WorldWideScience

Sample records for auranofin

  1. Serum gold concentrations during treatment with auranofin.

    Science.gov (United States)

    Van Riel, P L; Gribnau, F W; Van de Putte, L B; Arts, C W; Van Aernsbergen, A

    1987-03-01

    Serum gold concentrations were measured in rheumatoid arthritis patients during chronic treatment with the orally adsorbable gold compound auranofin. In agreement with data in the literature, the highest serum gold concentration was reached after 16 weeks of treatment with 6 mg auranofin daily. A striking finding in this study was that thereafter the serum gold concentrations did not appear to plateau but declined gradually. Statistically this resulted in a significantly lower concentration after one year as compared with week 16 (p less than 0.05, paired t-test). It is suggested that a shift from protein bound gold to cell-bound gold might be the explanation.

  2. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  3. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway

    Science.gov (United States)

    Thangamani, Shankar; Maland, Matthew; Mohammad, Haroon; Pascuzzi, Pete E.; Avramova, Larisa; Koehler, Carla M.; Hazbun, Tony R.; Seleem, Mohamed N.

    2017-01-01

    Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin's potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin's antifungal activity—mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections. PMID:28149831

  4. A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia.

    Science.gov (United States)

    Tejman-Yarden, Noa; Miyamoto, Yukiko; Leitsch, David; Santini, Jennifer; Debnath, Anjan; Gut, Jiri; McKerrow, James H; Reed, Sharon L; Eckmann, Lars

    2013-05-01

    Giardiasis is one of the most common causes of diarrheal disease worldwide. Treatment is primarily with 5-nitro antimicrobials, particularly metronidazole. Resistance to metronidazole has been described, and treatment failures can occur in up to 20% of cases, making development of alternative antigiardials an important goal. To this end, we have screened a chemical library of 746 approved human drugs and 164 additional bioactive compounds for activity against Giardia lamblia. We identified 56 compounds that caused significant inhibition of G. lamblia growth and attachment. Of these, 15 were previously reported to have antigiardial activity, 20 were bioactive but not approved for human use, and 21 were drugs approved for human use for other indications. One notable compound of the last group was the antirheumatic drug auranofin. Further testing revealed that auranofin was active in the low (4 to 6)-micromolar range against a range of divergent G. lamblia isolates representing both human-pathogenic assemblages A and B. Most importantly, auranofin was active against multiple metronidazole-resistant strains. Mechanistically, auranofin blocked the activity of giardial thioredoxin oxidoreductase, a critical enzyme involved in maintaining normal protein function and combating oxidative damage, suggesting that this inhibition contributes to the antigiardial activity. Furthermore, auranofin was efficacious in vivo, as it eradicated infection with different G. lamblia isolates in different rodent models. These results indicate that the approved human drug auranofin could be developed as a novel agent in the armamentarium of antigiardial drugs, particularly against metronidazole-resistant strains.

  5. Acquired resistance to auranofin in cultured human cells.

    Science.gov (United States)

    Glennås, A; Rugstad, H E

    1985-01-01

    A substrain (HEAF) of cultured human epithelial cells, grown as monolayers, was selected for resistance to auranofin (AF), a gold-containing anti-arthritic drug, by growing the parental HE cells with stepwise increased concentrations of AF in the medium. HEAF cells acquired resistance to 2 mumol AF/l, twice the concentration tolerated by the sensitive HE cells. Resistance to AF was also demonstrated in another substrain (HE100) originally selected for by its cadmium resistance, and characterized by a high cytosolic metallothionein (MT) content. Following continuous exposure to 2 mumol AF/l for 4 days, 58% of the HEAF cells, 67% of the HE100 cells, and 16% of the HE cells remained adherent to the flasks, compared with non-treated controls. Following 24 h AF exposure to living cells, HEAF cells had one-half and HE100 cells twice the cellular and cytosolic gold concentration per mg protein, as compared with HE cells. Gel filtration of cell cytosols revealed gold-binding proteins with a mol. wt. of about 10 000 apparently occurring on AF exposure in HEAF and HE cells. They bound 10-15% of cytosolic gold. MT in HE100 cells bound AF-gold to about the same extent. We suggest that the ability of cells to maintain the gold concentration at a low level (HEAF) and trapping of gold by MT (HE100) or low molecular weight proteins occurring on AF treatment (HEAF) may be mechanisms contributing to the observed cellular resistance to AF.

  6. Injectable gold dermatitis and proteinuria: retreatment with auranofin.

    Science.gov (United States)

    Tosi, S; Cagnoli, M; Guidi, G; Murelli, M; Messina, K; Colombo, B

    1985-01-01

    Seven female patients with classical rheumatoid arthritis (RA), treated successfully with injectable gold salts (Fosfocrisolo ICI, 0.10 g/week, with a serum gold concentration of 200-400 mcg/dl), experienced severe gold side-effects after 3 to 20 months of therapy, requiring their withdrawal from gold despite the good results in both clinical and laboratory findings. Four patients showed mucocutaneous side-effects (2 dermatitis and 2 stomatitis) and three a moderate or severe proteinuria. Renal biopsy was performed in these patients, with a histological picture of membranous glomerulonephritis referable to gold therapy. Remission inducing drug (R.I.D.) therapy being mandatory in patients with a chronic progressive disease, and in view of the previous efficacy of gold salts, the patients were put on oral gold, Auranofin being administered 3 mg b.i.d. Both the mucocutaneous side-effects and the proteinuria ameliorated within 2 to 6 months, and the remission of the disease was maintained. The chemical and pharmacokinetic differences between the above two gold compounds are discussed.

  7. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo.

    Science.gov (United States)

    Hopper, Melissa; Yun, Jeong-Fil; Zhou, Bianhua; Le, Christine; Kehoe, Katelin; Le, Ryan; Hill, Ryan; Jongeward, Gregg; Debnath, Anjan; Zhang, Liangfang; Miyamoto, Yukiko; Eckmann, Lars; Land, Kirkwood M; Wrischnik, Lisa A

    2016-12-01

    Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common, non-viral, sexually transmitted infection in the world, but only two closely related nitro drugs are approved for its treatment. New antimicrobials against trichomoniasis remain an urgent need. Several organic gold compounds were tested for activity against T. vaginalis thioredoxin reductase (TrxR) in cell-free systems as well as for activity against different trichomonads in vitro and in a murine infection model. The organic gold(I) compounds auranofin and chloro(diethylphenylphosphine)gold(I) inhibited TrxR in a concentration-dependent manner in assays with recombinant purified reductase and in cytoplasmic extracts of T. vaginalis transfected with a haemagglutinin epitope-tagged form of the reductase. Auranofin potently suppressed the growth of three independent clinical T. vaginalis isolates as well as several strains of another trichomonad (Tritrichomonas foetus) in a 24 h-assay, with 50% inhibitory concentrations of 0.7-2.5 µM and minimum lethal concentrations of 2-6 µM. The drug also compromised the ability of the parasite to overcome oxidant stress, supporting the notion that auranofin acts, in part, by inactivating TrxR-dependent antioxidant defences. Chloro(diethylphenylphosphine)gold(I) was 10-fold less effective against T. vaginalis in vitro than auranofin. Oral administration of auranofin for 4 days cleared the parasites in a murine model of vaginal T. foetus infection without displaying any apparent adverse effects. The approved human drug auranofin may be a promising agent as an alternative treatment of trichomoniasis in cases when standard nitro drug therapies have failed.

  8. A Mixed Methods Feasibility Trial of PKCι Inhibition with Auranofin in Asymptomatic Patients with Ovarian Cancer

    Science.gov (United States)

    Jatoi, Aminah; Breitkopf, Carmen Radecki; Foster, Nathan R.; Block, Matthew S.; Grudem, Megan; Hendrickson, Andrea Wahner; Carlson, Rachel E.; Barrette, Brigitte; Karlin, Nina; Fields, Alan P.

