WorldWideScience

Sample records for aureus reveals differential

  1. Rapid Differentiation between Livestock-Associated and Livestock-Independent Staphylococcus aureus CC398 Clades

    Science.gov (United States)

    Larsen, Jesper; Soldanova, Katerina; Aziz, Maliha; Contente-Cuomo, Tania; Petersen, Andreas; Vandendriessche, Stien; Jiménez, Judy N.; Mammina, Caterina; van Belkum, Alex; Salmenlinna, Saara; Laurent, Frederic; Skov, Robert L.; Larsen, Anders R.; Andersen, Paal S.; Price, Lance B.

    2013-01-01

    Staphylococcus aureus clonal complex 398 (CC398) isolates cluster into two distinct phylogenetic clades based on single-nucleotide polymorphisms (SNPs) revealing a basal human clade and a more derived livestock clade. The scn and tet(M) genes are strongly associated with the human and the livestock clade, respectively, due to loss and acquisition of mobile genetic elements. We present canonical single-nucleotide polymorphism (canSNP) assays that differentiate the two major host-associated S. aureus CC398 clades and a duplex PCR assay for detection of scn and tet(M). The canSNP assays correctly placed 88 S. aureus CC398 isolates from a reference collection into the human and livestock clades and the duplex PCR assay correctly identified scn and tet(M). The assays were successfully applied to a geographically diverse collection of 272 human S. aureus CC398 isolates. The simple assays described here generate signals comparable to a whole-genome phylogeny for major clade assignment and are easily integrated into S. aureus CC398 surveillance programs and epidemiological studies. PMID:24244535

  2. Genome sequencing and analysis reveals possible determinants of Staphylococcus aureus nasal carriage

    Directory of Open Access Journals (Sweden)

    Cole Alexander M

    2008-09-01

    Full Text Available Abstract Background Nasal carriage of Staphylococcus aureus is a major risk factor in clinical and community settings due to the range of etiologies caused by the organism. We have identified unique immunological and ultrastructural properties associated with nasal carriage isolates denoting a role for bacterial factors in nasal carriage. However, despite extensive molecular level characterizations by several groups suggesting factors necessary for colonization on nasal epithelium, genetic determinants of nasal carriage are unknown. Herein, we have set a genomic foundation for unraveling the bacterial determinants of nasal carriage in S. aureus. Results MLST analysis revealed no lineage specific differences between carrier and non-carrier strains suggesting a role for mobile genetic elements. We completely sequenced a model carrier isolate (D30 and a model non-carrier strain (930918-3 to identify differential gene content. Comparison revealed the presence of 84 genes unique to the carrier strain and strongly suggests a role for Type VII secretion systems in nasal carriage. These genes, along with a putative pathogenicity island (SaPIBov present uniquely in the carrier strains are likely important in affecting carriage. Further, PCR-based genotyping of other clinical isolates for a specific subset of these 84 genes raise the possibility of nasal carriage being caused by multiple gene sets. Conclusion Our data suggest that carriage is likely a heterogeneic phenotypic trait and implies a role for nucleotide level polymorphism in carriage. Complete genome level analyses of multiple carriage strains of S. aureus will be important in clarifying molecular determinants of S. aureus nasal carriage.

  3. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  4. Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin

    Directory of Open Access Journals (Sweden)

    Rebecca Yee

    2015-12-01

    Full Text Available Chronic infections with Staphylococcus aureus such as septicemia, osteomyelitis, endocarditis, and biofilm infections are difficult to treat because of persisters. Despite many efforts in understanding bacterial persistence, the mechanisms of persister formation in S. aureus remain elusive. Here, we performed a genome-wide screen of a transposon mutant library to study the molecular mechanisms involved in persistence of community-acquired S. aureus. Screening of the library for mutants defective in persistence or tolerance to rifampicin revealed many genes involved in metabolic pathways that are important for antibiotic persistence. In particular, the identified mutants belonged to metabolic pathways involved in carbohydrate, amino acid, lipid, vitamin and purine biosynthesis. Five mutants played a role in purine biosynthesis and two mutants, purB, an adenylosuccinate lyase, and purM, a phosphoribosylaminoimidazole synthetase, were selected for further confirmation. Mutants purB and purM showed defective persistence compared to the parental strain USA300 in multiple stress conditions including various antibiotics, low pH, and heat stress. The defect in persistence was restored by complementation with the wildtype purB and purM gene in the respective mutants. These findings provide new insights into the mechanisms of persistence in S. aureus and provide novel therapeutic targets for developing more effective treatment for persistent infections due to S. aureus.

  5. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH

    Directory of Open Access Journals (Sweden)

    Burgis Timothy A

    2009-07-01

    Full Text Available Abstract Background In recent years there has been an increasing problem with Staphylococcus aureus strains that are resistant to treatment with existing antibiotics. An important starting point for the development of new antimicrobial drugs is the identification of "essential" genes that are important for bacterial survival and growth. Results We have developed a robust microarray and PCR-based method, Transposon-Mediated Differential Hybridisation (TMDH, that uses novel bioinformatics to identify transposon inserts in genome-wide libraries. Following a microarray-based screen, genes lacking transposon inserts are re-tested using a PCR and sequencing-based approach. We carried out a TMDH analysis of the S. aureus genome using a large random mariner transposon library of around a million mutants, and identified a total of 351 S. aureus genes important for survival and growth in culture. A comparison with the essential gene list experimentally derived for Bacillus subtilis highlighted interesting differences in both pathways and individual genes. Conclusion We have determined the first comprehensive list of S. aureus essential genes. This should act as a useful starting point for the identification of potential targets for novel antimicrobial compounds. The TMDH methodology we have developed is generic and could be applied to identify essential genes in other bacterial pathogens.

  6. Concomitant genotyping revealed diverse spreading between methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus in central Taiwan.

    Science.gov (United States)

    Ho, Cheng-Mao; Lin, Chien-Yu; Ho, Mao-Wang; Lin, Hsiao-Chuan; Peng, Ching-Tien; Lu, Jang-Jih

    2016-06-01

    Staphylococcus aureus is a versatile bacterium, which can lead to various infectious diseases. Various molecular typing methods are applied to the evolution and epidemiology surveys of S. aureus, mostly for methicillin-resistant S. aureus (MRSA). However, methicillin-susceptible S. aureus (MSSA) is still an important pathogen, but their molecular typing is evaluated infrequently. Pulsed-field gel electrophoresis (PFGE), spa typing, and detection of five virulent genes for 95 MRSA and 56 MSSA isolates (July-December 2008 and July 2008-December 2009, respectively) during an overlapping period were performed. More diversity was found in MSSA isolates (23 pulsotypes and 25 spa types, excluding 4 new-type and 1 nontypable isolates for spa typing) than in MRSA isolates (19 pulsotypes and 16 spa types, excluding 1 new-type and 1 nontypable isolates for spa typing). By spa typing, t002 (n = 30), t037 (n = 23), t437 (n = 21), t234 (n = 3), t1081 (n = 3), and t1094 (n = 3) were the six major MRSA clones. For MSSA isolates, t189 (n = 13), t437 (n = 4), t084 (n = 3), t213 (n = 3), t701 (n = 3), and t7200 (n = 3) were the six major types. Combining PFGE and spa typing, there were five combinations (pulsotype + spa type) that contained both MRSA and MSSA isolates (pulsotype 9-t437, pulsotype 15-t037, pulsotype 19-t002, pulsotype 21-t002, and pulsotype 28-t1081). For all 151 S. aureus or 95 MRSA isolates, the PFGE typing had more discrimination power, but spa typing had larger discrimination index for 56 MSSA isolates. In conclusion, there were different predominant MRSA and MSSA clones clinically. Continuing longitudinal tracking of molecular typing is necessary for elucidating the evolution of this important clinical pathogen. Copyright © 2014. Published by Elsevier B.V.

  7. Potential relationship between phenotypic and molecular characteristics in revealing livestock-associated Staphylococcus aureus in Chinese humans without occupational livestock contact

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    2016-09-01

    Full Text Available While some studies have defined Staphylococcus aureus based on its clonal complex and resistance pattern, few have explored the relations between the genetic lineages and antibiotic resistance patterns and immune evasion cluster (IEC genes. Our aim was to investigate the potential relationship between phenotypic and molecular characteristics so as to reveal livestock-associated S. aureus in humans. The study participants were interviewed, and they provided two nasal swabs for S. aureus analysis. All S. aureus and methicillin-resistant S. aureus (MRSA were tested for antibiotic susceptibility, multilocus sequence type and IEC genes. Of the 1162 participants, 9.3% carried S. aureus, including MRSA (1.4% and multidrug-resistant S. aureus (MDRSA, 2.8%. The predominant multidrug-resistant pattern among MDRSA isolates was nonsusceptibility to erythromycin, clindamycin and tetracycline. The most common S. aureus genotypes were ST7, ST6, ST188 and ST59, and the predominant MRSA genotype was ST7. Notably, the livestock-associated S. aureus isolates (IEC-negative CC9, IEC-negative tetracycline-resistant CC398, and IEC-negative tetracycline-resistant CC5 were found in people with no occupational livestock contact. These findings reveal a potential relationship between S. aureus CCs and IEC genes and antibiotic resistance patterns in defining livestock-associated S. aureus in humans and support growing concern about the potential livestock-to-human transmission of livestock-associated S. aureus by non-occupational livestock contact.

  8. Phylogenetic Analysis of Staphylococcus aureus CC398 Reveals a Sub-Lineage Epidemiologically Associated with Infections in Horses

    DEFF Research Database (Denmark)

    Abdelbary, Mohamed M. H.; Wittenberg, Anne; Cuny, Christiane

    2014-01-01

    -allelic polymorphisms, and phylogenetic analyses revealed that an epidemic sub-clone within CC398 (dubbed 'clade (C)') has spread within and between equine hospitals, where it causes nosocomial infections in horses and colonises the personnel. While clade (C) was strongly associated with S. aureus from horses...

  9. DIFFERENTIATION BETWEEN Staphylococcus aureus, S. intermedius AND S. hyicus USING PHENOTYPICAL TESTS AND PCR

    Directory of Open Access Journals (Sweden)

    E. A. GANDRA

    2009-01-01

    Full Text Available

    The aim of this work was to compare the use of two phenotypical tests (beta-galactosidase and acriflavine sensitivity and PCR for the coa and nuc gene sequences, for the identification of three species of coagulase positive staphylococcus (CPS: S. aureus, S. intermedius and S. hyicus. Sixty five staphylococcus isolates, previously characterized as CPS through the coagulase, thermonuclease and catalase production tests and Gram staining, were identified at species level using the beta-galactosidase production tests and sensitivity to acriflavine (7 g.mL-1. At the same time, the DNA of these isolates was extracted and amplified by PCR, using primers for the coa gene, specific for S. aureus, and for the nuc gene, specific for S. intermedius and for S. hyicus. It was possible to differentiate the three species of Staphylococcus through phenotypical tests as well as through the molecular technique. There was no difference in discriminatory power between the two techniques used, but the reproducibility and reliability of the technique based on PCR make this technique more precise.

  10. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens.

    Science.gov (United States)

    Geisbrecht, Brian V; Hamaoka, Brent Y; Perman, Benjamin; Zemla, Adam; Leahy, Daniel J

    2005-04-29

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 A resolution, respectively. These structures reveal a core fold that is comprised of an alpha-helix lying diagonally across a five-stranded, mixed beta-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the beta-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  11. Genetic variation in the Staphylococcus aureus 8325 strain lineage revealed by whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Kristoffer T Bæk

    Full Text Available Staphylococcus aureus strains of the 8325 lineage, especially 8325-4 and derivatives lacking prophage, have been used extensively for decades of research. We report herein the results of our deep sequence analysis of strain 8325-4. Assignment of sequence variants compared with the reference strain 8325 (NRS77/PS47 required correction of errors in the 8325 reference genome, and reassessment of variation previously attributed to chemical mutagenesis of the restriction-defective RN4220. Using an extensive strain pedigree analysis, we discovered that 8325-4 contains 16 single nucleotide polymorphisms (SNP arising prior to the construction of RN4220. We identified 5 indels in 8325-4 compared with 8325. Three indels correspond to expected Φ11, 12, 13 excisions, one indel is explained by a sequence assembly artifact, and the final indel (Δ63bp in the spa-sarS intergenic region is common to only a sub-lineage of 8325-4 strains including SH1000. This deletion was found to significantly decrease (75% steady state sarS but not spa transcript levels in post-exponential phase. The sub-lineage 8325-4 was also found to harbor 4 additional SNPs. We also found large sequence variation between 8325, 8325-4 and RN4220 in a cluster of repetitive hypothetical proteins (SA0282 homologs near the Ess secretion cluster. The overall 8325-4 SNP set results in 17 alterations within coding sequences. Remarkably, we discovered that all tested strains of the 8325-4 lineage lack phenol soluble modulin α3 (PSMα3, a virulence determinant implicated in neutrophil chemotaxis, biofilm architecture and surface spreading. Collectively, our results clarify and define the 8325-4 pedigree and reveal clear evidence that mutations existing throughout all branches of this lineage, including the widely used RN6390 and SH1000 strains, could conceivably impact virulence regulation.

  12. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schonning, Kristian

    2016-01-01

    pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium...... microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate...

  13. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation

    Directory of Open Access Journals (Sweden)

    Gruden Kristina

    2010-06-01

    Full Text Available Abstract Background Staphylococcus aureus is a highly adaptable human pathogen and there is a constant search for effective antibiotics. Fosfomycin is a potent irreversible inhibitor of MurA, an enolpyruvyl transferase that uses phosphoenolpyruvate as substrate. The goal of this study was to identify the pathways and processes primarily affected by fosfomycin at the genome-wide transcriptome level to aid development of new drugs. Results S. aureus ATCC 29213 cells were treated with sub-MIC concentrations of fosfomycin and harvested at 10, 20 and 40 minutes after treatment. S. aureus GeneChip statistical data analysis was complemented by gene set enrichment analysis. A visualization tool for mapping gene expression data into biological pathways was developed in order to identify the metabolic processes affected by fosfomycin. We have shown that the number of significantly differentially expressed genes in treated cultures increased with time and with increasing fosfomycin concentration. The target pathway - peptidoglycan biosynthesis - was upregulated following fosfomycin treatment. Modulation of transport processes, cofactor biosynthesis, energy metabolism and nucleic acid biosynthesis was also observed. Conclusions Several pathways and genes downregulated by fosfomycin have been identified, in contrast to previously described cell wall active antibiotics, and was explained by starvation response induced by phosphoenolpyruvate accumulation. Transcriptomic profiling, in combination with meta-analysis, has been shown to be a valuable tool in determining bacterial response to a specific antibiotic.

  14. Rapid differentiation of methicillin-resistant and methicillin-susceptible Staphylococcus aureus by flow cytometry after brief antibiotic exposure.

    Science.gov (United States)

    Shrestha, Nabin K; Scalera, Nikole M; Wilson, Deborah A; Procop, Gary W

    2011-06-01

    We noticed that methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolates yielded side-scatter (SSC) and fluorescence intensity (FI) differences on flow cytometry (FCM) following incubation in oxacillin broth. The purpose of this study was to determine whether MRSA and MSSA could be reliably differentiated by FCM. S. aureus isolates were incubated in oxacillin-containing Mueller-Hinton broth, stained using the FASTEST total viable organisms kit, and analyzed by FCM in the MicroPRO instrument. SSC versus FI were examined, and gates 1 and 2 were defined to encompass the majority of MSSA and MRSA signal events, respectively. A count ratio (CR) was defined as the ratio of counts in gate 2 to those in gate 1. Initially, 33 isolates were tested after 4 h of incubation for proof-of-concept. Twenty others were then tested after incubation intervals ranging from 30 min to 4 h to determine the earliest possible time for differentiation. Next, 100 separate isolates were tested to determine the best CR cutoff value. Finally, the CR was validated by using an independent cohort of 121 isolates. We noted that MRSA isolates had higher SSC and FI readings than did MSSA isolates after 2 h of incubation. The receiver-operator characteristics curve showed that a CR cutoff of 0.0445 reliably differentiated MRSA from MSSA. In the validation cohort, this cutoff had a sensitivity of 100% and a specificity of 98.7% for identifying MRSA from among S. aureus isolates, following 2 h of incubation. This study demonstrates that MRSA and MSSA can be accurately differentiated by FCM after 2 h of incubation in an oxacillin-containing liquid culture medium.

  15. Rapid Differentiation of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus by Flow Cytometry after Brief Antibiotic Exposure▿

    Science.gov (United States)

    Shrestha, Nabin K.; Scalera, Nikole M.; Wilson, Deborah A.; Procop, Gary W.

    2011-01-01

    We noticed that methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolates yielded side-scatter (SSC) and fluorescence intensity (FI) differences on flow cytometry (FCM) following incubation in oxacillin broth. The purpose of this study was to determine whether MRSA and MSSA could be reliably differentiated by FCM. S. aureus isolates were incubated in oxacillin-containing Mueller-Hinton broth, stained using the FASTEST total viable organisms kit, and analyzed by FCM in the MicroPRO instrument. SSC versus FI were examined, and gates 1 and 2 were defined to encompass the majority of MSSA and MRSA signal events, respectively. A count ratio (CR) was defined as the ratio of counts in gate 2 to those in gate 1. Initially, 33 isolates were tested after 4 h of incubation for proof-of-concept. Twenty others were then tested after incubation intervals ranging from 30 min to 4 h to determine the earliest possible time for differentiation. Next, 100 separate isolates were tested to determine the best CR cutoff value. Finally, the CR was validated by using an independent cohort of 121 isolates. We noted that MRSA isolates had higher SSC and FI readings than did MSSA isolates after 2 h of incubation. The receiver-operator characteristics curve showed that a CR cutoff of 0.0445 reliably differentiated MRSA from MSSA. In the validation cohort, this cutoff had a sensitivity of 100% and a specificity of 98.7% for identifying MRSA from among S. aureus isolates, following 2 h of incubation. This study demonstrates that MRSA and MSSA can be accurately differentiated by FCM after 2 h of incubation in an oxacillin-containing liquid culture medium. PMID:21471343

  16. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli

    International Nuclear Information System (INIS)

    Tran, Phong A; Biswas, Dhee P; O’Connor, Andrea J; O’Brien-Simpson, Neil; Reynolds, Eric C; Pantarat, Namfon

    2016-01-01

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection—resisting, non-cytotoxic coatings for medical devices. (paper)

  17. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Olivier Poupel

    Full Text Available The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their

  18. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus.

    Science.gov (United States)

    Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah

    2016-01-01

    The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene

  19. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage.

    Science.gov (United States)

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-04-18

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen.

  20. Structure-Function Analysis of Staphylococcus aureus Amidase Reveals the Determinants of Peptidoglycan Recognition and Cleavage*

    Science.gov (United States)

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-01-01

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen. PMID:24599952

  1. UV-killed Staphylococcus aureus enhances adhesion and differentiation of osteoblasts on bone-associated biomaterials.

    Science.gov (United States)

    Somayaji, Shankari N; Huet, Yvette M; Gruber, Helen E; Hudson, Michael C

    2010-11-01

    Titanium alloys (Ti) are the preferred material for orthopedic applications. However, very often, these metallic implants loosen over a long period and mandate revision surgery. For implant success, osteoblasts must adhere to the implant surface and deposit a mineralized extracellular matrix (ECM). Here, we utilized UV-killed Staphylococcus aureus as a novel osteoconductive coating for Ti surfaces. S. aureus expresses surface adhesins capable of binding to bone and biomaterials directly. Furthermore, interaction of S. aureus with osteoblasts activates growth factor-related pathways that potentiate osteogenesis. Although UV-killed S. aureus cells retain their bone-adhesive ability, they do not stimulate significant immune modulator expression. All of the abovementioned properties were utilized for a novel implant coating so as to promote osteoblast recruitment and subsequent cell functions on the bone-implant interface. In this study, osteoblast adhesion, proliferation, and mineralized ECM synthesis were measured on Ti surfaces coated with fibronectin with and without UV-killed bacteria. Osteoblast adhesion was enhanced on Ti alloy surfaces coated with bacteria compared to uncoated surfaces, while cell proliferation was sustained comparably on both surfaces. Osteoblast markers such as collagen, osteocalcin, alkaline phosphatase activity, and mineralized nodule formation were increased on Ti alloy coated with bacteria compared to uncoated surfaces.

  2. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rebrošová, K.; Šiler, Martin; Samek, Ota; Růžička, F.; Bernatová, Silvie; Ježek, Jan; Zemánek, Pavel; Holá, V.

    2017-01-01

    Roč. 12, č. 10 (2017), s. 881-890 ISSN 1746-0913 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * rapid diagnostics * Staphylococcus epidermidis * Staphyococcus aureus Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.374, year: 2016

  3. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection.

    Science.gov (United States)

    Patnaik, Bharat Bhusan; Patnaik, Hongray Howrelia; Seo, Gi Won; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2014-10-01

    Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Genome-wide association study reveals a locus for nasal carriage of Staphylococcus aureus in Danish crossbred pigs

    DEFF Research Database (Denmark)

    Skallerup, Per; Gongora, Carmen Espinosa; Jørgensen, Claus Bøttcher

    2015-01-01

    BACKGROUND: Staphylococcus aureus is an important human opportunistic pathogen residing on skin and mucosae of healthy people. Pigs have been identified as a source of human colonization and infection with methicillin-resistant Staphylococcus aureus (MRSA) and novel measures are needed to control......-pathogen interaction seems to be independent of S. aureus genotype. CONCLUSION: Our results suggest it may be possible to select pigs genetically resistant to S. aureus nasal colonization as a tool to control transmission of livestock-associated MRSA to humans....

  5. The detection and differentiation of methicillin-resistant and methicillin-susceptible Staphylococcus aureus endocarditis by using the BD GeneOhm StaphSR Assay.

    Science.gov (United States)

    Frey, Amy B; Wilson, Deborah A; LaSalvia, Margaret M; Tan, Carmela D; Rodriguez, E Rene; Shrestha, Nabin K; Hall, Gerri S; Procop, Gary W

    2011-11-01

    We use the BD GeneOhm StaphSR Assay (BD Diagnostics, Oakville, Canada) to screen for Staphylococcus aureus nasal colonization and sought to evaluate this assay for the assessment of valve specimens from patients with endocarditis. We examined 23 paired fresh and formalin-fixed, paraffin-embedded cardiac valve tissue samples, 12 of which had S aureus endocarditis, using the BD GeneOhm StaphSR Assay for the detection and differentiation of methicillin-susceptible and methicillin-resistant S aureus. This assay appropriately characterized all specimens with respect to the presence or absence of S aureus. There was an 87.5% correlation between the presence or absence of the mecA gene and the oxacillin susceptibility results for the S aureus isolates studied. The GeneOhm StaphSR assay accurately detected S aureus in cardiac valve tissue samples. Rare discordances were observed between oxacillin susceptibility status and mecA gene detection by this assay.

  6. Differential metabolism of Mycoplasma species as revealed by their genomes

    Directory of Open Access Journals (Sweden)

    Fabricio B.M. Arraes

    2007-01-01

    Full Text Available The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall, has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS. Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms.

  7. An Essential Role for Coagulase in Staphylococcus aureus Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections.

    Science.gov (United States)

    Zapotoczna, Marta; McCarthy, Hannah; Rudkin, Justine K; O'Gara, James P; O'Neill, Eoghan

    2015-12-15

    High-level resistance to antimicrobial drugs is a major factor in the pathogenesis of chronic Staphylococcus aureus biofilm-associated, medical device-related infections. Antimicrobial susceptibility analysis revealed that biofilms grown for ≤ 24 hours on biomaterials conditioned with human plasma under venous shear in iron-free cell culture medium were significantly more susceptible to antistaphylococcal antibiotics. Biofilms formed under these physiologically relevant conditions were regulated by SaeRS and dependent on coagulase-catalyzed conversion of fibrinogen into fibrin. In contrast, SarA-regulated biofilms formed on uncoated polystyrene in nutrient-rich bacteriological medium were mediated by the previously characterized biofilm factors poly-N-acetyl glucosamine, fibronectin-binding proteins, or autolytic activity and were antibiotic resistant. Coagulase-mediated biofilms exhibited increased antimicrobial resistance over time (>48 hours) but were always susceptible to dispersal by the fibrinolytic enzymes plasmin or nattokinase. Biofilms recovered from infected central venous catheters in a rat model of device-related infection were dispersed by nattokinase, supporting the important role of the biofilm phenotype and identifying a potentially new therapeutic approach with antimicrobials and fibrinolytic drugs, particularly during the early stages of device-related infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Differentiation of Staphylococcus aureus from freshly slaughtered poultry and strains 'endemic' to processing plants by biochemical and physiological tests.

    Science.gov (United States)

    Mead, G C; Norris, A P; Bratchell, N

    1989-02-01

    A comparison was made of 27 'endemic' strains of Staphylococcus aureus and 35 strains from freshly slaughtered birds, isolated at five commercial slaughterhouses processing chickens or turkeys. Of 112 biochemical and physiological tests used, 74 gave results which differed among the strains. Cluster analysis revealed several distinct groupings which were influenced by strain type, processing plant and bird origin; these included a single group at the 72% level of similarity containing most of the 'endemic' strains. In comparison with strains from freshly slaughtered birds, a higher proportion of 'endemic' strains produced fibrinolysin, alpha-glucosidase and urease and were beta-haemolytic on sheep-blood agar. The 'endemic' type also showed a greater tendency to coagulate human but not bovine plasma, and to produce mucoid growth and clumping. The last two properties, relevant to colonization of processing equipment, were less evident in heart infusion broth than in richer media or process water collected during defeathering of the birds.

  9. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells

    Directory of Open Access Journals (Sweden)

    Kristin eSurmann

    2014-08-01

    Full Text Available Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549, and human embryonic kidney cells (HEK 293. Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen´s proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2x106 bacteria, roughly 1,450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreases in levels of ribosomal proteins and metabolic enzymes or increases in amounts of proteins involved in arginine and lysine biosynthesis, coding for terminal oxidases and stress responsive genes or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and

  10. Eye movement monitoring reveals differential influences of emotion on memory

    Directory of Open Access Journals (Sweden)

    Lily Riggs

    2010-11-01

    Full Text Available Research shows that memory for emotional aspects of an event may be enhanced at the cost of impaired memory for surrounding peripheral details. However, this has only been assessed directly via verbal reports which reveal the outcome of a long stream of processing but cannot shed light on how/when emotion may affect the retrieval process. In the present experiment, eye movement monitoring was used as an indirect measure of memory as it can reveal aspects of online memory processing. For example, do emotions modulate the nature of memory representations or the speed with which such memories can be accessed? Participants viewed central negative and neutral scenes surrounded by three neutral objects and after a brief delay, memory was assessed indirectly via eye movement monitoring and then directly via verbal reports. Consistent with the previous literature, emotion enhanced central and impaired peripheral memory as indexed by eye movement scanning and verbal reports. This suggests that eye movement scanning may contribute and/or is related to conscious access of memory. However, the central/peripheral tradeoff effect was not observed in an early measure of eye movement behavior, i.e. participants were faster to orient to a critical region of change in the periphery irrespective of whether it was previously studied in a negative or neutral context. These findings demonstrate emotion’s differential influences on different aspects of retrieval. In particular, emotion appears to affect the detail within, and/or the evaluation of, stored memory representations, but it may not affect the initial access to those representations.

  11. Population structure analyses of Staphylococcus aureus at Tygerberg Hospital, South Africa, reveals a diverse population, a high prevalence of Panton-Valentine leukocidin genes, and unique local methicillin-resistant S. aureus clones

    NARCIS (Netherlands)

    Oosthuysen, W. F.; Orth, H.; Lombard, C. J.; Sinha, B.; Wasserman, E.

    Studies reporting on the population structure of Staphylococcus aureus in South Africa have focused only on methicillin-resistant S. aureus (MRSA). This study describes the population structure of S. aureus, including methicillin-susceptible S. aureus (MSSA) isolated from patients at Tygerberg

  12. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis.

    Directory of Open Access Journals (Sweden)

    Timothy E Sweeney

    2010-07-01

    Full Text Available The PGC family of transcriptional co-activators (PGC-1alpha [Ppargc1a], PGC-1beta [Ppargc1b], and PRC [Pprc] coordinates the upregulation of mitochondrial biogenesis, and Ppargc1a is known to be activated in response to mitochondrial damage in sepsis. Therefore, we postulated that the PGC family is regulated by the innate immune system. We investigated whether mitochondrial biogenesis and PGC gene expression are disrupted in an established model of Staphylococcus aureus sepsis both in mice with impaired innate immune function (TLR2-/- and TLR4-/- and in wild-type controls. We found an early up-regulation of Ppargc1a and Ppargc1b post-infection (at 6 h in WT mice, but the expression of both genes was concordantly dysregulated in TLR2-/- mice (no increase at 6 h and in TLR4-/- mice (amplified at 6 h. However, the third family member, PRC, was regulated differently, and its expression increased significantly at 24 h in all three mouse strains (WT, TLR2-/-, and TLR4-/-. In silico analyses showed that Ppargc1a and Ppargc1b share binding sites for microRNA mmu-mir-202-3p. Thus, miRNA-mediated post-transcriptional mRNA degradation could account for the failure to increase the expression of both genes in TLR2-/- mice. The expression of mmu-mir-202-3p was measured by real-time PCR and found to be significantly increased in TLR2-/- but not in WT or TLR4-/- mice. In addition, it was found that mir-202-3p functionally decreases Ppargc1a mRNA in vitro. Thus, both innate immune signaling through the TLRs and mir-202-3p-mediated mRNA degradation are implicated in the co-regulation of Ppargc1a and Ppargc1b during inflammation. Moreover, the identification of mir-202-3p as a potential factor for Ppargc1a and Ppargc1b repression in acute inflammation may open new avenues for mitochondrial research and, potentially, therapy.

  13. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex.

    Science.gov (United States)

    Ruane, Karen M; Lloyd, Adrian J; Fülöp, Vilmos; Dowson, Christopher G; Barreteau, Hélène; Boniface, Audrey; Dementin, Sébastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Gobec, Stanislav; Dessen, Andréa; Roper, David I

    2013-11-15

    Formation of the peptidoglycan stem pentapeptide requires the insertion of both L and D amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Å resolution in the presence of ADP and the reaction product, UDP-MurNAc-L-Ala-γ-D-Glu-L-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between L-lysine and D,L-diaminopimelic acid, the predominant amino acid that replaces L-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of L-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for L-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic L-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.

  14. Chronology of Islet Differentiation Revealed By Temporal Cell Labeling

    Science.gov (United States)

    Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.

    2009-01-01

    OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145

  15. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture.

    Directory of Open Access Journals (Sweden)

    Alicia R Martin

    2014-08-01

    Full Text Available Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP. The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and

  16. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  17. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    Science.gov (United States)

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Differential network analysis reveals genetic effects on catalepsy modules.

    Directory of Open Access Journals (Sweden)

    Ovidiu D Iancu

    Full Text Available We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS formed by crossing four inbred strains (HS4 and a heterogeneous stock (HS-CC formed from the inbred strain founders of the Collaborative Cross (CC. All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.

  19. SPECIFIC DIFFERENTIATION AND EPIDEMIOLOGICAL MARKING OF STAPHYLOCOCCUS AUREUS STRAINS DISTINGUISHED FROM THE CARRIERS OF MEDICAL PERSONNEL AND OBJECTS OF EXTERNAL ENVIRONMENT IN CURATIVE INSTITUTIONS OF THE SOUTH RAILWAY

    Directory of Open Access Journals (Sweden)

    Grechishkina Y.A.,

    2011-06-01

    Full Text Available Carried out specific differentiation of pathogenic strains of Staphylococcus aureus, which were isolated from various environmental objects surgical hospital, biomaterials from patients. The results of the research brought together strains of pathogenic staphylococci in the lytic group and 4 show the frequency of detection of each analytic group in the particular material. Received the rationale for the introduction of phage-typing method in the practical work of bacteriological laboratories, epidemiological control software in the hospital for bacteriological indicators to effectively combat nosocomial infections.

  20. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium.

    Science.gov (United States)

    Iskandar, Christelle F; Borges, Frédéric; Taminiau, Bernard; Daube, Georges; Zagorec, Monique; Remenant, Benoît; Leisner, Jørgen J; Hansen, Martin A; Sørensen, Søren J; Mangavel, Cécile; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie

    2017-01-01

    Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium .

  1. Two highly divergent lineages of exfoliative toxin B-encoding plasmids revealed in impetigo strains of Staphylococcus aureus.

    Science.gov (United States)

    Botka, Tibor; Růžičková, Vladislava; Svobodová, Karla; Pantůček, Roman; Petráš, Petr; Čejková, Darina; Doškař, Jiří

    2017-09-01

    Exfoliative toxin B (ETB) encoded by some large plasmids plays a crucial role in epidermolytic diseases caused by Staphylococcus aureus. We have found as yet unknown types of etb gene-positive plasmids isolated from a set of impetigo strains implicated in outbreaks of pemphigus neonatorum in Czech maternity hospitals. Plasmids from the strains of clonal complex CC121 were related to archetypal plasmid pETB TY4 . Sharing a 33-kb core sequence including virulence genes for ETB, EDIN C, and lantibiotics, they were assigned to a stand-alone lineage, named pETB TY4 -based plasmids. Differing from each other in the content of variable DNA regions, they formed four sequence types. In addition to them, a novel unique plasmid pETB608 isolated from a strain of ST130 was described. Carrying conjugative cluster genes, as well as new variants of etb and edinA genes, pETB608 could be regarded as a source of a new lineage of ETB plasmids. We have designed a helpful detection assay, which facilitates the precise identification of the all described types of ETB plasmids. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane

    DEFF Research Database (Denmark)

    Witzke, Sarah; Petersen, Michael; Carpenter, Timothy S.

    2016-01-01

    dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization...... the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular...... of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes....

  3. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251).

    Science.gov (United States)

    Stegger, M; Andersen, P S; Kearns, A; Pichon, B; Holmes, M A; Edwards, G; Laurent, F; Teale, C; Skov, R; Larsen, A R

    2012-04-01

    The recent finding of a new mecA homologue, mecA(LGA251) , with only 70% nucleotide homology to the conventional mecA gene has brought the routine testing for mecA as a confirmatory test for methicillin-resistant Staphylococcus aureus (MRSA) into question. A multiplex PCR was designed to differentiate mecA(LGA251) from the known mecA together with detection of lukF-PV and the spa gene fragments, enabling direct spa typing by sequencing of the PCR amplicons. The PCR analysis and subsequent spa typing were validated on a large collection (n=185) of contemporary MRSA and methicillin-sensitive S. aureus isolates, including 127 isolates carrying mecA(LGA251) . The mecA(LGA251) gene was situated in staphylococcal cassette chromosome mec type XI elements, and sequence variation within a 631-bp fragment of mecA(LGA251) in 79 isolates indicated a very conserved gene sequence. Following a successful validation, the multiplex PCR strategy was implemented in the routine testing of MRSA for national surveillance. Over a 2-month period, among 203 samples tested, 12 new MRSA cases caused by isolates carrying mecA(LGA251) were identified, emphasizing the clinical importance of testing for these new MRSA isolates. © 2011 STATENS SERUM INSTITUT. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  4. Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics.

    Directory of Open Access Journals (Sweden)

    Andreas Sagner

    2018-02-01

    Full Text Available During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.

  5. The Essential WalK Histidine Kinase and WalR Regulator Differentially Mediate Autolysis of Staphylococcus aureus RN4220.

    Science.gov (United States)

    Zheng, Li; Yan, Meiying; Fan, Frank; Ji, Yinduo

    2015-06-01

    The two-component regulatory system, WalR/WalK is necessary for growth of different gram-positive bacteria, including Staphylococcus aureus . In present study, we confirmed the essentiality of both the histidine kinase protein WalK and the response regulator WalR for growth using S. aureus RN4220 strain and demonstrated that the histidine kinase protein WalK and the response regulator WalR function differently in regulation of staphylococcal autolysis. The down-regulation of walR expression effectively inhibited Triton X-100-induced lysis and had a weak impact on bacterial tolerance to penicillin induced cell lysis. In contrast, the down-regulation of walK expression had no influence on either Triton X-100- or penicillin-caused autolysis. Moreover, we determined the effect of WalR and WalK on bacterial hydrolase activity using a zymogram analysis. The results showed that the cell lysate of down-regulated walR expression mutant displayed several bands of decreased cell wall hydrolytic activities; however, the down-regulation of WalK had no dramatic impact on the hydrolytic activities. Furthermore, we examined the impact of WalR on the transcription of cidA associated with staphylococcal autolysis, and the results showed that the down-regulation of WalR led to decreased transcription of cidA in the log phase of growth. Taken together, the above results suggest that the essential WalR response regulator and the essential WalK histidine kinase might differently control bacterial lysis in RN4220 strain.

  6. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.

    2010-01-01

    A differential proteomic analysis, based on 2-DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin-like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis...... intermediates, were upregulated during antibiotic production. qRT-PCR analysis revealed that 8 out of 14 upregulated genes showed a positive correlation between changes at translational and transcriptional expression level. Furthermore, proteomic analysis of two nonproducing mutants, restricted to a sub...

  7. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  8. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    Science.gov (United States)

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  9. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    OpenAIRE

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transf...

  10. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation.

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-05-01

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8 + T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8 + T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8 + T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8 + T cell differentiation.

  11. Epigenetic landscapes reveal transcription factors regulating CD8+ T cell differentiation

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J. Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P.; Pereira, Renata M.; Crotty, Shane; Chang, John T.; Pipkin, Matthew E.; Wang, Wei; Goldrath, Ananda W.

    2017-01-01

    Dynamic changes in the expression of transcription factors (TFs) can influence specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that TF expression and binding contributed to establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of differentiation intermediates, facilitating identification of TFs with previously unappreciated roles in CD8+ T cell differentiation. PMID:28288100

  12. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  13. Rise of CC398 Lineage of Staphylococcus aureus among Infective Endocarditis Isolates Revealed by Two Consecutive Population-Based Studies in France

    Science.gov (United States)

    Tristan, Anne; Rasigade, Jean-Philippe; Ruizendaal, Esmée; Laurent, Frédéric; Bes, Michèle; Meugnier, Hélène; Lina, Gérard; Etienne, Jerome; Celard, Marie; Tattevin, Pierre; Monecke, Stefan; Le Moing, Vincent; Vandenesch, François

    2012-01-01

    Staphylococcus aureus isolates from two prospective studies on infective endocarditis (IE) conducted in 1999 and 2008 and isolated from non-IE bacteremia collected in 2006 were spa-typed and their virulence factors were analyzed with a microarray. Both populations were genetically diverse, with no virulence factors or genotypes significantly more associated with the IE isolates compared with the non-IE isolates. The population structure of the IE isolates did not change much between 1999 and 2008, with the exception of the appearance of CC398 methicillin-susceptible Staphylococcus aureus (MSSA) isolates responsible for 5.6% of all cases in 2008. In 1999, this lineage was responsible for no cases. The increasing prevalence of S. aureus in IE is apparently not the result of a major change in staphylococcal population structure over time, with the exception of the emerging CC398 MSSA lineage. PMID:23272091

  14. Structure of a conserved hypothetical protein SA1388 from S. aureus reveals a capped hexameric toroid with two PII domain lids and a dinuclear metal center

    Directory of Open Access Journals (Sweden)

    Leybourne Matthew

    2006-12-01

    Full Text Available Abstract Background The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. Results The structure of SA1388 has been solved to 2.0Å resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals. It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric "lids" formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. Conclusion SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The

  15. Next-Generation Sequence Analysis Reveals Transfer of Methicillin Resistance to a Methicillin-Susceptible Staphylococcus aureus Strain That Subsequently Caused a Methicillin-Resistant Staphylococcus aureus Outbreak: a Descriptive Study.

    Science.gov (United States)

    Weterings, Veronica; Bosch, Thijs; Witteveen, Sandra; Landman, Fabian; Schouls, Leo; Kluytmans, Jan

    2017-09-01

    Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCC mec ). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of methicillin-resistant Staphylococcus aureus (MRSA) but has been rarely observed in real time. In 2012, an outbreak occurred involving a health care worker (HCW) and three patients, all carrying a fusidic acid-resistant MRSA strain. The husband of the HCW was screened for MRSA carriage, but only a methicillin-susceptible S. aureus (MSSA) strain, which was also resistant to fusidic acid, was detected. Multiple-locus variable-number tandem-repeat analysis (MLVA) typing showed that both the MSSA and MRSA isolates were MT4053-MC0005. This finding led to the hypothesis that the MSSA strain acquired the SCC mec and subsequently caused an outbreak. To support this hypothesis, next-generation sequencing of the MSSA and MRSA isolates was performed. This study showed that the MSSA isolate clustered closely with the outbreak isolates based on whole-genome multilocus sequence typing and single-nucleotide polymorphism (SNP) analysis, with a genetic distance of 17 genes and 44 SNPs, respectively. Remarkably, there were relatively large differences in the mobile genetic elements in strains within and between individuals. The limited genetic distance between the MSSA and MRSA isolates in combination with a clear epidemiologic link supports the hypothesis that the MSSA isolate acquired a SCC mec and that the resulting MRSA strain caused an outbreak. Copyright © 2017 American Society for Microbiology.

  16. Multivoxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    DEFF Research Database (Denmark)

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations...... within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while...... human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during...

  17. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  18. Identification of single nucleotide polymorphisms associated with hyperproduction of alpha-toxin in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Xudong Liang

    2011-04-01

    Full Text Available The virulence factor α-toxin (hla is needed by Staphylococcus aureus in order to cause infections in both animals and humans. Although the complicated regulation of hla expression has been well studied in human S. aureus isolates, the mechanisms of of hla regulation in bovine S. aureus isolates remain undefined. In this study, we found that many bovine S. aureus isolates, including the RF122 strain, generate dramatic amounts of α-toxin in vitro compared with human clinical S. aureus isolates, including MRSA WCUH29 and MRSA USA300. To elucidate potential regulatory mechanisms, we analyzed the hla promoter regions and identified predominant single nucleotide polymorphisms (SNPs at positions -376, -483, and -484 from the start codon in α-toxin hyper-producing isolates. Using site-directed mutagenesis and hla promoter-gfp-luxABCDE dual reporter approaches, we demonstrated that the SNPs contribute to the differential control of hla expression among bovine and human S. aureus isolates. Using a DNA affinity assay, gel-shift assays and a null mutant, we identified and revealed that an hla positive regulator, SarZ, contributes to the involvement of the SNPs in mediating hla expression. In addition, we found that the bovine S. aureus isolate RF122 exhibits higher transcription levels of hla positive regulators, including agrA, saeR, arlR and sarZ, but a lower expression level of hla repressor rot compared to the human S. aureus isolate WCUH29. Our results indicate α-toxin hyperproduction in bovine S. aureus is a multifactorial process, influenced at both the genomic and transcriptional levels. Moreover, the identification of predominant SNPs in the hla promoter region may provide a novel method for genotyping the S. aureus isolates.

  19. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  20. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.

  1. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis.

    Science.gov (United States)

    Lin, Yu-Mei; Chou, I-Chun; Wang, Jaw-Fen; Ho, Fang-I; Chu, Yu-Ju; Huang, Pei-Cheng; Lu, Der-Kang; Shen, Hwei-Ling; Elbaz, Mounira; Huang, Shu-Mei; Cheng, Chiu-Ping

    2008-09-01

    Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.

  2. Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events

    Science.gov (United States)

    Ramirez-Villegas, Juan F.; Logothetis, Nikos K.; Besserve, Michel

    2015-01-01

    Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729

  3. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.

