinant Amk1 exhibited antibacterial activity against Gram-positive and Gramnegativebacteria with strong inhibition against Staphylococcus aureus and Vibrio harveyi.

  16. Staphylococcus aureus isolates encode variant staphylococcal enterotoxin B proteins that are diverse in superantigenicity and lethality.

    Directory of Open Access Journals (Sweden)

    Petra L Kohler

    Full Text Available Staphylococcus aureus produces superantigens (SAgs that bind and cross-link T cells and APCs, leading to activation and proliferation of immune cells. SAgs bind to variable regions of the β-chains of T cell receptors (Vβ-TCRs, and each SAg binds a unique subset of Vβ-TCRs. This binding leads to massive cytokine production and can result in toxic shock syndrome (TSS. The most abundantly produced staphylococcal SAgs and the most common causes of staphylococcal TSS are TSS toxin-1 (TSST-1, and staphylococcal enterotoxins B and C (SEB and SEC, respectively. There are several characterized variants of humans SECs, designated SEC1-4, but only one variant of SEB has been described. Sequencing the seb genes from over 20 S. aureus isolates show there are at least five different alleles of seb, encoding forms of SEB with predicted amino acid substitutions outside of the predicted immune-cell binding regions of the SAgs. Examination of purified, variant SEBs indicates that these amino acid substitutions cause differences in proliferation of rabbit splenocytes in vitro. Additionally, the SEBs varied in lethality in a rabbit model of TSS. The SEBs were diverse in their abilities to cause proliferation of human peripheral blood mononuclear cells, and differed in their activation of subsets of T cells. A soluble, high-affinity Vβ-TCR, designed to neutralize the previously characterized variant of SEB (SEB1, was able to neutralize the variant SEBs, indicating that this high-affinity peptide may be useful in treating a variety of SEB-mediated illnesses.

  17. Cytokine and acute phase protein mRNA expression in liver tissue from pigs with severe sepsis caused by intravenous inoculation of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Nielsen, Ole Lerberg; Olsen, Helle Gerda; Iburg, Tine;

    2010-01-01

    The aim was to substantiate previous findings of hepatic dysfunction in a porcine model of Staphylococcus aureus induced severe sepsis. Nine pigs were inoculated intravenously once or twice with 108S. aureus per kilogram body weight and killed 12, 24 and 48 h later. Three pigs served as controls...... characterized by fever, neutrophilia, increased serum levels of C-reactive protein (CRP) and interleukin (IL)-6, and decreased levels of serum iron. CRP and IL-6 serum levels peaked at 36 h. Serum IL-1β and tumour necrosis factor-α (TNFα) did not change. Serum aspartate aminotransferase (AST) and bilirubin were...

  18. The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance.

    Directory of Open Access Journals (Sweden)

    Lorena Rodríguez-Rubio

    Full Text Available The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we analyzed the specific cleavage sites on the staphylococcal peptidoglycan produced by three phage lytic proteins. The investigated cell wall lytic enzymes were the endolysin LysH5 derived from the S. aureus bacteriophage vB_SauS-phi-IPLA88 (phi-IPLA88 and two fusion proteins between lysostaphin and the virion-associated peptidoglycan hydrolase HydH5 (HydH5SH3b and HydH5Lyso. We determined that all catalytic domains present in these proteins were active. Additionally, we tested for the emergence of resistant Staphylococcus aureus to any of the three phage lytic proteins constructs. Resistant S. aureus could not be identified after 10 cycles of bacterial exposure to phage lytic proteins either in liquid or plate cultures. However, a quick increase in lysostaphin resistance (up to 1000-fold in liquid culture was observed. The lack of resistant development supports the use of phage lytic proteins as future therapeutics to treat staphylococcal infections.

  19. Detection of ST772 Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus (Bengal Bay clone and ST22 S. aureus isolates with a genetic variant of elastin binding protein in Nepal

    Directory of Open Access Journals (Sweden)

    R.H. Pokhrel

    2016-05-01

    Full Text Available Genetic characteristics were analysed for recent clinical isolates of methicillin-resistant and -susceptible Staphylococcus aureus (MRSA and MSSA respectively in Kathmandu, Nepal. MRSA isolates harbouring Panton-Valentine leukocidin (PVL genes were classified into ST1, ST22 and ST88 with SCCmec-IV and ST772 with SCCmec-V (Bengal Bay clone, while PVL-positive MSSA into ST22, ST30 and ST772. ST22 isolates (PVL-positive MRSA and MSSA, PVL-negative MRSA possessed a variant of elastin binding protein gene (ebpS with an internal deletion of 180 bp, which was similar to that reported for ST121 S. aureus previously outside Nepal. Phylogenetic analysis indicated that the ebpS variant in ST22 might have occurred independently of ST121 strains. This is the first report of ST772 PVL-positive MRSA in Nepal and detection of the deletion variant of ebpS in ST22 S. aureus.

  20. Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2.

    Science.gov (United States)

    Szczawiński, J; Tomaszewski, H; Jackowska-Tracz, A; Szczawińska, M E

    2011-01-01

    The aim of this study was to determine and compare the antimicrobial activity of UV radiation of wavelength 253.7 nm (used in typical germicidal lamps) against Staphylococcus aureus on the surfaces of conventionally produced white ceramic wall tiles (matt and shiny) and the same tiles coated with TiO2 using three different methods: RF diode sputtering, atmospheric pressure chemical vapour deposition (APCVD) and spray pyrolysis deposition (SPD). Results clearly indicate that the bactericidal action of UV radiation is much stronger on the surfaces of tiles coated with TiO2 than on the tiles uncovered. The strongest bactericidal effect of UV radiation was found for film prepared by APCVD. Results of experiments for shiny and matt tiles did not differ statistically. The use of ceramic wall tiles coated with TiO2 films in hospitals, veterinary clinics, laboratories, food processing plants and other places where UV radiation is applied for disinfection should greatly improve the efficiency of this treatment.

  1. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  2. Organising Atoms, Clusters and Proteins on Surfaces

    Science.gov (United States)

    Palmer, Richard E.

    2008-10-01

    This talk will discuss new developments in the creation of nanoscale surface features and their applications in biomedicine. Electron-surface interactions and plasma methods play a crucial role in both the production and analysis of these ``atomic architectures.'' At the extreme limit, electron injection from the tip of a scanning tunnelling microscope (STM) enables bond-selective manipulation of individual polyatomic molecules [1]. On a more practical level, the controlled deposition of size-selected clusters [2], generated by magnetron sputtering and gas condensation followed by mass selection, represents a surprisingly efficient route to the fabrication of surface features of size 1-10 nm, the size scale of biological molecules such as proteins. STM and AFM measurements show the clusters can act as binding sites for individual protein molecules. For example, the pinning of size-selected AuN clusters (N = 1--2000) to the (hydrophobic) graphite surface presents bindings site for sulphur atoms and thus for the cysteine residues in protein molecules. Systematic studies of different proteins [3] provide ``ground rules'' for residue-specific protein immobilisation by clusters and have led to the development of a novel biochip for protein screening by a spin-off company. The 3D atomic structure of the clusters is highly relevant to such applications. We show that measurement of the scattered electron beam intensity - specifically, the high angle annular dark field (HAADF) signal - in the scanning transmission electron microscope (STEM) allows us (a) to count the number of atoms in a cluster on the surface and (b) to determine a 3D atom-density map of the cluster when an aberration-corrected STEM is used [4]. 1. P.A. Sloan and R.E. Palmer, Nature 434 367 (2005). 2. S. Pratontep, P. Preece, C. Xirouchaki, R.E. Palmer, C.F. Sanz-Navarro, S.D. Kenny and R. Smith, Phys. Rev. Lett. 90 055503 (2003). 3. R.E. Palmer, S. Pratontep and H.-G. Boyen, Nature Materials 2 443 (2003

  3. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins

    Science.gov (United States)

    A partial-thickness epidermal explant model was colonized with GFP-expressing S. aureus and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. Oxygen concentration in explants and H2O2 in media was quantified using microelectrodes. The re...

  4. Identification of the ClpX Regulon in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Thomsen, Line Elnif; Ingmer, Hanne;

    Staphyloccous aureus is a major human pathogen capable of causing a wide spectrum of infections ranging from superficial wound infections to life-threatening endocarditis and toxic shock syndrome. Essential for S. aureus virulence is a large number of cell-surface-associated proteins and secreted...... proteins. Results from our group have shown that the ClpXP proteolytic complex and the ClpX chaperone play central roles in regulating expression of many of these factors (2;3). By using DNA microarrays to compare transcription of strain 8325-4 (wt) and the isogenic ¿clpX strain during the transition phase...

  5. Purification, crystallization and preliminary X-ray diffraction analysis of GatD, a glutamine amidotransferase-like protein from Staphylococcus aureus peptidoglycan.

    Science.gov (United States)

    Vieira, Diana; Figueiredo, Teresa A; Verma, Anil; Sobral, Rita G; Ludovice, Ana M; de Lencastre, Hermínia; Trincao, Jose

    2014-05-01

    Amidation of peptidoglycan is an essential feature in Staphylococcus aureus that is necessary for resistance to β-lactams and lysozyme. GatD, a 27 kDa type I glutamine amidotransferase-like protein, together with MurT ligase, catalyses the amidation reaction of the glutamic acid residues of the peptidoglycan of S. aureus. The native and the selenomethionine-derivative proteins were crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol, sodium acetate and calcium acetate. The crystals obtained diffracted beyond 1.85 and 2.25 Å, respectively, and belonged to space group P212121. X-ray diffraction data sets were collected at Diamond Light Source (on beamlines I02 and I04) and were used to obtain initial phases.

  6. Electrostatic Contributions Drive the Interaction Between Staphylococcus aureus Protein Efb-C and its Complement Target C3d

    Energy Technology Data Exchange (ETDEWEB)

    Haspel, N.; Ricklin, D.; Geisbrecht, B.V.; Kavraki, L.E.; Lambris, J.D. (UPENN); (UMKC); (Rice)

    2008-11-13

    The C3-inhibitory domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb-C) defines a novel three-helix bundle motif that regulates complement activation. Previous crystallographic studies of Efb-C bound to its cognate subdomain of human C3 (C3d) identified Arg-131 and Asn-138 of Efb-C as key residues for its activity. In order to characterize more completely the physical and chemical driving forces behind this important interaction, we employed in this study a combination of structural, biophysical, and computational methods to analyze the interaction of C3d with Efb-C and the single-point mutants R131A and N138A. Our results show that while these mutations do not drastically affect the structure of the Efb-C/C3d recognition complex, they have significant adverse effects on both the thermodynamic and kinetic profiles of the resulting complexes. We also characterized other key interactions along the Efb-C/C3d binding interface and found an intricate network of salt bridges and hydrogen bonds that anchor Efb-C to C3d, resulting in its potent complement inhibitory properties.

  7. Cell surface engineering with edible protein nanoshells.

    Science.gov (United States)

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  8. Identification and characterization of the surface proteins of Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  9. Protein adsorption on materials surfaces with nano-topography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Protein adsorption behavior on the surfaces of biomedical materials is highly related to the biocompatibility of the materials. In the past, numerous research reports were mainly focused on the effect of chemical components of a material's surface on protein adsorption. The effect of surface topography on protein adsorption, the topic of this review, has recently receuvedkeen interest. The influence of surface nano-topographic factors, including roughness, curvature and geometry, on protein adsorption as well as the protein adsorption behavior, such as the amount of protein adsorbed, the activity and morphology of adsorbed protein, is introduced.

  10. The Electrophoretic Mobility of Proteins near Surfaces

    Science.gov (United States)

    Ramasamy, Perumal; Singh, Avtar; Rafailovich, Miriam; Sokolov, Jonathan

    2004-03-01

    We have attempted to apply the methods developed for surface DNA electrophoresis (1) for proteomics. Droplets of FITC stained Abumin, Poly- L-Lysine, or Casein purchased from Sigma were deposited on glass cover slips. The droplets were then place in contact with a TBE buffer solution contained in a cell molded from PDMS. Pt electrodes were inserted into the cell and a voltage was a applied. The motion of the protein was then imaged with a Leica Confocal microscope as a function of buffer concentration, distance from the surface, and applied voltage. The mobilities were then compared with those of uncharged one micron florescent Polystyrene beads. References: 1)Henzel WJ, Watanabe C, Stults JT., !0 Protein Identification: The Origins of Peptide Mass Fingerprinting. !1 J. American Society for Mass Spectrometry. 14 (September 2003): 931-942 2)Mathesius U, Imin N, Natera SH, Rolfe BG., !0 Proteomics as a functional genomics tool. !1 Methods of Molecular Biology 236: 395-414. *Work supported in part by the NSF-MRSEC program

  11. Protein surface patterning using nanoscale PEG hydrogels.

    Science.gov (United States)

    Hong, Ye; Krsko, Peter; Libera, Matthew

    2004-12-01

    We have used focused electron-beam cross-linking to create nanosized hydrogels and thus present a new method with which to bring the attractive biocompatibility associated with macroscopic hydrogels into the submicron length-scale regime. Using amine-terminated poly(ethylene glycol) thin films on silicon substrates, we generate nanohydrogels with lateral dimensions of order 200 nm which can swell by a factor of at least five, depending on the radiative dose. With the focused electron beam, high-density arrays of such nanohydrogels can be flexibly patterned onto silicon surfaces. Significantly, the amine groups remain functional after e-beam exposure, and we show that they can be used to covalently bind proteins and other molecules. We use bovine serum albumin to amplify the number of amine groups, and we further demonstrate that different proteins can be covalently bound to different hydrogel pads on the same substrate to create multifunctional surfaces useful in emerging bio/proteomic and sensor technologies.

  12. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation.

    Science.gov (United States)

    Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2014-04-25

    The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci.

  13. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions.

    Science.gov (United States)

    Raffaella, Campana; Casettari, Luca; Fagioli, Laura; Cespi, Marco; Bonacucina, Giulia; Baffone, Wally

    2017-01-16

    Food safety is a fundamental concern for both consumers and the food industry, especially as the numbers of reported cases of food-associated infections continue to increase. Industrial surfaces can provide a suitable substrate for the development and persistence of bacterial organized in biofilms that represent a potential source of food contamination. The negative consumer perception of chemical disinfectants has shifted the attention to natural substances, such as plant extracts. The aim of this study was to investigate the possibility of using the essential oils (EOs) in the fight against S. aureus biofilms. First, the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), Minimum Biofilm Eradication Concentration (MBEC) of eleven EOs against S. aureus were determined. Cinnamomum cassia and Salvia officinalis EOs showed the greatest antibacterial properties with 1.25% MIC and MBC, 1.25% MBIC and 2.5% MBEC respectively. Gas Chromatography/Mass Spectrometry analysis revealed cinnamaldehyde (82.66%) and methoxy cinnamaldehyde (10.12%) as the most abundant substances of C. cassia, while cis-thujone (23.90%), camphor (19.22%) and 1.8-cineole (10.62%) of S. officinalis. Three different microemulsions, formulated with C. cassia, S. officinalis or both, were finally tested against S. aureus biofilms in different culture media and growth conditions, causing a >3 logarithmic reductions in S. aureus 24h-old biofilms and desiccated biofilms, and up to 68% of biofilm removal after 90min of exposure. The obtained data suggest the potential use of EOs, alone or in combination, for the formulation of sanitizers as alternative or in support in the disinfection of contaminated surfaces.

  14. Trichomonas vaginalis surface proteins: a view from the genome

    DEFF Research Database (Denmark)

    Hirt, R. P.; Noel, C. J.; Sicheritz-Pontén, Thomas

    2007-01-01

    Surface proteins of mucosal microbial pathogens play multiple and essential roles in initiating and sustaining the colonization of the heavily defended mucosa. The protist Trichomonas vaginalis is one of the most common human sexually transmitted pathogens that colonize the urogenital mucosa....... However, little is known about its surface proteins. The recently completed draft genome sequence of T. vaginalis provides an invaluable resource to guide molecular and cellular characterization of surface proteins and to investigate their role in pathogenicity. Here, we review the existing data on T....... vaginalis surface proteins and summarize some of the main findings from the recent in silico characterization of its candidate surface proteins....

  15. Analysis of skin and secretions of Dybowski's frogs (Rana dybowskii) exposed to Staphylococcus aureus or Escherichia coli identifies immune response proteins.

    Science.gov (United States)

    Xiao, Xiang-Hong; Miao, Hui-Min; Xu, Yi-Gang; Zhang, Jing-Yu; Chai, Long-Hui; Xu, Jia-Jia

    2014-04-01

    The aim of the present study was to investigate responses in Dybowski's frogs (Rana dybowskii) exposed to bacteria, using proteomic and transcriptomic approaches. Staphylococcus aureus and Escherichia coli were used as representative Gram-positive and Gram-negative bacteria, respectively, in an infectious challenge model. Frog skin and skin secretions were collected and protein expression in infected frogs compared to control frogs by two-dimensional gel electrophoresis, silver staining, and image analysis. Proteins that demonstrated differential expression were analysed by mass spectrometry and identified by searching protein databases. More than 180 protein spots demonstrated differential expression in E. coli- or S. aureus-challenged groups and, of these, more than 55 spots were up- or down-regulated at least sixfold, post-infection. Proteins with a potential function in the immune response were identified, such as stathmin 1a, annexin A1, superoxide dismutase A, C-type lectin, lysozyme, antimicrobial peptides, cofilin-1-B, mannose receptor, histone H4, prohormone convertase 1, carbonyl reductase 1 and some components of the Toll-like receptor (TLR) signalling pathway. These molecules are potential candidates for further investigation of immune mechanisms in R. dybowskii; in particular, TLR-mediated responses, which might be activated in frogs exposed to pathogenic bacteria as part of innate immune defence, but which might also impact on adaptive immunity to infection.

  16. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils.

    OpenAIRE

    Hampton, M B; A. J. Kettle; Winterbourn, C C

    1996-01-01

    We have used a quantitative assay that measures independent rate constants for phagocytosis and killing of Staphylococcus aureus to investigate the involvement of superoxide and myeloperoxidase in bacterial killing by human neutrophils. To inhibit superoxide-dependent processes, superoxide dismutase was cross-linked to immunoglobulin G and the conjugate was attached to the surface of S. aureus via protein A in its cell wall. Myeloperoxidase was inhibited with azide, and myeloperoxidase-defici...

  17. Comparative proteomic analysis of extracellular proteins expressed by various clonal types of Staphylococcus aureus and during planktonic growth and biofilm development

    Directory of Open Access Journals (Sweden)

    Salman Sahab Atshan

    2015-06-01

    Full Text Available Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were 1 to identify possible differences in protein expression among various and closely related clonal types of S. aureus, 2 to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation with that of under aeration and agitation, and 3 to compare the differences in protein expression as a function of time (in hours. In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524 and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139 were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12 h, 24 h, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.

  18. Calreticulin: Roles in Cell-Surface Protein Expression

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2014-09-01

    Full Text Available In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.

  19. Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection.

    Science.gov (United States)

    Claro, Tânia; Widaa, Amro; McDonnell, Cormac; Foster, Timothy J; O'Brien, Fergal J; Kerrigan, Steven W

    2013-01-01

    Staphylococcus aureus is the major pathogen among the staphylococci and the most common cause of bone infections. These infections are mainly characterized by bone destruction and inflammation, and are often debilitating and very difficult to treat. Previously we demonstrated that S. aureus protein A (SpA) can bind to osteoblasts, which results in inhibition of osteoblast proliferation and mineralization, apoptosis, and activation of osteoclasts. In this study we used small interfering RNA (siRNA) to demonstrate that osteoblast tumour necrosis factor receptor-1 (TNFR-1) is responsible for the recognition of and binding to SpA. TNFR-1 binding to SpA results in the activation of nuclear factor kappa B (NFκB). In turn, NFκB translocates to the nucleus of the osteoblast, which leads to release of interleukin 6 (IL-6). Silencing TNFR-1 in osteoblasts or disruption of the spa gene in S. aureus prevented both NFκB activation and IL-6 release. As well as playing a key role in proinflammatory reactions, IL-6 is also an important osteotropic factor. Release of IL-6 from osteoblasts results in the activation of the bone-resorbing cells, the osteoclasts. Consistent with our results described above, both silencing TNFR-1 in osteoblasts and disruption of spa in S. aureus prevented osteoclast activation. These studies are the first to demonstrate the importance of the TNFR-1-SpA interaction in bone infection, and may help explain the mechanism through which osteoclasts become overactivated, leading to bone destruction. Anti-inflammatory drug therapy could be used either alone or in conjunction with antibiotics to treat osteomyelitis or for prophylaxis in high-risk patients.

  20. Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization

    Science.gov (United States)

    Iordache, Florin; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Curuţiu, Carmen; Diţu, Lia Mara; Socol, Gabriel; Ficai, Anton; Truşcă, Roxana; Holban, Alina Maria

    2015-05-01

    This study reports on the successful deposition of γ-cyclodextrin/usnic acid (γCD/UA) thin film by Matrix Assisted Pulsed Laser Evaporation (MAPLE) as anti-adherent coating on medical surfaces against microbial colonization. The obtained results demonstrate that these bioactive thin films inhibit Staphylococcus aureus biofilm formation at all stages, starting with their initiation. The antibiofilm effect was constant along the bacterial incubation time. Furthermore, the γCD/UA coatings show a great biocompatibility which means that this material is suitable for the development of modern medical devices with antimicrobial properties.

  1. Mitogen-activated protein kinases (MAPKs) regulate IL-6 over-production during concomitant influenza virus and Staphylococcus aureus infection

    Science.gov (United States)

    Klemm, Carolin; Bruchhagen, Christin; van Krüchten, Andre; Niemann, Silke; Löffler, Bettina; Peters, Georg; Ludwig, Stephan; Ehrhardt, Christina

    2017-01-01

    Bacterial super-infections are a major complication of influenza virus (IV) infections and often lead to severe pneumonia. One hallmark of IV-associated Staphylococcus aureus (S. aureus) infection is rapid progression to a serious disease outcome. Changes in immune and inflammatory host responses increase morbidity and complicate efficient therapy. A key player during inflammation is the multifunctional cytokine IL-6. Although increased IL-6 levels have been observed after severe disease upon IV and/or bacterial super-infection, the underlying molecular mechanisms still remain to be elucidated. In the present study, we focused on cellular signalling pathways regulating IL-6 production upon IV/S. aureus super-infection. Additionally, infection with viable bacteria was mimicked by lipoteichoic acid stimulation in this model. Analyses of cellular signalling mechanisms revealed synergistically increased activation of the MAPK p38 as well as enhanced phosphorylation of the MAPKs ERK1/2 and JNK in the presence of super-infecting bacteria. Interestingly, inhibition of MAPK activity indicated a strong dependence of IL-6 expression on p38 and ERK1/2, while the MAPK JNK seems not to be involved. Thus, our results provide new molecular insights into the regulation of IL-6, a marker of severe disease, which might contribute to the lethal synergism of IV and S. aureus. PMID:28195157

  2. Acacetin Protects Mice from Staphylococcus aureus Bloodstream Infection by Inhibiting the Activity of Sortase A.

    Science.gov (United States)

    Bi, Chongwei; Dong, Xiaoyun; Zhong, Xiaobo; Cai, Hongjun; Wang, Dacheng; Wang, Lin

    2016-09-26

    Staphylococcus aureus (S. aureus) is a major cause of infection in hospitals and communities. Widespread dissemination of multi-drug resistant S. aureus is a serious threat to the health of humans and animals. An anti-virulence strategy has been widely considered as an alternative therapeutic approach. Inhibitors of virulence factors are able to treat S. aureus infections without influencing the growth or viability of bacteria and rarely lead to bacterial resistance. Sortase A (SrtA) is a membrane-associated cysteine transpeptidase that catalyzes up to 25 surface proteins that covalently bind to cell wall peptidoglycans. In S. aureus, most of these surface proteins have been identified as important virulence factors that are vital in bacterial pathogenesis. In the present study, we show that acacetin, a natural flavonoid compound, inhibits the activity of SrtA in S. aureus (IC50 = 36.46 ± 4.69 μg/mL, 128 μM) which affects the assembly of protein A (SpA) to cell walls and reduces the binding of S. aureus to fibrinogen (Fg). The mechanism of the interaction between acacetin and SrtA were preliminarily discussed using molecular dynamics simulations. The results suggested that acacetin adopted a compact conformation binding at the pocket of the SrtA via residues Arg-139 and Lys-140. By performing an animal infection model, we demonstrated that acacetin was able to protect mice from renal abscess formation induced by S. aureus and significantly increased survival rates. Taken together, these findings suggest that acacetin may be a promising candidate for the development of anti-S. aureus drugs.

  3. POLY(N-VINYLPYRROLIDONE)-MODIFIED SURFACES REPEL PLASMA PROTEIN ADSORPTION

    Institute of Scientific and Technical Information of China (English)

    Xiao-li Liu; Zhao-qiang Wu; Dan Li; Hong Chen

    2012-01-01

    The present work aimed to study the interaction between plasma proteins and PVP-modified surfaces under more complex protein conditions.In the competitive adsorption of fibrinogen (Fg) and human serum albumin (HSA),the modified surfaces showed preferential adsorption of HSA.In 100% plasma,the amount of Fg adsorbed onto PVP-modified surfaces was as low as 10 ng/cm2,suggesting the excellent protein resistance properties of the modified surfaces.In addition,immunoblots of proteins eluted from the modified surfaces after plasma contact confirmed that PVP-modified surfaces can repel most plasma proteins,especially proteins that play important roles in the process of blood coagulation.

  4. Lemierre's syndrome presenting to the ED: rapidly fatal sepsis caused by methicillin-susceptible Staphylococcus aureus Staphylococcus protein A type t044.

    Science.gov (United States)

    Pitsiou, Georgia; Kachrimanidou, Melina; Papa, Anna; Kioumis, Ioannis; Paspala, Asimina; Boutou, Afroditi; Vlachou, Stamatina; Tsorlini, Eleni; Argyropoulou-Pataka, Paraskevi

    2013-01-01

    We describe the case of a fatal septic illness in a previously healthy young man caused by community-acquired methicillin-susceptible Staphylococcus aureus of Staphylococcus protein A (spa) type t044. The patient developed a devastating Lemierre-like syndrome with extensive thrombosis of inferior vena cava and iliac veins with multiple metastatic septic emboli of the lungs. He presented to the emergency department with rapidly progressing sepsis followed by multiple organ dysfunction syndrome. Recognition of such virulent community-acquired strains is of great importance because they could prove to be emerging pathogens for life-threatening diseases.

  5. Induction of Staphylococcus aureus-specific IgA and agglutination potency in milk of cows by mucosal immunization.

    Science.gov (United States)

    Tempelmans Plat-Sinnige, Marjan J; Verkaik, Nelianne J; van Wamel, Willem J B; de Groot, Nanda; Acton, Dennis S; van Belkum, Alex

    2009-06-19

    Lactating cows were immunized with inactivated Staphylococcus aureus strains and concentrated culture supernatants. Application of a repeated mucosal immunization scheme resulted in significant levels of S. aureus-specific IgA in milk of dairy cows. Average IgA titers against whole cell S. aureus increased during the first 10 weeks of immunization after which a plateau level was reached and maintained during lactation. Immune whey agglutinated both bovine and human S. aureus strains including methicillin-resistant S. aureus (MRSA) strains and recognized extracted S. aureus proteins on Western blot. ELISAs to quantify milk IgA reactive with a number of S. aureus virulence proteins (e.g. enterotoxins, microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) and immune modulating proteins) and cell wall components, demonstrated the polyclonality of the IgA. Correlations observed between agglutination and specific IgA titers for whey and for purified IgA suggested functionality of the induced antibodies. Milk from immunized cows may provide a way of producing potentially therapeutic polyclonal antibodies against S. aureus colonization and infection.

  6. The therapeutic effect of Chlorogenic acid against Staphylococcus aureus infection through Sortase A inhibition

    Directory of Open Access Journals (Sweden)

    Lin eWang

    2015-10-01

    Full Text Available The emergence and wide spread of multi-drug resistant Staphylococcus aureus (S. aureus requires the development of new therapeutic agents with alternative modes of action. Anti-virulence strategies are hoped to meet that need. Sortase A (SrtA has attracted great interest as a potential drug target to treat infections caused by S. aureus, as many of the surface proteins displayed by SrtA function as virulence factors by mediating bacterial adhesion to specific organ tissues, invasion of host cells, and evasion of the host-immune responses. It has been suggested that inhibitors of SrtA might be promising candidates for the treatment and/or prevention of S. aureus infections. In this study, we report that Chlorogenic acid (CHA, a natural compound that lacks significant anti–S. aureus activity, inhibit the activity of SrtA in vitro (IC50=33.86±5.55μg/ml and the binding of S. aureus to fibrinogen (Fg. Using molecular dynamics simulations and mutagenesis assays, we further demonstrate that CHA binds to the binding sites of C184 and G192 in the SrtA. In vivo studies demonstrated that CHA prevent mice from S. aureus-induced renal abscess, resulting in a significant survival advantage. These findings indicate that CHA is a promising therapeutic compound against SrtA during S. aureus infections.

  7. Identification of surface proteins in Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Eijsink Vincent GH

    2011-03-01

    Full Text Available Abstract Background Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design. Results Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in Enterococcus faecalis V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31 or to be secreted (5. Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species. Conclusions The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium E. faecalis. The 36 identified secreted (5 and surface (31 proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between E. faecalis and its environment.

  8. RPE cell surface proteins in normal and dystrophic rats

    Energy Technology Data Exchange (ETDEWEB)

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  9. Adsorption of HP Lattice Proteins on Patterned Surfaces

    Science.gov (United States)

    Wilson, Matthew; Shi, Guangjie; Landau, David P.; Li, Ying Wai; Wuest, Thomas

    2014-03-01

    The HP lattice model[2] is a course-grained, yet useful tool for modeling protein sequences where amino acids are treated as either hydrophobic (H) or polar (P) monomers. With the use of Wang-Landau sampling and an efficient set of Monte-Carlo moves[3], HP lattice proteins adsorbed on patterned surfaces are studied. Each substrate is modeled as a periodically bounded pattern of lattice sites that interact with either H or P monomers in the lattice protein, where the energy contributions of the surface are determined by assigned coupling strengths. By analyzing energy degeneracies, along with the thermodynamic and structural quantities of the protein, both the protein folding and surface adsorption can be observed. The adsorption behavior of the lattice proteins on patterned surfaces will be compared to those interacting with uniform surfaces. Research supported by NSF.