    2015-01-01

    Purpose This trial was undertaken to 1) determine the feasibility of enrolling asymptomatic ovarian cancer patients with Ca-125 elevation to a trial with the PKCι inhibitor, auranofin, and 2) understand patients’ perceptions of Ca-125 monitoring. Methods Asymptomatic ovarian cancer patients with Ca-125 elevation received auranofin 3 mg orally twice/day and were evaluated. Patients participated in interviews about Ca-125 monitoring. Results Ten patients were enrolled in slightly over 6 months, exceeding our anticipated rate. Four manifested stable Ca-125 levels for 1 month or longer. The median progression-free survival was 2.8 months (95% confidence interval: 1.3, 3.8 months); auranofin was well tolerated. One patient had baseline and monthly Ca-125 levels of 5570, 6085, 3511, and 2230 units/mL, respectively, stopped auranofin because of radiographic progression at 3 months, and manifested an increase in Ca-125 to 7168 units/mL approximately 3 months later. Patient interviews revealed: 1) the important role of Ca-125 in cancer monitoring; 2) ardent advocacy for Ca-125 testing; and 3) evolution toward the Ca-125 assuming a life of its own. Conclusions This study showed feasibility; and patients favored Ca-125 monitoring. One patient had a decline in Ca-125, suggesting that PKCι inhibition merits further study in ovarian cancer. PMID:25502607

  9. [Auranofin in the treatment of chronic polyarthritis. Results of an open multicenter study].

    Science.gov (United States)

    Siegmeth, W

    1984-01-01

    Auranofin (Ridaura SK and F 39 162) was tested in an open multicenter study with regard to its anti-inflammatory effect in 166 patients suffering from rheumatoid arthritis. The time for treatment lasted for one or two years. The therapeutic effect of the drug was judged by its influence on pain, joint swelling, morning stiffness, grip strength, blood-sedimentation rate and rheumatoid factor etc. The serum gold concentration was measured regularly. With Auranofin the majority of the patients achieved a lasting improvement of the condition. The therapeutical effect was observed gradually. Side-effects were frequent but removal from the therapy was rare. Most of the side-effects were diarrhea, rash, pruritus and conjunctivitis. Regular laboratory controls revealed in some cases toxic organic reactions.

  10. Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis.

    Directory of Open Access Journals (Sweden)

    Christina A Bulman

    2015-02-01

    Full Text Available Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC, and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode.

  11. Auranofin Inhibits the Enzyme Activity of Pasteurella multocida Toxin PMT in Human Cells and Protects Cells from Intoxication

    Science.gov (United States)

    Carle, Stefan; Brink, Thorsten; Orth, Joachim H. C.; Aktories, Klaus; Barth, Holger

    2017-01-01

    The AB-type protein toxin from Pasteurella multocida (PMT) contains a functionally important disulfide bond within its catalytic domain, which must be cleaved in the host cell cytosol to render the catalytic domain of PMT into its active conformation. Here, we found that the reductive potential of the cytosol of target cells, and more specifically, the activity of the thioredoxin reductase (TrxR) is crucial for this process. This was demonstrated by the strong inhibitory effect of the pharmacological TrxR inhibitor auranofin, which inhibited the intoxication of target cells with PMT, as determined by analyzing the PMT-catalyzed deamidation of GTP-binding proteins (G-proteins) in the cytosol of cells. The amount of endogenous substrate levels modified by PMT in cells pretreated with auranofin was reduced compared to cells treated with PMT alone. Auranofin had no inhibitory effect on the activity of the catalytic domain of constitutively active PMT in vitro, demonstrating that auranofin did not directly inhibit PMT activity, but interferes with the mode of action of PMT in cells. In conclusion, the results show that TrxR is crucial for the mode of action of PMT in mammalian cells, and that the drug auranofin can serve as an efficient inhibitor, which might be a starting point for novel therapeutic options against toxin-associated diseases. PMID:28098782

  12. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells

    Science.gov (United States)

    Drummond, Catherine J.; McCarthy, Anna R.; Higgins, Maureen; Campbell, Johanna; Brodin, Bertha; Arnér, Elias S.J.; Laín, Sonia

    2015-01-01

    Malignant melanoma is the most dangerous type of skin cancer. Although recent progress in treatment has been achieved, lack of response, drug resistance and relapse remain major problems. The tumor suppressor p53 is rarely mutated in melanoma, yet it is inactive in the majority of cases due to dysregulation of upstream pathways. Thus, we screened for compounds that can activate p53 in melanoma cells. Here we describe effects of the small molecule MJ25 (2-{[2-(1,3-benzothiazol-2-ylsulfonyl)ethyl]thio}-1,3-benzoxazole), which increased the level of p53-dependent transactivation both as a single agent and in combination with nutlin-3. Furthermore, MJ25 showed potent cytotoxicity towards melanoma cell lines, whilst having weaker effects against human normal cells. MJ25 was also identified in an independent screen as an inhibitor of thioredoxin reductase 1 (TrxR1), an important selenoenzyme in the control of oxidative stress and redox regulation. The well-characterized TrxR inhibitor auranofin, which is FDA-approved and currently in clinical trials against leukemia and a number of solid cancers, displayed effects comparable with MJ25 on cells and led to eradication of cultured melanoma cells at low micromolar concentrations. In conclusion, auranofin, MJ25 or other inhibitors of TrxR1 should be evaluated as candidate compounds or leads for targeted therapy of malignant melanoma. PMID:26029997

  13. Investigation of a potential mechanism for the inhibition of SmTGR by Auranofin and its implications for Plasmodium falciparum inhibition

    KAUST Repository

    Caroli, Antonia

    2012-01-01

    Schistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified. Auranofin also kills P. falciparum, even if its molecular targets are unknown. Here, we used computational and docking techniques to investigate the molecular mechanism of interaction between SmTGR and Auranofin. Furthermore, we took advantage of the homology relationship and of docking studies to assess if PfTR, the SmTGR malaria parasite homologue, can be a putative target for Auranofin. Our findings support a recently hypothesized molecular mechanism of inhibition for SmTGR and suggest that PfTR is indeed a possible and attractive drug target in P. falciparum. © 2011 Elsevier Inc.

  14. Antiproliferative effect of gold(I compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam-Hoon Kim

    2013-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 andtelomerase are considered attractive targets for anticancertherapy. The in vitro anticancer activity of the gold(I compoundauranofin was investigated using MDA-MB 231 human breastcancer cells, in which STAT3 is constitutively active. In cellculture, auranofin inhibited growth in a dose-dependent manner,and N-acetyl-L-cysteine (NAC, a scavenger of reactive oxygenspecies (ROS, markedly blocked the effect of auranofin.Incorporation of 5-bromo-2’-deoxyuridine into DNA andanchorage-independent cell growth on soft agar were decreasedby auranofin treatment. STAT3 phosphorylation and telomeraseactivity were also attenuated in cells exposed to auranofin, butNAC pretreatment restored STAT3 phosphorylation andtelomerase activity in these cells. These findings indicate thatauranofin exerts in vitro antitumor effects in MDA-MB 231 cellsand its activity involves inhibition of STAT3 and telomerase.Thus, auranofin shows potential as a novel anticancer drug thattargets STAT3 and telomerase. [BMB Reports 2013; 46(1: 59-64

  15. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca2+]i in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth Varghese

    2014-11-01

    Full Text Available Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i in breast cancer cells (MCF-7. Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM with a strong negative correlation (r = −0.713 to viability. Pharmacological modulators 2-APB (50 μM, Nimodipine (10 μM, Caffeine (10 mM, SKF 96365(20 μM were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.

  16. Dose response studies and longterm evaluation of auranofin in rheumatoid arthritis.

    Science.gov (United States)

    Champion, G D; Cairns, D R; Bieri, D; Adena, M A; Browne, C D; Cohen, M L; Day, R O; Edmonds, J P; Graham, G G; de Jager, J

    1988-01-01

    Fifty-eight patients with rheumatoid arthritis (RA) entered a double blind trial of auranofin (AF) designed to assess dose response relationships and longterm outcome. Multivariate analysis of repeated measures with trend analysis and discriminant function analysis of standard measures of RA activity were applied to a randomized double blind trial of AF at daily doses of 4, 6 and 8 mg over 6 months. Improvement occurred in each group. There was a highly significant (p less than 0.001) linear trend in the 6 mg group, 73% of whom showed linear improvement. A significant correlation (p less than 0.05) was found between response of individual patients and AF dose (mg/kg/day), but there was no significant correlation between dosage and mean steady state serum gold concentration. No significant correlation was seen between outcome and pretreatment demographic and disease variables. In a subsequent 6 month phase of dosage adjustment, aiming for optimal dosage, no advantage resulted from increasing the dose above 6 mg/day. Patients apparently benefiting from treatment continued an open long-term trial of AF. By 45 months, 33.5% had stopped treatment due to lack of efficacy and 14.5% due to toxicity, mainly rash and diarrhea.