    Science.gov (United States)

    Ramirez-Villegas, Juan F; Logothetis, Nikos K; Besserve, Michel

    2015-11-17

    Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.

  4. Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks.

    Directory of Open Access Journals (Sweden)

    Xiaoke Ma

    2015-06-01

    Full Text Available Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules. We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression.

  5. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  6. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  7. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids

    Science.gov (United States)

    Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu

    2018-03-01

    Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.

  8. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal.

    Science.gov (United States)

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-05-18

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.

  9. Staphylococcus aureus CC398

    DEFF Research Database (Denmark)

    Price, Lance B.; Stegger, Marc; Hasman, Henrik

    2012-01-01

    Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection...... of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected...... among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock...

  10. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  11. Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails

    KAUST Repository

    Mu, Huawei; Sun, Jin; Cheung, Siu Gin; Fang, Ling; Zhou, Haiyun; Luan, Tiangang; Zhang, Huoming; Wong, Chris K.C.; Qiu, Jian-Wen

    2017-01-01

    Although high-throughput proteomics has been widely applied to study mechanisms of environmental adaptation, the conclusions from studies that are based on one species can be confounded by phylogeny. We compare the freshwater snail Pomacea canaliculata (a notorious invasive species) and its congener Pomacea diffusa (a non-invasive species) to understand the molecular mechanisms of their differential resistance to hypoxia. A 72-h acute exposure experiment showed that P. canaliculata is more tolerant to hypoxia than P. diffusa. The two species were then exposed to three levels of dissolved oxygen (6.7, 2.0 and 1.0mgL−1) for 8h, and their gill proteins were analyzed using iTRAQ-coupled LC-MS/MS. The two species showed striking differences in protein expression profiles, with the more hypoxia tolerant P. canaliculata having more up-regulated proteins in signal transduction and down-regulated proteins in glycolysis and the tricarboxylic acid cycle. Evolutionary analysis revealed five orthologous genes encoding differentially expressed proteins having clear signal of positive selection, indicating selection has acted on some of the hypoxia responsive genes. Our case study has highlighted the potential of integrated proteomics and comparative evolutionary analysis for understanding the genetic basis of adaptation to global environmental change in non-model species. SignificanceRapid globalization in recent decades has greatly facilitated species introduction around the world. Successfully established introduced species, so-called invasive species, have threatened the invaded ecosystems. There has been substantial interest in studying how invasive species respond to extreme environmental conditions because the results can help not only predict their range of expansion and manage their impact, but also may reveal the adaptive mechanisms underlying their invasiveness. Our study has adopted a comparative approach to study the differential physiological and proteomic

  12. Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails

    KAUST Repository

    Mu, Huawei

    2017-11-06

    Although high-throughput proteomics has been widely applied to study mechanisms of environmental adaptation, the conclusions from studies that are based on one species can be confounded by phylogeny. We compare the freshwater snail Pomacea canaliculata (a notorious invasive species) and its congener Pomacea diffusa (a non-invasive species) to understand the molecular mechanisms of their differential resistance to hypoxia. A 72-h acute exposure experiment showed that P. canaliculata is more tolerant to hypoxia than P. diffusa. The two species were then exposed to three levels of dissolved oxygen (6.7, 2.0 and 1.0mgL−1) for 8h, and their gill proteins were analyzed using iTRAQ-coupled LC-MS/MS. The two species showed striking differences in protein expression profiles, with the more hypoxia tolerant P. canaliculata having more up-regulated proteins in signal transduction and down-regulated proteins in glycolysis and the tricarboxylic acid cycle. Evolutionary analysis revealed five orthologous genes encoding differentially expressed proteins having clear signal of positive selection, indicating selection has acted on some of the hypoxia responsive genes. Our case study has highlighted the potential of integrated proteomics and comparative evolutionary analysis for understanding the genetic basis of adaptation to global environmental change in non-model species. SignificanceRapid globalization in recent decades has greatly facilitated species introduction around the world. Successfully established introduced species, so-called invasive species, have threatened the invaded ecosystems. There has been substantial interest in studying how invasive species respond to extreme environmental conditions because the results can help not only predict their range of expansion and manage their impact, but also may reveal the adaptive mechanisms underlying their invasiveness. Our study has adopted a comparative approach to study the differential physiological and proteomic

  13. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-04-01

    Full Text Available Differentiation of human pluripotent stem cells towards definitive endoderm (DE is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Keywords: hPSC, Differentiation, Definitive endoderm, Heterogeneity, Single cell, RNA sequencing

  14. Dissection of an old protein reveals a novel application: domain D of Staphylococcus aureus Protein A (sSpAD as a secretion - tag

    Directory of Open Access Journals (Sweden)

    Paal Michael

    2010-11-01

    Full Text Available Abstract Background Escherichia coli as a frequently utilized host organism for recombinant protein production offers different cellular locations with distinct qualities. The periplasmic space is often favored for the production of complex proteins due to enhanced disulfide bond formation, increased target product stability and simplified downstream processing. To direct proteins to the periplasmic space rather small proteinaceus tags that can be used for affinity purification would be advantageous. Results We discovered that domain D of the Staphylococcus aureus protein A was sufficient for the secretion of various target proteins into the periplasmic space of E. coli. Our experiments indicated the Sec pathway as the mode of secretion, although N-terminal processing was not observed. Furthermore, the solubility of recombinant fusion proteins was improved for proteins prone to aggregation. The tag allowed a straightforward affinity purification of recombinant fusion protein via an IgG column, which was exemplified for the target protein human superoxide dismutase 1 (SOD. Conclusions In this work we present a new secretion tag that combines several advantages for the production of recombinant proteins in E. coli. Domain D of S. aureus protein A protects the protein of interest against N-terminal degradation, increases target protein solubility and enables a straight-forward purification of the recombinant protein using of IgG columns.

  15. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    Science.gov (United States)

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.

  16. Genome-wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds.

    Science.gov (United States)

    Onzima, R B; Upadhyay, M R; Mukiibi, R; Kanis, E; Groenen, M A M; Crooijmans, R P M A

    2018-02-01

    Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium-density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (H O ) and expected (H E ) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub-structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f 4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within-breed diversity and heterozygote advantage in crossbreeding schemes. © 2018 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  17. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  18. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  19. Changes in chromatin structure during the aging of cell cultures as revealed by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Almagor, M.; Cole, R.D.

    1989-01-01

    Nuclei from cultured human cells were examined by differential scanning calorimetry. Their melting profiles revealed four structural transitions at 60, 76, 88, and 105 degrees C (transitions I-IV, respectively). In immortalized (i.e., tumor) cell cultures and in normal cell cultures of low passage number, melting profiles were dominated by the 105 degrees C transition (transition IV), but in vitro aging of normal and Werner syndrome cells was associated with a marked decrease in transition IV followed by an increase in transition III at the expense of transition IV. At intermediate times in the aging process, much DNA melted at a temperature range (95-102 degrees C) intermediate between transitions III and IV, and this is consistent with the notion that aging of cell cultures is accompanied by an increase in single-strand character of the DNA. Calorimetric changes were observed in the melting profile of nuclei from UV-irradiated tumor cells that resembled the age-induced intermediate melting of chromatin. It is suggested that aging is accompanied by an increase in single-stranded character of the DNA in chromatin, which lowers its melting temperature, followed by strand breaks in the DNA that destroy its supercoiling potential

  20. Genetic diversity and substantial population differentiation in Crassostrea hongkongensis revealed by mitochondrial DNA.

    Science.gov (United States)

    Li, Lu; Wu, Xiangyun; Yu, Ziniu

    2013-09-01

    The Hong Kong oyster, Crassostrea hongkongensis, is an important fisheries resource that is cultivated in the coastal waters of the South China Sea. Despite significant advances in understanding biological and taxonomic aspects of this species, no detailed study of its population genetic diversity in regions of extensive cultivation are available. Direct sequencing of the mtDNA cox1 gene region was used to investigate genetic variation within and between eleven C. hongkongensis populations collected from typical habitats. Sixty-two haplotypes were identified; only haplotype 2 (21.74% of total haplotypes) was shared among all the eleven populations, and most of the observed haplotypes were restricted to individual populations. Both AMOVA and FST analyses revealed significant population structure, and the isolation by distance (IBD) was confirmed. The highest local differentiation was observed between the sample pools from Guangxi versus Guangdong and Fujian, which are separated by a geographic barrier, the Leizhou Peninsula. Current knowledge from seed management suggests that seed transfer from Guangxi province has likely reduced the divergence that somewhat naturally exists between these pools. The findings from the present study could be useful for genetic management and may serve as a baseline by which to monitor future changes in genetic diversity, either due to natural or anthropogenic impacts. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    Directory of Open Access Journals (Sweden)

    Mengmeng Xu

    2017-01-01

    Full Text Available Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90. The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1, reticulocalbin-3 (RCN3], cell differentiation (actin, and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP] and stress response [heat shock-related 70 kDa protein 2 (HSPA2]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s involved in the regulation of the ovarian follicle development.

  3. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Directory of Open Access Journals (Sweden)

    Jiandong YANG, Zhihe ZHANG, Fujun SHEN, Xuyu YANG, Liang ZHANG, Limin CHEN, Wenping ZHANG, Qing ZHU, Rong HOU

    2011-12-01

    Full Text Available Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species. Tangjiahe Nature Reserve (NR is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low FIS-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A, Allelic richness (AR and mean expected heterozygosity (HE for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6: 717–724, 2011].

  4. Study of methicillin resistant Staphylococcus aureus (MRSA) in Danish pigs at slaughter and in imported retail meat reveals a novel MRSA type in slaughter pigs

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Hasman, Henrik; Cavaco, Lina M.

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA), especially CC398, have emerged in livestock worldwide. We investigated the occurrence of MRSA in pigs at slaughter and in retail meat. During 2009, nasal swabs (n=789) were taken from pigs at slaughter. Moreover, 866 meat samples [Danish: pork...... (153), broiler meat (121), beef (142) and; imported: pork (173), broiler meat (193), and beef (84)] were randomly collected in retail stores and outlets. MRSA was isolated from nasal swabs or from meat samples after preenrichment (Mueller Hinton broth with 6.5% NaCl), selective enrichment (tryptone...... soya broth with 4mg/L cefoxitine and 75mg/L aztreonam) and selective plating on Brilliance Chromogenic MRSA agar. The presence of mecA was confirmed by PCR and the MRSA isolates were spa typed. Novel MRSA spa types were characterized by MLST, PFGE and SCCmec typing. Thirteen percent (101...

  5. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    Science.gov (United States)

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  6. ESCHERICHIA COLI AND STAPHYLOCOCCUS AUREUS

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The bio-effects of the ethanol extracts from the leaf and stem of Momordica charantia were studied with the view to ascertain the medical usefulness ascribed to the plant by the locals. The plant parts, stem and leaf, revealed remarkable activity against Escherichia coli and Staphlococcus aureus. The leaves ...

  7. SDS-PAGE and gel IEF – tool for differentiation of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus

    Czech Academy of Sciences Publication Activity Database

    Tesařová, Marie; Horká, Marie; Moravcová, Dana; Svojanovská, Lenka; Mlynariková, K.; Růžička, F.

    2016-01-01

    Roč. 72, č. 3 (2016), s. 315-320 ISSN 0343-8651 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : methicillin-resistant and methicillin-sensitive Staphylococcus aureus * sodium dodecylsulphate polyacrylamide gel electrophoresis * gel isoelectric focusing * precipitated proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.322, year: 2016 http://hdl.handle.net/11104/0251069

  8. Integrated analysis of hematopoietic differentiation outcomes and molecular characterization reveals unbiased differentiation capacity and minor transcriptional memory in HPC/HSC-iPSCs.

    Science.gov (United States)

    Gao, Shuai; Hou, Xinfeng; Jiang, Yonghua; Xu, Zijian; Cai, Tao; Chen, Jiajie; Chang, Gang

    2017-01-23

    Transcription factor-mediated reprogramming can reset the epigenetics of somatic cells into a pluripotency compatible state. Recent studies show that induced pluripotent stem cells (iPSCs) always inherit starting cell-specific characteristics, called epigenetic memory, which may be advantageous, as directed differentiation into specific cell types is still challenging; however, it also may be unpredictable when uncontrollable differentiation occurs. In consideration of biosafety in disease modeling and personalized medicine, the availability of high-quality iPSCs which lack a biased differentiation capacity and somatic memory could be indispensable. Herein, we evaluate the hematopoietic differentiation capacity and somatic memory state of hematopoietic progenitor and stem cell (HPC/HSC)-derived-iPSCs (HPC/HSC-iPSCs) using a previously established sequential reprogramming system. We found that HPC/HSCs are amenable to being reprogrammed into iPSCs with unbiased differentiation capacity to hematopoietic progenitors and mature hematopoietic cells. Genome-wide analyses revealed that no global epigenetic memory was detectable in HPC/HSC-iPSCs, but only a minor transcriptional memory of HPC/HSCs existed in a specific tetraploid complementation (4 N)-incompetent HPC/HSC-iPSC line. However, the observed minor transcriptional memory had no influence on the hematopoietic differentiation capacity, indicating the reprogramming of the HPC/HSCs was nearly complete. Further analysis revealed the correlation of minor transcriptional memory with the aberrant distribution of H3K27me3. This work provides a comprehensive framework for obtaining high-quality iPSCs from HPC/HSCs with unbiased hematopoietic differentiation capacity and minor transcriptional memory.

  9. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  10. Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma

    International Nuclear Information System (INIS)

    Rumbajan, Janette Mareska; Aoki, Shigehisa; Kohashi, Kenichi; Oda, Yoshinao; Hata, Kenichiro; Saji, Tsutomu; Taguchi, Tomoaki; Tajiri, Tatsuro; Soejima, Hidenobu; Joh, Keiichiro; Maeda, Toshiyuki; Souzaki, Ryota; Mitsui, Kazumasa; Higashimoto, Ken; Nakabayashi, Kazuhiko; Yatsuki, Hitomi; Nishioka, Kenichi; Harada, Ryoko

    2013-01-01

    Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma

  11. The Him gene reveals a balance of inputs controlling muscle differentiation in Drosophila.

    Science.gov (United States)

    Liotta, David; Han, Jun; Elgar, Stuart; Garvey, Clare; Han, Zhe; Taylor, Michael V

    2007-08-21

    Tissue development requires the controlled regulation of cell-differentiation programs. In muscle, the Mef2 transcription factor binds to and activates the expression of many genes and has a major positive role in the orchestration of differentiation. However, little is known about how Mef2 activity is regulated in vivo during development. Here, we characterize a gene, Holes in muscle (Him), which our results indicate is part of this control in Drosophila. Him expression rapidly declines as embryonic muscle differentiates, and consistent with this, Him overexpression inhibits muscle differentiation. This inhibitory effect is suppressed by mef2, implicating Him in the mef2 pathway. We then found that Him downregulates the transcriptional activity of Mef2 in both cell culture and in vivo. Furthermore, Him protein binds Groucho, a conserved, transcriptional corepressor, through a WRPW motif and requires this motif and groucho function to inhibit both muscle differentiation and Mef2 activity during development. Together, our results identify a mechanism that can inhibit muscle differentiation in vivo. We conclude that a balance of positive and negative inputs, including Mef2, Him, and Groucho, controls muscle differentiation during Drosophila development and suggest that one outcome is to hold developing muscle cells in a state with differentiation genes poised to be expressed.

  12. Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor.

    Directory of Open Access Journals (Sweden)

    Véronique Bertrand-Vallery

    Full Text Available BACKGROUND: Repeated exposures to UVB of human keratinocytes lacking functional p16(INK-4a and able to differentiate induce an alternative state of differentiation rather than stress-induced premature senescence. METHODOLOGY/PRINCIPAL FINDINGS: A 2D-DIGE proteomic profiling of this alternative state of differentiation was performed herein at various times after the exposures to UVB. Sixty-nine differentially abundant protein species were identified by mass spectrometry, many of which are involved in keratinocyte differentiation and survival. Among these protein species was TRIpartite Motif Protein 29 (TRIM29. Increased abundance of TRIM29 following UVB exposures was validated by Western blot using specific antibody and was also further analysed by immunochemistry and by RT-PCR. TRIM29 was found very abundant in keratinocytes and reconstructed epidermis. Knocking down the expression of TRIM29 by short-hairpin RNA interference decreased the viability of keratinocytes after UVB exposure. The abundance of involucrin mRNA, a marker of late differentiation, increased concomitantly. In TRIM29-knocked down reconstructed epidermis, the presence of picnotic cells revealed cell injury. Increased abundance of TRIM29 was also observed upon exposure to DNA damaging agents and PKC activation. The UVB-induced increase of TRIM29 abundance was dependent on a PKC signaling pathway, likely PKCdelta. CONCLUSIONS/SIGNIFICANCE: These findings suggest that TRIM29 allows keratinocytes to enter a protective alternative differentiation process rather than die massively after stress.

  13. Staphylococcus aureus phage types and their correlation to antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Mehndiratta P

    2010-10-01

    Full Text Available Context: Staphylococcus aureus is one of the most devastating human pathogen. The organism has a differential ability to spread and cause outbreak of infections. Characterization of these strains is important to control the spread of infection in the hospitals as well as in the community. Aim: To identify the currently existing phage groups of Staphylococcus aureus, their prevalence and resistance to antibiotics. Materials and Methods: Study was undertaken on 252 Staphylococcus aureus strains isolated from clinical samples. Strains were phage typed and their resistance to antibiotics was determined following standard microbiological procedures. Statistical Analysis: Chi square test was used to compare the antibiotic susceptibility between methicillin resistant Staph. aureus (MRSA and methicillin sensitive S. aureus (MSSA strains. Results: Prevalence of MRSA and MSSA strains was found to be 29.36% and 70.65% respectively. Of these 17.56% of MRSA and 40.44% of MSSA strains were community acquired. All the MSSA strains belonging to phage type 81 from the community were sensitive to all the antibiotics tested including clindamycin and were resistant to penicillin. Forty five percent strains of phage group III and 39% of non-typable MRSA strains from the hospital were resistant to multiple antibiotics. Conclusion: The study revealed that predominant phage group amongst MRSA strains was phage group III and amongst MSSA from the community was phage group NA (phage type 81. MSSA strains isolated from the community differed significantly from hospital strains in their phage type and antibiotic susceptibility. A good correlation was observed between community acquired strains of phage type 81 and sensitivity to gentamycin and clindamycin.

  14. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    OpenAIRE

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investig...

  15. Multilocus Sequence Typing and Staphylococcal Protein A Typing Revealed Novel and Diverse Clones of Methicillin-Resistant Staphylococcus aureus in Seafood and the Aquatic Environment.

    Science.gov (United States)

    Murugadas, V; Toms, C Joseph; Reethu, Sara A; Lalitha, K V

    2017-03-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been a global health concern since the 1960s, and isolation of this pathogen from food-producing animals has been increasing. However, little information is available on the prevalence of MRSA and its clonal characteristics in seafood and the aquatic environment. In this study, 267 seafood and aquatic environment samples were collected from three districts of Kerala, India. Staphylococcal protein A (spa) typing and multilocus sequence typing (MLST) was performed for 65 MRSA strains isolated from 20 seafood and aquatic environment samples. The MRSA clonal profiles were t657-ST772, t002-ST5, t334-ST5, t311-ST5, t121-ST8, t186-ST88, t127-ST1, and two non-spa assignable strains. Whole spa gene sequence analysis along with MLST confirmed one strain as t711-ST6 and another as a novel MRSA clone identified for the first time in seafood and the aquatic environment with a t15669 spa type and a new MLST profile of ST420-256-236-66-82-411-477. The MRSA strains were clustered into five clonal complexes based on the goeBURST algorithm, indicating high diversity among MRSA strains in seafood and the aquatic environment. The novel clone formed a separate clonal complex with matches to three loci. This study recommends large-scale spa typing and MLST of MRSA isolates from seafood and the aquatic environment to determine the prevalence of new MRSA clones. This monitoring process can be useful for tracing local spread of MRSA isolates into the seafood production chain in a defined geographical area.

  16. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics.

    Directory of Open Access Journals (Sweden)

    Federico Ferro

    Full Text Available Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC. A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A. Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.

  17. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    Directory of Open Access Journals (Sweden)

    Treuner-Lange Anke

    2010-04-01

    Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate

  18. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity

    NARCIS (Netherlands)

    Vermeulen, L.; Todaro, M.; de Sousa E Melo, F.; Sprick, M. R.; Kemper, K.; Alea, M. Perez; Richel, D. J.; Stassi, G.; Medema, J. P.

    2008-01-01

    Colon carcinoma is one of the leading causes of death from cancer and is characterized by a heterogenic pool of cells with distinct differentiation patterns. Recently, it was reported that a population of undifferentiated cells from a primary tumor, so-called cancer stem cells (CSC), can

  19. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation

    Czech Academy of Sciences Publication Activity Database

    Tylečková, Jiřina; Valeková, Ivona; Žižková, Martina; Rákocyová, Michaela; Maršala, S.; Maršala, M.; Gadher, S. J.; Kovářová, Hana

    2016-01-01

    Roč. 132, č. 1 (2016), s. 13-20 ISSN 1874-3919 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell adhesion proteins * cell surface capture * neuronal differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.914, year: 2016

  20. Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements

    Science.gov (United States)

    Egan, Jan B.; Barrett, Michael T.; Champion, Mia D.; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K. Martin; Boczek, Nicole J.; Fonseca, Rafael; Craig, David W.; Carpten, John D.; Borad, Mitesh J.; Stewart, A. Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2. PMID:24505276

  1. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements.

    Directory of Open Access Journals (Sweden)

    Jan B Egan

    Full Text Available Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.

  2. Transcriptional profiling reveals gland-specific differential expression in the three major salivary glands of the adult mouse.

    Science.gov (United States)

    Gao, Xin; Oei, Maria S; Ovitt, Catherine E; Sincan, Murat; Melvin, James E

    2018-04-01

    RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.

  3. Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac

    Science.gov (United States)

    2011-01-01

    Background Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which has been shown to increase the susceptibility of various bacteria to antimicrobials and demonstrated to have broad antimicrobial activity. This study describes transcriptome alterations in S. aureus strain COL grown with diclofenac and characterizes the effects of this NSAID on antibiotic susceptibility in laboratory, clinical and diclofenac reduced-susceptibility (DcRS) S. aureus strains. Methods Transcriptional alterations in response to growth with diclofenac were measured using S. aureus gene expression microarrays and quantitative real-time PCR. Antimicrobial susceptibility was determined by agar diffusion MICs and gradient plate analysis. Ciprofloxacin accumulation was measured by fluorescence spectrophotometry. Results Growth of S. aureus strain COL with 80 μg/ml (0.2 × MIC) of diclofenac resulted in the significant alteration by ≥2-fold of 458 genes. These represented genes encoding proteins for transport and binding, protein and DNA synthesis, and the cell envelope. Notable alterations included the strong down-regulation of antimicrobial efflux pumps including mepRAB and a putative emrAB/qacA-family pump. Diclofenac up-regulated sigB (σB), encoding an alternative sigma factor which has been shown to be important for antimicrobial resistance. Staphylococcus aureus microarray metadatabase (SAMMD) analysis further revealed that 46% of genes differentially-expressed with diclofenac are also σB-regulated. Diclofenac altered S. aureus susceptibility to multiple antibiotics in a strain-dependent manner. Susceptibility increased for ciprofloxacin, ofloxacin and norfloxacin, decreased for oxacillin and vancomycin, and did not change for tetracycline or chloramphenicol. Mutation to DcRS did not affect susceptibility to the above antibiotics. Reduced ciprofloxacin MICs with diclofenac in strain BB255, were not associated with increased drug accumulation. Conclusions The results of

  4. Differential responses of cells from human skin keratinocyte and bovine mammary epithelium to attack by pore-forming Staphylococcus aureus alpha-toxin.

    Science.gov (United States)

    Suriyaphol, Gunnaporn; Sarikaputi, Meena; Suriyaphol, Prapat

    2009-11-01

    Human skin keratinocytes HaCat attacked by Staphylococcus aureus alpha-toxin showed a transient drop of cellular ATP levels whereas in toxin-perforated bovine mammary epithelial cells (BMEC), the ATP levels dropped more slowly. Morphologically, during the ATP level depletion, HaCat cell developed a spacious intracellular vacuole together with the transient influx of trypan blue. WST-1 signal, which tested the function of mitochondrial enzyme in viable cells, also decreased concomitantly. On the other hand, BMEC excluded trypan blue and vacuolation was not observed throughout the experiment. We conclude that mammary epithelial cells resist the toxin better than keratinocytes. This is the first report showing that alpha-toxin enhances transient membrane permeability to large molecules, temporary vacuole formation and the transient defect of mitochondrial enzyme in viable cells without cell lysis.

  5. Hadean silicate differentiation revealed by anomalous 142Nd in the Réunion hotspot source

    Science.gov (United States)

    Peters, B. J.; Carlson, R.; Day, J. M.; Horan, M.

    2017-12-01

    Geochemical and geophysical data show that volcanic hotspots can tap ancient domains sequestered in Earth's deep mantle. Evidence from stable and long-lived radiogenic isotope systems has demonstrated that many of these domains result from tectonic and differentiation processes that occurred more than two billion years ago. Recent advances in the analysis of short-lived radiogenic isotopes have further shown that some hotspot sources preserve evidence for metal-silicate differentiation occurring within the first one percent of Earth's history. Despite these discoveries, efforts to detect variability in the lithophile 146Sm-142Nd (t1/2 = 103 Ma) system in Phanerozoic hotspot lavas have not yet detected significant global variation. We report 142Nd/144Nd ratios in Réunion Island basalts that are statistically distinct from the terrestrial Nd standard ranging to both higher and lower 142Nd/144Nd. Variations in 142Nd/144Nd, which total nearly 15 ppm on Réunion, are correlated with 3He/4He among both anomalous and non-anomalous samples. Such behavior implies that there were analogous changes in Sm/Nd and (U+Th)/3He that occurred during a Hadean silicate differentiation event and were not completely overprinted by the depleted mantle. Variations in the 142Nd-143Nd compositions of Réunion basalts can be explained by a single Hadean melting event producing enriched and depleted domains that partially re-mixed after 146Sm was no longer extant. Assuming differentiation occurred at pressures where perovskite is stable, anomalies of the magnitude observed in Réunion basalts require melting of at least 50% across a wide depth range, and up to 90% for melting at pressures near those of the deepest mantle. Models with best fits to Nd isotope data suggest this differentiation occurred around 4.40 Ga and mixing occurred after 4 Ga. This two-stage differentiation process nearly erased the ancient, anomalous 142Nd composition of the Réunion source and produced the relatively

  6. Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite (SSR) markers

    DEFF Research Database (Denmark)

    Nantoume, Aminata Dolo; Andersen, Sven Bode; Jensen, Brita Dahl

    2013-01-01

    This study describes the genetic differentiation of a collection of 134 watermelon landrace accessions from Mali, representing red fleshed dessert and white fleshed seed and cooking type watermelons from five regions, plus three commercial dessert type cultivars with red flesh. The material...... the accessions into use groups (dessert, cooking, seed processing) explained 25 % of the variation. When categorising the accessions further into 10 landrace types, differentiated on the basis of use groups, local accession name, flesh colour and seed phenotype, these landrace types explained 26......-groups. One group included again the red fleshed dessert types with local and commercial origin, while the remaining seven genetic sub-groups comprised the white fleshed landrace types used for seed processing and cooking, as well as white fleshed types of one dessert type. Some of the seed and cooking types...

  7. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Directory of Open Access Journals (Sweden)

    Hui Xia

    Full Text Available The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP technique. Great alterations (52.9~54.3% of total individual-locus combinations of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187 was detected on the highly divergent epiloci (HDE. The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  8. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism.

    Science.gov (United States)

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.

  9. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates.

    Directory of Open Access Journals (Sweden)

    Yaron E Antebi

    2013-07-01

    Full Text Available Cell differentiation is typically directed by external signals that drive opposing regulatory pathways. Studying differentiation under polarizing conditions, with only one input signal provided, is limited in its ability to resolve the logic of interactions between opposing pathways. Dissection of this logic can be facilitated by mapping the system's response to mixtures of input signals, which are expected to occur in vivo, where cells are simultaneously exposed to various signals with potentially opposing effects. Here, we systematically map the response of naïve T cells to mixtures of signals driving differentiation into the Th1 and Th2 lineages. We characterize cell state at the single cell level by measuring levels of the two lineage-specific transcription factors (T-bet and GATA3 and two lineage characteristic cytokines (IFN-γ and IL-4 that are driven by these transcription regulators. We find a continuum of mixed phenotypes in which individual cells co-express the two lineage-specific master regulators at levels that gradually depend on levels of the two input signals. Using mathematical modeling we show that such tunable mixed phenotype arises if autoregulatory positive feedback loops in the gene network regulating this process are gradual and dominant over cross-pathway inhibition. We also find that expression of the lineage-specific cytokines follows two independent stochastic processes that are biased by expression levels of the master regulators. Thus, cytokine expression is highly heterogeneous under mixed conditions, with subpopulations of cells expressing only IFN-γ, only IL-4, both cytokines, or neither. The fraction of cells in each of these subpopulations changes gradually with input conditions, reproducing the continuous internal state at the cell population level. These results suggest a differentiation scheme in which cells reflect uncertainty through a continuously tuneable mixed phenotype combined with a biased

  10. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Maršíková, J.; Wilkinson, D.; Hlaváček, Otakar; Gilfillan, G.D.; Mizeranschi, A.; Hughes, T.; Begany, Markéta; Rešetárová, Stanislava; Váchová, Libuše; Palková, Z.

    2017-01-01

    Roč. 18, OCT 23 (2017), s. 814 ISSN 1471-2164 R&D Projects: GA MŠk(CZ) 7F14083; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Saccharomyces cerevisiae * Colony biofilms * Cell differentiation Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.729, year: 2016

  11. Differential proteomics reveals novel insights into Nosema-honey bee interactions.

    Science.gov (United States)

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia; Le Conte, Yves; Kryger, Per; Baer, Boris; Moritz, Robin F A

    2016-12-01

    Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang; Zhang, Huoming; Guo, Tiannan; Li, Wenying; Li, Huiyu; Zhu, Yi; Huang, Shiang

    2014-01-01

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mapping the transcription start points of the Staphylococcus aureus eap, emp, and vwb promoters reveals a conserved octanucleotide sequence that is essential for expression of these genes.

    Science.gov (United States)

    Harraghy, Niamh; Homerova, Dagmar; Herrmann, Mathias; Kormanec, Jan

    2008-01-01

    Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.

  15. Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Robert Claude

    2011-09-01

    Full Text Available Abstract Background Staphylococcus aureus is one of the most prevalent pathogens to cause mastitis in dairy cattle. Intramammary infection of dairy cows with S. aureus is often subclinical, due to the pathogen's ability to evade the innate defense mechanisms, but this can lead to chronic infection. A sub-population of S. aureus, known as small colony variant (SCV, displays atypical phenotypic characteristics, causes persistent infections, and is more resistant to antibiotics than parent strains. Therefore, it was hypothesized that the host immune response will be different for SCV than its parental or typical strains of S. aureus. In this study, the local and systemic immune protein responses to intramammary infection with three strains of S. aureus, including a naturally occurring bovine SCV strain (SCV Heba3231, were characterized. Serum and casein-depleted milk cytokine levels (interleukin-8, interferon-γ, and transforming growth factor-β1, as well as serum haptoglobin concentrations were monitored over time after intramammary infection with each of the three S. aureus strains. Furthermore, comparative proteomics was used to evaluate milk proteome profiles during acute and chronic phases of S. aureus intramammary infection. Results Serum IL-8, IFN-γ, and TGF-β1 responses differed in dairy cows challenged with different strains of S. aureus. Changes in overall serum haptoglobin concentrations were observed for each S. aureus challenge group, but there were no significant differences observed between groups. In casein-depleted milk, strain-specific differences in the host IFN-γ response were observed, but inducible IL-8 and TGF-β1 concentrations were not different between groups. Proteomic analysis of the milk following intramammary infection revealed unique host protein expression profiles that were dependent on the infecting strain as well as phase of infection. Notably, the protein, component-3 of the proteose peptone (CPP3, was

  16. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  17. Differential proteomics reveals novel insights into Nosema-honey bee interactions

    DEFF Research Database (Denmark)

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia

    2016-01-01

    . In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative...... stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate...

  18. Large Scale Immune Profiling of Infected Humans and Goats Reveals Differential Recognition of Brucella melitensis Antigens

    Science.gov (United States)

    Liang, Li; Leng, Diana; Burk, Chad; Nakajima-Sasaki, Rie; Kayala, Matthew A.; Atluri, Vidya L.; Pablo, Jozelyn; Unal, Berkay; Ficht, Thomas A.; Gotuzzo, Eduardo; Saito, Mayuko; Morrow, W. John W.; Liang, Xiaowu; Baldi, Pierre; Gilman, Robert H.; Vinetz, Joseph M.; Tsolis, Renée M.; Felgner, Philip L.

    2010-01-01

    Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host. PMID:20454614

  19. Proton NMR metabolic profiling of CSF reveals distinct differentiation of meningitis from negative controls.

    Science.gov (United States)

    Chatterji, Tanushri; Singh, Suruchi; Sen, Manodeep; Singh, Ajai Kumar; Agarwal, Gaurav Raj; Singh, Deepak Kumar; Srivastava, Janmejai Kumar; Singh, Alka; Srivastava, Rajeshwar Nath; Roy, Raja

    2017-06-01

    Cerebrospinal fluid (CSF) is an essential bio-fluid of the central nervous system (CNS), playing a vital role in the protection of CNS and performing neuronal function regulation. The chemical composition of CSF varies during onset of meningitis, neurodegenerative disorders (positive controls) and in traumatic cases (negative controls). The study design was broadly categorized into meningitis cases, negative controls and positive controls. Further differentiation among the three groups was carried out using Principal Component Analysis (PCA) followed by supervised Partial Least Square Discriminant Analysis (PLS-DA). The statistical analysis of meningitis vs. negative controls using PLS-DA model resulted in R 2 of 0.97 and Q 2 of 0.85. There was elevation in the levels of ketone bodies, total free amino acids, glutamine, creatine, citrate and choline containing compounds (choline and GPC) in meningitis cases. Similarly, meningitis vs. positive controls resulted in R 2 of 0.80 and Q 2 of 0.60 and showed elevation in the levels of total free amino acids, glutamine, creatine/creatinine and citrate in the meningitis group. Four cases of HIV were identified by PLS-DA model as well as by clinical investigations. On the basis of metabolic profile it was found that negative control CSF samples are more appropriate for differentiation of meningitis than positive control CSF samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells

    Science.gov (United States)

    MacLean, Glenn A.; Menne, Tobias F.; Guo, Guoji; Sanchez, Danielle J.; Park, In-Hyun; Daley, George Q.; Orkin, Stuart H.

    2012-01-01

    Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver, a preleukemic condition termed transient myeloproliferative disorder, and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins, human embryionic stem (hES), and induced pluripotent stem (iPS) cells, were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation, we isolated disomic and trisomic subclones from the same parental iPS line, thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like, γ-globin expressing, definitive hematopoiesis, we found that trisomic cells of hES, iPS, or isogenic origins exhibited a two- to fivefold increase in a population of CD43+(Leukosialin)/CD235+(Glycophorin A) hematopoietic cells, accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage. PMID:23045682

  1. Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets.

    Science.gov (United States)

    Kubitschek-Barreira, Paula H; Curty, Nathalia; Neves, Gabriela W P; Gil, Concha; Lopes-Bezerra, Leila M

    2013-01-14

    Aspergillus fumigatus is the main etiological agent of invasive aspergillosis, an important opportunistic infection for neutropenic patients. The main risk groups are patients with acute leukemia and bone marrow transplantation recipients. The lack of an early diagnostic test together with the limited spectrum of antifungal drugs remains a setback to the successful treatment of this disease. During invasive infection the inhaled fungal conidia enter the morphogenic cycle leading to angioinvasive hyphae. This work aimed to study differentially expressed proteins of A. fumigatus during morphogenesis. To achieve this goal, a 2D-DIGE approach was applied to study surface proteins extractable by reducing agents of two A. fumigatus morphotypes: germlings and hyphae. Sixty-three differentially expressed proteins were identified by MALDI-ToF/MS. We observed that proteins associated with biosynthetic pathways and proteins with multiple functions (miscellaneous) were over-expressed in the early stages of germination, while in hyphae, the most abundant proteins detected were related to metabolic processes or have unknown functions. Among the most interesting proteins regulated during morphogenesis, two putative drug targets were identified, the translational factor, eEF3 and the CipC-like protein. Neither of these proteins are present in mammalian cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming.

    Directory of Open Access Journals (Sweden)

    Yiping Fan

    Full Text Available Neural stem/progenitor cells (NSC have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6% over other sources (range of 0%-27.5%, p<0.004. Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.

  3. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility.

    Science.gov (United States)

    Mořkovský, Libor; Janoušek, Václav; Reif, Jiří; Rídl, Jakub; Pačes, Jan; Choleva, Lukáš; Janko, Karel; Nachman, Michael W; Reifová, Radka

    2018-02-01

    Hybrid sterility is a common first step in the evolution of postzygotic reproductive isolation. According to Haldane's Rule, it affects predominantly the heterogametic sex. While the genetic basis of hybrid male sterility in organisms with heterogametic males has been studied for decades, the genetic basis of hybrid female sterility in organisms with heterogametic females has received much less attention. We investigated the genetic basis of reproductive isolation in two closely related avian species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia), that hybridize in a secondary contact zone and produce viable hybrid progeny. In accordance with Haldane's Rule, hybrid females are sterile, while hybrid males are fertile, allowing gene flow to occur between the species. Using transcriptomic data from multiple individuals of both nightingale species, we identified genomic islands of high differentiation (F ST ) and of high divergence (D xy ), and we analysed gene content and patterns of molecular evolution within these islands. Interestingly, we found that these islands were enriched for genes related to female meiosis and metabolism. The islands of high differentiation and divergence were also characterized by higher levels of linkage disequilibrium than the rest of the genome in both species indicating that they might be situated in genomic regions of low recombination. This study provides one of the first insights into genetic basis of hybrid female sterility in organisms with heterogametic females. © 2018 John Wiley & Sons Ltd.

  4. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN, one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65 at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor. Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus.

  5. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  6. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  7. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells

    DEFF Research Database (Denmark)

    Hattori, Naoko; Niwa, Tohru; Kimura, Kana

    2013-01-01

    . Bivalent modification was clearly visualized by iChmo in wild-type embryonic stem cells (ESCs) known to have it, whereas rarely in Suz12 knockout ESCs and mouse embryonic fibroblasts known to have little of it. iChmo was applied to analysis of epigenetic and phenotypic changes of heterogeneous cell......Combinations of histone modifications have significant biological roles, such as maintenance of pluripotency and cancer development, but cannot be analyzed at the single cell level. Here, we visualized a combination of histone modifications by applying the in situ proximity ligation assay, which...... population, namely, ESCs at an early stage of differentiation, and this revealed that the bivalent modification disappeared in a highly concerted manner, whereas phenotypic differentiation proceeded with large variations among cells. Also, using this method, we were able to visualize a combination...

  8. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    Science.gov (United States)

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of F ST and R ST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  9. Comparative Transcriptomics Reveals Differential Gene Expression Related to Colletotrichum gloeosporioides Resistance in the Octoploid Strawberry

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-05-01

    Full Text Available The strawberry is an important fruit worldwide; however, the development of the strawberry industry is limited by fungal disease. Anthracnose is caused by the pathogen Colletotrichum gloeosporioides and leads to large-scale losses in strawberry quality and production. However, the transcriptional response of strawberry to infection with C. gloeosporioides is poorly understood. In the present study, the strawberry leaf transcriptome of the ‘Yanli’ and ‘Benihoppe’ cultivars were deep sequenced via an RNA-seq analysis to study C. gloeosporioides resistance in strawberry. Among the sequences, differentially expressed genes were annotated with Gene Ontology terms and subjected to pathway enrichment analysis. Significant categories included defense, plant–pathogen interactions and flavonoid biosynthesis were identified. The comprehensive transcriptome data set provides molecular insight into C. gloeosporioides resistance genes in resistant and susceptible strawberry cultivars. Our findings can enhance breeding efforts in strawberry.

  10. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    OpenAIRE

    Wei Tong; Qiang He; Yong-Jin Park

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucle...

  11. Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed

    Science.gov (United States)

    Giuliani, Alessandro; Tomita, Masaru

    2010-01-01

    Cell fate decision remarkably generates specific cell differentiation path among the multiple possibilities that can arise through the complex interplay of high-dimensional genome activities. The coordinated action of thousands of genes to switch cell fate decision has indicated the existence of stable attractors guiding the process. However, origins of the intracellular mechanisms that create “cellular attractor” still remain unknown. Here, we examined the collective behavior of genome-wide expressions for neutrophil differentiation through two different stimuli, dimethyl sulfoxide (DMSO) and all-trans-retinoic acid (atRA). To overcome the difficulties of dealing with single gene expression noises, we grouped genes into ensembles and analyzed their expression dynamics in correlation space defined by Pearson correlation and mutual information. The standard deviation of correlation distributions of gene ensembles reduces when the ensemble size is increased following the inverse square root law, for both ensembles chosen randomly from whole genome and ranked according to expression variances across time. Choosing the ensemble size of 200 genes, we show the two probability distributions of correlations of randomly selected genes for atRA and DMSO responses overlapped after 48 hours, defining the neutrophil attractor. Next, tracking the ranked ensembles' trajectories, we noticed that only certain, not all, fall into the attractor in a fractal-like manner. The removal of these genome elements from the whole genomes, for both atRA and DMSO responses, destroys the attractor providing evidence for the existence of specific genome elements (named “genome vehicle”) responsible for the neutrophil attractor. Notably, within the genome vehicles, genes with low or moderate expression changes, which are often considered noisy and insignificant, are essential components for the creation of the neutrophil attractor. Further investigations along with our findings might

  12. Differential gene expression in patients with anal fistula reveals high levels of prolactin recepetor

    Directory of Open Access Journals (Sweden)

    Song Yi-Huan

    2017-01-01

    Full Text Available Background/Aim. There are limited data examining variations in the local expression of inflammatory mediators in anal fistulas where it is anticipated that an improved understanding of the inflammatory milieu might lead to the potential therapeutic option of instillation therapy in complicated cases. The aim of the present study was to examine prolactin receptors (PRLR as inflammatory markers and to correlate their expression with both the complexity of anal fistulas and the likelihood of fistula recurrence. Methods. Microarray was used to screen the differentially expressed gene profile of anal fistula using anal mucosa samples with hemorrhoids with ageand sex-matched patients as controls and then a prospective analysis of 65 patients was conducted with anal fistulas. PRLR immunohistochemistry was performed to define expression in simple, complex and recurrent anal fistula cases. The quantitative image comparison was performed combining staining intensity with cellular distribution in order to create high and low score PRLR immunohistochemical groupings. Results. A differential expression profile of 190 genes was found. PRLR expression was 2.91 times lower in anal fistula compared with control. Sixty-five patients were assessed (35 simple, 30 complex cases. Simple fistulas showed significantly higher PRLR expression than complex cases with recurrent fistulae showing overall lower PRLR expression than de novo cases (p = 0.001. These findings were reflected in measurable integrated optical density for complex and recurrent cases (complex cases, 8.31 ± 4.91 x 104 vs simple cases, 12.30 ± 6.91 x 104; p < 0.01; recurrent cases, 7.21 ± 3.51 x 104 vs primarily healing cases, 8.31 ± 4.91 x 104; p < 0.05. In univariate regression analysis, low PRLR expression correlated with fistula complexity; a significant independent effect maintained in multivariate analysis odds ratio [(OR low to high PRLR expression = 9.52; p = 0.001]. Conclusion. PRLR

  13. Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver.