  10. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

  11. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay; Marappan, Nathiya; Gajendran, Sabari Srinivasan; Viswanathan, Vinodhini

    2016-01-01

    Aim/Background: Medicinal plants have ability to resist microorganisms by synthesizing secondary metabolites such as phenols. Rosmarinic acid (RA) is a phenylpropanoid widely distributed in plants and well known as therapeutic and cosmetic agent. Methicillin-resistant Staphylococcus aureus (MRSA) which is resistant to all kinds of β-lactams, threatens even most potent antibiotics. To improve the efficiency of antibiotics against multi-drug resistant bacteria and to reduce the antibiotic dose, the antibacterial activity and the synergistic effect of RA with standard antibiotics against S. aureus and MRSA was investigated. Materials and Methods: Antibacterial activity of RA against S. aureus and a clinical isolate of MRSA was evaluated by agar well diffusion method. Minimum inhibitory concentration (MIC) of RA was determined by broth dilution method. Synergism of RA with various antibiotics against S. aureus and MRSA was studied by broth checkerboard method and time-kill kinetic assay. Effect of RA on microbial surface components recognizing adhesive matrix molecules (MSCRAMM’s) of S. aureus and MRSA was studied using sodium dodecyl sulfate - polyacrylamide gel electrophoresis. Results: MIC of RA was found to be 0.8 and 10 mg/ml against S. aureus and MRSA, respectively. RA was synergistic with vancomycin, ofloxacin, and amoxicillin against S. aureus and only with vancomycin against MRSA. The time-kill analysis revealed that synergistic combinations were a more effective than individual antibiotics. MSCRAMM’s protein expression of S. aureus and MRSA was markedly suppressed by RA + vancomycin combination rather than RA alone. Conclusion: The synergistic effects of RA with antibiotics were observed against S. aureus and MRSA. RA showed inhibitory effect on the surface proteins MSCRAMM’s. Even though RA was shown to exhibit a synergistic effect with antibiotics, the MIC was found to be higher. Thus, further studies on increasing the efficacy of RA can develop it

  12. Surface passivation for single-molecule protein studies.

    Science.gov (United States)

    Chandradoss, Stanley D; Haagsma, Anna C; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-04-24

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.

  13. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  14. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    Science.gov (United States)

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  15. Hydrophobic patches on the surfaces of protein structures

    NARCIS (Netherlands)

    Lijnzaad, P.; Berendsen, H.J.C.; Argos, P.

    1996-01-01

    A survey of hydrophobic patches on the surface of 112 soluble, monomeric proteins is presented, The largest patch on each individual protein averages around 400 Angstrom(2) but can range from 200 to 1,200 Angstrom(2). These areas are not correlated to the sizes of the proteins and only weakly to the

  16. VASCo: computation and visualization of annotated protein surface contacts

    Directory of Open Access Journals (Sweden)

    Thallinger Gerhard G

    2009-01-01

    Full Text Available Abstract Background Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. Results VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. Conclusion VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.

  17. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus.

    Science.gov (United States)

    Hartmann, Torsten; Zhang, Bo; Baronian, Grégory; Schulthess, Bettina; Homerova, Dagmar; Grubmüller, Stephanie; Kutzner, Erika; Gaupp, Rosmarie; Bertram, Ralph; Powers, Robert; Eisenreich, Wolfgang; Kormanec, Jan; Herrmann, Mathias; Molle, Virginie; Somerville, Greg A; Bischoff, Markus

    2013-12-13

    The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB.

  18. Active Immunization with an Octa-Valent Staphylococcus aureus Antigen Mixture in Models of S. aureus Bacteremia and Skin Infection in Mice

    NARCIS (Netherlands)

    van den Berg, Sanne; Koedijk, Dennis G. A. M.; Back, Jaap Willem; Neef, Jolanda; Dreisbach, Annette; van Dijl, Jan Maarten; Bakker-Woudenberg, Irma A. J. M.; Buist, Girbe

    2015-01-01

    Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins alpha (PSM alpha) are invariantly produced by this pathogen. Therefore the present study wa

  19. Active immunization with an octa-valent Staphylococcus aureus antigen mixture in models of S. aureus bacteremia and skin infection in mice

    NARCIS (Netherlands)

    Van Den Berg, S. (Sanne); Koedijk, D.G.A.M. (Dennis G. A. M.); Back, J.W. (Jaap Willem); J. Neef (Jolanda); A. Dreisbach (Annette); J.M. Dijl (Jan Maarten); I.A.J.M. Bakker-Woudenberg (Irma); G. Buist (Girbe)

    2015-01-01

    textabstractProteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins α (PSMα) are invariantly produced by this pathogen. Therefore the present study

  20. Competitive protein adsorption to polymer surface from human serum

    DEFF Research Database (Denmark)

    Holmberg, Maria; Jensen, Karin Bagger Stibius; Larsen, Niels Bent;

    2008-01-01

    Surface modification by "soft" plasma polymerisation to obtain a hydrophilic and non-fouling polymer surface has been validated using radioactive labelling. Adsorption to unmodified and modified polymer surfaces, from both single protein and human serum solutions, has been investigated. By using ...

  1. Decorating microbes : surface display of proteins on Escherichia coli

    NARCIS (Netherlands)

    van Bloois, Edwin; Winter, Remko T.; Kolmar, Harald; Fraaije, Marco W.

    2011-01-01

    Bacterial surface display entails the presentation of recombinant proteins or peptides on the surface of bacterial cells. Escherichia coil is the most frequently used bacterial host for surface display and, as such, a variety of E. coil display systems have been described that primarily promote the

  2. IruO is a reductase for heme degradation by IsdI and IsdG proteins in Staphylococcus aureus.

    Science.gov (United States)

    Loutet, Slade A; Kobylarz, Marek J; Chau, Crystal H T; Murphy, Michael E P

    2013-09-06

    Staphylococcus aureus is a common hospital- and community-acquired bacterium that can cause devastating infections and is often multidrug-resistant. Iron acquisition is required by S. aureus during an infection, and iron acquisition pathways are potential targets for therapies. The gene NWMN2274 in S. aureus strain Newman is annotated as an oxidoreductase of the diverse pyridine nucleotide-disulfide oxidoreductase (PNDO) family. We show that NWMN2274 is an electron donor to IsdG and IsdI catalyzing the degradation of heme, and we have renamed this protein IruO. Recombinant IruO is a FAD-containing NADPH-dependent reductase. In the presence of NADPH and IruO, either IsdI or IsdG degraded bound heme 10-fold more rapidly than with the chemical reductant ascorbic acid. Varying IsdI-heme substrate and monitoring loss of the heme Soret band gave a K(m) of 15 ± 4 μM, a k(cat) of 5.2 ± 0.7 min(-1), and a k(cat)/K(m) of 5.8 × 10(3) M(-1) s(-1). From HPLC and electronic spectra, the major heme degradation products are 5-oxo-δ-bilirubin and 15-oxo-β-bilirubin (staphylobilins), as observed with ascorbic acid. Although heme degradation by IsdI or IsdG can occur in the presence of H2O2, the addition of catalase and superoxide dismutase did not disrupt NADPH/IruO heme degradation reactions. The degree of electron coupling between IruO and IsdI or IsdG remains to be determined. Homologs of IruO were identified by sequence similarity in the genomes of Gram-positive bacteria that possess IsdG-family heme oxygenases. A phylogeny of these homologs identifies a distinct clade of pyridine nucleotide-disulfide oxidoreductases likely involved in iron uptake systems. IruO is the likely in vivo reductant required for heme degradation by S. aureus.

  3. The ability of S.aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications.

    Science.gov (United States)

    Szymczyk, Patrycja; Junka, Adam; Ziółkowski, Grzegorz; Smutnicka, Danuta; Bartoszewicz, Marzenna; Chlebus, Edward

    2013-01-01

    The Gram-positive coccus, Staphylococcus aureus, is the leading etiologic agent of limb and life-threatening biofilm-related infections in the patients following the orthopaedic implantations. The aim of the present paper is to estimate the ability of S. aureus to form biofilm on titanium alloy (Ti-6Al-7Nb) scaffolds produced by Selective Laser Melting (SLM) and subjected to the different types of surface modifications, including ultrasonic cleaning and chemical polishing. The results obtained indicate significantly the decreased ability of S.aureus to form biofilm on the surface of scaffolds subjected to the chemical polishing in comparison to the scaffolds cleaned ultrasonically. The data provided can be useful for future applications of the SLM technology in production of Ti-6Al-7Nb medical implants.

  4. SURF'S UP! – Protein classification by surface comparisons

    Indian Academy of Sciences (India)

    Joanna M Sasin; Adam Godzik; Janusz M Bujnicki

    2007-01-01

    Large-scale genome sequencing and structural genomics projects generate numerous sequences and structures for ‘hypothetical’ proteins without functional characterizations. Detection of homology to experimentally characterized proteins can provide functional clues, but the accuracy of homology-based predictions is limited by the paucity of tools for quantitative comparison of diverging residues responsible for the functional divergence. SURF’S UP! is a web server for analysis of functional relationships in protein families, as inferred from protein surface maps comparison according to the algorithm. It assigns a numerical score to the similarity between patterns of physicochemical features (charge, hydrophobicity) on compared protein surfaces. It allows recognizing clusters of proteins that have similar surfaces, hence presumably similar functions. The server takes as an input a set of protein coordinates and returns files with ``spherical coordinates” of proteins in a PDB format and their graphical presentation, a matrix with values of mutual similarities between the surfaces, and the unrooted tree that represents the clustering of similar surfaces, calculated by the neighbor-joining method. SURF’S UP! facilitates the comparative analysis of physicochemical features of the surface, which are the key determinants of the protein function. By concentrating on coarse surface features, SURF’S UP! can work with models obtained from comparative modelling. Although it is designed to analyse the conservation among homologs, it can also be used to compare surfaces of non-homologous proteins with different three-dimensional folds, as long as a functionally meaningful structural superposition is supplied by the user. Another valuable characteristic of our method is the lack of initial assumptions about the functional features to be compared. SURF’S UP! is freely available for academic researchers at http://asia.genesilico.pl/surfs_up/.

  5. Contamination of environmental surfaces by methicillin-resistant Staphylococcus aureus (MRSA) in rooms of inpatients with MRSA-positive body sites.

    Science.gov (United States)

    Kurashige, E Jessica Ohashi; Oie, Shigeharu; Furukawa, H

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) can contaminate environmental surfaces that are frequently touched by the hands of patients with MRSA colonization/infection. There have been many studies in which the presence or absence of MRSA contamination was determined but no studies in which MRSA contamination levels were also evaluated in detail. We evaluated MRSA contamination of environmental surfaces (overbed tables, bed side rails, and curtains) in the rooms of inpatients from whom MRSA was isolated via clinical specimens. We examined the curtains within 7-14 days after they had been newly hung. The environmental surfaces were wiped using gauze (molded gauze for wiping of surface bacteria; 100% cotton, 4cm×8cm) moistened with sterile physiological saline. The MRSA contamination rate and mean counts (range) were 25.0% (6/24 samples) and 30.6 (0-255)colony-forming units (cfu)/100cm(2), respectively, for the overbed tables and 31.6% (6/19 samples) and 159.5 (0-1620)cfu/100cm(2), respectively, for the bed side rails. No MRSA was detected in 24 curtain samples. The rate of MRSA contamination of environmental surfaces was high for the overbed tables and bed side rails but low for the curtains. Therefore, at least until the 14th day of use, frequent disinfection of curtains may be not necessary.

  6. Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates

    Directory of Open Access Journals (Sweden)

    Ma Ling

    2009-10-01

    Full Text Available Abstract Background Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs, the impact of these potential sources of contamination on clinical infection needs to be clarified. Methods This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant Staphylococcus aureus (MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram. Results Our results revealed a 17.4% (49/282 contamination rate of these computer devices by S. aureus, Acinetobacter spp. or Pseudomonas spp. The contamination rates of MRSA and A. baumannii in the ward computers were 1.1% and 4.3%, respectively. No P. aeruginosa was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, A. baumannii isolates on two ward computers had the same pulsotype. Conclusion With good hand hygiene compliance, we found relatively low contamination rates of MRSA, P. aeruginosa and A. baumannii on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation.

  7. Hydration dynamics near a model protein surface

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  8. Enhanced microcontact printing of proteins on nanoporous silica surface.

    Science.gov (United States)

    Blinka, Ellen; Loeffler, Kathryn; Hu, Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Liu, Xuewu; Ferrari, Mauro; Zhang, John X J

    2010-10-15

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  9. Enhanced microcontact printing of proteins on nanoporous silica surface

    Science.gov (United States)

    Blinka, Ellen; Loeffler, Kathryn; Hu, Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Liu, Xuewu; Ferrari, Mauro; Zhang, John X. J.

    2010-10-01

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  10. A coarse grain model for protein-surface interactions

    Science.gov (United States)

    Wei, Shuai; Knotts, Thomas A.

    2013-09-01

    The interaction of proteins with surfaces is important in numerous applications in many fields—such as biotechnology, proteomics, sensors, and medicine—but fundamental understanding of how protein stability and structure are affected by surfaces remains incomplete. Over the last several years, molecular simulation using coarse grain models has yielded significant insights, but the formalisms used to represent the surface interactions have been rudimentary. We present a new model for protein surface interactions that incorporates the chemical specificity of both the surface and the residues comprising the protein in the context of a one-bead-per-residue, coarse grain approach that maintains computational efficiency. The model is parameterized against experimental adsorption energies for multiple model peptides on different types of surfaces. The validity of the model is established by its ability to quantitatively and qualitatively predict the free energy of adsorption and structural changes for multiple biologically-relevant proteins on different surfaces. The validation, done with proteins not used in parameterization, shows that the model produces remarkable agreement between simulation and experiment.

  11. 金黄色葡萄球菌膜蛋白EbpS%The membrane protein EbpS of Staphylococcus Aureus

    Institute of Scientific and Technical Information of China (English)

    李传芬; 胡成进

    2009-01-01

    金黄色葡萄球菌(简称:金葡菌,Staphylococcus aureus)是细菌性感染的主要致病菌,主要通过其表面特异的弹性蛋白结合蛋白(elastin-binding protein of Staphylococcus arueus,EbpS)与宿主胞外基质结合引起宿主的感染.EbpS蛋白在不同的环境中呈现不同的结构.这种结构的变化将会对进一步揭示金葡菌侵染宿主的机制产生极其重要的意义.

  12. Expression of acute phase proteins and inflammatory cytokines in mouse mammary gland following Staphylococcus aureus challenge and in response to milk accumulation

    DEFF Research Database (Denmark)

    Nazemi, Sasan; Aalbæk, Bent; Kjelgaard-Hansen, Mads

    2014-01-01

    We used a mouse model of pathogenic (Staphylococcus aureus) and non-pathogenic (teat sealing) mammary inflammation to investigate mRNA expression of several inflammatory cytokines and acute phase proteins (APP) in mammary tissue and liver, and the appearance of some of these factors in plasma...... in combination might provide a tool for diagnostic discrimination between mastitis caused by pathogenic invasion and milk accumulation, and hence allow for better targeting of antibiotic therapy. In comparison with mammary expression, expression of cytokines in liver tissue was up-regulated to a similar...... or lesser extent, whilst expression of APP was up-regulated to a much greater extent. The first appearance of increased cytokine and APP concentrations in plasma and of milk amyloid A (MAA) in milk occurred in advance of the measurable up-regulation of expression, hence their origin cannot be stated...

  13. Comparison of multi-drug resistant environmental methicillin-resistant Staphylococcus aureus [MRSA] isolated from recreational beaches and high touch surfaces in built environments

    Directory of Open Access Journals (Sweden)

    Marilyn C Roberts

    2013-04-01

    Full Text Available Over the last decade community-acquired methicillin-resistant Staphylococcus aureus [MRSA] has emerged as a major cause of disease in the general population with no health care exposure or known classical risk factors for MRSA infections. The potential community reservoirs have not been well defined though certain strains such as ST398 and USA300 have been well studied in some settings. MRSA has been isolated from recreational beaches, high-touch surfaces in homes, universities and other community environmental surfaces. However, in most cases the strains were not characterized to determine if they are related to community-acquired or hospital-acquired clinical strains. We compared 55 environmental MRSA from 805 samples including sand, fresh and marine water samples from local marine and fresh water recreational beaches (n=296, high touch surfaces on the University of Washington campus (n=294, surfaces in UW undergraduate housing (n=85, and the local community (n=130. Eleven USA300, representing 20% of the isolates, were found on the UW campus surfaces, student housing surfaces and on the community surfaces but not in the recreational beach samples from the Northwest USA. Similarly, the predominant animal ST133 was found in the recreational beach samples but not in the high touch surface samples. All USA300 isolates were multi-drug resistant carrying 2-6 different antibiotic resistance genes coding for kanamycin, macrolides and/or macrolides-lincosamides-streptogramin B and tetracycline, with the majority [72%] carrying 4-6 different antibiotic resistance genes. A surprising 98% of the 55 MRSA isolates were resistant to other classes of antibiotics and most likely represent reservoirs for these genes in the environment.

  14. Arginine Inhibits Adsorption of Proteins on Polystyrene Surface

    Science.gov (United States)

    Shikiya, Yui; Tomita, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2013-01-01

    Nonspecific adsorption of protein on solid surfaces causes a reduction of concentration as well as enzyme inactivation during purification and storage. However, there are no versatile inhibitors of the adsorption between proteins and solid surfaces at low concentrations. Therefore, we examined additives for the prevention of protein adsorption on polystyrene particles (PS particles) as a commonly-used material for vessels such as disposable test tubes and microtubes. A protein solution was mixed with PS particles, and then adsorption of protein was monitored by the concentration and activity of protein in the supernatant after centrifugation. Five different proteins bound to PS particles through electrostatic, hydrophobic, and aromatic interactions, causing a decrease in protein concentration and loss of enzyme activity in the supernatant. Among the additives, including arginine hydrochloride (Arg), lysine hydrochloride, guanidine hydrochloride, NaCl, glycine, and glucose, Arg was most effective in preventing the binding of proteins to PS particles as well as activity loss. Moreover, even after the mixing of protein and PS particles, the addition of Arg caused desorption of the bound protein from PS particles. This study demonstrated a new function of Arg, which expands the potential for application of Arg to proteins. PMID:23967100

  15. Endovascular infections caused by methicillin-resistant Staphylococcus aureus are linked to clonal complex-specific alterations in binding and invasion domains of fibronectin-binding protein A as well as the occurrence of fnbB.

    Science.gov (United States)

    Xiong, Yan Q; Sharma-Kuinkel, Batu K; Casillas-Ituarte, Nadia N; Fowler, Vance G; Rude, Thomas; DiBartola, Alex C; Lins, Roberto D; Abdel-Hady, Wessam; Lower, Steven K; Bayer, Arnold S

    2015-12-01

    Endovascular infections caused by Staphylococcus aureus involve interactions with fibronectin present as extracellular matrix or surface ligand on host cells. We examined the expression, structure, and binding activity of the two major S. aureus fibronectin-binding proteins (FnBPA, FnBPB) in 10 distinct, methicillin-resistant clinical isolates from patients with either persistent or resolving bacteremia. The persistent bacteremia isolates (n = 5) formed significantly stronger bonds with immobilized fibronectin as determined by dynamic binding measurements performed with atomic force microscopy. Several notable differences were also observed when the results were grouped by clonal complex 5 (CC5) strains (n = 5) versus CC45 strains (n = 5). Fibronectin-binding receptors on CC5 formed stronger bonds with immobilized fibronectin (P < 0.001). The fnbA gene was expressed at higher levels in CC45, whereas fnbB was found in only CC5 isolates. The fnbB gene was not sequenced because all CC45 isolates lacked this gene. Instead, comparisons were made for fnbA, which was present in all 10 isolates. Sequencing of fnbA revealed discrete differences within high-affinity, fibronectin-binding repeats (FnBRs) of FnBPA that included (i) 5-amino-acid polymorphisms in FnBR-9, FnBR-10, and FnBR-11 involving charged or polar side chains, (ii) an extra, 38-amino-acid repeat inserted between FnBR-9 and FnBR-10 exclusively seen in CC45 isolates, and (iii) CC5 isolates had the SVDFEED epitope in FnBR-11 (a sequence shown to be essential for fibronectin binding), while this sequence was replaced in all CC45 isolates with GIDFVED (a motif known to favor host cell invasion at the cost of reduced fibronectin binding). These complementary sequence and binding data suggest that differences in fnbA and fnbB, particularly polymorphisms and duplications in FnBPA, give S. aureus two distinct advantages in human endovascular infections: (i) FnBPs similar to that of CC5 enhance ligand binding and

  16. Adhesion and biofilm formation by Staphylococcus aureus from food processing plants as affected by growth medium, surface type and incubation temperature

    Directory of Open Access Journals (Sweden)

    Heloísa Maria Ângelo Jerônimo

    2012-12-01

    Full Text Available This study assessed the effect of different growth media [BHI broth, BHI broth plus glucose (10 g/100 mL and BHI broth plus NaCl (5 g/100 mL] and incubation temperatures (28 or 37 ºC on the adherence, detachment and biofilm formation on polypropylene and stainless steel surfaces (2 x 2 cm coupons for a prolonged period (24-72 h by some strains of Staphylococcus aureus (S3, S28 and S54 from food processing plants. The efficacy of the sanitizers sodium hypochlorite (250 mg/mL and peracetic acid (30 mg/mL in reducing the number of viable bacterial cells in a preformed biofilm was also evaluated. S. aureus strains adhered in highest numbers in BHI broth, regardless of the type of surface or incubation temperature. Cell detachment from surfaces revealed high persistence over the incubation period. The number of cells needed for biofilm formation was noted in all experimental systems after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered onto polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacities to adhere and form biofilms on polypropylene and stainless steel surfaces under the different growth conditions, and the cells in biofilm matrixes were resistant to total removal when exposed to the sanitizers sodium hypochlorite and peracetic acid.Este estudo teve como objetivo avaliar o efeito de diferentes meios de crescimento [caldo BHI, caldo BHI adicionado de glucose (10 g/100 mL e caldo BHI adicionado de NaCl (5 g/100 mL] e temperaturas de incubação (28 e 37 ºC sobre a adesão, separação e formação de biofilme sobre superfícies (2 x 2 cm de polipropileno e aço inoxidável durante longo tempo de incubação (24-72 h por parte de cepas de Staphylococcus aureus (S3, S58 e S54 isoladas de plantas de processamento de alimentos. Também foi avaliada a eficácia dos sanitizantes hipoclorito de sódio (250 mg/mL e ácido perac

  17. Protein-surface interaction maps for ion-exchange chromatography.

    Science.gov (United States)

    Freed, Alexander S; Cramer, Steven M

    2011-04-05

    In this paper, protein-surface interaction maps were generated by performing coarse-grained protein-surface calculations. This approach allowed for the rapid determination of the protein-surface interaction energies at a range of orientations and distances. Interaction maps of lysozyme indicated that there was a contiguous series of orientations corresponding to several adjacent preferred binding regions on the protein surface. Examination of these orientations provided insight into the residues involved in surface interactions, which qualitatively agreed with the retention data for single-site mutants. Interaction maps of lysozyme single-site mutants were also generated and provided significant insight into why these variants exhibited significant differences in their chromatographic behavior. This approach was also employed to study the binding behavior of CspB and related mutants. The results indicated that, in addition to describing general trends in the data, these maps provided significant insight into retention data of the single-site mutants. In particular, subtle retention trends observed with the K12 and K13 mutants were well-described using this interaction map approach. Finally, the number of interaction points with energies stronger than -2 kcal/mol was shown to be able to semi-quantitatively predict the behavior of most of the mutants. This rapid approach for calculating protein-surface interaction maps is expected to facilitate future method development for separating closely related protein variants in ion-exchange systems.

  18. 金黄色葡萄球菌乳房炎奶牛血浆的比较蛋白质组研究%Differential Proteomics Analysis of Plasma Protein from Staphylococcus aureus Mastitic and Healthy Dairy Cows

    Institute of Scientific and Technical Information of China (English)

    杨永新; 曹随忠; 张勇; 程广龙; 赵辉玲; 赵兴绪

    2011-01-01

    为了分析金黄色葡萄球菌(Staphylococcus aureus)自然感染引起的隐性乳房炎奶牛血浆蛋白的表达变化,经细菌培养分离鉴定了乳中金黄色葡萄球菌,选择其感染的奶牛.采用二维凝胶电泳技术分离了临床健康奶牛和乳房炎奶牛的血浆蛋白,考马斯亮蓝G-250染色后PDQuest 8.0软件检测差异表达蛋白点,高效液相色谱串联离子阱质谱鉴定.结果发现,金黄色葡萄球菌乳房炎奶牛血浆中有10个蛋白点的表达量发生改变,其中6个蛋白点经质谱鉴定为结合珠蛋白、转甲状腺素蛋白和α1酸性糖蛋白等4种蛋白.金黄色葡萄球菌感染可造成奶牛血浆结合珠蛋白、α1酸性糖蛋白和血清淀粉样蛋白A的表达量增加.ELISA法测定血浆结合珠蛋白的结果也发现,金黄色葡萄球菌感染奶牛血浆结合珠蛋白水平显著高于健康牛(P<0.01).结果提示乳房炎奶牛血浆蛋白的变化可为揭示金黄色葡萄球菌感染乳腺炎症的应答提供依据.%The purpose of our study was to investigate the changes of plasma protein from the cows infected with Staphylococcus aureus. Dairy cows shown to be S. aureus-positive on bacteriological culture of milk from all 4 quarters, were classified as S. aureus subclinical mastitis. Two-dimensional gel electrophoresis was used to separate plasma protein from S. aureus subclinical mastitis and healthy dairy cows, and stained with Coomassie Blue G-250 solution. Differential expression proteins were detected by PDQuest 8.0 software and identified by ion trap mass spectrometer. The results showed that the ten protein spots were changed in cows subclinically infected with S. aureus mastitis, and six spots were identified as four proteins including haptoglobin, alpha 1 acid glycoprotein, transthyretin and serum amyloid protein A. Haptoglobin, alpha 1 acid glycoprotein, and serum amyloid protein A were up-regulated in plasma from S. aureus infected cows. ELISA detection of

  19. Identification of pathogenic factors potentially involved in Staphylococcus aureus keratitis using proteomics.

    Science.gov (United States)

    Khan, Shamila; Cole, Nerida; Hume, Emma B H; Garthwaite, Linda L; Nguyen-Khuong, Terry; Walsh, Bradley J; Willcox, Mark D P

    2016-10-01

    Staphylococcus is a leading cause of microbial keratitis, characterized by destruction of the cornea by bacterial exoproteins and host-associated factors. The aim of this study was to compare extracellular and cell-associated proteins produced by two different isolates of S. aureus, a virulent clinical isolate (Staph 38) and a laboratory strain (Staphylococcus aureus 8325-4) of weaker virulence in the mouse keratitis model. Proteins were analyzed using 2D polyacrylamide gel electrophoresis and identified by subsequent mass spectrometry. Activity of staphylococcal adhesins was assessed by allowing strains to bind to various proteins adsorbed onto polymethylmethacrylate squares. Thirteen proteins in the extracellular fraction and eight proteins in the cell-associated fractions after bacterial growth were produced in increased amounts in the clinical isolate Staph 38. Four of these proteins were S. aureus virulence factor adhesins, fibronectin binding protein A, staphopain, glyceraldehyde-3-phosphate dehydrogenase 2 and extracellular adherence protein. The clinical isolate Staph 38 adhered to a greater extent to all mammalian proteins tested, indicating the potential of the adhesins to be active on its surface. Other proteins with increased expression in Staph 38 included potential moonlighting proteins and proteins involved in transcription or translation. This is the first demonstration of the proteome of S. aureus isolates from keratitis. These results indicate that the virulent clinical isolate produces more potentially important virulence factors compared to the less virulent laboratory strain and these may be associated with the ability of a S. aureus strain to cause more severe keratitis.

  20. The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A.

    Science.gov (United States)

    Jousselin, Ambre; Manzano, Caroline; Biette, Alexandra; Reed, Patricia; Pinho, Mariana G; Rosato, Adriana E; Kelley, William L; Renzoni, Adriana

    2015-12-28

    Expression of the methicillin-resistant S. aureus (MRSA) phenotype results from the expression of the extra penicillin-binding protein 2A (PBP2A), which is encoded by mecA and acquired horizontally on part of the SCCmec cassette. PBP2A can catalyze dd-transpeptidation of peptidoglycan (PG) because of its low affinity for β-lactam antibiotics and can functionally cooperate with the PBP2 transglycosylase in the biosynthesis of PG. Here, we focus upon the role of the membrane-bound PrsA foldase protein as a regulator of β-lactam resistance expression. Deletion of prsA altered oxacillin resistance in three different SCCmec backgrounds and, more importantly, caused a decrease in PBP2A membrane amounts without affecting mecA mRNA levels. The N- and C-terminal domains of PrsA were found to be critical features for PBP2A protein membrane levels and oxacillin resistance. We propose that PrsA has a role in posttranscriptional maturation of PBP2A, possibly in the export and/or folding of newly synthesized PBP2A. This additional level of control in the expression of the mecA-dependent MRSA phenotype constitutes an opportunity to expand the strategies to design anti-infective agents.

  1. Protein-induced surface structuring in myelin membrane monolayers.

    Science.gov (United States)

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  2. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  3. Protein function annotation by local binding site surface similarity.

    Science.gov (United States)

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  4. Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family.

    Science.gov (United States)

    Campeotto, Ivan; Zhang, Yong; Mladenov, Miroslav G; Freemont, Paul S; Gründling, Angelika

    2015-01-30

    Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein.

  5. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Ryo Jimbo

    2010-07-01

    Full Text Available Objectives: To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models.Material and Methods: Commercially pure titanium discs were blasted with titanium dioxide (TiO2 particles (control, and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test. Surface morphology was investigated by scanning electron microscopy, surface topography by optic interferometry, characterization by X-ray photoelectron spectroscopy (XPS, and by X-ray diffraction (XRD analysis. The adsorption of 3 different proteins (fibronectin, albumin, and collagen type I was investigated by an immunoblotting technique.Results: The test surface showed a porous structure, whereas the control surface showed a typical TiO2 blasted structure. XPS data revealed magnesium-incorporation to the anodic oxide film of the surface. There was no difference in surface roughness between the control and test surfaces. For the protein adsorption test, the amount of albumin was significantly higher on the control surface whereas the amount of fibronectin was significantly higher on the test surface. Although there was no significant difference, the test surface had a tendency to adsorb more collagen type I.Conclusions: The magnesium-incorporated anodized surface showed significantly higher fibronectin adsorption and lower albumin adsorption than the blasted surface. These results may be one of the reasons for the excellent bone response previously observed in animal studies.

  6. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    Science.gov (United States)

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    2009-05-01

    We report a novel high-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of protein biomarkers. The biosensor is based on a high-performance SPR imaging sensor with polarization contrast and internal referencing which yields a considerably higher sensitivity and resolution than conventional SPR imaging systems (refractive index resolution 2 × 10-7 RIU). We combined the SPR imaging biosensor with microspotting to create an array of antibodies. DNA-directed protein immobilization was utilized for the spatially resolved attachment of antibodies. Using Human Chorionic Gonadotropin (hCG) as model protein biomarker, we demonstrated the potential for simultaneous detection of proteins in up to 100 channels.

  7. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans.

    Science.gov (United States)

    Szabados, Florian; Mohner, Amelie; Kleine, Britta; Gatermann, Sören G

    2013-10-01

    Staphylococcal lipases have been proposed as pathogenicity factors. In Staphylococcus saprophyticus the surface-associated protein (Ssp) has been previously characterized as a cell wall-associated true lipase. A S. saprophyticus Δssp::ermB mutant has been described as less virulent in an in vivo model of urinary tract infection compared with its wild-type. This is the first report showing that S. saprophyticus induced a lifespan reduction in Caenorhabditis elegans similar to that of S. aureus RN4220. In two S. saprophyticus Δssp::ermB mutants lifespan reduction in C. elegans was partly abolished. In order to attribute virulence to the lipase activity itself and distinguish this phenomenon from the presence of the Ssp-protein, the conserved active site of the lipase was modified by site-directed ligase-independent mutagenesis and lipase activity-deficient mutants were constructed. These results indicate that the Ssp is associated with pathogenicity in C. elegans and one could speculate that the lipase activity itself is responsible for this virulence.