  17. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci.

    Science.gov (United States)

    Martínez-González, J J; Guevara-Flores, A; Rendón, J L; del Arenal, I P

    2015-05-01

    Previously, we have studied the effect of the gold-compound auranofin (AF) on both thioredoxin-glutathione reductasa (TGR) activity and viability of Taenia crassiceps cysticerci. It was demonstrated that micromolar concentrations of AF were high enough to fully inhibit TGR and kill the parasites. In this work, the dynamics of changes in the glutathione pool of T. crassiceps cysticerci following the addition of AF, was analyzed. A dose-dependent decrease in the internal glutathione concentration, concomitant with an increase in ROS production was observed. These changes were simultaneous with the formation of glutathione-protein complexes and the export of glutathione disulfide (GSSG) to the culture medium. Incubation of cysticerci in the presence of both AF and N-acetyl cysteine (NAC) prevents all the above changes, maintaining cysticerci viability. By contrast, the presence of both AF and buthionine sulfoximine (BSO) resulted in a potentiation of the effects of the gold compound, jeopardizing cysticerci viability. These results suggest the lethal effect of AF on T. crassiceps cysticerci, observed at micromolar concentrations, can be explained as a consequence of major changes in the glutathione status, which results in a significant increase in the oxidative stress of the parasites.

  18. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  19. A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jocelyn M Madeira

    2015-01-01

    Full Text Available Neurodegenerative disorders including Alzheimer′s disease are characterized by chronic inflammation in the central nervous system. The two main glial types involved in inflammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease specific stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inflammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinflammation after disease processes are fully established. Gold thiol compounds, including auranofin, comprise another class of medications effective at reducing peripheral inflammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inflammatory conditions could be helpful in neurodegenerative disease. Three different classes of anti-inflammatory compounds, which have a potential to inhibit neuroinflammation are highlighted below.

  20. X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action.

    Science.gov (United States)

    Parsonage, Derek; Sheng, Fang; Hirata, Ken; Debnath, Anjan; McKerrow, James H; Reed, Sharon L; Abagyan, Ruben; Poole, Leslie B; Podust, Larissa M

    2016-05-01

    The anti-arthritic gold-containing drug Auranofin is lethal to the protozoan intestinal parasite Entamoeba histolytica, the causative agent of human amebiasis, in both culture and animal models of the disease. A putative mechanism of Auranofin action proposes that monovalent gold, Au(I), released from the drug, can bind to the redox-active dithiol group of thioredoxin reductase (TrxR). Au(I) binding in the active site is expected to prevent electron transfer to the downstream substrate thioredoxin (Trx), thus interfering with redox homeostasis in the parasite. To clarify the molecular mechanism of Auranofin action in more detail, we determined a series of atomic resolution X-ray structures for E. histolytica thioredoxin (EhTrx) and thioredoxin reductase (EhTrxR), the latter with and without Auranofin. Only the disulfide-bonded form of the active site dithiol (Cys(140)-Cys(143)) was invariably observed in crystals of EhTrxR in spite of the addition of reductants in various crystallization trials, and no gold was found associated with these cysteines. Non-catalytic Cys(286) was identified as the only site of modification, but further mutagenesis studies using the C286Q mutant demonstrated that this site was not responsible for inhibition of EhTrxR by Auranofin. Interestingly, we obtained both of the catalytically-relevant conformations of this bacterial-like, low molecular weight TrxR in crystals without requiring an engineered disulfide linkage between Cys mutants of TrxR and Trx (as was originally done with Escherichia coli TrxR and Trx). We note that the -CXXC- catalytic motif, even if reduced, would likely not provide space sufficient to bind Au(I) by both cysteines of the dithiol group.

  1. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca{sup 2+}]{sub i}) in MCF-7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Elizabeth; Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha (Qatar)

    2014-11-06

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca{sup 2+}]{sub i}) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca{sup 2+}]{sub i} in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca{sup 2+}]{sub i}. Overall, elevation of [Ca{sup 2+}]{sub i} by Auranofin might be crucial for triggering Ca{sup 2+}-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca{sup 2+}]{sub i} should be considered as a crucial factor for the induction of cell death in cancer cells.

  2. [Biliary, renal and fecal elimination and distribution of gold after a single oral administration of auranofin, quantified by the instrumental neutron activation analysis method].

    Science.gov (United States)

    Benn, H P; Schnier, C; Bauer, E; Seiler, K U; Elhöft, H; Löffler, H

    1991-01-01

    Three days after cholecystectomy, seven patients received a single dose of auranofin (5 tablets Ridaura = 4.35 mg gold). At defined time points thereafter the gold content in samples of blood, plasma, urine, bile, and feces was determined by instrumental neutron activation analysis (INAA). Maxima of the mean gold concentrations in blood (140 +/- 42 ng/ml) and plasma (173 +/- 54 ng/ml) are found 2 h after oral administration of the antirheumatic agent, after 16 h in urine (43 +/- 28 ng/ml) and bile (65 +/- 50 ng/ml), and after 24 h in erythrocytes (greater than 200 ng/ml). The mean terminal half-lives are 7.6 days (blood), 15 days (plasma), 5 days (erythrocytes), and 6.5 days (bile). The cumulative biliary gold excretion within 8 days after the administration of auranofin was 1.6%, compared with 4% and 40% for renal and fecal elimination, respectively. The gold concentration in plasma is always higher than that in bile. There is a close correlation between the areas under the concentration curves (AUC) in bile and plasma (r = 0.864).

  3. Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition

    Science.gov (United States)

    Papaioannou, Margarita; Mylonas, Ioannis; Kast, Richard E.; Brüning, Ansgar

    2014-01-01

    A valuable strategy to develop new therapeutic options for a variety of diseases has been the identification of new targets and applications for already approved drugs, the so-called drug repositioning. Recurrent ovarian cancer is a nearly incurable malignancy for which new and effective treatments are urgently needed. The alcohol-deterring drug disulfiram has been shown to cause preferential cell death in a variety of cancer cells. In this study, it is shown that disulfiram mediates effective cell death in ovarian cancer cells by promoting a pro-oxidative intracellular environment in a copper-dependent mechanism. Within few hours of application, disulfiram caused irreversible cell damage associated with pronounced induction of the inducible heat shock proteins HSP70, HSP40, and HSP32. The small heat shock protein HSP27 was found to be covalently dimerized via oxidized disulfide bonds and precipitated in para-nuclear protein aggregates. Simultaneous inhibition of the cellular thioredoxin system by auranofin further enhanced the cytotoxic effect of disulfiram. These data indeed indicate that the combination of two approved drugs, the anti-alcoholic disulfiram and the anti-rheumatic auranofin, may be of interest for the treatment of recurrent and genotoxic drug-resistant ovarian cancer by inducing a proteotoxic cell death mechanism. PMID:25593981

  4. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide.

    Science.gov (United States)

    Kast, Richard E; Karpel-Massler, Georg; Halatsch, Marc-Eric

    2014-09-30

    CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.

  5. A candidate anti-HIV reservoir compound, auranofin, exerts a selective 'anti-memory' effect by exploiting the baseline oxidative status of lymphocytes.

    Science.gov (United States)

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; Petricoin, E Iii; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T

    2013-12-05

    Central memory (T(CM)) and transitional memory (T(TM)) CD4(+) T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that T(CM) and T(TM) lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the T(CM)/T(TM) lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways.