    Science.gov (United States)

    Abbondante, Serena; Eckel-Mahan, Kristin L; Ceglia, Nicholas J; Baldi, Pierre; Sassone-Corsi, Paolo

    2016-02-05

    Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Differential spectral power alteration following acupuncture at different designated places revealed by magnetoencephalography

    Science.gov (United States)

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Liu, Zhenyu; Wang, Hu; Feng, Yuanyuan; Wei, Wenjuan; Tian, Jie

    2012-03-01

    As an ancient therapeutic technique in Traditional Chinese Medicine, acupuncture has been used increasingly in modern society to treat a range of clinical conditions as an alternative and complementary therapy. However, acupoint specificity, lying at the core of acupuncture, still faces many controversies. Considering previous neuroimaging studies on acupuncture have mainly employed functional magnetic resonance imaging, which only measures the secondary effect of neural activity on cerebral metabolism and hemodynamics, in the current study, we adopted an electrophysiological measurement technique named magnetoencephalography (MEG) to measure the direct neural activity. 28 healthy college students were recruited in this study. We filtered MEG data into 5 consecutive frequency bands (delta, theta, alpha, beta and gamma band) and grouped 140 sensors into 10 main brain regions (left/right frontal, central, temporal, parietal and occipital regions). Fast Fourier Transformation (FFT) based spectral analysis approach was further performed to explore the differential band-limited power change patterns of acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. Significantly increased delta power and decreased alpha as well as beta power in bilateral frontal ROIs were observed following stimulation at ST36. Compared with ST36, decreased alpha power in left and right central, right parietal as well as right temporal ROIs were detected in NAP group. Our research results may provide additional evidence for acupoint specificity.

  15. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Science.gov (United States)

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  16. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    Science.gov (United States)

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Rapid differentiation of Staphylococcus aureus isolates harbouring egc loci with pseudogenes psient1 and psient2 and the selu or seluv gene using PCR-RFLP.

    Science.gov (United States)

    Collery, Mark M; Smyth, Cyril J

    2007-02-01

    The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, psient1 and psient2, or the selu or seluv gene. While these two alternative sei-seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or seluv gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3' end of the sei gene through the 5' first quarter of the seln gene allowed pseudogene- and selu- or seluv-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or seluv gene, while selu- or seluv-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or seluv-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei-seln egc locus type.

  18. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...... proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized...

  19. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  20. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  1. Integrative omics analysis reveals differentially distributed proteins in dimorphic euspermatozoa of the squid, Loligo bleekeri.

    Science.gov (United States)

    Yoshida, Masa-aki; Yamada, Lixy; Ochi, Hiroe; Iwata, Yoko; Tamura-Nakano, Miwa; Sawada, Hitoshi; Sauer, Warwick H H; Ogura, Atsushi; Hirohashi, Noritaka

    2014-08-01

    In the coastal squid Loligo bleekeri, each male produces one of two types of fertilization-competent spermatozoa (eusperm) that exhibit morphological and behavioral differences. Large "consort" males produce short-tailed spermatozoa that display free-swimming behavior when ejaculated into seawater. Small "sneaker" males, on the other hand, produce long-tailed spermatozoa that exhibit a self-swarming trait after ejaculation. To understand the molecular basis for adaptive traits employed by alternative male mating tactics, we performed the transcriptome deep sequencing (RNA-seq) and proteome analyses to search for differences in testicular mRNAs and sperm proteins, respectively. From mature male testes we identified a total of 236,455 contigs (FPKM ≧1) where 3789 and 2789 were preferentially (≧10-fold) expressed in consort and sneaker testes, respectively. A proteomic analysis detected 4302 proteins in the mature sperm as post-translational products. A strongly biased (≧10-fold) distribution occurred in 55 consort proteins and 61 sneaker proteins. There was no clear mRNA-protein correlation, making a ballpark estimate impossible for not only overall protein abundance but also the degree of biased sperm type expressed in the spermatozoa. A family encoding dynein heavy chain gene, however, was found to be biased towards sneakers, whereas many enzymes involving energy metabolism were heavily biased towards consort spermatozoa. The difference in flagellar length matched exactly the different amount of tubulins. From these results we hypothesize that discrete differential traits in dimorphic eusperm arose from a series of innovative alterations in the intracellular components of spermatozoa. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Whole genome sequencing of the monomorphic pathogen Mycobacterium bovis reveals local differentiation of cattle clinical isolates.

    Science.gov (United States)

    Lasserre, Moira; Fresia, Pablo; Greif, Gonzalo; Iraola, Gregorio; Castro-Ramos, Miguel; Juambeltz, Arturo; Nuñez, Álvaro; Naya, Hugo; Robello, Carlos; Berná, Luisa

    2018-01-02

    Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world's highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this

  3. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer

    Directory of Open Access Journals (Sweden)

    Katsinis Constantine

    2006-10-01

    Full Text Available Abstract Background Tumor classification is inexact and largely dependent on the qualitative pathological examination of the images of the tumor tissue slides. In this study, our aim was to develop an automated computational method to classify Hematoxylin and Eosin (H&E stained tissue sections based on cancer tissue texture features. Methods Image processing of histology slide images was used to detect and identify adipose tissue, extracellular matrix, morphologically distinct cell nuclei types, and the tubular architecture. The texture parameters derived from image analysis were then applied to classify images in a supervised classification scheme using histologic grade of a testing set as guidance. Results The histologic grade assigned by pathologists to invasive breast carcinoma images strongly correlated with both the presence and extent of cell nuclei with dispersed chromatin and the architecture, specifically the extent of presence of tubular cross sections. The two parameters that differentiated tumor grade found in this study were (1 the number density of cell nuclei with dispersed chromatin and (2 the number density of tubular cross sections identified through image processing as white blobs that were surrounded by a continuous string of cell nuclei. Classification based on subdivisions of a whole slide image containing a high concentration of cancer cell nuclei consistently agreed with the grade classification of the entire slide. Conclusion The automated image analysis and classification presented in this study demonstrate the feasibility of developing clinically relevant classification of histology images based on micro- texture. This method provides pathologists an invaluable quantitative tool for evaluation of the components of the Nottingham system for breast tumor grading and avoid intra-observer variability thus increasing the consistency of the decision-making process.

  4. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    Science.gov (United States)

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  5. Metabolic profiling for detection of Staphylococcus aureus infection and antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Henrik Antti

    Full Text Available Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA and methicillin-sensitive S. aureus (MSSA were used in vitro and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6 from severe Escherichia coli sepsis (n = 10 and identified treatment responses over time. Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S. aureus sepsis. Taken together, this

  6. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression.

    Directory of Open Access Journals (Sweden)

    Ingo Ahrens

    Full Text Available Endothelial progenitor cells (EPCs can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP, PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15 or pro-angiogenic (galectin-3 properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP was the most up-regulated gene.

  7. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    International Nuclear Information System (INIS)

    Teyssedre, G.; Laurent, C.; Vu, T. T. N.

    2015-01-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10 −14 –10 −13  m 2  V −1  s −1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets

  8. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Science.gov (United States)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  9. Transcriptomic and metabolic responses of Staphylococcus aureus in mixed culture with Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans in milk.

    Science.gov (United States)

    Zdenkova, Kamila; Alibayov, Babek; Karamonova, Ludmila; Purkrtova, Sabina; Karpiskova, Renata; Demnerova, Katerina

    2016-09-01

    Staphylococcus aureus is a major food-borne pathogen due to the production of enterotoxin and is particularly prevalent in contaminated milk and dairy products. The lactic acid bacteria (LAB) are widely used as biocontrol agents in fermented foods which can inhibit pathogenic flora. In our work, we investigated the influence of three strains of LAB (Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans) on the relative expression of three enterotoxin genes (sea, sec, sell) and eight virulence and/or regulatory genes (sarA, saeS, codY, srrA, rot, hld/RNAIII, agrA/RNAII, sigB) in two S. aureus strains (MW2 and Sa1612) in TSB and reduced-fat milk (1.5 %) at 30 °C over a 24-h period. The tested LAB and S. aureus strains proved to be mutually non-competitive or only slightly competitive during co-cultivation. In addition, under the above-mentioned conditions, differential gene expression between the S. aureus MW2 and Sa1612 strains was well documented. S. aureus growth was changed in mixed culture with LAB; however, its effect on the repression of sea and sec expression correlated with production of these virulence factors. In comparison, the presence of LAB strains generally inhibited the expression of sec, sell, sarA, seaS, agrA/RNAII and hld/RNAIII genes. The effect of LAB strains presence on the expression of sea, codY, srrA, rot and sigB genes was medium, time, LAB and S. aureus strain specific. SEA and SEC production was significantly reduced in milk compared to TSB in pure culture. After the 24-h cultivation, S. aureus MW2 and Sa1612 SEC production was 187 and 331 times lower in milk compared to TSB, respectively (0.07 and 0.39 ng/mL in milk, versus 13.1 and 129.2 ng/mL in TSB, respectively). At the same time S. aureus MW2 and Sa1612 SEA production was 77 and 68 times lower in milk compared to TSB, respectively (0.99 and 0.17 ng/mL in milk, versus 76.4 and 11.5 ng/mL in TSB, respectively). This study has revealed new insights into the

  10. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.

    Science.gov (United States)

    Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N

    2016-02-09

    In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work

  11. Time-lapse imagery of Adélie penguins reveals differential winter strategies and breeding site occupation.

    Science.gov (United States)

    Black, Caitlin; Southwell, Colin; Emmerson, Louise; Lunn, Daniel; Hart, Tom

    2018-01-01

    Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter.

  12. Time-lapse imagery of Adélie penguins reveals differential winter strategies and breeding site occupation

    Science.gov (United States)

    Southwell, Colin; Emmerson, Louise; Lunn, Daniel

    2018-01-01

    Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter. PMID:29561876

  13. Genotyping of methicillin-resistant Staphylococcus aureus in the Sultan Qaboos University Hospital, Oman reveals the dominance of Panton–Valentine leucocidin-negative ST6-IV/t304 clone

    Directory of Open Access Journals (Sweden)

    E.E. Udo

    2014-07-01

    Full Text Available The objective of this study was to determine the prevalence and distribution of methicillin-resistant Staphylococcus aureus (MRSA genotypes circulating at a tertiary hospital in the Sultanate of Oman. A total of 79 MRSA isolates were obtained from different clinical samples and investigated using antibiogram, pulsed-field gel electrophoresis (PFGE, staphylococcal chromosome cassette mec (SCCmec, Spa typing and multilocus sequence typing (MLST. The isolates were susceptible to linezolid, vancomycin, teicoplanin, tigecycline and mupirocin but were resistant to tetracycline (30.4%, erythromycin (26.6%, clindamycin (24.1%, trimethoprim (19.0%, ciprofloxacin (17.7%, fusidic acid (15.2% and gentamicin (12.7%. Molecular typing revealed 19 PFGE patterns, 26 Spa types and 21 sequence types. SCCmec-IV (86.0% was the dominant SCCmec type, followed by SCCmec-V (10.1%. SCCmec-III (2.5% and SCCmec-II (1.3% were less common. ST6-IV/t304 (n = 30 and ST1295-IV/t690 (n = 12 were the dominant genotypes followed by ST772-V/t657 (n = 5, ST30-IV/t019/t021 (n = 5, ST22-IV/t852 (n = 4, ST80-IV/t044 (n = 3 and 18 single genotypes that were isolated sporadically. On the basis of SCCmec typing and MLST, 91.2% of the isolates were classified as community-associated MRSA and 8.8% of the isolates (consisting of four ST22-IV/t852, one ST239-III/t632, one ST5-III/t311 and one ST5-II/t003 were classified as healthcare-associated MRSA. The study has revealed the dominance of a Panton–Valentine leucocidin-negative ST6-IV/t304 clone and provided insights into the distribution of antibiotic resistance in MRSA at the tertiary hospital in Oman. It also highlights the importance of surveillance in detecting the emergence of new MRSA clones in a healthcare facility.

  14. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

    Science.gov (United States)

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-05-01

    Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

  15. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2017-01-15

    Highlights: • Response of two native cyanobacterial strains to uranium exposure was studied. • Anabaena L-31 exhibited higher tolerance to uranium as compared to Anabaena 7120. • Uranium exposure differentially affected the proteome profiles of the two strains. • Anabaena L-31 showed better sustenance of photosynthesis and carbon metabolism. • Anabaena L-31 displayed superior oxidative stress defense than Anabaena 7120. - Abstract: Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD{sub 50} dose), following 3 h exposure to 75 μM and 200 μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Significance: Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.

  16. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    Science.gov (United States)

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.

  17. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France); Vu, T. T. N. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Electric Power University, 235 Hoang Quoc Viet, 10000 Hanoi (Viet Nam)

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  18. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses".

    Science.gov (United States)

    Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H

    2008-02-01

    The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed

  19. Gene expression analysis of skin grafts and cultured keratinocytes using synthetic RNA normalization reveals insights into differentiation and growth control.

    Science.gov (United States)

    Katayama, Shintaro; Skoog, Tiina; Jouhilahti, Eeva-Mari; Siitonen, H Annika; Nuutila, Kristo; Tervaniemi, Mari H; Vuola, Jyrki; Johnsson, Anna; Lönnerberg, Peter; Linnarsson, Sten; Elomaa, Outi; Kankuri, Esko; Kere, Juha

    2015-06-25

    Keratinocytes (KCs) are the most frequent cells in the epidermis, and they are often isolated and cultured in vitro to study the molecular biology of the skin. Cultured primary cells and various immortalized cells have been frequently used as skin models but their comparability to intact skin has been questioned. Moreover, when analyzing KC transcriptomes, fluctuation of polyA+ RNA content during the KCs' lifecycle has been omitted. We performed STRT RNA sequencing on 10 ng samples of total RNA from three different sample types: i) epidermal tissue (split-thickness skin grafts), ii) cultured primary KCs, and iii) HaCaT cell line. We observed significant variation in cellular polyA+ RNA content between tissue and cell culture samples of KCs. The use of synthetic RNAs and SAMstrt in normalization enabled comparison of gene expression levels in the highly heterogenous samples and facilitated discovery of differences between the tissue samples and cultured cells. The transcriptome analysis sensitively revealed genes involved in KC differentiation in skin grafts and cell cycle regulation related genes in cultured KCs and emphasized the fluctuation of transcription factors and non-coding RNAs associated to sample types. The epidermal keratinocytes derived from tissue and cell culture samples showed highly different polyA+ RNA contents. The use of SAMstrt and synthetic RNA based normalization allowed the comparison between tissue and cell culture samples and thus proved to be valuable tools for RNA-seq analysis with translational approach. Transciptomics revealed clear difference both between tissue and cell culture samples and between primary KCs and immortalized HaCaT cells.

  20. Rapid identification of Staphylococcus aureus and methicillin resistance by flow cytometry using a peptide nucleic acid probe.

    Science.gov (United States)

    Shrestha, Nabin K; Scalera, Nikole M; Wilson, Deborah A; Brehm-Stecher, Byron; Procop, Gary W

    2011-09-01

    A total of 56 Staphylococcus aureus isolates incubated for 2 h in the presence or absence of oxacillin were analyzed by flow cytometry after labeling with an S. aureus-specific peptide nucleic acid (PNA) probe. Two defined ratios, the paired signal count ratio (PSCR) and the gate signal count ratio (GSCR), differentiated methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) with sensitivities of 100% each and specificities of 96% and 100%, respectively.

  1. Rapid Identification of Staphylococcus aureus and Methicillin Resistance by Flow Cytometry Using a Peptide Nucleic Acid Probe ▿

    Science.gov (United States)

    Shrestha, Nabin K.; Scalera, Nikole M.; Wilson, Deborah A.; Brehm-Stecher, Byron; Procop, Gary W.

    2011-01-01

    A total of 56 Staphylococcus aureus isolates incubated for 2 h in the presence or absence of oxacillin were analyzed by flow cytometry after labeling with an S. aureus-specific peptide nucleic acid (PNA) probe. Two defined ratios, the paired signal count ratio (PSCR) and the gate signal count ratio (GSCR), differentiated methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) with sensitivities of 100% each and specificities of 96% and 100%, respectively. PMID:21795508

  2. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  3. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients

    Directory of Open Access Journals (Sweden)

    Cedric Simillion

    2017-10-01

    Full Text Available About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV or C (HCV, with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. Metabolic perturbation networks were constructed, which permitted a differential view of the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that robust regression analyses can uncover metabolic rewiring in disease states.

  4. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    Science.gov (United States)

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  5. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  6. Staphylococcus aureus entrance into the dairy chain: Tracking S. aureus from dairy cow to cheese

    Directory of Open Access Journals (Sweden)

    Judith Kümmel

    2016-10-01

    Full Text Available Staphylococcus aureus is one of the most important contagious mastitis pathogens in dairy cattle. Due to its zoonotic potential, control of S. aureus is not only of great economic importance in the dairy industry but also a significant public health concern. The aim of this study was to decipher the potential of bovine udder associated S. aureus as reservoir for S. aureus contamination in dairy production and processing. From 18 farms, delivering their milk to an alpine dairy plant for the production of smeared semi-hard and hard cheese. 1176 quarter milk (QM samples of all cows in lactation (n = 294 and representative samples form bulk tank milk (BTM of all farms were surveyed for coagulase positive (CPS and coagulase negative Staphylococci (CNS. Furthermore, samples from different steps of the cheese manufacturing process were tested for CPS and CNS. As revealed by chemometric-assisted FTIR spectroscopy and molecular subtyping (spa typing and multi locus sequence typing, dairy cattle represent indeed an important, yet underreported, entrance point of S. aureus into the dairy chain. Our data clearly show that certain S. aureus subtypes are present in primary production as well as in the cheese processing at the dairy plant. However, although a considerable diversity of S. aureus subtypes was observed in QM and BTM at the farms, only certain S. aureus subtypes were able to enter and persist in the cheese manufacturing at the dairy plant and could be isolated from cheese until day fourteen of ripening. Farm strains belonging to the FTIR cluster B1 and B3, which show genetic characteristics (t2953, ST8, enterotoxin profile: sea/sed/sej of the recently described S. aureus genotype B, most successfully contaminated the cheese production at the dairy plant. Thus our study fosters the hypothesis that genotype B S. aureus represent a specific challenge in control of S. aureus in the dairy chain that requires effective clearance strategies and hygienic

  7. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    Directory of Open Access Journals (Sweden)

    Shuiquan eTang

    2016-02-01

    Full Text Available The genomes of two closely related Dehalobacter strains (strain CF and strain DCA were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF, 1,1,1-trichloroethane (1,1,1-TCA and 1,1-dichloroethane (1,1-DCA. The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA and strain DCA (that dechlorinates 1,1-DCA each contain 17 putative reductive dehalogenase homologous (rdh genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB, and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and greater than 99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1 and corrinoid biosynthesis pathways (strains E1 and PER-K23. The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to Dehalococcoides mccartyi

  8. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes.

    Science.gov (United States)

    Clark, David J; Fondrie, William E; Yang, Austin; Mao, Li

    2016-02-05

    Exosomes are 30-100 nm sized membrane vesicles released by cells into the extracellular space that mediate intercellular communication via transfer of proteins and other biological molecules. To better understand the role of these microvesicles in lung carcinogenesis, we employed a Triple SILAC quantitative proteomic strategy to examine the differential protein abundance between exosomes derived from an immortalized normal bronchial epithelial cell line and two non-small cell lung cancer (NSCLC) cell lines harboring distinct activating mutations in the cell signaling molecules: Kirsten rat sarcoma viral oncogene homolog (KRAS) or epidermal growth factor receptor (EGFR). In total, we were able to quantify 721 exosomal proteins derived from the three cell lines. Proteins associated with signal transduction, including EGFR, GRB2 and SRC, were enriched in NSCLC exosomes, and could actively regulate cell proliferation in recipient cells. This study's investigation of the NSCLC exosomal proteome has identified enriched protein cargo that can contribute to lung cancer progression, which may have potential clinical implications in biomarker development for patients with NSCLC. The high mortality associated with lung cancer is a result of late-stage diagnosis of the disease. Current screening techniques used for early detection of lung cancer lack the specificity for accurate diagnosis. Exosomes are nano-sized extracellular vesicles, and the increased abundance of select protein cargo in exosomes derived from cancer cells may be used for diagnostic purposes. In this paper, we applied quantitative proteomic analysis to elucidate abundance differences in exosomal protein cargo between two NSCLC cell lines with distinctive oncogene mutations and an immortalized normal bronchial epithelial cell line. This study revealed proteins associated with cell adhesion, the extracellular matrix, and a variety of signaling molecules were enriched in NSCLC exosomes. The present data reveals

  9. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations.

    Science.gov (United States)

    Reem, Nathan T; Chen, Han-Yi; Hur, Manhoi; Zhao, Xuefeng; Wurtele, Eve Syrkin; Li, Xu; Li, Ling; Zabotina, Olga

    2018-03-01

    This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.

  11. Kisspeptin Antagonists Reveal Kisspeptin 1 and Kisspeptin 2 Differential Regulation of Reproduction in the Teleost, Morone saxatilis.

    Science.gov (United States)

    Zmora, Nilli; Stubblefield, John David; Wong, Ten-Tsao; Levavi-Sivan, Berta; Millar, Robert Peter; Zohar, Yonathan

    2015-09-01

    The importance of kisspeptin in regulating vertebrate reproduction has been well established, but the exact mechanism continues to unfold. Unlike mammals, many lower vertebrates possess a dual kisspeptin system, Kiss1 and Kiss2. To decipher the roles of the kisspeptins in fish, we identified two potential kisspeptin antagonists, pep 234 and pep 359, by screening analogs for their ability to inactivate striped bass Kiss1 and Kiss2 receptors expressed in COS7 cells. Pep 234 (a mammalian KISS1 antagonist) antagonizes Kiss1r signaling activated by Kiss1 and Kiss2, and pep 359 (a novel analog) antagonizes Kiss2 activation of both receptors. In vitro studies using brain slices demonstrated that only Kiss2 can upregulate the expression of the hypophysiotropic gnrh1, which was subsequently diminished by pep 234 and pep 359. In primary pituitary cell cultures, the two antagonists revealed a complex network of putative endogenous and exogenous regulation by kisspeptin. While both kisspeptins stimulate Fsh expression and secretion, Kiss2 predominately induces Lh secretion. Pep 234 and 359 treatment of spawning males hindered sperm production. This effect was accompanied with decreased brain gnrh1 and gnrh2 mRNA levels and peptide content in the pituitary, and increased levels of pituitary Lh, probably due to attenuation of Lh release. Strikingly, the mRNA levels of arginine-vasotocin, the neurons of which in the preoptic area coexpress kiss2r, were dramatically reduced by the antagonists. Our results demonstrate differential actions of Kiss1 and Kiss2 systems along the hypothalamic-pituitary axis and interactions with other neuropeptides, and further reinforce the importance of kisspeptin in the execution of spawning. © 2015 by the Society for the Study of Reproduction, Inc.

  12. Staphylococcus aureus Transcriptome Architecture

    DEFF Research Database (Denmark)

    Mäder, Ulrike; Nicolas, Pierre; Depke, Maren

    2016-01-01

    Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of...

  13. Rapid differentiation of Staphylococcus aureus, Staphylococcus epidermidis and other coagulase-negative staphylococci and meticillin susceptibility testing directly from growth-positive blood cultures by multiplex real-time PCR.

    Science.gov (United States)

    Jukes, Leanne; Mikhail, Jane; Bome-Mannathoko, Naledi; Hadfield, Stephen J; Harris, Llinos G; El-Bouri, Khalid; Davies, Angharad P; Mack, Dietrich

    2010-12-01

    This study evaluated a multiplex real-time PCR method specific for the mecA, femA-SA and femA-SE genes for rapid identification of Staphylococcus aureus, Staphylococcus epidermidis and non-S. epidermidis coagulase-negative staphylococci (CoNS), and meticillin susceptibility testing directly in positive blood cultures that grew Gram-positive cocci in clusters. A total of 100 positive blood cultures produced: 39 S. aureus [12 meticillin-resistant S. aureus (MRSA), 31% of all the S. aureus]; 30 S. epidermidis (56.6% of the CoNS), 8 Staphylococcus capitis (15.1%), 3 Staphylococcus saprophyticus (5.7%), 4 Staphylococcus hominis (7.5%), 3 Staphylococcus haemolyticus (5.7%), 2 Staphylococcus warneri (3.8%), 1 Staphylococcus cohnii (1.9%) and 2 unidentified Staphylococcus spp. (3.8%); and 1 Micrococcus luteus in pure culture. Two blood cultures had no growth on subculture and five blood cultures grew mixed CoNS. For the 95 blood cultures with pure growth or no growth on subculture, there was very good agreement between real-time PCR and the BD Phoenix identification system for staphylococcal species categorization in S. aureus, S. epidermidis and non-S. epidermidis CoNS and meticillin-resistance determination (Cohen's unweighted kappa coefficient κ=0.882). All MRSA and meticillin-susceptible S. aureus were correctly identified by mecA amplification. PCR amplification of mecA was more sensitive for direct detection of meticillin-resistant CoNS in positive blood cultures than testing with the BD Phoenix system. There were no major errors when identifying staphylococcal isolates and their meticillin susceptibility within 2.5 h. Further studies are needed to evaluate the clinical benefit of using such a rapid test on the consumption of glycopeptide antibiotics and the alteration of empiric therapy in the situation of positive blood cultures growing staphylococci, and the respective clinical outcomes.

  14. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    Science.gov (United States)

    Kaiser, Julienne C; King, Alyssa N; Grigg, Jason C; Sheldon, Jessica R; Edgell, David R; Murphy, Michael E P; Brinsmade, Shaun R; Heinrichs, David E

    2018-01-01

    Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  15. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    Directory of Open Access Journals (Sweden)

    Julienne C Kaiser

    2018-01-01

    Full Text Available Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  16. Occurrence and distribution of Staphylococcus aureus lineages among zoo animals

    DEFF Research Database (Denmark)

    Gongora, Carmen Espinosa; Chrobak, Dorota; Moodley, Arshnee

    2012-01-01

    The current knowledge of the occurrence and diversity of Staphylococcus aureus in animals is largely biased in favour MRSA and domestic animals. In order to generate novel information on the ecology and population structure of this bacterial species in the animal kingdom, we investigated...... the occurrence and genotypic diversity of S. aureus in a range of animal species kept at the Copenhagen Zoo. We sampled 146 animals belonging to 25 mammalian species and 21 reptiles belonging to six species. A total of 59 S. aureus isolates were found in 10 of the 25 mammalian species tested. All isolates were...... MSSA belonging to fourteen spa types, including three novel spa types. MLST revealed the occurrence of seven STs. The study of the ecology of commensal S. aureus in captive wild animals revealed that ST133 has a broader host range than previously thought....

  17. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    Science.gov (United States)

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are

  18. The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus.

    Science.gov (United States)

    Weiss, Andy; Ibarra, J Antonio; Paoletti, Jessica; Carroll, Ronan K; Shaw, Lindsey N

    2014-04-01

    In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an additional subunit, termed the δ factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various organisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphylococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demonstrated binding to core RNAP that is mediated by the β and/or β' subunits. To identify the impact of the δ subunit on transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence factors, while several mobile genetic elements (SaPI5 and prophage SA3usa) were strongly upregulated. Phenotypically, the rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively, our results demonstrate that the δ subunit of RNAP is a critical component of the S. aureus transcription machinery and plays an important role during infection.

  19. Quantitative proteome and phosphoproteome analyses of Streptomyces coelicolor reveal proteins and phosphoproteins modulating differentiation and secondary metabolism

    DEFF Research Database (Denmark)

    Rioseras, Beatriz; Sliaha, Pavel V; Gorshkov, Vladimir

    2018-01-01

    identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (MI); secondary metabolite producing hyphae (MII); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during....../Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor. We...... the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signalling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism...

  20. Genomic data reveal Toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state.

    Directory of Open Access Journals (Sweden)

    Pamela J Lescault

    2010-12-01

    Full Text Available Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states--genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage.

  1. Gender-Differentiated parenting revisited : Meta-analysis reveals very few differences in parental control of boys and girls

    NARCIS (Netherlands)

    Endendijk, Joyce J.; Groeneveld, Marleen G.; Bakermans-Kranenburg, Marian J.; Mesman, Judi

    2016-01-01

    Although various theories describe mechanisms leading to differential parenting of boys and girls, there is no consensus about the extent to which parents do treat their sons and daughters differently. The last meta-analyses on the subject were conducted more than fifteen years ago, and changes in

  2. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  3. The human nasal microbiota and Staphylococcus aureus carriage.

    Directory of Open Access Journals (Sweden)

    Daniel N Frank

    Full Text Available BACKGROUND: Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of approximately 50% of healthy adults, whereas approximately 50% of the general population is rarely or never colonized by this pathogen. Because microbial consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization. METHODOLOGY/PRINCIPAL FINDINGS: Nasal specimens were collected longitudinally from five healthy adults and a cross-section of hospitalized patients (26 S. aureus carriers and 16 non-carriers. Culture-independent analysis of 16S rRNA sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp., with proportionally less representation of other phyla, including Firmicutes (e.g., Staphylococcus spp. and Proteobacteria (e.g. Enterobacter spp. In contrast, inpatient nasal microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004. CONCLUSIONS/SIGNIFICANCE: The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument. Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.

  4. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors

    DEFF Research Database (Denmark)

    Nogueira-Silva, L; Da Hora, G. C.A.; Soares, Goncalo Teofilo Afonso Pinheiro

    2017-01-01

    Staphylococcus aureus is an opportunistic pathogen related to a variety of life-threatening infections but for which antimicrobial resistance is liming the treatment options. We report here that myricetin, but not its glycosylated form, can remarkably decrease the production of several S. aureus ...... in the Galleria mellonella model. The present findings reveal the potential of Myr as an alternative multi-target antivirulence candidate to control S. aureus pathogenicity....

  5. Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos

    Directory of Open Access Journals (Sweden)

    Rachel E. Jennings

    2017-11-01

    Full Text Available To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.

  6. Significant genetic differentiation within the population of the Island of Corsica (France) revealed by y-chromosome analysis.

    Science.gov (United States)

    Ghiani, Maria Elena; Varesi, Laurent; Mitchell, Robert John; Vona, Giuseppe

    2009-12-01

    Using 10 Y-chromosome short tandem repeat allelic and haplotypic frequencies, we examined genetic variation within the population of Corsica and its relationship with other Mediterranean populations. The most significant finding is the high level of genetic differentiation within Corsica, with strong evidence of an effective barrier to male-mediated gene flow between the south and the rest of the island. This internal differentiation most probably results from low exogamy among small isolated populations and also from the orography of the island, with a central mountain chain running the length of the island restricting human movement. This physical barrier is reflected not only in present-day intraisland linguistic and genetic differences but also in the relatedness of Corsican regions to other Mediterranean groups. Northwest and Central Corsica are much closer to West Mediterranean populations, whereas South Corsica is closer to Central-North Sardinia and East Mediterranean populations.

  7. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone

    2017-01-01

    HIGHLIGHTS: Mass spectrometry (MS) based quantitative proteomics and phosphoproteomics applied to monitor the alteration of nuclear proteins during the early stages (4 hours) of preadipocyte differentiation. A total of 4072 proteins including 2434 phosphorylated proteins identified, a majority....... New insights into phosphorylation-dependent signaling networks that impact on nuclear proteins and controls adipocyte differentiation and cell fate. Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency......), in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied mass spectrometry (MS) based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early...

  8. Molecular Characterization of Down Syndrome Embryonic Stem Cells Reveals a Role for RUNX1 in Neural Differentiation

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2016-10-01

    Full Text Available Down syndrome (DS is the leading genetic cause of mental retardation and is caused by a third copy of human chromosome 21. The different pathologies of DS involve many tissues with a distinct array of neural phenotypes. Here we characterize embryonic stem cell lines with DS (DS-ESCs, and focus on the neural aspects of the disease. Our results show that neural progenitor cells (NPCs differentiated from five independent DS-ESC lines display increased apoptosis and downregulation of forehead developmental genes. Analysis of differentially expressed genes suggested RUNX1 as a key transcription regulator in DS-NPCs. Using genome editing we were able to disrupt all three copies of RUNX1 in DS-ESCs, leading to downregulation of several RUNX1 target developmental genes accompanied by reduced apoptosis and neuron migration. Our work sheds light on the role of RUNX1 and the importance of dosage balance in the development of neural phenotypes in DS.

  9. Time-resolved transcriptome and proteome landscape of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3

    KAUST Repository

    Schmidt, Angelika

    2018-04-27

    BackgroundRegulatory T cells (Tregs) expressing the transcription factor FOXP3 are crucial mediators of self-tolerance, preventing autoimmune diseases but possibly hampering tumor rejection. Clinical manipulation of Tregs is of great interest, and first-in-man trials of Treg transfer have achieved promising outcomes. Yet, the mechanisms governing induced Treg (iTreg) differentiation and the regulation of FOXP3 are incompletely understood.ResultsTo gain a comprehensive and unbiased molecular understanding of FOXP3 induction, we performed time-series RNA sequencing (RNA-Seq) and proteomics profiling on the same samples during human iTreg differentiation. To enable the broad analysis of universal FOXP3-inducing pathways, we used five differentiation protocols in parallel. Integrative analysis of the transcriptome and proteome confirmed involvement of specific molecular processes, as well as overlap of a novel iTreg subnetwork with known Treg regulators and autoimmunity-associated genes. Importantly, we propose 37 novel molecules putatively involved in iTreg differentiation. Their relevance was validated by a targeted shRNA screen confirming a functional role in FOXP3 induction, discriminant analyses classifying iTregs accordingly, and comparable expression in an independent novel iTreg RNA-Seq dataset.ConclusionThe data generated by this novel approach facilitates understanding of the molecular mechanisms underlying iTreg generation as well as of the concomitant changes in the transcriptome and proteome. Our results provide a reference map exploitable for future discovery of markers and drug candidates governing control of Tregs, which has important implications for the treatment of cancer, autoimmune, and inflammatory diseases.

  10. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease

    Science.gov (United States)

    Bouquet, Jerome; Soloski, Mark J.; Swei, Andrea; Cheadle, Chris; Federman, Scot; Billaud, Jean-Noel; Rebman, Alison W.; Kabre, Beniwende; Halpert, Richard; Boorgula, Meher

    2016-01-01

    ABSTRACT Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the “window period” of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. PMID:26873097

  11. Gender-Differentiated Parenting Revisited: Meta-Analysis Reveals Very Few Differences in Parental Control of Boys and Girls

    Science.gov (United States)

    Endendijk, Joyce J.; Groeneveld, Marleen G.; Bakermans-Kranenburg, Marian J.; Mesman, Judi

    2016-01-01

    Although various theories describe mechanisms leading to differential parenting of boys and girls, there is no consensus about the extent to which parents do treat their sons and daughters differently. The last meta-analyses on the subject were conducted more than fifteen years ago, and changes in gender-specific child rearing in the past decade are quite plausible. In the current set of meta-analyses, based on 126 observational studies (15,034 families), we examined mothers’ and fathers’ differential use of autonomy-supportive and controlling strategies with boys and girls, and the role of moderators related to the decade in which the study was conducted, the observational context, and sample characteristics. Databases of Web of Science, ERIC, PsychInfo, Online Contents, Picarta, and Proquest were searched for studies examining differences in observed parental control of boys and girls between the ages of 0 and 18 years. Few differences were found in parents’ use of control with boys and girls. Parents were slightly more controlling with boys than with girls, but the effect size was negligible (d = 0.08). The effect was larger, but still small, in normative groups and in samples with younger children. No overall effect for gender-differentiated autonomy-supportive strategies was found (d = 0.03). A significant effect of time emerged: studies published in the 1970s and 1980s reported more autonomy-supportive strategies with boys than toward girls, but from 1990 onwards parents showed somewhat more autonomy-supportive strategies with girls than toward boys. Taking into account parents’ gender stereotypes might uncover subgroups of families where gender-differentiated control is salient, but based on our systematic review of the currently available large data base we conclude that in general the differences between parenting of boys versus girls are minimal. PMID:27416099

  12. Gender-Differentiated Parenting Revisited: Meta-Analysis Reveals Very Few Differences in Parental Control of Boys and Girls.

    Directory of Open Access Journals (Sweden)

    Joyce J Endendijk

    Full Text Available Although various theories describe mechanisms leading to differential parenting of boys and girls, there is no consensus about the extent to which parents do treat their sons and daughters differently. The last meta-analyses on the subject were conducted more than fifteen years ago, and changes in gender-specific child rearing in the past decade are quite plausible. In the current set of meta-analyses, based on 126 observational studies (15,034 families, we examined mothers' and fathers' differential use of autonomy-supportive and controlling strategies with boys and girls, and the role of moderators related to the decade in which the study was conducted, the observational context, and sample characteristics. Databases of Web of Science, ERIC, PsychInfo, Online Contents, Picarta, and Proquest were searched for studies examining differences in observed parental control of boys and girls between the ages of 0 and 18 years. Few differences were found in parents' use of control with boys and girls. Parents were slightly more controlling with boys than with girls, but the effect size was negligible (d = 0.08. The effect was larger, but still small, in normative groups and in samples with younger children. No overall effect for gender-differentiated autonomy-supportive strategies was found (d = 0.03. A significant effect of time emerged: studies published in the 1970s and 1980s reported more autonomy-supportive strategies with boys than toward girls, but from 1990 onwards parents showed somewhat more autonomy-supportive strategies with girls than toward boys. Taking into account parents' gender stereotypes might uncover subgroups of families where gender-differentiated control is salient, but based on our systematic review of the currently available large data base we conclude that in general the differences between parenting of boys versus girls are minimal.

  13. Gender-Differentiated Parenting Revisited: Meta-Analysis Reveals Very Few Differences in Parental Control of Boys and Girls.

    Science.gov (United States)

    Endendijk, Joyce J; Groeneveld, Marleen G; Bakermans-Kranenburg, Marian J; Mesman, Judi

    2016-01-01

    Although various theories describe mechanisms leading to differential parenting of boys and girls, there is no consensus about the extent to which parents do treat their sons and daughters differently. The last meta-analyses on the subject were conducted more than fifteen years ago, and changes in gender-specific child rearing in the past decade are quite plausible. In the current set of meta-analyses, based on 126 observational studies (15,034 families), we examined mothers' and fathers' differential use of autonomy-supportive and controlling strategies with boys and girls, and the role of moderators related to the decade in which the study was conducted, the observational context, and sample characteristics. Databases of Web of Science, ERIC, PsychInfo, Online Contents, Picarta, and Proquest were searched for studies examining differences in observed parental control of boys and girls between the ages of 0 and 18 years. Few differences were found in parents' use of control with boys and girls. Parents were slightly more controlling with boys than with girls, but the effect size was negligible (d = 0.08). The effect was larger, but still small, in normative groups and in samples with younger children. No overall effect for gender-differentiated autonomy-supportive strategies was found (d = 0.03). A significant effect of time emerged: studies published in the 1970s and 1980s reported more autonomy-supportive strategies with boys than toward girls, but from 1990 onwards parents showed somewhat more autonomy-supportive strategies with girls than toward boys. Taking into account parents' gender stereotypes might uncover subgroups of families where gender-differentiated control is salient, but based on our systematic review of the currently available large data base we conclude that in general the differences between parenting of boys versus girls are minimal.

  14. Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.

    Directory of Open Access Journals (Sweden)

    Clive H Glover

    2006-11-01

    Full Text Available Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined, undifferentiated ESC in culture. In each dataset, we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets, despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest, we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728_at, 8430410A17Rik, Klf2, Nr0b1, Sox2, Tcl1, and Zfp42 showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis, this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.

  15. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  16. Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow

    Directory of Open Access Journals (Sweden)

    Su Chen

    2014-09-01

    Full Text Available In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481 was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.

  17. Correlation of epiphyllous bud differentiation with foliar senescence in crassulacean succulent Kalanchoe pinnata as revealed by thidiazuron and ethrel application.

    Science.gov (United States)

    Jaiswal, Sarita; Sawhney, Sudhir

    2006-05-01

    Leaves of Kalanchoe pinnata have crenate margins with each notch bearing a dormant bud competent to develop into a healthy plantlet. Leaf detachment is a common signal for inducing two contrastingly different leaf-based processes, i.e. epiphyllous bud development into plantlet and foliar senescence. To investigate differentiation of bud and its correlation, if any, with foliar senescence, thidiazuron (TDZ), having cytokinin activity and ethrel (ETH), an ethylene releasing compound, were employed. The experimental system was comprised of marginal leaf discs, each harbouring an epiphyllous bud. Most of the growth characteristics of plantlet developing from the epiphyllous bud were significantly inhibited by TDZ but promoted by ETH. The two regulators modulated senescence in a manner different for leaf discs and plantlet leaves. Thus, TDZ caused a complete retention whereas ETH a complete loss of chlorophyll in the leaf discs. In contrast, the former resulted in a complete depletion of chlorophyll from the plantlet leaves producing an albino effect, while the latter reduced it by 50% only. In combined dispensation of the two regulators, the effect of TDZ was expressed in majority of responses studied. The results presented in this investigation clearly show that the foliar processes of epiphyllous bud differentiation and senescence are interlinked as TDZ that delayed senescence inhibited epiphyllous bud differentiation and ETH that hastened senescence promoted it. A working hypothesis to interpret responsiveness of the disc-bud composite on lines of a source-sink duo, has been proposed.

  18. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  19. Differential gene expression profile reveals deregulation of pregnancy specific β1 glycoprotein 9 early during colorectal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Gallinger Steven

    2005-06-01

    Full Text Available Abstract Background APC (Adenomatous polyposis coli plays an important role in the pathogenesis of both familial and sporadic colorectal cancer. Patients carrying germline APC mutations develop multiple colonic adenomas at younger age and higher frequency than non-carrier cases which indicates that silencing of one APC allele may be sufficient to initiate the transformation process. Methods To elucidate the biological dysregulation underlying adenoma formation we examined global gene expression profiles of adenomas and corresponding normal mucosa from an FAP patient. Differential expression of the most significant gene identified in this study was further validated by mRNA in situ hybridization, reverse transcriptase PCR and Northern blotting in different sets of adenomas, tumours and cancer cell lines. Results Eighty four genes were differentially expressed between all adenomas and corresponding normal mucosa, while only seven genes showed differential expression within the adenomas. The first group included pregnancy specific β-1 glycoprotein 9 (PSG9 (p PSG9 is a member of the carcinoembryonic antigen (CEA/PSG family and is produced at high levels during pregnancy, mainly by syncytiotrophoblasts. Further analysis of sporadic and familial colorectal cancer confirmed that PSG9 is ectopically upregulated in vivo by cancer cells. In total, deregulation of PSG9 mRNA was detected in 78% (14/18 of FAP adenomas and 75% (45/60 of sporadic colorectal cancer cases tested. Conclusion Detection of PSG9 expression in adenomas, and at higher levels in FAP cases, indicates that germline APC mutations and defects in Wnt signalling modulate PSG9 expression. Since PSG9 is not found in the non-pregnant adult except in association with cancer, and it appears to be an early molecular event associated with colorectal cancer monitoring of its expression may be useful as a biomarker for the early detection of this disease.