  8. Protein adsorption to graphene surfaces controlled by chemical modification of the substrate surfaces.

    Science.gov (United States)

    Kamiya, Yasutaka; Yamazaki, Kenji; Ogino, Toshio

    2014-10-01

    We have investigated effects of the support substrate surfaces on properties of the attached graphene flakes by observing protein adsorption to the graphene surfaces on SiO2/Si substrates that are modified with self-assembled monolayers to control their hydrophilicity. Using atomic force microscopy operated in aqueous environment, we found that high-density clusters of agglomerated avidin molecules form on the graphene flakes in the areas supported by a hydrophobic substrate surface, whereas very low density of large avidin clusters form at the edge of graphene flakes in the area supported by a hydrophilic surface. These results demonstrate that hydrophilicity of the support surface affects hydrophilicity of the graphene surface also in aqueous environment and that surface modification of the support substrate is a useful technique to control protein adsorption phenomena on graphene surfaces for realization of high sensitive graphene biosensors.

  9. The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes.

    Science.gov (United States)

    Eisenbeis, Janina; Peisker, Henrik; Backes, Christian S; Bur, Stephanie; Hölters, Sebastian; Thewes, Nicolas; Greiner, Markus; Junker, Christian; Schwarz, Eva C; Hoth, Markus; Junker, Kerstin; Preissner, Klaus T; Jacobs, Karin; Herrmann, Mathias; Bischoff, Markus

    2017-02-01

    Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the

  10. Molecular Characterization of the Multiple Interactions of SpsD, a Surface Protein from Staphylococcus pseudintermedius, with Host Extracellular Matrix Proteins.

    Directory of Open Access Journals (Sweden)

    Giampiero Pietrocola

    Full Text Available Staphylococcus pseudintermedius, a commensal and pathogen of dogs and occasionally of humans, expresses surface proteins potentially involved in host colonization and pathogenesis. Here, we describe the cloning and characterization of SpsD, a surface protein of S. pseudintermedius reported as interacting with extracellular matrix proteins and corneocytes. A ligand screen and Western immunoblotting revealed that the N-terminal A domain of SpsD bound fibrinogen, fibronectin, elastin and cytokeratin 10. SpsD also interfered with thrombin-induced fibrinogen coagulation and blocked ADP-induced platelet aggregation. The binding site for SpsD was mapped to residues 395-411 in the fibrinogen γ-chain, while binding sites in fibronectin were localized to the N- and C-terminal regions. SpsD also bound to glycine- and serine-rich omega loops within the C-terminal tail region of cytokeratin 10. Ligand binding studies using SpsD variants lacking the C-terminal segment or containing an amino-acid substitution in the putative ligand binding site provided insights into interaction mechanism of SpsD with the different ligands. Together these data demonstrate the multi-ligand binding properties of SpsD and illustrate some interesting differences in the variety of ligands bound by SpsD and related proteins from S. aureus.

  11. Lack of Involvement of Fenton Chemistry in Death of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus and Destruction of Their Genomes on Wet or Dry Copper Alloy Surfaces

    Science.gov (United States)

    2016-01-01

    The pandemic of hospital-acquired infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has declined, but the evolution of strains with enhanced virulence and toxins and the increase of community-associated infections are still a threat. In previous studies, 107 MRSA bacteria applied as simulated droplet contamination were killed on copper and brass surfaces within 90 min. However, contamination of surfaces is often via finger tips and dries rapidly, and it may be overlooked by cleaning regimes (unlike visible droplets). In this new study, a 5-log reduction of a hardy epidemic strain of MRSA (epidemic methicillin-resistant S. aureus 16 [EMRSA-16]) was observed following 10 min of contact with copper, and a 4-log reduction was observed on copper nickel and cartridge brass alloys in 15 min. A methicillin-sensitive S. aureus (MSSA) strain from an osteomyelitis patient was killed on copper surfaces in 15 min, and 4-log and 3-log reductions occurred within 20 min of contact with copper nickel and cartridge brass, respectively. Bacterial respiration was compromised on copper surfaces, and superoxide was generated as part of the killing mechanism. In addition, destruction of genomic DNA occurs on copper and brass surfaces, allaying concerns about horizontal gene transfer and copper resistance. Incorporation of copper alloy biocidal surfaces may help to reduce the spread of this dangerous pathogen. PMID:26826226

  12. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    Science.gov (United States)

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug.

  13. Identification of Uropathogenic Escherichia coli Surface Proteins by Shotgun Proteomics

    Science.gov (United States)

    Walters, Matthew S.; Mobley, Harry L.T.

    2009-01-01

    Uropathogenic Escherichia coli (UPEC) cause the majority of uncomplicated urinary tract infections in humans. In the process of identifying candidate antigens for a vaccine, two methods for the identification of the UPEC surface proteome during growth in human urine were investigated. The first approach utilized a protease to ‘shave’ surface-exposed peptides from the bacterial cell surface and identify them by mass spectrometry. Although this approach has been successfully applied to a Gram-positive pathogen, the adaptation to Gram-negative UPEC resulted in cytoplasmic protein contamination. In a more direct approach, whole-cell bacteria were labeled with a biotin tag to indicate surface-exposed peptides and two-dimensional liquid chromatography-tandem mass spectrometry (2-DLC-MS/MS) was used to identify proteins isolated from the outer membrane. This method discovered 25 predicted outer membrane proteins expressed by UPEC while growing in human urine. Nine of the 25 predicted outer membrane proteins were part of iron transport systems or putative iron-regulated virulence proteins, indicating the importance of iron acquisition during growth in urine. One of the iron transport proteins identified, Hma, appears to be a promising vaccine candidate is being further investigated. The method described here presents a system to rapidly identify the outer membrane proteome of bacteria, which may prove valuable in vaccine development. PMID:19426766

  14. Structure of a conserved hypothetical protein SA1388 from S. aureus reveals a capped hexameric toroid with two PII domain lids and a dinuclear metal center

    Directory of Open Access Journals (Sweden)

    Leybourne Matthew

    2006-12-01

    Full Text Available Abstract Background The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. Results The structure of SA1388 has been solved to 2.0Å resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals. It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric "lids" formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. Conclusion SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The

  15. Structure of a conserved hypothetical protein SA1388 from S. aureus reveals a capped hexameric toroid with two PII domain lids and a dinuclear metal center

    Energy Technology Data Exchange (ETDEWEB)

    Saikatendu, Kumar Singh; Zhang, Xuejun; Kinch, Lisa; Leybourne, Matthew; Grishin, Nick V.; Zhang, Hong (Texas-D); (U. of Texas-SMED)

    2009-01-26

    The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. The structure of SA1388 has been solved to 2.0{angstrom} resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals. It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric 'lids' formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric

  16. Etudes structurales du ribosome de Staphylococcus aureus

    OpenAIRE

    Khusainov, Iskander

    2015-01-01

    The ribosome is a large cellular machinery that performs the protein synthesis in every living cell. Therefore, the ribosome is one of the major targets of naturally produced antibiotics, which can kill bacterial cells by blocking protein synthesis. However, some bacteria are resistant to these antibiotics due to small modifications of their ribosomes. Among them, Staphylococcus aureus (S. aureus) is a severe pathogen that causes numerous infections in humans. The crystal structures of comple...

  17. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms.

    Science.gov (United States)

    Yoshida, Hisashi; Kawai, Fumihiro; Obayashi, Eiji; Akashi, Satoko; Roper, David I; Tame, Jeremy R H; Park, Sam-Yong

    2012-10-26

    Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.

  18. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    Science.gov (United States)

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  19. Interaction of Serum Proteins with Surface of Hemodialysis Fiber Membranes

    Science.gov (United States)

    Afrin, Rehana; Shirako, Yuji; Kishimoto, Kikuo; Ikai, Atsushi

    2012-08-01

    The poly(vinyl pyrrolidone)-covered hydrophilic surface of hollow-fiber membranes (fiber membrane, hereafter) for hemodialysis was mechanically probed using modified tips on an atomic force microscope (AFM) with covalent crosslinkers and several types of serum protein. The retraction part of many of the force extension (F-E) curves obtained with AFM tips coated with serum albumin had a long and smooth extension up to 200-300 nm indicating forced elongation of poly(vinyl pyrrolidone) chains. When fibrinogen-coated tips were used, long extension F-E curves up to 500 nm with multiple peaks were obtained in addition to smooth curves most likely reflecting the unfolding of fibrinogen molecules. The results indicated that individual polymer chains had a significant affinity toward serum proteins. The adhesion frequency of tips coated with serum proteins was lower on the poly(vinyl pyrrolidone) surface than on the uncoated hydrophobic polysulfone surface.

  20. Surface charge effects in protein adsorption on nanodiamonds.

    Science.gov (United States)

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  1. A global optimization algorithm for protein surface alignment

    Directory of Open Access Journals (Sweden)

    Guerra Concettina

    2010-09-01

    Full Text Available Abstract Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP method for three-dimensional (3D shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites.

  2. Protein sequences bound to mineral surfaces persist into deep time

    Science.gov (United States)

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa; Freeman, Colin L; Woolley, Jos; Crisp, Molly K; Wilson, Julie; Fotakis, Anna; Fischer, Roman; Kessler, Benedikt M; Rakownikow Jersie-Christensen, Rosa; Olsen, Jesper V; Haile, James; Thomas, Jessica; Marean, Curtis W; Parkington, John; Presslee, Samantha; Lee-Thorp, Julia; Ditchfield, Peter; Hamilton, Jacqueline F; Ward, Martyn W; Wang, Chunting Michelle; Shaw, Marvin D; Harrison, Terry; Domínguez-Rodrigo, Manuel; MacPhee, Ross DE; Kwekason, Amandus; Ecker, Michaela; Kolska Horwitz, Liora; Chazan, Michael; Kröger, Roland; Thomas-Oates, Jane; Harding, John H; Cappellini, Enrico; Penkman, Kirsty; Collins, Matthew J

    2016-01-01

    Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C). DOI: http://dx.doi.org/10.7554/eLife.17092.001 PMID:27668515

  3. Comparison of surface and hydrogel-based protein microchips.

    Science.gov (United States)

    Zubtsov, D A; Savvateeva, E N; Rubina, A Yu; Pan'kov, S V; Konovalova, E V; Moiseeva, O V; Chechetkin, V R; Zasedatelev, A S

    2007-09-15

    Protein microchips are designed for high-throughput evaluation of the concentrations and activities of various proteins. The rapid advance in microchip technology and a wide variety of existing techniques pose the problem of unified approach to the assessment and comparison of different platforms. Here we compare the characteristics of protein microchips developed for quantitative immunoassay with those of antibodies immobilized on glass surfaces and in hemispherical gel pads. Spotting concentrations of antibodies used for manufacturing of microchips of both types and concentrations of antigen in analyte solution were identical. We compared the efficiency of antibody immobilization, the intensity of fluorescence signals for both direct and sandwich-type immunoassays, and the reaction-diffusion kinetics of the formation of antibody-antigen complexes for surface and gel-based microchips. Our results demonstrate higher capacity and sensitivity for the hydrogel-based protein microchips, while fluorescence saturation kinetics for the two types of microarrays was comparable.

  4. Neutrophil surface adhesion molecule and toll like receptor dynamics in crossbred cows suffering from Staphylococcus aureus subclinical and clinical mastitis

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Swain

    2016-06-01

    Conclusion: Host elicits stage specific expression of surface adhesion molecules and TLR2 and TLR4 as dynamic host innate immune response against Staphylococcal mastitis. [J Adv Vet Anim Res 2016; 3(2.000: 99-105

  5. Preventing protein adsorption from a range of surfaces using an aqueous fish protein extract

    DEFF Research Database (Denmark)

    Pillai, Saju; Arpanaei, Ayyoob; Meyer, Rikke L.;

    2009-01-01

    We utilize an aqueous extract of fish proteins (FPs) as a coating for minimizing the adsorption of fibrinogen (Fg) and human serum albumin (HSA). The surfaces include stainless steel (SS), gold (Au), silicon dioxide (SiO2), and poly(styrene) (PS). The adsorption processes (kinetics and adsorbed...... Fg- or HSA-coated surfaces are exposed to the FPs, a significant increase in adsorbed mass occurs because the FPs are highly surface-active displacing Fg. Additionally, fluorescence microscopy confirms that very little Fg adsorbs to the FP-coated surfaces. We propose that FP coatings prevent protein...

  6. Protein sequences bound to mineral surfaces persist into deep time

    DEFF Research Database (Denmark)

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa;

    2016-01-01

    of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell......, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated...... sequence (equivalent to ~16 Ma at a constant 10°C)....

  7. Active immunization with an octa-valent Staphylococcus aureus antigen mixture in models of S. aureus bacteremia and skin infection in mice.

    Directory of Open Access Journals (Sweden)

    Sanne van den Berg

    Full Text Available Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl and four phenol-soluble modulins α (PSMα are invariantly produced by this pathogen. Therefore the present study was aimed at investigating whether these proteins can be used for active immunization against S. aureus infection in mouse models of bacteremia and skin infection. To this end, recombinant His-tagged fusions of IsaA, LytM, Nuc and pro-Atl were isolated from Lactococcus lactis or Escherichia coli, while the PSMα1-4 peptides were chemically synthesized. Importantly, patients colonized by S. aureus showed significant immunoglobulin G (IgG responses against all eight antigens. BALB/cBYJ mice were immunized subcutaneously with a mixture of the antigens at day one (5 μg each, and boosted twice (25 μg of each antigen with 28 days interval. This resulted in high IgG responses against all antigens although the response against pro-Atl was around one log lower compared to the other antigens. Compared to placebo-immunized mice, immunization with the octa-valent antigen mixture did not reduce the S. aureus isolate P load in blood, lungs, spleen, liver, and kidneys in a bacteremia model in which the animals were challenged for 14 days with a primary load of 3 × 10(5 CFU. Discomfort scores and animal survival rates over 14 days did not differ between immunized mice and placebo-immunized mice upon bacteremia with S. aureus USA300 (6 × 10(5 CFU. In addition, this immunization did not reduce the S. aureus isolate P load in mice with skin infection. These results show that the target antigens are immunogenic in both humans and mice, but in the used animal models do not result in protection against S. aureus infection.

  8. The PRE-Derived NMR Model of the 38.8-kDa Tri-Domain IsdH Protein from Staphylococcus aureus Suggests That It Adaptively Recognizes Human Hemoglobin.

    Science.gov (United States)

    Sjodt, Megan; Macdonald, Ramsay; Spirig, Thomas; Chan, Albert H; Dickson, Claire F; Fabian, Marian; Olson, John S; Gell, David A; Clubb, Robert T

    2016-03-27

    Staphylococcus aureus is a medically important bacterial pathogen that, during infections, acquires iron from human hemoglobin (Hb). It uses two closely related iron-regulated surface determinant (Isd) proteins to capture and extract the oxidized form of heme (hemin) from Hb, IsdH and IsdB. Both receptors rapidly extract hemin using a conserved tri-domain unit consisting of two NEAT (near iron transporter) domains connected by a helical linker domain. To gain insight into the mechanism of extraction, we used NMR to investigate the structure and dynamics of the 38.8-kDa tri-domain IsdH protein (IsdH(N2N3), A326-D660 with a Y642A mutation that prevents hemin binding). The structure was modeled using long-range paramagnetic relaxation enhancement (PRE) distance restraints, dihedral angle, small-angle X-ray scattering, residual dipolar coupling and inter-domain NOE nuclear Overhauser effect data. The receptor adopts an extended conformation wherein the linker and N3 domains pack against each other via a hydrophobic interface. In contrast, the N2 domain contacts the linker domain via a hydrophilic interface and, based on NMR relaxation data, undergoes inter-domain motions enabling it to reorient with respect to the body of the protein. Ensemble calculations were used to estimate the range of N2 domain positions compatible with the PRE data. A comparison of the Hb-free and Hb-bound forms reveals that Hb binding alters the positioning of the N2 domain. We propose that binding occurs through a combination of conformational selection and induced-fit mechanisms that may promote hemin release from Hb by altering the position of its F helix.

  9. Unique surface adsorption behaviors of serum proteins on chemically uniform and alternating surfaces

    Science.gov (United States)

    Song, Sheng

    With increasing interests of studying proteins adsorption on the surfaces with nanoscale features in biomedical field, it is crucial to have fundamental understandings on how the proteins are adsorbed on such a surface and what factors contribute to the driving forces of adsorption. Besides, exploring more available nanoscale templates would greatly offer more possibilities one could design surface bio-detection methods with favorable protein-surface interactions. Thus, to fulfill the purpose, the work in this dissertation has been made into three major sections. First, to probe the intermediate states which possibly exist between stable and unstable phases described in mean-field theory diagram, a solvent vapor annealing method is chosen to slowly induce the copolymer polystyrene-block-polyvinylpyridine (PS-b-PVP)'s both blocks undergoing micro-phase separations from initial spherical nanodomains into terminal cylindrical nanodomains. During this process, real time atomic force microscopy (AFM) has been conducted to capture other six intermediate states with different morphologies on the polymeric film surfaces. Secondly, upon recognizing each intermediate state, the solution of immunoglobulin gamma (IgG) proteins has been deposited on the surface and been rinsed off with buffer solution before the protein-bounded surface is imaged by AFM. It has been found IgG showing a strong adsorption preference on PS over P4VP block. Among all the six intermediate states, the proteins are almost exclusively adsorbed on PS nanodomains regardless the concentration and deposition time. Thirdly, a trinodular shape protein fibrinogen (Fg) is selected for investigating how geometry and surface charge of proteins would interplay with cylindrical nanodomains on a surface developed from Polystyrene -block-Poly-(methyl methacrylate) PS-b-PMMA. Also, Fg adsorptions on chemically homogeneous surfaces are included here to have a better contrast of showing how much difference it can make

  10. Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces.

    Science.gov (United States)

    Sun, Yan; Jallerat, Quentin; Szymanski, John M; Feinberg, Adam W

    2015-02-01

    Our Patterning on Topography (PoT) printing technique enables fibronectin, laminin and other proteins to be applied to biomaterial surfaces in complex geometries that are inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface. Here, we used this method to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment.

  11. Electron microscopy and computational studies of Ebh, a giant cell-wall-associated protein from Staphylococcus aureus.

    Science.gov (United States)

    Sakamoto, Sou; Tanaka, Yoshikazu; Tanaka, Isao; Takei, Toshiaki; Yu, Jian; Kuroda, Makoto; Yao, Min; Ohta, Toshiko; Tsumoto, Kouhei

    2008-11-14

    Ebh, a giant protein found in staphylococci, contains several domains, including a large central region with 52 imperfect repeats of a domain composed of 126 amino acids. We used electron microscopy to observe the rod-like structure of a partial Ebh protein containing 10 repeating units. This is the first report of the direct observation of an Ebh structure containing a large number of repeating units, although structures containing one, two, or four repeating units have been reported. The observed structure of the partial Ebh protein was distorted and had a length of ca. 520A and a width of ca. 21A. The observed structures were consistent with those deduced from crystal structure analysis, suggesting that the Ebh domains are connected to form a rod-like structure. The crystal structure data revealed distorted, string-like features in the simulated structure of the whole-length Ebh protein. Superposition of fragments of the simulated whole-length structure of the Ebh protein onto each electron micrograph showed a high level of correlation between the observed and calculated structures. These results suggest that Ebh is composed of highly flexible filate molecules. The highly repetitive structure and the associated unique structural flexibility of Ebh support the proposed function of this protein, i.e. binding to sugars in the cell wall. This binding might result in intra-cell-wall cross-linking that contributes to the rigidity of bacterial cells.

  12. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  13. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  14. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2005-01-01

    The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we...

  15. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    Science.gov (United States)

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-04-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions.

  16. Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; Swartjes, Jan J. T. M.; Chen, Yun; Harapanahalli, Akshay K.; Norde, Willem; van der Mei, Henny C.; Sjollema, Jelmer

    2014-01-01

    Bacterial adhesion to surfaces is accompanied by cell wall deformation that may extend to the lipid membrane with an impact on the antimicrobial susceptibility of the organisms. Nanoscale cell wall deformation upon adhesion is difficult to measure, except for Delta pbp4 mutants, deficient in peptido

  17. Staphylococcus aureus and Pregnancy

    Science.gov (United States)

    Staphylococcus aureus and Pregnancy In every pregnancy, a woman starts out with a 3-5% chance of having a ... This sheet talks about whether exposure to staphylococcus aureus may increase the risk for birth defects over ...

  18. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    DEFF Research Database (Denmark)

    Boyd, A. R.; Burke, G. A.; Duffy, H.

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation...... to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role...

  19. Characterization of the mechanism of protection mediated by CS-D7, a monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB

    Directory of Open Access Journals (Sweden)

    Gregory ePancari

    2012-03-01

    Full Text Available We previously reported the development of a human monoclonal antibody (CS-D7, IgG1 with specificity and affinity for the iron regulated surface determinant B (IsdB of Staphylococcus aureus. CS-D7 mediates opsonophagocytic killing in vitro and protection in a murine sepsis model. In light of recent data indicating that IsdB specific T cells (CD4+, Th17, not Ab, mediate protection after vaccination with IsdB, it is important to investigate the mechanism of protection mediated by CS-D7. The mAb was examined to determine if it blocked heme binding to IsdB in vitro. The mAb was not found to have heme blocking activity, nor did it prevent bacterial growth under in vivo conditions, in an implanted growth chamber. To assess the role of the mAb Fc a point mutation was introduced at aa 297 (CS-D7●N297A. This point mutation removes Fc effector functions. In vitro analysis of the mutein confirmed that it lacked measurable binding to FcγR, and that it did not fix complement. The mutein had dramatically reduced in vitro opsonic OP activity compared to CS-D7. Nonetheless, the mutein conferred protection equivalent to the wild type mAb in the murine sepsis model. Both wild type and mutein mAbs were efficacious in FcγR deletion mice (including both FcγRII-/- mice and FcγRIII-/- mice, indicating that these receptors were not essential for mAb mediated protection in vivo. Protection mediated by CS-D7 was lost in Balb/c mice depleted of C3 with cobra venom factor (CFV, was lost in mice depleted of superoxide dismutase (SOD in P47phox deletion mice, and was absent in SCID mice. Enhanced clearance of S. aureus in the liver of CS-D7 treated mice and enhanced production of INF-γ, but not of IL17, may play a role in the mechanism of protection mediated by the mAb. CS-D7 apparently mediates survival in challenged mice through a mechanism involving complement, phagocytes, and lymphocytes, but which does not depend on interaction with FcγR, or on blocking heme

  20. Factor H-related proteins determine complement-activating surfaces.

    Science.gov (United States)

    Józsi, Mihály; Tortajada, Agustin; Uzonyi, Barbara; Goicoechea de Jorge, Elena; Rodríguez de Córdoba, Santiago

    2015-06-01

    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.

  1. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release.

    Science.gov (United States)

    Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall

    2013-04-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.

  2. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid.

    Science.gov (United States)

    Koç, Cengiz; Gerlach, David; Beck, Sebastian; Peschel, Andreas; Xia, Guoqing; Stehle, Thilo

    2015-04-10

    Anionic glycopolymers known as wall teichoic acids (WTAs) functionalize the peptidoglycan layers of many Gram-positive bacteria. WTAs play central roles in many fundamental aspects of bacterial physiology, and they are important determinants of pathogenesis and antibiotic resistance. A number of enzymes that glycosylate WTA in Staphylococcus aureus have recently been identified. Among these is the glycosyltransferase TarM, a component of the WTA de novo biosynthesis pathway. TarM performs the synthesis of α-O-N-acetylglycosylated poly-5'-phosphoribitol in the WTA structure. We have solved the crystal structure of TarM at 2.4 Å resolution, and we have also determined a structure of the enzyme in complex with its substrate UDP-GlcNAc at 2.8 Å resolution. The protein assembles into a propeller-like homotrimer in which each blade contains a GT-B-type glycosyltransferase domain with a typical Rossmann fold. The enzymatic reaction retains the stereochemistry of the anomeric center of the transferred GlcNAc-moiety on the polyribitol backbone. TarM assembles into a trimer using a novel trimerization domain, here termed the HUB domain. Structure-guided mutagenesis experiments of TarM identify residues critical for enzyme activity, assign a putative role for the HUB in TarM function, and allow us to propose a likely reaction mechanism.

  3. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    Science.gov (United States)

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections.

  4. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface.

    NARCIS (Netherlands)

    Tjalsma, H.; Pluk, W.J.G.; Heuvel, L.P.W.J. van den; Peters, W.H.M.; Roelofs, R.H.W.M.; Swinkels, D.W.

    2006-01-01

    Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets

  5. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  6. Detection of alpha-toxin and other virulence factors in biofilms of staphylococcus aureus on polystyrene and a human epidermalmodel

    NARCIS (Netherlands)

    P.M. Den Reijer (P. Martijn); J.A. Haisma (Janneke); N. Lemmens-den Toom; J. Willemse (José); R.A. Koning; J.A.A. Demmers (Jeroen); D.H. Dekkers (Dick); E.J. Rijkers; A. El Ghalbzouri (Abdoelwaheb); P.H. Nibbering (Peter); W.J.B. van Wamel (Willem)

    2016-01-01

    textabstractBackground & Aim: The ability of Staphylococcus aureus to successfully colonize (a)biotic surfaces may be explained by biofilm formation and the actions of virulence factors. The aim of the present study was to establish the presence of 52 proteins, including virulence factors such as al

  7. Staphylococcus aureus toxins.

    Science.gov (United States)

    Otto, Michael

    2014-02-01

    Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter, some were recently identified to lyse neutrophils after ingestion, representing an especially powerful weapon against bacterial elimination by innate host defense. Furthermore, S. aureus secretes many factors that inhibit the complement cascade or prevent recognition by host defenses. Several further toxins add to this multi-faceted program of S. aureus to evade elimination in the host. This review will give an overview over S. aureus toxins focusing on recent advances in our understanding of how leukotoxins work in receptor-mediated or receptor-independent fashions.

  8. Heme Recognition By a Staphylococcus Aureus IsdE

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  9. Crystal structure and substrate specificity of the [beta]-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiayang; Choudhry, Anthony E.; Janson, Cheryl A.; Grooms, Michael; Daines, Robert A.; Lonsdale, John T.; Khandekar, Sanjay S. (GSK)

    2010-07-20

    {beta}-Ketoacyl-ACP synthase III (FabH), an essential enzyme for bacterial viability, catalyzes the initiation of fatty acid elongation by condensing malonyl-ACP with acetyl-CoA. We have determined the crystal structure of FabH from Staphylococcus aureus, a Gram-positive human pathogen, to 2 {angstrom} resolution. Although the overall structure of S. aureus FabH is similar to that of Escherichia coli FabH, the primer binding pocket in S. aureus FabH is significantly larger than that present in E. coli FabH. The structural differences, which agree with kinetic parameters, provide explanation for the observed varying substrate specificity for E. coli and S. aureus FabH. The rank order of activity of S. aureus FabH with various acyl-CoA primers was as follows: isobutyryl- > hexanoyl- > butyryl- > isovaleryl- >> acetyl-CoA. The availability of crystal structure may aid in designing potent, selective inhibitors of S. aureus FabH.

  10. Crystal Structure of an Invasivity-Associated Domain of SdrE in S. aureus

    Science.gov (United States)

    Zhang, Hongpeng; Yang, Wei; Zhu, Zhongliang; Chen, Ke; Bai, Lei; Wei, Jie; Huang, Ailong; Wang, Deqiang

    2017-01-01

    The surface protein SdrE, a microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family protein expressed on the surface of Staphylococcus aureus (S. aureus), can recognize human complement regulator Factor H and C4BP, thus making it a potentially promising vaccine candidate. In this study, SdrE278-591 was found to directly affect S. aureus host cell invasion. Additionally, the crystal structure of SdrE278-591 at a resolution of 1.25 Å was established, with the three-dimensional structure revealing N2-N3 domains which fold in a manner similar to an IgG fold. Furthermore, a putative ligand binding site located at a conserved charged groove formed by the interface between N2 and N3 domains was identified, with β2 suspected to occupy the ligand recognizing site and undergo a structural rearrangement to allow ligand binding. Overall, these findings have further contributed to the understanding of SdrE as a key factor for S. aureus invasivity and will enable a better understanding of bacterial infection processes. PMID:28125581

  11. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers Formação de biofilme por Staphylococcus aureus na superfície de aço inoxidável e vidro e sua resistência a alguns sanificantes químicos

    Directory of Open Access Journals (Sweden)

    Simone Cristina Marques

    2007-09-01

    Full Text Available The objectives of this work were to verify the capability of Staphylococcus aureus of forming bio-film on stainless steel and glass surfaces; to evaluate the efficiency of sodium dichloroisocyanurate, hydrogen peroxide and peracetic acid in inactivating Staphylococcus aureus cells adhered onto these surfaces; and to visualize biofilm development by scanning electron microscopy before and after sanitizer treatment. The surfaces studied consisted of 10x20mm chips immersed in Petri dishes containing BHI broth inoculated with S. aureus ATCC 25923. Biofilm formation was observed after 15-day incubation, when the cells were removed using the swab technique, followed by Baird Parker agar plating. Also, the efficiency of the chemical sanitizers on the chip surfaces was tested and the non-removed cells were counted on the Baird-Parker agar. After biofilm formation and use of sanitizers, the chips were respectively observed by scanning electronic microscopy following a pre-existing protocol. The obtained results showed biofilm formation on both surfaces, with bacterial count in the order of 10(7 CFU/cm² on and 10(8 CFU/cm² on stainless steel and glass surfaces, respectively. Peracetic acid was the most efficient in removing adhered cells, presenting 5.26 and 4.5 decimal reduction for adhered cells on stainless steel and glass surfaces, respectively.Os objetivos deste trabalho foram verificar a capacidade de Staphylococcus aureus formar biofilme nas superfícies de aço inoxidável e vidro, avaliar a eficiência do dicloroisocianurato de sódio, peróxido de hidrogênio e ácido peracético na inativação de células de S. aureus aderidas e visualização por microscopia eletrônica de varredura, o desenvolvimento antes e depois do tratamento das superfícies com os sanificantes. As superfícies foram cupons 10x200mm imersos em placas de Petri contendo caldo BHI inoculado com cultura de Staphylococcus aureus ATCC 25923. A formação de biofilme foi

  12. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS.

    Science.gov (United States)

    Boyd, A R; Burke, G A; Duffy, H; Holmberg, M; O' Kane, C; Meenan, B J; Kingshott, P

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca-P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation mass spectrometry (Surface-MALDI-MS) as a technique for the direct detection of foetal bovine serum (FBS) proteins adsorbed to hybrid calcium phosphate/titanium dioxide surfaces produced by a novel radio frequency (RF) magnetron sputtering method incorporating in situ annealing between 500°C and 700°C during deposition. XRD and XPS analysis indicated that the coatings produced at 700°C were hybrid in nature, with the presence of Ca-P and titanium dioxide clearly observed in the outer surface layer. In addition to this, the Ca/P ratio was seen to increase with increasing annealing temperature, with values of between 2.0 and 2.26 obtained for the 700°C samples. After exposure to FBS solution, surface-MALDI-MS indicated that there were significant differences in the protein patterns as shown by unique peaks detected at masses below 23.1 kDa for the different surfaces. These adsorbates were assigned to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role in subsequent bioactivity of the materials.