  6. A new target for gold(I) compounds : Glutathione-S-transferase inhibition by auranofin

    NARCIS (Netherlands)

    De Luca, Anastasia; Hartinger, Christian G.; Dyson, Paul J.; Lo Bello, Mario; Casini, Angela

    2013-01-01

    Nowadays, gold compounds occupy a relevant position constituting a promising class of experimental anticancer metallodrugs. Several research efforts have been devoted to the investigations of the pharmacological properties of gold(I) complexes bearing phosphine ligands, such as the antiarthritic dru

  7. Treatment of chronic discoid lupus erythematosus with an oral gold compound (auranofin).

    Science.gov (United States)

    Dalziel, K; Going, G; Cartwright, P H; Marks, R; Beveridge, G W; Rowell, N R

    1986-08-01

    Twenty-three patients with severe longstanding discoid lupus erythematosus, unresponsive to conventional treatments, were treated with oral gold in a multicentre open study. Nineteen patients showed clinical improvement and in four of these there was complete resolution of lesions. Adverse reactions were generally mild and self limiting.

  8. Cell-bound gold (CBG) in patients treated with aurothioglucose and with auranofin. A comparison of different methods of determination.

    Science.gov (United States)

    van Riel, P L; Gribnau, F W; van de Putte, L B

    1983-08-01

    Three different methods of determining the cell-bound gold concentration were compared in patients given intramuscular and oral chrysotherapy for rheumatoid arthritis. We found a strong correlation between the different methods and no difference between 2 washing procedures.

  9. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    Science.gov (United States)

    2016-08-25

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  10. Drug: D00237 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00237 Drug Auranofin (JP16/USAN/INN); Ridaura (TN) C20H34AuO9PS 678.1327 678.4839 ...rapy agents 4420 Stimulation therapy agents D00237 Auranofin (JP16/USAN/INN) Anatomical Therapeutic Chemical... M01C SPECIFIC ANTIRHEUMATIC AGENTS M01CB Gold preparations M01CB03 Auranofin D00237 Aura...nofin (JAN/USAN/INN) USP drug classification [BR:br08302] Immunological Agents Immunomodulators Auranofin D00237 Aura

  11. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Nguyen, Tam T T N; Østergaard, Jesper; Gammelgaard, Bente

    2015-01-01

    An analytical method based on capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICP-MS) detection was developed for studies on the interaction of gold-containing drugs and plasma proteins using auranofin as example. A detection limit of 18 ng/mL of auranofin...... was the major auranofin-interacting protein in plasma. The CE-ICP-MS method is proposed as a novel approach for kinetic studies of the interactions between gold-based drugs and plasma proteins. Graphical Abstract Development of a CE-ICP-MS based method allows for studies on interaction of the gold containing...

  12. Reprofiled drug targets ancient protozoans: drug discovery for parasitic diarrheal diseases.

    Science.gov (United States)

    Debnath, Anjan; Ndao, Momar; Reed, Sharon L

    2013-01-01

    Recently, we developed a novel automated, high throughput screening (HTS) methodology for the anaerobic intestinal parasite Entamoeba histolytica. We validated this HTS platform by screening a chemical library containing US Food and Drug Administration (FDA)-approved drugs and bioactive compounds. We identified an FDA-approved drug, auranofin, as most active against E. histolytica both in vitro and in vivo. Our cell culture and animal studies indicated that thioredoxin reductase, an enzyme involved in reactive oxygen species detoxification, was the target for auranofin in E. histolytica. Here, we discuss the rationale for drug development for three parasites which are major causes of diarrhea worldwide, E. histolytica, Giardia lamblia and Cryptosporidium parvum and extend our current finding of antiparasitic activity of auranofin to Entamoeba cysts, G. lamblia and C. parvum. These studies support the use of HTS assays and reprofiling FDA-approved drugs for new therapy for neglected tropical diseases.

  13. Metallodrugs as protein modulators

    NARCIS (Netherlands)

    Batista de Almeida, Andreia Filipa

    2016-01-01

    Metal-based drugs have been used in medicine for millennia, and some of them are still in use in current medicine. For example, in the treatment of diseases like cancer (Cisplatin) or rheumatoid arthritis (Auranofin), as well as used as antimicrobial agents (silver sulfadiazine) or radiopharmaceutic

  14. New drug target in protozoan parasites: the role of thioredoxin reductase.

    Science.gov (United States)

    Andrade, Rosa M; Reed, Sharon L

    2015-01-01

    Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin's anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E. histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E. histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden.

  15. Reactivity of Cys4 Zinc Finger Domains with Gold(III) Complexes : Insights into the Formation of "Gold Fingers"

    NARCIS (Netherlands)

    Jacques, Aurélie; Lebrun, Colette; Casini, Angela; Kieffer, Isabelle; Proux, Olivier; Latour, Jean-Marc; Sénèque, Olivier

    2015-01-01

    Gold(I) complexes such as auranofin or aurothiomalate have been used as therapeutic agents for the treatment of rheumatoid arthritis for several decades. Several gold(I) and gold(III) complexes have also shown in vitro anticancer properties against human cancer cell lines, including cell lines resis

  16. Development of a method for the quantification of the molar gold concentration in tumour cells exposed to gold-containing drugs.

    Science.gov (United States)

    Ott, Ingo; Scheffler, Heike; Gust, Ronald

    2007-05-01

    The knowledge of the cellular molar concentration of a drug is an extremely important parameter for the discussion and interpretation of its efficacy and bioavailability. Concerning metal complexes, electrothermal atomic absorption spectroscopy (ETAAS) offers a valuable analytical tool. However, matrix effects often hamper proper quantification of the metal concentration in biological tissues. This paper describes the development of an ETAAS method for the quantification of the molar gold concentration in HT-29 colon carcinoma cells. ETAAS analytical conditions were optimised and a factor was developed which allows the calculation of the molar cellular gold concentration from the measured gold per cellular biomass value. The method was used to quantify the gold content in HT-29 cells after exposure to the gold drug auranofin. Results indicated a strong cellular uptake of auranofin (compared to other metal anticancer drugs), which significantly correlated with the antiproliferative effects triggered by this agent.

  17. Initial experience with oral gold salts in the treatment of rheumatoid arthritis in patients followed up for one year.

    Science.gov (United States)

    Lignère, G C; Giavarini, S; Longatti, S

    1984-01-01

    Fifteen patients, eight males and seven females, suffering from classic or definite rheumatoid arthritis were treated for 1 year with Auranofin, a new gold salt active by the oral route, different from parenteral gold as far as dosage, mechanism of action and toxicity are concerned. Patients received a dosage of 3 mg twice daily, equivalent to 0.85 mg of elemental gold, in order to evaluate the therapeutic efficacy and tolerability of this new compound. Subjective and objective parameters were monitored during the trial and serum gold levels were assayed every 2 months by atomic absorption spectrophotometry. Our study, which is on-going, shows the therapeutic efficacy of Auranofin which seems better tolerated than parenteral gold salts and will probably become a widely used drug in the long-term treatment of rheumatoid arthritis.

  18. Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State

    OpenAIRE

    Alessandra Folda; Anna Citta; Valeria Scalcon; Tito Calì; Francesco Zonta; Guido Scutari; Alberto Bindoli; Maria Pia Rigobello

    2016-01-01

    The mitochondrial thioredoxin system (NADPH, thioredoxin reductase, thioredoxin) is a major redox regulator. Here we have investigated the redox correlation between this system and the mitochondrial enzyme cyclophilin D. The peptidyl prolyl cis-trans isomerase activity of cyclophilin D was stimulated by the thioredoxin system, while it was decreased by cyclosporin A and the thioredoxin reductase inhibitor auranofin. The redox state of cyclophilin D, thioredoxin 1 and 2 and peroxiredoxin 3 was...