  20. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease.

    Science.gov (United States)

    Bouquet, Jerome; Soloski, Mark J; Swei, Andrea; Cheadle, Chris; Federman, Scot; Billaud, Jean-Noel; Rebman, Alison W; Kabre, Beniwende; Halpert, Richard; Boorgula, Meher; Aucott, John N; Chiu, Charles Y

    2016-02-12

    Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the "window period" of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. Lyme disease is the most common tick-borne infection in the United States, and some patients report lingering symptoms lasting months to years despite antibiotic treatment. To better understand the role of the human host response in acute Lyme disease and the

  1. Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation.

    Science.gov (United States)

    Petersen, Maja Borup Kjær; Azad, Ajuna; Ingvorsen, Camilla; Hess, Katja; Hansson, Mattias; Grapin-Botton, Anne; Honoré, Christian

    2017-10-10

    The production of insulin-producing β cells from human embryonic stem cells (hESCs) in vitro represents a promising strategy for a cell-based therapy for type 1 diabetes mellitus. To explore the cellular heterogeneity and temporal progression of endocrine progenitors and their progeny, we performed single-cell qPCR on more than 500 cells across several stages of in vitro differentiation of hESCs and compared them with human islets. We reveal distinct subpopulations along the endocrine differentiation path and an early lineage bifurcation toward either polyhormonal cells or β-like cells. We uncover several similarities and differences with mouse development and reveal that cells can take multiple paths to the same differentiation state, a principle that could be relevant to other systems. Notably, activation of the key β-cell transcription factor NKX6.1 can be initiated before or after endocrine commitment. The single-cell temporal resolution we provide can be used to improve the production of functional β cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons.

    Science.gov (United States)

    Suzuki, Sadafumi; Akamatsu, Wado; Kisa, Fumihiko; Sone, Takefumi; Ishikawa, Kei-Ichi; Kuzumaki, Naoko; Katayama, Hiroyuki; Miyawaki, Atsushi; Hattori, Nobutaka; Okano, Hideyuki

    2017-01-29

    Patient-specific induced pluripotent stem cells (iPSCs) show promise for use as tools for in vitro modeling of Parkinson's disease. We sought to improve the efficiency of dopaminergic (DA) neuron induction from iPSCs by the using surface markers expressed in DA progenitors to increase the significance of the phenotypic analysis. By sorting for a CD184 high /CD44 - fraction during neural differentiation, we obtained a population of cells that were enriched in DA neuron precursor cells and achieved higher differentiation efficiencies than those obtained through the same protocol without sorting. This high efficiency method of DA neuronal induction enabled reliable detection of reactive oxygen species (ROS) accumulation and vulnerable phenotypes in PARK2 iPSCs-derived DA neurons. We additionally established a quantitative system using the mt-mKeima reporter system to monitor mitophagy in which mitochondria fuse with lysosomes and, by combining this system with the method of DA neuronal induction described above, determined that mitophagy is impaired in PARK2 neurons. These findings suggest that the efficiency of DA neuron induction is important for the precise detection of cellular phenotypes in modeling Parkinson's disease. Copyright © 2016. Published by Elsevier Inc.

  3. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.

    Science.gov (United States)

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.

  4. Comparative glandular trichome transcriptome-based gene characterization reveals reasons for differential (-)-menthol biosynthesis in Mentha species.

    Science.gov (United States)

    Akhtar, Md Qussen; Qamar, Nida; Yadav, Pallavi; Kulkarni, Pallavi; Kumar, Ajay; Shasany, Ajit Kumar

    2017-06-01

    The genes involved in menthol biosynthesis are reported earlier in Mentha × piperita. But the information on these genes is not available in Mentha arvensis. To bridge the gap in knowledge on differential biosynthesis of monoterpenes leading to compositional variation in the essential oil of these species, a comparative transcriptome analysis of the glandular trichome (GT) was carried out. In addition to the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathway genes, about 210 and 196 different terpene synthases (TPSs) transcripts were identified from annotation in M. arvensis and M. × piperita, respectively, and correlated to several monoterpenes present in the essential oil. Six isoforms of (-)-menthol dehydrogenases (MD), the last enzyme of the menthol biosynthetic pathway, were identified, cloned and characterized from the transcriptome data (three from each species). Varied expression levels and differential enzyme kinetics of these isoforms indicated the nature and composition of the product, as these isoforms generate both (-)-menthol and (+)-neomenthol from (-)-menthone and converts (-)-menthol to (-)-menthone in the reverse reaction, and hence together determine the quantity of (-)-menthol in the essential oil in these two species. Several genes for high value minor monoterpenes could also be identified from the transcriptome data. © 2017 Scandinavian Plant Physiology Society.

  5. Human 45,X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome.

    Directory of Open Access Journals (Sweden)

    Shriram N Rajpathak

    Full Text Available Turner syndrome is a chromosomal abnormality characterized by the absence of whole or part of the X chromosome in females. This X aneuploidy condition is associated with a diverse set of clinical phenotypes such as gonadal dysfunction, short stature, osteoporosis and Type II diabetes mellitus, among others. These phenotypes differ in their severity and penetrance among the affected individuals. Haploinsufficiency for a few X linked genes has been associated with some of these disease phenotypes. RNA sequencing can provide valuable insights to understand molecular mechanism of disease process. In the current study, we have analysed the transcriptome profiles of human untransformed 45,X and 46,XX fibroblast cells and identified differential expression of genes in these two karyotypes. Functional analysis revealed that these differentially expressing genes are associated with bone differentiation, glucose metabolism and gonadal development pathways. We also report differential expression of lincRNAs in X monosomic cells. Our observations provide a basis for evaluation of cellular and molecular mechanism(s in the establishment of Turner syndrome phenotypes.

  6. Staphylococcus aureus sternal osteomyelitis: a rare cause of chest pain

    Directory of Open Access Journals (Sweden)

    Kaur M

    2015-10-01

    Full Text Available Chest pain is a common presenting symptom with a broad differential. Life-threatening cardiac and pulmonary etiologies of chest pain should be evaluated first. However, it is critical to perform a thorough assessment for other sources of chest pain in order to limit morbidity and mortality from less common causes. We present a rare case of a previously healthy 45 year old man who presented with focal, substernal, reproducible chest pain and Staphylococcus aureus bacteremia who was later found to have primary Staphylococcus aureus sternal osteomyelitis.

  7. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  8. Conformational changes in DNA caused by DNA-ase I, gamma and ultraviolet radiation as revealed by differential pulse polarography

    International Nuclear Information System (INIS)

    Vorlickova, M.

    1979-01-01

    The height, potential and half width of differential pulse-polarographic peaks of DNA were investigated in dependence on degradation by DNA-ase I and gamma and UV radiation. It was found that in all cases studied growth of peak II (reflecting conformational changes in the DNA double helix) was limited, and only after it reached a certain height further degradation induced the appearance of peak III of single-stranded DNA. This course is explained as reflecting the limited extent of conformational changes in the framework of the double helix, which probably follows from a limited number of sites that can undergo certain types of conformational changes. The character of the conformational changes is dependent on the chemical nature of the damage. (author)

  9. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice.

    Science.gov (United States)

    Chen, Mei-Feng; Shih, Shin-Ru

    2016-12-01

    Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.

  10. Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits.

    Science.gov (United States)

    Llano, Sandra M; Muñoz-Jiménez, Ana M; Jiménez-Cartagena, Claudio; Londoño-Londoño, Julián; Medina, Sonia

    2018-04-01

    The agronomic production systems may affect the levels of food metabolites. Metabolomics approaches have been applied as useful tool for the characterization of fruit metabolome. In this study, metabolomics techniques were used to assess the differences in phytochemical composition between goldenberry samples produced by organic and conventional systems. To verify that the organic samples were free of pesticides, individual pesticides were analyzed. Principal component analysis showed a clear separation of goldenberry samples from two different farming systems. Via targeted metabolomics assays, whereby carotenoids and ascorbic acid were analyzed, not statistical differences between both crops were found. Conversely, untargeted metabolomics allowed us to identify two withanolides and one fatty acyl glycoside as tentative metabolites to differentiate goldenberry fruits, recording organic fruits higher amounts of these compounds than conventional samples. Hence, untargeted metabolomics technology could be suitable to research differences on phytochemicals under different agricultural management practices and to authenticate organic products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  12. Whole-genome sequencing of two North American Drosophila melanogaster populations reveals genetic differentiation and positive selection.

    Science.gov (United States)

    Campo, D; Lehmann, K; Fjeldsted, C; Souaiaia, T; Kao, J; Nuzhdin, S V

    2013-10-01

    The prevailing demographic model for Drosophila melanogaster suggests that the colonization of North America occurred very recently from a subset of European flies that rapidly expanded across the continent. This model implies a sudden population growth and range expansion consistent with very low or no population subdivision. As flies adapt to new environments, local adaptation events may be expected. To describe demographic and selective events during North American colonization, we have generated a data set of 35 individual whole-genome sequences from inbred lines of D. melanogaster from a west coast US population (Winters, California, USA) and compared them with a public genome data set from Raleigh (Raleigh, North Carolina, USA). We analysed nuclear and mitochondrial genomes and described levels of variation and divergence within and between these two North American D. melanogaster populations. Both populations exhibit negative values of Tajima's D across the genome, a common signature of demographic expansion. We also detected a low but significant level of genome-wide differentiation between the two populations, as well as multiple allele surfing events, which can be the result of gene drift in local subpopulations on the edge of an expansion wave. In contrast to this genome-wide pattern, we uncovered a 50-kilobase segment in chromosome arm 3L that showed all the hallmarks of a soft selective sweep in both populations. A comparison of allele frequencies within this divergent region among six populations from three continents allowed us to cluster these populations in two differentiated groups, providing evidence for the action of natural selection on a global scale. © 2013 John Wiley & Sons Ltd.

  13. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus.

    Science.gov (United States)

    Chen, Juan; Zeng, Xu; Yang, Yan Long; Xing, Yong Mei; Zhang, Qi; Li, Jia Mei; Ma, Ke; Liu, Hong Wei; Guo, Shun Xing

    2017-08-31

    The lion's mane mushroom Hericium erinaceus is a famous traditional medicinal fungus credited with anti-dementia activity and a producer of cyathane diterpenoid natural products (erinacines) useful against nervous system diseases. To date, few studies have explored the biosynthesis of these compounds, although their chemical synthesis is known. Here, we report the first genome and tanscriptome sequence of the medicinal fungus H. erinaceus. The size of the genome is 39.35 Mb, containing 9895 gene models. The genome of H. erinaceus reveals diverse enzymes and a large family of cytochrome P450 (CYP) proteins involved in the biosynthesis of terpenoid backbones, diterpenoids, sesquiterpenes and polyketides. Three gene clusters related to terpene biosynthesis and one gene cluster for polyketides biosynthesis (PKS) were predicted. Genes involved in terpenoid biosynthesis were generally upregulated in mycelia, while the PKS gene was upregulated in the fruiting body. Comparative genome analysis of 42 fungal species of Basidiomycota revealed that most edible and medicinal mushroom show many more gene clusters involved in terpenoid and polyketide biosynthesis compared to the pathogenic fungi. None of the gene clusters for terpenoid or polyketide biosynthesis were predicted in the poisonous mushroom Amanita muscaria. Our findings may facilitate future discovery and biosynthesis of bioactive secondary metabolites from H. erinaceus and provide fundamental information for exploring the secondary metabolites in other Basidiomycetes.

  14. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    Science.gov (United States)

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio.

    Science.gov (United States)

    Lin, Y-T; Wu, H-T; Tsao, J; Yien, H-W; Hseu, S-S

    2014-02-01

    Heart rate variability (HRV) may reflect various physiological dynamics. In particular, variation of R-R peak interval (RRI) of electrocardiography appears regularly oscillatory in deeper levels of anaesthesia and less regular in lighter levels of anaesthesia. We proposed a new index, non-rhythmic-to-rhythmic ratio (NRR), to quantify this feature and investigated its potential to estimate depth of anaesthesia. Thirty-one female patients were enrolled in this prospective study. The oscillatory pattern transition of RRI was visualised by the time-varying power spectrum and quantified by NRR. The prediction of anaesthetic events, including skin incision, first reaction of motor movement during emergence period, loss of consciousness (LOC) and return of consciousness (ROC) by NRR were evaluated by serial prediction probability (PK ) analysis; the ability to predict the decrease of effect-site sevoflurane concentration was also evaluated. The results were compared with Bispectral Index (BIS). NRR well-predicted first reaction (PK  > 0.90) 30 s ahead, earlier than BIS and significantly better than HRV indices. NRR well-correlated with sevoflurane concentration, although its correlation was inferior to BIS, while HRV indices had no such correlation. BIS indicated LOC and ROC best. Our findings suggest that NRR provides complementary information to BIS regarding the differential effects of anaesthetics on the brain, especially the subcortical motor activity. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis.

    Science.gov (United States)

    Jorgensen, Stacy A; Preston, Jill C

    2014-04-01

    Evolutionary transitions in growth habit and flowering time responses to variable environmental signals have occurred multiple times independently across angiosperms and have major impacts on plant fitness. Proteins in the SPL family of transcription factors collectively regulate flowering time genes that have been implicated in interspecific shifts in annuality/perenniality. However, their potential importance in the evolution of angiosperm growth habit has not been extensively investigated. Here we identify orthologs representative of the major SPL gene clades in annual Arabidopsis thaliana and Mimulus guttatus IM767, and perennial A. lyrata and M. guttatus PR, and characterize their expression. Spatio-temporal expression patterns are complex across both diverse tissues of the same taxa and comparable tissues of different taxa, consistent with genic sub- or neo-functionalization. However, our data are consistent with a general role for several SPL genes in the promotion of juvenile to adult phase change and/or flowering time in Mimulus and Arabidopsis. Furthermore, several candidate genes were identified for future study whose differential expression correlates with growth habit and architectural variation in annual versus perennial taxa. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Directory of Open Access Journals (Sweden)

    Adeline M Hajjar

    Full Text Available Although lipopolysaccharide (LPS stimulation through the Toll-like receptor (TLR-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  18. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Science.gov (United States)

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  19. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    Science.gov (United States)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  20. Genetic differentiation of Octopus minor (Mollusca, Cephalopoda) off the northern coast of China as revealed by amplified fragment length polymorphisms.

    Science.gov (United States)

    Yang, J M; Sun, G H; Zheng, X D; Ren, L H; Wang, W J; Li, G R; Sun, B C

    2015-12-02

    Octopus minor (Sasaki, 1920) is an economically important cephalopod that is found in the northern coastal waters of China. In this study, we investigated genetic differentiation in fishery populations using amplified fragment length polymorphisms (AFLPs). A total of 150 individuals were collected from five locations: Dalian (DL), Yan-tai (YT), Qingdao (QD), Lianyungang (LY), and Zhoushan (ZS), and 243 reproducible bands were amplified using five AFLP primer combinations. The percentage of polymorphic bands ranged from 53.33 to 76.08%. Nei's genetic identity ranged from 0.9139 to 0.9713, and the genetic distance ranged from 0.0291 to 0.0900. A phylogenetic tree was constructed using the unweighted pair group method with arithmetic mean, based on the genetic distance. The DL and YT populations originated from one clade, while the QD, LY, and ZS populations originated from another. The results indicate that the O. minor stock consisted of two genetic populations with an overall significantly analogous FST value (0.1088, P octopus fisheries, so that this marine resource can be conserved for its long-term utilization.

  1. Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness.

    Science.gov (United States)

    El-Bebany, Ahmed F; Rampitsch, Christof; Daayf, Fouad

    2010-01-01

    Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396-9) and weakly (Vs06-14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty-five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC-ESI-MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant-defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics-based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.

  2. Staphylococcus aureus: methicillin-susceptible S. aureus to methicillin-resistant S. aureus and vancomycin-resistant S. aureus.

    Science.gov (United States)

    Rehm, Susan J; Tice, Alan

    2010-09-15

    The evolution of methicillin-resistant and vancomycin-resistant Staphylococcus aureus has demanded serious review of antimicrobial use and development of new agents and revised approaches to prevent and overcome drug resistance. Depending on local conditions and patient risk factors, empirical therapy of suspected S. aureus infection may require coverage of drug-resistant organisms with newer agents and novel antibiotic combinations. The question of treatment with inappropriate antibiotics raises grave concerns with regard to methicillin-resistant S. aureus selection, overgrowth, and increased virulence. Several strategies to reduce the nosocomial burden of resistance are suggested, including shortened hospital stays and outpatient parenteral antimicrobial therapy of the most serious infections.

  3. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-06-01

    Full Text Available Zhen Li,1 Qianlan Yao,1 Songjian Zhao,1 Yin Wang,2,3 Yixue Li,1,4 Zhen Wang4 1School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 2Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 3Collaborative Innovation Center for Genetics and Development, Fudan University, 4Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Esophageal squamous cell carcinoma (ESCC is one of the most common malignancies worldwide and occurs at a relatively high frequency in People’s Republic of China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the mRNA and long non-coding RNA (lncRNA expression profiles of ESCC were downloaded from the Gene Expression Omnibus database, and then differential co-expression analysis was used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The differential regulatory networking approach deciphered that transcriptional dysregulation was ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2 might be essential in the development of ectoderm and epithelial cells, which could significantly stratify ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical tumor markers. Further inspection of two risk groups showed that the changes in TF-target regulation in the high-risk patients were significantly higher than those in the low-risk patients. In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5

  4. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    Full Text Available Fragaria vesca (2n = 2x = 14, the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb. It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW and red (Ruegen, RG fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2% had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs, including MYB (putative MYB86 and MYB39, WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  5. High-resolution stable isotope monitoring reveals differential vegetation-soil water feedbacks among plant functional types

    Science.gov (United States)

    Volkmann, T. H. M.; Haberer, K.; Troch, P. A. A.; Gessler, A.; Weiler, M.

    2016-12-01

    Understanding the linked dynamics of rain water recharge to soils and its utilization by plants is critical for predicting the impact of climate and land use changes on the productivity of ecosystems and the hydrologic cycle. While plants require vast quantities of water from the soil to sustain growth and function, they exert important direct and indirect controls on the movement of water through the rooted soil horizons, thereby potentially affecting their own resource availability. However, the specific ecohydrological belowground processes associated with different plant types and their rooting systems have been difficult to quantify with traditional methods. Here, we report on the use of techniques for monitoring stable isotopes in soil and plant water pools that allow us to track water infiltration and root uptake dynamics non-destructively and in high resolution. The techniques were applied in controlled rain pulse experiments with distinct plant types (grass, deciduous trees, grapevine) that we let develop on an initially uniform soil for two years. Our results show that plant species and types differed widely in their plasticity and pattern of root uptake under variable water availability. Thereby, and through notably co-acting indirect effects related to differential root system traits and co-evolution of soil properties, the different plants induced contrasting hydrological dynamics in the soil they had inhabited for only a short period of time. Taken together, our data suggest that the studied soil-vegetation systems evolved a positive infiltration-uptake feedback in which hydrological flow pathways underlying different species diverged in a way that complemented their specific water utilization strategy. Such a feedback could present an indirect competitive mechanism by which plants improve their own water supply and modulate hydrological cycling at the land surface. The ability to directly measure this feedback using in situ isotope methodology

  6. Revealing Layers of Pristine Oriented Crystals Embedded Within Deep Ice Clouds Using Differential Reflectivity and the Copolar Correlation Coefficient

    Science.gov (United States)

    Keat, W. J.; Westbrook, C. D.

    2017-11-01

    Pristine ice crystals typically have high aspect ratios (≫ 1), have a high density and tend to fall preferentially with their major axis aligned horizontally. Consequently, they can, in certain circumstances, be readily identified by measurements of differential reflectivity (ZDR), which is related to their average aspect ratio. However, because ZDR is reflectivity weighted, its interpretation becomes ambiguous in the presence of even a few, larger aggregates or irregular polycrystals. An example of this is in mixed-phase regions that are embedded within deeper ice cloud. Currently, our understanding of the microphysical processes within these regions is hindered by a lack of good observations. In this paper, a novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the copolar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and "intrinsic" ZDR (ZDRIP) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZDRIP values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in situ particle images from the Facility for Airborne Atmospheric Measurements BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.

  7. Tandem differential mobility analysis-mass spectrometry reveals partial gas-phase collapse of the GroEL complex.

    Science.gov (United States)

    Hogan, Christopher J; Ruotolo, Brandon T; Robinson, Carol V; Fernandez de la Mora, Juan

    2011-04-07

    A parallel-plate differential mobility analyzer and a time-of-flight mass spectrometer (DMA-MS) are used in series to measure true mobility in dry atmospheric pressure air for mass-resolved electrosprayed GroEL tetradecamers (14-mers; ~800 kDa). Narrow mobility peaks are found (2.6-2.9% fwhm); hence, precise mobilities can be obtained for these ions without collisional activation, just following their generation by electrospray ionization. In contrast to previous studies, two conformers are found with mobilities (Z) differing by ~5% at charge state z ~ 79. By extrapolating to small z, a common mobility/charge ratio Z(0)/z = 0.0117 cm(2) V(-1) s(-1) is found for both conformers. When interpreted as if the GroEL ion surface were smooth and the gas molecule-protein collisions were perfectly elastic and specular, this mobility yields an experimental collision cross section, Ω, 11% smaller than in an earlier measurement, and close to the cross section, A(C,crystal), expected for the crystal structure (determined by a geometric approximation). However, the similarity between Ω and A(C,crystal) does not imply a coincidence between the native and gas-phase structures. The nonideal nature of protein-gas molecule collisions introduces a drag enhancement factor, ξ = 1.36, with which the true cross section A(C) is related to Ω via A(C) = Ω/ξ. Therefore, A(C) for GroEL 14-mer ions determined by DMA measurements is 0.69A(C,crystal). The factor 1.36 used here is based on the experimental Stokes-Millikan equation, as well as on prior and new numerical modeling accounting for multiple scattering events via exact hard-sphere scattering calculations. Therefore, we conclude that the gas-phase structure of the GroEL complex as electrosprayed is substantially more compact than the corresponding X-ray crystal structure.

  8. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Directory of Open Access Journals (Sweden)

    Anara A Kamaeva

    Full Text Available Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL, were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  9. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    Science.gov (United States)

    Kamaeva, Anara A; Vasilchenko, Alexey S; Deryabin, Dmitry G

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  10. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    Directory of Open Access Journals (Sweden)

    Van Lun Low

    Full Text Available The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI and II (COII along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.

  11. Suppression substractive hybridisation and NGS reveal differential transcriptome expression profiles in Wayfaring Tree (Viburnum lantana L. treated with ozone

    Directory of Open Access Journals (Sweden)

    Elena eGottardini

    2016-06-01

    Full Text Available Tropospheric ozone (O3 is a global air pollutant that causes high economical damages by decresing plant productivity. It entering leaves through the stomata, generating reactive oxygen species, which following decreases photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O3 tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O3 treatment (60 ppb, 5 h d-1 for 45 consecutive days. Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O3 exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 4.2% of the total surface. Using 454-pyrosequencing, the transcriptome analysis of O3-responsive genes in leaves was performed, compiling a total of 38,800 and 12,495 high quality reads obtained in control and O3-treated libraries, respectively (average length of 319±156.7 and 255±107.4 bp. The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%. mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Photosynthetic performance of unigenes functionally associated to photosynthesis and carbon utilization was repressed, demonstrating the deleterious effect of O3 exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O3. Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including

  12. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.

    Science.gov (United States)

    Saddoris, Michael P; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M

    2015-08-19

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real

  13. Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene.

    Science.gov (United States)

    Crees, Jennifer J; Carbone, Chris; Sommer, Robert S; Benecke, Norbert; Turvey, Samuel T

    2016-03-30

    The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18,700 mammalian zooarchaeological records for the last 11,700 years across Europe to reconstruct spatio-temporal dynamics of Holocene range change for 15 large-bodied mammal species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and magnitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experienced limited or no significant range change. These findings demonstrate the relatively early onset of prehistoric human impacts on postglacial biodiversity, and mirror species-specific patterns of mammalian extinction during the Late Pleistocene. Herbivores experienced significantly greater declines than carnivores, revealing an important historical extinction filter that informs our understanding of relative resilience and vulnerability to human pressures for different taxa. We highlight the importance of large-scale, long-term datasets for understanding complex protracted extinction processes, although the dynamic pattern of progressive faunal depletion of European mammal assemblages across the Holocene challenges easy identification of 'static' past baselines to inform current-day environmental management and restoration. © 2016 The Author(s).

  14. A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability.

    Directory of Open Access Journals (Sweden)

    Ning Pan

    Full Text Available Atonal homolog1 (Atoh1 is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO mouse line using Tg(Atoh1-cre, in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to "self-terminate" its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.

  15. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    Directory of Open Access Journals (Sweden)

    Sabah Kadri

    Full Text Available microRNAs (miRNAs are small (20-23 nt, non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin and Patiria miniata (sea star are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc. to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads. Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common. We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html.

  16. RNA Deep Sequencing Reveals Differential MicroRNA Expression during Development of Sea Urchin and Sea Star

    Science.gov (United States)

    Kadri, Sabah; Hinman, Veronica F.; Benos, Panayiotis V.

    2011-01-01

    microRNAs (miRNAs) are small (20–23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. PMID:22216218

  17. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    Directory of Open Access Journals (Sweden)

    Singsuksawat Ekapot

    2010-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS. Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR. Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.

  18. Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic-pituitary-adrenal axis.

    Science.gov (United States)

    Rabasa, Cristina; Muñoz-Abellán, Cristina; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2011-05-03

    Factors involved in adaptation to repeated stress are not well-characterized. For instance, acute footshock (FS) of high intensity appears to be less severe than immobilization (IMO) in light of the speed of post-stress recovery of the hypothalamic-pituitary-adrenal (HPA) axis and other physiological variables. However, repeated exposure to IMO consistently resulted in reduction of the HPA response to the same stressor (adaptation), whereas failure to adapt has been usually reported after FS. Thus, in the present work we directly compared the activation of HPA axis and other physiological changes in response to both acute and repeated exposure to IMO and two intensities of FS (medium and high) in adult male rats. Control rats were exposed to the FS boxes but they did not receive shocks. Daily repeated exposure to IMO resulted in significant adaptation of the overall ACTH and corticosterone responses to the stressor. Such a reduction was also observed with repeated exposure to FS boxes and FS-medium, whereas repeated exposure to FS-high only resulted in a small reduction of the corticosterone response during the post-stress period. This suggests that some properties of FS-high make adaptation to it difficult. Interestingly, overall changes in food intake and body weight gain throughout the week of exposure to the stressors reveal a greater impact of IMO than FS-high, indicating that factors other than the intensity of a stressor, at least when evaluated in function of the above physiological variables, can influence HPA adaptation. Since FS exposure is likely to cause more pain than IMO, activation of nociceptive signals above a certain level may negatively affect HPA adaptation to repeated stressors. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Cationic Antimicrobial Peptide LL-37 Is Effective against both Extra- and Intracellular Staphylococcus aureus

    Science.gov (United States)

    Noore, Jabeen; Noore, Adly

    2013-01-01

    The increasing resistance of bacteria to conventional antibiotics and the challenges posed by intracellular bacteria, which may be responsible for chronic and recurrent infections, have driven the need for advanced antimicrobial drugs for effective elimination of both extra- and intracellular pathogens. The purpose of this study was to determine the killing efficacy of cationic antimicrobial peptide LL-37 compared to conventional antibiotics against extra- and intracellular Staphylococcus aureus. Bacterial killing assays and an infection model of osteoblasts and S. aureus were studied to determine the bacterial killing efficacy of LL-37 and conventional antibiotics against extra- and intracellular S. aureus. We found that LL-37 was effective in killing extracellular S. aureus at nanomolar concentrations, while lactoferricin B was effective at micromolar concentrations and doxycycline and cefazolin at millimolar concentrations. LL-37 was surprisingly more effective in killing the clinical strain than in killing an ATCC strain of S. aureus. Moreover, LL-37 was superior to conventional antibiotics in eliminating intracellular S. aureus. The kinetic studies further revealed that LL-37 was fast in eliminating both extra- and intracellular S. aureus. Therefore, LL-37 was shown to be very potent and prompt in eliminating both extra- and intracellular S. aureus and was more effective in killing extra- and intracellular S. aureus than commonly used conventional antibiotics. LL-37 could potentially be used to treat chronic and recurrent infections due to its effectiveness in eliminating not only extracellular but also intracellular pathogens. PMID:23274662

  20. Pyrazole Based Inhibitors against Enzymes of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Jagadeesan, G.; Vijayakuma, Vinodhkumar; Palayam, Malathy

    2015-01-01

    agents. The current study focuses on molecular docking and dynamics studies of pyrazole derivatives against Nucleosidase and DNA gyrase B of Staphylococcus aureus. Molecular docking and dynamics studies reveal that some of these derivatives show better binding abilities than some of the current drugs...

  1. Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity.

    Directory of Open Access Journals (Sweden)

    Ulrika Lind

    Full Text Available Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854 (= Amphibalanus improvisus can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2, the aquaglyceroporins (Glp1, Glp2, the unorthodox aquaporin (Aqp12 and the arthropod-specific big brain aquaporin (Bib. Interestingly, we also found two big brain-like proteins (BibL1 and BibL2 constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold decrease in the mantle tissue in low salinity (3

  2. Dual RNA regulatory control of a Staphylococcus aureus virulence factor.

    Science.gov (United States)

    Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice

    2014-04-01

    In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.

  3. Methicillin-resistant Staphylococcus aureus among animals: current overview.

    Science.gov (United States)

    Aires-de-Sousa, M

    2017-06-01

    Currently, methicillin-resistant Staphylococcus aureus (MRSA) is a universal threat. After being well established in the healthcare setting, it has emerged in the community among people with no risk factors for MRSA acquisition, therefore imposing a new threat. The subsequent detection of MRSA colonizing or infecting animals as well as in food of animal origin was of major concern, revealing new reservoirs for MRSA. The major MRSA clonal lineages circulating in the different settings, i.e. in hospitals, in the community and among animals, are described here, differentiating between clones colonizing companion and food-chain animals. Particular attention is given to the widely spread livestock-associated MRSA clonal complex (CC) 398, which is mainly associated with professional exposure but may be of high pathogenicity. The recent detection of a mecA homologue, designated mecC, with a wide geographical distribution in Europe, and including a large diversity of hosts (food-chain, companion and wildlife animals and also detected in water samples) adds to the threat. Domestication as well as globalization of the livestock industry have intensified exchanges between human and animal bacteria. We report here several cases of transmission of MRSA between companion or food-chain animals and humans, as well as some MRSA clones of human origin that have adapted to new animal hosts eventually by losing useless virulence factors or acquiring new mobile genetic elements. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate.

    Science.gov (United States)

    Messmer, Amber M; Leong, Jong S; Rondeau, Eric B; Mueller, Anita; Despins, Cody A; Minkley, David R; Kent, Matthew P; Lien, Sigbjørn; Boyce, Brad; Morrison, Diane; Fast, Mark D; Norman, Joseph D; Danzmann, Roy G; Koop, Ben F

    2018-04-16

    . Additionally, 478 Pacific louse samples from farmed and wild hosts obtained between 2005 and 2014 were also genotyped on the array. Clustering analysis allowed us to detect the apparent emergence of an otherwise rare genotype at a high frequency among the lice collected from two farms in 2013 that had reported elevated EMB tolerance. This genotype was not observed in louse samples collected from the same farm in 2010, nor in any lice sampled from other locations prior to 2013. However, this genotype was detected at low frequencies in louse samples from farms in two locations reporting elevated EMB tolerance in 2014. These results suggest that a rare genotype present in Pacific lice may be locally expanded in farms after EMB treatment. Supporting this hypothesis, 437 SNPs associated with this genotype were found to be in a region of linkage group 5 that overlaps the region associated with EMB resistance in Atlantic lice. Finally, five of the top diagnostic SNPs within this region were used to screen lice that had been subjected to an EMB survival assay, revealing a significant association between these SNPs and EMB treatment outcome. To our knowledge this work is the first report to identify a genetic link to altered EMB efficacy in L. salmonis in the Pacific Ocean. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Directory of Open Access Journals (Sweden)

    Roy C. Y. Choi

    2011-01-01

    Full Text Available Danggui Buxue Tang (DBT, a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA and Radix Angelicae Sinensis (Danggui; RAS. When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.

  6. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    Science.gov (United States)

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  7. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.

    Science.gov (United States)

    Grandy, Rodrigo A; Whitfield, Troy W; Wu, Hai; Fitzgerald, Mark P; VanOudenhove, Jennifer J; Zaidi, Sayyed K; Montecino, Martin A; Lian, Jane B; van Wijnen, André J; Stein, Janet L; Stein, Gary S

    2016-02-15

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  9. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  10. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements

    Directory of Open Access Journals (Sweden)

    Ahn Jong Hwa

    2011-01-01

    Full Text Available Abstract Background Among the Solanaceae plants, the pepper genome is three times larger than that of tomato. Although the gene repertoire and gene order of both species are well conserved, the cause of the genome-size difference is not known. To determine the causes for the expansion of pepper euchromatic regions, we compared the pepper genome to that of tomato. Results For sequence-level analysis, we generated 35.6 Mb of pepper genomic sequences from euchromatin enriched 1,245 pepper BAC clones. The comparative analysis of orthologous gene-rich regions between both species revealed insertion of transposons exclusively in the pepper sequences, maintaining the gene order and content. The most common type of the transposon found was the LTR retrotransposon. Phylogenetic comparison of the LTR retrotransposons revealed that two groups of Ty3/Gypsy-like elements (Tat and Athila were overly accumulated in the pepper genome. The FISH analysis of the pepper Tat elements showed a random distribution in heterochromatic and euchromatic regions, whereas the tomato Tat elements showed heterochromatin-preferential accumulation. Conclusions Compared to tomato pepper euchromatin doubled its size by differential accumulation of a specific group of Ty3/Gypsy-like elements. Our results could provide an insight on the mechanism of genome evolution in the Solanaceae family.

  11. Antimicrobial resistant coagulase positive Staphylococcus aureus ...

    African Journals Online (AJOL)

    ADEYEYE

    S. aureus is associated with many clinical syndromes including tenosynovitis, omphalitis, femoral head necrosis, .... Markey, 2008) where occurrence of multidrug ... Staphylococcus aureus isolates from bovine mastitis in. Denmark. Veterinary.

  12. Human factor in Staphylococcus aureus nasal carriage

    NARCIS (Netherlands)

    J.L. Nouwen (Jan); H.A.M. Boelens (Hélène); A.F. van Belkum (Alex); H.A. Verbrugh (Henri)

    2004-01-01

    textabstractPersistent nasal carriers and noncarriers of Staphylococcus aureus were inoculated with a mixture of different S. aureus strains. The majority of noncarriers and nearly all persistent carriers returned to their original carrier state after artificial inoculation. Furthermore, the

  13. Antibiotic susceptibility of Staphylococcus aureus in suppurative ...

    African Journals Online (AJOL)

    1299, p<0.05) and Methicillin resistance was confirmed by PCR. Conclusion: Staphylococcus aureus is highly prevalent and more resistant in inpatients. There is a higher risk of acquiring drug resistant staphylococcus aureus infection in ...

  14. Methicillin-resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Methicillin-resistant Staphylococcus aureus; Hospital-acquired MRSA (HA-MRSA); Staph - MRSA; Staphylococcal - MRSA ... Centers for Disease Control and Prevention website. Methicillin-resistant Staphylococcus aureus (MRSA). www.cdc.gov/mrsa/index.html . Updated ...

  15. A Case of Childhood Lichen Aureus

    OpenAIRE

    Kim, Min Ji; Kim, Byung Yoon; Park, Kyung Chan; Youn, Sang Woong

    2009-01-01

    Lichen aureus is a rare type of chronic pigmented purpuric dermatosis. The eruptions consist of discrete or confluent golden to brownish lichenoid macules and papules, and are usually asymptomatic. Lichen aureus commonly occurs in young adults, but less frequently in children. We report the first case of multiple lichen aureus occurring in a Korean child.

  16. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L..

    Directory of Open Access Journals (Sweden)

    Hui Xue

    Full Text Available Pomegranate (Punica granatum L. belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7% were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  17. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay.ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells.We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP

  18. De novo transcriptome assembly and quantification reveal differentially expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.).

    Science.gov (United States)

    Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang

    2017-01-01

    Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.

  19. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon.

    Science.gov (United States)

    Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A

    2017-10-18

    Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b

  20. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    Science.gov (United States)

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  1. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    Science.gov (United States)

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of

  2. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb.

    Science.gov (United States)

    Domżalska, Lucyna; Kędracka-Krok, Sylwia; Jankowska, Urszula; Grzyb, Małgorzata; Sobczak, Mirosław; Rybczyński, Jan J; Mikuła, Anna

    2017-05-01

    Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Musical rhythm and pitch: A differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex.

    Science.gov (United States)

    Lelo-de-Larrea-Mancera, E Sebastian; Rodríguez-Agudelo, Yaneth; Solís-Vivanco, Rodolfo

    2017-06-01

    Music represents a complex form of human cognition. To what extent our auditory system is attuned to music is yet to be clearly understood. Our principal aim was to determine whether the neurophysiological operations underlying pre-attentive auditory change detection (N1 enhancement (N1e)/Mismatch Negativity (MMN)) and the subsequent involuntary attentional reallocation (P3a) towards infrequent sound omissions, are influenced by differences in musical content. Specifically, we intended to explore any interaction effects that rhythmic and pitch dimensions of musical organization may have over these processes. Results showed that both the N1e and MMN amplitudes were differentially influenced by rhythm and pitch dimensions. MMN latencies were shorter for musical structures containing both features. This suggests some neurocognitive independence between pitch and rhythm domains, but also calls for further address on possible interactions between both of them at the level of early, automatic auditory detection. Furthermore, results demonstrate that the N1e reflects basic sensory memory processes. Lastly, we show that the involuntary switch of attention associated with the P3a reflects a general-purpose mechanism not modulated by musical features. Altogether, the N1e/MMN/P3a complex elicited by infrequent sound omissions revealed evidence of musical influence over early stages of auditory perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Human Staphylococcus aureus lineages among Zoological Park residents in Greece

    Directory of Open Access Journals (Sweden)

    E. Drougka

    2015-10-01

    Full Text Available Staphylococcus aureus is a part of the microbiota flora in many animal species. The clonal spread of S. aureus among animals and personnel in a Zoological Park was investigated. Samples were collected from colonized and infected sites among 32 mammals, 11 birds and eight humans. The genes mecA, mecC, lukF/lukS-PV (encoding Panton-Valentine leukocidin, PVL and tst (toxic shock syndrome toxin-1 were investigated by PCR. Clones were defined by Multilocus Sequence Typing (MLST, spa type and Pulsed-Field Gel Electrophoresis (PFGE. Seven S. aureus isolates were recovered from four animals and one from an employee. All were mecA, mecC and tst–negative, whereas, one carried the PVL genes and was isolated from an infected Squirrel monkey. Clonal analysis revealed the occurrence of seven STs, eight PFGE and five spa types including ones of human origin. Even though a variety of genotypes were identified among S. aureus strains colonizing zoo park residents, our results indicate that colonization with human lineages has indeed occurred.

  5. Staphylococcus aureus redirects central metabolism to increase iron availability.

    Directory of Open Access Journals (Sweden)

    David B Friedman

    2006-08-01

    Full Text Available Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment or genetic (Deltafur alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB, a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.

  6. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  7. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites.

    Science.gov (United States)

    Lippuner, Christoph; Ramakrishnan, Chandra; Basso, Walter U; Schmid, Marc W; Okoniewski, Michal; Smith, Nicholas C; Hässig, Michael; Deplazes, Peter; Hehl, Adrian B

    2018-05-01

    Cryptosporidium parvum is a major cause of diarrhoea in humans and animals. There are no vaccines and few drugs available to control C. parvum. In this study, we used RNA-Seq to compare gene expression in sporozoites and intracellular stages of C. parvum to identify genes likely to be important for successful completion of the parasite's life cycle and, thereby, possible targets for drugs or vaccines. We identified 3774 protein-encoding transcripts in C. parvum. Applying a stringent cut-off of eight fold for determination of differential expression, we identified 173 genes (26 coding for predicted secreted proteins) upregulated in sporozoites. On the other hand, expression of 1259 genes was upregulated in intestinal stages (merozoites/gamonts) with a gene ontology enrichment for 63 biological processes and upregulation of 117 genes in 23 metabolic pathways. There was no clear stage specificity of expression of AP2-domain containing transcription factors, although sporozoites had a relatively small repertoire of these important regulators. Our RNA-Seq analysis revealed a new calcium-dependent protein kinase, bringing the total number of known calcium-dependent protein kinases (CDPKs) in C. parvum to 11. One of these, CDPK1, was expressed in all stages, strengthening the notion that it is a valid drug target. By comparing parasites grown in vivo (which produce bona fide thick-walled oocysts) and in vitro (which are arrested in sexual development prior to oocyst generation) we were able to confirm that genes encoding oocyst wall proteins are expressed in gametocytes and that the proteins are stockpiled rather than generated de novo in zygotes. RNA-Seq analysis of C. parvum revealed genes expressed in a stage-specific manner and others whose expression is required at all stages of development. The functional significance of these can now be addressed through recent advances in transgenics for C. parvum, and may lead to the identification of viable drug and vaccine

  8. Genetic and morphological differentiation between Melica ciliata L. and M. transsilvanica Schur (Poaceae in Europe reveals the non-presence of M. ciliata in the Polish flora

    Directory of Open Access Journals (Sweden)

    Magdalena Szczepaniak

    2011-12-01

    Full Text Available A good knowledge of species delimitation is crucial for the biodiversity protection and the conservation of wild species. We studied the efficiency of AFLP markers and morphological characters to assist species determination for Melica ciliata L. and M. transsilvanica Schur within European range of distribution, including isolated and range-limit populations of "M. ciliata" (i.e. M. cf. ciliata from the Polish Sudetes, where it is regarded as critically endangered. AFLP markers were found to be more effective then morphological characters (more or less continuous in distinguishing the both studied species. AMOVA revealed very low genetic diversity within populations and high differentiation among populations of M. ciliata and M. transsilvanica (FST = 0.89 and 0.95, respectively. The species-diagnostic AFLP markers of M. transsilvanica shared with "M. ciliata" from the Sudetes were detected. On the other hand, no species-diagnostic genetic markers of M. ciliata or hybrid-diagnostic markers of M. × thuringiaca were found within "M. ciliata". PCoA and NJ showed an overlapping genetic diversity of "M. ciliata" and M. transsilvanica. Hierar­chical AMOVA supported the absence of a significant genotypic distinction between "M. ciliata" and M. transsilvanica. ANOVA showed that the length ratio of lower to upper glumes was the best morphological character to discriminate between M. ciliata and M. transsilvanica. Combined morphological and genetic data show that M. ciliata is not currently present in Poland as its putative Polish populations represent M. transsilvanica. A significant decrease in genetic varia­bility that could influence viability was not observed the in Sudetian populations of M. transsilvanica. However, the population size changes significantly as a result of plant succession. Correction of the northern limit of the continuous distribution of M. ciliata L. in Central Europe is presented.

  9. SSU rDNA sequence diversity and seasonally differentiated distribution of nanoplanktonic ciliates in neritic Bohai and Yellow Seas as revealed by T-RFLP.