  13. Protein antifouling and fouling-release in perfluoropolyether surfaces

    Science.gov (United States)

    Molena, Elena; Credi, Caterina; De Marco, Carmela; Levi, Marinella; Turri, Stefano; Simeone, Giovanni

    2014-08-01

    Perfluoropolyether polymers have been described as high performance fouling-release materials for marine coatings. Moreover, they have a good potential to be exploited in the biomedical field too. In this article several perfuoropolyether photopolymers were characterized in terms of surface and mechanical properties outlining the relationship between these properties and the polymer molecular structure. In particular the anti-fouling and fouling-release performances, evaluated using Bovine Serum Albumin as testing protein, was correlated to other material properties, like a parameter considering both surface tension components γ and elastic modulus E. A good correlation between the anti-fouling/fouling-release of perfluoropolyethers and (E*γpolar)1/2 can actually be established. Our results show that perfluoropolyether photopolymers are good protein anti-fouling/fouling-release materials.

  14. Modulation of Drug Resistance in Staphylococcus aureus with Coumarin Derivatives

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Aquino de Araújo

    2016-01-01

    Full Text Available Semisynthetic and commercial coumarins were investigated for their antibacterial and adjuvant properties with antibiotic agents against norfloxacin, erythromycin, and tetracycline resistant Staphylococcus aureus as based on efflux mechanisms. The coumarins and certain commercial antibiotics had their Minimum Inhibitory Concentrations determined by broth microdilution assay against resistant S. aureus strains which overexpress efflux pump proteins. For evaluation of the modulatory activity, the antibiotics MICs were determined in the presence of the coumarin derivatives at subinhibitory concentration. Although the coumarins did not display relevant antibacterial activity (MIC ≥ 128 µg/mL, they did modulate the antibiotics activities. Various coumarins, especially the alkylated derivatives in combination with antibiotics at subinhibitory concentrations, modulated antibiotic activity, reducing the MIC for tetracycline and norfloxacin by 2 to 8 times. Polar Surface Area (PSA studies were performed and the fact that the presence of apolar groups is an important factor for the modulatory activity of coumarins was corroborated. Docking on the Penicillin-Binding Protein from MRSA identified that 18 is a potential ligand presenting low Ebinding. The results indicate that coumarin derivatives modulated antibiotic resistance and may be used as potential antibiotic adjuvants, acting by bacterial efflux pump inhibition in S. aureus.

  15. Inhibitory effects of antibiofilm compound 1 against Staphylococcus aureus biofilms.

    Science.gov (United States)

    Shrestha, Looniva; Kayama, Shizuo; Sasaki, Michiko; Kato, Fuminori; Hisatsune, Junzo; Tsuruda, Keiko; Koizumi, Kazuhisa; Tatsukawa, Nobuyuki; Yu, Liansheng; Takeda, Kei; Sugai, Motoyuki

    2016-03-01

    A novel benzimidazole molecule that was identified in a small-molecule screen and is known as antibiofilm compound 1 (ABC-1) has been found to prevent bacterial biofilm formation by multiple bacterial pathogens, including Staphylococcus aureus, without affecting bacterial growth. Here, the biofilm inhibiting ability of 156 μM ABC-1 was tested in various biofilm-forming strains of S. aureus. It was demonstrated that ABC-1 inhibits biofilm formation by these strains at micromolar concentrations regardless of the strains' dependence on Polysaccharide Intercellular Adhesin (PIA), cell wall-associated protein dependent or cell wall- associated extracellular DNA (eDNA). Of note, ABC-1 treatment primarily inhibited Protein A (SpA) expression in all strains tested. spa gene disruption showed decreased biofilm formation; however, the mutants still produced more biofilm than ABC-1 treated strains, implying that ABC-1 affects not only SpA but also other factors. Indeed, ABC-1 also attenuated the accumulation of PIA and eDNA on cell surface. Our results suggest that ABC-1 has pleotropic effects on several biofilm components and thus inhibits biofilm formation by S. aureus.

  16. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology.

  17. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus

    OpenAIRE

    Jeong, Do-Won; Cho, Hoonsik; Jones, Marcus B.; Shatzkes, Kenneth; Sun, Fei; Ji, Quanjiang; Liu, Qian; Scott N Peterson; He, Chuan; Bae, Taeok

    2012-01-01

    In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate...

  18. Structural changes in proteins resulting from homomolecular exchange at solid surfaces

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The overall protein adsorption process comprises various steps or stages: transport of the protein from the bulk solution into the interfacial region, attachment of the protein at the sorbent surface and relaxation of the protein on the surface, detachment from the surface, and transport back into t

  19. Surface coatings that promote rapid release of peptide-based AgrC inhibitors for attenuation of quorum sensing in Staphylococcus aureus.

    Science.gov (United States)

    Broderick, Adam H; Stacy, Danielle M; Tal-Gan, Yftah; Kratochvil, Michael J; Blackwell, Helen E; Lynn, David M

    2014-01-01

    Staphylococcus aureus is a major human pathogen responsible for a variety of life-threatening infections. The pathogenicity of this organism is attributed to its ability to produce a range of virulence factors and toxins, including the superantigen toxic shock syndrome toxin-1 (TSST-1). While many S. aureus infections can be treated using conventional antibiotics, strains resistant to these bactericidal agents have emerged. Approaches that suppress pathogenicity through mechanisms that are nonbactericidal (i.e., antivirulence approaches) could provide new options for treating infections, including those caused by resistant strains. Here, we report a nonbactericidal approach to suppressing pathogenicity based on the release of macrocyclic peptides (1 and 2) that inhibit the agr quorum sensing (QS) circuit in group-III S. aureus. It is demonstrated that these peptides can be immobilized on planar and complex objects (on glass slides, nonwoven meshes, or within absorbent tampons) using the rapidly dissolving polymer carboxymethylcellulose (CMC). Peptide-loaded CMC films released peptide rapidly (95%) inhibition of the agr QS circuit without inducing cell death when incubated in the presence of a group-III S. aureus gfp-reporter strain. Peptide 1 is among the most potent inhibitors of QS in S. aureus reported to date, and the group-III QS circuit regulates production of TSST-1, the primary cause of toxic shock syndrome (TSS). These results thus suggest approaches to treat the outer covers of tampons, wound dressings, or other objects to suppress toxin production and reduce the severity of TSS in clinical and personal care contexts. Because peptide 1 also inhibits QS in S. aureus groups-I, -II, and -IV, this approach could also provide a pathway for attenuation of QS and associated virulence phenotypes in a broader range of contexts.

  20. Characterization of the Eimeria maxima sporozoite surface protein IMP1.

    Science.gov (United States)

    Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P

    2015-07-30

    The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection.

  1. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity.

    Science.gov (United States)

    Graille, M; Stura, E A; Corper, A L; Sutton, B J; Taussig, M J; Charbonnier, J B; Silverman, G J

    2000-05-09

    Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-A resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (V(H)) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human V(H)3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig V(H) regions and the T-cell receptor V(beta) regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor V(beta) backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.

  2. Ultrafast Hydration Dynamics Probed by Tryptophan at Protein Surface and Protein-DNA Interface

    Science.gov (United States)

    Qin, Yangzhong

    As we all live in a special water planet Earth, the significance of water to life has been universally recognized. The reason why water is so important to life has intrigued many researchers. This dissertation will focus on the ultrafast dynamics of protein surface water and protein-DNA interfacial water which have direct importance to the protein structure and function. Using tryptophan as an intrinsic fluorescence probe, combined with site-directed mutagenesis and ultrafast fluorescence up-conversion spectroscopy, we can achieve single residue spatial resolution and femtosecond temporal resolution. We can also precisely determine the local hydration water dynamics by monitoring the Stokes shift of tryptophan one at a time. Previously, the protein surface hydration has been extensively studied by our group. In this thesis, we will provide more details on the methods we are using to extract the hydration dynamics, and also validate our methods from both experimental and theoretical perspectives. To further interrogate the interfacial water hydration dynamics relative to the protein surface hydration, we studied two DNA polymerases: DNA Polymerase IV (Dpo4) and DNA Polymerase Beta (Pol beta). Both proteins show typical surface hydration pattern with three distinct time components including: (i) the ultrafast sub-picosecond component reflects the bulk type water motion; (ii) a few picoseconds component shows the inner water relaxation mainly corresponding to the local libration and reorientation; (iii) the tens to hundred picoseconds component represents the water-protein coupled motion involving the whole water network reorganization. Dpo4, a loosely DNA binding protein, exhibits very flexible interfacial water which resembles its surface water yet with a significantly reduced ultrafast component. Such dynamic interfacial water not only maintains interfacial flexibility, but also contributes to the low fidelity of the protein. In contrast to the Dpo4, pol beta

  3. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans.

    Science.gov (United States)

    Ikeda, Reiko; Saito, Fumito; Matsuo, Miki; Kurokawa, Kenji; Sekimizu, Kazuhisa; Yamaguchi, Masashi; Kawamoto, Susumu

    2007-07-01

    The fungal pathogen Cryptococcus neoformans is killed by the bacterium Staphylococcus aureus, and the killing is inhibited by soluble capsular polysaccharides. To investigate the mechanism of killing, cells in coculture were examined by scanning and transmission electron microscopy. S. aureus attached to the capsule of C. neoformans, and the ultrastructure of the attached C. neoformans cells was characteristic of dead cells. To identify the molecules that contributed to the fungal-bacterial interaction, we treated each with NaIO(4) or protease. Treatment of C. neoformans with NaIO(4) promoted adherence. It was inferred that cleavage of xylose and glucuronic acid side chains of glucuronoxylomannan (GXM) allowed S. aureus to recognize mannose residues in the backbone, which resisted periodate oxidation. On the other hand, treatment of S. aureus with protease decreased adherence, suggesting that protein contributed to attachment in S. aureus. In confirmation, side chain-cleaved polysaccharide or defined alpha-(1-->3)-mannan inhibited the killing at lower concentrations than native GXM did. Also, these polysaccharides reduced the adherence of the two species and induced clumping of pure S. aureus cells. alpha-(1-->3)-Mannooligosaccharides with a degree of polymerization (DP) of >/=3 induced cluster formation of S. aureus in a dose-dependent manner. Surface plasmon resonance analyses showed interaction of GXM and surface protein from S. aureus; the interaction was inhibited by oligosaccharides with a DP of > or =3. Conformations of alpha-(1-->3) oligosaccharides were predicted. The three-dimensional structures of mannooligosaccharides larger than triose appeared curved and could be imagined to be recognized by a hypothetical staphylococcal lectin. Native polyacrylamide gel electrophoresis of staphylococcal protein followed by electroblotting, enzyme-linked immunolectin assay, protein staining, and N-terminal amino acid sequencing suggested that the candidate protein was

  4. Biological properties of Lactobacillus surface proteins 

    Directory of Open Access Journals (Sweden)

    Barbara Buda

    2013-04-01

    Full Text Available Lactobacillus, a genus of Gram-positive bacteria, includes many strains of probiotic microflora. Probiotics, by definition, are living microorganisms that exert beneficial effects on the host organism. The morphology and physiology of the Lactobacillus bacterial genus are described. The structure of the cell wall of Gram-positive bacteria is discussed. The surface S-layer of Lactobacillus composed of proteins (SLP with low molecular mass is presented. Cell surface proteins participating in the regulation of growth and survival of the intestinal epithelium cells are characterized. The influence of stress factors such as increased temperature, pH, and enzymes of gastric and pancreatic juice on SLP expression is described. The ability of binding of heavy metal ions by S-layer proteins is discussed. The characteristics of these structures, including the ability to adhere to epithelial cells, and the inhibition of invasion of pathogenic microflora of type Shigella, Salmonella, Escherichia coli and Clostridium and their toxins, are presented. 

  5. [Surface proteins of bacteria of the genus Bifidobacterium].

    Science.gov (United States)

    Dylus, Ewa; Buda, Barbara; Górska-Frączek, Sabina; Brzozowska, Ewa; Gamian, Andrzej

    2013-05-13

    Beneficial effects due to the presence of probiotic bacteria of the genus Bifidobacterium in the human intestinal tract are still an interesting object of study. So far activities have been confirmed of bifidobacteria in stimulation of the host immune system, stimulation of tumor cell apoptosis, improvement of bowel motility, alleviation of symptoms of lactose intolerance, cholesterol lowering capacity, prevention and treatment of diarrhea and irritable bowel syndrome, alleviation of allergy or atopic dermatitis, maintenance of homeostasis of the intestine, and stimulation of the development of normal intestinal microflora in infants. A multitude of therapeutic properties encourages researchers to investigate the possibility of using the potential of Bifidobacterium in the prevention and treatment of other conditions such as rheumatoid arthritis and depression. Although it is known that the beneficial effects are due to intestinal mucosal colonization by these bacteria, the cell components responsible for the colonization are still not determined. In addition to the beneficial effects of probiotic administration, there were also negative effects including sepsis. Therefore research has been directed to identify specific components of Bifidobacterium responsible for probiotic effects. Currently researchers are focused on identifying, isolating and evaluating the properties of surface proteins that are probably involved in the adhesion of bacterial cells to the intestinal epithelium, improving colonization. This paper is an overview of current knowledge on Bifidobacterium surface proteins. The ways of transport and anchoring proteins in Gram-positive bacterial cells, the assembly of cell wall, and a description of the genus Bifidobacterium are presented.

  6. 金黄色葡萄球菌SarS蛋白参与压力应激的初步研究%SarS protein plays a role in stress response in Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    谭小蓉; 刘玉; 牟春花; 高亚萍; 董洁; 杨光

    2013-01-01

    Objective To investigate the regulatory function of Staphylococcus aureus accessory regulator S (SarS) protein in 5. aureus via insertion mutant construction. Methods The sarS inactive mutant was constructed by homologous re -combination in 5. aureus 8325 -4. The level of extra-toxins production was detected in MDBK cells , and the growth curves under different stress conditions were measured . Results The sarS mutant was successfully constructed in 5. aureus 8325 -4. Compared with its parent strain , the level of extra-toxins and the growth of the sarS mutant were not altered. However, it was found that the growth rate of sarS mutant was significantly decreased under several stress conditions compared with its parent strain. Conclusion SarS plays an important role in stress responses in 5. aureus.%目的 通过构建金黄色葡萄球菌(Staphylococcus aureus,简称金葡菌)中SarS蛋白突变株,研究SarS蛋白在金葡菌中的调控功能.方法 利用同源重组的方法构建金葡菌8325-4来源的sarS插入突变菌株,通过MDBK细胞模型检测突变株外毒素水平,以及其在高盐、高温等条件下的生长情况.结果 成功构建了金葡菌8325-4来源的sarS插入突变菌株.进一步的表型检测结果显示,与野生型菌株相比,sarS突变株在高温、高渗、重金属等应激条件下的生长速度明显下降,但是细菌外毒素对MDBK细胞的杀伤作用没有明显的改变.结论 SarS蛋白在金葡菌抵抗外界压力应激中发挥着重要的功能.

  7. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Li; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ren, Guogang, E-mail: g.g.ren@herts.ac.uk [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom)

    2015-06-01

    Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24 h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7 days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu{sup 2+} ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1 ppm (2 days) to 4.5 ppm (7 days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu{sup 2+} ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface.

  8. IsdB-dependent hemoglobin binding is required for acquisition of heme by Staphylococcus aureus.

    Science.gov (United States)

    Pishchany, Gleb; Sheldon, Jessica R; Dickson, Claire F; Alam, Md Tauqeer; Read, Timothy D; Gell, David A; Heinrichs, David E; Skaar, Eric P

    2014-06-01

    Staphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin. The current model for staphylococcal hemoglobin-iron acquisition proposes that S. aureus binds hemoglobin through the surface-exposed hemoglobin receptor IsdB. IsdB removes heme from bound hemoglobin and transfers this cofactor to other proteins of the Isd system, which import and degrade heme to release iron in the cytoplasm. Here we demonstrate that the individual components of the Isd system are required for growth on low nanomolar concentrations of hemoglobin as a sole source of iron. An in-depth study of hemoglobin binding by IsdB revealed key residues that are required for hemoglobin binding. Further, we show that these residues are necessary for heme extraction from hemoglobin and growth on hemoglobin as a sole iron source. These processes are found to contribute to the pathogenicity of S. aureus in a murine model of infection. Together these results build on the model for Isd-mediated hemoglobin binding and heme-iron acquisition during the pathogenesis of S. aureus infection.

  9. Coordinated Molecular Cross-Talk between Staphylococcus aureus, Endothelial Cells and Platelets in Bloodstream Infection

    Directory of Open Access Journals (Sweden)

    Carolina D. Garciarena

    2015-12-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen often carried asymptomatically on the human body. Upon entry to the otherwise sterile environment of the cardiovascular system, S. aureus can lead to serious complications resulting in organ failure and death. The success of S. aureus as a pathogen in the bloodstream is due to its ability to express a wide array of cell wall proteins on its surface that recognise host receptors, extracellular matrix proteins and plasma proteins. Endothelial cells and platelets are important cells in the cardiovascular system and are a major target of bloodstream infection. Endothelial cells form the inner lining of a blood vessel and provide an antithrombotic barrier between the vessel wall and blood. Platelets on the other hand travel throughout the cardiovascular system and respond by aggregating around the site of injury and initiating clot formation. Activation of either of these cells leads to functional dysregulation in the cardiovascular system. In this review, we will illustrate how S. aureus establish intimate interactions with both endothelial cells and platelets leading to cardiovascular dysregulation.

  10. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells

    Directory of Open Access Journals (Sweden)

    John M Morrison

    2012-03-01

    Full Text Available The modulation of mRNA turnover is gaining recognition as a mechanism by which Staphylococcus aureus regulates gene expression, but the factors that orchestrate alterations in transcript degradation are poorly understood. In that regard, we previously found that 138 mRNA species, including the virulence factors protein A (spa and collagen binding protein (cna, are stabilized in a sarA-dependent manner during exponential phase growth, suggesting that SarA protein may directly or indirectly effect the RNA turnover properties of these transcripts. Herein, we expanded our characterization of the effects of sarA on mRNA turnover during late exponential and stationary phases of growth. Results revealed that the locus affects the RNA degradation properties of cells during both growth phases. Further, using gel mobility shift assays and RIP-ChIP, it was found that SarA protein is capable of binding mRNA species that it stabilizes both in vitro and within bacterial cells. Taken together, these results suggest that SarA post-transcriptionally regulates S. aureus gene expression in a manner that involves binding to and consequently altering the mRNA turnover properties of target transcripts.

  11. Molecular cartography of proteins: surface relief analysis of the calf eye lens protein gamma-crystallin.

    Science.gov (United States)

    Chirgadze, Y u; Kurochkina, N; Nikonov, S

    1989-11-01

    Methods of calculating the protein molecular surface and different map representations are described. The maps are obtained by projection of the space-filling molecular model on the surface of the ellipsoid of inertia. A new approach to surface analysis is proposed which is based on the use of three general maps: an identification map with all residues outlined, a surface relief map and a coloured map with a specific colour for each of the surface atoms. Superposition of these maps greatly simplifies molecular surface analysis. The usefulness of such an approach has been demonstrated by the study of the relief of the calf eye lens protein gamma-crystallin II. Protrusions of the relief have been shown to be occupied generally by charged residues, but in some cases by the hydrophobic ones. It is interesting to note that in crystal medium the protruding residues are involved, in the majority of cases, in intermolecular contacts. The protruding regions have been found to be pseudosymmetrical to each other in accordance with the two-fold rotation axis of the molecule. However, the colours of these regions, i.e. the atoms of the corresponding side chains, differ greatly.

  12. Quercitrin, an Inhibitor of Sortase A, Interferes with the Adhesion of Staphylococcal aureus

    Directory of Open Access Journals (Sweden)

    Bingrun Liu

    2015-04-01

    Full Text Available Sortase A (SrtA is a cysteine transpeptidase of most Gram-positive bacteria that is responsible for the anchorage of many surface protein virulence factors to the cell wall layer. SrtA mutants are unable to display surface proteins and are defective in the establishment of infections without affecting microbial viability. In this study, we report that quercitrin (QEN, a natural compound that does not affect Staphylococcus aureus growth, can inhibit the catalytic activity of SrtA in fibrinogen (Fg cell-clumping and immobilized fibronectin (Fn adhesion assays. Molecular dynamics simulations and mutagenesis assays suggest that QEN binds to the binding sites of the SrtA G167A and V193A mutants. These findings indicate that QEN is a potential lead compound for the development of new anti-virulence agents against S. aureus infections.

  13. 餐饮具表面的大肠杆菌和金黄色葡萄球菌活性研究%Survival of Escherichia coli and Staphylococcus aureus on the tableware surface

    Institute of Scientific and Technical Information of China (English)

    张凤兰; 王海燕; 高飞; 崔生辉

    2016-01-01

    ABSTRACT:Objective To Study the effects of temperature, humidity and material of tableware on the survival of Escherichia coli and Staphylococcus aureus on the surface of tableware. Methods Under the conditions of 25 ℃, 37 ℃, 60 ℃ and the same humidity of 50% or at the same temperature of 25 ℃ with 20% or 50% humidity after inoculation with Escherichia coli and Staphylococcus aureus, the number of survived Escherichia coli and Staphylococcus aureus were detected respectively after 0, 10, 30, 60 and 120 min. In addition, the number of survived Escherichia coli and Staphylococcus aureus were detected respectively at 25℃with 50%humidity after inoculation with Escherichia coli and Staphylococcus aureus on the ceramics, wood, stainless steel and copper material tableware for 10 and 30 min. Results At 50%humidity and 25℃, the activities of two kinds of bacteria were good. At 37℃, the survival of Escherichia coli was 102 CFU/mL, which was lower than that of Staphylococcus aureus. At 60 ℃, Escherichia coli was dead after inoculation for 10 min, and Staphylococcus aureus was dead after 60 min. At 25℃and 20%humidity, the number of survived Escherichia coli decreased 103 CFU/mL after inoculation for 10 min, and Escherichia coli was dead after 120 min. While the number of survived Escherichia coli decreased 102 CFU/mL after 120 min at 50%humidity. The number of survived Staphylococcus aureus decreased 10 CFU/mL after inoculation for 120 min at 25℃with 20%or 50%humidity. At 25℃and 50%humidity, both of the number of survived Escherichia coli and Staphylococcus aureus on the surface of copper tableware were 102 CFU/mL lower than that of other materials after inoculation for 10 min. After inoculation for 30 min, there were no survived Escherichia coli and Staphylococcus aureus on the surface of copper tableware. Conclusion Escherichia coli was less resistant to high temperature and dryness than Staphylococcus aureus. Ceramic, wood and stainless steel

  14. X-ray crystal structure of Staphylococcus aureus FemA.

    Science.gov (United States)

    Benson, Timothy E; Prince, D Bryan; Mutchler, Veronica T; Curry, Kimberly A; Ho, Andrea M; Sarver, Ronald W; Hagadorn, Jeanne C; Choi, Gil H; Garlick, Robert L

    2002-08-01

    The latter stages of peptidoglycan biosynthesis in Staphylococci involve the synthesis of a pentaglycine bridge on the epsilon amino group of the pentapeptide lysine side chain. Genetic and biochemical evidence suggest that sequential addition of these glycines is catalyzed by three homologous enzymes, FemX (FmhB), FemA, and FemB. The first protein structure from this family, Staphylococcus aureus FemA, has been solved at 2.1 A resolution by X-ray crystallography. The FemA structure reveals a unique organization of several known protein folds involved in peptide and tRNA binding. The surface of the protein also reveals an L-shaped channel suitable for a peptidoglycan substrate. Analysis of the structural features of this enzyme provides clues to the mechanism of action of S. aureus FemA.

  15. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae.

    Science.gov (United States)

    Hammerschmidt, S; Bethe, G; Remane, P H; Chhatwal, G S

    1999-04-01

    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10(-18) M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hLf binding significantly, indicating that the hLf receptor is proteinaceous. Binding assays performed with 63 clinical isolates belonging to different serotypes showed that 88% of the tested isolates interacted with hLf. Scatchard analysis showed the existence of two hLf-binding proteins with dissociation constants of 5.7 x 10(-8) and 2.74 x 10(-7) M. The receptors were purified by affinity chromatography, and internal sequence analysis revealed that one of the S. pneumoniae proteins was homologous to pneumococcal surface protein A (PspA). The function of PspA as an hLf-binding protein was confirmed by the ability of purified PspA to bind hLf and to competitively inhibit hLf binding to pneumococci. S. pneumoniae may use the hLf-PspA interaction to overcome the iron limitation at mucosal surfaces, and this might represent a potential virulence mechanism.

  16. Characterization of Staphylococcus aureus Primosomal DnaD Protein: Highly Conserved C-Terminal Region Is Crucial for ssDNA and PriA Helicase Binding but Not for DnaA Protein-Binding and Self-Tetramerization.

    Directory of Open Access Journals (Sweden)

    Yen-Hua Huang

    Full Text Available The role of DnaD in the recruitment of replicative helicase has been identified. However, knowledge of the DNA, PriA, and DnaA binding mechanism of this protein for the DnaA- and PriA-directed replication primosome assemblies is limited. We characterized the DNA-binding properties of DnaD from Staphylococcus aureus (SaDnaD and analyzed its interactions with SaPriA and SaDnaA. The gel filtration chromatography analysis of purified SaDnaD and its deletion mutant proteins (SaDnaD1-195, SaDnaD1-200 and SaDnaD1-204 showed a stable tetramer in solution. This finding indicates that the C-terminal region aa 196-228 is not crucial for SaDnaD oligomerization. SaDnaD forms distinct complexes with ssDNA of different lengths. In fluorescence titrations, SaDnaD bound to ssDNA with a binding-site size of approximately 32 nt. A stable complex of SaDnaD1-195, SaDnaD1-200, and SaDnaD1-204 with ssDNA dT40 was undetectable, indicating that the C-terminal region of SaDnaD (particularly aa 205-228 is crucial for ssDNA binding. The SPR results revealed that SaDnaD1-195 can interact with SaDnaA but not with SaPriA, which may indicate that DnaD has different binding sites for PriA and DnaA. Both SaDnaD and SaDnaDY176A mutant proteins, but not SaDnaD1-195, can significantly stimulate the ATPase activity of SaPriA. Hence, the stimulation effect mainly resulted from direct contact within the protein-protein interaction, not via the DNA-protein interaction. Kinetic studies revealed that the SaDnaD-SaPriA interaction increases the Vmax of the SaPriA ATPase fivefold without significantly affecting the Km. These results indicate that the conserved C-terminal region is crucial for ssDNA and PriA helicase binding, but not for DnaA protein-binding and self-tetramerization.

  17. Evaluation of distiller’s dried grains with solubles (DDGS) from different grain sources as dietary protein for hybrid tilapia, Oreochromis niloticus x O. Aureus

    Science.gov (United States)

    The effects of distiller’s dried grains with solubles (DDGS) from different sources on growth performance, hematology, and immunity of hybrid tilapia, Oreochromis niloticus x O. aureus, were evaluated. Sex-reversed, all-male hybrid tilapia (3.72 ± 0.08 g initial weight) were fed diets in which 30% o...

  18. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    Science.gov (United States)

    2013-07-01

    10-1-0422 TITLE: Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early PRINCIPAL...DATES COVERED 1 July 2010 - 30 June 2013 4. TITLE AND SUBTITLE Targeting Cell Surface Proteins in Molecular 5a. CONTRACT NUMBER Photoacoustic ...upon request). Aim 2) Prioritize ovarian cancer-associated surface proteins for their utility as molecular photoacoustic imaging targets and

  19. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    Science.gov (United States)

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  20. Antibiofilm Effect of Octenidine Hydrochloride on Staphylococcus aureus, MRSA and VRSA

    Directory of Open Access Journals (Sweden)

    Mary Anne Roshni Amalaradjou

    2014-05-01

    Full Text Available Millions of indwelling devices are implanted in patients every year, and staphylococci (S. aureus, MRSA and vancomycin-resistant S. aureus (VRSA are responsible for a majority of infections associated with these devices, thereby leading to treatment failures. Once established, staphylococcal biofilms become resistant to antimicrobial treatment and host response, thereby serving as the etiological agent for recurrent infections. This study investigated the efficacy of octenidine hydrochloride (OH for inhibiting biofilm synthesis and inactivating fully-formed staphylococcal biofilm on different matrices in the presence and absence of serum protein. Polystyrene plates and stainless steel coupons inoculated with S. aureus, MRSA or VRSA were treated with OH (zero, 0.5, one, 2 mM at 37 °C for the prevention of biofilm formation. Additionally, the antibiofilm effect of OH (zero, 2.5, five, 10 mM on fully-formed staphylococcal biofilms on polystyrene plates, stainless steel coupons and urinary catheters was investigated. OH was effective in rapidly inactivating planktonic and biofilm cells of S. aureus, MRSA and VRSA on polystyrene plates, stainless steel coupons and urinary catheters in the presence and absence of serum proteins. The use of two and 10 mM OH completely inactivated S. aureus planktonic cells and biofilm (>6.0 log reduction on all matrices tested immediately upon exposure. Further, confocal imaging revealed the presence of dead cells and loss in biofilm architecture in the OH-treated samples when compared to intact live biofilm in the control. Results suggest that OH could be applied as an effective antimicrobial to control biofilms of S. aureus, MRSA and VRSA on appropriate hospital surfaces and indwelling devices.

  1. Surface modification of graphene nanopores for protein translocation

    Science.gov (United States)

    Shan, Y. P.; Tiwari, P. B.; Krishnakumar, P.; Vlassiouk, I.; Li, W.Z.; Wang, X.W.; Darici, Y.; Lindsay, S.M.; Wang, H. D.; Smirnov, S.; He, J.

    2014-01-01

    Studies of DNA translocation through graphene nanopores have revealed their potential for DNA sequencing. Here we report a study of protein translocation through chemically modified graphene nanopores. A transmission electron microscope (TEM) was used to cut nanopores with diameters between 5-20 nm in multilayer graphene prepared by chemical vapor deposition (CVD). After oxygen plasma treatment, the dependence of the measured ionic current on salt concentration and pH was consistent with a small surface charge induced by the formation of carboxyl groups. While translocation of gold nanoparticles (10 nm) was readily detected through such treated pores of a larger diameter, translocation of protein ferritin was not observed either for oxygen plasma treated pores, or for pores modified with mercaptohexadecanoic acid. Ferritin translocation events were reliably observed after the pores were modified with the phospholipid-PEG (DPPE-PEG750) amphiphile. The ion current signature of translocation events was complex, suggesting that a series of interactions between the protein and pore occur during the process. PMID:24231385

  2. Surface proteins of bacteria of the genus Bifidobacterium 

    Directory of Open Access Journals (Sweden)

    Ewa Dylus

    2013-05-01

    Full Text Available Beneficial effects due to the presence of probiotic bacteria of the genus Bifidobacterium in the human intestinal tract are still an interesting object of study. So far activities have been confirmed of bifidobacteria in stimulation of the host immune system, stimulation of tumor cell apoptosis, improvement of bowel motility, alleviation of symptoms of lactose intolerance, cholesterol lowering capacity, prevention and treatment of diarrhea and irritable bowel syndrome, alleviation of allergy or atopic dermatitis, maintenance of homeostasis of the intestine, and stimulation of the development of normal intestinal microflora in infants. A multitude of therapeutic properties encourages researchers to investigate the possibility of using the potential of Bifidobacterium in the prevention and treatment of other conditions such as rheumatoid arthritis and depression. Although it is known that the beneficial effects are due to intestinal mucosal colonization by these bacteria, the cell components responsible for the colonization are still not determined. In addition to the beneficial effects of probiotic administration, there were also negative effects including sepsis. Therefore research has been directed to identify specific components of Bifidobacterium responsible for probiotic effects. Currently researchers are focused on identifying, isolating and evaluating the properties of surface proteins that are probably involved in the adhesion of bacterial cells to the intestinal epithelium, improving colonization. This paper is an overview of current knowledge on Bifidobacterium surface proteins. The ways of transport and anchoring proteins in Gram-positive bacterial cells, the assembly of cell wall, and a description of the genus Bifidobacterium are presented.