  19. Blood gold concentrations in children with juvenile rheumatoid arthritis undergoing long-term oral gold therapy.

    Science.gov (United States)

    Giannini, E H; Brewer, E J; Person, D A

    1984-04-01

    During an uncontrolled, open-labelled, open-ended clinical trial of auranofin in children with juvenile rheumatoid arthritis (JRA) we obtained serial blood samples for the purpose of assessing gold content. Our objectives were (1) to observe the pattern of blood gold concentrations over a period of time in children undergoing long-term oral gold therapy, and (2) to observe the effect of changing dosage levels on blood gold concentrations. The initial dosage of auranofin was 0.1 mg/kg/day with allowable increases to 0.2 mg/kg/day. A concurrent nonsteroidal anti-inflammatory drug was allowed. Twenty-one patients were enrolled in the study, and we obtained 2 or more serial samples on 13 of the children. At a constant dosage of 0.1 mg/kg/day, steady state blood gold concentrations were attained in 11 to 13 weeks of therapy and, in the absence of a dosage change, remained remarkably constant through extended periods. The blood gold concentration was related to total daily dosage rather than to the cumulative amount of gold received. Increasing or decreasing the dose resulted in a direct effect on concentration. The clinical value of blood gold levels resulting from auranofin therapy in JRA will have to be established through double-blind controlled trials.

  20. Gold and palladium burden from dental restoration materials.

    Science.gov (United States)

    Drasch, G; Muss, C; Roider, G

    2000-06-01

    From 81 volunteers (16 without dental restorations, 65 with gold crowns or inlays) samples of saliva before and after chewing gum, blood, serum, urine and faeces were taken and analysed for gold (Au) and palladium (Pd). The Au concentration in all analysed biomonitors correlates significantly to the number of teeth with gold restorations. For Pd the correlations were still significant, but weaker than for Au. Persons with gold restorations show maximal Au and Pd concentrations, 10(2)-10(3) higher than the background burden. The calculated maximal daily Au load in saliva (1.38 mg Au per day) reaches the range of an oral Au therapy for rheumatoid arthritis with 6 mg Auranofin (= 1.74 mg Au per day). During this therapy severe and frequent side effects are reported. In contrast, the Au concentration in serum maximally reached from Au restorations, amounts to only approximately 1/20 of the Au level during arthritis therapy. But even under subtherapeutic doses of 1 mg Auranofin/day severe side effects have been reported (4 out of 56 cases). The mean Au blood concentration from 1 mg Auranofin daily was only 3 times higher than our maximum value. A toxicological classification of the Pd values is difficult, because no toxicological threshold limit has been established, especially for the low-level long-term burden with Pd.

  1. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    Science.gov (United States)

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.

  2. New drug target in protozoan parasites: the role of thioredoxin reductase

    Directory of Open Access Journals (Sweden)

    Rosa M. Andrade

    2015-09-01

    Full Text Available Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin’s anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E.histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E.histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden.

  3. An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    James, Lloyd R.A.; Xu, Zhi-Qiang; Sluyter, Ronald; Hawksworth, Emma L.; Kelso, Celine; Lai, Barry; Paterson, David J.; de Jonge, Martin D.; Dixon, Nicholas E.; Beck, Jennnifer L.; Ralph, Stephen F.; Dillon, Carolyn T.

    2014-01-01

    Gold(I) complexes are an important tool in the arsenal of established approaches for treating rheumatoid arthritis (RA), while some recent studies have suggested that gold nanoparticles (Au NPs) may also be therapeutically efficacious. These observations prompted the current biological studies involving gold(I) anti-RA agents and Au NPs, which are aimed towards improving our knowledge of how they work. The cytotoxicity of auranofin, aurothiomalate, aurothiosulfate and Au NPs towards RAW264.7 macrophages was evaluated using the MTT assay, with the former compound proving to be the most toxic. The extent of cellular uptake of the various gold agents was determined using graphite furnace atomic absorption spectrometry, while their distribution within macrophages was examined using microprobe synchrotron radiation X-ray fluorescence spectroscopy. The latter technique showed accumulation of gold in discrete regions of the cell, and co-localisation with sulfur in the case of cells treated with aurothiomalate or auranofin. Electrospray ionization mass spectrometry was used to characterize thioredoxin reductase (TrxR) in which the penultimate selenocysteine residue was replaced by cysteine. Mass spectra of solutions of TrxR and aurothiomalate, aurothiosulfate or auranofin showed complexes containing bare gold atoms bound to the protein, or protein adducts containing gold atoms retaining some of their initial ligands. These results support TrxR being an important target of gold(I) drugs used to treat RA, while the finding that Au NPs are incorporated into macrophages, but elicit little toxicity, indicates further exploration of their potential for treatment of RA is warranted.

  4. II. Unbound versus total serum gold concentration: pharmacological actions on cellular function.

    Science.gov (United States)

    Lorber, A; Kunishima, D H; Harralson, A F; Simon, T M

    1983-08-01

    Unbound serum gold (UBSG) has received little attention, possibly because of rapid in vivo decay and in vivo concentration below the range of existing analytical procedures. We have recently developed a methodology enabling quantitation and study of UBSG during chrysotherapy to assess effects on cellular functions. UBSG after gold administration is labile, declining rapidly after attaining peak values at which lymphocyte mitogen response and polymorphonuclear phagocytosis were observed to be suppressed. Oral gold, i.e., auranofin, 3 mg BID as compared to systemic chrysotherapy 50 mg/wk, resulted in a higher percentage of UBSG to total serum gold.

  5. Pathogenesis of rheumatoid arthritis and the immune response

    Energy Technology Data Exchange (ETDEWEB)

    Scheinberg, M.A.

    1983-08-01

    The interrelationship among lymphocytes, macrophages, and neutrophils appears to be an important aspect of the synovial inflammation that is characteristic of rheumatoid arthritis. In a study comparing gold sodium aurothiomalate (GST) with auranofin (Au), an orally absorbed compound, both appeared to inhibit the disease process and no difference between parenteral and oral administration was observed. Another study involved two groups of nine patients with severe rheumatoid arthritis. One group underwent plasmapheresis. The second group underwent total lymphoid irradiation. Both agents appeared to inhibit the disease process. Plasmapheresis was better tolerated that irradiation.

  6. Spontaneous lymphocyte activity in rheumatoid arthritis in a longitudinal study in relation to gold therapy.

    Science.gov (United States)

    Froebel, K S; Lewis, D; Dickson, R; Sturrock, R D

    1985-09-01

    Spontaneous lymphocyte activity has been measured over 24 weeks in rheumatoid arthritis patients who were receiving placebo, auranofin or gold sodium thiomalate (GST). The results suggest a relationship between a fall in lymphocyte activity and clinical improvement on GST. They also show that the patients with most active disease, as determined by the ESR, had normal levels of lymphocyte activity. We suggest that peripheral lymphocyte activity is secondary to immunological stimulation in the joint capsule, and is not directly related to disease activity. We conclude that spontaneous activity is probably an epiphenomenon and not related directly to disease activity or to disease prognosis.

  7. Phosphine-gold(I) compounds as anticancer agents: general description and mechanisms of action.

    Science.gov (United States)

    Lima, João Carlos; Rodriguez, Laura

    2011-12-01

    Gold complexes have been explored as metallodrugs with great potential applications as antitumoral agents. In particular, gold-phosphine derivatives seemed quite promising since the use of the antiarthritic auranofin drug (thiolate-Au-PEt3 complex) presented also biological activity against different cancer cells. So, different auranofin analogues have been explored within this context and for this reason, the main number of phosphine-gold complexes developed with this goal contain thiolate ligands. Other complexes have been also studied such as tetrahedral bis(phosphine)gold(I) and phosphine-gold-halides. Very recently, phosphine-gold-alkynyl complexes have also shown very interesting biological activities although few reports are published related to them. Their mechanism of action seems to be clearly different that the used by platinum drugs (DNA intercalating processes) and recent studies point to be related to the inhibition of Trx reductase. Cellular uptake and biodistribution studies are well reported in the original works but the use of luminescence techniques is relatively less explored. For this, the use of these techniques is also specifically reported in this review.

  8. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria.