    Directory of Open Access Journals (Sweden)

    Jun Dong

    Full Text Available Nanociliates have been frequently found to be important players in the marine microbial loop, however, little is known about their diversity and distribution in coastal ecosystems. We investigated the molecular diversity and distribution patterns of nanoplanktonic oligotrich and choreotrich (OC ciliates in surface water of three neritic basins of northern China, the South Yellow Sea (SYS, North Yellow Sea (NYS, and Bohai Sea (BS in June and November 2011. SSU rRNA gene clone libraries generated from three summertime samples (sites B38, B4 and H8 were analyzed and revealed a large novel ribotype diversity, of which many were low-abundant phylotypes belonging to the subclass Oligotrichia, but divergent from described morphospecies. Based on the data of terminal-restriction fragment length polymorphism (T-RFLP analysis of all 35 samples, we found that the T-RF richness was generally higher in the SYS than in the BS, and negatively correlated with the molar ratio of P to Si. Overall, multidimensional scaling and permutational multivariate analysis of variance of the community turnover demonstrated a distinct seasonal pattern but no basin-to-basin differentiation across all samples. Nevertheless, significant community differences among basins were recognized in the winter dataset. Mantel tests showed that the environmental factors, P:Si ratio, water temperature and concentration of dissolved oxygen (DO, determined the community across all samples. However, both biogeographic distance and environment shaped the community in winter, with DO being the most important physicochemical factor. Our results indicate that the stoichiometric ratio of P:Si is a key factor, through which the phytoplankton community may be shaped, resulting in a cascade effect on the diversity and community composition of OC nanociliates in the N-rich, Si-limited coastal surface waters, and that the Yellow Sea Warm Current drives the nanociliate community, and possibly the

  10. SSU rDNA sequence diversity and seasonally differentiated distribution of nanoplanktonic ciliates in neritic Bohai and Yellow Seas as revealed by T-RFLP.

    Science.gov (United States)

    Dong, Jun; Shi, Fei; Li, Han; Zhang, Xiaoming; Hu, Xiaozhong; Gong, Jun

    2014-01-01

    Nanociliates have been frequently found to be important players in the marine microbial loop, however, little is known about their diversity and distribution in coastal ecosystems. We investigated the molecular diversity and distribution patterns of nanoplanktonic oligotrich and choreotrich (OC) ciliates in surface water of three neritic basins of northern China, the South Yellow Sea (SYS), North Yellow Sea (NYS), and Bohai Sea (BS) in June and November 2011. SSU rRNA gene clone libraries generated from three summertime samples (sites B38, B4 and H8) were analyzed and revealed a large novel ribotype diversity, of which many were low-abundant phylotypes belonging to the subclass Oligotrichia, but divergent from described morphospecies. Based on the data of terminal-restriction fragment length polymorphism (T-RFLP) analysis of all 35 samples, we found that the T-RF richness was generally higher in the SYS than in the BS, and negatively correlated with the molar ratio of P to Si. Overall, multidimensional scaling and permutational multivariate analysis of variance of the community turnover demonstrated a distinct seasonal pattern but no basin-to-basin differentiation across all samples. Nevertheless, significant community differences among basins were recognized in the winter dataset. Mantel tests showed that the environmental factors, P:Si ratio, water temperature and concentration of dissolved oxygen (DO), determined the community across all samples. However, both biogeographic distance and environment shaped the community in winter, with DO being the most important physicochemical factor. Our results indicate that the stoichiometric ratio of P:Si is a key factor, through which the phytoplankton community may be shaped, resulting in a cascade effect on the diversity and community composition of OC nanociliates in the N-rich, Si-limited coastal surface waters, and that the Yellow Sea Warm Current drives the nanociliate community, and possibly the microbial food webs

  11. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter

    International Nuclear Information System (INIS)

    Lee, Yohan; Kim, Yunju; Lee, Jaehyoung; Lee, Huen; Seo, Yongwon

    2015-01-01

    Highlights: • The extent of the replacement was improved due to the enclathration of N 2 in small cages. • The dissociation enthalpies of the replaced gas hydrates were measured. • There was no noticeable heat flow change during the CH 4 –flue gas replacement. • The replacement could occur without significant destruction of gas hydrates. - Abstract: The CH 4 –flue gas replacement in naturally occurring gas hydrates has attracted significant attention due to its potential as a method of exploitation of clean energy and sequestration of CO 2 . In the replacement process, the thermodynamic and structural properties of the mixed gas hydrates are critical factors to predict the heat flow in the hydrate-bearing sediments and the heat required for hydrate dissociation, and to evaluate the CO 2 storage capacity of hydrate reservoirs. In this study, the 13 C NMR and gas composition analyses confirmed that the preferential enclathration of N 2 molecules in small 5 12 cages of structure I hydrates improved the extent of the CH 4 recovery. A high pressure micro-differential scanning calorimeter (HP μ-DSC) provided reliable hydrate stability conditions and heat of dissociation values in the porous silica gels after the replacement, which confirmed that CH 4 in the hydrates was successfully replaced with flue gas. A heat flow change associated with the dissociation and formation of hydrates was not noticeable during the CH 4 –flue gas replacement. Therefore, this study reveals that CH 4 –flue gas swapping occurs without structural transitions and significant hydrate dissociations

  12. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli

    Science.gov (United States)

    Malone, Kerri M.; Rue-Albrecht, Kévin; Magee, David A.; Conlon, Kevin; Schubert, Olga T.; Nalpas, Nicolas C.; Browne, John A.; Smyth, Alicia; Gormley, Eamonn; Aebersold, Ruedi; MacHugh, David E.; Gordon, Stephen V.

    2018-01-01

    Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection. PMID:29557774

  13. spa typing and antimicrobial resistance of Staphylococcus aureus from healthy humans, pigs and dogs in Tanzania.

    Science.gov (United States)

    Katakweba, Abdul Sekemani; Muhairwa, Amandus Pachificus; Espinosa-Gongora, Carmen; Guardabassi, Luca; Mtambo, Madundo M A; Olsen, John Elmerdahl

    2016-02-28

    Staphylococcus aureus is an opportunistic pathogen causing infections in humans and animals. Here we report for the first time the prevalence of nasal carriage, spa typing and antimicrobial resistance of S. aureus in a Tanzanian livestock community. Nasal swabs were taken from 100 humans, 100 pigs and 100 dogs in Morogoro Municipal. Each swab was enriched in Mueller Hinton broth with 6.5% NaCl and subcultured on chromogenic agar for S. aureus detection. Presumptive S. aureus colonies were confirmed to the species level by nuc PCR and analysed by spa typing. Antimicrobial susceptibility patterns were determined by disc diffusion method. S. aureus was isolated from 22% of humans, 4% of pigs and 11% of dogs. A total of 21 spa types were identified: 13, 7 and 1 in human, dogs, and pigs, respectively. Three spa types (t314, t223 and t084) were shared between humans and dogs. A novel spa type (t10779) was identified in an isolate recovered from a colonized human. Antimicrobials tested revealed resistance to ampicillin in all isolates, moderate resistances to other antimicrobials with tetracycline resistance being the most frequent. S. aureus carrier frequencies in dogs and humans were within the expected range and low in pigs. The S. aureus spa types circulating in the community were generally not shared by different hosts and majority of types belonged to known clones. Besides ampicillin resistance, moderate levels of antimicrobial resistance were observed irrespective of the host species from which the strains were isolated.

  14. Inhibitory effect of totarol on exotoxin proteins hemolysin and enterotoxins secreted by Staphylococcus aureus.

    Science.gov (United States)

    Shi, Ce; Zhao, Xingchen; Li, Wenli; Meng, Rizeng; Liu, Zonghui; Liu, Mingyuan; Guo, Na; Yu, Lu

    2015-10-01

    Staphylococcus aureus (S. aureus) causes a wide variety of infections, which are of major concern worldwide. S. aureus produces multiple virulence factors, resulting in food infection and poisoning. These virulence factors include hyaluronidases, proteases, coagulases, lipases, deoxyribonucleases and enterotoxins. Among the extracellular proteins produced by S. aureus that contribute to pathogenicity, the exotoxins α-hemolysin, staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) are thought to be of major significance. Totarol, a plant extract, has been revealed to inhibit the proliferation of several pathogens effectively. However, there are no reports on the effects of totarol on the production of α-hemolysin, SEA or SEB secreted by S. aureus. The aim of this study was to evaluate the effects of totarol on these three exotoxins. Hemolysis assay, western blotting and real-time reverse transcriptase-PCR assay were performed to identify the influence of graded subinhibitory concentrations of totarol on the production of α-hemolysin and the two major enterotoxins, SEA and SEB, by S. aureus in a dose-dependent manner. Moreover, an enzyme linked immunosorbent assay showed that the TNF-α production of RAW264.7 cells stimulated by S. aureus supernatants was inhibited by subinhibitory concentrations of totarol. Form the data, we propose that totarol could potentially be used as a promising natural compound in the food and pharmaceutical industries.

  15. Heme Recognition By a Staphylococcus Aureus IsdE

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  16. [Septicaemia in piglets associated with a positive finding of a methicillin-resistant S. aureus strain].

    Science.gov (United States)

    Graage, R; Ganter, M; Verspohl, J; Strommenger, B; Waldmann, K-H; Baumgärtner, W; Hennig-Pauka, I

    2014-01-01

    Staphylococcus (S.) aureus has been associated with septicaemia, mastitis, vaginitis, metritis, osteomyelitis, and endocarditis. This case report demonstrates S. aureus-induced septicaemia in suckling pig- lets. Three days after birth, littermates displayed severe ecchymosis and cyanosis, with a 50% mortality rate. The surviving littermates were cross-fostered, but died 1 day later. Other piglets, which were allowed to suck at the sow, developed similar clinical signs. Haematological findings were anaemia, thrombocytopenia, and leukopenia; therefore, neither isohaemolytic anaemia nor septicaemia could be excluded as differential diagnoses. At necropsy, petechial bleeding on inner organ surfaces and free blood in body cavities were found. Bacteriological examination of the sow's milk and of the spleen of one piglet detected a methicillin-resistent S. aureus strain (MRSA CC398), which was in all likelihood the cause of the disease. Potential differential diagnoses are discussed.

  17. Population structure of Staphylococcus aureus in China

    OpenAIRE

    Yan, Xiaomei

    2015-01-01

    The present PhD research was aimed at analysing the population structure of Staphylococcus aureus in China. Between 2000 and 2005 we found that patients from a single Chinese hospital showed increasing trends in antimicrobial resistance. Among methicillin-resistant S. aureus (MRSA), resistance against rifampicin doubled to 68%. Staphylococcal food poisoning (SFP) is frequent in China. Two predominant S. aureus lineages, ST6 and ST943, were identified causing outbreaks of SFP in Southern China...

  18. Immunological role of nasal staphylococcus aureus carriage in patients with persistent allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Mohamed Yousif Atia

    2008-10-01

    Full Text Available Nasal carriage of staphylococcus aureus (S.aureus exerts immunomodulatory effect in patients with atopic dermatitis and it may contribute to airway inflammation and allergic response in patients with allergic rhinitis. We Aim to investigate the frequency of nasal S.aureus carriage in patients with persistent allergic rhinitis and its possible influence on their symptoms and immune markers. We chosed 20 non smoker patients with house dust mite (HDM allergy causing allergic rhinitis and 20 non smoker healthy subjects matched for age and sex. For all subjects rhinoscopy was done, skin prick test, nasal culture for S.aureus, nasal interleukin 4,nasal total IgE, serum total IgE and serum specific IgE(SSIgE for HDM. Nasal S.aureus was detected in 16/20 patients (80% and 5/20 (25% in healthy subjects with highly significant statistical difference plt0.01. Correlation of nasal staph.aureus count and different systemic and local immune markers revealed highly significant positive correlation between nasal S.aureus count and serum total IgE (r = 0.78, plt0.01 and significant positive correlation with SSIgE (HDM (r = 0.53, plt0.05, nasal total IgE (r = 0.39, plt0.05 and nasal IL-4 (r = 0.55, plt0.05. Nasal staph.aureus actively modulated the immune reaction in persistent allergic rhinitis patients by promoting local IgE production, so we recommend early detection and treatment of S.aureus carriage in patients

  19. Relationship and susceptibility profile of Staphylococcus aureus infection diabetic foot ulcers with Staphylococcus aureus nasal carriage.

    Science.gov (United States)

    Taha, Aza Bahadeen

    2013-03-01

    Staphylococcus aureus is the main cause of diabetic foot infection with the patient's endogenous flora as the principal source. Nasal carriage of S. aureus has been identified as an important risk factor for the acquisition of diabetic foot infections. The study assessment the associations of S. aureus with methicillin resistant S. aureus were isolation from diabetic foot infection and nasal carriage of the same patients and their antibiotic susceptibility profile. Diagnosis of S. aureus and methicillin resistant S. aureus were carried out by using standard procedures. Antibiotic sensitivity profiles were determent by breakpoint dilution method. Out of 222 S. aureus isolation, 139 (62.61%) were isolated from the diabetic foot and 83 (37.39%) from the nasal carriage. Seventy one (30.87%) of the patients were S. aureus infection diabetic foot with nasal carriage. Among diabetic foot infection and nasal carriage patients, 40.85% of S. aureus were considered as methicillin resistant S. aureus. Rifampicin (96.40%) and Levofloxacin (91.44%) were active against S. aureus. Patients at strong risk for methicillin resistant S. aureus nasal carriage and subsequent diabetic foot infection with high resistance to antibiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Mild Staphylococcus aureus Skin Infection Improves the Course of Subsequent Endogenous S. aureus Bacteremia in Mice.

    Directory of Open Access Journals (Sweden)

    Sanne van den Berg

    Full Text Available Staphylococcus aureus carriers with S. aureus bacteremia may have a reduced mortality risk compared to non-carriers. A role for the immune system is suggested. Here, we study in mice the effect of mild S. aureus skin infection prior to endogenous or exogenous S. aureus bacteremia, and evaluate protection in relation to anti-staphylococcal antibody levels. Skin infections once or twice by a clinical S. aureus isolate (isolate P or S. aureus strain 8325-4 were induced in mice free of S. aureus and anti-staphylococcal antibodies. Five weeks later, immunoglobulin G (IgG levels in blood against 25 S. aureus antigens were determined, and LD50 or LD100 bacteremia caused by S. aureus isolate P was induced. S. aureus skin infections led to elevated levels of anti-staphylococcal IgG in blood. One skin infection improved the course of subsequent severe endogenous bacteremia only. A second skin infection further improved animal survival rate, which was associated with increased pre-bacteremia IgG levels against Efb, IsaA, LukD, LukE, Nuc, PrsA and WTA. In conclusion, S. aureus isolate P skin infection in mice reduces the severity of subsequent endogenous S. aureus bacteremia only. Although cellular immune effects cannot be rules out, anti-staphylococcal IgG against specified antigens may contribute to this effect.

  1. Comparative supragenomic analyses among the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae Using a modification of the finite supragenome model

    Directory of Open Access Journals (Sweden)

    Yu Susan

    2011-04-01

    Full Text Available Abstract Background Staphylococcus aureus is associated with a spectrum of symbiotic relationships with its human host from carriage to sepsis and is frequently associated with nosocomial and community-acquired infections, thus the differential gene content among strains is of interest. Results We sequenced three clinical strains and combined these data with 13 publically available human isolates and one bovine strain for comparative genomic analyses. All genomes were annotated using RAST, and then their gene similarities and differences were delineated. Gene clustering yielded 3,155 orthologous gene clusters, of which 2,266 were core, 755 were distributed, and 134 were unique. Individual genomes contained between 2,524 and 2,648 genes. Gene-content comparisons among all possible S. aureus strain pairs (n = 136 revealed a mean difference of 296 genes and a maximum difference of 476 genes. We developed a revised version of our finite supragenome model to estimate the size of the S. aureus supragenome (3,221 genes, with 2,245 core genes, and compared it with those of Haemophilus influenzae and Streptococcus pneumoniae. There was excellent agreement between RAST's annotations and our CDS clustering procedure providing for high fidelity metabolomic subsystem analyses to extend our comparative genomic characterization of these strains. Conclusions Using a multi-species comparative supragenomic analysis enabled by an improved version of our finite supragenome model we provide data and an interpretation explaining the relatively larger core genome of S. aureus compared to other opportunistic nasopharyngeal pathogens. In addition, we provide independent validation for the efficiency and effectiveness of our orthologous gene clustering algorithm.

  2. Non-spa-typeable clinical Staphylococcus aureus strains are naturally occurring protein A mutants

    DEFF Research Database (Denmark)

    Baum, Cathrin; Haslinger-Löffler, Bettina; Westh, Henrik

    2009-01-01

    Staphylococcus aureus is a major human pathogen responsible for increasing the prevalence of community- and hospital-acquired infections. Protein A (SpA) is a key virulence factor of S. aureus and is highly conserved. Sequencing of the variable-number tandem-repeat region of SpA (spa typing......) provides a rapid and reliable method for epidemiological studies. Rarely, non-spa-typeable S. aureus strains are encountered. The reason for this is not known. In this study, we characterized eight non-spa-typeable bacteremia isolates. Sequencing of the entire spa locus was successful for five strains...... and revealed various mutations of spa, all of which included a deletion of immunoglobulin G binding domain C, in which the upper primer for spa typing is located, while two strains were truly spa negative. This is the first report demonstrating that nontypeability of S. aureus by spa sequencing is due either...

  3. Proteome and Transcriptome Analysis of Ovary, Intersex Gonads, and Testis Reveals Potential Key Sex Reversal/Differentiation Genes and Mechanism in Scallop Chlamys nobilis.

    Science.gov (United States)

    Shi, Yu; Liu, Wenguang; He, Maoxian

    2018-04-01

    Bivalve mollusks exhibit hermaphroditism and sex reversal/differentiation. Studies generally focus on transcriptional profiling and specific genes related to sex determination and differentiation. Few studies on sex reversal/differentiation have been reported. A combination analysis of gonad proteomics and transcriptomics was conducted on Chlamys nobilis to provide a systematic understanding of sex reversal/differentiation in bivalves. We obtained 4258 unique peptides and 93,731 unigenes with good correlation between messenger RNA and protein levels. Candidate genes in sex reversal/differentiation were found: 15 genes differentially expressed between sexes were identified and 12 had obvious sexual functions. Three novel genes (foxl2, β-catenin, and sry) were expressed highly in intersex individuals and were likely involved in the control of gonadal sex in C. nobilis. High expression of foxl2 or β-catenin may inhibit sry and activate 5-HT receptor and vitellogenin to maintain female development. High expression of sry may inhibit foxl2 and β-catenin and activate dmrt2, fem-1, sfp2, sa6, Amy-1, APCP4, and PLK to maintain male function. High expression of sry, foxl2, and β-catenin in C. nobilis may be involved in promoting and maintaining sex reversal/differentiation. The downstream regulator may not be dimorphic expressed genes, but genes expressed in intersex individuals, males and females. Different expression patterns of sex-related genes and gonadal histological characteristics suggested that C. nobilis may change its sex from male to female. These findings suggest highly conserved sex reversal/differentiation with diverged regulatory pathways during C. nobilis evolution. This study provides valuable genetic resources for understanding sex reversal/differentiation (intersex) mechanisms and pathways underlying bivalve reproductive regulation.

  4. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus.

    Science.gov (United States)

    Taj, Yasmeen; Essa, Farhan; Aziz, Faisal; Kazmi, Shahana Urooj

    2012-05-14

    The purpose of this study was to observe the formation of biofilm, an important virulence factor, by isolates of Staphylococcus aureus (S. aureus) in Pakistan by different conventional methods and through electron microscopy. We screened 115 strains of S. aureus isolated from different clinical specimens by tube method (TM), air-liquid interface coverslip assay method, Congo red agar (CRA) method, and scanning electron microscopy (SEM). Out of 115 S. aureus isolates, 63 (54.78%) showed biofilm formation by tube method. Biofilm forming bacteria were further categorized as high producers (n = 23, 20%) and moderate producers (n = 40, 34.78%). TM coordinated well with the coverslip assay for strong biofilm-producing strains in 19 (16.5%) isolates. By coverslip method, weak producers were difficult to differentiate from biofilm negative isolates. Screening on CRA showed biofilm formation only in four (3.47%) strains. Scanning electron micrographs showed the biofilm-forming strains of S. aureus arranged in a matrix on the propylene surface and correlated well with the TM. Biofilm production is a marker of virulence for clinically relevant staphylococcal infections. It can be studied by various methods but screening on CRA is not recommended for investigation of biofilm formation in Staphylococcus aureus. Electron micrograph images correlate well with the biofilm production as observed by TM.

  5. Use of a primary isolation medium for recovery of methicillin-resistant Staphylococcus aureus.

    OpenAIRE

    Van Enk, R A; Thompson, K D

    1992-01-01

    Clinical specimens frequently contain methicillin-resistant Staphylococcus aureus (MRSA) isolates in low numbers or mixed with methicillin-susceptible staphylococci, which can obscure MRSA on nonselective media. By using an oxacillin-containing mannitol-salt-based selective and differential medium on 936 respiratory specimens, we recovered 45% more MRSA isolates (29 versus 20) than on nonselective media alone.

  6. Quantitative analysis of male germline stem cell differentiation reveals a role for the p53-mTORC1 pathway in spermatogonial maintenance.

    Science.gov (United States)

    Xiong, Mulin; Ferder, Ianina C; Ohguchi, Yasuyo; Wang, Ning

    2015-01-01

    p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation.

  7. Dermoscopy of lichen aureus Dermatoscopia do liquen aureus

    Directory of Open Access Journals (Sweden)

    Poliana Santin Portela

    2013-04-01

    Full Text Available Lichen aureus (also called "lichen purpuricus" is an uncommon subtype of pigmented purpuric dermatosis. Clinically characterized by rust macules, papules or plaques, it is a chronic disease which more often affects young adults and is localized mainly on the lower extremities. The diagnosis is made on the basis of clinical and histopathological features. Dermoscopy findings are useful to confirm clinical diagnosis.O líquen aureus (também denominado "liquen purpuricus" é um subtipo pouco comum entre as dermatoses purpúricas pigmentadas. Clinicamente caracterizado por máculas, pápulas ou placas de coloração ferruginosa, é doença crônica, que acomete mais frequentemente adultos jovens e localiza-se principalmente nos membros inferiores. O diagnóstico pode ser feito a partir das características clínicas e histopatológicas, sendo os achados dermatoscópicos úteis para corroborar o diagnóstico clínico.

  8. Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response—Note of Caution for In vivo Infection Experiments

    Science.gov (United States)

    Schulz, Daniel; Grumann, Dorothee; Trübe, Patricia; Pritchett-Corning, Kathleen; Johnson, Sarah; Reppschläger, Kevin; Gumz, Janine; Sundaramoorthy, Nandakumar; Michalik, Stephan; Berg, Sabine; van den Brandt, Jens; Fister, Richard; Monecke, Stefan; Uy, Benedict; Schmidt, Frank; Bröker, Barbara M.; Wiles, Siouxsie; Holtfreter, Silva

    2017-01-01

    Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus. We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb-converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored. PMID:28512627

  9. Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response—Note of Caution for In vivo Infection Experiments

    Directory of Open Access Journals (Sweden)

    Silva Holtfreter

    2017-05-01

    Full Text Available Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus. We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%, followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb-converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored.

  10. Non-Monotonic Survival of Staphylococcus aureus with Respect to Ciprofloxacin Concentration Arises from Prophage-Dependent Killing of Persisters

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Sandvik

    2015-11-01

    Full Text Available Staphylococcus aureus is a notorious pathogen with a propensity to cause chronic, non-healing wounds. Bacterial persisters have been implicated in the recalcitrance of S. aureus infections, and this motivated us to examine the persistence of S. aureus to ciprofloxacin, a quinolone antibiotic. Upon treatment of exponential phase S. aureus with ciprofloxacin, we observed that survival was a non-monotonic function of ciprofloxacin concentration. Maximal killing occurred at 1 µg/mL ciprofloxacin, which corresponded to survival that was up to ~40-fold lower than that obtained with concentrations ≥ 5 µg/mL. Investigation of this phenomenon revealed that the non-monotonic response was associated with prophage induction, which facilitated killing of S. aureus persisters. Elimination of prophage induction with tetracycline was found to prevent cell lysis and persister killing. We anticipate that these findings may be useful for the design of quinolone treatments.

  11. Staphylococcus aureus and healthcare-associated infections

    NARCIS (Netherlands)

    Ekkelenkamp, M.B.

    2011-01-01

    Many medical procedures breach or suppress patients’ natural defences, leaving them vulnerable to infections which would not occur in healthy humans: “healthcare-associated infections”. Healthcare-associated infections caused by the bacterium Staphylococcus aureus (S. aureus) are probably the most

  12. Population structure of Staphylococcus aureus in China

    NARCIS (Netherlands)

    Yan, Xiaomei

    2015-01-01

    The present PhD research was aimed at analysing the population structure of Staphylococcus aureus in China. Between 2000 and 2005 we found that patients from a single Chinese hospital showed increasing trends in antimicrobial resistance. Among methicillin-resistant S. aureus (MRSA), resistance

  13. METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA ...

    African Journals Online (AJOL)

    Nosocomial infections caused by methicillin-resistant strains of Staphylococcus aureus often pose therapeutic dilemma to the clinicians because of the multi resistant nature of these strains of Staphylococcus aureus. Outbreaks of both nosocomial and community acquired infections are also frequent and difficult to control.

  14. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. © 2016 AlphaMed Press.

  15. Cross-species functional analyses reveal shared and separate roles for Sox11 in frog primary neurogenesis and mouse cortical neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Chao Chen

    2016-04-01

    Full Text Available A well-functioning brain requires production of the correct number and types of cells during development; cascades of transcription factors are essential for cellular coordination. Sox proteins are transcription factors that affect various processes in the development of the nervous system. Sox11, a member of the SoxC family, is expressed in differentiated neurons and supports neuronal differentiation in several systems. To understand how generalizable the actions of Sox11 are across phylogeny, its function in the development of the frog nervous system and the mouse cerebral cortex were compared. Expression of Sox11 is largely conserved between these species; in the developing frog, Sox11 is expressed in the neural plate, neural tube and throughout the segmented brain, while in the mouse cerebral cortex, Sox11 is expressed in differentiated zones, including the preplate, subplate, marginal zone and cortical plate. In both frog and mouse, data demonstrate that Sox11 supports a role in promoting neuronal differentiation, with Sox11-positive cells expressing pan-neural markers and becoming morphologically complex. However, frog and mouse Sox11 cannot substitute for one another; a functional difference likely reflected in sequence divergence. Thus, Sox11 appears to act similarly in subserving neuronal differentiation but is species-specific in frog neural development and mouse corticogenesis.

  16. Staphylococcus aureus and hand eczema severity

    DEFF Research Database (Denmark)

    Haslund, P; Bangsgaard, N; Jarløv, J O

    2009-01-01

    BACKGROUND: The role of bacterial infections in hand eczema (HE) remains to be assessed. OBJECTIVES: To determine the prevalence of Staphylococcus aureus in patients with HE compared with controls, and to relate presence of S. aureus, subtypes and toxin production to severity of HE. METHODS......: Bacterial swabs were taken at three different visits from the hand and nose in 50 patients with HE and 50 controls. Staphylococcus aureus was subtyped by spa typing and assigned to clonal complexes (CCs), and isolates were tested for exotoxin-producing S. aureus strains. The Hand Eczema Severity Index...... and in the nose in all cases, and between visits in 90% of cases. Ten different CC types were identified, no association with severity was found, and toxin-producing strains were not found more frequently in patients with HE than in controls. CONCLUSIONS: Staphylococcus aureus was present on hands in almost half...

  17. Transfer of Antibiotic Resistance in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Haaber, Jakob; Penadés, José R; Ingmer, Hanne

    2017-01-01

    Staphylococcus aureus is a serious human pathogen with remarkable adaptive powers. Antibiotic-resistant clones rapidly emerge mainly by acquisition of antibiotic-resistance genes from other S. aureus strains or even from other genera. Transfer is mediated by a diverse complement of mobile genetic...... of plasmids that can be transferred by conjugation and the efficiency with which transduction occurs. Here, we review the main routes of antibiotic resistance gene transfer in S. aureus in the context of its biology as a human commensal and a life-threatening pathogen. Staphylococcus aureus cells...... are effective in exchanging mobile genetic elements, including antibiotic-resistance genes.During colonization or infection of host organisms, the exchange appears to be particularly effective.Bacteriophage-mediated transfer involves both transduction and autotransduction, which may enable lysogenic S. aureus...

  18. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    Science.gov (United States)

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Staphylococcus aureus bacteremia with iliac artery endarteritis in a patient receiving ustekinumab

    Directory of Open Access Journals (Sweden)

    Insa Joost

    2016-10-01

    Full Text Available Abstract Background Ustekinumab (Stelara®, a human monoclonal antibody targeting the p40-subunit of interleukin (IL-12 and IL-23, is indicated for moderate to severe plaque psoriasis and psoriatic arthritis. In large multicenter, prospective trials assessing efficacy and safety of ustekinumab increased rates of severe infections have not been observed so far. Case presentation Here, we report the case of a 64-year old woman presenting with chills, pain and swelling of her right foot with dark maculae at the sole, and elevated inflammatory markers. She had received a third dose of ustekinumab due to psoriatic arthritis three days before admission. Blood cultures revealed growth of Staphylococcus aureus and imaging showed a thickening of the aortic wall ventral the bifurcation above the right internal iliac artery, resembling an acute bacterial endarteritis. Without the evidence of aneurysms and in absence of foreign bodies, the decision for conservative management was made. The patient received four weeks of antibiotic therapy with intravenous flucloxacillin, followed by an oral regime with levofloxacin and rifampicin for an additional four weeks. Inflammatory markers resolved promptly and the patient was discharged in good health. Conclusion To our knowledge, this is the first report of a severe S. aureus infection in a patient receiving ustekinumab. Albeit ustekinumab is generally regarded as a safe drug, severe bacterial infections should always be included in the differential diagnosis of elevated inflammatory markers in patients receiving biologicals as these might present with nonspecific symptoms and fever might be absent. Any effort to detect deep-seated or metastatic infections should be made to prevent complications and to secure appropriate treatment. Although other risk factors for an invasive staphylococcal infection like psoriasis, recent corticosteroid injection, or prior hospitalisations were present, and therefore a directive

  20. Molecular characterization of vancomycin-intermediate Staphylococcus aureus isolates from Tehran

    Directory of Open Access Journals (Sweden)

    Shahin Najar-Peerayeh

    2016-09-01

    Full Text Available Objective: To determine the prevalence and some genetic characteristics of clinical isolates of Staphylococcus aureus (S. aureus with reduced susceptibility to vancomycin. Methods: A total of 414 isolates of S. aureus were collected from clinical specimens from hospitals in Tehran. Vancomycin-intermediate S. aureus (VISA was determined by brain heart infusion agar containing 4 μg/mL vancomycin screening plate and confirmed via E-test. VISA isolates were analysed for vanA, vanB, mecA, staphylococcal cassette chromosome mec types, surface protein A (Spa types and agr specific groups. Results: Brain heart infusion agar containing 4 μg/mL vancomycin screening tests revealed that 17.14% (n = 71 of S. aureus isolates were VISA phenotype. Ten of the 71 isolates were confirmed by E-test method (minimal inhibitory concentration was 4 to 8 μg/mL. All VISA isolates were susceptible to linezolid and 6 isolates (60% were methicillin-resistant S. aureus. Five isolates belonged to agr Group II, 4 belonged to agr Group I and 1 belonged to agr Group III. Spa type t030, and staphylococcal cassette chromosome mec Type III were dominant among VISA isolates. Conclusions: This study provides further evidence of the global dissemination of VISA isolates and emphasizes to vancomycin susceptibility testing prior to antibiotic therapy.

  1. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Directory of Open Access Journals (Sweden)

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  2. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.

    Science.gov (United States)

    Lee, Young-Duck; Park, Jong-Hyun

    2016-02-01

    Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

  3. Human SAP is a novel peptidoglycan recognition protein that induces complement- independent phagocytosis of Staphylococcus aureus

    Science.gov (United States)

    An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel

    2014-01-01

    The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633

  4. Is the Colonisation of Staphylococcus aureus in Pets Associated with Their Close Contact with Owners?

    Directory of Open Access Journals (Sweden)

    Karolina Bierowiec

    Full Text Available In human beings and animals, staphylococci constitute part of the normal microbial population. Staphylococcus aureus could be classified as an opportunistic pathogen because the bacteria are noted in clinically healthy individuals, but when the immune system becomes compromised, they can also cause a wide range of infections. The objective of this study was to test the hypothesis that cats who are in close contact with their owners are at the greatest risk of being colonised with S. aureus. Two groups of cats were investigated: single, pet (domestic cats that do not have outdoor access; and a local population of feral cats living in urban areas. The prevalence of S. aureus in domestic cats was 19.17%, while it's prevalence in the feral cat population was only 8.3%; which was statistically significant. Analysis of antibiotic resistance, at the genotypic as well as phenotypic level, showed that S. aureus isolates from pet cats were more likely to harbour antibiotic resistant determinants. The prevalence of methicillin-resistant Staphylococcus aureus (MRSA in households was 10.21%, while in feral cats it was only 1.4%. In conclusion, this study has revealed a correlation between close contact with humans and a higher risk of the cats being colonised with S. aureus and harbouring the antibiotic resistant determinants.

  5. Is the Colonisation of Staphylococcus aureus in Pets Associated with Their Close Contact with Owners?

    Science.gov (United States)

    Bierowiec, Karolina; Płoneczka-Janeczko, Katarzyna; Rypuła, Krzysztof

    2016-01-01

    In human beings and animals, staphylococci constitute part of the normal microbial population. Staphylococcus aureus could be classified as an opportunistic pathogen because the bacteria are noted in clinically healthy individuals, but when the immune system becomes compromised, they can also cause a wide range of infections. The objective of this study was to test the hypothesis that cats who are in close contact with their owners are at the greatest risk of being colonised with S. aureus. Two groups of cats were investigated: single, pet (domestic) cats that do not have outdoor access; and a local population of feral cats living in urban areas. The prevalence of S. aureus in domestic cats was 19.17%, while it’s prevalence in the feral cat population was only 8.3%; which was statistically significant. Analysis of antibiotic resistance, at the genotypic as well as phenotypic level, showed that S. aureus isolates from pet cats were more likely to harbour antibiotic resistant determinants. The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in households was 10.21%, while in feral cats it was only 1.4%. In conclusion, this study has revealed a correlation between close contact with humans and a higher risk of the cats being colonised with S. aureus and harbouring the antibiotic resistant determinants. PMID:27227897

  6. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  7. Integrated analysis of miRNAs and transcriptomes in Aedes albopictus midgut reveals the differential expression profiles of immune-related genes during dengue virus serotype-2 infection.

    Science.gov (United States)

    Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang

    2016-06-01

    Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  8. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome

    Science.gov (United States)

    2013-01-01

    Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome. PMID:23531366

  9. [Antagonism between hospital strains of Staphylococcus aureus and lactic acid bacteria in vitro and the use of the latter as a sanitary agent].

    Science.gov (United States)

    Ambartsumian, A D; Dekhtsunian, K M; Atopek, S Ia; Erzinkian, L A

    1983-08-01

    The study of antagonism between S. aureus hospital strains and lactic acid bacteria, strain 317/402 "Nariné", revealed that the latter possessed high antagonistic activity. A new method for the sanitation of carriers of S. aureus hospital strains was developed; this method made it possible to limit the epidemiological significance of 82% of these strains.

  10. Staphylococcus aureus resistente a vancomicina.

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Rodríguez

    2005-12-01

    Full Text Available Objetivo. Revisar la evolución y mecanismos moleculares de la resistencia de Staphylococcus aureus a vancomicina. Fuente de los datos. Se consultó la base de datos MEDLINE y se seleccionaron artículos tipo reportes de caso, estudios bioquímicos, de microscopía electrónica y biología molecular pertinentes. Síntesis. Después de casi 40 años de eficacia ininterrumpida de la vancomicina, en 1997 se reportaron los primeros casos de fracaso terapéutico debido a cepas de Staphylococcus aureus con resistencia intermedia, denominadas VISA (concentración inhibitoria mínima, CIM, 8 a 16 ?g/ml, así como a cepas con resistencia heterogénea hVISA (CIM global = 4 ?g/ml, pero con subpoblaciones VISA, en las cuales la resistencia está mediada por engrosamiento de la pared celular y disminución de su entrecruzamiento, lo que afecta la llegada del antibiótico al blanco principal, los monómeros del peptidoglicano en la membrana plasmática. En 2002 se aisló la primera de las 3 cepas reportadas hasta la fecha con resistencia total al antibiótico, denominadas VRSA (CIM>32 ?g/ml, en las que se encontró el transposón Tn1546 proveniente de Enterococcus spp, responsable del reemplazo de la terminación D-Ala-D-Ala por D-Ala-Dlactato en los precursores de la pared celular con pérdida de la afinidad por el glicopéptido. Conclusiones. La resistencia a vancomicina es una realidad en S. aureus, mediada en el caso de VISA por alteraciones en la pared celular que atrapan el antibiótico antes de llegar al sitio de acción, y en el caso de VRSA, por transferencia desde Enterococcus spp. de genes que llevan a la modificación del blanco molecular.

  11. Persister formation in Staphylococcus aureus is associated with ATP depletion

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Brian P.; Rowe, Sarah E.; Gandt, Autumn Brown; Nuxoll, Austin S.; Donegan, Niles P.; Zalis, Eliza A.; Clair, Geremy; Adkins, Joshua N.; Cheung, Ambrose L.; Lewis, Kim

    2016-04-18

    Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic bacterial infection and antibiotic treatment failure. In Escherichia coli, toxin/antitoxin (TA) modules are responsible for persister formation. The mechanism of persister formation in Gram positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrance to stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers was associated with a 100-1000 fold increased likelihood of survival to antibiotic challenge. We find that the antibiotic tolerance of these cells is due to a drop in intracellular ATP. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotic treatment.

  12. Severe Rhabdomyolysis Associated with Staphylococcus aureus Acute Endocarditis Requiring Surgery.

    Science.gov (United States)

    Ravry, Céline; Fedou, Anne-Laure; Dubos, Maria; Denes, Éric; Etchecopar, Caroline; Barraud, Olivier; Vignon, Philippe; François, Bruno

    2015-12-01

    Rhabdomyolysis has multiple etiologies with unclear mechanisms; however, rhabdomyolysis caused by Staphylococcus aureus infection is rare. A case report of severe rhabdomyolysis in a patient who presented with endocarditis caused by methicillin-susceptible S. aureus and review of relevant literature. The patient had a history of cardiac surgery for tetralogy of Fallot. He was admitted to the hospital because of fever and digestive symptoms. Respiratory and hemodynamic status deteriorated rapidly, leading to admission to the intensive care unit (ICU) for mechanical ventilation and vasopressor support. Laboratory tests disclosed severe rhabdomyolysis with a serum concentration of creatine kinase that peaked at 49,068 IU/L; all blood cultures grew methicillin-susceptible S. aureus. Antibiotic therapy was amoxicillin-clavulanic acid, ciprofloxacin, and gentamicin initially and was changed subsequently to oxacillin, clindamycin, and gentamicin. Transesophageal echocardiography showed vegetation on the pulmonary valve, thus confirming the diagnosis of acute endocarditis. Viral testing and computed tomography (CT) scan ruled out any obvious alternative etiology for rhabdomyolysis. Bacterial analysis did not reveal any specificity of the staphylococcal strain. The patient improved with antibiotics and was discharged from the ICU on day 26. He underwent redux surgery for valve replacement on day 53. Staphylococcal endocarditis should be suspected in cases of severe unexplained rhabdomyolysis with acute infectious symptoms.

  13. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    Science.gov (United States)

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-01

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers

  14. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay

    Science.gov (United States)

    Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei

    2014-11-01

    Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.

  15. Comparative proteomics of cerebrospinal fluid reveals a predictive model for differential diagnosis of pneumococcal, meningococcal, and enteroviral meningitis, and novel putative therapeutic targets

    Science.gov (United States)

    2015-01-01

    Background Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. Methods We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. Results Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. Conclusions Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis. PMID:26040285

  16. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters!

    Science.gov (United States)

    Chaudhury, Arun

    2015-01-01

    Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of "sphincter proteome." Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled "idiopathic" and facilitating practice of precision medicine.

  17. Prevalence and characterisation of Staphylococcus aureus causing community-acquired skin and soft tissue infections on Java and Bali, Indonesia.

    Science.gov (United States)

    Santosaningsih, Dewi; Santoso, Sanarto; Setijowati, Nanik; Rasyid, Harun A; Budayanti, Nyoman S; Suata, Ketut; Widhyatmoko, Dicky B; Purwono, Priyo B; Kuntaman, Kuntaman; Damayanti, Damayanti; Prakoeswa, Cita R S; Laurens, Mitchell; van Nierop, Josephine W I; Nanninga, Geraldine L; Oudenes, Neline; de Regt, Michelle; Snijders, Susan V; Verbrugh, Henri A; Severin, Juliëtte A

    2018-01-01

    To define the role of Staphylococcus aureus in community settings among patients with skin and soft tissue infections (SSTI) in Indonesia. Staphylococcus aureus were cultured from anterior nares, throat and wounds of 567 ambulatory patients presenting with SSTI. The mecA gene and genes encoding Panton-Valentine leukocidin (PVL; lukF-PV and lukS-PV) and exfoliative toxin (ET; eta and etb) were determined by PCR. Clonal relatedness among methicillin-resistant S. aureus (MRSA) and PVL-positive S. aureus was analysed using multilocus variable-number tandem-repeat analysis (MLVA) typing, and multilocus sequence typing (MLST) for a subset of isolates. Staphylococcal cassette chromosome mec (SCCmec) was determined for all MRSA isolates. Moreover, determinants for S. aureus SSTI, and PVL/ET-positive vs PVL/ET-negative S. aureus were assessed. Staphylococcus aureus were isolated from SSTI wounds of 257 (45.3%) patients, eight (3.1%) of these were MRSA. Genes encoding PVL and ETs were detected in 21.8% and 17.5% of methicillin-susceptible S. aureus (MSSA), respectively. PVL-positive MRSA was not detected. Nasopharyngeal S. aureus carriage was an independent determinant for S. aureus SSTI (odds ratio [OR] 1.8). Primary skin infection (OR 5.4) and previous antibiotic therapy (OR 3.5) were associated with PVL-positive MSSA. Primary skin infection (OR 2.2) was the only factor associated with ET-positive MSSA. MLVA typing revealed two more prevalent MSSA clusters. One ST1-MRSA-SCCmec type IV isolate and a cluster of ST239-MRSA-SCCmec type III were found. Community-acquired SSTI in Indonesia was frequently caused by PVL-positive MSSA, and the hospital-associated ST239-MRSA may have spread from the hospital into the community. © 2017 John Wiley & Sons Ltd.