  3. Effectiveness of cleaning and sanitizing procedures in controlling the adherence of Pseudomonas fluorescens, Salmonella Enteritidis, and Staphylococcus aureus to domestic kitchen surfaces Eficiência dos procedimentos de limpeza e de sanitização no controle da adesão de Pseudomonas fluorescens, Salmonella Enteritidis e Staphylococcus aureus em superfícies usadas em cozinhas domésticas

    Directory of Open Access Journals (Sweden)

    Iara Dias Silva

    2010-03-01

    Full Text Available The effectiveness of cleaning and sanitizing procedures in controlling Staphylococcus aureus, Salmonella Enteritidis, and Pseudomonasfluorescens adhered to granite and stainless steel was evaluated. There was no significant difference (p > 0.05 in the adherence of pure cultures of these microorganisms to stainless steel. The numbers of P. fluorescens and S. Enteritidis adhered to granite were greater (p 0.05 between the surfaces. However, a significant difference was observed (p A eficiência dos procedimentos de limpeza e sanitização no controle de Staphylococcus aureus, Salmonella Enteritidis e Pseudomonasfluorescens aderidas em granito e aço inoxidável foi avaliada. Não houve diferença significativa (p > 0,05 na adesão destes microrganismos quando em cultura pura, em aço inoxidável. O número de células aderidas de P. fluorescens e S. Enteritidis foi maior (p 0,05 entre as superfícies. Entretanto, observou-se uma diferença (p < 0,05 entre as soluções sanitizantes utilizadas. Hipoclorito de sódio e ácido peracético apresentaram maior ação bactericida (p < 0,05 que o composto de amônia quaternária. Observou-se que S. aureus apresentou menor resistência à ação desses sanitizantes. Os resultados mostram a importância da adequada realização dos procedimentos de limpeza e sanitização para evitar a adesão bacteriana e formação de biofilme.

  4. 餐饮具表面的大肠杆菌和金黄色葡萄球菌活性研究%Survival ofEscherichia coli andStaphylococcus aureus on the tableware surface

    Institute of Scientific and Technical Information of China (English)

    张凤兰; 王海燕; 高飞; 崔生辉

    2016-01-01

    目的:研究温度、湿度及餐饮具材质对餐饮具表面大肠杆菌和金黄色葡萄球菌活性的影响。方法分别在同一湿度50%、不同温度(25℃、37℃和60℃)下及同一温度25℃、不同湿度(20%、50%)条件下接种大肠杆菌和金黄色葡萄球菌到陶瓷餐饮具表面,在10、30、60和120 min后检测两种细菌的存活数量;在25℃、湿度50%的条件下分别接种两种细菌到陶瓷、木质、不锈钢和铜合金的餐饮具上,在10、30 min后检测两种细菌的存活数量。结果在同一湿度(50%),25℃时,两种细菌活性均较好;37℃时,存活的大肠杆菌数量比金黄色葡萄球菌低102CFU/mL;60℃时,大肠杆菌10 min后失活,金黄色葡萄球菌60 min后失活。在25℃,湿度20%时,存活的大肠杆菌数量10 min后下降103 CFU/mL,120 min后失活;湿度50%时,存活的大肠杆菌数量120 min后仅下降102 CFU/mL。而金黄色葡萄球菌在两种湿度条件下,存活的细菌数量120 min后仅下降10 CFU/mL。在25℃、湿度50%的条件下接种10 min后,铜合金餐饮具上的两种细菌比其他材质的低102 CFU/mL,30 min后,铜合金餐饮具上的两种细菌均失活。结论大肠杆菌对高温和干燥的耐受性比金黄色葡萄球菌弱。陶瓷、木质和不锈钢餐饮具对大肠杆菌和金黄色葡萄球菌均无抑菌性,而铜合金餐饮具对两种细菌均有抑菌性。%Objective To Study the effects of temperature, humidity and material of tableware on the survival of Escherichia coliandStaphylococcus aureus on the surface of tableware.Methods Under the conditions of 25℃, 37℃, 60℃ and the same humidity of 50% or at the same temperature of 25℃ with 20% or 50% humidity after inoculation withEscherichia coli andStaphylococcus aureus,the number of survived Escherichia coli and Staphylococcus aureus were detected respectively after0, 10, 30, 60 and 120 min. In addition, the number of survived Escherichia coli and

  5. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma

    Directory of Open Access Journals (Sweden)

    Jennifer N Walker

    2012-03-01

    Full Text Available The ability of the opportunistic pathogen, Staphylococcus aureus, to form biofilms is increasingly being viewed as an important contributor to chronic infections. In vitro methods for analyzing S. aureus biofilm formation have focused on bacterial attachment and accumulation on abiotic surfaces, such as in microtiter plate and flow cell assays. Microtiter plates provide a rapid measure of relative biomass levels, while flow cells have limited experimental throughput but are superior for confocal microscopy biofilm visualization. Although these assays have proven effective at identifying mechanisms involved in cell attachment and biofilm accumulation, the significance of these assays in vivo remains unclear. Studies have shown that when medical devices are implanted they are coated with host factors, such as matrix proteins, that facilitate S. aureus attachment and biofilm formation. To address the challenge of integrating existing biofilm assay features with a biotic surface, we have established an in vitro biofilm technique utilizing UV-sterilized coverslips coated with human plasma. The substratum more closely resembles the in vivo state and provides a platform for S. aureus to establish a robust biofilm. Importantly, these coverslips are amenable to confocal microscopy imaging to provide a visual reference of the biofilm growth stage, effectively merging the benefits of the microtiter and flow cell assays. We confirmed the approach using clinical S. aureus isolates and mutants with known biofilm phenotypes. Altogether, this new biofilm assay can be used to assess the function of S. aureus virulence factors associated with biofilm formation and for monitoring the efficacy of biofilm treatment modalities.

  6. Persistent Staphylococcus aureus isolates from two independent cases of bacteremia display increased bacterial fitness and novel immune evasion phenotypes.

    Science.gov (United States)

    Richards, R L; Haigh, R D; Pascoe, B; Sheppard, S K; Price, F; Jenkins, D; Rajakumar, K; Morrissey, J A

    2015-08-01

    Staphylococcus aureus bacteremia cases are complicated by bacterial persistence and treatment failure despite the confirmed in vitro susceptibility of the infecting strain to administered antibiotics. A high incidence of methicillin-resistant S. aureus (MRSA) bacteremia cases are classified as persistent and are associated with poorer patient outcomes. It is still unclear how S. aureus evades the host immune system and resists antibiotic treatment for the prolonged duration of a persistent infection. In this study, the genetic changes and associated phenotypic traits specific to S. aureus persistent bacteremia were identified by comparing temporally dispersed isolates from persistent infections (persistent isolates) originating from two independent persistent S. aureus bacteremia cases with the initial infection isolates and with three resolved S. aureus bacteremia isolates from the same genetic background. Several novel traits were associated specifically with both independent sets of persistent S. aureus isolates compared to both the initial isolates and the isolates from resolved infections (resolved isolates). These traits included (i) increased growth under nutrient-poor conditions; (ii) increased tolerance of iron toxicity; (iii) higher expression of cell surface proteins involved in immune evasion and stress responses; and (iv) attenuated virulence in a Galleria mellonella larva infection model that was not associated with small-colony variation or metabolic dormancy such as had been seen previously. Whole-genome sequence analysis identified different single nucleotide mutations within the mprF genes of all the isolates with the adaptive persistence traits from both independent cases. Overall, our data indicate a novel role for MprF function during development of S. aureus persistence by increasing bacterial fitness and immune evasion.

  7. Persistent Staphylococcus aureus Isolates from Two Independent Cases of Bacteremia Display Increased Bacterial Fitness and Novel Immune Evasion Phenotypes

    Science.gov (United States)

    Richards, R. L.; Haigh, R. D.; Pascoe, B.; Sheppard, S. K.; Price, F.; Jenkins, D.; Rajakumar, K.

    2015-01-01

    Staphylococcus aureus bacteremia cases are complicated by bacterial persistence and treatment failure despite the confirmed in vitro susceptibility of the infecting strain to administered antibiotics. A high incidence of methicillin-resistant S. aureus (MRSA) bacteremia cases are classified as persistent and are associated with poorer patient outcomes. It is still unclear how S. aureus evades the host immune system and resists antibiotic treatment for the prolonged duration of a persistent infection. In this study, the genetic changes and associated phenotypic traits specific to S. aureus persistent bacteremia were identified by comparing temporally dispersed isolates from persistent infections (persistent isolates) originating from two independent persistent S. aureus bacteremia cases with the initial infection isolates and with three resolved S. aureus bacteremia isolates from the same genetic background. Several novel traits were associated specifically with both independent sets of persistent S. aureus isolates compared to both the initial isolates and the isolates from resolved infections (resolved isolates). These traits included (i) increased growth under nutrient-poor conditions; (ii) increased tolerance of iron toxicity; (iii) higher expression of cell surface proteins involved in immune evasion and stress responses; and (iv) attenuated virulence in a Galleria mellonella larva infection model that was not associated with small-colony variation or metabolic dormancy such as had been seen previously. Whole-genome sequence analysis identified different single nucleotide mutations within the mprF genes of all the isolates with the adaptive persistence traits from both independent cases. Overall, our data indicate a novel role for MprF function during development of S. aureus persistence by increasing bacterial fitness and immune evasion. PMID:26056388

  8. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  9. Adhesive polypeptides of Staphylococcus aureus identified using a novel secretion library technique in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2011-05-01

    Full Text Available Abstract Background Bacterial adhesive proteins, called adhesins, are frequently the decisive factor in initiation of a bacterial infection. Characterization of such molecules is crucial for the understanding of bacterial pathogenesis, design of vaccines and development of antibacterial drugs. Because adhesins are frequently difficult to express, their characterization has often been hampered. Alternative expression methods developed for the analysis of adhesins, e.g. surface display techniques, suffer from various drawbacks and reports on high-level extracellular secretion of heterologous proteins in Gram-negative bacteria are scarce. These expression techniques are currently a field of active research. The purpose of the current study was to construct a convenient, new technique for identification of unknown bacterial adhesive polypeptides directly from the growth medium of the Escherichia coli host and to identify novel proteinaceous adhesins of the model organism Staphylococcus aureus. Results Randomly fragmented chromosomal DNA of S. aureus was cloned into a unique restriction site of our expression vector, which facilitates secretion of foreign FLAG-tagged polypeptides into the growth medium of E. coli ΔfliCΔfliD, to generate a library of 1663 clones expressing FLAG-tagged polypeptides. Sequence and bioinformatics analyses showed that in our example, the library covered approximately 32% of the S. aureus proteome. Polypeptides from the growth medium of the library clones were screened for binding to a selection of S. aureus target molecules and adhesive fragments of known staphylococcal adhesins (e.g coagulase and fibronectin-binding protein A as well as polypeptides of novel function (e.g. a universal stress protein and phosphoribosylamino-imidazole carboxylase ATPase subunit were detected. The results were further validated using purified His-tagged recombinant proteins of the corresponding fragments in enzyme-linked immunoassay and

  10. Detection of Alpha-Toxin and Other Virulence Factors in Biofilms of Staphylococcus aureus on Polystyrene and a Human Epidermal Model

    Science.gov (United States)

    Lemmens-den Toom, N. A.; Willemse, J.; Koning, R. A.; Demmers, J. A. A.; Dekkers, D. H. W.; Rijkers, E.; El Ghalbzouri, A.; Nibbering, P. H.; van Wamel, W.

    2016-01-01

    Background & Aim The ability of Staphylococcus aureus to successfully colonize (a)biotic surfaces may be explained by biofilm formation and the actions of virulence factors. The aim of the present study was to establish the presence of 52 proteins, including virulence factors such as alpha-toxin, during biofilm formation of five different (methicillin resistant) S. aureus strains on Leiden human epidermal models (LEMs) and polystyrene surfaces (PS) using a competitive Luminex-based assay. Results All five S. aureus strains formed biofilms on PS, whereas only three out of five strains formed biofilms on LEMs. Out of the 52 tested proteins, six functionally diverse proteins (ClfB, glucosaminidase, IsdA, IsaA, SACOL0688 and nuclease) were detected in biofilms of all strains on both PS and LEMs. At the same time, four toxins (alpha-toxin, gamma-hemolysin B and leukocidins D and E), two immune modulators (formyl peptide receptor-like inhibitory protein and Staphylococcal superantigen-like protein 1), and two other proteins (lipase and LytM) were detectable in biofilms by all five S. aureus strains on LEMs, but not on PS. In contrast, fibronectin-binding protein B (FnbpB) was detectable in biofilms by all S. aureus biofilms on PS, but not on LEMs. These data were largely confirmed by the results from proteomic and transcriptomic analyses and in case of alpha-toxin additionally by GFP-reporter technology. Conclusion Functionally diverse virulence factors of (methicillin-resistant) S. aureus are present during biofilm formation on LEMs and PS. These results could aid in identifying novel targets for future treatment strategies against biofilm-associated infections. PMID:26741798

  11. Detection of Alpha-Toxin and Other Virulence Factors in Biofilms of Staphylococcus aureus on Polystyrene and a Human Epidermal Model.

    Directory of Open Access Journals (Sweden)

    P M den Reijer

    Full Text Available The ability of Staphylococcus aureus to successfully colonize (abiotic surfaces may be explained by biofilm formation and the actions of virulence factors. The aim of the present study was to establish the presence of 52 proteins, including virulence factors such as alpha-toxin, during biofilm formation of five different (methicillin resistant S. aureus strains on Leiden human epidermal models (LEMs and polystyrene surfaces (PS using a competitive Luminex-based assay.All five S. aureus strains formed biofilms on PS, whereas only three out of five strains formed biofilms on LEMs. Out of the 52 tested proteins, six functionally diverse proteins (ClfB, glucosaminidase, IsdA, IsaA, SACOL0688 and nuclease were detected in biofilms of all strains on both PS and LEMs. At the same time, four toxins (alpha-toxin, gamma-hemolysin B and leukocidins D and E, two immune modulators (formyl peptide receptor-like inhibitory protein and Staphylococcal superantigen-like protein 1, and two other proteins (lipase and LytM were detectable in biofilms by all five S. aureus strains on LEMs, but not on PS. In contrast, fibronectin-binding protein B (FnbpB was detectable in biofilms by all S. aureus biofilms on PS, but not on LEMs. These data were largely confirmed by the results from proteomic and transcriptomic analyses and in case of alpha-toxin additionally by GFP-reporter technology.Functionally diverse virulence factors of (methicillin-resistant S. aureus are present during biofilm formation on LEMs and PS. These results could aid in identifying novel targets for future treatment strategies against biofilm-associated infections.

  12. Efektivitas Ekstrak Daun Jambu Biji Buah Putih Terhadap Pertumbuhan Staphylococcus aureus Dari Abses Dan Staphylococcus aureus (ATCC® 29213™)

    OpenAIRE

    Sinurat, Jojor

    2016-01-01

    Daun jambu biji mengandung senyawa aktif seperti tanin, triterpenoid, flavonoid, saponin yang mempunyai efek antibakteri. Mekanisme tanin sebagai antibakteri dengan mengkerutkan dinding sel dan membran sel, inaktivasi enzim, inaktivasi fungsi materi genetik bakteri. Flavonoid merusak sel bakteri, denaturasi protein, inaktivasi enzim dan menyebabkan lisis. Triterpenoid dan saponin menghambat pertumbuhan Staphylococcus aureus dengan cara merusak struktur membran sel. Staphylococcus aureus adala...

  13. Epidemiology of Staphylococcus aureus during space flight

    Science.gov (United States)

    Pierson, D. L.; Chidambaram, M.; Heath, J. D.; Mallary, L.; Mishra, S. K.; Sharma, B.; Weinstock, G. M.

    1996-01-01

    Staphylococcus aureus was isolated over 2 years from Space Shuttle mission crewmembers to determine dissemination and retention of bacteria. Samples before and after each mission were from nasal, throat, urine, and feces and from air and surface sampling of the Space Shuttle. DNA fingerprinting of samples by digestion of DNA with SmaI restriction endonuclease followed by pulsed-field gel electrophoresis showed S. aureus from each crewmember had a unique fingerprint and usually only one strain was carried by an individual. There was only one instance of transfer between crewmembers. Strains from interior surfaces after flight matched those of crewmembers, suggesting microbial fingerprinting may have forensic application.

  14. Nanoporous titanium surfaces for sustained elution of proteins and antibiotics.

    Directory of Open Access Journals (Sweden)

    Amirhossein Ketabchi

    Full Text Available Current medically relevant metals for prosthetic reconstructions enjoy a relatively good success rate, but their performance drops significantly in patients with compromised health status, and post-surgical infections still remain an important challenge. To address these problems, different nanotechnology-based strategies have been exploited to create implantable metals with an enhanced bioactivity and antibacterial capacities. Among these, oxidative nanopatterning has emerged as a very effective approach to engender nanoporous surfaces that stimulate and guide the activity of adhering cells. The resulting nanoporosity is also attractive because it offers nanoconfined volumes that can be exploited to load bioactive compounds and modulate their release over time. Such extended elution is needed since a single exposure to growth factors and/or antibiotics, for instance, may not be adequate to further sustain bone regeneration and/or to counteract bacterial colonization. In this article, we assessed the capacities of nanoporous titanium surfaces generated by oxidative nanopatterning to provide controlled and sustained elution of proteins and antibiotic molecules. To this end, we have selected bovine serum albumin (BSA and vancomycin to reflect commonly used compounds, and investigated their adsorption and elution by Fourier-transform infrared (FT-IR and ultraviolet-visible (UV-VIS spectroscopy. Our results demonstrate that while the elution of albumin is not significantly affected by the nanoporosity, in the case of vancomycin, nanoporous surfaces provided an extended release. These findings were successively correlated to the establishment of interactions with the surface and physical-entrapment effects exerted by the nanopores, ultimately highlighting their synergistic contribution to the release profiles and thus their importance in the design of nanostructured eluting platforms for applications in medicine.

  15. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.

  16. SURFACE MODIFICATION OF TITANIUM FILMS WITH SODIUM ION IMPLANTATION: SURFACE PROPERTIES AND PROTEIN ADSORPTION

    Institute of Scientific and Technical Information of China (English)

    K. Y. Cai

    2007-01-01

    Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techniques of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and light microscopy (LM). The surface presented increased sodium concentration on treated titanium films with ion dose increasing, except for the group with the highest ion dose of 4× 1017 ions/cm2. XPS depth profiling displayed that sodium entered titanium film around 25-50 nm depth depending on its implantation ion dose. AFM characterization showed that sodium ion implantation treatment changed the surface morphology from a relatively smooth titanium film to rough surfaces corresponding to different implantation doses.After sodium implantation, implanted titanium films presented big particles with island structure morphology. The surface morphology and particle growth displayed the corresponding trend.Fibrinogen adsorption on these titanium films was performed to correlate with the surface properties of treated titanium films. The results show that protein adsorption on ion-implanted samples with dose of 2 × 1017 and 4 × 1017 are statistically higher (p < 0. 01) than samples treated with dose of 5×1016 and 1 ×1017, as well as the control samples.

  17. Detection of multiscale pockets on protein surfaces using mathematical morphology.

    Science.gov (United States)

    Kawabata, Takeshi

    2010-04-01

    Detection of pockets on protein surfaces is an important step toward finding the binding sites of small molecules. In a previous study, we defined a pocket as a space into which a small spherical probe can enter, but a large probe cannot. The radius of the large probes corresponds to the shallowness of pockets. We showed that each type of binding molecule has a characteristic shallowness distribution. In this study, we introduced fundamental changes to our previous algorithm by using a 3D grid representation of proteins and probes, and the theory of mathematical morphology. We invented an efficient algorithm for calculating deep and shallow pockets (multiscale pockets) simultaneously, using several different sizes of spherical probes (multiscale probes). We implemented our algorithm as a new program, ghecom (grid-based HECOMi finder). The statistics of calculated pockets for the structural dataset showed that our program had a higher performance of detecting binding pockets, than four other popular pocket-finding programs proposed previously. The ghecom also calculates the shallowness of binding ligands, R(inaccess) (minimum radius of inaccessible spherical probes) that can be obtained from the multiscale molecular volume. We showed that each part of the binding molecule had a bias toward a specific range of shallowness. These findings will be useful for predicting the types of molecules that will be most likely to bind putative binding pockets, as well as the configurations of binding molecules. The program ghecom is available through the Web server (http://biunit.naist.jp/ghecom).

  18. Environmental study of a methicillin-resistant Staphylococcus aureus epidemic in a burn unit.

    Science.gov (United States)

    Rutala, W A; Katz, E B; Sherertz, R J; Sarubbi, F A

    1983-01-01

    During an outbreak of infections caused by methicillin-resistant (MR) Staphylococcus aureus in our burn unit, we conducted an extensive 10-week study to define the environmental epidemiology of the organism. The inanimate environment in patient rooms and adjacent areas was examined by using volumetric air samplers and Rodac plates. Airborne and surface level contamination with MR S. aureus was quantitated, and overall, MR S. aureus comprised 16, 31, and 40% of all bacterial growth from air, elevated surfaces, and floor surfaces, respectively. Mean air, elevated surface, and floor surface MR S. aureus contamination in rooms of MR S. aureus-infected burn patients were 1.9 MR S. aureus per ft3 (ca. 0.028 m3), 20 MR S. aureus per Rodac plate and 48 MR S. aureus per Rodac plate, respectively. Peak patient room environmental contamination levels were 6.9 MR S. aureus per ft3 of air, 70 MR S. aureus per Rodac plate per elevated surface and 138 MR S. aureus per Rodac plate per floor surface. Environmental contamination levels in the adjacent work areas were considerably lower than in infected patient rooms. There was ample opportunity for contamination of personnel through the inanimate environment in this unit. PMID:6630447

  19. Lysine N[superscript zeta]-Decarboxylation Switch and Activation of the [beta]-Lactam Sensor Domain of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Borbulevych, Oleg; Kumarasiri, Malika; Wilson, Brian; Llarrull1, Leticia I.; Lee, Mijoon; Hesek, Dusan; Shi, Qicun; Peng, Jeffrey; Baker, Brian M.; Mobashery, Shahriar (Notre)

    2012-10-29

    The integral membrane protein BlaR1 of methicillin-resistant Staphylococcus aureus senses the presence of {beta}-lactam antibiotics in the milieu and transduces the information to the cytoplasm, where the biochemical events that unleash induction of antibiotic resistance mechanisms take place. We report herein by two-dimensional and three-dimensional NMR experiments of the sensor domain of BlaR1 in solution and by determination of an x-ray structure for the apo protein that Lys-392 of the antibiotic-binding site is posttranslationally modified by N{sup {zeta}}-carboxylation. Additional crystallographic and NMR data reveal that on acylation of Ser-389 by antibiotics, Lys-392 experiences N{sup {zeta}}-decarboxylation. This unique process, termed the lysine N{sup {zeta}}-decarboxylation switch, arrests the sensor domain in the activated ('on') state, necessary for signal transduction and all the subsequent biochemical processes. We present structural information on how this receptor activation process takes place, imparting longevity to the antibiotic-receptor complex that is needed for the induction of the antibiotic-resistant phenotype in methicillin-resistant S. aureus.

  20. Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages.

    Science.gov (United States)

    Yokoyama, Ryosuke; Itoh, Saotomo; Kamoshida, Go; Takii, Takemasa; Fujii, Satoshi; Tsuji, Tsutomu; Onozaki, Kikuo

    2012-08-01

    Staphylococcal superantigen-like proteins (SSLs) are a family of exoproteins sharing structural similarity with superantigens, but no superantigenic activity. Corresponding host target proteins or receptors against a portion of SSLs in the family have been identified. In this study, we show that SSL3 specifically binds to Toll-like receptor 2 (TLR2) and inhibits the stimulation of macrophages by TLR2 ligands. An approximately 100-kDa protein was recovered by using recombinant His-tagged SSL3-conjugated Sepharose from the lysate of porcine spleen, and the protein was identified as porcine TLR2 by peptide mass fingerprinting analysis. The SSL3-conjugated Sepharose recovered human and mouse TLR2 but not TLR4 from human neutrophils and mouse macrophage RAW 264.7 cells, as well as a recombinant TLR2 extracellular domain chimera protein. The production levels of interleukin 12 (IL-12) from mouse macrophages treated with heat-killed Staphylococcus aureus and of tumor necrosis factor alpha (TNF-α) from RAW 264.7 cells induced by peptidoglycan or lipopeptide TLR2 ligands were strongly suppressed in the presence of SSL3. The mutation of consensus sialic acid-containing glycan-binding residues in SSL3 did not abrogate the binding ability to TLR2 or inhibitory activity on TLR2, indicating that the interaction of SSL3 with TLR2 was independent of the sialic acid-containing glycan-binding residues. These findings demonstrate that SSL3 is able to bind the extracellular domain of TLR2 and interfere with TLR2 function. The present study provides a novel mechanism of SSL3 in immune evasion of S. aureus via interfering with its recognition by innate immune cells.

  1. Lacritin and other autophagy associated proteins in ocular surface health.

    Science.gov (United States)

    Karnati, Roy; Talla, Venu; Peterson, Katherine; Laurie, Gordon W

    2016-03-01

    Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin.

  2. Relevant uses of surface proteins – display on self‐organized biological structures

    OpenAIRE

    Jahns, Anika C.; Rehm, Bernd H. A.

    2012-01-01

    Summary Proteins are often found attached to surfaces of self‐assembling biological units such as whole microbial cells or subcellular structures, e.g. intracellular inclusions. In the last two decades surface proteins were identified that could serve as anchors for the display of foreign protein functions. Extensive protein engineering based on structure–function data enabled efficient display of technically and/or medically relevant protein functions. Small size, diversity of the anchor pro...

  3. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden.

    Directory of Open Access Journals (Sweden)

    Gunlög Rasmussen

    Full Text Available Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated. DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46, bacteremia (n=55, and bacteremia with infective endocarditis (n=33. Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II, capsule polysaccharide serotype 5 (cap5, and adhesins such as S. aureus surface protein G (sasG and fibronectin-binding protein B (fnbB were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB, staphylococcal complement inhibitor (scn and the staphylococcal exotoxin-like protein (setC or selX. In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5 among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation. In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.

  4. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Directory of Open Access Journals (Sweden)

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  5. Characterization of the surface of protein-adsorbed dental materials by wetting and streaming potential measurements

    NARCIS (Netherlands)

    Matsumura, H.; Kawasaki, K.; Okumura, N.; Kambara, M.; Norde, W.

    2003-01-01

    In this study we have elucidated the water-wettability and the electrokinetic surface potential of protein-covered dental materials. The proteins used here as typical proteins were human serum albumin and lysozyme from hen*s egg. The wettability (hydrophobicity/hydrophilicity) and the surface potent

  6. Characterization of the surface of protein-adsorbed dental materials by wetting and streaming potential measurements

    NARCIS (Netherlands)

    Matsumura, H; Kawasaki, K; Okumura, N; Kambara, M; Norde, W

    2003-01-01

    In this study we have elucidated the water-wettability and the electrokinetic surface potential of protein-covered dental materials. The proteins used here as typical proteins were human serum albumin and lysozyme from hen's egg. The wettability (hydrophobicity/hydrophilicity) and the surface potent

  7. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  8. Protein-protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area.

    Science.gov (United States)

    Chen, Jieming; Sawyer, Nicholas; Regan, Lynne

    2013-04-01

    Protein-protein interactions play key roles in many cellular processes and their affinities and specificities are finely tuned to the functions they perform. Here, we present a study on the relationship between binding affinity and the size and chemical nature of protein-protein interfaces. Our analysis focuses on heterodimers and includes curated structural and thermodynamic data for 113 complexes. We observe a direct correlation between binding affinity and the amount of surface area buried at the interface. For a given amount of surface area buried, the binding affinity spans four orders of magnitude in terms of the dissociation constant (Kd ). Across the entire dataset, we observe no obvious relationship between binding affinity and the chemical composition of the interface. We also calculate the free energy per unit surface area buried, or "surface energy density," of each heterodimer. For interfacial surface areas between 500 and 2000 Å(2) , the surface energy density decreases as the buried surface area increases. As the buried surface area increases beyond about 2000 Å(2) , the surface energy density levels off to a constant value. We believe that these analyses and data will be useful for researchers with an interest in understanding, designing or inhibiting protein-protein interfaces.

  9. The sortase A substrates FnbpA, FnbpB, ClfA and ClfB antagonize colony spreading of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Eleni Tsompanidou

    Full Text Available Staphylococcus aureus is an important human pathogen that is renowned both for its rapid transmission within hospitals and the community, and for the formation of antibiotic resistant biofilms on medical implants. Recently, it was shown that S. aureus is able to spread over wet surfaces. This motility phenomenon is promoted by the surfactant properties of secreted phenol-soluble modulins (PSMs, which are also known to inhibit biofilm formation. The aim of the present studies was to determine whether any cell surface-associated S. aureus proteins have an impact on colony spreading. To this end, we analyzed the spreading capabilities of strains lacking non-essential components of the protein export and sorting machinery. Interestingly, our analyses reveal that the absence of sortase A (SrtA causes a hyper-spreading phenotype. SrtA is responsible for covalent anchoring of various proteins to the staphylococcal cell wall. Accordingly, we show that the hyper-spreading phenotype of srtA mutant cells is an indirect effect that relates to the sortase substrates FnbpA, FnbpB, ClfA and ClfB. These surface-exposed staphylococcal proteins are known to promote biofilm formation, and cell-cell interactions. The hyper-spreading phenotype of srtA mutant staphylococcal cells was subsequently validated in Staphylococcus epidermidis. We conclude that cell wall-associated factors that promote a sessile lifestyle of S. aureus and S. epidermidis antagonize the colony spreading motility of these bacteria.

  10. Surface Display of Domain Ⅲ of Japanese Encephalitis Virus E Protein on Salmonella Typhimurium by Using an Ice Nucleation Protein

    Institute of Scientific and Technical Information of China (English)

    Jian-lin Dou; Tao Jing; Jing-jing Fan; Zhi-ming Yuan

    2011-01-01

    A bacterial cell surface display technique based on an ice nucleation protein has been employed for the development of live vaccine against viral infection.Due to its ubiquitous ability to invade host cells,Salmonella typhimurium might be a good candidate for displaying viral antigens.We demonstrated the surface display of domain III of Japanese encephalitis virus E protein and the enhanced green fluorescent protein on S.typhimurium BRD509 using the ice nucleation protein.The effects of the motif in the ice nucleation protein on the effective display of integral protein were also investigated.The results showed that display motifs in the protein can target integral foreign protein on the surface of S.typhimurium BRD509.Moreover,recombinant strains with surface displayed viral proteins retained their invasiveness,suggesting that the recombinant S.typhimurium can be used as live vaccine vector for eliciting complete immunogenicity.The data may yield better understanding of the mechanism by which ice nucleation protein displays foreign proteins in the Salmonella strain.