    Science.gov (United States)

    Sun, Wei; Weingarten, Rebecca A; Xu, Miao; Southall, Noel; Dai, Sheng; Shinn, Paul; Sanderson, Philip E; Williamson, Peter R; Frank, Karen M; Zheng, Wei

    2016-11-09

    Current antimicrobial susceptibility testing has limited screening capability for identifying empirical antibiotic combinations to treat severe bacterial infections with multidrug-resistant (MDR) organisms. We developed a new antimicrobial susceptibility assay using automated ultra-high-throughput screen technology in combination with a simple bacterial growth assay. A rapid screening of 5170 approved drugs and other compounds identified 25 compounds with activities against MDR Klebsiella pneumoniae. To further improve the efficacy and reduce the effective drug concentrations, we applied a targeted drug combination approach that integrates drugs' clinical antimicrobial susceptibility breakpoints, achievable plasma concentrations, clinical toxicities and mechanisms of action to identify optimal drug combinations. Three sets of three-drug combinations were identified with broad-spectrum activities against 10 MDR clinical isolates including K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Citrobacter freundii, Enterobacter cloacae and Escherichia coli. Colistin-auranofin-ceftazidime and colistin-auranofin-rifabutin suppressed >80% growth of all 10 MDR strains; while rifabutin-colistin-imipenem inhibited >75% of these strains except two Acinetobacter baumannii isolates. The results demonstrate this new assay has potential as a real-time method to identify new drugs and effective drug combinations to combat severe clinical infections with MDR organisms.

  9. Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State

    Science.gov (United States)

    Folda, Alessandra; Citta, Anna; Scalcon, Valeria; Calì, Tito; Zonta, Francesco; Scutari, Guido; Bindoli, Alberto; Rigobello, Maria Pia

    2016-03-01

    The mitochondrial thioredoxin system (NADPH, thioredoxin reductase, thioredoxin) is a major redox regulator. Here we have investigated the redox correlation between this system and the mitochondrial enzyme cyclophilin D. The peptidyl prolyl cis-trans isomerase activity of cyclophilin D was stimulated by the thioredoxin system, while it was decreased by cyclosporin A and the thioredoxin reductase inhibitor auranofin. The redox state of cyclophilin D, thioredoxin 1 and 2 and peroxiredoxin 3 was measured in isolated rat heart mitochondria and in tumor cell lines (CEM-R and HeLa) by redox Western blot analysis upon inhibition of thioredoxin reductase with auranofin, arsenic trioxide, 1-chloro-2,4-dinitrobenzene or after treatment with hydrogen peroxide. A concomitant oxidation of thioredoxin, peroxiredoxin and cyclophilin D was observed, suggesting a redox communication between the thioredoxin system and cyclophilin. This correlation was further confirmed by i) co-immunoprecipitation assay of cyclophilin D with thioredoxin 2 and peroxiredoxin 3, ii) molecular modeling and iii) depleting thioredoxin reductase by siRNA. We conclude that the mitochondrial thioredoxin system controls the redox state of cyclophilin D which, in turn, may act as a regulator of several processes including ROS production and pro-apoptotic factors release.

  10. Analgesic activity of gold preparations used in Ayurveda & Unani-Tibb.

    Science.gov (United States)

    Bajaj, S; Vohora, S B

    1998-09-01

    Calcined gold preparations, Ayurvedic Swarna Bhasma (SB) and Unani Kushta Tila Kalan (KTK) were investigated for analgesic effects in rats and mice using four types of noxious stimuli. Auranofin (AN) used in modern medicine was also studied for comparisons. The test drugs SB and KTK (25-50 mg/kg, p.o.) and AN (2.5-5.0 mg/kg, p.o.) exhibited analgesic activity against chemical (acetic acid induced writhing), electrical (pododolorimeter), thermal (Eddy's hot plate and analgesiometer) and mechanical (tail clip) test. While the analgesic effects of SB and KTK could be partly blocked by pretreatment with naloxone (1-5 mg/kg, i.p.,--15 min), such antagonism was not discernible with AN at the doses used. Involvement of opioidergic mechanism is suggested for the observed analgesic activity.

  11. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  12. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  13. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  14. Neuroprotection of Ischemic Preconditioning is Mediated by Thioredoxin 2 in the Hippocampal CA1 Region Following a Subsequent Transient Cerebral Ischemia.

    Science.gov (United States)

    Lee, Jae-Chul; Park, Joon Ha; Kim, In Hye; Cho, Geum-Sil; Ahn, Ji Hyeon; Tae, Hyun-Jin; Choi, Soo Young; Cho, Jun Hwi; Kim, Dae Won; Kwon, Young-Guen; Kang, Il Jun; Won, Moo-Ho; Kim, Young-Myeong

    2016-04-26

    Preconditioning by brief ischemic episode induces tolerance to a subsequent lethal ischemic insult, and it has been suggested that reactive oxygen species are involved in this phenomenon. Thioredoxin 2 (Trx2), a small protein with redox-regulating function, shows cytoprotective roles against oxidative stress. Here, we had focused on the role of Trx2 in ischemic preconditioning (IPC)-mediated neuroprotection against oxidative stress followed by a subsequent lethal transient cerebral ischemia. Animals used in this study were randomly assigned to six groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group, IPC + ischemia-operated group, IPC + auranofin (a TrxR2 inhibitor) + sham-operated group and IPC + auranofin + ischemia-operated group. IPC was subjected to a 2 minutes of sublethal transient ischemia 1 day prior to a 5 minutes of lethal transient ischemia. A significant loss of neurons was found in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia-operated-group 5 days after ischemia-reperfusion; in the IPC + ischemia-operated-group, pyramidal neurons in the SP were well protected. In the IPC + ischemia-operated-group, Trx2 and TrxR2 immunoreactivities in the SP and its protein level in the CA1 were not significantly changed compared with those in the sham-operated-group after ischemia-reperfusion. In addition, superoxide dismutase 2 (SOD2) expression, superoxide anion radical ( O2-) production, denatured cytochrome c expression and TUNEL-positive cells in the IPC + ischemia-operated-group were similar to those in the sham-operated-group. Conversely, the treatment of auranofin to the IPC + ischemia-operated-group significantly increased cell damage/death and abolished the IPC-induced effect on Trx2 and TrxR2 expressions. Furthermore, the inhibition of Trx2R nearly cancelled the beneficial effects of IPC on SOD2 expression, O2- production, denatured cytochrome c

  15. Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents.

    Science.gov (United States)

    Schuh, Esther; Pflüger, Carolin; Citta, Anna; Folda, Alessandra; Rigobello, Maria Pia; Bindoli, Alberto; Casini, Angela; Mohr, Fabian

    2012-06-14

    Gold(I) complexes with 1,3-substituted imidazole-2-ylidene and benzimidazole-2-ylidene ligands of the type NHC-Au-L (NHC = N-heterocyclic carbene L = Cl or 2-mercapto-pyrimidine) have been synthesized and structurally characterized. The compounds were evaluated for their antiproliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), as well in the nontumorigenic human embryonic kidney cell line (HEK-293T), showing in some cases important cytotoxic effects. Some of the complexes were comparatively tested as thioredoxin reductase (TrxR) and glutathione reductase (GR) inhibitors, directly against the purified proteins or in cell extracts. The compounds showed potent and selective TrxR inhibition properties in particular in cancer cell lines. Remarkably, the most effective TrxR inhibitors induced extensive oxidation of thioredoxins (Trxs), which was more relevant in the cancerous cells than in HEK-293T cells. Additional biochemical assays on glutathione systems and reactive oxygen species formation evidenced important differences with respect to the classical cytotoxic Au(I)-phosphine compound auranofin.

  16. Screening a Commercial Library of Pharmacologically Active Small Molecules against Staphylococcus aureus Biofilms.

    Science.gov (United States)

    Torres, Nelson S; Abercrombie, Johnathan J; Srinivasan, Anand; Lopez-Ribot, Jose L; Ramasubramanian, Anand K; Leung, Kai P

    2016-10-01

    It is now well established that bacterial infections are often associated with biofilm phenotypes that demonstrate increased resistance to common antimicrobials. Further, due to the collective attrition of new antibiotic development programs by the pharmaceutical industries, drug repurposing is an attractive alternative. In this work, we screened 1,280 existing commercially available drugs in the Prestwick Chemical Library, some with previously unknown antimicrobial activity, against Staphylococcus aureus, one of the commonly encountered causative pathogens of burn and wound infections. From the primary screen of the entire Prestwick Chemical Library at a fixed concentration of 10 μM, 104 drugs were found to be effective against planktonic S. aureus strains, and not surprisingly, these were mostly antimicrobials and antiseptics. The activity of 18 selected repurposing candidates, that is, drugs that show antimicrobial activity that are not already considered antimicrobials, observed in the primary screen was confirmed in dose-response experiments. Finally, a subset of nine of these drug candidates was tested against preformed biofilms of S. aureus We found that three of these drugs, niclosamide, carmofur, and auranofin, possessed antimicrobial activity against preformed biofilms, making them attractive candidates for repurposing as novel antibiofilm therapies.