  18. Methicillin Resistant Staphylococcus aureus Transmission in a Ghanaian Burn Unit: The Importance of Active Surveillance in Resource-Limited Settings

    Directory of Open Access Journals (Sweden)

    Nana Ama Amissah

    2017-10-01

    Full Text Available Objectives:Staphylococcus aureus infections in burn patients can lead to serious complications and death. The frequency of S. aureus infection is high in low- and middle-income countries presumably due to limited resources, misuse of antibiotics and poor infection control. The objective of the present study was to apply population genomics to precisely define, for the first time, the transmission of antibiotic resistant S. aureus in a resource-limited setting in sub-Saharan Africa.Methods:Staphylococcus aureus surveillance was performed amongst burn patients and healthcare workers during a 7-months survey within the burn unit of the Korle Bu Teaching Hospital in Ghana.Results: Sixty-six S. aureus isolates (59 colonizing and 7 clinical were obtained from 31 patients and 10 healthcare workers. Twenty-one of these isolates were ST250-IV methicillin-resistant S. aureus (MRSA. Notably, 25 (81% of the 31 patients carried or were infected with S. aureus within 24 h of admission. Genome comparisons revealed six distinct S. aureus clones circulating in the burn unit, and demonstrated multiple transmission events between patients and healthcare workers. Further, the collected S. aureus isolates exhibited a wide range of genotypic resistances to antibiotics, including trimethoprim (21%, aminoglycosides (33%, oxacillin (33%, chloramphenicol (50%, tetracycline (59% and fluoroquinolones (100%.Conclusion: Population genomics uncovered multiple transmission events of S. aureus, especially MRSA, within the investigated burn unit. Our findings highlight lapses in infection control and prevention, and underscore the great importance of active surveillance to protect burn victims against multi-drug resistant pathogens in resource-limited settings.

  19. Methicillin Resistant Staphylococcus aureus Transmission in a Ghanaian Burn Unit: The Importance of Active Surveillance in Resource-Limited Settings.

    Science.gov (United States)

    Amissah, Nana Ama; Buultjens, Andrew H; Ablordey, Anthony; van Dam, Lieke; Opoku-Ware, Ampomah; Baines, Sarah L; Bulach, Dieter; Tetteh, Caitlin S; Prah, Isaac; van der Werf, Tjip S; Friedrich, Alexander W; Seemann, Torsten; van Dijl, Jan Maarten; Stienstra, Ymkje; Stinear, Timothy P; Rossen, John W

    2017-01-01

    Objectives: Staphylococcus aureus infections in burn patients can lead to serious complications and death. The frequency of S. aureus infection is high in low- and middle-income countries presumably due to limited resources, misuse of antibiotics and poor infection control. The objective of the present study was to apply population genomics to precisely define, for the first time, the transmission of antibiotic resistant S. aureus in a resource-limited setting in sub-Saharan Africa. Methods: Staphylococcus aureus surveillance was performed amongst burn patients and healthcare workers during a 7-months survey within the burn unit of the Korle Bu Teaching Hospital in Ghana. Results: Sixty-six S. aureus isolates (59 colonizing and 7 clinical) were obtained from 31 patients and 10 healthcare workers. Twenty-one of these isolates were ST250-IV methicillin-resistant S. aureus (MRSA). Notably, 25 (81%) of the 31 patients carried or were infected with S. aureus within 24 h of admission. Genome comparisons revealed six distinct S. aureus clones circulating in the burn unit, and demonstrated multiple transmission events between patients and healthcare workers. Further, the collected S. aureus isolates exhibited a wide range of genotypic resistances to antibiotics, including trimethoprim (21%), aminoglycosides (33%), oxacillin (33%), chloramphenicol (50%), tetracycline (59%) and fluoroquinolones (100%). Conclusion: Population genomics uncovered multiple transmission events of S. aureus , especially MRSA, within the investigated burn unit. Our findings highlight lapses in infection control and prevention, and underscore the great importance of active surveillance to protect burn victims against multi-drug resistant pathogens in resource-limited settings.

  20. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Science.gov (United States)

    Fan, Rongyan; Li, Yuanjun; Li, Changfu; Zhang, Yansheng

    2015-01-01

    The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.

  1. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rongyan Fan

    Full Text Available The medicinal plant Xanthium strumarium L. (X. strumarium is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs are a class of 21-24 nucleotide (nt non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.

  2. A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh1[OPEN

    Science.gov (United States)

    Wang, Lun; Deng, Xiuxin

    2015-01-01

    Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast

  3. Antimicrobial resistant coagulase positive Staphylococcus aureus ...

    African Journals Online (AJOL)

    ADEYEYE

    Staphylococcus aureus is an Important agent of food poisoning. In many countries, it ... humans and animals (Casey et al., 2007). ... of widespread use of antibiotics in animals for ... Laboratory Standards Institute methods (CLSI, 2010). Briefly ...

  4. OCCURRENCE AND ANTIBIOGRAM OF Staphylococcus aureus IN ...

    African Journals Online (AJOL)

    User

    1Federal College of Agricultural Produce Technology, Kano. 2Department of ... The presence of S.aureus and resistance to commonly used antibiotics by the isolates posses .... mastitic animals or human sources (Akram et al.,. 2013; Oliver et ...

  5. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies.

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Klopp, Christophe; Ravel, Sophie; Nabihoudine, Ibouniyamine; Tchicaya, Bernadette; Parrinello, Hugues; Abate, Luc; Rialle, Stéphanie; Geiger, Anne

    2015-01-01

    Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies.

  6. The potential of the endolysin Lysdb from Lactobacillus delbrueckii phage for combating Staphylococcus aureus during cheese manufacture from raw milk.

    Science.gov (United States)

    Guo, Tingting; Xin, YongPing; Zhang, Chenchen; Ouyang, Xudong; Kong, Jian

    2016-04-01

    Phage endolysins have received increased attention in recent times as potential antibacterial agents and the biopreservatives in food production processes. Staphylococcus aureus is one of the most common pathogens in bacterial food poisoning outbreaks. In this study, the endolysin Lysdb, one of the two-component cell lysis cassette of Lactobacillus delbrueckii phage phiLdb, was shown to possess a muramidase domain and catalytic sites with homology to Chalaropsis-type lysozymes. Peptidoglycan hydrolytic bond specificity determination revealed that Lysdb was able to cleave the 6-O-acetylated peptidoglycans present in the cell walls of S. aureus. Turbidity reduction assays demonstrated that Lysdb could effectively lyse the S. aureus live cells under acidic and mesothermal conditions. To further evaluate the ability of Lysdb as a potential antibacterial agent against S. aureus in cheese manufacture, Lactobacillus casei BL23 was engineered to constitutively deliver active Lysdb to challenge S. aureus in lab-scale cheese making from raw milk. Compared with the raw milk, the viable counts of S. aureus were reduced by 10(5)-fold in the cheese inoculated with the engineered L. casei strain during the fermentation process, and the pathogenic bacterial numbers remained at a low level (10(4) CFU/g) after 6 weeks of ripening at 10 °C. Taken together, all results indicated that the Lysdb has the function as an effective tool for combating S. aureus during cheese manufacture from raw milk.

  7. Frequency of the Occurence of Methicilin Resistant Staphylococcus aureus (MRSA Infections in Hyderabad, Pakistan

    Directory of Open Access Journals (Sweden)

    Nazir Ahmed Brohi

    2017-06-01

    Full Text Available Staphylococcus aureus is a potential pathogen of hospital and community related infections. It secretes toxins or the enzymes as virulence factor of mild to severe infections and show resistance to beta-lactam antibiotic including penicillin, methicillin, oxacillin and now vancomycin that could alarm of equal risk factors of Methicillin Resistant Staphylococcus aureus (MRSA infections in the patients. The survey report of 381 patients of Hyderabad, Pakistan was collected from March 2013 to June 2014 in which 176 cases were reported for Staphylococcus aureus in both genders of different age groups of 3-15 y kids, 16-45 y adults and 45-70 y olds, which showed 208 and 132 specimens Staphylococcus infection and 16 and 4 cases of MRSA infections in male and female patients, respectively whereas other 31 cases showed no infection. The laboratory diagnosis of the 200 samples from various hospitalized patients revealed the highest percentage of Methicillin Resistant Staphylococcus aureus MRSA in pus and post-operative wounds (17% followed by skin swabs (10%, sputum (7% and blood (0%. The observations revealed greater prevalence of MRSA infection in elderly age 16-45 years males than the females and other age groups. Antibiotic susceptibility test of 26 antibiotics revealed resistance (R-53%, sensitive (S-39 and variable (V-7% sensitivity zones (mm. Amplification of mecA gene was done using PCR reaction that revealed mecA gene bands up to 150-200 base pairs by test resistant strains.

  8. Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans

    Directory of Open Access Journals (Sweden)

    Sha Ky

    2010-08-01

    Full Text Available Abstract Background Tissue differentiation is accompanied by genome-wide changes in the underlying chromatin structure and dynamics, or epigenome. By controlling when, where, and what regulatory factors have access to the underlying genomic DNA, the epigenome influences the cell's transcriptome and ultimately its function. Existing genomic methods for analyzing cell-type-specific changes in chromatin generally involve two elements: (i a source for purified cells (or nuclei of distinct types, and (ii a specific treatment that partitions or degrades chromatin by activity or structural features. For many cell types of great interest, such assays are limited by our inability to isolate the relevant cell populations in an organism or complex tissue containing an intertwined mixture of other cells. This limitation has confined available knowledge of chromatin dynamics to a narrow range of biological systems (cell types that can be sorted/separated/dissected in large numbers and tissue culture models or to amalgamations of diverse cell types (tissue chunks, whole organisms. Results Transgene-driven expression of DNA/chromatin modifying enzymes provides one opportunity to query chromatin structures in expression-defined cell subsets. In this work we combine in vivo expression of a bacterial DNA adenine methyltransferase (DAM with high throughput sequencing to sample tissue-specific chromatin accessibility on a genome-wide scale. We have applied the method (DALEC: Direct Asymmetric Ligation End Capture towards mapping a cell-type-specific view of genome accessibility as a function of differentiated state. Taking advantage of C. elegans strains expressing the DAM enzyme in diverse tissues (body wall muscle, gut, and hypodermis, our efforts yield a genome-wide dataset measuring chromatin accessibility at each of 538,000 DAM target sites in the C. elegans (diploid genome. Conclusions Validating the DALEC mapping results, we observe a strong association

  9. Performance of culture media for the isolation and identification of Staphylococcus aureus from bovine mastitis.

    Science.gov (United States)

    Bautista-Trujillo, G U; Solorio-Rivera, J L; Rentería-Solórzano, I; Carranza-Germán, S I; Bustos-Martínez, J A; Arteaga-Garibay, R I; Baizabal-Aguirre, V M; Cajero-Juárez, M; Bravo-Patiño, A; Valdez-Alarcón, J J

    2013-03-01

    Rapid isolation and identification of pathogens is a major goal of diagnostic microbiology. In order to isolate and identify Staphylococcus aureus, a number of authors have used a variety of selective and/or differential culture media. However, to date, there are no reports comparing the efficacy of selective and differential culture media for S. aureus isolation from bovine mastitis cases using the 16S rRNA (rrs) gene sequence as a gold standard test. In the present study, we evaluated the efficacy of four selective and/or differential culture media for the isolation of S. aureus from milk samples collected from cows suffering from bovine mastitis. Four hundred and forty isolates were obtained using salt-mannitol agar (SMA, Bioxon), Staphylococcus-110 agar (S110, Bioxon), CHROMAgar Staph aureus (CSA, BD-BBL) and sheep's blood agar (SBA, BD-BBL). All bacterial isolates were identified by their typical colony morphology in the respective media, by secondary tests (for coagulase and β-haemolysis) and by partial 16S rRNA (rrs) gene sequencing as a gold standard test. Sensitivity, positive predictive and negative predictive values were higher for SMA (86.96, 52.63 and 95.95%, respectively) compared with S110 (70.00, 23.73 and 90.91%, respectively), CSA (69.23, 28.13 and 95.74%, respectively) and SBA (68.75, 37.93 and 89.58%, respectively) while specificity values were similar for all media. Data indicated that the use of culture media for S. aureus isolation combined with determination of coagulase activity and haemolysis as secondary tests improved accuracy of the identification and was in accordance with rrs gene sequence-analysis compared with the use of the culture media alone.

  10. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer.

    Science.gov (United States)

    Lin, Yanping; Wang, Kangyu; Li, Xiangyu; Sun, Chunyu; Yin, Rui; Wang, Yanfang; Wang, Yi; Zhang, Meiping

    2018-02-21

    Most genes in a genome exist in the form of a gene family; therefore, it is necessary to have knowledge of how a gene family functions to comprehensively understand organismal biology. The receptor-like kinase (RLK)-encoding gene family is one of the most important gene families in plants. It plays important roles in biotic and abiotic stress tolerances, and growth and development. However, little is known about the functional differentiation and relationships among the gene members within a gene family in plants. This study has isolated 563 RLK genes (designated as PgRLK genes) expressed in Jilin ginseng (Panax ginseng C.A. Meyer), investigated their evolution, and deciphered their functional diversification and relationships. The PgRLK gene family is highly diverged and formed into eight types. The LRR type is the earliest and most prevalent, while only the Lec type originated after P. ginseng evolved. Furthermore, although the members of the PgRLK gene family all encode receptor-like protein kinases and share conservative domains, they are functionally very diverse, participating in numerous biological processes. The expressions of different members of the PgRLK gene family are extremely variable within a tissue, at a developmental stage and in the same cultivar, but most of the genes tend to express correlatively, forming a co-expression network. These results not only provide a deeper and comprehensive understanding of the evolution, functional differentiation and correlation of a gene family in plants, but also an RLK genic resource useful for enhanced ginseng genetic improvement.

  11. Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: A negative modulatory role for prostanoids in VEGF-mediated cell: cell communication?

    International Nuclear Information System (INIS)

    Clarkin, Claire E.; Garonna, Elena; Pitsillides, Andrew A.; Wheeler-Jones, Caroline P.D.

    2008-01-01

    In bone, angiogenesis must be initiated appropriately, but limited once remodelling or repair is complete. Our recent findings have supported a role for prostaglandins (PG), known modulators of osteoblast (OB) and endothelial cell (EC) behaviour, in facilitating VEGF-mediated paracrine communication from OBs to 'remotely located' ECs, but the mechanism(s) regulating OB:EC crosstalk when these cells are closely opposed are undefined. In this study we have examined: (i) the effects of exogenous PGE 2 on VEGF-driven events in ECs, and (ii) the role of endogenous COX-2-derived prostanoids in mediating communication between intimately opposed OBs and ECs in direct contact. Exposure of ECs to PGE 2 increased ERK1/2 phosphorylation, COX-2 induction, 6-keto-PGF 1α release and EC proliferation. In contrast, PGE 2 attenuated VEGF 165 -induced VEGFR2/Flk1 phosphorylation, ERK1/2 activation and proliferation of ECs, suggesting that exogenous PGE 2 restricts the actions of VEGF. However, the COX-2-selective inhibitor, NS398, also attenuated VEGF-induced proliferation, implying a distinct role for endogenous COX-2 activity in regulating EC behaviour. To examine the effect of OB:EC proximity and the role of COX-2 products further, we used a confrontational co-culture model. These studies showed that COX-2 blockade with NS398 enhanced EC-dependent increases in OB differentiation, that this effect was reversed by exogenous PGH 2 (immediate COX-2 product), and that exogenous VEGF did not influence EC-dependent OB differentiation under these conditions. Our findings indicate that locally produced prostanoids may serve distinct roles depending on OB:EC proximity and negatively modulate VEGF-mediated changes in EC behaviour when these cells are closely opposed to control angiogenesis during bone (re)modelling

  12. Bursal transcriptome profiling of different inbred chicken lines reveals key differentially expressed genes at 3 days post-infection with very virulent infectious bursal disease virus.

    Science.gov (United States)

    Farhanah, Mohd Isa; Yasmin, Abd Rahaman; Mat Isa, Nurulfiza; Hair-Bejo, Mohd; Ideris, Aini; Powers, Claire; Oladapo, Omobolanle; Nair, Venugopal; Khoo, Jia-Shiun; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Omar, Abdul Rahman

    2018-01-01

    Infectious bursal disease is a highly contagious disease in the poultry industry and causes immunosuppression in chickens. Genome-wide regulations of immune response genes of inbred chickens with different genetic backgrounds, following very virulent infectious bursal disease virus (vvIBDV) infection are poorly characterized. Therefore, this study aims to analyse the bursal tissue transcriptome of six inbred chicken lines 6, 7, 15, N, O and P following infection with vvIBDV strain UK661 using strand-specific next-generation sequencing, by highlighting important genes and pathways involved in the infected chicken during peak infection at 3 days post-infection. All infected chickens succumbed to the infection without major variations among the different lines. However, based on the viral loads and bursal lesion scoring, lines P and 6 can be considered as the most susceptible lines, while lines 15 and N were regarded as the least affected lines. Transcriptome profiling of the bursa identified 4588 genes to be differentially expressed, with 2985 upregulated and 1642 downregulated genes, in which these genes were commonly or uniquely detected in all or several infected lines. Genes that were upregulated are primarily pro-inflammatory cytokines, chemokines and IFN-related. Various genes that are associated with B-cell functions and genes related to apoptosis were downregulated, together with the genes involved in p53 signalling. In conclusion, bursal transcriptome profiles of different inbred lines showed differential expressions of pro-inflammatory cytokines and chemokines, Th1 cytokines, JAK-STAT signalling genes, MAPK signalling genes, and their related pathways following vvIBDV infection.

  13. Differential profiling of breast cancer plasma proteome by isotope-coded affinity tagging method reveals biotinidase as a breast cancer biomarker

    International Nuclear Information System (INIS)

    Kang, Un-Beom; Ahn, Younghee; Lee, Jong Won; Kim, Yong-Hak; Kim, Joon; Yu, Myeong-Hee; Noh, Dong-Young; Lee, Cheolju

    2010-01-01

    Breast cancer is one of the leading causes of women's death worldwide. It is important to discover a reliable biomarker for the detection of breast cancer. Plasma is the most ideal source for cancer biomarker discovery since many cells cross-communicate through the secretion of soluble proteins into blood. Plasma proteomes obtained from 6 breast cancer patients and 6 normal healthy women were analyzed by using the isotope-coded affinity tag (ICAT) labeling approach and tandem mass spectrometry. All the plasma samples used were depleted of highly abundant 6 plasma proteins by immune-affinity column chromatography before ICAT labeling. Several proteins showing differential abundance level were selected based on literature searches and their specificity to the commercially available antibodies, and then verified by immunoblot assays. A total of 155 proteins were identified and quantified by ICAT method. Among them, 33 proteins showed abundance changes by more than 1.5-fold between the plasmas of breast cancer patients and healthy women. We chose 5 proteins for the follow-up confirmation in the individual plasma samples using immunoblot assay. Four proteins, α1-acid glycoprotein 2, monocyte differentiation antigen CD14, biotinidase (BTD), and glutathione peroxidase 3, showed similar abundance ratio to ICAT result. Using a blind set of plasmas obtained from 21 breast cancer patients and 21 normal healthy controls, we confirmed that BTD was significantly down-regulated in breast cancer plasma (Wilcoxon rank-sum test, p = 0.002). BTD levels were lowered in all cancer grades (I-IV) except cancer grade zero. The area under the receiver operating characteristic curve of BTD was 0.78. Estrogen receptor status (p = 0.940) and progesterone receptor status (p = 0.440) were not associated with the plasma BTD levels. Our study suggests that BTD is a potential serological biomarker for the detection of breast cancer

  14. Genome-wide characterization of pectin methyl esterase genes reveals members differentially expressed in tolerant and susceptible wheats in response to Fusarium graminearum.

    Science.gov (United States)

    Zega, Alessandra; D'Ovidio, Renato

    2016-11-01

    Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Infertility as a consequence of spermagglutinating Staphylococcus aureus colonization in genital tract of female mice.

    Directory of Open Access Journals (Sweden)

    Siftjit Kaur

    Full Text Available Various studies have shown Staphylococcus aureus to be one of the most prevalent organism in male and female genital tract but most practitioners dismiss it as mere contamination which is assumed to be of no significance. However, it is now suggested that the presence of this organism should not be ignored, as incubation of spermatozoa with S. aureus results in reduced sperm motility. Although S. aureus has been reported to cause immobilization of spermatozoa, however, its role in infertility has yet to be elucidated. The present study was designed to establish a spermagglutinating strain of S. aureus isolated from the cervix of a woman with unexplained infertility, in mouse and evaluate its effect on fertility outcome. Female Balb/c mice were inoculated intravaginally with different doses of S. aureus (10(4, 10(6 or 10(8cfu/20 µl for 10 consecutive days. Microbial colonization monitored every 3(rd day by vaginal cultures, revealed that strain could efficiently colonize mouse vagina. Mating on day 12, with proven breeder males led to 100% decrease in fertility as compared to control. Even a single dose of 10(6 or 10(8cfu could lead to vaginal colonization which persisted for 10 days followed by gradual clearing till 21 days, vaginal cultures were negative thereafter. Female mice mated on day 7 (culture positive, were rendered infertile, however, the mice mated on day 22 (culture negative, retained fertility and delivered pups indicating its role in provoking infertility. Further, except infertility, no other clinical manifestation could be seen apparently or histologically. However, when a non-spermagglutinating/immobilizing standard strain of S. aureus MTCC6625 was inoculated intravaginally at 10(8cfu for 10 days followed by mating on day 12, fertility was observed in all the female mice. This supports the hypothesis that infertility observed in the former groups was as a result of colonization with spermagglutinating strain of S. aureus.

  16. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation.

    Science.gov (United States)

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Sarma, Potukuchi Venkata Gurunadha Krishna

    2017-03-01

    When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and spread the infection.

  17. Life and death of proteins: a case study of glucose-starved Staphylococcus aureus.

    Science.gov (United States)

    Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael

    2012-09-01

    The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis.

  18. Life and Death of Proteins: A Case Study of Glucose-starved Staphylococcus aureus*

    Science.gov (United States)

    Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael

    2012-01-01

    The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis. PMID:22556279

  19. Genomic epidemiology of methicillin-susceptible Staphylococcus aureus across colonisation and skin and soft tissue infection.

    Science.gov (United States)

    Grinberg, Alex; Biggs, Patrick J; Zhang, Ji; Ritchie, Stephen; Oneroa, Zachary; O'Neill, Charlotte; Karkaba, Ali; Velathanthiri, Niluka S; Coombs, Geoffrey W

    2017-10-01

    Staphylococcus aureus skin and soft tissue infection (Sa-SSTI) places a significant burden on healthcare systems. New Zealand has a high incidence of Sa-SSTI, and here most morbidity is caused by a polyclonal methicillin-susceptible (MSSA) bacterial population. However, MSSA also colonise asymptomatically the cornified epithelia of approximately 20% of the population, and their divide between commensalism and pathogenicity is poorly understood. We aimed to see whether MSSA are genetically differentiated across colonisation and SSTI; and given the close interactions between people and pets, whether strains isolated from pets differ from human strains. We compared the genomes of contemporaneous colonisation and clinical MSSA isolates obtained in New Zealand from humans and pets. Core and accessory genome comparisons revealed a homogeneous bacterial population across colonisation, disease, humans, and pets. The rate of MSSA colonisation in dogs was comparatively low (5.4%). In New Zealand, most Sa-SSTI morbidity is caused by a random sample of the colonising MSSA population, consistent with the opportunistic infection model rather than the paradigm distinguishing strains according to their pathogenicity. Thus, studies of the factors determining colonisation and immune-escape may be more beneficial than comparative virulence studies. Contact with house-hold pets may pose low zoonotic risk. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses.

    Directory of Open Access Journals (Sweden)

    Lindsey N Shaw

    Full Text Available S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (sigma(S, that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that sigma(S is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that sigma(S is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a sigma(S mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days, or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72 h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination

  1. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923.

    Science.gov (United States)

    Treangen, Todd J; Maybank, Rosslyn A; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F; Karaolis, David K R; Koren, Sergey; Ondov, Brian; Phillippy, Adam M; Bergman, Nicholas H; Rosovitz, M J

    2014-11-06

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. Copyright © 2014 Treangen et al.

  2. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    International Nuclear Information System (INIS)

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  3. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, Emil [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland); Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah [Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland); Neri, Dario, E-mail: neri@pharma.ethz.ch [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  4. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors*

    Science.gov (United States)

    Aurass, Philipp; Gerlach, Thomas; Becher, Dörte; Voigt, Birgit; Karste, Susanne; Bernhardt, Jörg; Riedel, Katharina; Hecker, Michael; Flieger, Antje

    2016-01-01

    Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests

  5. Isolation and identification of Staphylococcus aureus from milk and milk products and their drug resistance patterns in Anand, Gujarat

    Directory of Open Access Journals (Sweden)

    M. N. Brahmbhatt

    2013-02-01

    Full Text Available Aim: The study was carried out with aim to isolate Staphylococcus aureus from milk and milk products (pedha and curd and determine antibiogram pattern of S. aureus isolates. Materials and Methods: During 9 months duration of study a total of 160 milk and milk product samples (pedha and curd were collected from different places in and around Anand city such as milk collection centre of Co-operative milk dairies, cattle farms, individual household, milk vendors and sweet shops. The samples were collected under aseptic precautions and were enriched in Peptone Water (PW followed by direct plating on selective media viz. Baird-Parker Agar. The presumptive S. aureus isolates were identified by biochemical tests. Antibiogram pattern of S. aureus to antimicrobial agents were evaluated by disk diffusion method. Results: Analysis of result revealed that out of total 160 samples of milk (100 and milk products i.e. curd (30 and pedha (30 resulted in the isolation of 10 isolates (6.25 % of S. aureus. In the present study S. aureus isolates were found variably resistant to the antibiotics tested. The S. aureus isolates showed highest sensitivity towards cephalothin (100.00 %, co-trimoxazole (100.00 %, cephalexin (100.00 % and methicillin (100.00 % followed by gentamicin (90.00 %, ciprofloxacin (80.00 %, oxacillin (70.00 %, streptomycin (60.00 % and ampicillin (60.00 %. The pattern clearly indicated that the overall high percent of S. aureus isolates were resistant to Penicillin-G (100.00 % followed by ampicillin (40.00 %, oxytetracycline and oxacillin (20.00 % and streptomycin and gentamicin (10.00 % Conclusions: Results clearly suggested a possibility of potential public health threat of S. aureus resulting from contamination of milk and milk products with pathogenic bacteria is mainly due to unhygienic processing, handling and unhygienic environment. [Vet World 2013; 6(1.000: 10-13

  6. MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.

    Science.gov (United States)

    Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang

    2017-06-01

    Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.

  7. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Directory of Open Access Journals (Sweden)

    Ludmila Alekseeva

    Full Text Available Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  8. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  9. Screening of medicinal plants for antibacterial activities on Staphylococcus aureus strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Marisa A. N. Diaz

    2010-08-01

    Full Text Available Staphylococcus aureus is the main causative agent of bovine mastitis. The activity of several extracts from ten medicinal plants traditionally used in Brazil as antiseptic was investigated against fifteen strains of Staphylococcus aureus isolated from animals with mastitis manifestation by the disc diffusion method and broth microdilution assay. The interference of the extracts on cell in the form of adherent colonies was also evaluated. MIC values ranged from 0.5 mg/mL to 1.0 mg/mL and biofilm inhibitory concentration (BIC were between 0.25 mg/mL and 0.8 mg/mL. Results revealed the potential of extracts of Senna macranthera, Artemisia absinthium, Cymbopogon nardus and Baccharis dracunculifolia as antibacterial agents against S. aureus strains isolated from bovine mastitis and support the possible use of these phytotherapic agents in the clinical management of the disease.

  10. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  11. Genomic investigation of Staphylococcus aureus isolates from bulk tank milk and dairy cows with clinical mastitis.

    Science.gov (United States)

    Ronco, Troels; Klaas, Ilka C; Stegger, Marc; Svennesen, Line; Astrup, Lærke B; Farre, Michael; Pedersen, Karl

    2018-02-01

    Staphylococcus aureus is one of the most common pathogens that cause mastitis in dairy cows. Various subtypes, virulence genes and mobile genetic elements have been associated with isolates from bulk tank milk and clinical mastitis. So far, no Danish cattle associated S. aureus isolates have been whole-genome sequenced and further analyzed. Thus, the main objective was to investigate the population structure and genomic content of isolates from bulk tank milk and clinical mastitis, using whole-genome sequencing. This may reveal the origin of strains that cause clinical mastitis. S. aureus isolates from bulk tank milk (n = 94) and clinical mastitis (n = 63) were collected from 91 and 24 different farms, respectively and whole-genome sequenced. The genomic content was analyzed and a phylogenetic tree based on single nucleotide polymorphisms was constructed. In general, the isolates from both bulk tank milk and clinical mastitis were of similar genetic background. This suggests that dairy cows are natural carriers of the S. aureus subtypes that cause clinical mastitis if the right conditions are present and that a broad range of subtypes cause mastitis. A phylogenetic cluster that mostly consisted of ST151 isolates carried three mobile genetic elements that were primarily found in this group. The prevalence of resistance genes was generally low. However, the first ST398 methicillin resistant S. aureus isolate from a Danish dairy cow with clinical mastitis was detected. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Ming, Di; Wang, Dacheng; Cao, Fengjiao; Xiang, Hua; Mu, Dan; Cao, Junjie; Li, Bangbang; Zhong, Ling; Dong, Xiaoyun; Zhong, Xiaobo; Wang, Lin; Wang, Tiedong

    2017-01-01

    The ability to form biofilms on surfaces makes Staphylococcus aureus the main pathogenic factor in implanted medical device infections. The aim of this study was to discover a biofilm inhibitor distinct from the antibiotics used to prevent infections resulting from S. aureus biofilms. Here, we describe kaempferol, a small molecule with anti-biofilm activity that specifically inhibited the formation of S. aureus biofilms. Crystal violet (CV) staining and fluorescence microscopy clearly showed that 64 μg/ml kaempferol inhibited biofilm formation by 80%. Meanwhile, the minimum inhibitory concentration (MIC) and growth curve results indicated that kaempferol had no antibacterial activity against the tested bacterial strain. Kaempferol inhibited the primary attachment phase of biofilm formation, as determined by a fibrinogen-binding assay. Moreover, a fluorescence resonance energy transfer (FRET) assay and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that kaempferol reduced the activity of S. aureus sortaseA (SrtA) and the expression of adhesion-related genes. Based on these results, kaempferol provides a starting point for the development of novel anti-biofilm drugs, which may decrease the risk of bacterial drug resistance, to prevent S. aureus biofilm-related infections.

  13. Detection of toxic shock toxin (tst gene in Staphylococcus aureus isolated from bovine milk samples

    Directory of Open Access Journals (Sweden)

    S. Baniardalan

    2017-09-01

    Full Text Available Staphylococcus aureus is a major causative pathogen of clinical and subclinical mastitis in dairy cattle all over the world. This agent produces a variety of extracellular toxins and virulence factors in-cluding toxic shock syndrome toxin-1 (TSST-1 which is the major cause of toxic shock syndrome (TSS. In the present study, 76 S. aureus isolates have been obtained from milk samples collected from 7 dairy herds in Hamedan province of Iran. The isolates were identified based on the biochemical and molecular methods using PCR amplification of the femA gene. The staphylococcal isolates were also examined for the presence of TSST-1 (tst encoding gene. This gene was detected in only one S. aureus isolate (1.3%. The results revealed that S. aureus strains causing bovine mastitis may potentially produce staphylococcal toxic shock syndrome toxin-1, indicating that it is very important to follow the presence of TSST-1 producing S. aureus isolates in foodstuffs to protect consumers against the risk of toxic shock syndrome

  14. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  15. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Science.gov (United States)

    Yu, Chuanfei; Li, Yang; Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G; Coen, Clive W; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  16. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Directory of Open Access Journals (Sweden)

    Chuanfei Yu

    Full Text Available The naked mole-rat (Heterocephalus glaber is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam, a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m, and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  17. Re-analysis of RNA-Sequencing Data on Apple Stem Grooving Virus infected Apple reveals more significant differentially expressed genes

    Directory of Open Access Journals (Sweden)

    Bipin Balan

    2017-12-01

    Full Text Available RNA sequencing (RNA-Seq technology has enabled the researchers to investigate the host global gene expression changes in plant-virus interactions which helped to understand the molecular basis of virus diseases. The re-analysis of RNA-Seq studies using most updated genome version and the available best analysis pipeline will produce most accurate results. In this study, we re-analysed the Apple stem grooving virus (ASGV infected apple shoots in comparison with that of virus-free in vitro shoots [1] using the most updated Malus x domestica genome downloaded from Phytozome database. The re-analysis was done by using HISAT2 software and Cufflinks program was used to mine the differentially expressed genes. We found that ~20% more reads was mapped to the latest genome using the updated pipeline, which proved the significance of such re-analysis. The comparison of the updated results with that of previous was done. In addition, we performed protein-protein interaction (PPI to investigate the proteins affected by ASGV infection.

  18. Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil

    Directory of Open Access Journals (Sweden)

    Helena Fagundes

    2010-06-01

    Full Text Available The objective of the present study was to evaluate the occurrence of Staphylococcus aureus in milk produced in 37 farms located in the regions of Ribeirão Preto and São Carlos, state of São Paulo, Brazil. Two-hundred and eight samples of milk from individual cows showing subclinical mastitis, and 37 samples of bulk tank milk were analyzed. S. aureus strains were detected in 18 (7.3% milk samples: 14 (6.7% from samples of individual cows, and 4 (10.8% from bulk tank milk. Two individual milk samples (14.3% and two bulk milk samples contained enterotoxigenic S. aureus. PFGE analysis revealed the genetic heterogeneity of the strains isolated from raw milk, which presented to 13 S. aureus patterns. Results confirmed the potential transmission of staphylococcal food poisoning to consumers via milk of cows affected by subclinical mastitis, mainly when raw milk is ingested.

  19. Genotypes and enterotoxicity of Staphylococcus aureus isolated from the hands and nasal cavities of flight-catering employees.

    Science.gov (United States)

    Hatakka, M; Björkroth, K J; Asplund, K; Mäki-Petäys, N; Korkeala, H J

    2000-11-01

    Hand and nasal samples of flight-catering staff were collected from 1995 to 1997 to find employees carrying Staphylococcus aureus. Altogether 153 hand samples and 136 nose samples were taken. Nasal sampling showed a higher prevalence of S. aureus among food handlers (29%) than hand sampling (9%). A high proportion of the strains (46%) were enterotoxigenic, and a considerable amount of food handlers carried enterotoxigenic S. aureus, 6% and 12% according to hand and nasal sampling, respectively. Pulsed-field gel electrophoresis macrorestriction profiles revealed a total of 32 different types associated with the 35 employees carrying S. aureus. In most cases, the same type colonized both the hand and nose of a person. Despite the wide variety of types found, one strain colonized five persons and the second most common strain was associated with four food handlers. The predominant toxin produced was B, which was produced by the most common strain. The results showed that nasal sampling is a good way to detect S. aureus carriers, whereas hand sampling may fail to reveal carriers. The high proportion of enterotoxigenic strains show that a food handler harboring S. aureus must be considered a potential source of enterotoxigenic strains for airline meals.

  20. Comparison of four methods for rapid identification of Staphylococcus aureus directly from BACTEC 9240 blood culture system

    Directory of Open Access Journals (Sweden)

    N S Ozen

    2011-01-01

    Full Text Available Purpose: Differentiation of Staphylococcus aureus (S. aureus from coagulase-negative staphylococci is very important in blood stream infections. Identification of S. aureus and coagulase-negative staphylococci (CoNS from blood cultures takes generally 18-24 h after positive signaling on continuously monitored automated blood culture system. In this study, we evaluated the performance of tube coagulase test (TCT, slide agglutination test (Dry Spot Staphytect Plus, conventional polymerase chain reaction (PCR and LightCycler Staphylococcus MGrade kit directly from blood culture bottles to achieve rapid identification of S. aureus by using the BACTEC 9240 blood culture system. Materials and Methods: A total of 129 BACTEC 9240 bottles growing gram-positive cocci suggesting Staphylococci were tested directly from blood culture broths (BCBs with TCT, Dry Spot Staphytect Plus, conventional PCR and LightCycler Staphylococcus MGrade kit for rapid identification of S. aureus. Results: The sensitivities of the tests were 99, 68, 99 and 100%, respectively. Conclusion: Our results suggested that 2 h TCT was found to be simple and inexpensive method for the rapid identification of S. aureus directly from positive blood cultures.

  1. Comparison of four methods for rapid identification of Staphylococcus aureus directly from BACTEC 9240 blood culture system.

    Science.gov (United States)

    Ozen, N S; Ogunc, D; Mutlu, D; Ongut, G; Baysan, B O; Gunseren, F

    2011-01-01

    Differentiation of Staphylococcus aureus (S. aureus) from coagulase-negative staphylococci is very important in blood stream infections. Identification of S. aureus and coagulase-negative staphylococci (CoNS) from blood cultures takes generally 18-24 h after positive signaling on continuously monitored automated blood culture system. In this study, we evaluated the performance of tube coagulase test (TCT), slide agglutination test (Dry Spot Staphytect Plus), conventional polymerase chain reaction (PCR) and LightCycler Staphylococcus MGrade kit directly from blood culture bottles to achieve rapid identification of S. aureus by using the BACTEC 9240 blood culture system. A total of 129 BACTEC 9240 bottles growing gram-positive cocci suggesting Staphylococci were tested directly from blood culture broths (BCBs) with TCT, Dry Spot Staphytect Plus, conventional PCR and LightCycler Staphylococcus MGrade kit for rapid identification of S. aureus. The sensitivities of the tests were 99, 68, 99 and 100%, respectively. Our results suggested that 2 h TCT was found to be simple and inexpensive method for the rapid identification of S. aureus directly from positive blood cultures.

  2. Topical Prostaglandin E Analog Restores Defective Dendritic Cell–Mediated Th17 Host Defense Against Methicillin-Resistant Staphylococcus Aureus in the Skin of Diabetic Mice

    OpenAIRE

    Dejani, Naiara N.; Brandt, Stephanie L.; Piñeros, Annie; Glosson-Byers, Nicole L.; Wang, Sue; Son, Young Min; Medeiros, Alexandra I.; Serezani, C. Henrique

    2016-01-01

    People with diabetes are more prone to Staphylococcus aureus skin infection than healthy individuals. Control of S. aureus infection depends on dendritic cell (DC)–induced T-helper 17 (Th17)–mediated neutrophil recruitment and bacterial clearance. DC ingestion of infected apoptotic cells (IACs) drive prostaglandin E2 (PGE2) secretion to generate Th17 cells. We speculated that hyperglycemia inhibits skin DC migration to the lymph nodes and impairs the Th17 differentiation that accounts for poo...

  3. Staphylococcus aureus seroproteomes discriminate ruminant isolates causing mild or severe mastitis

    Directory of Open Access Journals (Sweden)

    Le Maréchal Caroline

    2011-02-01

    Full Text Available Abstract Staphylococcus aureus is a major cause of mastitis in ruminants. In ewe mastitis, symptoms range from subclinical to gangrenous mastitis. S. aureus factors or host-factors contributing to the different outcomes are not completely elucidated. In this study, experimental mastitis was induced on primiparous ewes using two S. aureus strains, isolated from gangrenous (strain O11 or subclinical (strain O46 mastitis. Strains induced drastically distinct clinical symptoms when tested in ewe and mice experimental mastitis. Notably, they reproduced mild (O46 or severe (O11 mastitis in ewes. Ewe sera were used to identify staphylococcal immunoreactive proteins commonly or differentially produced during infections of variable severity and to define core and accessory seroproteomes. Such SERological Proteome Analysis (SERPA allowed the identification of 89 immunoreactive proteins, of which only 52 (58.4% were previously identified as immunogenic proteins in other staphylococcal infections. Among the 89 proteins identified, 74 appear to constitute the core seroproteome. Among the 15 remaining proteins defining the accessory seroproteome, 12 were specific for strain O11, 3 were specific for O46. Distribution of one protein specific for each mastitis severity was investigated in ten other strains isolated from subclinical or clinical mastitis. We report here for the first time the identification of staphylococcal immunogenic proteins common or specific to S. aureus strains responsible for mild or severe mastitis. These findings open avenues in S. aureus mastitis studies as some of these proteins, expressed in vivo, are likely to account for the success of S. aureus as a pathogen of the ruminant mammary gland.

  4. Nasal Carriage of Staphylococcus aureus among Children in the Ashanti Region of Ghana.

    Science.gov (United States)

    Eibach, Daniel; Nagel, Michael; Hogan, Benedikt; Azuure, Clinton; Krumkamp, Ralf; Dekker, Denise; Gajdiss, Mike; Brunke, Melanie; Sarpong, Nimako; Owusu-Dabo, Ellis; May, Jürgen

    2017-01-01

    Nasal carriage with Staphylococcus aureus is a common risk factor for invasive infections, indicating the necessity to monitor prevalent strains, particularly in the vulnerable paediatric population. This surveillance study aims to identify carriage rates, subtypes, antimicrobial susceptibilities and virulence markers of nasal S. aureus isolates collected from children living in the Ashanti region of Ghana. Nasal swabs were obtained from children aureus isolates were characterized by their antimicrobial susceptibility, the presence of genes encoding for Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin-1 (TSST-1) and further differentiated by spa-typing and multi-locus-sequence-typing. Out of 544 children 120 (22.1%) were colonized with S. aureus, with highest carriage rates during the rainy seasons (27.2%; p = 0.007), in females aged 6-8 years (43.7%) and males aged 8-10 years (35.2%). The 123 isolates belonged to 35 different spa-types and 19 sequence types (ST) with the three most prevalent spa-types being t355 (n = 25), t84 (n = 18), t939 (n = 13), corresponding to ST152, ST15 and ST45. Two (2%) isolates were methicillin-resistant S. aureus (MRSA), classified as t1096 (ST152) and t4454 (ST45), and 16 (13%) were resistant to three or more different antimicrobial classes. PVL and TSST-1 were detected in 71 (58%) and 17 (14%) isolates respectively. S. aureus carriage among Ghanaian children seems to depend on age, sex and seasonality. While MRSA rates are low, the high prevalence of PVL is of serious concern as these strains might serve not only as a source for severe invasive infections but may also transfer genes, leading to highly virulent MRSA clones.

  5. Nasal Carriage of Staphylococcus aureus among Children in the Ashanti Region of Ghana.

    Directory of Open Access Journals (Sweden)

    Daniel Eibach

    Full Text Available Nasal carriage with Staphylococcus aureus is a common risk factor for invasive infections, indicating the necessity to monitor prevalent strains, particularly in the vulnerable paediatric population. This surveillance study aims to identify carriage rates, subtypes, antimicrobial susceptibilities and virulence markers of nasal S. aureus isolates collected from children living in the Ashanti region of Ghana.Nasal swabs were obtained from children < 15 years of age on admission to the Agogo Presbyterian Hospital between April 2014 and January 2015. S. aureus isolates were characterized by their antimicrobial susceptibility, the presence of genes encoding for Panton-Valentine leukocidin (PVL and toxic shock syndrome toxin-1 (TSST-1 and further differentiated by spa-typing and multi-locus-sequence-typing.Out of 544 children 120 (22.1% were colonized with S. aureus, with highest carriage rates during the rainy seasons (27.2%; p = 0.007, in females aged 6-8 years (43.7% and males aged 8-10 years (35.2%. The 123 isolates belonged to 35 different spa-types and 19 sequence types (ST with the three most prevalent spa-types being t355 (n = 25, t84 (n = 18, t939 (n = 13, corresponding to ST152, ST15 and ST45. Two (2% isolates were methicillin-resistant S. aureus (MRSA, classified as t1096 (ST152 and t4454 (ST45, and 16 (13% were resistant to three or more different antimicrobial classes. PVL and TSST-1 were detected in 71 (58% and 17 (14% isolates respectively.S. aureus carriage among Ghanaian children seems to depend on age, sex and seasonality. While MRSA rates are low, the high prevalence of PVL is of serious concern as these strains might serve not only as a source for severe invasive infections but may also transfer genes, leading to highly virulent MRSA clones.

  6. [The implementation of polymerase chain reaction technique: the real time to reveal and differentiate the viruses of human papilloma of high carcinogenic risk].