  11. Synthetic LPETG-containing peptide incorporation in the Staphylococcus aureus cell-wall in a sortase A- and growth phase-dependent manner.

    Directory of Open Access Journals (Sweden)

    Silvie Hansenová Maňásková

    Full Text Available The majority of Staphylococcus aureus virulence- and colonization-associated surface proteins contain a pentapeptide recognition motif (LPXTG. This motif can be recognized and cleaved by sortase A (SrtA which is a membrane-bound transpeptidase. After cleavage these proteins are covalently incorporated into the peptidoglycan. Therefore, SrtA plays a key role in S. aureus virulence. We aimed to generate a substrate mimicking this SrtA recognition motif for several purposes: to incorporate this substrate into the S. aureus cell-wall in a SrtA-dependent manner, to characterize this incorporation and to determine the effect of substrate incorporation on the incorporation of native SrtA-dependent cell-surface-associated proteins. We synthesized substrate containing the specific LPXTG motif, LPETG. As a negative control we used a scrambled version of this substrate, EGTLP and a S. aureus srtA knockout strain. Both substrates contained a fluorescence label for detection by FACScan and fluorescence microscope. A spreading assay and a competitive Luminex assay were used to determine the effect of substrate treatment on native LPXTG containing proteins deposition in the bacterial cell-wall. We demonstrate a SrtA-dependent covalent incorporation of the LPETG-containing substrate in wild type S. aureus strains and several other Gram-positive bacterial species. LPETG-containing substrate incorporation in S. aureus was growth phase-dependent and peaked at the stationary phase. This incorporation negatively correlated with srtA mRNA expression. Exogenous addition of the artificial substrate did not result in a decreased expression of native SrtA substrates (e.g. clumping factor A/B and protein A nor induced a srtA knockout phenotype.

  12. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive.

    Science.gov (United States)

    Ignatova, Milena; Voccia, Samuel; Gilbert, Bernard; Markova, Nadya; Cossement, Damien; Gouttebaron, Rachel; Jérôme, Robert; Jérôme, Christine

    2006-01-03

    A two-step "grafting from" method has been successfully carried out, which is based on the electrografting of polyacrylate chains containing an initiator for the atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) or copolymerization of TBAEMA with either monomethyl ether of poly(ethylene oxide) methacrylate (PEOMA) or acrylic acid (AA) or styrene. The chemisorption of this type of polymer brushes onto stainless steel surfaces has potential in orthopaedic surgery. These films have been characterized by ATR-FTIR, Raman spectroscopy, atomic force microscopy (AFM), and measurement of contact angles of water. The polymer formed in solution by ATRP and that one detached on purpose from the surface have been analyzed by size exclusion chromathography (SEC) and (1)H NMR spectroscopy. The strong adherence of the films onto stainless steel has been assessed by peeling tests. AFM analysis has shown that addition of hydrophilic comonomers to the grafted chains decreases the surface roughness. According to dynamic quartz crystal microbalance experiments, proteins (e.g., fibrinogen) are more effectively repelled whenever copolymer brushes contain neutral hydrophilic (PEOMA) co-units rather than negatively charged groups (PAA salt). Moreover, a 2- to 3-fold decrease in the fibrinogen adsorption is observed when TBAEMA is copolymerized with either PEOMA or AA rather than homopolymerized or copolymerized with styrene. Compared to the bare stainless steel surface, brushes of polyTBAEMA, poly(TBAEMA-co-PEOMA) and poly(TBAEMA-co-AA) decrease the bacteria adhesion by 3 to 4 orders of magnitude as revealed by Gram-positive bacteria S. aureus adhesion tests.

  13. Staphylococcus aureus survival in human blood.

    Science.gov (United States)

    Malachowa, Natalia; DeLeo, Frank R

    2011-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is abundant in hospitals and in the United States is a leading cause of mortality due to infectious agents. Community-associated MRSA (CA-MRSA) strains such as USA300, which typically cause disease outside of healthcare settings, are also prevalent in the United States. Although most CA-MRSA infections affect skin and soft tissue, the pathogen can enter the bloodstream and ultimately cause severe disease. In a recent paper, we used USA300-specific microarrays to generate a comprehensive view of the molecules that facilitate S. aureus immune evasion and survival in human blood. Notably, genes encoding proteins involved in iron-uptake and utilization and gamma-hemolysin (hlgABC) are highly up-regulated by USA300 during culture in human blood. Here we discuss the potential implication of these findings and the possible role of gamma-hemolysin in the success of S. aureus as a human pathogen.

  14. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B

    2012-01-01

    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  15. Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXS.

    Science.gov (United States)

    Buey, Rubén M; Monterroso, Begoña; Menéndez, Margarita; Diakun, Greg; Chacón, Pablo; Hermoso, Juan Antonio; Díaz, J Fernando

    2007-01-12

    Phosphocholine moieties decorating the pneumococcal surface are used as a docking station for a family of modular proteins, the so-called choline binding proteins or CBPs. Choline recognition is essential for CBPs function and may also be a determinant for their quaternary structure. There is little knowledge about modular arrangement or oligomeric structures in this family. Therefore, we have used the small angle X-ray scattering (SAXS) technique combined with analytical ultracentrifugation in order to model the three-dimensional envelope of two highly different CBPs: the phage encoded Cpl-1 lysozyme and the pneumococcal phosphorylcholine esterase Pce. Both enzymes have an N-terminal catalytic module and a C-terminal choline-binding module (CBM) that attaches them to the bacterial surface and comprises six and ten sequence repeats in Cpl-1 and Pce, respectively. SAXS experiments have shown an inherent conformational plasticity in Cpl-1 that accounts for the different relative position of these regions in the solution and crystal structures. Dimerization of Cpl-1 upon choline binding has been also visualised for the first time, and monomer-monomer interactions take place through the first CBR where a non-canonical choline binding site has now been identified. This mode of association seems to be independent of the absence or presence of the Cpl-1 catalytic module and reveals that the arrangement of the monomers differs from that previously found in the isolated CBM dimer of pneumococcal LytA amidase. In contrast, Pce displays the same modular disposition in the solution and crystal structures, and remains almost invariant upon choline binding. The present results suggest that protein dimerization and duplication of CBRs may be alternative but not equivalent ways of improving cell wall recognition by CBPs, since they provide different interaction geometries for choline residues present in (lipo)teichoic acids.

  16. Protein-based biofilm matrices in Staphylococci

    Directory of Open Access Journals (Sweden)

    Pietro eSpeziale

    2014-12-01

    Full Text Available Staphylococcus aureus and Staphylococcus epidermidis are the most important etiological agents of biofilm associated-infections on indwelling medical devices. Biofilm infections may also develop independently of indwelling devices, e.g. in native valve endocarditis, bone tissue and open wounds. After attachment to tissue or indwelling medical devices that have been conditioned with host plasma proteins, staphylococcal biofilms grow and produce a specific environment which provides the conditions for cell-cell interaction and formation of multicellular communities. Bacteria living in biofilms express a variety of macromolecules, including exopolysaccharides, proteins, extracellular eDNA and other polymers. The S. aureus surface protein C and G (SasC and SasG, clumping factor B (ClfB, serine aspartate repeat protein (SdrC, the biofilm-associated protein (Bap and the fibronectin/fibrinogen-binding proteins (FnBPA and FnBPB are individually implicated in biofilm matrix formation. In S. epidermidis, a protein named accumulation-associated protein (Aap contributes to both the primary attachment phase and the establishment of intercellular connections by forming fibrils on the cell surface. In S. epidermidis proteinaceous biofilm formation can also be mediated by the extracellular matrix binding protein (Embp and S. epidermidis surface protein C (SesC. Additionally, multifunctional proteins such as extracellular adherence protein (Eap and extracellular matrix protein binding protein (Emp of S. aureus and the iron-regulated surface determinant protein C (IsdC of S. lugdunensis can promote biofilm formation in iron-depleted conditions. This multitude of proteins intervene at different stages of biofilm formation with certain proteins contributing to biofilm accumulation and others mediating primary attachment to surfaces. This review examines the contribution of proteins to biofilm formation in staphylococci. The potential to develop vaccines to prevent

  17. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona.

    Science.gov (United States)

    Saha, Krishnendu; Rahimi, Mehran; Yazdani, Mahdieh; Kim, Sung Tae; Moyano, Daniel F; Hou, Singyuk; Das, Ridhha; Mout, Rubul; Rezaee, Farhad; Mahmoudi, Morteza; Rotello, Vincent M

    2016-04-26

    Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of chemical motifs on NP surface. The NPs were uptaken in macrophages in a corona-dependent manner, predominantly through recognition of specific complement proteins in the NP corona. Taken together, this study shows that surface functionality can be used to tune the protein corona formed on NP surface, dictating the interaction of NPs with macrophages.

  18. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils.

    Science.gov (United States)

    Hampton, M B; Kettle, A J; Winterbourn, C C

    1996-09-01

    We have used a quantitative assay that measures independent rate constants for phagocytosis and killing of Staphylococcus aureus to investigate the involvement of superoxide and myeloperoxidase in bacterial killing by human neutrophils. To inhibit superoxide-dependent processes, superoxide dismutase was cross-linked to immunoglobulin G and the conjugate was attached to the surface of S. aureus via protein A in its cell wall. Myeloperoxidase was inhibited with azide, and myeloperoxidase-deficient neutrophils were used. Adding the NADPH oxidase inhibitor diphenyleneiodonium, to prevent superoxide production, decreased the killing rate to 25%, indicating that oxidative killing mechanisms predominate in this system. The rate constant for killing of S. aureus with superoxide dismutase attached was 70% of that for control bacteria linked to inactivated enzyme. Superoxide dismutase had no effect in the presence of diphenyleneiodonium. The rate of killing was decreased to 33% in the presence of azide and to 40% with myeloperoxidase-deficient neutrophils. Superoxide dismutase had no effect in the presence of azide. On the assumption that the oxidative and nonoxidative components of killing can be considered separately, the oxidative rate was decreased by almost half by superoxide dismutase and was about six times lower when myeloperoxidase was inactive. We conclude that myeloperoxidase-dependent processes are strongly favored by human neutrophils as their prime mechanism of oxidative killing of S. aureus and that superoxide makes a direct contribution to killing. Our results also suggest that superoxide acts in conjunction with a myeloperoxidase-dependent pathway.

  19. Photoswitchable method for the ordered attachment of proteins to surfaces

    Science.gov (United States)

    Camarero, Julio A.; DeYoreo, James J.; Kwon, Youngeun

    2011-07-05

    Described herein is a method for the attachment of proteins to any solid support with control over the orientation of the attachment. The method is extremely efficient, not requiring the previous purification of the protein to be attached, and can be activated by UV-light. Spatially addressable arrays of multiple protein components can be generated by using standard photolithographic techniques.

  20. Synthetic peptide inhibitors of DNA replication in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Kjelstrup, Susanne

    of clinically important pathogens and is essential for bacterial proliferation. The bacterial replication apparatus fulfill the requirements for a good drug target. The replisome of S. aureus consists of 5 different subunits (2, PolC2, 4, δ and δ`) who’s organization depends on multiple protein-protein...... interactions. Centrally in the replisome is the -clamp where to multiple proteins binds through a conserved motif. We have identified the protein-protein interactions in the replisome of S. aureus by use of a bacterial two-hybrid system. A reverse bacterial two-hybrid system (R-BTH) based on Pyr...

  1. Scanning electron microscopy study of protein immobilized on SIO2 Sol-gel surfaces

    Directory of Open Access Journals (Sweden)

    O.B.G. Assis

    2003-09-01

    Full Text Available Uniform attachment of enzymes to solid surfaces is essential in the development of bio and optical sensor devices. Immobilization by adsorption according to hydrophilic or hydrophobic nature is dependent on the charges and defects of the support surfaces. Sol-gel SiO2 densified glass surfaces, frequently used as supports for protein immobilization, are evaluated via scanning electron microscopy. The model protein is globular enzyme lysozyme, deposited by adsorption on functionalized surfaces. Formation of a protein layer is confirmed by FTIR spectroscopy, and the SEM images suggest discontinuous adsorption in areas where cracks predominate on the glass surface.

  2. Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Xin; Liu, Yu; Gao, Yaping; Dong, Jie; Mu, Chunhua; Lu, Qiang; Shao, Ningsheng; Yang, Guang

    2011-01-01

    Several fibrinogen binding proteins (Fibs) play important roles in the pathogenesis of Staphylococcus aureus (S. aureus). Most Fibs can promote the aggregation of platelets during infection, but the extracellular fibrinogen-binding protein (Efb) is an exception. It is reported that Efb can specifically bind fibrinogen and inhibit the aggregation of platelet with its N terminal. However, the biological significance of platelet aggregation inhibition in the infection caused by S. aureus is unclear until now. Here, we demonstrated that the persistence and aggregation of platelets were important for killing S. aureus in whole blood. It was found that the N terminal of Efb (EfbN) and platelets inhibitors could increase the survival of S. aureus in whole blood. The study in vivo also showed that EfbN and platelets inhibitors could reduce the killing of S. aureus and increase the lethality rate of S. aureus in the acute infection mouse model.

  3. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide

    Science.gov (United States)

    Ma, Yuhao; Cai, Mengtan; He, Liu; Luo, Xianglin

    2016-01-01

    To enhance the biocompatibility or extend the biomedical application of poly(caprolactone) (PCL), protein retention on PCL surface is often required. In this study, poly(acrylamide) (PAAm) brushes were grown from PCL surface via surface-initiated atom transfer radical polymerization (SI-ATRP) and served as a protein-capturing platform. Grafted PAAm was densely packed on surface and exhibited superior protein retention ability. Captured protein was found to be resistant to washing under detergent environment. Furthermore, protein structure after being captured was investigated by circular dichroism (CD) spectroscopy, and the CD spectra verified that secondary structure of captured proteins was maintained, indicating no denaturation of protein happened for retention process.

  4. Influence of carvacrol and thymol on the physiological attributes, enterotoxin production and surface characteristics of Staphylococcus aureus strains isolated from foods

    Science.gov (United States)

    Souza, E.L.; Oliveira, C.E.V.; Stamford, T.L.M.; Conceição, M.L.; Neto, N.J. Gomes

    2013-01-01

    This study evaluated the influence of the phenolic compounds carvacrol (CAR) and thymol (THY) on some physiological characteristics and on the modulation of the secretion of some staphylococcal virulence factors, that is, coagulase and enterotoxin. This study also investigated possible mechanisms for the establishment of the anti-staphylococcal activity of these compounds. Sublethal concentrations (0.3 and 0.15 μL/mL) of CAR and THY inhibited the activity of the enzymes coagulase and lipase and led to a decrease in salt tolerance. At the tested sublethal concentrations, both CAR and THY led to a total suppression of enterotoxin production. The loss of a 260-nm-absorbing material and an efflux of potassium ions occurred immediately after the addition of CAR and THY at 0.6 and 1.2 μL/mL and increased up to 120 min of exposure. Electron microscopy of cells exposed to CAR and THY (0.6 μL/mL) revealed that individual cells appeared to be deformed, with projections of cellular material. The observations of leakage of cellular material and an altered cell surface suggest that gross damage to a cell’s cytoplasmic membrane, which results in a disruption in protein secretion, could be responsible for the anti-staphylococcal properties of CAR and THY. PMID:24159280

  5. Influence of carvacrol and thymol on the physiological attributes, enterotoxin production and surface characteristics of Staphylococcus aureus strains isolated from foods

    Directory of Open Access Journals (Sweden)

    E.L. Souza

    2013-01-01

    Full Text Available This study evaluated the influence of the phenolic compounds carvacrol (CAR and thymol (THY on some physiological characteristics and on the modulation of the secretion of some staphylococcal virulence factors, that is, coagulase and enterotoxin. This study also investigated possible mechanisms for the establishment of the anti-staphylococcal activity of these compounds. Sublethal concentrations (0.3 and 0.15 µL/mL of CAR and THY inhibited the activity of the enzymes coagulase and lipase and led to a decrease in salt tolerance. At the tested sublethal concentrations, both CAR and THY led to a total suppression of enterotoxin production. The loss of a 260-nm-absorbing material and an efflux of potassium ions occurred immediately after the addition of CAR and THY at 0.6 and 1.2 µL/mL and increased up to 120 min of exposure. Electron microscopy of cells exposed to CAR and THY (0.6 µL/mL revealed that individual cells appeared to be deformed, with projections of cellular material. The observations of leakage of cellular material and an altered cell surface suggest that gross damage to a cell's cytoplasmic membrane, which results in a disruption in protein secretion, could be responsible for the anti-staphylococcal properties of CAR and THY.

  6. Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation on Surfaces and Increased Activity of Adsorbed Proteins.

    Science.gov (United States)

    Cruz-Teran, Carlos A; Carlin, Kevin B; Efimenko, Kirill; Genzer, Jan; Rao, Balaji M

    2016-08-30

    While nonspecific adsorption is widely used for immobilizing proteins on solid surfaces, the random nature of protein adsorption may reduce the activity of immobilized proteins due to occlusion of the active site. We hypothesized that the orientation a protein assumes on a given surface can be controlled by systematically introducing mutations into a region distant from its active site, thereby retaining activity of the immobilized protein. To test this hypothesis, we generated a combinatorial protein library by randomizing six targeted residues in a binding protein derived from highly stable, nonimmunoglobulin Sso7d scaffold; mutations were targeted in a region that is distant from the binding site. This library was screened to isolate binders that retain binding to its cognate target (chicken immunoglobulin Y, cIgY) as well as exhibit adsorption on unmodified silica at pH 7.4 and high ionic strength conditions. A single mutant, Sso7d-2B5, was selected for further characterization. Sso7d-2B5 retained binding to cIgY with an apparent dissociation constant similar to that of the parent protein; both mutant and parent proteins saturated the surface of silica with similar densities. Strikingly, however, silica beads coated with Sso7d-2B5 could achieve up to 7-fold higher capture of cIgY than beads coated with the parent protein. These results strongly suggest that mutations introduced in Sso7d-2B5 alter its orientation relative to the parent protein, when adsorbed on silica surfaces. Our approach also provides a generalizable strategy for introducing mutations in proteins so as to improve their activity upon immobilization, and has direct relevance to development of protein-based biosensors and biocatalysts.

  7. Sampling the conformation of protein surface residues for flexible protein docking

    Directory of Open Access Journals (Sweden)

    Amenta Nina

    2010-11-01

    Full Text Available Abstract Background The problem of determining the physical conformation of a protein dimer, given the structures of the two interacting proteins in their unbound state, is a difficult one. The location of the docking interface is determined largely by geometric complementarity, but finding complementary geometry is complicated by the flexibility of the backbone and side-chains of both proteins. We seek to generate candidates for docking that approximate the bound state well, even in cases where there is backbone and/or side-chain difference from unbound to bound states. Results We divide the surfaces of each protein into local patches and describe the effect of side-chain flexibility on each patch by sampling the space of conformations of its side-chains. Likely positions of individual side-chains are given by a rotamer library; this library is used to derive a sample of possible mutual conformations within the patch. We enforce broad coverage of torsion space. We control the size of the sample by using energy criteria to eliminate unlikely configurations, and by clustering similar configurations, resulting in 50 candidates for a patch, a manageable number for docking. Conclusions Using a database of protein dimers for which the bound and unbound structures of the monomers are known, we show that from the unbound patch we are able to generate candidates for docking that approximate the bound structure. In patches where backbone change is small (within 1 Å RMSD of bound, we are able to account for flexibility and generate candidates that are good approximations of the bound state (82% are within 1 Å and 98% are within 1.4 Å RMSD of the bound conformation. We also find that even in cases of moderate backbone flexibility our candidates are able to capture some of the overall shape change. Overall, in 650 of 700 test patches we produce a candidate that is either within 1 Å RMSD of the bound conformation or is closer to the bound state than the

  8. Flagellin and outer surface proteins from Borrelia burgdorferi are not glycosylated

    OpenAIRE

    Štěrba, Ján

    2012-01-01

    Glycosylation of four proteins from Borrelia burgdorferi s.s. was investigated ? flagellins FlaA, FlaB, and outer surface proteins OspA and OspB. Glycosylation of these four proteins was not proved by any of the used techniques. However, other glycan-staining positive proteins were present in the borrelia samples. These proteins were suggested to originate in the culture medium.

  9. Nonlinear surface dilatational rheology and foaming behavior of protein and protein fibrillar aggregates in the presence of natural surfactant

    NARCIS (Netherlands)

    Wan, Zhili; Yang, Xiaoquan; Sagis, L.M.C.

    2016-01-01

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein?surfactant interfaci

  10. Structural insights into the evolution of a non-biological protein: importance of surface residues in protein fold optimization.

    Directory of Open Access Journals (Sweden)

    Matthew D Smith

    Full Text Available Phylogenetic profiling of amino acid substitution patterns in proteins has led many to conclude that most structural information is carried by interior core residues that are solvent inaccessible. This conclusion is based on the observation that buried residues generally tolerate only conserved sequence changes, while surface residues allow more diverse chemical substitutions. This notion is now changing as it has become apparent that both core and surface residues play important roles in protein folding and stability. Unfortunately, the ability to identify specific mutations that will lead to enhanced stability remains a challenging problem. Here we discuss two mutations that emerged from an in vitro selection experiment designed to improve the folding stability of a non-biological ATP binding protein. These mutations alter two solvent accessible residues, and dramatically enhance the expression, solubility, thermal stability, and ligand binding affinity of the protein. The significance of both mutations was investigated individually and together, and the X-ray crystal structures of the parent sequence and double mutant protein were solved to a resolution limit of 2.8 and 1.65 A, respectively. Comparative structural analysis of the evolved protein to proteins found in nature reveals that our non-biological protein evolved certain structural features shared by many thermophilic proteins. This experimental result suggests that protein fold optimization by in vitro selection offers a viable approach to generating stable variants of many naturally occurring proteins whose structures and functions are otherwise difficult to study.

  11. Protein analysis in dissolved organic matter: what free proteins from soil leachate and surface water can tell us a perspective

    Science.gov (United States)

    Schulze, W.

    2004-12-01

    Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOM protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from DOM and organism-free surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  12. Protein sequences bound to mineral surfaces persist into deep time

    OpenAIRE

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa; Freeman, Colin L.; Woolley, Jos; Crisp, Molly K; Wilson, Julie; Fotakis, Anna Katerina; Fischer, Roman; Kessler, Benedikt M; Jersie-Christensen, Rosa Rakownikow; Olsen, Jesper Velgaard; Haile, James; Thomas, Jessica; Marean, Curtis W.

    2016-01-01

    Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Mol...

  13. Detection of S-nitrosylated protein by surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Ruirui Wang

    2015-06-01

    Full Text Available S-Nitrosylation has recently emerged as an important posttranslational modification of proteins and is becoming an intensive field of research in plants. Protein S-nitrosation, a reversible post-translation modification of cysteine, affects many cell signaling pathways and plays critical roles in redox-sensitive cell signaling. Changes in protein function effectively transmit biological signals and thus provide a framework for elucidating signaling networks. This paper presented a new, universal immunosensor for detection of S-nitrosylated proteins. Electrochemical impedance spectroscopy (EIS and atomic force microscope (AFM were used to estimate the formation of self-assembled film. This method was based on the specific binding characteristics of biotin–streptavidin, using Biotin-HPDP labeled protein sulfhydryl group as the substrate to detect proteins. The sensor was used to detect bovine serum albumin (BSA, nitrosylated BSA and denitrosylated BSA. The results showed that 90.61% of nitrosylated BSA were reduced, verifying that protein S-nitrosylation is a reversible and effective post-translation modification. This method was successfully applied to detect S-nitrosylated protein in Feicheng peach. The results showed good repeatability and precision. This method provided a molecular basis for further exploring the mechanism of S-nitrosylation of proteins in plants.

  14. Pre-absorbed immunoproteomics: a novel method for the detection of Streptococcus suis surface proteins.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Streptococcus suis serotype 2 (SS2 is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics.

  15. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli

    DEFF Research Database (Denmark)

    Koehler, JF; Birkelund, Svend; Stephens, RS

    1992-01-01

    The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis and cap...... the contribution of the MOMP variable segments to the topographical interactions which determine the antigenic structure responsible for human immune response....

  16. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie;

    2004-01-01

    as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell...

  17. Development, characterization, and optimization of protein level in date bars using response surface methodology.

    Science.gov (United States)

    Nadeem, Muhammad; Salim-ur-Rehman; Muhammad Anjum, Faqir; Murtaza, Mian Anjum; Mueen-ud-Din, Ghulam

    2012-01-01

    This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM). Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD) with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables.

  18. How surface composition of high milk proteins powders is influenced by spray-drying temperature.

    Science.gov (United States)

    Gaiani, C; Morand, M; Sanchez, C; Tehrany, E Arab; Jacquot, M; Schuck, P; Jeantet, R; Scher, J

    2010-01-01

    High milk proteins powders are common ingredients in many food products. The surface composition of these powders is expected to play an essential role during their storage, handling and/or final application. Therefore, an eventual control of the surface composition by modifying the spray-drying temperature could be very useful in the improvement of powder quality and the development of new applications. For this purpose, the influence of five spray-drying temperatures upon the surface composition of the powders was investigated by X-ray photoelectron spectroscopy. The major milk proteins were studied: native micellar casein and native whey, both more or less enriched in lactose. The results show a surface enrichment in lipids for all the powders and in proteins for many powders. Whatever the drying temperature, lipids and proteins are preferentially located near the surface whereas lactose is found in the core. This surface enrichment is also highly affected by the spray-drying temperature. More lipids, more proteins and less lactose are systematically observed at the surface of powders spray-dried at lower outlet air temperatures. The nature of proteins is also found essential; surface enrichment in lipids being much stronger for whey proteins containing powders than for casein containing powders. Additionally, we found a direct correlation between the lipids surface concentration and the wetting ability for the 25 powders studied.

  19. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.

    Science.gov (United States)

    Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich

    2016-12-01

    Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: (i) identification of conserved and highly variable regions; (ii) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; (iii) in vitro DNA recombination of synthetic genes; and (iv) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.

  20. Protein sequences bound to mineral surfaces persist into deep time

    DEFF Research Database (Denmark)

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa

    2016-01-01

    Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laet...

  1. Staphylococcus aureus intestinal colonization is associated with increased frequency of S. aureus on skin of hospitalized patients

    Directory of Open Access Journals (Sweden)

    Donskey Curtis J

    2007-09-01

    Full Text Available Abstract Background Intestinal colonization by Staphylococcus aureus among hospitalized patients has been associated with increased risk of staphylococcal infection and could potentially contribute to transmission. We hypothesized that S. aureus intestinal colonization is associated with increased frequency of S. aureus on patients' skin and nearby environmental surfaces. Methods Selected inpatients were cultured weekly for S. aureus from stool, nares, skin (groin and axilla, and environmental surfaces (bed rail and bedside table. Investigator's hands were cultured after contacting the patients' skin and the environmental surfaces. Results Of 71 subjects, 32 (45.1% had negative nares and stool cultures, 23 (32.4% had positive nares and stool cultures, 13 (18.3% were nares carriers only, and 3 (4.2% were stool carriers only. Of the 39 patients with S. aureus carriage, 30 (76.9% had methicillin-resistant isolates. In comparison to nares colonization only, nares and intestinal colonization was associated with increased frequency of positive skin cultures (41% versus 77%; p = 0.001 and trends toward increased environmental contamination (45% versus 62%; p = 0.188 and acquisition on investigator's hands (36% versus 60%; p = 0.057. Patients with negative nares and stool cultures had low frequency of S. aureus on skin and the environment (4.8% and 11.3%, respectively. Conclusion We found that hospitalized patients with S. aureus nares and/or stool carriage frequently had S. aureus on their skin and on nearby environmental surfaces. S. aureus intestinal colonization was associated with increased frequency of positive skin cultures, which could potentially facilitate staphylococcal infections and nosocomial transmission.

  2. Straightforward protein immobilization on Sylgard 184 PDMS microarray surface.

    Science.gov (United States)

    Heyries, Kevin A; Marquette, Christophe A; Blum, Loïc J

    2007-04-10

    In this work, a straightforward technique for protein immobilization on Sylgard 184 is described. The method consists of a direct transfer of dried protein/salt solutions to the PDMS interface during the polymer curing. Such non-conventional treatment of proteins was found to have no major negative consequence on their integrity. The mechanisms of this direct immobilization were investigated using a lysine modified dextran molecule as a model. Clear experimental results suggested that both chemical bounding and molding effect were implicated. As a proof of concept study, three different proteins were immobilized on a single microarray (Arachis hypogaea lectin, rabbit IgG, and human IgG) and used as antigens for capture of chemiluminescent immunoassays. The proteins were shown to be easily recognized by their specific antibodies, giving antibody detection limits in the fmol range.

  3. New Tools for the site-specific attachment of proteins to surface

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Kwon, Y; Coleman, M A

    2005-06-17

    Protein microarrays in which proteins are immobilized to a solid surface are ideal reagents for high-throughput experiments that require very small amounts of analyte. Such protein microarrays ('protein chips') can be used very efficiently to analyze all kind of protein interactions en masse. Although a variety of methods are available for attaching proteins on solid surfaces. Most of them rely on non-specific adsorption methods or on the reaction of chemical groups within proteins (mainly, amino and carboxylic acid groups) with complementary reactive groups. In both cases the protein is attached to the surface in random orientations. The use of recombinant affinity tags addresses the orientation issue, however in most of the cases the interaction of the tags are reversible (e.g., glutathione S-transferase, maltose binding protein and poly-His) and, hence, are not stable over the course of subsequent assays or require large mediator proteins (e.g., biotin-avidin and antigen antibody). The key for the covalent attachment of a protein to a solid support with a total control over the orientation is to introduce two unique and mutually reactive groups on both the protein and the surface. The reaction between these two groups should be highly selective thus behaving like a molecular 'Velcro'.

  4. New Tools for the site-specific attachment of proteins to surface

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y; Coleman, M A; Camarero, J A

    2006-06-27

    Protein microarrays in which proteins are immobilized to a solid surface are ideal reagents for high-throughput experiments that require very small amounts of analyte. Such protein microarrays (''protein chips'') can be used very efficiently to analyze all kind of protein interactions en masse. Although a variety of methods are available for attaching proteins on solid surfaces. Most of them rely on non-specific adsorption methods or on the reaction of chemical groups within proteins (mainly, amino and carboxylic acid groups) with complementary reactive groups. In both cases the protein is attached to the surface in random orientations. The use of recombinant affinity tags addresses the orientation issue, however in most of the cases the interaction of the tags are reversible (e.g., glutathione S-transferase, maltose binding protein and poly-His) and, hence, are not stable over the course of subsequent assays or require large mediator proteins (e.g., biotin-avidin and antigen antibody). The key for the covalent attachment of a protein to a solid support with a total control over the orientation is to introduce two unique and mutually reactive groups on both the protein and the surface. The reaction between these two groups should be highly selective thus behaving like a molecular ''velcro''.

  5. Surface characterization of proteins using multi-fractal property of heat-denatured aggregates

    Science.gov (United States)

    Lahiri, Tapobrata; Mishra, Hrishikesh; Sarkar, Subrata; Misra, Krishna

    2008-01-01

    Multi-fractal property of heat-denatured protein aggregates (HDPA) is characteristic of its individual form. The visual similarity between digitally generated microscopic images of HDPA with that of surface-image of its individual X-ray structures in protein databank (PDB) displayed using Visual Molecular Dynamics (VMD) viewer is the basis of the study. We deigned experiments to view the fractal nature of proteins at different aggregate scales. Intensity based multi-fractal dimensions (ILMFD) extracted from various planes of digital microscopic images of protein aggregates were used to characterize HDPA into different classes. Moreover, the ILMFD parameters extracted from aggregates show similar classification pattern to digital images of protein surface displayed by VMD viewer using PDB entry. We discuss the use of irregular patterns of heat-denatured aggregate proteins to understand various surface properties in native proteins. PMID:18795110

  6. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion.

    Science.gov (United States)

    Chang, Yung; Liao, Shih-Chieh; Higuchi, Akon; Ruaan, Ruoh-Chyu; Chu, Chih-Wei; Chen, Wen-Yih

    2008-05-20

    An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate (SBMA). The SBMA was grafted from a bromide-covered gold surface via surface-initiated atom transfer radical polymerization to form well-packed polymer brushes. Plasma protein adsorption on poly(sulfobetaine methacrylate) (polySBMA) grafted surfaces was measured with a surface plasmon resonance sensor. It is revealed that an excellent stable nonbiofouling surface with grafted polySBMA can be performed with a cycling test of the adsorption of three model proteins in a wide range of various salt types, buffer compositions, solution pH levels, and temperatures. This work also demonstrates the adsorption of plasma proteins and the adhesion of platelets from human blood plasma on the polySBMA grafted surface. It was found that the polySBMA grafted surface effectively reduces the plasma protein adsorption from platelet-poor plasma solution to a level superior to that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelets from platelet-rich plasma solution were not observed on the polySBMA grafted surface. This work further concludes that a surface with good hemocompatibility can be achieved by the well-packed surface-grafted polySBMA brushes.

  7. Toxin-Antitoxin Systems of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Christopher F. Schuster

    2016-05-01

    Full Text Available Toxin-antitoxin (TA systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery.

  8. Toxin-Antitoxin Systems of Staphylococcus aureus.

    Science.gov (United States)

    Schuster, Christopher F; Bertram, Ralph

    2016-05-05

    Toxin-antitoxin (TA) systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA) and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery.

  9. Surface heterogeneity: a friend or foe of protein adsorption - insights from theoretical simulations.

    Science.gov (United States)

    Penna, Matthew; Ley, Kamron; Maclaughlin, Shane; Yarovsky, Irene

    2016-10-06

    A lack in the detailed understanding of mechanisms through which proteins adsorb or are repelled at various solid/liquid interfaces limits the capacity to rationally design and produce more sophisticated surfaces with controlled protein adsorption in both biomedical and industrial settings. To date there are three main approaches to achieve anti biofouling efficacy, namely chemically adjusting the surface hydrophobicity and introducing various degrees of surface roughness, or a combination of both. More recently, surface nanostructuring has been shown to have an effect on protein adsorption. However, the current resolution of experimental techniques makes it difficult to investigate these three phase systems at the molecular level. In this molecular dynamics study we explore in all-atom detail the adsorption process of one of the most surface active proteins, EAS hydrophobin, known for its versatile ability to self-assemble on both hydrophobic and hydrophilic surfaces forming stable monolayers that facilitate further biofilm growth. We model the adsorption of this protein on organic ligand protected silica surfaces with varying degrees of chemical heterogeneity and roughness, including fully homogenous hydrophobic and hydrophilic surfaces for comparison. We present a detailed characterisation of the functionalised surface structure and dynamics for each of these systems, and the effect the ligands have on interfacial water, the adsorption process and conformational rearrangements of the protein. Results suggest that the ligand arrangement that produces the highest hydrophilic chain mobility and the lack of significant hydrophobic patches shows the most promising anti-fouling efficacy toward hydrophobin. However, the presence on the protein surface of a flexible loop with amphipathic character (the Cys3-Cys4 loop) is seen to facilitate EAS adsorption on all surfaces by enabling the protein to match the surface pattern.

  10. Exfoliative Toxins of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michal Bukowski

    2010-05-01

    Full Text Available Staphylococcus aureus is an important pathogen of humans and livestock. It causes a diverse array of diseases, ranging from relatively harmless localized skin infections to life-threatening systemic conditions. Among multiple virulence factors, staphylococci secrete several exotoxins directly associated with particular disease symptoms. These include toxic shock syndrome toxin 1 (TSST-1, enterotoxins, and exfoliative toxins (ETs. The latter are particularly interesting as the sole agents responsible for staphylococcal scalded skin syndrome (SSSS, a disease predominantly affecting infants and characterized by the loss of superficial skin layers, dehydration, and secondary infections. The molecular basis of the clinical symptoms of SSSS is well understood. ETs are serine proteases with high substrate specificity, which selectively recognize and hydrolyze desmosomal proteins in the skin. The fascinating road leading to the discovery of ETs as the agents responsible for SSSS and the characterization of the molecular mechanism of their action, including recent advances in the field, are reviewed in this article.

  11. In-cell thermodynamics and a new role for protein surfaces.

    Science.gov (United States)

    Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J

    2016-02-16

    There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.

  12. Staphylococcus aureus bacteremia.

    Science.gov (United States)

    Jensen, Allan Garlik

    2003-11-01

    Staphylococcus aureus bacteremia (SAB) is still associated with a high mortality, and knowledge on risk factors and the clinical and the therapeutic aspects of SAB is still limited. This thesis focuses on the clinical aspects of SAB and its metastatic infections. In a study of all patients with bacteremia in Copenhagen County October 1992 through April 1993 (study I) we emphasized previous findings, that S. aureus is one of the most frequent pathogens in bacteremia, and in a case control study also in Copenhagen County 1994-95 (study II) we demonstrated, that not only an inserted central venous catheter and nasal S. aureus carriage but also hyponatremia and anemia are important risk factors for hospital-acquired SAB (study II). Studies on the treatment of SAB have pointed out, that the eradication of a primary is important, but there are only limited clinical studies dealing with antibiotic treatment. By logistic regression analysis, we were able to demonstrate that focus eradication is essential, but also that treatment with dicloxacillin 1 g x 4 or 2 g x 3 are superior to 1 g x 3 (studie III), indicating that the time for serum concentration above the Minimal Inhibitory Concentration (MIC) for the bacteria plays a role in the outcome of SAB treatment. S. aureus osteomyelitis secondary to SAB is frequently observed. No other countries, however, have a centralized registration, which make it possible to evaluate a large number of these patients. Since 1960, The Staphylococcal Laboratory, Statens Serum Institut in Copenhagen, has registrated selected clinical informations from nearly all patients with positive blood cultures of S. aureus. Based on this registration, we were able to show an increased number of S. aureus osteomyelitis among older patients and a decreased number of S. aureus osteomyelitis of femur and tibia among younger infants in the period 1980-90 (study IV). By reviewing the records of a large number of patients with vertebral S. aureus

  13. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    Science.gov (United States)

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-11-26

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  14. Development, Characterization, and Optimization of Protein Level in Date Bars Using Response Surface Methodology

    OpenAIRE

    Muhammad Nadeem; Salim-ur-Rehman,; Faqir Muhammad Anjum; Mian Anjum Murtaza; Ghulam Mueen-ud-Din

    2012-01-01

    This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM). Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD) with 2 variables and 3 lev...

  15. Synthesis and evaluation of a conjugate vaccine composed of Staphylococcus aureus poly-N-acetyl-glucosamine and clumping factor A.

    Directory of Open Access Journals (Sweden)

    Tomás Maira-Litrán

    Full Text Available The increasing frequency, severity and antimicrobial resistance of Staphylococcus aureus infections has made the development of immunotherapies against this pathogen more urgent than ever. Previous immunization attempts using monovalent antigens resulted in at best partial levels of protection against S. aureus infection. We therefore reasoned that synthesizing a bivalent conjugate vaccine composed of two widely expressed antigens of S. aureus would result in additive/synergetic activities by antibodies to each vaccine component and/or in increased strain coverage. For this we used reductive amination, to covalently link the S. aureus antigens clumping factor A (ClfA and deacetylated poly-N-β-(1-6-acetyl-glucosamine (dPNAG. Mice immunized with 1, 5 or 10 µg of the dPNAG-ClfA conjugate responded in a dose-dependent manner with IgG to dPNAG and ClfA, whereas mice immunized with a mixture of ClfA and dPNAG developed significantly lower antibody titers to ClfA and no antibodies to PNAG. The dPNAG-ClfA vaccine was also highly immunogenic in rabbits, rhesus monkeys and a goat. Moreover, affinity-purified, antibodies to ClfA from dPNAG-ClfA immune serum blocked the binding of three S. aureus strains to immobilized fibrinogen. In an opsonophagocytic assay (OPKA goat antibodies to dPNAG-ClfA vaccine, in the presence of complement and polymorphonuclear cells, killed S. aureus Newman and, to a lower extent, S. aureus Newman ΔclfA. A PNAG-negative isogenic mutant was not killed. Moreover, PNAG antigen fully inhibited the killing of S. aureus Newman by antisera to dPNAG-ClfA vaccine. Finally, mice passively vaccinated with goat antisera to dPNAG-ClfA or dPNAG-diphtheria toxoid conjugate had comparable levels of reductions of bacteria in the blood 2 h after infection with three different S. aureus strains as compared to mice given normal goat serum. In conclusion, ClfA is an immunogenic carrier protein that elicited anti-adhesive antibodies that fail to

  16. Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv.

    Directory of Open Access Journals (Sweden)

    Carolina Vizcaíno

    2010-06-01

    Full Text Available The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates.

  17. New developments for the site-specific attachment of protein to surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2005-05-12

    Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site-specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.

  18. Silica as a Matrix for Encapsulating Proteins: Surface Effects on Protein Structure Assessed by Circular Dichroism Spectroscopy

    Directory of Open Access Journals (Sweden)

    Genet H. Zemede

    2012-08-01

    Full Text Available The encapsulation of biomolecules in solid materials that retain the native properties of the molecule is a desired feature for the development of biosensors and biocatalysts. In the current study, protein entrapment in silica-based materials is explored using the sol-gel technique. This work surveys the effects of silica confinement on the structure of several model polypeptides, including apomyoglobin, copper-zinc superoxide dismutase, polyglutamine, polylysine, and type I antifreeze protein. Changes in the secondary structure of each protein following encapsulation are monitored by circular dichroism spectroscopy. In many cases, silica confinement reduces the fraction of properly-folded protein relative to solution, but addition of a secondary solute or modification of the silica surface leads to an increase in structure. Refinement of the glass surface by addition of a monosubstituted alkoxysilane during sol-gel processing is shown to be a valuable tool for testing the effects of surface chemistry on protein structure. Because silica entrapment prevents protein aggregation by isolating individual protein molecules in the pores of the glass material, one may monitor aggregation-prone polypeptides under solvent conditions that are prohibited in solution, as demonstrated with polyglutamine and a disease-related variant of superoxide dismutase.

  19. Detection and identification of methicillin resistant and sensitive strains of Staphylococcus aureus using tandem measurements.

    Science.gov (United States)

    Guntupalli, Rajesh; Sorokulova, Iryna; Olsen, Eric; Globa, Ludmila; Pustovyy, Oleg; Moore, Timothy; Chin, Bryan; Barbaree, James; Vodyanoy, Vitaly

    2012-09-01

    Discrimination of methicillin resistant (MRSA) and sensitive (MSSA) strains of Staphylococcus aureus, was achieved by the specially selected lytic bacteriophage with a wide host range of S. aureus strains and a penicillin-binding protein (PBP 2a) specific antibody. A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to analyze bacteria-phage interactions. The lytic phages were transformed into phage spheroids by exposure to water-chloroform interface. Phage spheroid monolayers were transferred onto QCM-D sensors by Langmuir-Blodgett (LB) technique. Biosensors were tested in the flow mode with bacterial water suspensions, while collecting frequency and energy dissipation changes. Bacteria-spheroid interactions resulted in decreased resonance frequency and an increase in dissipation energy for both MRSA and MSSA strains. Following the bacterial binding, these sensors were further exposed to a flow of the penicillin-binding protein (PBP 2a) specific antibody conjugated latex beads. Sensors tested with MRSA responded to PBP 2a antibody beads; while sensors examined with MSSA gave no response. This experimental difference establishes an unambiguous discrimination between methicillin resistant and sensitive S. aureus strains. Both free and immobilized bacteriophages strongly inhibit bacterial growth on solid/air interfaces and in water suspensions. After lytic phages are transformed into spheroids, they retain their strong lytic activity and demonstrate high bacterial capture efficiency. The phage and phage spheroids can be used for screening and disinfection of antibiotic resistant bacteria. Other applications may include use on biosensors, bacteriophage therapy, and antimicrobial surfaces.

  20. Two methods for glass surface modification and their application in protein immobilization.

    Science.gov (United States)

    Qin, Ming; Hou, Sen; Wang, Likai; Feng, XiZeng; Wang, Rui; Yang, Yanlian; Wang, Chen; Yu, Lei; Shao, Bin; Qiao, MingQiang

    2007-11-15

    Protein immobilization is a crucial step in protein chip, biosensor, etc. Here, two methods to immobilize proteins on glass surface were analyzed, one is silanization method using 3-aminopropyltriethoxysilane (APTES), and the other is hydrophobin HFBI coating. The modified glass surfaces were characterized with X-ray photoelectron spectroscopy (XPS), water contact angle measurement (WCA) and immunoassay. The results of XPS and WCA illustrated that the surface property of glass can be changed by both the two methods. The following immunoassay using microcontact printing (microCP) verified that both methods could help protein immobilization effectively on glass slides. Compared with the amine treatment, it is concluded that hydrophobin self-assemblies is a simple and generic way for protein immobilization on glass slides, which has potential application in protein chips and biosensors.

  1. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    Science.gov (United States)

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.

  2. Cell surface expression of glycosylated, nonglycosylated, and truncated forms of a cytoplasmic protein pyruvate kinase.

    Science.gov (United States)

    Hiebert, S W; Lamb, R A

    1988-09-01

    The soluble cytoplasmic protein pyruvate kinase (PK) has been expressed at the cell surface in a membrane-anchored form (APK). The hybrid protein contains the NH2-terminal signal/anchor domain of a class II integral membrane protein (hemagglutinin/neuraminidase, of the paramyxovirus SV5) fused to the PK NH2 terminus. APK contains a cryptic site that is used for N-linked glycosylation but elimination of this site by site-specific mutagenesis does not prevent cell surface localization. Truncated forms of the APK molecule, with up to 80% of the PK region of APK removed, can also be expressed at the cell surface. These data suggest that neither the complete PK molecule nor its glycosylation are necessary for intracellular transport of PK to the cell surface, and it is possible that specific signals may not be needed in the ectodomain of this hybrid protein to specify cell surface localization.

  3. Multidimensional profiling of cell surface proteins and nuclear markers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  4. Water-wettable polypropylene fibers by facile surface treatment based on soy proteins.

    Science.gov (United States)

    Salas, Carlos; Genzer, Jan; Lucia, Lucian A; Hubbe, Martin A; Rojas, Orlando J

    2013-07-24

    Modification of the wetting behavior of hydrophobic surfaces is essential in a variety of materials, including textiles and membranes that require control of fluid interactions, adhesion, transport processes, sensing, etc. This investigation examines the enhancement of wettability of an important class of textile materials, viz., polypropylene (PP) fibers, by surface adsorption of different proteins from soybeans, including soy flour, isolate,glycinin, and β-conglycinin. Detailed investigations of soy adsorption from aqueous solution (pH 7.4, 25 °C) on polypropylene thin films is carried out using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). A significant amount of protein adsorbs onto the PP surfaces primarily due to hydrophobic interactions. We establish that adsorption of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) onto PP surfaces prior to the protein deposition dramatically enhances its adsorption. The adsorption of proteins from native (PBS buffer, pH 7.4, 25 °C) and denatured conditions (PBS buffer, pH 7.4, 95 °C) onto DODA-treated PP leads to a high coverage of the proteins on the PP surface as confirmed by a significant improvement in water wettability. A shift in the contact angle from 128° to completely wettable surfaces (≈0°) is observed and confirmed by imaging experiments conducted with fluorescence tags. Furthermore, the results from wicking tests indicate that hydrophobic PP nonwovens absorb a significant amount of water after protein treatment, i.e., the PP-modified surfaces become completely hydrophilic.

  5. Surface modification of diamond-like carbon films with protein via polydopamine inspired coatings

    Science.gov (United States)

    Tao, Caihong; Yang, Shengrong; Zhang, Junyan; Wang, Jinqing

    2009-10-01

    In this paper, we report a facile two-step approach to immobilize proteins onto DLC surfaces. The first step was a simple immersion of DLC in a solution of dopamine. Polydopamine was deposited on DLC as a stable anchor to present protein molecules. Then the protein ad-layer was deposited on it. The chemical components of the modified DLC surfaces were characterized by Fourier transform infrared spectra and X-ray photoelectron spectroscopy. The biocompatibility of it was evaluated in vitro by the tetrazolium salt method. And it was indicated that the BSA modified surface had good haemocompatibility properties, and was cytocompatible to PC-12 cells.

  6. Surface modification of diamond-like carbon films with protein via polydopamine inspired coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tao Caihong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); China and Graduate University of Chinese Academy of Sciences, Beijing 100080 (China); Yang Shengrong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); Zhang Junyan, E-mail: zhangjunyan@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China); Wang Jinqing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18th, Lanzhou 730000 (China)

    2009-10-15

    In this paper, we report a facile two-step approach to immobilize proteins onto DLC surfaces. The first step was a simple immersion of DLC in a solution of dopamine. Polydopamine was deposited on DLC as a stable anchor to present protein molecules. Then the protein ad-layer was deposited on it. The chemical components of the modified DLC surfaces were characterized by Fourier transform infrared spectra and X-ray photoelectron spectroscopy. The biocompatibility of it was evaluated in vitro by the tetrazolium salt method. And it was indicated that the BSA modified surface had good haemocompatibility properties, and was cytocompatible to PC-12 cells.

  7. Spa Typing of Staphylococcus aureus Strains Isolated From Clinical Specimens of Patients With Nosocomial Infections in Tehran, Iran

    Science.gov (United States)

    Goudarzi, Mehdi; Fazeli, Maryam; Goudarzi, Hossein; Azad, Mehdi; Seyedjavadi, Sima Sadat

    2016-01-01

    Background The incidence of nosocomial Staphylococcus aureus infection is increasing annually and becoming a true global challenge. The pattern of Staphylococcus aureus protein A (spa) types in different geographic regions is diverse. Objectives This study determined the prevalence of methicillin-resistant S. aureus and different spa types in S. aureus clinical isolates. Materials and Methods During a six-month period, 90 S. aureus isolates were recovered from 320 clinical specimens. The in vitro susceptibility of various S. aureus isolates to 16 antibiotic discs was assessed using the Kirby-Bauer disk diffusion method. Molecular typing was carried out with S. aureus protein A typing via polymerase chain reaction. Results The frequency of methicillin-resistant S. aureus in our study was 88.9%. Twenty-three (25.5%) isolates were positive for panton-valentine leukocidin encoding genes. S. aureus presented a high resistance rate to ampicillin (100%) and penicillin (100%). No resistance was observed to vancomycin, teicoplanin, or linezolid. The rates of resistance to the majority of antibiotics tested varied between 23.3% and 82.2%. The rate of multidrug resistance among these clinical isolates was 93.3%. The 90 S. aureus isolates were classified into five S. aureus protein A types: t037 (33.3%), t030 (22.2%), t790 (16.7%), t969 (11.1%), and t044 (7.7%). Eight (8.9%) isolates were not typable using the S. aureus protein A typing method. Conclusions We report a high methicillin-resistant S. aureus rate in our hospital. Additionally, t030 and t037 were the predominant spa-types among hospital-associated S. aureus. Our findings emphasize the need for continuous surveillance to prevent the dissemination of multidrug resistance among different S. aureus protein A types in Iran. PMID:27679706

  8. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    Science.gov (United States)

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  9. Comparative Proteomic Analysis of Differential Proteins in Response to Aqueous Extract of Quercus infectoria Gall in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Khairon, Radhiah; Zin, Noraziah Mohamad; Abdul Rahman, Mariati

    2016-01-01

    The aim of this study is to analyze the differential proteins in MRSA ATCC 33591 treated with aqueous extract from Q. infectoria gall. Protein extracts were obtained from MRSA cells by sonication and were separated by 2D polyacrylamide gels. Protein spots of interest were extracted from the gels and identified using LC-ESI-QTOF MS. The concentration of Q. infectoria extract used for 2D-gel electrophoresis was subinhibitory concentration. Minimum inhibitory concentration (MIC) value of the extract against MRSA was 19.50 μg/mL with bacteriostatic action at 1x MIC from time-kill assay. However, the extract exhibited dose-dependent manner and was bactericidal at 4x MIC with more than 3 log10 CFU/mL reduction at 4 h. 2D-GE map showed that 18 protein spots were upregulated and another six were downregulated more than twofold (p < 0.05) after treatment with subinhibitory concentration. Out of six proteins being downregulated, four proteins were identified as ferritin and catalase, branched-chain alpha-keto acid dehydrogenase subunit E2, and succinyl-CoA ligase [ADP-forming] subunit beta. Seven upregulated proteins which have been successfully identified were 3-hydroxyacyl-CoA dehydrogenase, NAD binding domain protein, formate C-acetyltransferase, 3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ, NAD dependent epimerase/dehydratase family protein, and phosphopantothenoyl cysteine decarboxylase. It is postulated that the main mechanism of aqueous extract from gall of Q. infectoria was most likely involved in energy metabolism and protein stress. PMID:27688912

  10. Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology.

    Science.gov (United States)

    Noskov, Boris A

    2014-04-01

    Experimental results on the dynamic dilational surface elasticity of protein solutions are analyzed and compared. Short reviews of the protein behavior at the liquid-gas interface and the dilational surface rheology precede the main sections of this work. The kinetic dependencies of the surface elasticity differ strongly for the solutions of globular and non-globular proteins. In the latter case these dependencies are similar to those for solutions of non-ionic amphiphilic polymers and have local maxima corresponding to the formation of the distal region of the surface layer (type I). In the former case the dynamic surface elasticity is much higher (>60 mN/m) and the kinetic dependencies are monotonical and similar to the data for aqueous dispersions of solid nanoparticles (type II). The addition of strong denaturants to solutions of bovine serum albumin and β-lactoglobulin results in an abrupt transition from the type II to type I dependencies if the denaturant concentration exceeds a certain critical value. These results give a strong argument in favor of the preservation of the protein globular structure in the course of adsorption without any denaturants. The addition of cationic surfactants also can lead to the non-monotonical kinetic dependencies of the dynamic surface elasticity indicating destruction of the protein tertiary and secondary structures. The addition of anionic surfactants gives similar results only for the protein solutions of high ionic strength. The influence of cationic surfactants on the local maxima of the kinetic dependencies of the dynamic surface elasticity for solutions of a non-globular protein (β-casein) differs from the influence of anionic surfactants due to the heterogeneity of the charge distribution along the protein chain. In this case one can use small admixtures of ionic surfactants as probes of the adsorption mechanism. The effect of polyelectrolytes on the kinetic dependencies of the dynamic surface elasticity of protein

  11. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces

    Directory of Open Access Journals (Sweden)

    Hanna Trzeciakiewicz

    2015-08-01

    Full Text Available The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine and diluents (hexanethiol or 2-mercaptoethanol was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides.

  12. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    KAUST Repository

    Capriotti, Anna Laura

    2011-07-02

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. © 2011 Springer-Verlag.

  13. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.

    Science.gov (United States)

    Ding, Bei; Jasensky, Joshua; Li, Yaoxin; Chen, Zhan

    2016-06-21

    Understanding molecular structures of interfacial peptides and proteins impacts many research fields by guiding the advancement of biocompatible materials, new and improved marine antifouling coatings, ultrasensitive and highly specific biosensors and biochips, therapies for diseases related to protein amyloid formation, and knowledge on mechanisms for various membrane proteins and their interactions with ligands. Developing methods for measuring such unique systems, as well as elucidating the structure and function relationship of such biomolecules, has been the goal of our lab at the University of Michigan. We have made substantial progress to develop sum frequency generation (SFG) vibrational spectroscopy into a powerful technique to study interfacial peptides and proteins, which lays a foundation to obtain unique and valuable insights when using SFG to probe various biologically relevant systems at the solid/liquid interface in situ in real time. One highlighting feature of this Account is the demonstration of the power of combining SFG with other techniques and methods such as ATR-FTIR, surface engineering, MD simulation, liquid crystal sensing, and isotope labeling in order to study peptides and proteins at interfaces. It is necessary to emphasize that SFG plays a major role in these studies, while other techniques and methods are supplemental. The central role of SFG is to provide critical information on interfacial peptide and protein structure (e.g., conformation and orientation) in order to elucidate how surface engineering (e.g., to vary the structure) can ultimately affect surface function (e.g., to optimize the activity). This Account focuses on the most significant recent progress in research on interfacial peptides and proteins carried out by our group including (1) the development of SFG analysis methods to determine orientations of regular as well as disrupted secondary structures, and the successful demonstration and application of an isotope

  14. ProtEx: a novel technology to display exogenous proteins on the cell surface for immunomodulation.

    Science.gov (United States)

    Singh, Narendra P; Yolcu, Esma S; Askenasy, Nadir; Shirwan, Haval

    2005-11-01

    Gene therapy as an immunomodulatory approach has the potential to treat various inherited and acquired immune-based human diseases. However, its clinical application has several challenges, varying from the efficiency of gene transfer, control of gene expression, cell and tissue targeting, and safety concerns associated with the introduction of exogenous DNA into cells/tissues. Gene therapy is also a time- and labor-intensive procedure. As an alternative, we recently developed a novel technology, ProtEx, that allows for rapid, efficient, and durable display of exogenous proteins on the surface of cells, tissues, and organs without detectable toxicity. This technology exploits the strong binding affinity (Kd = 10(-15) M) of streptavidin with biotin and involves generation of chimeric molecules composed of the extracellular portions of immunological proteins of interest and a modified form of streptavidin, biotinylation of biological surfaces, and decoration of the modified surface with chimeric proteins. Biotin persists on the cell surface for weeks both in vitro and in vivo, thereby providing a platform to display exogenous proteins with extended cell surface kinetics. Two chimeric proteins, rat FasL (SA-FasL) and human CD80 (CD80-SA), were generated and tested for cell surface display and immunomodulatory functions. SA-FasL and CD80-SA molecules persisted on the surface of various cell types for extended periods, varying from days to weeks in vitro and in vivo. The cell surface kinetics, however, were protein and cell type dependent. SA-FasL showed potent apoptotic activity against Fas+ cells as a soluble protein or displayed on the cell surface and effectively blocked alloreactive responses. The display of CD80-SA on the surface of tumor cells, however, converted them into antigen-presenting cells for effective stimulation of autologous and allogeneic T-cell responses. ProtEx technology, therefore, represents a practical and effective alternative to DNA

  15. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    Science.gov (United States)

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016.

  16. Comparison of two different plasma surface-modification techniques for the covalent immobilization of protein monolayers.

    Science.gov (United States)

    Cifuentes, Anna; Borrós, Salvador

    2013-06-04

    The immobilization of biologically active species is crucial for the fabrication of smart bioactive surfaces. For this purpose, plasma polymerization is frequently used to modify the surface nature without affecting the bulk properties of the material. Thus, it is possible to create materials with surface functional groups that can promote the anchoring of all kinds of biomolecules. Different methodologies in protein immobilization have been developed in recent years, although some drawbacks are still not solved, such as the difficulties that some procedures involve and/or the denaturalization of the protein due to the immobilization process. In this work, two different strategies to covalently attach bovine serum albumin (BSA) protein are developed. Both techniques are compared in order to understand how the nature of the surface modification affects the conformation of the protein upon immobilization.

  17. Protein overexport in a Saccharomyces cerevisiae mutant is not due to facilitated release of cell-surface proteins.

    Science.gov (United States)

    Alexieva, K I; Venkov, P V

    2000-01-01

    Saccharomyces cerevisiae strain MW11 is a temperature-sensitive mutant which exports twenty times more proteins at 37 degrees C than parental or wild-type strains do. To understand the mechanism underlying the protein overexport in the mutant the possibility of an altered cell-wall structure leading to facilitated release of cell-surface proteins was studied. Data on calcofluor white and zymolyase sensitivities, resistance to killer 1 toxin and determination of exported acid phosphatase and invertase did not provide evidence for alterations in the cell-wall structure that could explain the protein overexport phenotype. The results were obtained in experiments when transcription of mutated gene was discontinued which permits the full expression of the protein overexport phenotype.

  18. Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, K.B.

    1985-04-15

    The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane.

  19. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.

    Science.gov (United States)

    Ataka, Kenichi; Stripp, Sven Timo; Heberle, Joachim

    2013-10-01

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  20. Mapping lipid and detergent molecules at the surface of membrane proteins.

    Science.gov (United States)

    Cogdell, Richard J; Gardiner, Alastair T; Roszak, Aleksander W; Stončius, Sigitas; Kočovský, Pavel; Isaacs, Neil W

    2011-06-01

    Electron-density maps for the crystal structures of membrane proteins often show features suggesting binding of lipids and/or detergent molecules on the hydrophobic surface, but usually it is difficult to identify the bound molecules. In our studies, heavy-atom-labelled phospholipids and detergents have been used to unequivocally identify these binding sites at the surfaces of test membrane proteins, the reaction centres from Rhodobacter sphaeroides and Blastochloris viridis. The generality of this method is discussed in the present article.

  1. Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Madsen, Søren M; Glenting, Jacob;

    2009-01-01

    In the present study, we used a proteomic approach to identify surface-associated proteins from the probiotic bacterium Lactobacillus plantarum 299v. Proteins were extracted from the cell surface using a mild wash in phosphate buffer and analysed by sodium dodecyl sulphate-polyacrylamide gel...... of probiotics in the gastrointestinal tract. The results provide the basis for future studies on the molecular mechanisms of probiotics....

  2. Development of a mimotope vaccine targeting the Staphylococcus aureus quorum sensing pathway.

    Directory of Open Access Journals (Sweden)

    John P O'Rourke

    Full Text Available A major hurdle in vaccine development is the difficulty in identifying relevant target epitopes and then presenting them to the immune system in a context that mimics their native conformation. We have engineered novel virus-like-particle (VLP technology that is able to display complex libraries of random peptide sequences on a surface-exposed loop in the coat protein without disruption of protein folding or VLP assembly. This technology allows us to use the same VLP particle for both affinity selection and immunization, integrating the power of epitope discovery and epitope mimicry of traditional phage display with the high immunogenicity of VLPs. Previously, we showed that using affinity selection with our VLP platform identifies linear epitopes of monoclonal antibodies and subsequent immunization generates the proper antibody response. To test if our technology could identify immunologic mimotopes, we used affinity selection on a monoclonal antibody (AP4-24H11 that recognizes the Staphylococcus aureus autoinducing peptide 4 (AIP4. AIP4 is a secreted eight amino acid, cyclized peptide produced from the S. aureus accessory gene regulator (agrIV quorum-sensing operon. The agr system coordinates density dependent changes in gene expression, leading to the upregulation of a host of virulence factors, and passive transfer of AP4-24H11 protects against S. aureus agrIV-dependent pathogenicity. In this report, we identified a set of peptides displayed on VLPs that bound with high specificity to AP4-24H11. Importantly, similar to passive transfer with AP4-24H11, immunization with a subset of these VLPs protected against pathogenicity in a mouse model of S. aureus dermonecrosis. These data are proof of principle that by performing affinity selection on neutralizing antibodies, our VLP technology can identify peptide mimics of non-linear epitopes and that these mimotope based VLP vaccines provide protection against pathogens in relevant animal models.

  3. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Science.gov (United States)

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells.

  4. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available BACKGROUND: Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. METHODS AND FINDINGS: We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. CONCLUSIONS: The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  5. Surface selective binding of nanoclay particles to polyampholyte protein chains

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H. B.

    2009-07-01

    Binding of nanoclay (Laponite) to gelatin-A and gelatin-B (both polyampholytes) molecules was investigated at room temperature (25 °C) both experimentally and theoretically. The stoichiometric binding ratio between gelatin and Laponite was found to be strongly dependent on the solution ionic strength. Large soluble complexes were formed at higher ionic strengths of the solution, a result supported by data obtained from light scattering, viscosity, and zeta potential measurements. The binding problem was theoretically modeled by choosing a suitable two-body screened Coulomb potential, U(R+)=(q-/2ɛ)[(Q-/R-)e-kR--(Q+/R+)e-kR+], where the protein dipole has charges Q+ and Q_ that are located at distances R+ and R_ from the point Laponite charge q- and the dispersion liquid has dielectric constant (ɛ). U(R+) accounted for electrostatic interactions between a dipole (protein molecule) and an effective charge (Laponite particle) located at an angular position θ. Gelatin-A and Laponite association was facilitated by a strong attractive interaction potential that led to preferential binding of the biopolymer chains to negatively charged face of Laponite particles. In the case of gelatin-B selective surf ace patch binding dominated the process where the positively charged rim and negatively charged face of the particles were selectively bound to the oppositely charged segments of the biopolymer. The equilibrium separation (Re) between the protein and nanoclay particle revealed monovalent salt concentration dependence given by Re˜[NaCl]α where α =0.6±0.2 for gelatin-A and α =0.4±0.2 for gelatin-B systems. The equilibrium separations were ≈30% less compared to the gelatin-A system implying preferential short-range ordering of the gelatin-B-nanoclay pair in the solvent.

  6. Extraction of cell surface-associated proteins from living yeast cells.

    NARCIS (Netherlands)

    F.M. Klis; M. de Jong; S. Brul; P.W.J. de Groot

    2007-01-01

    To extract cell surface-associated proteins from living fungal cells, reducing agents such as beta-mercaptoethanol and dithiothreitol are often used. We show here that both compounds are moderately lipophilic and may perturb the plasma membrane, thus causing the release of cytosolic proteins, especi

  7. Surface-tethered polymers to influence protein adsorption and microbial adhesion

    NARCIS (Netherlands)

    Norde, Willem

    2007-01-01

    In various applications it is desired that biological cells or protein molecules are immobilized at surfaces. Examples are enzymes or cells in bioreactors and biosensors, immuno-proteins in solid-state diagnostics and proteinaceous farmacons in drug delivery systems. In order to retain biological ac

  8. Functionalization of SU-8 Photoresist Surfaces with IgG Proteins

    DEFF Research Database (Denmark)

    Blagoi, Gabriela; Keller, Stephan Urs; Johansson, Alicia;

    2008-01-01

    The negative epoxy-based photoresist SU-8 has a variety of applications within microelectromechanical systems (MEMS) and lab-on-a-chip systems. Here, several methods to functionalize SU-8 surfaces with IgG proteins were investigated. Fluorescent labeled proteins and fluorescent sandwich immunoass...

  9. Protein adsorption on the poly(L-lactic acid) surface modified by chitosan and its derivatives

    Institute of Scientific and Technical Information of China (English)

    JIAO YanPeng; ZHOU ChangRen; LI LiHua; DING Shan; LU Lu; LUO BingHong; LI Hong

    2009-01-01

    Surface modification of biomaterials has been adopted over the years to improve their biocompatibility.In this study,aiming to promote hydrophilicity and to introduce natural recognition sites onto poly(L-lactic acid) (PLLA) films,chitosan and its derivatives,carboxymethyl chitosan(CMC) and N-methylene phosphonic chitosan (NPC),were used to modify the surface of PLLA films by an entrapment method. Radiolabeled (12SI) proteins were used to measure the amount of protein adsorbed to PLLA surfaces. Fibronectin (Fn) was used to study the protein adsorption on the modified PLLA surfaces,including isotherm adsorption and adsorption kinetics of single protein,competitive adsorption of binary proteins system and serum multi-proteins and the desorption behavior in serum solution. The results showed that in the isotherm adsorption,Fn had a larger adsorption capacity on the CS-modified surface at lower concentrations,but had a high adsorption capacity at CMC-modified surface at higher concentrations. In the study of absorption kinetics,Fn had a fastest adsorption equilibrium and a highest equilibrium adsorption capacity at the CS-modified surface,while it was opposite at the PCS-modified surface. When BSA and serum were added,it had the greatest effect on the adsorption of Fn on the PCS-modified surface. After 6 hours soaking in the desorption study,Fn had reached desorption equilibrium on all the modified surfaces,which had different effects on the desorption rate and the remaining percentage of Fn.

  10. Surface characterization of proteins using multi-fractal property of heat-denatured aggregates

    OpenAIRE

    Lahiri, Tapobrata; Mishra, Hrishikesh; Sarkar, Subrata; Misra, Krishna

    2008-01-01

    Multi-fractal property of heat-denatured protein aggregates (HDPA) is characteristic of its individual form. The visual similarity between digitally generated microscopic images of HDPA with that of surface-image of its individual X-ray structures in protein databank (PDB) displayed using Visual Molecular Dynamics (VMD) viewer is the basis of the study. We deigned experiments to view the fractal nature of proteins at different aggregate scales. Intensity based multi-fractal dimensions (ILMFD)...

  11. Role of Nasal Staphylococcus aureus Carriage in Transmission among Contact Athletes.

    Science.gov (United States)

    Suzuki, K; Tagami, K

    2015-12-01

    Among athletes, Staphylococcus aureus is thought to be transmitted by close physical contact with carriers. Nevertheless, evidence is limited with regard to both the tracking of individual strains and the role of S. aureus on the skin's surface. We investigated its transmission using molecular genotyping and the presence of S. aureus on the skin during exercise. In the first study, nasal samples were obtained from 172 athletes over a period of up to one year. The 200 strains of S. aureus collected from these athletes were genotyped, and transmission of S. aureus was detected by phage open reading frame typing (POT). In the second study, the presence of S. aureus on the skin's surface was compared between nasal carriers (n=9) and non-nasal carriers (n=9), who had participated in the first study. In the first study, 10 cases of transmission were confirmed. In the second study, exercise-induced sweating increased S. aureus isolates from the skin's surface (before vs. after exercise: 5.2±5.4 vs. 41.7±40.6 CFU/ml) in nasal carriers. In 5 of 9 nasal carriers, S. aureus isolates from the skin's surface were clonally identical to those from the nares. These results identify a major route of S. aureus transmission among athletes and provide insight into the role played by exercise-induced sweating in nasal carriers.

  12. Gold nanoparticles: role of size and surface chemistry on blood protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, F., E-mail: filippo.benetti@unitn.it; Fedel, M. [BIOtech Research Centre (Italy); Minati, L.; Speranza, G. [Fondazione Bruno Kessler (Italy); Migliaresi, C. [BIOtech Research Centre (Italy)

    2013-06-15

    Material interaction with blood proteins is a critical issue, since it could influence the biological processes taking place in the body following implantation/injection. This is particularly important in the case of nanoparticles, where innovative properties, such as size and high surface to volume ratio can lead to a behavioral change with respect to bulk macroscopic materials and could be responsible for a potential risk for human health. The aim of this work was to compare gold nanoparticles (AuNP) and planar surfaces to study the role of surface curvature moving from the macro- to the nano-size in the process of blood protein adsorption. In the course of the study, different protocols were tested to optimize the analysis of protein adsorption on gold nanoparticles. AuNP with different size (10, 60 and 200 nm diameter) and surface coatings (citrate and polyethylene glycol) were carefully characterized. The stabilizing action of blood proteins adsorbed on AuNP was studied measuring the variation of size and solubility of the nanoparticles following incubation with single protein solutions (human serum albumin and fibrinogen) and whole blood plasma. In addition, we developed a method to elute proteins from AuNP to study the propensity of gold materials to adsorb plasma proteins in function of dimensional characteristics and surface chemistry. We showed a different efficacy of the various eluting media tested, proving that even the most aggressive agent cannot provide a complete detachment of the protein corona. Enhanced protein adsorption was evidenced on AuNP if compared to gold laminae (bare and PEGylated) used as macroscopic control, probably due to the superior AuNP surface reactivity.

  13. Microscopic Investigation of Reversible Nanoscale Surface Size Dependent Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Michael A. Carpenter

    2009-05-01

    Full Text Available Aβ1-40 coated 20 nm gold colloidal nanoparticles exhibit a reversible color change as pH is externally altered between pH 4 and 10. This reversible process may contain important information on the initial reversible step reported for the fibrillogenesis of Aβ (a hallmark of Alzheimer’s disease. We examined this reversible color change by microscopic investigations. AFM images on graphite surfaces revealed the morphology of Aβ aggregates with gold colloids. TEM images clearly demonstrate the correspondence between spectroscopic features and conformational changes of the gold colloid.

  14. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus.

    Science.gov (United States)

    Trotonda, María Pilar; Manna, Adhar C; Cheung, Ambrose L; Lasa, Iñigo; Penadés, José R

    2005-08-01

    The biofilm-associated protein Bap is a staphylococcal surface protein involved in biofilm formation. We investigated the influence of the global regulatory locus sarA on bap expression and Bap-dependent biofilm formation in three unrelated Staphylococcus aureus strains. The results showed that Bap-dependent biofilm formation was diminished in the sarA mutants by an agr-independent mechanism. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation. As expected, the diminished capacity to form biofilms in the sarA mutants correlated with the decreased presence of Bap in the bacterial surface. Using transcriptional fusion and Northern analysis data, we demonstrated that the sarA gene product acts as an activator of bap expression. Finally, the bap promoter was characterized and the transcriptional start point was mapped by the rapid amplification of cDNA ends technique. As expected, we showed that purified SarA protein binds specifically to the bap promoter, as determined by gel shift and DNase I footprinting assays. Based on the previous studies of others as well as our work demonstrating the role for SarA in icaADBC and bap expression, we propose that SarA is an essential regulator controlling biofilm formation in S. aureus.

  15. Chemical imaging of protein adsorption and crystallization on a wettability gradient surface.

    Science.gov (United States)

    Glassford, Stefanie; Chan, K L Andrew; Byrne, Bernadette; Kazarian, Sergei G

    2012-02-14

    The use of self-assembled monolayers is an established method to study the effect of surface properties on proteins and other biological materials. The generation of a monolayer with a gradient of chemical properties allows for the study of multiple surface properties simultaneously in a high throughput manner. Typically, in order to detect the presence of proteins or biological material on a surface, the use of additional dyes or tags is required. Here we present a novel method of studying the effect of gradient surface properties on protein adsorption and crystallization in situ through the use of ATR-FTIR spectroscopic imaging, which removes the need for additional labeling. We describe the successful application of this technique to the measurement of the growth of a gradient monolayer of octyltrichlorosilane across the surface of a silicon ATR element. ATR-FTIR imaging was also used to study the adsorption of lysozyme, as a model protein, onto the modified surface. The sensitivity of measurements obtained with a focal plane array (FPA) detector were improved though the use of pixel averaging which allowed small absorption bands to be detected with minimal effect on the spatial resolution along the gradient. Study of the effect of surface hydrophobicity on both adsorption of lysozyme to the element and lysozyme crystallization revealed that more lysozyme adsorbed to the hydrophobic side of the ATR element and more lysozyme crystals formed in the same region. These findings strongly suggest a correlation exists between surface protein adsorption and protein crystallization. This method could be applied to the study of other proteins and whole cells.

  16. Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation.

    Science.gov (United States)

    Zhang, Changhong; Thompson, Mark E; Markland, Frank S; Swenson, Steve

    2011-10-01

    To introduce the adhesion site of proteins and/or cells on parylene C (PC)-coated medical devices that can be used as implantable biosensors or drug delivery capsules, the PC surfaces were initially modified by the Friedel-Crafts acylation reaction to generate active chlorines. These chlorines were then employed to initiate the atom transfer radical polymerization of tert-butyl acrylate (TBA) and form a polymer brush layer of polyTBA on PC; the acrylate groups in the polymer brushes were hydrolyzed to carboxylic acid groups and further activated into succinimidyl ester groups via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide coupling reaction. The PC surface grafted with polymer brushes and activated by succinimide showed efficient attachment of proteins, including gelatin, contortrostatin (CN) and bovine serum albumin (BSA), all at high density on the PC surface. The CN density on the surface was evaluated for both monolayer and polymer brush-based coatings. Based on fluorescence measurements, the polymer brush gives a 60-fold higher surface protein density than the monolayer-based system. Gelatin was used as a model protein and covalently coated onto the modified PC surface for cell culture study. Substrates with gelatin coating showed a significantly higher cell attachment and proliferation in 7 days cultures as compared to the uncoated substrates. In addition, a conventional photolithography technique was coupled with the surface chemistry to successfully pattern the BSA labeled with fluorescein isothiocyanate on the modified PC surfaces.

  17. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    Science.gov (United States)

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  18. Exploring the Plant–Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains

    DEFF Research Database (Denmark)

    Sultan, Abida; Andersen, Birgit; Svensson, Birte

    2016-01-01

    -associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation...... and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment....

  19. The effect of polymer surface modification on polymer-protein interaction via interfacial polymerization and hydrophilic polymer grafting

    Science.gov (United States)

    Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...

  20. Deposition at glancing angle, surface roughness, and protein adsorption: Monte Carlo simulations.

    Science.gov (United States)

    Zhdanov, Vladimir P; Rechendorff, Kristian; Hovgaard, Mads B; Besenbacher, Flemming

    2008-06-19

    To generate rough surfaces in Monte Carlo simulations, we use the 2 + 1 solid-on-solid model of deposition with rapid transient diffusion of newly arrived atoms supplied at glancing angle. The surfaces generated are employed to scrutinize the effect of surface roughness on adsorption of globular and anisotropic rodlike proteins. The obtained results are compared with the available experimental data for Ta deposition at glancing angle and for the bovine serum albumin and fibrinogen uptake on the corresponding Ta films.

  1. Staphylococcus epidermidis ΔSortase A strain elicits protective immunity against Staphylococcus aureus infection.

    Science.gov (United States)

    Tan, Chao; Wang, Jun; Hu, Yifang; Wang, Peng; Zou, Lili

    2017-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are two of the most significant opportunistic human pathogens, causing medical implant and nosocomial infections worldwide. These bacteria contain surface proteins that play crucial roles in multiple biological processes. It has become apparent that they have evolved a number of unique mechanisms by which they can immobilise proteins on their surface. Notably, a conserved cell membrane-anchored enzyme, sortase A (SrtA), can catalyse the covalent attachment of precursor bacterial cell wall-attached proteins to peptidoglycan. Considering its indispensable role in anchoring substrates to the cell wall and its effects on virulence, SrtA has attracted great attention. In this study, a 549-bp gene was cloned from a pathogenic S. epidermidis strain, YC-1, which shared high identity with srtA from other Staphylococcus spp. A mutant strain, YC-1ΔsrtA, was then constructed by allelic exchange mutagenesis. The direct survival rate assay suggested that YC-1ΔsrtA had a lower survival capacity in healthy mice blood compare with the wild-type strain, indicating that the deletion of srtA affects the virulence and infectious capacity of S. epidermidis YC-1. YC-1ΔsrtA was then administered via intraperitoneal injection and it provided a relative percent survival value of 72.7 % in mice against S. aureus TC-1 challenge. These findings demonstrate the possbility that YC-1ΔsrtA might be used as a live attenuated vaccine to produce cross-protection against S. aureus.

  2. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    Science.gov (United States)

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  3. Identification and characterization of the surface-layer protein of Clostridium tetani.

    Science.gov (United States)

    Qazi, Omar; Brailsford, Alan; Wright, Anne; Faraar, Jeremy; Campbell, Jim; Fairweather, Neil

    2007-09-01

    Many bacterial species produce a paracrystalline layer, the surface layer, which completely surrounds the exterior of the cell. In some bacteria, the surface layer is implicated in pathogenesis. Two proteins present in cell wall extracts from Clostridium tetani have been investigated and identified one of these has been unambiguously as the surface-layer protein (SLP). The gene, slpA, has been located in the genome of C. tetani E88 that encodes the SLP. The molecular mass of the protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is considerably larger than that predicted from the gene; however the protein does not appear to be glycosylated. Furthermore, analysis of five C. tetani strains, including three recent clinical isolates, shows considerable variation in the sizes of the SLP.

  4. High throughput atmospheric pressure plasma-induced graft polymerization for identifying protein-resistant surfaces.

    Science.gov (United States)

    Gu, Minghao; Kilduff, James E; Belfort, Georges

    2012-02-01

    Three critical aspects of searching for and understanding how to find highly resistant surfaces to protein adhesion are addressed here with specific application to synthetic membrane filtration. They include the (i) discovery of a series of previously unreported monomers from a large library of monomers with high protein resistance and subsequent low fouling characteristics for membrane ultrafiltration of protein-containing fluids, (ii) development of a new approach to investigate protein-resistant mechanisms from structure-property relationships, and (iii) adaptation of a new surface modification method, called atmospheric pressure plasma-induced graft polymerization (APP), together with a high throughput platform (HTP), for low cost vacuum-free synthesis of anti-fouling membranes. Several new high-performing chemistries comprising two polyethylene glycol (PEG), two amines and one zwitterionic monomers were identified from a library (44 commercial monomers) of five different classes of monomers as strong protein-resistant monomers. Combining our analysis here, using the Hansen solubility parameters (HSP) approach, and data from the literature, we conclude that strong interactions with water (hydrogen bonding) and surface flexibility are necessary for producing the highest protein resistance. Superior protein-resistant surfaces and subsequent anti-fouling performance was obtained with the HTP-APP as compared with our earlier HTP-photo graft-induced polymerization (PGP).

  5. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Directory of Open Access Journals (Sweden)

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  6. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  7. Cytolytic pore-forming protein associated with the surface membrane of Naegleria fowleri

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, D.M.

    1985-01-01

    Whole cell homogenates of Naegleria fowleri were examined by hemolytic and /sup 51/Cr-release assays for the presence of cytolytic molecules which may participate in the cytopathogenic action of this amoeba. Two distinct cytolytic activities were found. A surface membrane cytolysin was identified which was found to be avidly associated with membranes possessing an equilibrium density of 1.135 g/cm/sup 3/ in isopycnic sucrose gradients. The activity of the surface membrane cytolysin was not affected by heating at 75/sup 0/C for 30 min. The second cytolytic activity was found in putative lysosomes possessing an equilibrium density of 1.162 g/cm/sup 3/ and was completely inactivated by heating at 75/sup 0/C for 30 min. Cytolysis produced in the presence of both cytolysins was consistently synergistic with respect to the activity of either cytolysin alone. The lesions produced on erythrocytes by this cooperative process were characterized by electron microscopy as transmembrane pores resembling a number of other cytolytic effector molecules including the ninth component of complement, perforins of cytolytic T lymphocytes, and the alphatoxin of Staphylococcus aureus.

  8. An Investigation of Freezing of Supercooled Water on Anti-Freeze Protein Modified Surfaces

    Institute of Scientific and Technical Information of China (English)

    Thibaut V J Charpentier; Anne Neville; Paul Millner; Rob Hewson; Ardian Morina

    2013-01-01

    This work investigates how functionalization ofaluminium surfaces with natural type Ⅲ Anti-Freeze Protein (AFP) affects the mechanism of heterogeneous ice nucleation.First the bulk ice nucleation properties of distilled water and aqueous solution of AFP were evaluated by differential scanning calorimetry.Then the modified surface was characterized by Secondary Ions Mass Spectroscopy (SIMS),Fourier Transform InfraRed (FTIR) spectroscopy and contact angle measurement.Freezing experiments were then conducted in which water droplets underwent a slow controlled cooling.This study shows that compared to uncoated aluminium,the anti-freeze proteins functionalized surfaces exhibit a higher and narrower range of freezing temperature.It was found that these proteins that keep living organisms from freezing in cold environment act in the opposite way once immobilized on surfaces by promoting ice nucleation.Some suggestions regarding the mechanism of action of the observed phenomena were proposed based on the Classical Nucleation Theory (CNT).

  9. Isolation of two biologically active cell surface proteins from Brucella abortus by chromatofocusing

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabai, L.B.; Deyoe, B.L.

    1983-01-01

    Brucella abortus contains a group of immunogenic cell surface proteins which have potential value as a vaccine or as a diagnostic reagent for the prevention and diagnosis of bovine brucellosis. Under nondenaturing conditions, these proteins range in molecular weight from 10,000-124,000, as determined by high performance liquid chromatography (HPLC) on TSK 3000sw. By analytical isoelectrofocusing, 6 major protein bands could be distinguished with pI's ranging from 4.0 to 6.0 and 3 additional major proteins with pI's of 7.5, 9.5, and 10. By chromatofocusing on Polybuffer Exchanger 94 with a pH gradient from 6-4, two of the six proteins from pI 4-6 were separated, a pI 4.9 and a pI 4.7 protein; a third fraction contained the high pI proteins. The former two proteins were homogeneous by analytical isoelectrofocusing, and a molecular weight of 54,000 daltons was found for both protein species by HPLC on TSK 3000sw. The pI 4-6 and not the pI 9.5 and 10 proteins, could be radiolabeled when intact cells were radioiodinated with diazotized (/sup 125/I)-iodosulfanilic acid. Biological activity of the proteins as assessed in lemmings indicated that immunization with the pI 4.7 and 4.9 proteins afforded better protection against experimental brucellosis than immunization with the high pI proteins. These results support our view that a single surface protein may be sufficient for the prevention of experimental brucellosis.

  10. Amidase, a cell wall hydrolase, elicits protective immunity against Staphylococcus aureus and S. epidermidis.

    Science.gov (United States)

    Nair, Nisha; Vinod, Vivek; Suresh, Maneesha K; Vijayrajratnam, Sukhithasri; Biswas, Lalitha; Peethambaran, Reshmi; Vasudevan, Anil Kumar; Biswas, Raja

    2015-01-01

    The morbidity and the mortality associated with Staphylococcus aureus and S. epidermidis infections have greatly increased due to the rapid emergence of highly virulent and antibiotic resistant strains. Development of a vaccine-based therapy is greatly desired. However, no staphylococcal vaccine is available till date. In this study, we have identified Major amidase (Atl-AM) as a prime candidate for future vaccine design against these pathogens. Atl-AM is a multi-functional non-covalently cell wall associated protein which is involved in staphylococcal cell separation after cell division, host extracellular matrix adhesion and biofilm formation. Atl-AM is present on the surface of diverse S. aureus and S. epidermidis strains. When used in combination with Freund's adjuvant, Atl-AM generated a mixed Th1 and Th2 mediated immune response which is skewed more toward Th1; and showed increased production of opsonophagocytic IgG2a and IgG2b antibodies. Significant protective immune response was observed when vaccinated mice were challenged with S. aureus or S. epidermidis. Vaccination prevented the systemic dissemination of both organisms. Our results demonstrate the remarkable efficacy of Atl-AM as a vaccine candidate against both of these pathogens.

  11. Monte Carlo study of the molecular mechanisms of surface-layer protein self-assembly

    Science.gov (United States)

    Horejs, Christine; Mitra, Mithun K.; Pum, Dietmar; Sleytr, Uwe B.; Muthukumar, Murugappan

    2011-03-01

    The molecular mechanisms guiding the self-assembly of proteins into functional or pathogenic large-scale structures can be only understood by studying the correlation between the structural details of the monomer and the eventual mesoscopic morphologies. Among the myriad structural details of protein monomers and their manifestations in the self-assembled morphologies, we seek to identify the most crucial set of structural features necessary for the spontaneous selection of desired morphologies. Using a combination of the structural information and a Monte Carlo method with a coarse-grained model, we have studied the functional protein self-assembly into S(surface)-layers, which constitute the crystallized outer most cell envelope of a great variety of bacterial cells. We discover that only few and mainly hydrophobic amino acids, located on the surface of the monomer, are responsible for the formation of a highly ordered anisotropic protein lattice. The coarse-grained model presented here reproduces accurately many experimentally observed features including the pore formation, chemical description of the pore structure, location of specific amino acid residues at the protein-protein interfaces, and surface accessibility of specific amino acid residues. In addition to elucidating the molecular mechanisms and explaining experimental findings in the S-layer assembly, the present work offers a tool, which is chemical enough to capture details of primary sequences and coarse-grained enough to explore morphological structures with thousands of protein monomers, to promulgate design rules for spontaneous formation of specific protein assemblies.

  12. Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces

    Science.gov (United States)

    Grass, Stefan; Treuel, Lennart

    2014-02-01

    In biological fluids, an adsorption layer of proteins, a "protein corona" forms around nanoparticles (NPs) largely determining their biological identity. In many interactions with NPs proteins can undergo structural changes. Here, we study the adsorption of insulin onto gold NPs (mean hydrodynamic particle diameter 80 ± 18 nm), focusing on the structural consequences of the adsorption process for the protein. We use surface enhanced Raman scattering (SERS) spectroscopy to study changes in the protein's secondary structure as well as the impact on integrity and conformations of disulfide bonds immediately on the NP surface. A detailed comparison to SERS spectra of cysteine and cystine provides first mechanistic insights into the causes for these conformational changes. Potential biological and toxicological implications of these findings are also discussed.

  13. Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for β-Lactam–Daptomycin Synergy

    Science.gov (United States)

    Berti, Andrew D.; Theisen, Erin; Sauer, John-Demian; Nonejuie, Poochit; Olson, Joshua; Pogliano, Joseph; Sakoulas, George; Nizet, Victor; Proctor, Richard A.

    2015-01-01

    The activity of daptomycin (DAP) against methicillin-resistant Staphylococcus aureus (MRSA) is enhanced in the presence of β-lactam antibiotics. This effect is more pronounced with β-lactam antibiotics that exhibit avid binding to penicillin binding protein 1 (PBP1). Here, we present evidence that PBP1 has a significant role in responding to DAP-induced stress on the cell. Expression of the pbpA transcript, encoding PBP1, was specifically induced by DAP exposure whereas expression of pbpB, pbpC, and pbpD, encoding PBP2, PBP3, and PBP4, respectively, remained unchanged. Using a MRSA COL strain with pbpA under an inducible promoter, increased pbpA transcription was accompanied by reduced susceptibility to, and killing by, DAP in vitro. Exposure to β-lactams that preferentially inactivate PBP1 was not associated with increased DAP binding, suggesting that synergy in the setting of anti-PBP1 pharmacotherapy results from increased DAP potency on a per-molecule basis. Combination exposure in an in vitro pharmacokinetic/pharmacodynamic model system with β-lactams that preferentially inactivate PBP1 (DAP-meropenem [MEM] or DAP-imipenem [IPM]) resulted in more-rapid killing than did combination exposure with DAP-nafcillin (NAF) (nonselective), DAP-ceftriaxone (CRO) or DAP-cefotaxime (CTX) (PBP2 selective), DAP-cefaclor (CEC) (PBP3 selective), or DAP-cefoxitin (FOX) (PBP4 selective). Compared to β-lactams with poor PBP1 binding specificity, exposure of S. aureus to DAP plus PBP1-selective β-lactams resulted in an increased frequency of septation and cell wall abnormalities. These data suggest that PBP1 activity may contribute to survival during DAP-induced metabolic stress. Therefore, targeted inactivation of PBP1 may enhance the antimicrobial efficiency of DAP, supporting the use of DAP–β-lactam combination therapy for serious MRSA infections, particularly when the β-lactam undermines the PBP1-mediated compensatory response. PMID:26525797

  14. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.

    Science.gov (United States)

    Danov, Krassimir D; Kralchevsky, Peter A; Radulova, Gergana M; Basheva, Elka S; Stoyanov, Simeon D; Pelan, Eddie G

    2015-08-01

    The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, E(sh) and η(sh), proportional to the fraction of the conventional protein. However, the experiments show that the effect of mixing can be rather different depending on the nature of the additive. If the additive is a globular protein, like β-lactoglobulin and ovalbumin, the surface rigidity is preserved, and even enhanced. The experiments with separate foam films indicate that this is due to the formation of a bilayer structure at the air/water interface. The more hydrophobic HFBII forms the upper layer adjacent to the air phase, whereas the conventional globular protein forms the lower layer that faces the water phase. Thus, the elastic network formed by the adsorbed hydrophobin remains intact, and even reinforced by the adjacent layer of globular protein. In contrast, the addition of the disordered protein β-casein leads to softening of the HFBII adsorption layer. Similar (an even stronger) effect is produced by the nonionic surfactant Tween 20. This can be explained with the penetration of the hydrophobic tails of β-casein and Tween 20 between the HFBII molecules at the interface, which breaks the integrity of the hydrophobin interfacial elastic network. The analyzed experimental data for the surface shear rheology of various protein adsorption layers comply with a viscoelastic thixotropic model, which allows one to determine E(sh) and η(sh) from the measured storage and loss moduli, G' and G″. The results could contribute for quantitative characterization and deeper understanding of the factors that control the surface rigidity of protein adsorption layers with potential application for the creation of stable foams and emulsions with fine bubbles or droplets.

  15. One-year mortality in coagulase-negative Staphylococcus and Staphylococcus aureus infective endocarditis

    DEFF Research Database (Denmark)

    Rasmussen, Rasmus V; Snygg-Martin, Ulrika; Olaison, Lars;

    2009-01-01

    The aim of this study was to investigate in-hospital mortality and 12-month mortality in patients with coagulase-negative Staphylococcus (CoNS) compared to Staphylococcus aureus (S. aureus) infective endocarditis (IE). We used a prospective cohort study of 66 consecutive CoNS and 170 S. aureus IE...... patients, collected at 2 tertiary university hospitals in Copenhagen (Denmark) and at 1 tertiary university hospital in Gothenburg (Sweden). Median (range) C-reactive protein at admission was higher in patients with S. aureus IE (150 mg/l (1-521) vs 94 mg/l (6-303); p

  16. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus.

    Science.gov (United States)

    Laakso, Holly A; Marolda, Cristina L; Pinter, Tyler B; Stillman, Martin J; Heinrichs, David E

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD-I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis.

  17. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein: Protein Redesign to Lower Protein-lignin Binding

    Energy Technology Data Exchange (ETDEWEB)

    Haarmeyer, Carolyn N. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Smith, Matthew D. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Chundawat, Sh