  17. Gold resistance in cultured human cells possible role of metallothionein.

    Science.gov (United States)

    Glennås, A

    1983-01-01

    Insufficient therapeutic effect of auranofin (AF), used in the treatment of rheumatoid arthritis, is found in about 8% of the patients included in clinical trials until now. The mechanisms of resistance to gold-containing drugs are not known, but one reason might be acquired drug resistance. We have studied the relationship between the effects of gold and concentration of the cytoplasmic metal-binding protein metallothionein (MT), in order to evaluate MT as a possible contributing factor to resistance against AF. Different strains of cultured human epithelial cells derived from normal skin, treated with AF, were used as models. The experiments indicate two possible mechanisms for resistance against AF in cells: 1) binding of gold to pre-existent cadmium-induced MT or to de novo AF-induced MT, and 2) the cells' ability to keep the intracellular gold concentration at a low level. AF apparently causes a rapid and pronounced increase of MT-content in these cells. Preliminary results also indicated that AF causes increase of MT-content in human rheumatoid synovial cells, grown as primary cultures. These findings may have two clinical implications: 1) AF-induced MT may decrease therapeutic response, and 2) decrease the toxicity of AF.

  18. Effects of chrysotherapy on cell mediated immune response.

    Science.gov (United States)

    Lorber, A; Jackson, W H; Simon, T M

    1982-01-01

    Auranofin (AF) differs significantly from gold sodium thiomalate (GSTM) in formulation, i.e., aurous gold is stabilized by dual sulfur and phosphorus ligands, hydrophobic rather than hydrophilic characteristics, and lack of ionic charge. These attributes facilitate: oral absorption of AF, plasma membrane penetration, increase in intracellular lymphocyte gold concentration; and perhaps thereby influence lymphocyte function. AF treated subjects recorded prompt and sharp declines in mitogen-induced lymphoproliferative response (LMR) greater than 80%; suppressed response to skin testing with dinitrochlorobenezene (DNCB) in 11 of 14 subjects; and blebbing of lymphocyte membranes by scanning electron microscopy. In contrast, lymphocytes from a matched group of GSTM treated subjects recorded later onset and less suppression of LMR; normal response to DNCB skin testing; and did not manifest membrane blebbing. Accordingly, the therapeutic action of AF on immune response was observed in the 16 subjects receiving 6 mg/d of an average of 45 weeks to effect primarily cell mediated rather than humoral immune response when compared with a matched group of GSTM treated patients.

  19. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides

    Energy Technology Data Exchange (ETDEWEB)

    Curbo, Sophie; Gaudin, Raphael [Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden); Carlsten, Mattias; Malmberg, Karl-Johan [Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden); Troye-Blomberg, Marita [Department of Immunology, Stockholm University, SE-10691 Stockholm (Sweden); Ahlborg, Niklas [Department of Immunology, Stockholm University, SE-10691 Stockholm (Sweden); Mabtech, Box 1233, SE-13128 Nacka Strand (Sweden); Karlsson, Anna; Johansson, Magnus [Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden); Lundberg, Mathias, E-mail: mathias.lundberg@ki.se [Department of Laboratory Medicine, Clinical Microbiology F68, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm (Sweden)

    2009-12-25

    Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4R{alpha} receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown to be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.

  20. Anticancer and Antibacterial Activity Studies of Gold(I)-Alkynyl Chromones.

    Science.gov (United States)

    Hikisz, Paweł; Szczupak, Łukasz; Koceva-Chyła, Aneta; Gu Spiel, Adam; Oehninger, Luciano; Ott, Ingo; Therrien, Bruno; Solecka, Jolanta; Kowalski, Konrad

    2015-10-30

    Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human cancer cell lines and four pathogenic bacterial strains. All compounds show antiproliferative activity at lower micromolar range concentrations. Complex 4 showed a broad activity profile, being more active than the reference drug auranofin against HepG2, MCF-7 and CCRF-CEM cancer cells. The cellular uptake into MCF-7 cells of the investigated complexes was measured by atomic absorption spectroscopy (AAS). These measurements showed a positive correlation between an increased cellular gold content and the incubation time of the complexes. Unexpectedly an opposite effect was observed for the most active compound. Biological assays revealed various molecular mechanisms for these compounds, comprising: (i) thioredoxin reductase (TrxR) inhibition, (ii) caspases-9 and -3 activation; (iii) DNA damaging activity and (iv) cell cycle disturbance. The gold(I) complexes were also bactericidal against Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacterial strains, while showing no activity against the Gram-negative Escherichia coli bacterial strain.

  1. A new look at auranoifn, dextromethorphan and rosiglitazone for reduction of glia-mediated inlfammation in neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Jocelyn M. Madeira; Stephanie M. Schindler; Andis Klegeris

    2015-01-01

    Neurodegenerative disorders including Alzheimer’s disease are characterized by chronic in-lfammation in the central nervous system. The two main glial types involved in inlfammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease speciifc stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inlfammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inlfamma-tory drugs (NSAIDs) is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinlfammation after disease processes are fully established. Gold thiol compounds, including auranoifn, comprise an-other class of medications effective at reducing peripheral inlfammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inlfammatory conditions could be helpful in neu-rodegenerative disease. Three different classes of anti-inlfammatory compounds, which have a potential to inhibit neuroinlfammation are highlighted below.

  2. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni.

    Science.gov (United States)

    Neves, Bruno J; Braga, Rodolpho C; Bezerra, José C B; Cravo, Pedro V L; Andrade, Carolina H

    2015-01-01

    Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD), DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes.

  3. Practices, strategies, and motivations in treatment of rheumatoid arthritis.

    Science.gov (United States)

    Goldman, A E; McDonald, S S

    1983-12-30

    National Analysts conducted primary research with rheumatologists--specifically, two panel discussions, 25 in-depth telephone interviews, and a mail survey of conference (Auranofin Symposium and Workshop) participants--to examine current treatment practices and to probe the rationale and motivations underlying treatment strategies in rheumatoid arthritis. The research identified important areas of consensus in drug perceptions, therapeutic approaches, and disagreements. Physicians differ regarding the minimum time they wait after diagnosing rheumatoid arthritis before initiating remittive therapy, some beginning immediately and others waiting six months or longer. Younger physicians are quicker to initiate remittive treatment than their older colleagues, but both younger and older practitioners are initiating remittive therapy earlier than in the past. Some noteworthy differences between hospital-based and office-based practitioners were discerned with respect to factors that figure in their decisions to initiate remittive therapy. Differences were also found among physicians in the way they pose drug options to their patients; "authoritarian," "libertarian," and "guided democracy" were names given to the three styles identified. In general, however, physicians report that patients are more directly involved in treatment selection than previously, a trend that may in part be due to the use of more aggressive treatment strategies than in the past and a desire to share the psychologic burden of those decisions. Findings suggest that gold compounds will continue to be a mainstay first-line disease-modifying agent in the treatment of rheumatoid arthritis but that there may be less reluctance to use other agents as physicians become increasingly familiar and comfortable with alternative options, especially penicillamine and immunosuppressive agents.

  4. Mitochondrial Thioredoxin-Glutathione Reductase from Larval Taenia crassiceps (Cysticerci

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    2010-01-01

    Full Text Available Mitochondrial thioredoxin-glutathione reductase was purified from larval Taenia crassiceps (cysticerci. The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At 25∘C specific activities were 437  ±  27 mU mg-1 and 840  ±  49 mU mg-1 with thioredoxin and GSSG, respectively. Apparent Km values were 0.87  ±  0.04  μM, 41  ±  6  μM and 19  ±  10  μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2 in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.