    Science.gov (United States)

    Andosova, L D; Kontorshchikova, K N; Blatova, O L; Kudel'kina, S Iu; Kuznetsova, I A; Belov, A V; Baĭkova, R A

    2011-07-01

    The polymerase chain reaction technique was applied in "real time" format to evaluate the occurrence rate and infection ratio of various genotypes of human papilloma of high carcinogenic risk in virus-positive women and contact persons. The examination sampling consisted of 738 women aged of 17-50 years. The examination results permitted to establish high percentage of infection of 546 patients (74%) by carcinogenic papilloma viruses. The analysis of detection rate of various genotypes of human papilloma of high carcinogenic risk established that the 56th and 16th types of high carcinogenic risk are revealed more often than others--in 33% and 15.4% correspondingly. In males, first place in occurrence rate is for those types of virus of human papilloma: the 56th n = 10 (33.3%), 16th n = 3 (10%), 45th n = 3 (10%), 51th n = 3 (10%). The rest of genotypes are detected in 3-7% cases.

  7. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci

    Directory of Open Access Journals (Sweden)

    Caroline E. Dubé

    2017-02-01

    Full Text Available Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla, an important reef-builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71% and polymorphism (59% of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323–0.496 and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.

  8. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells.

    Science.gov (United States)

    Tsang, Jason C H; Yu, Yong; Burke, Shannon; Buettner, Florian; Wang, Cui; Kolodziejczyk, Aleksandra A; Teichmann, Sarah A; Lu, Liming; Liu, Pentao

    2015-09-21

    Hematopoietic stem cells (HSCs) are a rare cell type with the ability of long-term self-renewal and multipotency to reconstitute all blood lineages. HSCs are typically purified from the bone marrow using cell surface markers. Recent studies have identified significant cellular heterogeneities in the HSC compartment with subsets of HSCs displaying lineage bias. We previously discovered that the transcription factor Bcl11a has critical functions in the lymphoid development of the HSC compartment. In this report, we employ single-cell transcriptomic analysis to dissect the molecular heterogeneities in HSCs. We profile the transcriptomes of 180 highly purified HSCs (Bcl11a (+/+) and Bcl11a (-/-)). Detailed analysis of the RNA-seq data identifies cell cycle activity as the major source of transcriptomic variation in the HSC compartment, which allows reconstruction of HSC cell cycle progression in silico. Single-cell RNA-seq profiling of Bcl11a (-/-) HSCs reveals abnormal proliferative phenotypes. Analysis of lineage gene expression suggests that the Bcl11a (-/-) HSCs are constituted of two distinct myeloerythroid-restricted subpopulations. Remarkably, similar myeloid-restricted cells could also be detected in the wild-type HSC compartment, suggesting selective elimination of lymphoid-competent HSCs after Bcl11a deletion. These defects are experimentally validated in serial transplantation experiments where Bcl11a (-/-) HSCs are myeloerythroid-restricted and defective in self-renewal. Our study demonstrates the power of single-cell transcriptomics in dissecting cellular process and lineage heterogeneities in stem cell compartments, and further reveals the molecular and cellular defects in the Bcl11a-deficient HSC compartment.

  9. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    Science.gov (United States)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  10. Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates

    Directory of Open Access Journals (Sweden)

    Wang Jinkai

    2012-08-01

    Full Text Available Abstract Background The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. Results To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4 DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. Conclusions Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and non-human primates, and only a few DMRs were identified.

  11. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    Science.gov (United States)

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  12. Sub-cellular Electrical Heterogeneity Revealed by Loose Patch Recording Reflects Differential Localization of Sarcolemmal Ion Channels in Intact Rat Hearts

    Directory of Open Access Journals (Sweden)

    Igor V. Kubasov

    2018-02-01

    Full Text Available The cardiac action potential (AP is commonly recoded as an integral signal from isolated myocytes or ensembles of myocytes (with intracellular microelectrodes and extracellular macroelectrodes, respectively. These signals, however, do not provide a direct measure of activity of ion channels and transporters located in two major compartments of a cardiac myocyte: surface sarcolemma and the T-tubule system, which differentially contribute to impulse propagation and excitation-contraction (EC coupling. In the present study we investigated electrical properties of myocytes within perfused intact rat heart employing loose patch recording with narrow-tip (2 μm diameter extracellular electrodes. Using this approach, we demonstrated two distinct types of electric signals with distinct waveforms (single peak and multi-peak AP; AP1 and AP2, respectively during intrinsic pacemaker activity. These two types of waveforms depend on the position of the electrode tip on the myocyte surface. Such heterogeneity of electrical signals was lost when electrodes of larger pipette diameter were used (5 or 10 μm, which indicates that the electric signal was assessed from a region of <5 μm. Importantly, both pharmacological and mathematical simulation based on transverse (T-tubular distribution suggested that while the AP1 and the initial peak of AP2 are predominantly attributable to the fast, inward Na+ current in myocyte's surface sarcolemma, the late components of AP2 are likely representative of currents associated with L-type Ca2+ channel and Na+/Ca2+ exchanger (NCX currents which are predominantly located in T-tubules. Thus, loose patch recording with narrow-tip pipette provides a valuable tool for studying cardiac electric activity on the subcellular level in the intact heart.

  13. TRANSCRIPTOME ANALYSES REVEAL DIFFERENTIAL GENE EXPRESSION PATTERNS BETWEEN THE LIFE-CYCLE STAGES OF EMILIANIA HUXLEYI (HAPTOPHYTA) AND REFLECT SPECIALIZATION TO DIFFERENT ECOLOGICAL NICHES(1).

    Science.gov (United States)

    Rokitta, Sebastian D; de Nooijer, Lennart J; Trimborn, Scarlett; de Vargas, Colomban; Rost, Björn; John, Uwe

    2011-08-01

    Coccolithophores, especially the abundant, cosmopolitan species Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, are one of the main driving forces of the oceanic carbonate pump and contribute significantly to global carbon cycling, due to their ability to calcify. A recent study indicates that termination of diploid blooms by viral infection induces life-cycle transition, and speculation has arisen about the role of the haploid, noncalcifying stage in coccolithophore ecology. To explore gene expression patterns in both life-cycle stages, haploid and diploid cells of E. huxleyi (RCC 1217 and RCC 1216) were acclimated to limiting and saturating photon flux densities. Transcriptome analyses were performed to assess differential genomic expression related to different ploidy levels and acclimation light intensities. Analyses indicated that life-cycle stages exhibit different properties of regulating genome expression (e.g., pronounced gene activation and gene silencing in the diploid stage), proteome maintenance (e.g., increased turnover of proteins in the haploid stage), as well as metabolic processing (e.g., pronounced primary metabolism and motility in the haploid stage and calcification in the diploid stage). Furthermore, higher abundances of transcripts related to endocytotic and digestive machinery were observed in the diploid stage. A qualitative feeding experiment indicated that both life-cycle stages are capable of particle uptake (0.5 μm diameter) in late-stationary growth phase. Results showed that the two life-cycle stages represent functionally distinct entities that are evolutionarily shaped to thrive in the environment they typically inhabit. © 2011 Phycological Society of America.

  14. Differential ontogenetic patterns of levocabastine-sensitive neurotensin NT2 receptors and of NT1 receptors in the rat brain revealed by in situ hybridization.

    Science.gov (United States)

    Lépée-Lorgeoux, I; Betancur, C; Rostène, W; Pélaprat, D

    1999-03-12

    The postnatal ontogeny of the levocabastine-sensitive neurotensin receptor (NT2) mRNA was studied by in situ hybridization in the rat brain and compared with the distribution of the levocabastine-insensitive NT1 receptor. NT2 receptor mRNA was absent at birth from all brain structures except the ependymal cell layer lining the ventricles. The development of NT2 receptor mRNA followed three ontogenetic patterns. The first pattern, involving the majority of the cerebral gray matter, was characterized by a continuous increase from postnatal day 5 (P5) to P30. The second one, involving regions rich in myelinated fibers such as the corpus callosum and lacunosum moleculare layer of the hippocampus, exhibited a pronounced increase between P5 and P10, peaked at P15 and was followed by a plateau or a slight decrease. The third pattern was observed in the ependymal cell layer lining the olfactory and lateral ventricles, where the high labeling already present at birth continued to increase during development. These different developmental patterns could reflect the variety of cells expressing NT2 receptor mRNA, including neurons, protoplasmic astrocytes in gray matter, fibrous astrocytes present in myelinated fibers tracts, and ependymal cells. In contrast, NT1 receptor mRNA, which seems to be associated only with neurons, was highly and transiently expressed during the perinatal period in the cerebral cortex, hippocampus and striatal neuroepithelium. Other regions, notably the ventral tegmental area and substantia nigra compacta, exhibited a gradual increase in NT1 receptor signal, reaching adult levels by P21. Both the differential localization and ontogenetic profiles of NT1 and NT2 receptor mRNAs suggest different involvement of these two receptors in brain functions and development. Copyright 1999 Elsevier Science B.V.

  15. De novo analysis of Wolfiporia cocos transcriptome to reveal the differentially expressed carbohydrate-active enzymes (CAZymes genes during the early stage of sclerotial growth

    Directory of Open Access Journals (Sweden)

    Shaopeng eZhang

    2016-02-01

    Full Text Available The sclerotium of Wolfiporia cocos has been used as an edible mushroom and/or a traditional herbal medicine for centuries. W. cocos sclerotial formation is dependent on parasitism of the wood of Pinus species. Currently, the sclerotial development mechanisms of W. cocos remain largely unknown and the lack of pine resources limit the commercial production. The CAZymes (carbohydrate-active enzymes play important roles in degradation of the plant cell wall to provide carbohydrates for fungal growth, development and reproduction. In this study, the transcript profiles from W. cocos mycelium and two-months-old sclerotium, the early stage of sclerotial growth, were specially analyzed using de novo sequencing technology. A total of 142,428,180 high-quality reads of mycelium and 70,594,319 high-quality reads of two-months-old sclerotium were obtained. Additionally, differentially expressed genes from the W. cocos mycelium and two-months-old sclerotium stages were analyzed, resulting in identification of 69 CAZymes genes which were significantly up-regulated during the early stage of sclerotial growth compared to that of in mycelium stage, and more than half of them belonged to glycosyl hydrolases (GHs family, indicating the importance of W. cocos GHs family for degrading the pine woods. And qRT-PCR was further used to confirm the expression pattern of these up-regulated CAZymes genes. Our results will provide comprehensive CAZymes genes expression information during W. cocos sclerotial growth at the transcriptional level and will lay a foundation for functional genes studies in this fungus. In addition, our study will also facilitate the efficient use of limited pine resources, which is significant for promoting steady development of Chinese W. cocos industry.

  16. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels.

    Science.gov (United States)

    Wong, Juliet M; Johnson, Kevin M; Kelly, Morgan W; Hofmann, Gretchen E

    2018-03-01

    Understanding the mechanisms with which organisms can respond to a rapidly changing ocean is an important research priority in marine sciences, especially in the light of recent predictions regarding the pace of ocean change in the coming decades. Transgenerational effects, in which the experience of the parental generation can shape the phenotype of their offspring, may serve as such a mechanism. In this study, adult purple sea urchins, Strongylocentrotus purpuratus, were conditioned to regionally and ecologically relevant pCO 2 levels and temperatures representative of upwelling (colder temperature and high pCO 2 ) and nonupwelling (average temperature and low pCO 2 ) conditions typical of coastal upwelling regions in the California Current System. Following 4.5 months of conditioning, adults were spawned and offspring were raised under either high or low pCO 2 levels, to examine the role of maternal effects. Using RNA-seq and comparative transcriptomics, our results indicate that differential conditioning of the adults had an effect on the gene expression patterns of the progeny during the gastrula stage of early development. For example, maternal conditioning under upwelling conditions intensified the transcriptomic response of the progeny when they were raised under high versus low pCO 2 conditions. Additionally, mothers that experienced upwelling conditions produced larger progeny. The overall findings of this study are complex, but do suggest that transgenerational plasticity in situ could act as an important mechanism by which populations might keep pace with rapid environmental change. © 2018 John Wiley & Sons Ltd.

  17. Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems.

    Directory of Open Access Journals (Sweden)

    Abdimajid Osman

    Full Text Available Platelet concentrates (PCs are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets' nucleic acids. We previously reported that treatment of stored platelets with the PR system Intercept significantly reduced the level of half of the microRNAs that were monitored, induced platelet activation and compromised the platelet response to physiological agonists. Using genome-wide differential expression (DE RNA sequencing (RNA-Seq, we now report that Intercept markedly perturbs the mRNA transcriptome of human platelets and alters the expression level of >800 mRNAs (P<0.05 compared to other PR systems and control platelets. Of these, 400 genes were deregulated with DE corresponding to fold changes (FC ≥ 2. At the p-value < 0.001, as many as 147 genes were deregulated by ≥ 2-fold in Intercept-treated platelets, compared to none in the other groups. Finally, integrated analysis combining expression data for microRNA (miRNA and mRNA, and involving prediction of miRNA-mRNA interactions, disclosed several positive and inverse correlations between miRNAs and mRNAs in stored platelets. In conclusion, this study demonstrates that Intercept markedly deregulates the platelet mRNA transcriptome, concomitant with reduced levels of mRNA-regulatory miRNAs. These findings should enlighten authorities worldwide when considering the implementation of PR systems, that target nucleic acids and are not specific to pathogens, for the management of blood products.

  18. Uji Aktivitas Antibakteri Jamur Endofit Akar Bakau Avicennia Marina Terhadap Bakteri Staphylococcus Aureus Dan Escherichia Coli

    OpenAIRE

    Liwang, Firdy

    2014-01-01

    : In this his study we used endophytic fungi isolated from the roots of mangrove Avicennia marina growing on tidal zone around Tasik Ria Minahasa, North Sulawesi. The fungi were isolated and then tested the antibacterial effect against Staphylococcus aureus and Escherichia coli. Potato Dextrose agar was used in order to isolate the target fungi. The fungi began to grow on the second day after inoculation. Differentiation and purification processes to isolate the fungus obtained by observing f...

  19. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    Science.gov (United States)

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  20. Novel Inhibitors of Staphyloxanthin Virulence Factor in Comparison with Linezolid and Vancomycin versus Methicillin-Resistant, Linezolid-Resistant, and Vancomycin-Intermediate Staphylococcus aureus Infections in Vivo.

    Science.gov (United States)

    Ni, Shuaishuai; Wei, Hanwen; Li, Baoli; Chen, Feifei; Liu, Yifu; Chen, Wenhua; Xu, Yixiang; Qiu, Xiaoxia; Li, Xiaokang; Lu, Yanli; Liu, Wenwen; Hu, Linhao; Lin, Dazheng; Wang, Manjiong; Zheng, Xinyu; Mao, Fei; Zhu, Jin; Lan, Lefu; Li, Jian

    2017-10-12

    Our previous work ( Wang et al. J. Med. Chem. 2016 , 59 , 4831 - 4848 ) revealed that effective benzocycloalkane-derived staphyloxanthin inhibitors against methicillin-resistant Staphylococcus aureus (S. aureus) infections were accompanied by poor water solubility and high hERG inhibition and dosages (preadministration). In this study, 92 chroman and coumaran derivatives as novel inhibitors have been addressed for overcoming deficiencies above. Derivatives 69 and 105 displayed excellent pigment inhibitory activities and low hERG inhibition, along with improvement of solubility by salt type selection. The broad and significantly potent antibacterial spectra of 69 and 105 were displayed first with normal administration in the livers and hearts in mice against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate S. aureus), and NRS271 (linezolid-resistant S. aureus), compared with linezolid and vancomycin. In summary, both 69 and 105 have the potential to be developed as good antibacterial candidates targeting virulence factors.

  1. Detection and Characterization of Staphylococcus aureus and Methicillin-Resistant S. aureus in Foods Confiscated in EU Borders

    Directory of Open Access Journals (Sweden)

    David Rodríguez-Lázaro

    2017-07-01

    Full Text Available The aim of the study was to evaluate the potential role of the illegal entry of food in UE in the Methicillin-resistant S. aureus (MRSA spread. We studied the prevalence and characteristics of Staphylococcus aureus and MRSA isolated from foods of animal origin confiscated from passengers on flights from 45 non-EU countries from 2012 to 2015 by the Border Authorities at Bilbao International Airport (Spain and Vienna International Airport (Austria, as well as foods from open markets close to EU land borders. Of 868 food samples tested (diverse meat samples including antelope, duck, guinea pig, pork, rodents, turkey, dairy products, and eggs, 136 (15.7% were positive for S. aureus and 26 (3.0% for MRSA. All MRSA strains were mecA-positive. The prevalence of S. aureus-positive dairy samples among food confiscated at Bilbao International Airport was 64.6%, and this airport also had the highest value (11.8% for MRSA-positive samples. The predominant sequence type was ST5 (30.8%, followed by ST8, ST1649, ST1, and other lineages were found to a lesser extent (ST7, ST22, ST72, ST97, and ST398. Six isolates tested positive for luk-PVL genes (SCCmec IV subtypes IVc and IVe. Enterotoxin profiling revealed that 19 MRSA strains were enterotoxigenic, harboring one or more se genes. The MRSA isolates positive for luk-PVL genes were not enterotoxigenic, and none of the isolates tested positive for enterotoxin E. We found 14 resistance profiles, and more than 69% of the MRSA isolates were resistant to three or more types of antimicrobial agents. This finding reveals both the wide diversity of the antimicrobial resistance found in the strains and the capacity to resist not only to beta-lactam drugs. One MRSA strain showed unusual characteristics: it was oxacillin-susceptible, harbored SCCmec V, and was positive for sed, seg, and sej but negative for PVL virulence factors. This study shows the presence of enterotoxigenic HA-, CA-, and LA-MRSA in foods illegally

  2. Comparison of passively transferred antibodies in bighorn and domestic lambs reveals one factor in differential susceptibility of these species to Mannheimia haemolytica-induced pneumonia.

    Science.gov (United States)

    Herndon, Caroline N; Shanthalingam, Sudarvili; Knowles, Donald P; Call, Douglas R; Srikumaran, Subramaniam

    2011-07-01

    Mannheimia haemolytica consistently causes fatal bronchopneumonia in bighorn sheep (BHS; Ovis canadensis) under natural and experimental conditions. Leukotoxin is the primary virulence factor of this organism. BHS are more susceptible to developing fatal pneumonia than the related species Ovis aries (domestic sheep [DS]). In BHS herds affected by pneumonia, lamb recruitment is severely impaired for years subsequent to an outbreak. We hypothesized that a lack of maternally derived antibodies (Abs) against M. haemolytica provides an immunologic basis for enhanced susceptibility of BH lambs to population-limiting pneumonia. Therefore, the objective of this study was to determine the titers of Abs directed against M. haemolytica in the sera of BH and domestic lambs at birth through 12 weeks of age. Results revealed that BH lambs had approximately 18-fold lower titers of Ab against surface antigens of M. haemolytica and approximately 20-fold lower titers of leukotoxin-neutralizing Abs than domestic lambs. The titers of leukotoxin-neutralizing Abs in the serum and colostrum samples of BH ewes were approximately 157- and 50-fold lower than those for domestic ewes, respectively. Comparatively, the higher titers of parainfluenza 3 virus-neutralizing Abs in the BH lambs ruled out the possibility that these BHS had an impaired ability to passively transfer Abs to their lambs. These results suggest that lower levels of leukotoxin-neutralizing Abs in the sera of BH ewes, and resultant low Ab titers in their lambs, may be a critical factor in the poor lamb recruitment in herds affected by pneumonia.

  3. Alteration of protein levels during influenza virus H1N1 infection in host cells: a proteomic survey of host and virus reveals differential dynamics.

    Directory of Open Access Journals (Sweden)

    Susann Kummer

    Full Text Available We studied the dynamics of the proteome of influenza virus A/PR/8/34 (H1N1 infected Madin-Darby canine kidney cells up to 12 hours post infection by mass spectrometry based quantitative proteomics using the approach of stable isotope labeling by amino acids in cell culture (SILAC. We identified 1311 cell proteins and, apart from the proton channel M2, all major virus proteins. Based on their abundance two groups of virus proteins could be distinguished being in line with the function of the proteins in genesis and formation of new virions. Further, the data indicate a correlation between the amount of proteins synthesized and their previously determined copy number inside the viral particle. We employed bioinformatic approaches such as functional clustering, gene ontology, and pathway (KEGG enrichment tests to uncover co-regulated cellular protein sets, assigned the individual subsets to their biological function, and determined their interrelation within the progression of viral infection. For the first time we are able to describe dynamic changes of the cellular and, of note, the viral proteome in a time dependent manner simultaneously. Through cluster analysis, time dependent patterns of protein abundances revealed highly dynamic up- and/or down-regulation processes. Taken together our study provides strong evidence that virus infection has a major impact on the cell status at the protein level.

  4. Pancreatic Abscess in a cat due to Staphylococcus aureus infection.

    Science.gov (United States)

    Nemoto, Yuki; Haraguchi, Tomoya; Shimokawa Miyama, Takako; Kobayashi, Kosuke; Hama, Kaori; Kurogouchi, Yosuke; Fujiki, Noriyuki; Baba, Kenji; Okuda, Masaru; Mizuno, Takuya

    2017-07-07

    A 16-year-old spayed female American Shorthair cat was presented with lethargy, anorexia, and wamble. Physical and blood examination did not reveal any remarkable findings. Abdominal ultrasonography identified the presence of a localized anechoic structure with a thick wall in contact with the small intestine and adjacent to the liver. Ultrasound-guided fine-needle aspiration of the structure revealed fluid containing numerous cocci and neutrophils. Two days after antibiotic treatment, exploratory laparotomy was performed and the content of the structure was removed before multiple lavages. The pathological and bacteriological examination results supported a confirmatory diagnosis of pancreatic abscess due to Staphylococcus aureus infection, making this the first such report in a cat. The cat remained healthy thereafter with no disease recurrence.

  5. Phenotypic and molecular characteristics of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in slaughterhouse pig-related workers and control workers in Guangdong Province, China.

    Science.gov (United States)

    Wang, X L; Li, L; Li, S M; Huang, J Y; Fan, Y P; Yao, Z J; Ye, X H; Chen, S D

    2017-07-01

    Pig farmers and veterinarians have high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) due to the occupational livestock exposure, while few reported this association on slaughterhouse workers. We conducted this cross-sectional study to explore the phenotypic and molecular characteristics of S. aureus and MRSA in slaughterhouse pig-related workers and control workers in Guangdong Province, China. Participants were interviewed and provided two nasal swabs. Swabs were tested for S. aureus, and isolates were further tested for antimicrobial susceptibility, virulence genes and multi-locus sequence typing. Compared with control workers, pig-related workers have significantly higher prevalence of MRSA carriage (adjusted odd ratio (aOR) 3·70, 95% CI 1·63-8·40). The proportions of MRSA resistant to clindamycin, erythromycin, tetracycline or chloromycetin were significantly higher in pig-related workers than in control workers. The predominant phenotypes of S. aureus were resistant to penicillin, clindamycin, erythromycin and tetracycline. Three MRSA CC9 isolates with livestock-associated characteristics (resistance to tetracycline and absence of immune evasion cluster (IEC) genes) were detected in pig-related workers but not in control workers. For human-associated CCs (CC7, CC59, CC6, and CC188), there was no significant difference in IEC profile or antimicrobial resistance between the groups. These findings reveal that there may be a potential risk for livestock-to-human transmission of LA-MRSA and human-to-human transmission of human-associated MRSA.

  6. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1.

    Science.gov (United States)

    Fan, Jindai; Zeng, Zhiliang; Mai, Kaijie; Yang, Yu; Feng, Jiaqi; Bai, Yang; Sun, Baoli; Xie, Qingmei; Tong, Yigang; Ma, Jingyun

    2016-08-15

    Methicillin-resistant Staphylococcus aureus (MRSA) has become a great threat to human and animal health and there is an urgent need to develop novel antibacterial agents to control this pathogen. The objective of this study was to obtain an active recombinant endolysin from the novel bacteriophage (IME-SA1), and conduct an efficacy trial of its effectiveness against bovine mastitis. We isolated a phage that was virulent and specific for S. aureus with an optimal multiplicity of infection of 0.01. Electron microscopy revealed that IME-SA1 was a member of the family Myoviridae, with an isometric head (98nm) and a long contractile tail (200nm). Experimental lysis experiments indicated the phage had an incubation period of 20min with a burst size of 80. When host bacteria were in early exponential growth stages, a multiplicity of infection of 0.01 resulted in a complete bacterial lysis after 9h. The endolysin gene (804bp) was cloned into the pET-32a bacterial expression vector and recombinant endolysin Trx-SA1 was successfully obtained with molecular size of about 47kDa. Preliminary results of therapeutic trials in cow udders showed that Trx-SA1 could effectively control mild clinical mastitis caused by S. aureus. The endolysin Trx-SA1 might be an alternative treatment strategy for infections caused by S. aureus, including MRSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus.

    Science.gov (United States)

    Avila, J G; de Liverant, J G; Martínez, A; Martínez, G; Muñoz, J L; Arciniegas, A; Romo de Vivar, A

    1999-07-01

    We evaluate the mode of action of verbascoside obtained from Buddleja cordata against Staphylococcus aureus by killing kinetics and incorporation of precursors methods. Verbascoside induced lethal effect on S. aureus, by affecting protein synthesis and inhibiting leucine incorporation.

  8. Antibiotic resistance of Staphylococcus aureus isolated from fresh ...

    African Journals Online (AJOL)

    Antibiotic resistance of Staphylococcus aureus isolated from fresh cow milk in settled ... produced alpha haemolysin, 45.5% (n=25) produced beta haemolysin and ... resistant strains of S. aureus of animal and human biotypes and can serve as ...

  9. Comparative Efficacy of Ceftaroline with Linezolid against Staphylococcus Aureus and Methicillin Resistant Staphylococcus Aureus

    International Nuclear Information System (INIS)

    Hafeez, A.; Munir, T.; Rehman, S.; Najeeb, S.; Gilani, M.; Latif, M.; Ansari, M.; Saad, N.

    2015-01-01

    Objective:To compare the in vitro antimicrobial efficacy of ceftaroline with linezolid against Staphylococcus aureus and methicillin resistant Staphylococcus aureus. Study Design: Quasi-experimental study. Place and Duration of Study: Microbiology Department, Army Medical College, Rawalpindi, from January to December 2013. Methodology: Clinical samples from respiratory tract, blood, pus and various catheter tips routinely received in the Department of Microbiology, Army Medical College, Rawalpindi were innoculated on blood and MacConkey agar. Staphylococcus aureus was identified by colony morphology, Gram reaction, catalase test and coagulase test. Methicillin resistant Staphylococcus aureus detection was done by modified Kirby Bauer disc diffusion method using cefoxitin disc (30g) and the isolates were considered methicillin resistant if the zone of inhibition around cefoxitin disc was /sup 2/ 21 mm. Bacterial suspensions of 56 Staphylococcus aureus isolates and 50 MRSA isolates were prepared, which were standardized equal to 0.5 McFarland's turbidity standard and inoculated on Mueller-Hinton agar plates followed by application of ceftaroline and linezolid disc (Oxoid, UK), according to manufacturer's instructions. The plates were then incubated at 37 Degree C aerobically for 18 - 24 hours. Diameters of inhibition zone were measured and interpretated as per Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Out of 106 isolates all of the 56 Staphylococcus aureus (100%) were sensitive to ceftaroline and linezolid. However, out of 50 methicillin resistant Staphylococcus aureus, 48 (96%) were sensitive to ceftaroline whereas, 49 (98%) were sensitive to linezolid. Conclusion: Ceftaroline is equally effective as linezolid against Staphylococcus aureus and methicillin resistant Staphylococcus aureus. (author)

  10. Transcriptional Profiling of Saccharomyces cerevisiae Reveals the Impact of Variation of a Single Transcription Factor on Differential Gene Expression in 4NQO, Fermentable, and Nonfermentable Carbon Sources

    Directory of Open Access Journals (Sweden)

    Xiaoqing Rong-Mullins

    2018-02-01

    . Hence, the complement to 4NQO resistance was poor growth on nonfermentable carbon sources, which in turn varied depending on the allele of Yrr1 expressed in the isogenic yeast. The oxidation state of the yeast affected the 4NQO toxicity by altering the reactive oxygen species (ROS generated by cellular metabolism. The integration of RNA-Seq and ChIP-Seq elucidated how Yrr1 regulates global gene transcription in response to 4NQO and how various Yrr1 alleles confer differential resistance to 4NQO. This study provides guidance for further investigation into how Yrr1 regulates cellular responses to 4NQO, as well as transcriptomic resources for further analysis of transcription factor variation on carbon source utilization.

  11. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium.

    Directory of Open Access Journals (Sweden)

    Fengxi Yang

    Full Text Available Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms

  12. Comparison of Passively Transferred Antibodies in Bighorn and Domestic Lambs Reveals One Factor in Differential Susceptibility of These Species to Mannheimia haemolytica-Induced Pneumonia ▿

    Science.gov (United States)

    Herndon, Caroline N.; Shanthalingam, Sudarvili; Knowles, Donald P.; Call, Douglas R.; Srikumaran, Subramaniam

    2011-01-01

    Mannheimia haemolytica consistently causes fatal bronchopneumonia in bighorn sheep (BHS; Ovis canadensis) under natural and experimental conditions. Leukotoxin is the primary virulence factor of this organism. BHS are more susceptible to developing fatal pneumonia than the related species Ovis aries (domestic sheep [DS]). In BHS herds affected by pneumonia, lamb recruitment is severely impaired for years subsequent to an outbreak. We hypothesized that a lack of maternally derived antibodies (Abs) against M. haemolytica provides an immunologic basis for enhanced susceptibility of BH lambs to population-limiting pneumonia. Therefore, the objective of this study was to determine the titers of Abs directed against M. haemolytica in the sera of BH and domestic lambs at birth through 12 weeks of age. Results revealed that BH lambs had approximately 18-fold lower titers of Ab against surface antigens of M. haemolytica and approximately 20-fold lower titers of leukotoxin-neutralizing Abs than domestic lambs. The titers of leukotoxin-neutralizing Abs in the serum and colostrum samples of BH ewes were approximately 157- and 50-fold lower than those for domestic ewes, respectively. Comparatively, the higher titers of parainfluenza 3 virus-neutralizing Abs in the BH lambs ruled out the possibility that these BHS had an impaired ability to passively transfer Abs to their lambs. These results suggest that lower levels of leukotoxin-neutralizing Abs in the sera of BH ewes, and resultant low Ab titers in their lambs, may be a critical factor in the poor lamb recruitment in herds affected by pneumonia. PMID:21613459

  13. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    Science.gov (United States)

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

  14. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Guo J

    2016-12-01

    Full Text Available Jia-ni Guo,* Jin Li,* Chang-li Zhu,* Wan-ting Feng, Jing-xian Shao, Li Wan, Ming-de Huang, Jing-dong He Department of Medical Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an City, Jiangsu Province, People’s Republic of China *These authors contributed equally to this work Background: Nowadays, despite great progress in cancer research, the detailed mechanisms of colorectal cancer (CRC are still poorly understood. Circular RNAs (circRNAs, a new star of the non-coding RNA network, have been identified as critical regulators in various cancers, including CRC. Methods and results: In this study, by using unsupervised hierarchical clustering analysis, a novel dysregulated circRNA, hsa_circ_0000069, was found. The expression of hsa_circ_0000069 was measured in 30 paired CRC tissues and adjacent noncancerous tissues using quantitative polymerase chain reaction. A high expression of hsa_circ_0000069 was observed in CRC tissues and correlated with patients’ age and tumor, node, metastasis (TNM stage (P<0.05. Furthermore, by using specifically designed siRNAs in CRC cells, a functional analysis was performed which revealed that hsa_circ_0000069 knockdown could notably inhibit cell proliferation, migration, and invasion, and induce G0/G1 phase arrest of cell cycle in vitro. Conclusion: This study’s findings are the first to demonstrate that hsa_circ_0000069, an important regulator in cancer progression, could be a promising target in the diagnosis and therapy in colorectal cancer. Keywords: circular RNA, colorectal cancer, regulation, hsa_circ_0000069

  15. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Directory of Open Access Journals (Sweden)

    Ing-Marie Jonsson

    2010-12-01

    Full Text Available Ecs is an ATP-binding cassette (ABC transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s transported by Ecs is (are still unknown.In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine.Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  16. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Science.gov (United States)

    Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P

    2010-12-02

    Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  17. A Comparative Study Between the Antibacterial Effect of Nisin and Nisin-Loaded Chitosan/Alginate Nanoparticles on the Growth of Staphylococcus aureus in Raw and Pasteurized Milk Samples.

    Science.gov (United States)

    Zohri, Maryam; Alavidjeh, Mohammad Shafiee; Haririan, Ismaeil; Ardestani, Mehdi Shafiee; Ebrahimi, Seyed Esmaeil Sadat; Sani, Hadi Tarighati; Sadjadi, Seyed Kazem

    2010-12-01

    The aim of this study was to evaluate the antibacterial effect of nisin-loaded chitosan/alginate nanoparticles as a novel antibacterial delivery vehicle. The nisin-loaded nanoparticles were prepared using colloidal dispersion of the chitosan/alginate polymers in the presence of nisin. After the preparation of the nisin-loaded nanoparticles, their physicochemical properties such as size, shape, and zeta potential of the formulations were studied using scanning electron microscope and nanosizer instruments, consecutively. FTIR and differential scanning calorimetery studies were performed to investigate polymer-polymer or polymer-protein interactions. Next, the release kinetics and entrapment efficiency of the nisin-loaded nanoparticles were examined to assess the application potential of these formulations as a candidate vector. For measuring the antibacterial activity of the nisin-loaded nanoparticles, agar diffusion and MIC methods were employed. The samples under investigation for total microbial counts were pasteurized and raw milks each of which contained the nisin-loaded nanoparticles and inoculated Staphylococcus aureus (ATCC 19117 at 10(6) CFU/mL), pasteurized and raw milks each included free nisin and S. aureus (10(6) CFU/mL), and pasteurized and raw milks each had S. aureus (10(6) CFU/mL) in as control. Total counts of S. aureus were measured after 24 and 48 h for the pasteurized milk samples and after the time intervals of 0, 6, 10, 14, 18, and 24 h for the raw milk samples, respectively. According to the results, entrapment efficiency of nisin inside of the nanoparticles was about 90-95%. The average size of the nanoparticles was 205 nm, and the average zeta potential of them was -47 mV. In agar diffusion assay, an antibacterial activity (inhibition zone diameter, at 450 IU/mL) about 2 times higher than that of free nisin was observed for the nisin-loaded nanoparticles. MIC of the nisin-loaded nanoparticles (0.5 mg/mL) was about four times less than

  18. Staphylococcus aureus spa type t437

    DEFF Research Database (Denmark)

    Glasner, C; Pluister, G; Westh, H

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) belonging to the multilocus sequence type clonal complex 59 (MLST CC59) is the predominant community-associated MRSA clone in Asia. This clone, which is primarily linked with the spa type t437, has so far only been reported in low numbers among...... included. Most isolates were shown to be monophyletic with 98% of the isolates belonging to the single MLVA complex 621, to which nearly all included isolates from China also belonged. More importantly, all MLST-typed isolates belonged to CC59. Our study implies that the European S. aureus t437 population...

  19. A sensitive assay for Staphylococcus aureus nucleases

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, J K; Vakil, B V; Patil, M S; Pandey, V N; Pradhan, D S [Bhabha Atomic Reserach Centre, Bombay (India). Biochemistry Div.

    1989-10-01

    A sensitive assay for staphylococcal nuclease involving incubation of the enzyme sample with heat-denatured ({sup 3}H) thymidine labelled DNA from E.coli, precipitation with trichloroacetic acid and measurement of the radioactivity of acid-soluble nucleotides released has been developed. The assay is sensitive enough to be used for comparing the levels of nucleases elaborated by different strains of S. aureus as well as for determining the extent of contamination of S. aureus in food and water samples even at levels at which the conventional spectrophotometric and toluidine blue-DNA methods are totally inadequate. (author). 26 refs., 3 figs ., 3 tabs.

  20. Evolution of methicillin-resistant Staphylococcus aureus towards increasing resistance

    DEFF Research Database (Denmark)

    Strommenger, Birgit; Bartels, Mette Damkjær; Kurt, Kevin

    2014-01-01

    To elucidate the evolutionary history of Staphylococcus aureus clonal complex (CC) 8, which encompasses several globally distributed epidemic lineages, including hospital-associated methicillin-resistant S. aureus (MRSA) and the highly prevalent community-associated MRSA clone USA300.......To elucidate the evolutionary history of Staphylococcus aureus clonal complex (CC) 8, which encompasses several globally distributed epidemic lineages, including hospital-associated methicillin-resistant S. aureus (MRSA) and the highly prevalent community-associated MRSA clone USA300....

  1. Screening method for Staphylococcus aureus identification in subclinical bovine mastitis from dairy farms

    Directory of Open Access Journals (Sweden)

    Natapol Pumipuntu

    2017-07-01

    Full Text Available Background: Staphylococcus aureus is one of the most important contagious bacteria causing subclinical bovine mastitis. This bacterial infection is commonly identified by determine the pathogen in bovine milk samples through conventional technique including coagulase test. However, this test has several disadvantages as low sensitivity, risk of biohazard, cost expensive, and limited preparation especially in local area. Aim: Aim of this study was to compare and assess the screening method, Mannitol fermentation test (Mannitol salt agar [MSA], and deoxyribonuclease (DNase test, for S. aureus identification in milk samples. Materials and Methods: A total of 224 subclinical bovine mastitis milk samples were collected from four provinces of Thailand and determined S. aureus using conventional method and also subjected to the screening test, MSA and DNase test. The sensitivity, specificity, positive predictive value (PPV, and negative predictive value (NPV among both tests were analyzed and compared to the tube coagulase test (TCT, as reference method. Immunological test by latex agglutination and molecular assay by determined spa gene were also used to identify and differentiate S. aureus. Results: A total of 130 staphylococci were isolated by selective media, Gram-stain, and catalase test. The number of S. aureus which identified using TCT, MSA and DNase test were 32, 102, and 74 isolates, respectively. All TCT results were correlated to results of latex agglutination and spa gene which were 32 S. aureus. MSA showed 100% sensitivity, 28.57% specificity, 31.37% PPV, and 100% NPV, whereas DNase showed 53.13% sensitivity, 41.84% specificity, 22.97% PPV, and 73.21% NPV. DNase test showed higher specificity value than MSA but the test presented 26.79% false negative results whereas no false-negative result from MSA when comparing to TCT. Conclusion: MSA had a tendency to be a good preference for screening S. aureus because of its high sensitivity and

  2. Coding-Sequence Identification and Transcriptional Profiling of Nine AMTs and Four NRTs From Tobacco Revealed Their Differential Regulation by Developmental Stages, Nitrogen Nutrition, and Photoperiod

    Directory of Open Access Journals (Sweden)

    Lai-Hua Liu

    2018-03-01

    Full Text Available Although many members encoding different ammonium- and nitrate-transporters (AMTs, NRTs were identified and functionally characterized from several plant species, little is known about molecular components for NH4+- and NO3- acquisition/transport in tobacco, which is often used as a plant model for biological studies besides its agricultural and industrial interest. We reported here the first molecular identification in tobacco (Nicotiana tabacum of nine AMTs and four NRTs, which are respectively divided into four (AMT1/2/3/4 and two (NRT1/2 clusters and whose functionalities were preliminarily evidenced by heterologous functional-complementation in yeast or Arabidopsis. Tissue-specific transcriptional profiling by qPCR revealed that NtAMT1.1/NRT1.1 mRNA occurred widely in leaves, flower organs and roots; only NtAMT1.1/1.3/2.1NRT1.2/2.2 were strongly transcribed in the aged leaves, implying their dominant roles in N-remobilization from source/senescent tissues. N-dependent expression analysis showed a marked upregulation of NtAMT1.1 in the roots by N-starvation and resupply with N including NH4+, suggesting a predominant action of NtAMT1.1 in NH4+ uptake/transport whenever required. The obvious leaf-expression of other NtAMTs e.g., AMT1.2 responsive to N indicates a major place, where they may play transport roles associated with plant N-status and (NH4+-N movement within aerial-parts. The preferentially root-specific transcription of NtNRT1.1/1.2/2.1 responsive to N argues their importance for root NO3- uptake and even sensing in root systems. Moreover, of all NtAMTs/NRTs, only NtAMT1.1/NRT1.1/1.2 showed their root-expression alteration in a typical diurnal-oscillation pattern, reflecting likely their significant roles in root N-acquisition regulated by internal N-demand influenced by diurnal-dependent assimilation and translocation of carbohydrates from shoots. This suggestion could be supported at least in part by sucrose- and MSX

  3. Coding-Sequence Identification and Transcriptional Profiling of Nine AMTs and Four NRTs From Tobacco Revealed Their Differential Regulation by Developmental Stages, Nitrogen Nutrition, and Photoperiod

    Science.gov (United States)

    Liu, Lai-Hua; Fan, Teng-Fei; Shi, Dong-Xue; Li, Chang-Jun; He, Ming-Jie; Chen, Yi-Yin; Zhang, Lei; Yang, Chao; Cheng, Xiao-Yuan; Chen, Xu; Li, Di-Qin; Sun, Yi-Chen

    2018-01-01

    Although many members encoding different ammonium- and nitrate-transporters (AMTs, NRTs) were identified and functionally characterized from several plant species, little is known about molecular components for NH4+- and NO3- acquisition/transport in tobacco, which is often used as a plant model for biological studies besides its agricultural and industrial interest. We reported here the first molecular identification in tobacco (Nicotiana tabacum) of nine AMTs and four NRTs, which are respectively divided into four (AMT1/2/3/4) and two (NRT1/2) clusters and whose functionalities were preliminarily evidenced by heterologous functional-complementation in yeast or Arabidopsis. Tissue-specific transcriptional profiling by qPCR revealed that NtAMT1.1/NRT1.1 mRNA occurred widely in leaves, flower organs and roots; only NtAMT1.1/1.3/2.1NRT1.2/2.2 were strongly transcribed in the aged leaves, implying their dominant roles in N-remobilization from source/senescent tissues. N-dependent expression analysis showed a marked upregulation of NtAMT1.1 in the roots by N-starvation and resupply with N including NH4+, suggesting a predominant action of NtAMT1.1 in NH4+ uptake/transport whenever required. The obvious leaf-expression of other NtAMTs e.g., AMT1.2 responsive to N indicates a major place, where they may play transport roles associated with plant N-status and (NH4+-)N movement within aerial-parts. The preferentially root-specific transcription of NtNRT1.1/1.2/2.1 responsive to N argues their importance for root NO3- uptake and even sensing in root systems. Moreover, of all NtAMTs/NRTs, only NtAMT1.1/NRT1.1/1.2 showed their root-expression alteration in a typical diurnal-oscillation pattern, reflecting likely their significant roles in root N-acquisition regulated by internal N-demand influenced by diurnal-dependent assimilation and translocation of carbohydrates from shoots. This suggestion could be supported at least in part by sucrose- and MSX-affected transcriptional

  4. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available The availability of complete genome sequence of soybean has allowed research community to design the 66 K Affymetrix Soybean Array GeneChip for genome-wide expression profiling of soybean. In this study, we carried out microarray analysis of leaf tissues of soybean plants, which were subjected to drought stress from late vegetative V6 and from full bloom reproductive R2 stages. Our data analyses showed that out of 46,093 soybean genes, which were predicted with high confidence among approximately 66,000 putative genes, 41,059 genes could be assigned with a known function. Using the criteria of a ratio change > = 2 and a q-value<0.05, we identified 1458 and 1818 upregulated and 1582 and 1688 downregulated genes in drought-stressed V6 and R2 leaves, respectively. These datasets were classified into 19 most abundant biological categories with similar proportions. There were only 612 and 463 genes that were overlapped among the upregulated and downregulated genes, respectively, in both stages, suggesting that both conserved and unconserved pathways might be involved in regulation of drought response in different stages of plant development. A comparative expression analysis using our datasets and that of drought stressed Arabidopsis leaves revealed the existence of both conserved and species-specific mechanisms that regulate drought responses. Many upregulated genes encode either regulatory proteins, such as transcription factors, including those with high homology to Arabidopsis DREB, NAC, AREB and ZAT/STZ transcription factors, kinases and two-component system members, or functional proteins, e.g. late embryogenesis-abundant proteins, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins. A detailed analysis of the GmNAC family and the hormone-related gene category showed that expression of many GmNAC and hormone-related genes was altered by drought in V6 and/or R2 leaves. Additionally, the downregulation of

  5. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs.

    Directory of Open Access Journals (Sweden)

    Ramani Soundararajan

    Full Text Available Mutations in the membrane frizzled-related protein (MFRP/Mfrp gene, specifically expressed in the retinal pigment epithelium (RPE and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at postnatal days (P 0 and P14, prior to photoreceptor loss. Data analysis revealed no changes at P0 but significant differences in RPE and retina-specific transcripts at P14, suggesting a postnatal influence of the Mfrprd6 allele. A subset of these transcripts was validated by quantitative real-time PCR (qRT-PCR. In Mfrprd6 eyes, a significant 1.5- to 2.0-fold decrease was observed among transcripts of genes linked to retinal degeneration, including those involved in visual cycle (Rpe65, Lrat, Rgr, phototransduction (Pde6a, Guca1b, Rgs9, and photoreceptor disc morphogenesis (Rpgrip1 and Fscn2. Levels of RPE65 were significantly decreased by 2.0-fold. Transcripts of Prss56, a gene associated with angle-closure glaucoma, posterior microphthalmia and myopia, were increased in Mfrprd6 eyes by 17-fold. Validation by qRT-PCR indicated a 3.5-, 14- and 70-fold accumulation of Prss56 transcripts relative to controls at P7, P14 and P21, respectively. This trend was not observed in other RPE or photoreceptor mutant mouse models with similar disease progression, suggesting that Prss56 upregulation is a specific attribute of the disruption of Mfrp. Prss56 and Glul in situ hybridization directly identified Müller glia in the inner nuclear layer as the cell type expressing Prss56. In summary, the Mfrprd6 allele causes significant postnatal changes in transcript and protein levels in the retina and RPE. The link between Mfrp deficiency and Prss56 up-regulation, together with the genetic association of human MFRP or PRSS56 variants and ocular size, raises the possibility that

  6. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Huang Lili

    2009-06-01

    Full Text Available Abstract Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2% displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40% had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%, signal transduction (5.4%, disease/defence (5.9% and metabolism (5% of the sequenced TDFs. BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5% genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the

  7. Determinants of carriage of resistant Staphylococcus aureus among S. aureus carriers in the Indonesian population inside and outside hospitals

    NARCIS (Netherlands)

    E.S. Lestari (Endang Sri); D.O. Duerink (Offra); U. Hadi (Usman); J.A. Severin (Juliëtte); N.J.D. Nagelkerke (Nico); K. Kuntaman (Kuntaman); H. Wahjono (Hendro); W. Gardjito (Widjoseno); A. Soejoenoes (Ariawan); P. van den Broek (Peterhans); M. Keuter (Monique); I.C. Gyssens (Inge); H.A. Verbrugh (Henri)

    2010-01-01

    textabstractOBJECTIVES: To identify determinants of carriage of resistant Staphylococcus aureus in both hospitalized patients and individuals from the community in two urban centres in Indonesia. METHODS: Staphylococcus aureus cultures and data on recent antibiotic use, demographic, socioeconomic,

  8. A pig model of acute Staphylococcus aureus induced pyemia

    DEFF Research Database (Denmark)

    Nielsen, O. L.; Iburg, T.; Aalbæk, B.

    2009-01-01

    Background: Sepsis caused by Staphylococcus aureus constitutes an important cause of morbidity and mortality in humans, and the incidence of this disease-entity is increasing. In this paper we describe the initial microbial dynamics and lesions in pigs experimentally infected with S. aureus....... aureus isolated from man and an extension of the timeframe aiming at inducing sepsis, severe sepsis and septic shock....

  9. The sensitivity status of community-acquired Staphylococcus aureus ...

    African Journals Online (AJOL)

    Community acquired Staphylococcus aureus was isolated from various infectious sites in two private laboratories in Kano-city, Nigeria. A total of 247 (11%) Staphylococcu aureus isolates were recovered from all infectious sites except cerebro-spinal fluid. The least Staphylococcus aureus isolates were found in urine ...

  10. Methicillin-Susceptible, Vancomycin-Resistant Staphylococcus aureus, Brazil

    OpenAIRE

    Panesso , Diana; Planet , Paul J.; Diaz , Lorena; Hugonnet , Jean-Emannuel; Tran , Truc T.; Narechania , Apurva; Munita , José M.; Rincon , Sandra; Carvajal , Lina P.; Reyes , Jinnethe; Londono , Alejandra; Smith , Hannah; Sebra , Robert; Deikus , Gintaras; Weinstock , George M

    2015-01-01

    International audience; We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat.

  11. Detecting Staphylococcus aureus in milk from dairy cows using sniffer dogs.

    Science.gov (United States)

    Fischer-Tenhagen, C; Theby, V; Krömker, V; Heuwieser, W

    2018-05-01

    Fast and accurate identification of disease-causing pathogens is essential for specific antimicrobial therapy in human and veterinary medicine. In these experiments, dogs were trained to identify Staphylococcus aureus and differentiate it from other common mastitis-causing pathogens by smell. Headspaces from agar plates, inoculated raw milk samples, or field samples collected from cows with Staphylococcus aureus and other mastitis-causing pathogens were used for training and testing. The ability to learn the specific odor of Staphylococcus aureus in milk depended on the concentration of the pathogens in the training samples. Sensitivity and specificity for identifying Staphylococcus aureus were 91.3 and 97.9%, respectively, for pathogens grown on agar plates; 83.8 and 98.0% for pathogens inoculated in raw milk; and 59.0 and 93.2% for milk samples from mastitic cows. The results of these experiments underline the potential of odor detection as a diagnostic tool for pathogen diagnosis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Clonal profile, virulence and resistance of Staphylococcus aureus isolated from sheep milk

    Directory of Open Access Journals (Sweden)

    Katheryne Benini Martins

    2015-06-01

    Full Text Available The objective of this study was to characterize the clonal profile, virulence factors and antimicrobial resistance, particularly oxacillin resistance, of Staphylococcus aureus isolated from sheep milk. Milk samples were collected from all teats for the California Mastitis Test (CMT, somatic cell count, identification of S. aureus, investigation in these strains of genes encoding toxins (sea, seb, sec, sed, tst, biofilm (icaA, icaC, icaD, bap, leukocidin (luk-PV oxacillin resistance by mecA gene detection and susceptibility testing (12 antibiotics. Messenger RNA expression was evaluated by RT-PCR in isolates carrying toxin and biofilm genes. Biofilm formation was also evaluated phenotypically by adherence to polystyrene plates. The clonal profile of S. aureus was investigated by pulsed-field gel electrophoresis. A total of 473 milk samples were collected from 242 animals on three farms and 20 S. aureus strains were isolated and none carried the mecA gene. The two sec gene-positive isolates and the isolates carrying the tst and luk-PV genes were positive by RT-PCR. Staphylococcus aureus isolated from the three flocks studied showed high susceptibility to the drugs tested and none was biofilm producer, indicating that biofilm formation was not a virulence factor causing infection by these strains. The typing of 17 S. aureus isolates revealed the presence of a common clone on the three farms studied, and the presence and expression of the sec and tst genes in one strain of this clone suggest the possible acquisition of virulence genes by this clone, a fact that is important for animal health and food hygiene.

  13. Clonal profile, virulence and resistance of Staphylococcus aureus isolated from sheep milk.

    Science.gov (United States)

    Martins, Katheryne Benini; Faccioli-Martins, Patricia Yoshida; Riboli, Danilo Flávio Moraes; Pereira, Valéria Cataneli; Fernandes, Simone; Oliveira, Aline A; Dantas, Ariane; Zafalon, Luiz Francisco; da Cunha, Maria de Lourdes Ribeiro de Souza

    2015-06-01

    The objective of this study was to characterize the clonal profile, virulence factors and antimicrobial resistance, particularly oxacillin resistance, of Staphylococcus aureus isolated from sheep milk. Milk samples were collected from all teats for the California Mastitis Test (CMT), somatic cell count, identification of S. aureus, investigation in these strains of genes encoding toxins (sea, seb, sec, sed, tst), biofilm (icaA, icaC, icaD, bap), leukocidin (luk-PV) oxacillin resistance by mecA gene detection and susceptibility testing (12 antibiotics). Messenger RNA expression was evaluated by RT-PCR in isolates carrying toxin and biofilm genes. Biofilm formation was also evaluated phenotypically by adherence to polystyrene plates. The clonal profile of S. aureus was investigated by pulsed-field gel electrophoresis. A total of 473 milk samples were collected from 242 animals on three farms and 20 S. aureus strains were isolated and none carried the mecA gene. The two sec gene-positive isolates and the isolates carrying the tst and luk-PV genes were positive by RT-PCR. Staphylococcus aureus isolated from the three flocks studied showed high susceptibility to the drugs tested and none was biofilm producer, indicating that biofilm formation was not a virulence factor causing infection by these strains. The typing of 17 S. aureus isolates revealed the presence of a common clone on the three farms studied, and the presence and expression of the sec and tst genes in one strain of this clone suggest the possible acquisition of virulence genes by this clone, a fact that is important for animal health and food hygiene.

  14. Clonal profile, virulence and resistance of Staphylococcus aureus isolated from sheep milk

    Science.gov (United States)

    Martins, Katheryne Benini; Faccioli-Martins, Patricia Yoshida; Riboli, Danilo Flávio Moraes; Pereira, Valéria Cataneli; Fernandes, Simone; Oliveira, Aline A.; Dantas, Ariane; Zafalon, Luiz Francisco; da Cunha, Maria de Lourdes Ribeiro de Souza

    2015-01-01

    The objective of this study was to characterize the clonal profile, virulence factors and antimicrobial resistance, particularly oxacillin resistance, of Staphylococcus aureus isolated from sheep milk. Milk samples were collected from all teats for the California Mastitis Test (CMT), somatic cell count, identification of S. aureus, investigation in these strains of genes encoding toxins (sea, seb, sec, sed, tst), biofilm (icaA, icaC, icaD, bap), leukocidin (luk-PV) oxacillin resistance by mecA gene detection and susceptibility testing (12 antibiotics). Messenger RNA expression was evaluated by RT-PCR in isolates carrying toxin and biofilm genes. Biofilm formation was also evaluated phenotypically by adherence to polystyrene plates. The clonal profile of S. aureus was investigated by pulsed-field gel electrophoresis. A total of 473 milk samples were collected from 242 animals on three farms and 20 S. aureus strains were isolated and none carried the mecA gene. The two sec gene-positive isolates and the isolates carrying the tst and luk-PV genes were positive by RT-PCR. Staphylococcus aureus isolated from the three flocks studied showed high susceptibility to the drugs tested and none was biofilm producer, indicating that biofilm formation was not a virulence factor causing infection by these strains. The typing of 17 S. aureus isolates revealed the presence of a common clone on the three farms studied, and the presence and expression of the sec and tst genes in one strain of this clone suggest the possible acquisition of virulence genes by this clone, a fact that is important for animal health and food hygiene. PMID:26273271

  15. Antibiofilm Effect of Octenidine Hydrochloride on Staphylococcus aureus, MRSA and VRSA

    Directory of Open Access Journals (Sweden)

    Mary Anne Roshni Amalaradjou

    2014-05-01

    Full Text Available Millions of indwelling devices are implanted in patients every year, and staphylococci (S. aureus, MRSA and vancomycin-resistant S. aureus (VRSA are responsible for a majority of infections associated with these devices, thereby leading to treatment failures. Once established, staphylococcal biofilms become resistant to antimicrobial treatment and host response, thereby serving as the etiological agent for recurrent infections. This study investigated the efficacy of octenidine hydrochloride (OH for inhibiting biofilm synthesis and inactivating fully-formed staphylococcal biofilm on different matrices in the presence and absence of serum protein. Polystyrene plates and stainless steel coupons inoculated with S. aureus, MRSA or VRSA were treated with OH (zero, 0.5, one, 2 mM at 37 °C for the prevention of biofilm formation. Additionally, the antibiofilm effect of OH (zero, 2.5, five, 10 mM on fully-formed staphylococcal biofilms on polystyrene plates, stainless steel coupons and urinary catheters was investigated. OH was effective in rapidly inactivating planktonic and biofilm cells of S. aureus, MRSA and VRSA on polystyrene plates, stainless steel coupons and urinary catheters in the presence and absence of serum proteins. The use of two and 10 mM OH completely inactivated S. aureus planktonic cells and biofilm (>6.0 log reduction on all matrices tested immediately upon exposure. Further, confocal imaging revealed the presence of dead cells and loss in biofilm architecture in the OH-treated samples when compared to intact live biofilm in the control. Results suggest that OH could be applied as an effective antimicrobial to control biofilms of S. aureus, MRSA and VRSA on appropriate hospital surfaces and indwelling devices.

  16. Genotyping of Staphylococcus aureus in bovine mastitis and correlation to phenotypic characteristics.

    Science.gov (United States)

    Artursson, Karin; Söderlund, Robert; Liu, Lihong; Monecke, Stefan; Schelin, Jenny

    2016-09-25

    Reducing the prevalence of mastitis caused by Staphylococcus aureus (S. aureus) is essential to improve animal health and reduce economic losses for farmers. The clinical outcome of acute mastitis and risk of progression to persistent mastitis can, at least to some extent, be related to genetic variants of the strain causing the infection. In the present study we have used microarrays to investigate the presence of virulence genes in S. aureus isolates from dairy cows with acute clinical mastitis (n=70) and correlated the findings to other genotypic and phenotypic characteristics. Among the most commonly found virulence factors were genes encoding several hemolysin types, leukocidins D and lukM/lukF-P83, clumping factors A and B, fibrinogen binding protein and fibronectin-binding protein A. Some virulence factors e.g. fibronectin-binding protein B and Staphylococcus aureus surface protein G were less common. Genes coding for several staphylococcal enterotoxins and toxic shock syndrome toxin-1 (TSST-1) were commonly found, especially in one major pulsotype. No beta-lactamase genes were found in any common pulsotype, while present in some rare pulsotypes, indicated to be of human origin. Production of TSST-1, enterotoxins, hemolysins and beta-lactamase could all be positively correlated to presence of the corresponding genes. This study reveals a number of genotypic differences and similarities among common and rare pulsotypes of S. aureus from cases of mastitis in Sweden. The results could help the design of diagnostic tools to guide on-farm interventions according to the expected impact on udder health from a specific S. aureus genotype. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.

    Science.gov (United States)

    Traba, Christian; Liang, Jun F

    2011-08-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.

  18. Isolation, characterization, virulence and immunogenicity testing of field isolates of Pasteurella multocida, Staphylococcus aureus, and Streptococcus agalactiae in laboratory settings.

    Science.gov (United States)

    Qudratullah; Muhammad, G; Saqib, M; Bilal, M Qamar

    2017-08-01

    The present study was designed to investigate isolation, characterization, virulence and immunogenicity testing of field isolates of Pasteurella multocida, Staphylococcus aureus, and Streptococcus agalactiae in rabbits and mice. Isolates of P. multocida, S. aureus and Str. agalactiae recovered from field cases of Hemorragic septicemia and mastitis were scrutinized for virulence/pathogenicity and immunogenicity. Mouse LD 50 of P. multocida showed that P. multocida isolate No.1 was more virulent than isolates No. 2 and 3. Virulence of isolate No.1S. aureus and Str. agalactiae revealed that 100, 80% rabbits died within 18h of inoculation. Seven-digit numerical profiles of these 4 isolates with API ® Staph test strips isolates, No.1 (6736153) showed good identification (S. aureus id=90.3%). Indirect ELISA-based serum antibody titers to P. multocida isolate No.1, S. aureus No.1, Str. agalactiae, isolate No.1 elicited high antibody titers 1.9, 1.23, 1.12 respectively. All the pathogens of Isolate No. 1 (P. multocida, S. aureus Str. agalactiae), were high antibody than others isolates. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Molecular analysis of virulent genes (coa and spa) of staphylococcus aureus involved in natural cases of bovine mastitis

    International Nuclear Information System (INIS)

    Khan, A.; Javed, M.T.; Mahmood, F.; Hussain, R.

    2013-01-01

    The present study was undertaken to determine the distribution and genotypic characteristics of Staphylococcus aureus isolates recovered from naturally occurring mastitis in cattle and buffaloes. For this purpose a total of 1445 lactating cattle (653) and buffaloes (792) present at two experimental livestock farms Okara (Bahadarnagar) and Sahiwal (Qadiarabad), in and around district Faisalabad and slaughtered at an abattoir due to low milk yield and were screened for mastitis. California Mastitis Test (CMT) was used to detect sub clinical mastitis. The positive quarter milk samples were collected for culturing of S. aureus isolates. taphylococcus aureus isolates were identified on the basis of growth features, biochemical characteristics, coagulase test and as well as amplification of coagulase (coa) and spa (spa-X) genes specific to its virulence. S. aureus isolates (n=265) were characterized by Polymerase chain reaction to determine the frequency of coagulase (coa) and spa (spa-X) genes. From these isolates the amplification of the coagulase (coa) gene yielded three different PCR products approximately 204bp to 490bp while spa (spa-X) gene produced five different products ranging in size from 190bp to 320bp. PCR revealed that from all the coagulase positive S. aureus isolates 261(98.5%) had spa (spa-X) gene. The results of the present study indicated that S. aureus isolates recovered from bovine mastitis were genetically different within and among the various herds which may provide essential and valuable strategies to control staphylococcal infections in future. (author)

  20. Molecular analysis of virulent genes (coa and spa) of staphylococcus aureus involved in natural cases of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.; Javed, M. T.; Mahmood, F. [University of Agriculture, Faisalabad (Pakistan). Dept. of Pathology; Hussain, R. [The Islamia Univ. of Bahawalpur, Pakistan (Pakistan). Dept. of Veterinary and Animal Sciences

    2013-12-15

    The present study was undertaken to determine the distribution and genotypic characteristics of Staphylococcus aureus isolates recovered from naturally occurring mastitis in cattle and buffaloes. For this purpose a total of 1445 lactating cattle (653) and buffaloes (792) present at two experimental livestock farms Okara (Bahadarnagar) and Sahiwal (Qadiarabad), in and around district Faisalabad and slaughtered at an abattoir due to low milk yield and were screened for mastitis. California Mastitis Test (CMT) was used to detect sub clinical mastitis. The positive quarter milk samples were collected for culturing of S. aureus isolates. taphylococcus aureus isolates were identified on the basis of growth features, biochemical characteristics, coagulase test and as well as amplification of coagulase (coa) and spa (spa-X) genes specific to its virulence. S. aureus isolates (n=265) were characterized by Polymerase chain reaction to determine the frequency of coagulase (coa) and spa (spa-X) genes. From these isolates the amplification of the coagulase (coa) gene yielded three different PCR products approximately 204bp to 490bp while spa (spa-X) gene produced five different products ranging in size from 190bp to 320bp. PCR revealed that from all the coagulase positive S. aureus isolates 261(98.5%) had spa (spa-X) gene. The results of the present study indicated that S. aureus isolates recovered from bovine mastitis were genetically different within and among the various herds which may provide essential and valuable strategies to control staphylococcal infections in future. (author)

  1. Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages.

    Directory of Open Access Journals (Sweden)

    Arshnee Moodley

    Full Text Available Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8, ST22 (CC22 and ST36(CC30] and two pig-associated [ST398 (CC398 and ST433(CC30] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1 human and porcine ST398; mix 2 human ST36 and porcine ST433; and mix 3 human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001. In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs.

  2. Meticillineresistente Staphylococcus aureus (MRSA) in de gemeenschap

    NARCIS (Netherlands)

    Vonk, A. G.; Vandenbroucke-Grauls, C. M. J. E.

    2007-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections have been confined to healthcare centres for decades. However, MRSA infections are increasingly seen in young healthy individuals with no exposure to healthcare centres. These community-acquired MRSA (CA-MRSA) strains differ from

  3. Staphylococcus aureus resistente a la meticilina (SARM)

    Centers for Disease Control (CDC) Podcasts

    2007-10-22

    Datos importantes sobre las infecciones por SARM en Estados Unidos, en las escuelas y los entornos médicos. (Title: Methicillin-resistant Staphylococcus aureus (MRSA)Created: 10/2007).  Created: 10/22/2007 by National Center for Preparedness, Detection, and Control of Infectious Diseases.   Date Released: 11/9/2007.

  4. Resistance patterns of Staphylococcus aureus and Pseudomonas ...

    African Journals Online (AJOL)

    Two hundred (200) strains of S. aureus and P. aeruginosa were isolated from clinical samples collected from patients in Murtala Muhammad Specialist Hospital and Infectious Diseases Hospital, Kano. The confirmed isolates were tested for resistance to quinolones by the agar disk diffusion susceptibility test and the agar ...

  5. Misidentification of methicillinresistant Staphylococcus aureus (MRSA)

    African Journals Online (AJOL)

    Conclusions: Misidentification of nosocomial S. aureus as MRSA is a serious problem in Libyan hospitals. There is an urgent need for the proper training of microbiology laboratory technicians in standard antimicrobial susceptibility procedures and the implementation of quality control programs in microbiology laboratories ...

  6. Staphylococcus aureus enterotoxins A- and B

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Karlsdóttir, Edda

    2013-01-01

    Enterotoxins of Staphylococcus aureus are among the most common causes of food poisoning. Acting as superantigens they intoxicate the organism by causing a massive uncontrolled T cell activation that ultimately may lead to toxic shock and death. In contrast to our detailed knowledge regarding...

  7. Mechanisms of antibiotic resistance in Staphylococcus aureus.

    Science.gov (United States)

    Pantosti, Annalisa; Sanchini, Andrea; Monaco, Monica

    2007-06-01

    Staphylococcus aureus can exemplify better than any other human pathogen the adaptive evolution of bacteria in the antibiotic era, as it has demonstrated a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin and methicillin, until the most recent, linezolid and daptomycin. Resistance mechanisms include enzymatic inactivation of the antibiotic (penicillinase and aminoglycoside-modification enzymes), alteration of the target with decreased affinity for the antibiotic (notable examples being penicillin-binding protein 2a of methicillin-resistant S. aureus and D-Ala-D-Lac of peptidoglycan precursors of vancomycin-resistant strains), trapping of the antibiotic (for vancomycin and possibly daptomycin) and efflux pumps (fluoroquinolones and tetracycline). Complex genetic arrays (staphylococcal chromosomal cassette mec elements or the vanA operon) have been acquired by S. aureus through horizontal gene transfer, while resistance to other antibiotics, including some of the most recent ones (e.g., fluoroquinolones, linezolid and daptomycin) have developed through spontaneous mutations and positive selection. Detection of the resistance mechanisms and their genetic basis is an important support to antibiotic susceptibility surveillance in S. aureus.

  8. [Carriage of Staphylococcus aureus among food service workers].

    Science.gov (United States)

    Alarcón-Lavín, María Paula; Oyarzo, Carolina; Escudero, Carlos; Cerda-Leal, Fabiola; Valenzuela, Francisco J

    2017-12-01

    Background Staphylococcus aureus produces 11 serotypes of endotoxins that may cause food poisoning. Aim To determine the prevalence of type A enterotoxigenic Staphylococcus aureus carriage among food service workers in Chillan, Chile. Material and Methods Pharyngeal swabs were obtained from 100 food service workers and were cultured in Agar plates. After identifying the presence of Staphylococcus aureus, DNA was extracted to identify type A toxin by conventional PCR. Results Thirty eight percent of samples were colonized with Staphylococcus aureus. Among these, 26% were toxin A producers. Conclusions Half of the sampled workers carried Staphylococcus aureus and a quarter of these produced type A enterotoxin.

  9. Pharmacophore-based screening of differentially-expressed PGF, DDIT4, COMP and CHI3L1 from hMSC cell lines reveals five novel therapeutic compounds for primary osteoporosis

    Directory of Open Access Journals (Sweden)

    Catherine Jessica Lai

    2016-06-01

    Full Text Available As many societies age, primary osteoporosis (PO is increasingly a major health problem. Current drug treatments such as alendronate and risedronate have known side effects. We took an agnostic empirical approach to find PO therapeutic compounds. We examined 13,548,960 probe data-points from mesenchymal stromal cell (hMSC lines and found that PGF, DDIT4, and COMP to be up-regulated, and CHI3L1, down-regulated. We then identified their druggable domains. For the up-regulated differentially-expressed genes, we used protein–protein interactions to find residue clusters as binding surfaces. We then employed pharmacophore models to screen 15,407,096 conformations of 22,723,923 compounds, which identified (6R,9R-6-(2-furyl-9-(1H-indol-3-yl-2-(trifluoromethyl-5,6,7, 9-tetrahydro-4H[1,2,4]triazolo[5,1],(2S-N1-[2-[2-(methylamino-2-oxo-ethyl]phenyl]-N2-phenylpyrrolidine-1,2-dicarboxamide, and 2-furyl-(1H-indol-3-yl-methyl-BLAHone as candidate compounds. For the down-regulated CH13L1, we relied on genome-wide disease signatures to identify (11alpha-9-fluoro-11,17,21-trihydroxypregn-4-ene-3,20-dione and Genistein as candidate compounds. Our approach differs from previous research as we did not confine our drug targets to hypothesized compounds in the existing literature. Instead, we allowed the full expression profile of PO cell lines to reveal the most desirable targets. Second, our differential gene analysis revealed both up- and down-regulated genes, in contrast to the literature, which has focused on inhibiting only up-regulated genes. Third, our virtual screening universe of 22,723,923 compounds was more than 100 times larger than those in the known literature.

  10. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p.

    Science.gov (United States)

    Peters, Brian M; Ovchinnikova, Ekaterina S; Krom, Bastiaan P; Schlecht, Lisa Marie; Zhou, Han; Hoyer, Lois L; Busscher, Henk J; van der Mei, Henny C; Jabra-Rizk, Mary Ann; Shirtliff, Mark E

    2012-12-01

    The bacterium Staphylococcus (St.) aureus and the opportunistic fungus Candida albicans are currently among the leading nosocomial pathogens, often co-infecting critically ill patients, with high morbidity and mortality. Previous investigations have demonstrated preferential adherence of St. aureus to C. albicans hyphae during mixed biofilm growth. In this study, we aimed to characterize the mechanism behind this observed interaction. C. albicans adhesin-deficient mutant strains were screened by microscopy to identify the specific receptor on C. albicans hyphae recognized by St. aureus. Furthermore, an immunoassay was developed to validate and quantify staphylococcal binding to fungal biofilms. The findings from these experiments implicated the C. albicans adhesin agglutinin-like sequence 3 (Als3p) in playing a major role in the adherence process. This association was quantitatively established using atomic force microscopy, in which the adhesion force between single cells of the two species was significantly reduced for a C. albicans mutant strain lacking als3. Confocal microscopy further confirmed these observations, as St. aureus overlaid with a purified recombinant Als3 N-terminal domain fragment (rAls3p) exhibited robust binding. Importantly, a strain of Saccharomyces cerevisiae heterologously expressing Als3p was utilized to further confirm this adhesin as a receptor for St. aureus. Although the parental strain does not bind bacteria, expression of Als3p on the cell surface conferred upon the yeast the ability to strongly bind St. aureus. To elucidate the implications of these in vitro findings in a clinically relevant setting, an ex vivo murine model of co-infection was designed using murine tongue explants. Fluorescent microscopic images revealed extensive hyphal penetration of the epithelium typical of C. albicans mucosal infection. Interestingly, St. aureus bacterial cells were only seen within the epithelial tissue when associated with the invasive

  11. Relationship between Vancomycin-Resistant Staphylococcus aureus, Vancomycin-Intermediate S. aureus, High Vancomycin MIC, and Outcome in Serious S. aureus Infections

    OpenAIRE

    Holmes, Natasha E.; Johnson, Paul D. R.; Howden, Benjamin P.

    2012-01-01

    Vancomycin has been used successfully for over 50 years for the treatment of Staphylococcus aureus infections, particularly those involving methicillin-resistant S. aureus. It has proven remarkably reliable, but its efficacy is now being questioned with the emergence of strains of S. aureus that display heteroresistance, intermediate resistance, and, occasionally, complete vancomycin resistance. More recently, an association has been established between poor outcome and infections with strain...

  12. Genetic diversity of Staphylococcus aureus in Buruli ulcer.

    Directory of Open Access Journals (Sweden)

    Nana Ama Amissah

    2015-02-01

    Full Text Available Buruli ulcer (BU is a necrotizing skin disease caused by Mycobacterium ulcerans. Previous studies have shown that wounds of BU patients are colonized with M. ulcerans and several other microorganisms, including Staphylococcus aureus, which may interfere with wound healing. The present study was therefore aimed at investigating the diversity and topography of S. aureus colonizing BU patients during treatment.We investigated the presence, diversity, and spatio-temporal distribution of S. aureus in 30 confirmed BU patients from Ghana during treatment. S. aureus was isolated from nose and wound swabs, and by replica plating of wound dressings collected bi-weekly from patients. S. aureus isolates were characterized by multiple-locus variable number tandem repeat fingerprinting (MLVF and spa-typing, and antibiotic susceptibility was tested.Nineteen (63% of the 30 BU patients tested positive for S. aureus at least once during the sampling period, yielding 407 S. aureus isolates. Detailed analysis of 91 isolates grouped these isolates into 13 MLVF clusters and 13 spa-types. Five (26% S. aureus-positive BU patients carried the same S. aureus genotype in their anterior nares and wounds. S. aureus isolates from the wounds of seven (37% patients were distributed over two different MLVF clusters. Wounds of three (16% patients were colonized with isolates belonging to two different genotypes at the same time, and five (26% patients were colonized with different S. aureus types over time. Five (17% of the 30 included BU patients tested positive for methicillin-resistant S. aureus (MRSA.The present study showed that the wounds of many BU patients were contaminated with S. aureus, and that many BU patients from the different communities carried the same S. aureus genotype during treatment. This calls for improved wound care and hygiene.

  13. Genetic diversity of Staphylococcus aureus in Buruli ulcer.

    Science.gov (United States)

    Amissah, Nana Ama; Glasner, Corinna; Ablordey, Anthony; Tetteh, Caitlin S; Kotey, Nana Konama; Prah, Isaac; van der Werf, Tjip S; Rossen, John W; van Dijl, Jan Maarten; Stienstra, Ymkje

    2015-02-01

    Buruli ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans. Previous studies have shown that wounds of BU patients are colonized with M. ulcerans and several other microorganisms, including Staphylococcus aureus, which may interfere with wound healing. The present study was therefore aimed at investigating the diversity and topography of S. aureus colonizing BU patients during treatment. We investigated the presence, diversity, and spatio-temporal distribution of S. aureus in 30 confirmed BU patients from Ghana during treatment. S. aureus was isolated from nose and wound swabs, and by replica plating of wound dressings collected bi-weekly from patients. S. aureus isolates were characterized by multiple-locus variable number tandem repeat fingerprinting (MLVF) and spa-typing, and antibiotic susceptibility was tested. Nineteen (63%) of the 30 BU patients tested positive for S. aureus at least once during the sampling period, yielding 407 S. aureus isolates. Detailed analysis of 91 isolates grouped these isolates into 13 MLVF clusters and 13 spa-types. Five (26%) S. aureus-positive BU patients carried the same S. aureus genotype in their anterior nares and wounds. S. aureus isolates from the wounds of seven (37%) patients were distributed over two different MLVF clusters. Wounds of three (16%) patients were colonized with isolates belonging to two different genotypes at the same time, and five (26%) patients were colonized with different S. aureus types over time. Five (17%) of the 30 included BU patients tested positive for methicillin-resistant S. aureus (MRSA). The present study showed that the wounds of many BU patients were contaminated with S. aureus, and that many BU patients from the different communities carried the same S. aureus genotype during treatment. This calls for improved wound care and hygiene.

  14. Methicillin sensitive Staphylococcus aureus producing Panton-Valentine leukocidin toxin in Trinidad & Tobago: a case report

    Directory of Open Access Journals (Sweden)

    Rao AV

    2011-04-01

    Full Text Available Abstract Introduction Certain Staphylococcus aureus strains produce Panton-Valentine leukocidin, a toxin that lyses white blood cells causing extensive tissue necrosis and chronic, recurrent or severe infection. This report documents a confirmed case of methicillin-sensitive Staphylococcus aureus strain harboring Panton-Valentine leukocidin genes from Trinidad and Tobago. To the best of our knowledge, this is the first time that such a case has been identified and reported from this country. Case presentation A 13-year-old Trinidadian boy of African descent presented with upper respiratory symptoms and gastroenteritis-like syptoms. About two weeks later he was re-admitted to our hospital complaining of pain and weakness affecting his left leg, where he had received an intramuscular injection of an anti-emetic drug. He deteriorated and developed septic arthritis, necrotizing fasciitis and septic shock with acute respiratory distress syndrome, leading to death within 48 hours of admission despite intensive care treatment. The infection was caused by S. aureus. Bacterial isolates from specimens recovered from our patient before and after his death were analyzed using microarray DNA analysis and spa typing, and the results revealed that the S. aureus isolates belonged to clonal complex 8, were methicillin-susceptible and positive for Panton-Valentine leukocidin. An autopsy revealed multi-organ failure and histological tissue stains of several organs were also performed and showed involvement of his lungs, liver, kidneys and thymus, which showed Hassal's corpuscles. Conclusion Rapid identification of Panton-Valentine leukocidin in methicillin-sensitive S. aureus isolates causing severe infections is necessary so as not to miss their potentially devastating consequences. Early feedback from the clinical laboratories is crucial.

  15. Microsatellite markers reveal low genetic differentiation among ...

    African Journals Online (AJOL)

    Ben

    Assignment. 1* Khai Apple Game Reserve, Kathu, Northern Cape ... Previous genetic studies on Camelidae in Dubai, Germany, Australia, Kenya and Ethiopia mainly reporting the ... All the biological samples were deposited in the Bio-Bank at.

  16. Genetic variation and geographical differentiation revealed using ...

    Indian Academy of Sciences (India)

    there are a few reports on the genetic evaluation of tung tree germplasm. .... bES, Enshi in Hubei province; SN, Suining in Sichuan province. Journal of Genetics Vol. 94, Online Resources e6 ... gene diversity. Journal of Genetics Vol. 94, Online Resources e7 .... Pan Y., Pan L., Chen L., Zhang L. L., Nevo E. and Peng J. H..

  17. Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers

    Science.gov (United States)

    Carrera, Mónica; Böhme, Karola; Gallardo, José M.; Barros-Velázquez, Jorge; Cañas, Benito; Calo-Mata, Pilar

    2017-01-01

    In the present work, we applied a shotgun proteomics approach for the fast and easy characterization of 20 different foodborne strains of Staphylococcus aureus (S. aureus), one of the most recognized foodborne pathogenic bacteria. A total of 644 non-redundant proteins were identified and analyzed via an easy and rapid protein sample preparation procedure. The results allowed the differentiation of several proteome datasets from the different strains (common, accessory, and unique datasets), which were used to determine relevant functional pathways and differentiate the strains into different Euclidean hierarchical clusters. Moreover, a predicted protein-protein interaction network of the foodborne S. aureus strains was created. The whole confidence network contains 77 nodes and 769 interactions. Most of the identified proteins were surface-associated proteins that were related to pathways and networks of energy, lipid metabolism and virulence. Twenty-seven virulence factors were identified, and most of them corresponded to autolysins, N-acetylmuramoyl-L-alanine amidases, phenol-soluble modulins, extracellular fibrinogen-binding proteins and virulence factor EsxA. Potential species-specific peptide biomarkers were screened. Twenty-one species-specific peptide biomarkers, belonging to eight different proteins (nickel-ABC transporter, N-acetylmuramoyl-L-alanine amidase, autolysin, clumping factor A, gram-positive signal peptide YSIRK, cysteine protease/staphopain, transcriptional regulator MarR, and transcriptional regulator Sar-A), were proposed to identify S. aureus. These results constitute the first major dataset of peptides and proteins of foodborne S. aureus strains. This repository may be useful for further studies, for the development of new therapeutic treatments for S. aureus food intoxications and for microbial source-tracking in foodstuffs. PMID:29312172

  18. European ST80 community-associated methicillin-resistant Staphylococcus aureus orbital cellulitis in a neonate

    Directory of Open Access Journals (Sweden)

    Tsironi Evangelia E

    2012-05-01

    Full Text Available Abstract Background Methicillin-resistant Staphylococcus aureus is a serious cause of morbidity and mortality in hospital environment, but also, lately, in the community. This case report is, to our knowledge, the first detailed description of a community-associated methicillin-resistant S. aureus ST80 orbital cellulitis in a previously healthy neonate. Possible predisposing factors of microbial acquisition and treatment selection are also discussed. Case presentation A 28-day-old Caucasian boy was referred to our hospital with the diagnosis of right orbital cellulitis. His symptoms included right eye proptosis, periocular edema and redness. Empirical therapy of intravenous daptomycin, rifampin and ceftriaxone was initiated. The culture of pus yielded a methicillin-resistant S. aureus isolate and the molecular analysis revealed that it was a Panton-Valentine leukocidine-positive ST80 strain. The combination antimicrobial therapy was continued for 42days and the infection was successfully controlled. Conclusions Clinicians should be aware that young infants, even without any predisposing condition, are susceptible to orbital cellulitis caused by community-associated methicillin-resistant S. aureus. Prompt initiation of the appropriate empirical therapy, according to the local epidemiology, should successfully address the infection, preventing ocular and systemic complications.

  19. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing.

    Science.gov (United States)

    Johnson, Christopher T; Wroe, James A; Agarwal, Rachit; Martin, Karen E; Guldberg, Robert E; Donlan, Rodney M; Westblade, Lars F; García, Andrés J

    2018-05-29

    Orthopedic implant infections are a significant clinical problem, with current therapies limited to surgical debridement and systemic antibiotic regimens. Lysostaphin is a bacteriolytic enzyme with high antistaphylococcal activity. We engineered a lysostaphin-delivering injectable PEG hydrogel to treat Staphylococcus aureus infections in bone fractures. The injectable hydrogel formulation adheres to exposed tissue and fracture surfaces, ensuring efficient, local delivery of lysostaphin. Lysostaphin encapsulation within this synthetic hydrogel maintained enzyme stability and activity. Lysostaphin-delivering hydrogels exhibited enhanced antibiofilm activity compared with soluble lysostaphin. Lysostaphin-delivering hydrogels eradicated S. aureus infection and outperformed prophylactic antibiotic and soluble lysostaphin therapy in a murine model of femur fracture. Analysis of the local inflammatory response to infections treated with lysostaphin-delivering hydrogels revealed indistinguishable differences in cytokine secretion profiles compared with uninfected fractures, demonstrating clearance of bacteria and associated inflammation. Importantly, infected fractures treated with lysostaphin-delivering hydrogels fully healed by 5 wk with bone formation and mechanical properties equivalent to those of uninfected fractures, whereas fractures treated without the hydrogel carrier were equivalent to untreated infections. Finally, lysostaphin-delivering hydrogels eliminate methicillin-resistant S. aureus infections, supporting this therapy as an alternative to antibiotics. These results indicate that lysostaphin-delivering hydrogels effectively eliminate orthopedic S. aureus infections while simultaneously supporting fracture repair. Copyright © 2018 the Author(s). Published by PNAS.

  20. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus.

    Science.gov (United States)

    Botka, Tibor; Růžičková, Vladislava; Konečná, Hana; Pantůček, Roman; Rychlík, Ivan; Zdráhal, Zbyněk; Petráš, Petr; Doškař, Jiří

    2015-08-01

    Exfoliative toxin A (ETA)-coding temperate bacteriophages are leading contributors to the toxic phenotype of impetigo strains of Staphylococcus aureus. Two distinct eta gene-positive bacteriophages isolated from S. aureus strains which recently caused massive outbreaks of pemphigus neonatorum in Czech maternity hospitals were characterized. The phages, designated ϕB166 and ϕB236, were able to transfer the eta gene into a prophageless S. aureus strain which afterwards converted into an ETA producer. Complete phage genome sequences were determined, and a comparative analysis of five designed genomic regions revealed major variances between them. They differed in the genome size, number of open reading frames, genome architecture, and virion protein patterns. Their high mutual sequence similarity was detected only in the terminal regions of the genome. When compared with the so far described eta phage genomes, noticeable differences were found. Thus, both phages represent two new lineages of as yet not characterized bacteriophages of the Siphoviridae family having impact on pathogenicity of impetigo strains of S. aureus.

  1. PCR-based Approaches for the Detection of Clinical Methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Liu, Ying; Zhang, Jiang; Ji, Yinduo

    2016-01-01

    Staphylococcus aureus is an important pathogen that can cause a variety of infections, including superficial and systematic infections, in humans and animals. The persistent emergence of multidrug resistant S. aureus, particularly methicillin-resistant S. aureus, has caused dramatically economic burden and concerns in the public health due to limited options of treatment of MRSA infections. In order to make a correct choice of treatment for physicians and understand the prevalence of MRSA, it is extremely critical to precisely and timely diagnose the pathogen that induces a specific infection of patients and to reveal the antibiotic resistant profile of the pathogen. In this review, we outlined different PCR-based approaches that have been successfully utilized for the rapid detection of S. aureus, including MRSA and MSSA, directly from various clinical specimens. The sensitivity and specificity of detections were pointed out. Both advantages and disadvantages of listed approaches were discussed. Importantly, an alternative approach is necessary to further confirm the detection results from the molecular diagnostic assays. PMID:27335617

  2. Environment-Mediated Accumulation of Diacyl Lipoproteins over Their Triacyl Counterparts in Staphylococcus aureus

    Science.gov (United States)

    Kurokawa, Kenji; Kim, Min-Su; Ichikawa, Rie; Ryu, Kyoung-Hwa; Dohmae, Naoshi

    2012-01-01

    Bacterial lipoproteins are believed to exist in only one specific lipid-modified structure, such as the diacyl form or the triacyl form, in each bacterium. In the case of Staphylococcus aureus, recent extensive matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry analysis revealed that S. aureus lipoproteins exist in the α-aminoacylated triacyl form. Here, we discovered conditions that induce the accumulation of diacyl lipoproteins that lack α-aminoacylation in S. aureus. The accumulation of diacyl lipoproteins required a combination of conditions, including acidic pH and a post-logarithmic-growth phase. High temperatures and high salt concentrations additively accelerated the accumulation of the diacyl lipoprotein form. Following a post-logarithmic-growth phase where S. aureus MW2 cells were grown at pH 6, SitC lipoprotein was found almost exclusively in its diacyl structure rather than in its triacyl structure. This is the first report showing that the environment mediates lipid-modified structural alterations of bacterial lipoproteins. PMID:22467779

  3. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S.