  5. Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability.

    Directory of Open Access Journals (Sweden)

    Emily Peak

    Full Text Available BACKGROUND: Schistosomiasis, caused by infection with the blood fluke Schistosoma, is responsible for greater than 200,000 human deaths per annum. Objective high-throughput screens for detecting novel anti-schistosomal targets will drive 'genome to drug' lead translational science at an unprecedented rate. Current methods for detecting schistosome viability rely on qualitative microscopic criteria, which require an understanding of parasite morphology, and most importantly, must be subjectively interpreted. These limitations, in the current state of the art, have significantly impeded progress into whole schistosome screening for next generation chemotherapies. METHODOLOGY/PRINCIPAL FINDINGS: We present here a microtiter plate-based method for reproducibly detecting schistosomula viability that takes advantage of the differential uptake of fluorophores (propidium iodide and fluorescein diacetate by living organisms. We validate this high-throughput system in detecting schistosomula viability using auranofin (a known inhibitor of thioredoxin glutathione reductase, praziquantel and a range of small compounds with previously-described (gambogic acid, sodium salinomycin, ethinyl estradiol, fluoxetidine hydrochloride, miconazole nitrate, chlorpromazine hydrochloride, amphotericin b, niclosamide or suggested (bepridil, ciclopirox, rescinnamine, flucytosine, vinblastine and carbidopa anti-schistosomal activities. This developed method is sensitive (200 schistosomula/well can be assayed, relevant to industrial (384-well microtiter plate compatibility and academic (96-well microtiter plate compatibility settings, translatable to functional genomics screens and drug assays, does not require a priori knowledge of schistosome biology and is quantitative. CONCLUSIONS/SIGNIFICANCE: The wide-scale application of this fluorescence-based bioassay will greatly accelerate the objective identification of novel therapeutic lead targets/compounds to combat

  6. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics.

  7. Mitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu,Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis.

    Science.gov (United States)

    Iñarrea, Pedro; Moini, Hadi; Han, Derick; Rettori, Daniel; Aguiló, Ignacio; Alava, Maria Angeles; Iturralde, María; Cadenas, Enrique

    2007-07-01

    IMS (intermembrane space) SOD1 (Cu/Zn-superoxide dismutase) is inactive in isolated intact rat liver mitochondria and is activated following oxidative modification of its critical thiol groups. The present study aimed to identify biochemical pathways implicated in the regulation of IMS SOD1 activity and to assess the impact of its functional state on key mitochondrial events. Exogenous H2O2 (5 microM) activated SOD1 in intact mitochondria. However, neither H2O2 alone nor H2O2 in the presence of mitochondrial peroxiredoxin III activated SOD1, which was purified from mitochondria and subsequently reduced by dithiothreitol to an inactive state. The reduced enzyme was activated following incubation with the superoxide generating system, xanthine and xanthine oxidase. In intact mitochondria, the extent and duration of SOD1 activation was inversely correlated with mitochondrial superoxide production. The presence of TxrR-1 (thioredoxin reductase-1) was demonstrated in the mitochondrial IMS by Western blotting. Inhibitors of TxrR-1, CDNB (1-chloro-2,4-dinitrobenzene) or auranofin, prolonged the duration of H2O2-induced SOD1 activity in intact mitochondria. TxrR-1 inactivated SOD1 purified from mitochondria in an active oxidized state. Activation of IMS SOD1 by exogenous H2O2 delayed CaCl2-induced loss of transmembrane potential, decreased cytochrome c release and markedly prevented superoxide-induced loss of aconitase activity in intact mitochondria respiring at state-3. These findings suggest that H2O2, superoxide and TxrR-1 regulate IMS SOD1 activity reversibly, and that the active enzyme is implicated in protecting vital mitochondrial functions.

  8. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees

    Directory of Open Access Journals (Sweden)

    Alberto eGonzález

    2014-10-01

    Full Text Available In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control, with OC kappa at 1 mg mL-1, or treated with inhibitors of NAD(PH, ascorbate (ASC and glutathione (GSH syntheses and thioredoxin reductase (TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS, adenosine 5´-phosphosulfate reductase (APR, involved in C, N and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism and growth in Eucalyptus trees.

  9. Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer

    Directory of Open Access Journals (Sweden)

    Ling Li

    2015-04-01

    Full Text Available Inhibition of glycolysis using 2-deoxy-d-glucose (2DG, 20 mM, 24–48 h combined with inhibition of the pentose cycle using dehydroepiandrosterone (DHEA, 300 µM, 24–48 h increased clonogenic cell killing in both human prostate (PC-3 and DU145 and human breast (MDA-MB231 cancer cells via a mechanism involving thiol-mediated oxidative stress. Surprisingly, when 2DG+DHEA treatment was combined with an inhibitor of glutathione (GSH synthesis (l-buthionine sulfoximine; BSO, 1 mM that depleted GSH>90% of control, no further increase in cell killing was observed during 48 h exposures. In contrast, when an inhibitor of thioredoxin reductase (TrxR activity (Auranofin; Au, 1 µM, was combined with 2DG+DHEA or DHEA-alone for 24 h, clonogenic cell killing was significantly increased in all three human cancer cell lines. Furthermore, enhanced clonogenic cell killing seen with the combination of DHEA+Au was nearly completely inhibited using the thiol antioxidant, N-acetylcysteine (NAC, 20 mM. Redox Western blot analysis of PC-3 cells also supported the conclusion that thioredoxin-1 (Trx-1 oxidation was enhanced by treatment DHEA+Au and inhibited by NAC. Importantly, normal human mammary epithelial cells (HMEC were not as sensitive to 2DG, DHEA, and Au combinations as their cancer cell counterparts (MDA-MB-231. Overall, these results support the hypothesis that inhibition of glycolysis and pentose cycle activity, combined with inhibition of Trx metabolism, may provide a promising strategy for selectively sensitizing human cancer cells to oxidative stress-induced cell killing.

  10. MDA-7/IL-24 induces Bcl-2 denitrosylation and ubiquitin-degradation involved in cancer cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Hui Tian

    Full Text Available MDA-7/IL-24 was involved in the specific cancer apoptosis through suppression of Bcl-2 expression, which is a key apoptosis regulatory protein of the mitochondrial death pathway. However, the underlying mechanisms of this regulation are unclear. We report here that tumor-selective replicating adenovirus ZD55-IL-24 leads to Bcl-2 S-denitrosylation and concomitant ubiquitination, which take part in the 26S proteasome degradation. IL-24-siRNA completely blocks Bcl-2 ubiquitination via reversion of Bcl-2 S-denitrosylation and protects it from proteasomal degradation which confirmed the significant role of MDA-7/IL-24 in regulating posttranslational modification of Bcl-2 in cancer cells. Nitric oxide (NO is a key regulator of protein S-nitrosylation and denitrosylation. The NO donor, sodium nitroprusside (SNP, down-regulates Bcl-2 S-denitrosylation, attenuates Bcl-2 ubiquitination and subsequently counteracts MDA-7/IL-24 induced cancer cell apoptosis, whereas NO inhibitor 2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO shows the opposite effect. At the same time, these NO modulators fail to affect Bcl-2 phosphorylation, suggesting that NO regulates Bcl-2 stability in a phosphorylation-independent manner. In addition, Bcl-2 S-nitrosylation reduction induced by ZD55-IL-24 was attributed to both iNOS decrease and TrxR1 increase. iNOS-siRNA facilitates Bcl-2 S-denitrosylation and ubiquitin-degradation, whereas the TrxR1 inhibitor auranofin prevents Bcl-2 from denitrosylation and ubiquitination, thus restrains the caspase signal pathway activation and subsequent cancer cell apoptosis. Taken together, our studies reveal that MDA-7/IL-24 induces Bcl-2 S-denitrosylation via regulation of iNOS and TrxR1. Moreover, denitrosylation of Bcl-2 results in its ubiquitination and subsequent caspase protease family activation, as a consequence, apoptosis susceptibility. These findings provide a novel insight into MDA-7/IL-24 induced growth

  11. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    Science.gov (United States)

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase