WorldWideScience

Sample records for augments particle-dependent systemic

  1. Augmented reality system

    Science.gov (United States)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  2. Global Navigation Satellite System and Augmentation

    Indian Academy of Sciences (India)

    Global Navigation Satellite System and Augmentation. K C T Swamy. Dr. K C T Swamy is an. Associate Professor in ECE at. G Pullaih College of. Engineering and Technology,. Kurnool, Andhra Pradesh. His research interests are global navigation satellite system and antennas. He has been carrying out research in.

  3. Handling Occlusions for Robust Augmented Reality Systems

    Directory of Open Access Journals (Sweden)

    Madjid Maidi

    2010-01-01

    Full Text Available In Augmented Reality applications, the human perception is enhanced with computer-generated graphics. These graphics must be exactly registered to real objects in the scene and this requires an effective Augmented Reality system to track the user's viewpoint. In this paper, a robust tracking algorithm based on coded fiducials is presented. Square targets are identified and pose parameters are computed using a hybrid approach based on a direct method combined with the Kalman filter. An important factor for providing a robust Augmented Reality system is the correct handling of targets occlusions by real scene elements. To overcome tracking failure due to occlusions, we extend our method using an optical flow approach to track visible points and maintain virtual graphics overlaying when targets are not identified. Our proposed real-time algorithm is tested with different camera viewpoints under various image conditions and shows to be accurate and robust.

  4. Handling Occlusions for Robust Augmented Reality Systems

    Directory of Open Access Journals (Sweden)

    Maidi Madjid

    2010-01-01

    Full Text Available Abstract In Augmented Reality applications, the human perception is enhanced with computer-generated graphics. These graphics must be exactly registered to real objects in the scene and this requires an effective Augmented Reality system to track the user's viewpoint. In this paper, a robust tracking algorithm based on coded fiducials is presented. Square targets are identified and pose parameters are computed using a hybrid approach based on a direct method combined with the Kalman filter. An important factor for providing a robust Augmented Reality system is the correct handling of targets occlusions by real scene elements. To overcome tracking failure due to occlusions, we extend our method using an optical flow approach to track visible points and maintain virtual graphics overlaying when targets are not identified. Our proposed real-time algorithm is tested with different camera viewpoints under various image conditions and shows to be accurate and robust.

  5. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2016-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  6. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  7. The development of augmented video system on postcards

    Science.gov (United States)

    Chen, Chien-Hsu; Chou, Yin-Ju

    2013-03-01

    This study focuses on development of augmented video system on traditional picture postcards. The system will provide users to print out the augmented reality marker on the sticker to stick on the picture postcard, and it also allows users to record their real time image and video to augment on that stick marker. According dynamic image, users can share travel moods, greeting, and travel experience to their friends. Without changing in the traditional picture postcards, we develop augmented video system on them by augmented reality (AR) technology. It not only keeps the functions of traditional picture postcards, but also enhances user's experience to keep the user's memories and emotional expression by augmented digital media information on them.

  8. Thrust Augmentation with Mixer/Ejector Systems

    Science.gov (United States)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  9. Third-generation percutaneous vertebral augmentation systems.

    Science.gov (United States)

    Vanni, Daniele; Galzio, Renato; Kazakova, Anna; Pantalone, Andrea; Grillea, Giovanni; Bartolo, Marcello; Salini, Vincenzo; Magliani, Vincenzo

    2016-03-01

    Currently, there is no general consensus about the management of osteoporotic vertebral fractures (OVF). In the past, conservative treatment for at least one month was deemed appropriate for the majority of vertebral fractures. When pain persisted after conservative treatment, it was necessary to consider surgical interventions including: vertebroplasty for vertebral fractures with less than 30% loss of height of the affected vertebral body and kyphoplasty for vertebral fractures with greater than 30% loss of height. Currently, this type of treatment is not feasible. Herein we review the characteristics and methods of operation of three of the most common percutaneous vertebral augmentation systems (PVAS) for the treatment of OVF: Vertebral Body Stenting(®) (VBS), OsseoFix(®) and Spine Jack(®). VBS is a titanium device accompanied by a hydraulic (as opposed to mechanical) working system which allows a partial and not immediate possibility to control the opening of the device. On the other hand, OsseoFix(®) and Spine Jack(®) are accompanied by a mechanical working system which allows a progressive and controlled reduction of the vertebral fracture. Another important aspect to consider is the vertebral body height recovery. OsseoFix(®) has an indirect mechanism of action: the compaction of the trabecular bone causes an increase in the vertebral body height. Unlike the Vertebral Body Stenting(®) and Spine Jack(®), the OsseoFix(®) has no direct lift mechanism. Therefore, for these characteristics and for the force that this device is able to provide. In our opinion, Spine Jack(®) is the only device also suitable for the treatment OVF, traumatic fracture (recent, old or inveterate) and primary or secondary bone tumors.

  10. Research on Design of MUH Attitude Stability Augmentation Control System

    Science.gov (United States)

    Fan, Shigang

    2017-09-01

    Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.

  11. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  12. Usability engineering: domain analysis activities for augmented-reality systems

    Science.gov (United States)

    Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.

    2002-05-01

    This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.

  13. Cranial implant design using augmented reality immersive system.

    Science.gov (United States)

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  14. Benefit assessment of solar-augmented natural gas systems

    Science.gov (United States)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  15. Augmented reality for biomedical wellness sensor systems

    Science.gov (United States)

    Jenkins, Jeffrey; Szu, Harold

    2013-05-01

    Due to the commercial move and gaming industries, Augmented Reality (AR) technology has matured. By definition of AR, both artificial and real humans can be simultaneously present and realistically interact among one another. With the help of physics and physiology, we can build in the AR tool together with real human day-night webcam inputs through a simple interaction of heat transfer -getting hot, action and reaction -walking or falling, as well as the physiology -sweating due to activity. Knowing the person age, weight and 3D coordinates of joints in the body, we deduce the force, the torque, and the energy expenditure during real human movements and apply to an AR human model. We wish to support the physics-physiology AR version, PPAR, as a BMW surveillance tool for senior home alone (SHA). The functionality is to record senior walking and hand movements inside a home environment. Besides the fringe benefit of enabling more visits from grand children through AR video games, the PP-AR surveillance tool may serve as a means to screen patients in the home for potential falls at points around in house. Moreover, we anticipate PP-AR may help analyze the behavior history of SHA, e.g. enhancing the Smartphone SHA Ubiquitous Care Program, by discovering early symptoms of candidate Alzheimer-like midnight excursions, or Parkinson-like trembling motion for when performing challenging muscular joint movements. Using a set of coordinates corresponding to a set of 3D positions representing human joint locations, we compute the Kinetic Energy (KE) generated by each body segment over time. The Work is then calculated, and converted into calories. Using common graphics rendering pipelines, one could invoke AR technology to provide more information about patients to caretakers. Alerts to caretakers can be prompted by a patient's departure from their personal baseline, and the patient's time ordered joint information can be loaded to a graphics viewer allowing for high

  16. Global Navigation Satellite System and Augmentation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12 ... Keywords. Global Navigation Satellite System, GPS, Indian Regional Navigation Satellite System, GLONASS, Galileo, Compass, GAGAN. ... The article also covers the Indian RegionalNavigation Satellite System (IRNSS) and its potentials.

  17. Augmenting traditional instruments with a motion capture system

    DEFF Research Database (Denmark)

    Götzen, Amalia De; Vidolin, Alvise; Bernardini, Nicola

    2013-01-01

    This paper describes some composition works where the real instruments have been augmented through a motion capture system (Phasespace). While playing his instrument in the traditional way, the player is also controlling some other sound effects by moving his hands: the instrument becomes totally...

  18. Augmenting Environmental Interaction in Audio Feedback Systems

    Directory of Open Access Journals (Sweden)

    Seunghun Kim

    2016-04-01

    Full Text Available Audio feedback is defined as a positive feedback of acoustic signals where an audio input and output form a loop, and may be utilized artistically. This article presents new context-based controls over audio feedback, leading to the generation of desired sonic behaviors by enriching the influence of existing acoustic information such as room response and ambient noise. This ecological approach to audio feedback emphasizes mutual sonic interaction between signal processing and the acoustic environment. Mappings from analyses of the received signal to signal-processing parameters are designed to emphasize this specificity as an aesthetic goal. Our feedback system presents four types of mappings: approximate analyses of room reverberation to tempo-scale characteristics, ambient noise to amplitude and two different approximations of resonances to timbre. These mappings are validated computationally and evaluated experimentally in different acoustic conditions.

  19. Methods and systems relating to an augmented virtuality environment

    Science.gov (United States)

    Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J

    2014-05-20

    Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.

  20. A new urban-plan system based on augmented reality

    Science.gov (United States)

    Li, Lijun; Guan, Tao; Li, Zhongyi; Wang, Cheng

    2005-11-01

    This paper describes an Urban-Plan System based on augmented reality with tangible and interactive user interface. Virtual models, graphics generated by computer and physical materials have been used in whole urban-planning process. Participants can carry out their assignment collaboratively in direct and interactive manner and the final results can be browsed and modified in real-time. Augmented Reality enables users to achieve Urban-Plan more effectively and easily. One key object of our system is to enable users manipulate virtual models as they can do in real world. To achieve this, we must calculate the pose and position of camera relative to real world exactly. This paper uses computer vision technology and known marker to solve the above problem.

  1. Latency and distortion of electromagnetic trackers for augmented reality systems

    CERN Document Server

    Himberg, Henry

    2014-01-01

    Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideal for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration

  2. Markerless client-server augmented reality system with natural features

    Science.gov (United States)

    Ning, Shuangning; Sang, Xinzhu; Chen, Duo

    2017-10-01

    A markerless client-server augmented reality system is presented. In this research, the more extensive and mature virtual reality head-mounted display is adopted to assist the implementation of augmented reality. The viewer is provided an image in front of their eyes with the head-mounted display. The front-facing camera is used to capture video signals into the workstation. The generated virtual scene is merged with the outside world information received from the camera. The integrated video is sent to the helmet display system. The distinguishing feature and novelty is to realize the augmented reality with natural features instead of marker, which address the limitations of the marker, such as only black and white, the inapplicability of different environment conditions, and particularly cannot work when the marker is partially blocked. Further, 3D stereoscopic perception of virtual animation model is achieved. The high-speed and stable socket native communication method is adopted for transmission of the key video stream data, which can reduce the calculation burden of the system.

  3. Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel

    2015-07-03

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.

  4. Sensitivity enhancement for damage detection in linear systems using optimal feedback auxiliary signals and system augmentation

    Science.gov (United States)

    D'Souza, Kiran; Epureanu, Bogdan I.

    2008-03-01

    Recently, a sensitivity enhancement technique for damage detection using eigenstructure assignment has been extended from linear to nonlinear systems. Nonlinearities have been accounted for by forming (higher dimensional) augmented systems, which are designed for each trajectory of the nonlinear system, and are characterized by a specific forcing that ensures that the augmented systems follow that trajectory (when projected onto the original, lower dimensional space). The use of system augmentation for damage detection has several benefits beyond its ability to handle nonlinearities. For example, sensitivity can be increased compared to existing linear techniques through nonlinear feedback auxiliary signals because the constraint that the system is stable during its interrogation has to be applied only to the linearized closed loop system, while the augmented linear system does not have that constraint. In this work, the various benefits of nonlinear feedback auxiliary signals are explored for damage detection in linear systems. System augmentation is used in a linear system because a nonlinear controller is employed to enhance sensitivity. In addition to the increased sensitivity, fewer controller actuator points and sensors are required compared to existing linear techniques due to the efficient use of added (augmented) equations. Numerical simulations for a linear mass-spring and a linear mass-spring-damper system are used to validate the approach and discuss the effects of noise.

  5. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  6. Registration using natural features for augmented reality systems.

    Science.gov (United States)

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have

  7. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Directory of Open Access Journals (Sweden)

    Fernando Alonso-Martín

    2015-07-01

    Full Text Available Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI, to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS, which uses natural language understanding mechanisms to provide two features: (i a non-grammar multimodal input (verbal and/or written text; and (ii a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper offers many possibilities in terms of HRI. For instance, it can enhance the robot’s pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction. Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.

  8. Augmented Reality System for the musealization of archaeological sites

    Directory of Open Access Journals (Sweden)

    Javier Esclapés

    2013-11-01

    Full Text Available In this paper we are presenting a multi-marker and semi-immersive system for augmented reality to visualize and interact with archaeological sites, specifically those located in inaccessible or complex environments, such as caves or underwater locations. The use of this system in museum exhibitions helps visitors to come closer to archaeological heritage. As an example for the implementation of this system, an archaeological site has been used. It is the “Cova del Barranc del Migdia”, located in the “Sierra del Montgó”, Xàbia (Spain. The product obtained has been exhibited in various museums nationwide.

  9. Space Launch System Implementation of Adaptive Augmenting Control

    Science.gov (United States)

    Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  10. Preliminary development of augmented reality systems for spinal surgery

    Science.gov (United States)

    Nguyen, Nhu Q.; Ramjist, Joel M.; Jivraj, Jamil; Jakubovic, Raphael; Deorajh, Ryan; Yang, Victor X. D.

    2017-02-01

    Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon's dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon's field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.

  11. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  12. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 25.672 Section 25.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  13. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  14. A see through future: augmented reality and health information systems.

    Science.gov (United States)

    Monkman, Helen; Kushniruk, Andre W

    2015-01-01

    Augmented Reality (AR) is a method whereby virtual objects are superimposed on the real world. AR technology is becoming increasingly accessible and affordable and it has many potential health applications. This paper discusses current research on AR health applications such as medical education and medical practice. Some of the potential future uses for this technology (e.g., health information systems, consumer health applications) will also be presented. Additionally, there will be a discussion outlining some of usability and human factors challenges associated with AR in healthcare. It is expected that AR will become increasingly prevalent in healthcare; however, further investigation is required to demonstrate that they provide benefits over traditional methods. Moreover, AR applications must be thoroughly tested to ensure they do not introduce new errors into practice and have patient safety implications.

  15. Augmented reality system for freehand guide of magnetic endovascular devices.

    Science.gov (United States)

    Parrini, S; Cutolo, F; Freschi, C; Ferrari, M; Ferrari, V

    2014-01-01

    Magnetic guide of endovascular devices or magnetized therapeutic microparticles to the specific target in the arterial tree is increasingly studied, since it could improve treatment efficacy and reduce side effects. Most proposed systems use external permanent magnets attached to robotic manipulators or magnetic resonance imaging (MRI) systems to guide internal carriers to the region of treatment. We aim to simplify this type of procedures, avoiding or reducing the need of robotic arms and MRI systems in the surgical scenario. On account of this we investigated the use of a wearable stereoscopic video see-through augmented reality system to show the hidden vessel to the surgeon; in this way, the surgeon is able to freely move the external magnet, following the showed path, to lead the endovascular magnetic device towards the desired position. In this preliminary study, we investigated the feasibility of such an approach trying to guide a magnetic capsule inside a vascular mannequin. The high rate of success and the positive evaluation provided by the operators represent a good starting point for further developments of the system.

  16. Interactive augmented reality system for product design review

    Science.gov (United States)

    Caruso, Giandomenico; Re, Guido Maria

    2010-01-01

    The product development process, of industrial products, includes a phase dedicated to the design review that is a crucial phase where various experts cooperate in selecting the optimal product shape. Although computer graphics allows us to create very realistic virtual representations of the products, it is not uncommon that designers decide to build physical mock-ups of their newly conceived products because they need to physically interact with the prototype and also to evaluate the product within a plurality of real contexts. This paper describes the hardware and software development of our Augmented Reality design review system that allows to overcome some issues related to the 3D visualization and to the interaction with the virtual objects. Our system is composed by a Video See Through Head Mounted Display, which allows to improve the 3D visualization by controlling the convergence of the video cameras automatically, and a wireless control system, which allows us to create some metaphors to interact with the virtual objects. During the development of the system, in order to define and tune the algorithms, we have performed some testing sessions. Then, we have performed further tests in order to verify the effectiveness of the system and to collect additional data and comments about usability and ergonomic aspects.

  17. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  18. AREA: an augmented reality system for epidural anaesthesia.

    Science.gov (United States)

    Ashab, Hussam Al-Deen; Lessoway, Victoria A; Khallaghi, Siavash; Cheng, Alexis; Rohling, Robert; Abolmaesumi, Purang

    2012-01-01

    Spinal needle injection procedures are used for anesthesia and analgesia, such as lumbar epidurals. These procedures require careful placement of a needle, both to ensure effective therapy delivery and to avoid damaging sensitive tissue such as the spinal cord. An important step in such procedures is the accurate identification of the vertebral levels, which is currently performed using manual palpation with a reported 30% success rate for correct identification. An augmented reality system was developed to help identify the lumbar vertebral levels. The system consists of an ultrasound transducer tracked in real time by a trinocular camera system, an automatic ultrasound panorama generation module that provides an extended view of the lumbar vertebrae, an image processing technique that automatically identifies the vertebral levels in the panorama image, and a graphical interface that overlays the identified levels on a live camera view of the patient's back. Validation was performed on ultrasound data obtained from 10 subjects with different spine arching. The average success rate for segmentation of the vertebrae was 85%. The automatic level identification had an average accuracy of 6.6 mm. The prototype system demonstrates better accuracy for identifying the vertebrae than traditional manual methods.

  19. Augmented Reality-Based Navigation System for Wrist Arthroscopy: Feasibility

    Science.gov (United States)

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L.; Liverneaux, Philippe A.; Obdeijn, Miryam

    2013-01-01

    Purpose In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. Methods We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. Results A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. Discussion The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration. PMID:24436832

  20. Advanced Navigation Aids System based on Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jaeyong OH

    2016-12-01

    Full Text Available Many maritime accidents have been caused by human-error including such things as inadequate watch keeping and/or mistakes in ship handling. Also, new navigational equipment has been developed using Information Technology (IT technology to provide various kinds of information for safe navigation. Despite these efforts, the reduction of maritime accidents has not occurred to the degree expected because, navigational equipment provides too much information, and this information is not well organized, such that users feel it to be complicated rather than helpful. In this point of view, the method of representation of navigational information is more important than the quantity of that information and research is required on the representation of information to make that information more easily understood and to allow decisions to be made correctly and promptly. In this paper, we adopt Augmented Reality (AR technologies for the representation of information. AR is a 3D computer graphics technology that blends virtual reality and the real world. Recently, this technology has been widely applied in our daily lives because it can provide information more effectively to users. Therefore, we propose a new concept, a navigational system based on AR technology; we review experimental results from a ship-handling simulator and from an open sea test to verify the efficiency of the proposed system.

  1. Augmented reality-based navigation system for wrist arthroscopy: feasibility.

    Science.gov (United States)

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L; Obdeijn, Miryam; Liverneaux, Philippe A

    2013-11-01

    In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration.

  2. MHP Oriented Interactive Augmented Reality System for Sports Broadcasting Environments

    OpenAIRE

    Olaizola, Igor G.; Martirena, Inigo Barandiaran; Kammann, Tobias D.

    2006-01-01

    Television and movie images have been altered ever since it was technically possible. Nowadays embedding advertisements, or incorporating text and graphics in TV scenes, are common practice, but they can not be considered as integrated part of the scene. The introduction of new services for interactive augmented television is discussed in this paper. We analyse the main aspects related with the whole chain of augmented reality production.Interactivity is one of the most important added values...

  3. Context-Aware Based Efficient Training System Using Augmented Reality and Gravity Sensor for Healthcare Services

    Science.gov (United States)

    Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho

    As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.

  4. Architecture and Key Techniques of Augmented Reality Maintenance Guiding System for Civil Aircrafts

    Science.gov (United States)

    hong, Zhou; Wenhua, Lu

    2017-01-01

    Augmented reality technology is introduced into the maintenance related field for strengthened information in real-world scenarios through integration of virtual assistant maintenance information with real-world scenarios. This can lower the difficulty of maintenance, reduce maintenance errors, and improve the maintenance efficiency and quality of civil aviation crews. Architecture of augmented reality virtual maintenance guiding system is proposed on the basis of introducing the definition of augmented reality and analyzing the characteristics of augmented reality virtual maintenance. Key techniques involved, such as standardization and organization of maintenance data, 3D registration, modeling of maintenance guidance information and virtual maintenance man-machine interaction, are elaborated emphatically, and solutions are given.

  5. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a

  6. D3D augmented reality imaging system: proof of concept in mammography.

    Science.gov (United States)

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.

  7. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    Science.gov (United States)

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  8. Mobile Collaborative Augmented Reality: The Augmented Stroll

    OpenAIRE

    Renevier, Philippe; Nigay, Laurence

    2001-01-01

    International audience; The paper focuses on Augmented Reality systems in which interaction with the real world is augmented by the computer, the task being performed in the real world. We first define what mobile AR systems, collaborative AR systems and finally mobile and collaborative AR systems are. We then present the augmented stroll and its software design as one example of a mobile and collaborative AR system. The augmented stroll is applied to Archaeology in the MAGIC (Mobile Augmente...

  9. Landmark based augmented reality endoscope system for sinus and skull-base surgeries.

    Science.gov (United States)

    Thoranaghatte, Ramesh U; Giraldez, Jaime Garcia; Zheng, Guoyan

    2008-01-01

    Endoscopic video stream during sinus and skull base surgeries can be augmented with the preoperatively chosen landmark to provide effective navigation for the operating surgeon. Currently available systems try to augment with CT or MR image slices. This will be of not much help since there is too much information overlaid. We have developed a simplified landmark based Augmented Reality (AR) system for endoscopic sinus/skull-base surgeries. Results are presented from the experiments with plastic skull and cadaver specimen. Subjective evaluation from a experienced surgeon confirms the effectiveness of the system.

  10. Augmented-Virtual Reality: How to improve education systems

    Directory of Open Access Journals (Sweden)

    Manuel Fernandez

    2017-06-01

    Full Text Available This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students’ learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students’ knowledge acquisition. Stakeholders in the educational role of technology include students, faculty members, institutions, and manufacturers. While the benefits of such technologies are still under investigation, the technology landscape offers opportunities to enhance face-to-face and online teaching, including contributions in the understanding of abstract concepts and training in real environments and situations. Barriers to technology use involve limited adoption of augmented and virtual reality technologies, and, more directly, necessary training of teachers in using such technologies within meaningful educational contexts. The author proposes a six-step methodology to aid adoption of these technologies as basic elements within the regular education: training teachers; developing conceptual prototypes; teamwork involving the teacher, a technical programmer, and an educational architect; and producing the experience, which then provides results in the subsequent two phases wherein teachers are trained to apply augmented- and virtual-reality solutions within their teaching methodology using an available subject-specific experience and then finally implementing the use of the experience in a regular subject with students. The essay concludes with discussion of the business opportunities facing virtual reality in face-to-face education as well as augmented and virtual reality in online education.

  11. Augmented Virtual Reality: How to Improve Education Systems

    Science.gov (United States)

    Fernandez, Manuel

    2017-01-01

    This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students' learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students' knowledge acquisition.…

  12. Augmented Virtual Reality: How to Improve Education Systems

    OpenAIRE

    Manuel Fernandez

    2017-01-01

    This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students’ learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students’ knowledge acquisition. Stakeholders in the educational role of technology include students, faculty members, institutions, and manufacturers. While the benefits of suc...

  13. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  14. Use of Augmentative and Alternative Communication Systems in Preschool: teacher perceptions

    Directory of Open Access Journals (Sweden)

    Munique Massaro

    2013-06-01

    Full Text Available Augmentative and Alternative Communication Resources have proven to be helpful in the insertion of students with disabilities and complex communication needs into a variety of pedagogical activities and expand the skills and competencies of the teacher in the teaching-learning. The objective of this research was to identify the perception of teachers regarding the use of augmentative and alternative communication during an intervention program in Preschool. Participants were a special class of Preschool students with disabilities and severe communication complexity, along with their teacher and the researcher. For the development of this research, a Alternative Communication Program was applied. The teacher was provided with systematic guidance concerning language and communication. In a collaborative process, three children’s songs were selected according to the teacher’s pedagogical planning and adapted resources through Augmentative and Alternative Communication Systems. During the intervention program, assisted evaluations also took place immediately after the activities with the music. The data were collected in audio recordings. For data analysis, content analysis was carried out resulting in the outlining of themes and sub-themes. Results indicated that the teacher identified that Augmentative and Alternative Communication Systems can to facilitate expression abilities of students with disabilities; that Augmentative and Alternative Communication Systems can be used by children in Preschool; and that resources adapted through augmentative and alternative communication systems should be in accordance with the specificities of students.

  15. Measuring the Latency of an Augmented Reality System for Robot-Assisted Minimally Invasive Surgery

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kraus, Martin

    2017-01-01

    Minimal latency is important for augmented reality systems and teleoperation interfaces as even small increases in latency can affect user performance. Previously, we have developed an augmented reality system that can overlay stereoscopic video streams with computer graphics in order to improve...... visual communication in training for robot-assisted minimally invasive surgery with da Vinci surgical systems. To make sure that our augmented reality system provides the best possible user experience, we investigated the video latency of the da Vinci surgical system and how the components of our system...... affect the overall latency. To measure the photon-to-photon latency, we used a microcontroller to determine the time between the activation of a lightemitting diode in front of the endoscopic camera and the corresponding increase in intensity of the surgeon's display as measured by a phototransistor...

  16. Designing and implementing outdoor augmented reality system based on ARToolKit

    Science.gov (United States)

    He, Zongyi; Liu, Yongqi; Chang, Yong; Hu, Shenghua

    2007-06-01

    Augmented Reality (AR) is the overlay of virtual computer graphics images on real world objects, and has many potential applications in industrial operations and academic research. ARToolKit is a C and C++ language software library that allows programmers develop Augmented Reality applications easily. Since the registration method of ARToolKit is based on computer vision, ARToolKit is not suitable for outdoor environment. ARToolKit needs to be improved for outdoor augmented reality. Source code of ARToolkit is improved in this paper. The registration method of vision is kept down, and 3D Electronic compass+RTKGPS is added, so that the registration method of 3D can be carried out not only indoor environment, but also outdoor environment. The paper discusses the framework of outdoor 3D underground pipeline augmented reality system based on ARToolKit.

  17. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  18. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery.

    Science.gov (United States)

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-02-15

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.

  19. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery

    Science.gov (United States)

    Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng

    2017-01-01

    Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442

  20. Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    He Suxiang; Meng Hongchao; Wang Hui [School of Science, Wuhan University of Technology, Wuhan 430070 (China); Zhao Yanli, E-mail: yanlizhao@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-01

    The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.

  1. 14 CFR 23.672 - Stability augmentation and automatic and power-operated systems.

    Science.gov (United States)

    2010-01-01

    ... power-operated systems. 23.672 Section 23.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show compliance with the flight characteristics requirements of this part...

  2. Research on underground pipeline augmented reality system based on ARToolKit

    Science.gov (United States)

    He, Zongyi; Xia, Zongguo; Chang, Yong; Chen, Weirong; Hu, Jinshan; Wei, Xiuqin

    2006-10-01

    Augmented Reality (AR) is the overlay of virtual computer graphics images on real world objects, and has many potential applications in industrial operations and academic research. First, this paper discusses the method of camera calibration. ARToolKit provides two calibration approaches: Two Step Calibration Approach and One Step Calibration Approach. Two Step Calibration Approach is more difficult to use, but results in better accuracy (better for 3D measurement). We used ARToolKit's two step method to calibrate our camera. Next, the paper addresses the method of spatial analysis of augmented reality system, data model of spatial analysis, data modeling of 3D pipelines, and the mathematical model of coordinate conversion of 3D pipeline networks. Then, the paper discusses the data structures of underground pipelines. The data structures of underground pipelines include spatial data structure, attribute data structure, and sense data structure. We implemented the display of 3D pipelines in augmented reality, augmented visualization of 3D pipelines based on ARToolKit, information query and spatial buffer analysis of 3D pipelines. Finally, the paper discusses the framework of underground pipeline augmented reality system based on ARToolKit. A hybrid registration based on electronic compass and inclinometer, and a position based on RTK GPS and INS in outdoor AR system are presented. The hardware configuration and software framework of the system and data processing workflow of the combined system are given.

  3. Analytical design of a high performance stability and control augmentation system for a hingeless rotor helicopter

    Science.gov (United States)

    Miyajima, K.

    1978-01-01

    A stability and control augmentation system (SCAS) was designed based on a set of comprehensive performance criteria. Linear optimal control theory was applied to determine appropriate feedback gains for the stability augmentation system (SAS). The helicopter was represented by six-degree-of-freedom rigid body equations of motion and constant factors were used as weightings for state and control variables. The ratio of these factors was employed as a parameter for SAS analysis and values of the feedback gains were selected on this basis to satisfy three of the performance criteria for full and partial state feedback systems. A least squares design method was then applied to determine control augmentation system (CAS) cross feed gains to satisfy the remaining seven performance criteria. The SCAS gains were then evaluated by nine degree-of-freedom equations which include flapping motion and conclusions drawn concerning the necessity of including the pitch/regressing and roll/regressing modes in SCAS analyses.

  4. Experiences with an Augmented Human Intellect System: A Revolution in Communication.

    Science.gov (United States)

    Bair, James H.

    The Augmented Human Intellect System (AHI) has been designed to facilitate communication among knowledge workers who may accomplish their entire job utilizing this advanced technology. The system is capable of sending information to geographically distributed users. It permits access to and modification of stored information by a number of persons…

  5. Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review.

    Science.gov (United States)

    Detmer, Felicitas J; Hettig, Julian; Schindele, Daniel; Schostak, Martin; Hansen, Christian

    2017-01-01

    Many virtual and augmented reality systems have been proposed to support renal interventions. This paper reviews such systems employed in the treatment of renal cell carcinoma and renal stones. A systematic literature search was performed. Inclusion criteria were virtual and augmented reality systems for radical or partial nephrectomy and renal stone treatment, excluding systems solely developed or evaluated for training purposes. In total, 52 research papers were identified and analyzed. Most of the identified literature (87%) deals with systems for renal cell carcinoma treatment. About 44% of the systems have already been employed in clinical practice, but only 20% in studies with ten or more patients. Main challenges remaining for future research include the consideration of organ movement and deformation, human factor issues, and the conduction of large clinical studies. Augmented and virtual reality systems have the potential to improve safety and outcomes of renal interventions. In the last ten years, many technical advances have led to more sophisticated systems, which are already applied in clinical practice. Further research is required to cope with current limitations of virtual and augmented reality assistance in clinical environments.

  6. Assessing the Effectiveness of Learning Solid Geometry by Using an Augmented Reality-Assisted Learning System

    Science.gov (United States)

    Lin, Hao-Chiang Koong; Chen, Mei-Chi; Chang, Chih-Kai

    2015-01-01

    This study integrates augmented reality (AR) technology into teaching activities to design a learning system that assists junior high-school students in learning solid geometry. The following issues are addressed: (1) the relationship between achievements in mathematics and performance in spatial perception; (2) whether system-assisted learning…

  7. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    Science.gov (United States)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  8. Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication

    Science.gov (United States)

    Jakovetic, Dusan; Xavier, João; Moura, José M. F.

    2011-08-01

    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.

  9. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...

  10. Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors

    Science.gov (United States)

    Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor

    2016-01-01

    Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…

  11. A Mobile Augmented Reality System for the Learning of Dental Morphology

    Science.gov (United States)

    Juan, M.-Carmen; Alexandrescu, Lucian; Folguera, Fernando; García-García, Inmaculada

    2016-01-01

    Three-dimensional models are important when the learning content is difficult to acquire from 2D images or other traditional methods. This is the case for learning dental morphology. In this paper, we present a mobile augmented reality (AR) system for learning dental morphology. A study with students was carried out to determine whether learning…

  12. Towards an automated checked baggage inspection system augmented with robots

    Science.gov (United States)

    DeDonato, Matthew P.; Dimitrov, Velin; Padır, Taskin

    2014-05-01

    We present a novel system for enhancing the efficiency and accuracy of checked baggage screening process at airports. The system requirements address the identification and retrieval of objects of interest that are prohibited in a checked luggage. The automated testbed is comprised of a Baxter research robot designed by Rethink Robotics for luggage and object manipulation, and a down-looking overhead RGB-D sensor for inspection and detection. We discuss an overview of current system implementations, areas of opportunity for improvements, robot system integration challenges, details of the proposed software architecture and experimental results from a case study for identifying various kinds of lighters in checked bags.

  13. A novel augmented reality system of image projection for image-guided neurosurgery.

    Science.gov (United States)

    Mahvash, Mehran; Besharati Tabrizi, Leila

    2013-05-01

    Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.

  14. Development of Electronic Data Processing /EDP/ augmented management system

    Science.gov (United States)

    Scott, J. E.; Waddleton, T. R.

    1968-01-01

    To tailor the existing Unified Flight Analysis System to management data rather than technical data, a pilot model could be produced in breadboard form, using electronic data processing, in a matter of a few months at very moderate cost. Such a system lends itself to continuous refinement.

  15. Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    OpenAIRE

    Jones, Valerie M.; Rensink, Arend; Brinksma, Hendrik

    2005-01-01

    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing systems. The methodology applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation...

  16. Air ejector augmented compressed air energy storage system

    Science.gov (United States)

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  17. Air ejector augmented compressed air energy storage system

    Science.gov (United States)

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  18. Vision Aided Inertial Navigation System Augmented with a Coded Aperture

    Science.gov (United States)

    2011-03-24

    21 Figure 2-4 Stereopsis Example...camera may be known precisely. Knowledge of this vector allows stereopsis techniques to be employed. With stereopsis , the angle from the focal point...for a MA V are accurate for significantly shorter time periods than those more commonly used for larger systems [9]. Aiding an INS using stereopsis

  19. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  20. Dynamic augmented reality for sensory substitution in robot-assisted surgical systems.

    Science.gov (United States)

    Akinbiyi, Takintope; Reiley, Carol E; Saha, Sunipa; Burschka, Darius; Hasser, Christopher J; Yuh, David D; Okamura, Allison M

    2006-01-01

    Teleoperated robot-assisted surgical systems provide surgeons with improved precision, dexterity, and visualization over traditional minimally invasive surgery. The addition of haptic (force and/or tactile) feedback has been proposed as a way to further enhance the performance of these systems. However, due to limitations in sensing and control technologies, implementing direct haptic feedback to the surgeon's hands remains impractical for clinical application. A new, intuitive augmented reality system for presentation of force information through sensory substitution has been developed and evaluated. The augmented reality system consists of force-sensing robotic instruments, a kinematic tool tracker, and a graphic display that overlays a visual representation of force levels on top of the moving instrument tips. The system is integrated with the da Vinci Surgical System (Intuitive Surgical, Inc.) and tested by several users in a phantom knot tying task. The augmented reality system decreases the number of broken sutures, decreases the number of loose knots, and results in more consistent application of forces.

  1. Study on registration method based on Gauss-Newton iteration algorithm for augmented reality system

    Science.gov (United States)

    Li, Yu; Liu, Yue; Wang, Yongtian

    2004-03-01

    Three key technologies influence the performance of current AR (Augmented Reality) system, namely image grabbing, accurate registration and binocular stereovision. This paper studies a vision-based AR system and its setup, presents an image grabbing solution using an IEEE 1394 interface, discusses the binocular stereovision technology and develops an effective Gauss-Newton iteration algorithm for registration. Experiment results show that the proposed method is computationally efficient and accurate.

  2. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    Science.gov (United States)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  3. The satellite based augmentation system – EGNOS for non-precision approach global navigation satellite system

    Directory of Open Access Journals (Sweden)

    Andrzej FELLNER

    2012-01-01

    Full Text Available First in the Poland tests of the EGNOS SIS (Signal in Space were conducted on 5th October 2007 on the flight inspection with SPAN (The Synchronized Position Attitude Navigation technology at the Mielec airfield. This was an introduction to a test campaign of the EGNOS-based satellite navigation system for air traffic. The advanced studies will be performed within the framework of the EGNOS-APV project in 2011. The implementation of the EGNOS system to APV-I precision approach operations, is conducted according to ICAO requirements in Annex 10. Definition of usefulness and certification of EGNOS as SBAS (Satellite Based Augmentation System in aviation requires thorough analyses of accuracy, integrity, continuity and availability of SIS. Also, the project will try to exploit the excellent accuracy performance of EGNOS to analyze the implementation of GLS (GNSS Landing System approaches (Cat I-like approached using SBAS, with a decision height of 200 ft. Location of the EGNOS monitoring station Rzeszów, located near Polish-Ukrainian border, being also at the east border of planned EGNOS coverage for ECAC states is very useful for SIS tests in this area. According to current EGNOS programmed schedule, the project activities will be carried out with EGNOS system v2.2, which is the version released for civil aviation certification. Therefore, the project will allow demonstrating the feasibility of the EGNOS certifiable version for civil applications.

  4. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    Science.gov (United States)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  5. System Architecture-based Design Methodology for Monitoring the Ground-based Augmentation System: Category I - Integrity Risk

    OpenAIRE

    Elias, Paulo; Saotome, Osamu

    2012-01-01

    Abstract: This paper has described a method to accomplish the Ground-Based Augmentation System signal-in-space integrity risk monitoring for a ground station specified by ICAO, Annex 10, Vol. 1 and RTCA DO-245A, which is a mandatory requirement to meet the certification aspects for a Ground-Based Augmentation System station. The proposed methodology was based on the Risk Tree Analysis technique, which is an optional way to design and develop an engineering solution named as integrity risk monit...

  6. Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    Directory of Open Access Journals (Sweden)

    F. López-Mir

    2013-01-01

    Full Text Available Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery.

  7. Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    Science.gov (United States)

    López-Mir, F.; Naranjo, V.; Fuertes, J. J.; Alcañiz, M.; Bueno, J.; Pareja, E.

    2013-01-01

    Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments. The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery. PMID:24236293

  8. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    Science.gov (United States)

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  9. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    Directory of Open Access Journals (Sweden)

    Liang Li

    Full Text Available To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery.In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems.The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons.The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  10. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    Science.gov (United States)

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  11. Design of a Stability Augmentation System for an Unmanned Helicopter Based on Adaptive Control Techniques

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The task of control of unmanned helicopters is rather complicated in the presence of parametric uncertainties and measurement noises. This paper presents an adaptive model feedback control algorithm for an unmanned helicopter stability augmentation system. The proposed algorithm can achieve a guaranteed model reference tracking performance and speed up the convergence rates of adjustable parameters, even when the plant parameters vary rapidly. Moreover, the model feedback strategy in the algorithm further contributes to the improvement in the control quality of the stability augmentation system in the case of low signal to noise ratios, mainly because the model feedback path is noise free. The effectiveness and superiority of the proposed algorithm are demonstrated through a series of tests.

  12. Removal of recurrent intraorbital tumour using a system of augmented reality.

    Science.gov (United States)

    Scolozzi, P; Bijlenga, P

    2017-11-01

    The most crucial step in the management of pleomorphic adenoma of the lacrimal gland is choosing the optimal approach for excision. We report the successful removal of a recurrent pleomorphic adenoma of the lacrimal gland in a 42-year-old woman using a specific microscope-based system of augmented reality. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Effect of augmented visual feedback from a virtual reality simulation system on manual dexterity training.

    Science.gov (United States)

    Wierinck, E; Puttemans, V; Swinnen, S; van Steenberghe, D

    2005-02-01

    Little research has been published about the impact of simulation technology on the learning process of novel motor skills. Especially the role of augmented feedback (FB) on the quality of performance and the transfer of the acquired behaviour to a no-augmented FB condition require further investigation. Therefore, novice dental students were randomly assigned to one of three groups and given the task of drilling a geometrical class 1 cavity. The FB group trained under augmented visual FB conditions, provided by the virtual reality (VR) system (DentSim). The no-FB group practised under normal vision conditions, in the absence of augmented FB. A control group performed the test sessions without participating in any training programme. All preparations were evaluated by the VR grading system according to four traditional (outline shape, floor depth, floor smoothness and wall inclination), and two critical, criteria (pulp exposure and damage to adjacent teeth). Performance analyses revealed an overall trend towards significant improvement with training for the experimental groups. The FB group obtained the highest scores. It scored better for floor depth (P < 0.001), whilst the no-FB group was best for floor smoothness (P < 0.005). However, at the retention tests, the FB group demonstrated inferior performance in comparison with the no-FB group. The transfer test on a traditional unit revealed no significant differences between the training groups. Consequently, drilling experience on a VR system under the condition of frequently provided FB and lack of any tutorial input was considered to be not beneficial to learning. The present data are discussed in view of the guidance hypothesis of FB, which refers to the apprentice's dependence on FB.

  14. Synchronization of the fractional-order generalized augmentedsystem and its circuit implementation

    Science.gov (United States)

    Xue, Wei; Xu, Jin-Kang; Cang, Shi-Jian; Jia, Hong-Yan

    2014-06-01

    In this paper, the synchronization of the fractional-order generalized augmentedsystem is investigated. Based on the predictor—corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincaré maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system parameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchronization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.

  15. A Radiation Learning Support System by Tri-sensory Augmented Reality using a Mobile Phone

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, Hiroshi; Zhao, Yue; Yan, Weida; Ishii, Hirotake [Kyoto University, Kyoto (Japan)

    2011-08-15

    A radiation learning support system has been developed to support learning basic knowledge of radiation and its influence on the human body by using tri-sensory Augmented Reality (AR) technology with presenting information to visual, auditory and tactile sensation. The system consists of a knowledge learning mode in which learners can learn basic knowledge of radiation and an experience learning mode in which they can virtually experience its influence on the human body under various conditions. As the result of a simple evaluation, it was suggested that the system improves the learners' intuitive understanding, and information presentation to auditory and tactile sensation is more effective than that to visual sensation.

  16. A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation.

    Science.gov (United States)

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; Cramer, Steven C; Lopes, Cristina Videira

    2013-01-01

    This paper features a Spatial Augmented Reality system for rehabilitation of hand and arm movement. The table-top home-based system tracks a subject's hand and creates a virtual audio-visual interface for performing rehabilitation-related tasks that involve wrist, elbow, and shoulder movements. It measures range, speed, and smoothness of movements locally and can send the real-time photos and data to the clinic for further assessment. To evaluate the system, it was tested on two normal subjects and proved functional.

  17. Real-Time Projection-Based Augmented Reality System for Dynamic Objects in the Performing Arts

    Directory of Open Access Journals (Sweden)

    Jaewoon Lee

    2015-02-01

    Full Text Available This paper describes the case study of applying projection-based augmented reality, especially for dynamic objects in live performing shows, such as plays, dancing, or musicals. Our study aims to project imagery correctly inside the silhouettes of flexible objects, in other words, live actors or the surface of actor’s costumes; the silhouette transforms its own shape frequently. To realize this work, we implemented a special projection system based on the real-time masking technique, that is to say real-time projection-based augmented reality system for dynamic objects in performing arts. We installed the sets on a stage for live performance, and rehearsed particular scenes of a musical. In live performance, using projection-based augmented reality technology enhances technical and theatrical aspects which were not possible with existing video projection techniques. The projected images on the surfaces of actor’s costume could not only express the particular scene of a performance more effectively, but also lead the audience to an extraordinary visual experience.

  18. [Interactive augmented reality systems : Aid for personalized patient education and rehabilitation].

    Science.gov (United States)

    Bork, F

    2018-01-30

    During patient education, information exchange plays a critical role both for patient compliance during medical or rehabilitative treatment and for obtaining an informed consent for an operative procedure. In this article the augmented reality system "Magic Mirror" as an additive tool during patient education, rehabilitation as well as anatomical education is highlighted. The Magic Mirror system allows the user of the system to inspect both a detailed model of the 3‑dimensional anatomy of the human body and volumetric slice images in a virtual mirror environment. First preliminary results from the areas of rehabilitation and learning anatomy indicate the broad potential of the Magic Mirror. Similarly, the system also provides interesting advantages for patient education situations in comparison to traditional methods of information exchange. Novel technologies, such as augmented reality are a door opener for many innovations in medicine. In the future, patient-specific systems, such as the Magic Mirror will be used increasingly more in areas such as patient education and rehabilitation. In order to maximize the benefits of such systems, further evaluation studies are necessary to find out about the best use cases and to start an iterative optimization process of these systems.

  19. Active glass-type human augmented cognition system considering attention and intention

    Science.gov (United States)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  20. Whistland: An Augmented Reality Crowd-Mapping System for Civil Protection and Emergency Management

    Directory of Open Access Journals (Sweden)

    Gioele Luchetti

    2017-02-01

    Full Text Available The prevention and correct management of natural disaster event sequences play a key role in saving human lives. The availability of embedded and mobile smart computing systems opens new roads for the management of land and infrastructures by civil protection operators. To date, research has explored the use of social networks for the management of disasters connected to meteorological/hydrogeological events or earthquakes, but without emphasis on the importance of an integrated system. The main feature of the Whistland system proposed in this paper is to make synergistic use of augmented reality (AR, crowd-mapping (CM, social networks, the Internet of Things (IoT and wireless sensor networks (WSN by exploiting technologies and frameworks of Web 2.0 and GIS 2.0 to make informed decisions about the chain of events. The Whistland system is composed of a geo-server, a mobile application with AR and an analytics dashboard. The geo-server acts as the hub of the sensor and social networks. The abstracted concept in this sense is the transformation of the user domain into “intelligent sensors” for the whole scope of crisis management. The social network integration is made through an efficient pointer-like mechanism that keeps the storage requirement low through a mobile application based on an augmented reality engine and provides qualitative information that sensors are unable to capture. Real-time analyses, geo-searches and the capability to examine event histories with an augmented reality engine all help the stakeholders to understand better the state of the resources under observation/monitoring. The system has been extensively tested in the programmed maintenance of river basins, where it is necessary to log maintenance activities in order to keep the riverbank clean: a significant use-case in many countries affected by hydro-geological instability.

  1. New education system for construction of optical holography setup - Tangible learning with Augmented Reality

    Science.gov (United States)

    Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2013-02-01

    In case of teaching optical system construction, it is difficult to prepare the optical components for the attendance student. However the tangible learning is very important to master the optical system construction. It helps learners understand easily to use an inexpensive learning system that provides optical experiments experiences. Therefore, we propose the new education system for construction of optical setup with the augmented reality. To use the augmented reality, the proposed system can simulate the optical system construction by the direct hand control. Also, this system only requires an inexpensive web camera, printed makers and a personal computer. Since this system does not require the darkroom and the expensive optical equipments, the learners can study anytime, anywhere when they want to do. In this paper, we developed the system that can teach the optical system construction of the Denisyuk hologram and 2-step transmission type hologram. For the tangible learning and the easy understanding, the proposed system displays the CG objects of the optical components on the markers which are controlled by the learner's hands. The proposed system does not only display the CG object, but also display the light beam which is controlled by the optical components. To display the light beam that is hard to be seen directly, the learners can confirm about what is happening by the own manipulation. For the construction of optical holography setup, we arrange a laser, mirrors, a PBS (polarizing beam splitter), lenses, a polarizer, half-wave plates, spatial filters, an optical power meter and a recording plate. After the construction, proposed system can check optical setup correctly. In comparison with the learners who only read a book, the learners who use the system can construct the optical holography setup more quickly and correctly.

  2. Optical augmented reality assisted navigation system for neurosurgery teaching and planning

    Science.gov (United States)

    Wu, Hui-Qun; Geng, Xing-Yun; Wang, Li; Zhang, Yuan-Peng; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng

    2013-07-01

    This paper proposed a convenient navigation system for neurosurgeon's pre-operative planning and teaching with augmented reality (AR) technique, which maps the three-dimensional reconstructed virtual anatomy structures onto a skull model. This system included two parts, a virtual reality system and a skull model scence. In our experiment, a 73 year old right-handed man initially diagnosed with astrocytoma was selected as an example to vertify our system. His imaging data from different modalities were registered and the skull soft tissue, brain and inside vessels as well as tumor were reconstructed. Then the reconstructed models were overlayed on the real scence. Our findings showed that the reconstructed tissues were augmented into the real scence and the registration results were in good alignment. The reconstructed brain tissue was well distributed in the skull cavity. The probe was used by a neurosurgeon to explore the surgical pathway which could be directly posed into the tumor while not injuring important vessels. In this way, the learning cost for students and patients' education about surgical risks reduced. Therefore, this system could be a selective protocol for image guided surgery(IGS), and is promising for neurosurgeon's pre-operative planning and teaching.

  3. A Systematic Methodology for Actuator Augmentation in the Supervisory Control of Discrete Event Systems

    Directory of Open Access Journals (Sweden)

    Vigyan Chandra

    2006-10-01

    Full Text Available Supervisory control theory of discrete event systems in the Ramade-Wonham paradigm addresses the problem of restricting the system evolution so that it conforms to certain predefined behavior commonly referred to as specifications. This theory states that a sequence of events that cause the plant to violate the specifications is suitably pruned or eliminated. However, in doing so, event traces, partial prefixes of which that actually meet control specification are eliminated as well. This happens for instance whenever a chain of uncontrollable event extensions render the plant behavior trajectory irrevocably outside the outlined specifications. Such partial conformance can be ensured if the capability of the system is augmented by additional actuators so that in the augmented plant there is a greater degree of control over uncontrollable events. It does not follow trivially where such actuators are to be placed. We propose an algorithm that enables us to identify states of the automaton where the new actuators need to be inserted, thus enlarging the scope of its applicability to system identification purposes as well.

  4. A Novel Augmented Reality-Based Navigation System in Perforator Flap Transplantation - A Feasibility Study.

    Science.gov (United States)

    Jiang, Taoran; Zhu, Ming; Zan, Tao; Gu, Bin; Li, Qingfeng

    2017-08-01

    In perforator flap transplantation, dissection of the perforator is an important but difficult procedure because of the high variability in vascular anatomy. Preoperative imaging techniques could provide substantial information about vascular anatomy; however, it cannot provide direct guidance for surgeons during the operation. In this study, a navigation system (NS) was established to overlie a vascular map on surgical sites to further provide a direct guide for perforator flap transplantation. The NS was established based on computed tomographic angiography and augmented reality techniques. A virtual vascular map was reconstructed according to computed tomographic angiography data and projected onto real patient images using ARToolKit software. Additionally, a screw-fixation marker holder was created to facilitate registration. With the use of a tracking and display system, we conducted the NS on an animal model and measured the system error on a rapid prototyping model. The NS assistance allowed for correct identification, as well as a safe and precise dissection of the perforator. The mean value of the system error was determined to be 3.474 ± 1.546 mm. Augmented reality-based NS can provide precise navigation information by directly displaying a 3-dimensional individual anatomical virtual model onto the operative field in real time. It will allow rapid identification and safe dissection of a perforator in free flap transplantation surgery.

  5. Way-Finding Assistance System for Underground Facilities Using Augmented Reality

    Science.gov (United States)

    Yokoi, K.; Yabuki, N.; Fukuda, T.; Michikawa, T.; Motamedi, A.

    2015-05-01

    Way-finding is one of main challenges for pedestrians in large subterranean spaces with complex network of connected labyrinths. This problem is caused by the loss of their sense of directions and orientation due to the lack of landmarks that are occluded by ceilings, walls, and skyscraper. This paper introduces an assistance system for way-finding problem in large subterranean spaces using Augmented Reality (AR). It suggests displaying known landmarks that are invisible in indoor environments on tablet/handheld devices to assist users with relative positioning and indoor way-finding. The location and orientation of the users can be estimated by the indoor positioning systems and sensors available in the common tablet or smartphones devices. The constructed 3D model of a chosen landmark that is in the field of view of the handheld's camera is augmented on the camera's video feed. A prototype system has been implemented to demonstrate the efficiency of the proposed system for way-finding.

  6. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.

    Science.gov (United States)

    Badiali, Giovanni; Ferrari, Vincenzo; Cutolo, Fabrizio; Freschi, Cinzia; Caramella, Davide; Bianchi, Alberto; Marchetti, Claudio

    2014-12-01

    We present a newly designed, localiser-free, head-mounted system featuring augmented reality as an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a feasibility study and validation. Our head-mounted wearable system facilitating augmented surgery was developed as a stand-alone, video-based, see-through device in which the visual features were adapted to facilitate maxillofacial bone surgery. We implement a strategy designed to present augmented reality information to the operating surgeon. LeFort1 osteotomy was chosen as the test procedure. The system is designed to exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing performance of waferless, augmented-reality assisted bone repositioning. In vitro testing was conducted on a physical replica of a human skull, and the augmented reality system was used to perform LeFort1 maxillary repositioning. Surgical accuracy was measured with the aid of an optical navigation system that recorded the coordinates of three reference points (located in anterior, posterior right, and posterior left positions) on the repositioned maxilla. The outcomes were compared with those expected to be achievable in a three-dimensional environment. Data were derived using three levels of surgical planning, of increasing complexity, and for nine different operators with varying levels of surgical skill. The mean error was 1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the craniocaudal axis. The simplest plan was associated with a slightly lower mean error (1.58 ± 0.37 mm) compared with the more complex plans (medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean error for the anterior reference point was lower (1.33 ± 0.58 mm) than those for both the posterior right (1.72 ± 0.24 mm) and posterior left points (2.05 ± 0.47 mm). No significant difference

  7. Comparing two types of augmentative and alternative communication systems for children with autism.

    Science.gov (United States)

    Son, Seung-Hyun; Sigafoos, Jeff; O'Reilly, Mark; Lancioni, Giulio E

    2006-01-01

    This study compared acquisition and preference for two types of augmentative and alternative communication (AAC) systems in three pre-schoolers with autism. Acquisition of requesting behaviour using a picture-exchange system vs a voice-output communication aide (VOCA) was compared in an alternating treatments design. Following acquisition, both ACC systems were simultaneously available and the child could select which one of the two systems to use. There was little difference between picture-exchange and VOCA in terms of acquisition rates. Two children demonstrated a consistent preference for picture-exchange and the third showed a preference for the VOCA. Both speed of acquisition and system preference should be considered when designing AAC interventions for children with autism and related developmental disabilities.

  8. A Neuro-Augmented Observer for Robust Fault Detection in Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Huajun Gong

    2012-01-01

    Full Text Available A new fault detection method using neural-networks-augmented state observer for nonlinear systems is presented in this paper. The novelty of the approach is that instead of approximating the entire nonlinear system with neural network, we only approximate the unmodeled part that is left over after linearization, in which a radial basis function (RBF neural network is adopted. Compared with conventional linear observer, the proposed observer structure provides more accurate estimation of the system state. The state estimation error is proved to asymptotically approach zero by the Lyapunov method. An aircraft system demonstrates the efficiency of the proposed fault detection scheme, simulation results of which show that the proposed RBF neural network-based observer scheme is effective and has a potential application in fault detection and identification (FDI for nonlinear systems.

  9. Visually Augmented Analysis of Socio-Technical Networks in Engineering Systems Design Research

    DEFF Research Database (Denmark)

    Storga, M.; Stankovic, T.; Cash, Philip

    2013-01-01

    , but only fairly recently has the study of networks in general become a major topic of research in complex engineering systems. The research reported in this paper is discussing how the visually augmented analysis of complex socio-networks (networks of people and technology engaged in a product/service-system...... captured during experiments and observations that are more and more used as a main research method. Case studies that are presented illustrate also the significance of the network based research approach in providing insight into ways of improving the design process for complex engineering systems.......In characterizing systems behaviour, complex-systems scientists use tools from a variety of disciplines, including nonlinear dynamics, information theory, computation theory, evolutionary biology and social network analysis, among others. All of these topics have been studied for some time...

  10. Evaluation of wearable haptic systems for the fingers in Augmented Reality applications

    DEFF Research Database (Denmark)

    Chinello, Francesco

    2017-01-01

    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games “Pok´emon GO” and “Ingress” or the Google Translate...... real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects...

  11. Issues of Mitigation Strategies in Augmented System for Next Generation Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Q. Tran

    2007-08-01

    Past research on augmented systems has been predominately concerned with measuring and classifying an operator’s functional states. Only recently has the field begun researching mitigation strategies. The purpose of this paper is to add further conceptual understanding to mitigation strategies. Based upon the decision making literature, we pose three issues that mitigation strategies need to resolve: the types of decision strategies an operator uses, the structure of the information that an operator processes, and finally, the cue or pattern of cues that the operator relies on in making decisions. These issues are important to ensure that mitigation strategies are congruent to operator’s decision-making behaviors.

  12. Measuring the Usability of Augmented Reality e-Learning Systems: A User-Centered Evaluation Approach

    Science.gov (United States)

    Pribeanu, Costin; Balog, Alexandru; Iordache, Dragoş Daniel

    The development of Augmented Reality (AR) systems is creating new challenges and opportunities for the designers of e-learning systems. The mix of real and virtual requires appropriate interaction techniques that have to be evaluated with users in order to avoid usability problems. Formative usability aims at finding usability problems as early as possible in the development life cycle and is suitable to support the development of such novel interactive systems. This work presents an approach to the user-centered usability evaluation of an e-learning scenario for Biology developed on an Augmented Reality educational platform. The evaluation has been carried on during and after a summer school held within the ARiSE research project. The basic idea was to perform usability evaluation twice. In this respect, we conducted user testing with a small number of students during the summer school in order to get a fast feedback from users having good knowledge in Biology. Then, we repeated the user testing in different conditions and with a relatively larger number of representative users. In this paper we describe both experiments and compare the usability evaluation results.

  13. Construction of Interactive Teaching System for Course of Mechanical Drawing Based on Mobile Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Juan Cheng

    2018-02-01

    Full Text Available The teaching aim of Mechanical Drawing is to cultivate the students' graphics interpreting ability, plotting ability, inter-space imagination and innovation ability. For engineering students in China Universities, Mechanical Drawing course with the characteristics of 3D and 2D inter-space transformation, is often difficult to master. The ordinary dull teaching method is not enough for stimulating students’ spatial imagination capability, interest in learning, and cannot meet teachers’ teaching needs to explain complicated graphs relationships. In this paper, we design an interactive teaching system based on mobile augmented reality to improve the learning efficiency of Mechanical Drawing course. To check the effect of the proposed system, we carried out a case study of course teaching of Mechanical Drawing. The results demonstrate that the class for which interactive teaching system based on mobile augmented reality technology was adopted is significantly superior to the class for which the ordinary dull teaching approach was adopted with regard to the degree of proficiency of course key and difficult points content,spatial imagination capability, students’ interest in learning and study after class, especially in respect of students’ learning interest and spatial imagination capability.

  14. An augmented reality system for epidural anesthesia (AREA): prepuncture identification of vertebrae.

    Science.gov (United States)

    Al-Deen Ashab, Hussam; Lessoway, Victoria A; Khallaghi, Siavash; Cheng, Alexis; Rohling, Robert; Abolmaesumi, Purang

    2013-09-01

    We propose an augmented reality system to identify lumbar vertebral levels to assist in spinal needle insertion for epidural anesthesia. These procedures require careful placement of a needle to ensure effective delivery of anesthetics and to avoid damaging sensitive tissue such as nerves. In this system, a trinocular camera tracks an ultrasound transducer during the acquisition of a sequence of B-mode images. The system generates an ultrasound panorama image of the lumbar spine, automatically identifies the lumbar levels in the panorama image, and overlays the identified levels on a live camera view of the patient's back. Validation is performed to test the accuracy of panorama generation, lumbar level identification, overall system accuracy, and the effect of changes in the curvature of the spine during the examination. The results from 17 subjects demonstrate the feasibility and capability of achieving an error within clinically acceptable range for epidural anaesthesia.

  15. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  16. A lightweight augmented virtuality system for providing a faithful and spatially manipulable visual hand representation.

    Science.gov (United States)

    Pusch, Andreas; Martin, Olivier; Coquillart, Sabine

    2011-01-01

    This paper introduces the technical foundations of a system designed to embed a lightweight, faithful and spatially manipulable representation of the user's hand into an otherwise virtual world - Augmented Virtuality (AV). A highly intuitive control during pointing-like near space interaction can be provided to the user, as well as a very flexible means to experimenters, in a variety of non-medical and medical contexts. Our approach essentially relies on stereoscopic video see-through Augmented Reality (AR) technology and a generic, extendible framework for managing 3-D visual hand displacements. Research from human-computer interaction, perception and motor control has contributed to the elaboration of our proposal which combines a) acting in co-location, b) avoiding occlusion violations by assuring a correct scene depth ordering and c) providing a convincing visual feedback of the user's hand. We further present two cases in which this system has already successfully been used and then outline some other applications that we think are promising, for instance, in the fields of neuromotor rehabilitation and experimental neuroscience.

  17. A Real-Time Augmented Reality System to See-Through Cars.

    Science.gov (United States)

    Rameau, Francois; Ha, Hyowon; Joo, Kyungdon; Choi, Jinsoo; Park, Kibaek; Kweon, In So

    2016-11-01

    One of the most hazardous driving scenario is the overtaking of a slower vehicle, indeed, in this case the front vehicle (being overtaken) can occlude an important part of the field of view of the rear vehicle's driver. This lack of visibility is the most probable cause of accidents in this context. Recent research works tend to prove that augmented reality applied to assisted driving can significantly reduce the risk of accidents. In this paper, we present a real-time marker-less system to see through cars. For this purpose, two cars are equipped with cameras and an appropriate wireless communication system. The stereo vision system mounted on the front car allows to create a sparse 3D map of the environment where the rear car can be localized. Using this inter-car pose estimation, a synthetic image is generated to overcome the occlusion and to create a seamless see-through effect which preserves the structure of the scene.

  18. Stereoscopic Augmented Reality System for Supervised Training on Minimal Invasive Surgery Robots

    DEFF Research Database (Denmark)

    Matu, Florin-Octavian; Thøgersen, Mikkel; Galsgaard, Bo

    2014-01-01

    Training in the use of robot-assisted surgery systems is necessary before a surgeon is able to perform procedures using these systems because the setup is very different from manual procedures. In addition, surgery robots are highly expensive to both acquire and maintain --- thereby entailing...... the need for efficient training. When training with the robot, the communication between the trainer and the trainee is limited, since the trainee often cannot see the trainer. To overcome this issue, this paper proposes an Augmented Reality (AR) system where the trainer is controlling two virtual robotic...... arms. These arms are virtually superimposed on the video feed to the trainee, and can therefore be used to demonstrate and perform various tasks for the trainee. Furthermore, the trainer is presented with a 3D image through a stereoscopic display. Because of the added depth perception, this enables...

  19. Jedi training: playful evaluation of head-mounted augmented reality display systems

    Science.gov (United States)

    Ozbek, Christopher S.; Giesler, Bjorn; Dillmann, Ruediger

    2004-05-01

    A fundamental decision in building augmented reality (AR) systems is how to accomplish the combining of the real and virtual worlds. Nowadays this key-question boils down to the two alternatives video-see-through (VST) vs. optical-see-through (OST). Both systems have advantages and disadvantages in areas like production-simplicity, resolution, flexibility in composition strategies, field of view etc. To provide additional decision criteria for high dexterity, accuracy tasks and subjective user-acceptance a gaming environment was programmed that allowed good evaluation of hand-eye coordination, and that was inspired by the Star Wars movies. During an experimentation session with more than thirty participants a preference for optical-see-through glasses in conjunction with infra-red-tracking was found. Especially the high-computational demand for video-capture, processing and the resulting drop in frame rate emerged as a key-weakness of the VST-system.

  20. Quantitative analysis of transformed ray transferences of optical systems in a space of augmented Hamiltonian matrices*

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2007-01-01

    Full Text Available There is a need for methods for quantitative analysis of the first-order optical character of optical systems including the eye and components of the eye.  Because of their symplectic nature ray transferences themselves are not closed under addition and multiplication by ascalar and, hence, are not amenable to conventional quantitative analysis such as the calculation of an arithmetic mean.  However transferences can be transformed into augmented Hamiltonian matrices which are amenable to such analysis.  This paper provides a general methodology and in particular shows how to calculate means and variance-covariances representing the first-order optical character of optical systems.  The systems may be astigmatic and may have decentred elements.  An accompanying paper shows application to the cornea of the human eye with allowance for thickness.

  1. Vertebral augmentation treatment of painful osteoporotic compression fractures with the Kiva VCF Treatment System

    Science.gov (United States)

    Olivarez, Luis M. Rosales; Dipp, Juan M.; Escamilla, Ricardo Flores; Bajares, Guillermo; Perez, Alejandro; Stubbs, Harrison A.; Block, Jon E.

    2011-01-01

    Background Vertebral compression fractures (VCFs) can cause significant pain and functional impairment, and their cumulative effect can lead to progressive morbidity. This single-arm, prospective feasibility trial, conducted at 4 clinical sites, was undertaken to evaluate the clinical outcomes associated with the use of an innovative vertebral augmentation device, the Kiva VCF Treatment System (Benvenue Medical, Santa Clara, California), in the management of symptomatic VCFs associated with osteoporosis. Methods Vertebral augmentation treatment was performed for persistent back pain symptoms in 57 patients (mean age, 71.9 ± 10.4 years), including 46 women, with radiologically confirmed VCFs; 36 of these patients (63%) had reached 12 months of follow-up at this data analysis. There were 51 one-level cases, 5 two-level cases, and 1 three-level case, representing 64 treated levels. Back pain severity and condition-specific functional impairment were evaluated with a standard 100-mm visual analog scale and the Oswestry Disability Index (ODI), respectively, before device implantation as well as at 6 weeks, 3 months, and 12 months. Results Marked clinical improvements were realized in back pain severity and functional impairment through 12 months of follow-up. The mean back pain score on the visual analog scale improved from 79.3 ± 17.2 before treatment to 21.9 ± 21.3, 21.9 ± 24.6, and 23.2 ± 23.3 at 6 weeks, 3 months, and 12 months, respectively. The mean decrease at 12 months was 49.9 ± 30.3 mm, or approximately 66% (P < .0001). Similarly, the mean ODI score improved from 68.1% ± 16.9% before treatment to 27.4% ± 17.2%, 23.8% ± 18.7%, and 23.3% ± 15.5% at 6 weeks, 3 months, and 12 months, respectively, representing a mean change of 39.2 ± 19.6 percentage points, or approximately 63%, at 12 months. Overall clinical success rates based on a 30% improvement in pain severity or greater and maintenance or improvement in the ODI were 91%, 88%, and 89% at 6 weeks

  2. Vertebral augmentation treatment of painful osteoporotic compression fractures with the Kiva VCF Treatment System.

    Science.gov (United States)

    Olivarez, Luis M Rosales; Dipp, Juan M; Escamilla, Ricardo Flores; Bajares, Guillermo; Perez, Alejandro; Stubbs, Harrison A; Block, Jon E

    2011-01-01

    Vertebral compression fractures (VCFs) can cause significant pain and functional impairment, and their cumulative effect can lead to progressive morbidity. This single-arm, prospective feasibility trial, conducted at 4 clinical sites, was undertaken to evaluate the clinical outcomes associated with the use of an innovative vertebral augmentation device, the Kiva VCF Treatment System (Benvenue Medical, Santa Clara, California), in the management of symptomatic VCFs associated with osteoporosis. Vertebral augmentation treatment was performed for persistent back pain symptoms in 57 patients (mean age, 71.9 ± 10.4 years), including 46 women, with radiologically confirmed VCFs; 36 of these patients (63%) had reached 12 months of follow-up at this data analysis. There were 51 one-level cases, 5 two-level cases, and 1 three-level case, representing 64 treated levels. Back pain severity and condition-specific functional impairment were evaluated with a standard 100-mm visual analog scale and the Oswestry Disability Index (ODI), respectively, before device implantation as well as at 6 weeks, 3 months, and 12 months. Marked clinical improvements were realized in back pain severity and functional impairment through 12 months of follow-up. The mean back pain score on the visual analog scale improved from 79.3 ± 17.2 before treatment to 21.9 ± 21.3, 21.9 ± 24.6, and 23.2 ± 23.3 at 6 weeks, 3 months, and 12 months, respectively. The mean decrease at 12 months was 49.9 ± 30.3 mm, or approximately 66% (P < .0001). Similarly, the mean ODI score improved from 68.1% ± 16.9% before treatment to 27.4% ± 17.2%, 23.8% ± 18.7%, and 23.3% ± 15.5% at 6 weeks, 3 months, and 12 months, respectively, representing a mean change of 39.2 ± 19.6 percentage points, or approximately 63%, at 12 months. Overall clinical success rates based on a 30% improvement in pain severity or greater and maintenance or improvement in the ODI were 91%, 88%, and 89% at 6 weeks, 3 months, and 12 months

  3. The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality.

    Science.gov (United States)

    Watanabe, Eiju; Satoh, Makoto; Konno, Takehiko; Hirai, Masahiro; Yamaguchi, Takashi

    2016-03-01

    The neuronavigator has become indispensable for brain surgery and works in the manner of point-to-point navigation. Because the positional information is indicated on a personal computer (PC) monitor, surgeons are required to rotate the dimension of the magnetic resonance imaging/computed tomography scans to match the surgical field. In addition, they must frequently alternate their gaze between the surgical field and the PC monitor. To overcome these difficulties, we developed an augmented reality-based navigation system with whole-operation-room tracking. A tablet PC is used for visualization. The patient's head is captured by the back-face camera of the tablet. Three-dimensional images of intracranial structures are extracted from magnetic resonance imaging/computed tomography and are superimposed on the video image of the head. When viewed from various directions around the head, intracranial structures are displayed with corresponding angles as viewed from the camera direction, thus giving the surgeon the sensation of seeing through the head. Whole-operation-room tracking is realized using a VICON tracking system with 6 cameras. A phantom study showed a spatial resolution of about 1 mm. The present system was evaluated in 6 patients who underwent tumor resection surgery, and we showed that the system is useful for planning skin incisions as well as craniotomy and the localization of superficial tumors. The main advantage of the present system is that it achieves volumetric navigation in contrast to conventional point-to-point navigation. It extends augmented reality images directly onto real surgical images, thus helping the surgeon to integrate these 2 dimensions intuitively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  5. Coronary Heart Disease Preoperative Gesture Interactive Diagnostic System Based on Augmented Reality.

    Science.gov (United States)

    Zou, Yi-Bo; Chen, Yi-Min; Gao, Ming-Ke; Liu, Quan; Jiang, Si-Yu; Lu, Jia-Hui; Huang, Chen; Li, Ze-Yu; Zhang, Dian-Hua

    2017-08-01

    Coronary heart disease preoperative diagnosis plays an important role in the treatment of vascular interventional surgery. Actually, most doctors are used to diagnosing the position of the vascular stenosis and then empirically estimating vascular stenosis by selective coronary angiography images instead of using mouse, keyboard and computer during preoperative diagnosis. The invasive diagnostic modality is short of intuitive and natural interaction and the results are not accurate enough. Aiming at above problems, the coronary heart disease preoperative gesture interactive diagnostic system based on Augmented Reality is proposed. The system uses Leap Motion Controller to capture hand gesture video sequences and extract the features which that are the position and orientation vector of the gesture motion trajectory and the change of the hand shape. The training planet is determined by K-means algorithm and then the effect of gesture training is improved by multi-features and multi-observation sequences for gesture training. The reusability of gesture is improved by establishing the state transition model. The algorithm efficiency is improved by gesture prejudgment which is used by threshold discriminating before recognition. The integrity of the trajectory is preserved and the gesture motion space is extended by employing space rotation transformation of gesture manipulation plane. Ultimately, the gesture recognition based on SRT-HMM is realized. The diagnosis and measurement of the vascular stenosis are intuitively and naturally realized by operating and measuring the coronary artery model with augmented reality and gesture interaction techniques. All of the gesture recognition experiments show the distinguish ability and generalization ability of the algorithm and gesture interaction experiments prove the availability and reliability of the system.

  6. Development and evaluation of temporary placement and conveyance operation simulation system using augmented reality

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Weida; Aoyama, Shuhei; Ishii, Hirotake; Shimoda, Hiroshi [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Sang, Tran T.; Inge, Solhang Lars [AR Lab, Halden (Norway); Lygren, Toppe Aleksander; Terje, Johnsen [Institute for Energy Technolog, Halden (Norway); Izumi, Masanori [Fugen Decommissioning Engineering Center, Japan Atomic Energy Agency, Fukui (Japan)

    2012-06-15

    When decommissioning a nuclear power plant, it is difficult to make an appropriate plan to ensure sufficient space for temporary placement and conveyance operations of dismantling targets. This paper describes a system to support temporary placement and conveyance operations using augmented reality (AR). The system employs a laser range scanner to measure the three-dimensional (3D) information of the environment and a dismantling target to produce 3D surface polygon models. Then, the operator simulates temporary placement and conveyance operations using the system by manipulating the obtained 3D model of the dismantling target in the work field. Referring to the obtained 3D model of the environment, a possible collision between the dismantling target and the environment is detectable. Using AR, the collision position is presented intuitively. After field workers evaluated this system, the authors concluded that the system is feasible and acceptable to verify whether spaces for passage and temporary storage are sufficient for temporary placement and conveyance operations. For practical use in the future, some new functions must be added to improve the system. For example, it must be possible for multiple workers to use the system simultaneously by sharing the view of dismantling work.

  7. Usability of a real-time tracked augmented reality display system in musculoskeletal injections

    Science.gov (United States)

    Baum, Zachary; Ungi, Tamas; Lasso, Andras; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Image-guided needle interventions are seldom performed with augmented reality guidance in clinical practice due to many workspace and usability restrictions. We propose a real-time optically tracked image overlay system to make image-guided musculoskeletal injections more efficient and assess its usability in a bed-side clinical environment. METHODS: An image overlay system consisting of an optically tracked viewbox, tablet computer, and semitransparent mirror allows users to navigate scanned patient volumetric images in real-time using software built on the open-source 3D Slicer application platform. A series of experiments were conducted to evaluate the latency and screen refresh rate of the system using different image resolutions. To assess the usability of the system and software, five medical professionals were asked to navigate patient images while using the overlay and completed a questionnaire to assess the system. RESULTS: In assessing the latency of the system with scanned images of varying size, screen refresh rates were approximately 5 FPS. The study showed that participants found using the image overlay system easy, and found the table-mounted system was significantly more usable and effective than the handheld system. CONCLUSION: It was determined that the system performs comparably with scanned images of varying size when assessing the latency of the system. During our usability study, participants preferred the table-mounted system over the handheld. The participants also felt that the system itself was simple to use and understand. With these results, the image overlay system shows promise for use in a clinical environment.

  8. Applying Augmented Reality to a Mobile-Assisted Learning System for Martial Arts Using Kinect Motion Capture

    Science.gov (United States)

    Hsu, Wen-Chun; Shih, Ju-Ling

    2016-01-01

    In this study, to learn the routine of Tantui, a branch of martial arts was taken as an object of research. Fitts' stages of motor learning and augmented reality (AR) were applied to a 3D mobile-assisted learning system for martial arts, which was characterized by free viewing angles. With the new system, learners could rotate the viewing angle of…

  9. A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial Lox-augmented NTR Propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; Mcilwain, Mel C.

    1994-01-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on

  10. An Application of Augmented Reality for Teaching Modeling of Structural Systems

    Directory of Open Access Journals (Sweden)

    Claudia Susie Camargo Rodrigues

    2010-10-01

    Full Text Available Many studies have shown that students learn best when a variety of teaching techniques are used, and that some students respond best to certain methods. Based on this, the use of computers in classroom is more and more stimulated and many applications of computational techniques are being developed as educational tools, with the aim of providing a vast field of learning experiences for the students. One of the most difficult pedagogical problems in architectural education is the interface between structural and architectural design issues. This paper presents an Augmented Reality application implemented as a teaching tool in the Faculty of Architecture and Urbanism at Federal University of Rio de Janeiro (UFRJ, to introduce the novice students to the study of structural systems, in a pleasant manner suitable for the architecture student profile.

  11. Application of augmented reality to the industrial systems for signalisation of emergency situations

    Science.gov (United States)

    Holejko, K.; Nowak, R.; Czarnecki, T.; Dzwiarek, M.

    2006-03-01

    One of the important measures to prevent undesired events consists in informing a machine operator about the appearance of a hazardous situation quickly and effectively enough. In order to conduct the investigations into possibilities of application of the Augmented Reality systems assigned for drawing the operator's attention to the hazards appearing at the workstation, two special test stands have been developed. For that purpose special glasses applying commonly available safety glasses have been designed for generation of warning signals. Red luminescent diodes were employed for generation of virtual images formed by means of diaphragms, which shaped it and supplied with additional inscriptions. The initial perception tests of the warning signals generated using the AG technique that were performed have proved that these signals can successfully serve as a warning to the machine or device operator against an impending hazardous event.

  12. Variables influencing perceptions of the communicative competence of an adult augmentative and alternative communication system user.

    Science.gov (United States)

    Bedrosian, J L; Hoag, L A; Calculator, S N; Molineux, B

    1992-10-01

    The effects of aided message length, partner reauditorization, and observer background on perceptions of the communicative competence of an adult augmentative and alternative communication (AAC) system user were examined. Two groups of subjects participated: naive adults with minimal exposure to nonspeaking persons, and speech-language pathologists currently working with AAC users. Four scripted videotaped conversational conditions involving an AAC user and a normally speaking partner were employed to manipulate aided message length and partner reauditorization. A balanced incomplete block design was used. Following each viewing, subjects completed a questionnaire designed to assess the communicative competence of the AAC user. Results indicated a significant interaction effect involving subject group and aided message length. The speech-language pathologists were affected by aided message length. Furthermore, significant differences between subject groups were found in specific conditions. Future research directions are discussed.

  13. Endoscopic navigation system with extended field of view using augmented reality technology.

    Science.gov (United States)

    Bong, Jae Hwan; Song, Hyun-Jong; Oh, Yoojin; Park, Namji; Kim, Hyungmin; Park, Shinsuk

    2017-12-28

    While endoscopic skull base surgery (ESBS) has emerged as an alternative surgical option, the limited field of view of the endoscope may lead to the surgeon's fatigue and discomfort. The developed navigation system includes extended augmented reality (AR), which can provide an extended viewport to a conventional endoscopic view by overlaying 3D anatomical models generated from preoperative medical images onto endoscope images. To enhance the accuracy of the developed system, we adopted state-of-the-art endoscopic calibration and tracking techniques based on an optical tracking system. The mean spatial errors of AR was ~1 mm, which falls in the acceptable range of accuracy for ESBS. For the simulated surgical tasks with the developed system, the number and duration of error events were decreased. The results show that the human subject can perform the task more precisely and safely with the developed AR-based navigation system than with the conventional endoscopic system. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note.

    Science.gov (United States)

    Kawamata, Takakazu; Iseki, Hiroshi; Shibasaki, Takao; Hori, Tomokatsu

    2002-06-01

    Endoscopes have been commonly used in transsphenoidal surgery to treat pituitary tumors, to compensate for the narrow surgical field. Although many navigation systems have been introduced for neurosurgical procedures, there have been few reports of navigation systems for endoscopic operations. This report presents our recently developed, endoscopic, augmented reality (AR) navigation system. The technology is based on the principles of AR environment technology. The system consisted of a rigid endoscope with light-emitting diodes, an optical tracking system, and a controller. The operation of the optical tracking system was based on two sets of infrared light-emitting diodes, which measured the position and orientation of the endoscope relative to the patient's head. We used the system during endonasal transsphenoidal operations to treat pituitary tumors in 12 recent cases. Anatomic, "real," three-dimensional, virtual images of the tumor and nearby anatomic structures (including the internal carotid arteries, sphenoid sinuses, and optic nerves) were superimposed on real- time endoscopic live images. The system also indicated the positions and directions of the endoscope and the endoscopic beam in three-dimensional magnetic resonance imaging or computed tomographic planes. Furthermore, the colors of the wire-frame images of the tumor changed according to the distance between the tip of the endoscope and the tumor. These features were superior to those of conventional navigation systems, which are available only for operating microscopes. The endoscopic AR navigation system allows surgeons to perform accurate, safe, endoscope-assisted operations to treat pituitary tumors; it is particularly useful for reoperations, in which midline landmarks may be absent. We consider the AR navigation system to be a promising tool for safe, minimally invasive, endonasal, transsphenoidal surgery to treat pituitary tumors.

  15. An augmented reality home-training system based on the mirror training and imagery approach.

    Science.gov (United States)

    Trojan, Jörg; Diers, Martin; Fuchs, Xaver; Bach, Felix; Bekrater-Bodmann, Robin; Foell, Jens; Kamping, Sandra; Rance, Mariela; Maaß, Heiko; Flor, Herta

    2014-09-01

    Mirror training and movement imagery have been demonstrated to be effective in treating several clinical conditions, such as phantom limb pain, stroke-induced hemiparesis, and complex regional pain syndrome. This article presents an augmented reality home-training system based on the mirror and imagery treatment approaches for hand training. A head-mounted display equipped with cameras captures one hand held in front of the body, mirrors this hand, and displays it in real time in a set of four different training tasks: (1) flexing fingers in a predefined sequence, (2) moving the hand into a posture fitting into a silhouette template, (3) driving a "Snake" video game with the index finger, and (4) grasping and moving a virtual ball. The system records task performance and transfers these data to a central server via the Internet, allowing monitoring of training progress. We evaluated the system by having 7 healthy participants train with it over the course of ten sessions of 15-min duration. No technical problems emerged during this time. Performance indicators showed that the system achieves a good balance between relatively easy and more challenging tasks and that participants improved significantly over the training sessions. This suggests that the system is well suited to maintain motivation in patients, especially when it is used for a prolonged period of time.

  16. Development of a Lunar-Phase Observation System Based on Augmented Reality and Mobile Learning Technologies

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2016-01-01

    Full Text Available Observing the lunar phase requires long-term involvement, and it is often obstructed by bad weather or tall buildings. In this study, a lunar-phase observation system is developed using the augmented reality (AR technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to help students observe and record lunar phases easily. By holding the mobile device towards the moon in the sky, the screen will show the virtual moon at the position of the real moon. The system allows the user to record the lunar phase, including its azimuth/elevation angles and the observation date and time. In addition, the system can shorten the learning process by setting different dates and times for observation, so it can solve the problem of being unable to observe and record lunar phases due to a bad weather or the moon appearing late in the night. Therefore, it is an effective tool for astronomy education in elementary and high schools. A teaching experiment has been conducted to analyze the learning effectiveness of the system and the results show that it is effective in learning the lunar concepts. The questionnaire results reveal that students considered the system easy to operate and it is useful in locating the moon and recording the lunar data.

  17. Improvement of registration accuracy of a handheld augmented reality system for urban landscape simulation

    Directory of Open Access Journals (Sweden)

    Tomohiro Fukuda

    2014-12-01

    Full Text Available The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR has been considered for use as a landscape simulation system in which a landscape assessment object created by 3D models is included in the present surroundings. With the use of this system, the time and the cost needed to perform a 3DCG modeling of present surroundings, which is a major issue in virtual reality, are drastically reduced. This research presents the development of a 3D map-oriented handheld AR system that achieves geometric consistency using a 3D map to obtain position data instead of GPS, which has low position information accuracy, particularly in urban areas. The new system also features a gyroscope sensor to obtain posture data and a video camera to capture live video of the present surroundings. All these components are mounted in a smartphone and can be used for urban landscape assessment. Registration accuracy is evaluated to simulate an urban landscape from a short- to a long-range scale. The latter involves a distance of approximately 2000 m. The developed AR system enables users to simulate a landscape from multiple and long-distance viewpoints simultaneously and to walk around the viewpoint fields using only a smartphone. This result is the tolerance level of landscape assessment. In conclusion, the proposed method is evaluated as feasible and effective.

  18. An Augmented γ-Spray System to Visualize Biological Effects for Human Body

    Science.gov (United States)

    Manabe, Seiya; Tenzou, Hideki; Kasuga, Takaaki; Iwakura, Yukiko; Johnston, Robert

    2017-09-01

    The purpose of this study was to develop a new educational system with an easy-to-use interface in order to support comprehension of the biological effects of radiation on the human body within a short period of time. A paint spray-gun was used as a gamma rays source mock-up for the system. The application screen shows the figure of a human body for radiation deposition using the γ-Sprayer, a virtual radiation source, as well as equivalent dosage and a panel for setting the irradiation conditions. While the learner stands in front of the PC monitor, the virtual radiation source is used to deposit radiation on the graphic of the human body that is displayed. Tissue damage is calculated using an interpolation method from the data calculated by the PHITS simulation code in advance while the learner is pulling the trigger with respect to the irradiation time, incident position, and distance from the screen. It was confirmed that the damage was well represented by the interpolation method. The augmented ?-Spray system was assessed by questionnaire. Pre-post questionnaire was taken for our 41 students in National Institute of Technology, Kagawa College. It was also confirmed that the system has a capability of teaching the basic radiation protection concept, quantitative feeling of the radiation dose, and the biological effects

  19. A system for context-aware intraoperative augmented reality in dental implant surgery.

    Science.gov (United States)

    Katić, Darko; Spengler, Patrick; Bodenstedt, Sebastian; Castrillon-Oberndorfer, Gregor; Seeberger, Robin; Hoffmann, Juergen; Dillmann, Ruediger; Speidel, Stefanie

    2015-01-01

    Large volumes of information in the OR are ignored by surgeons when the amount outpaces human mental processing abilities. We developed an augmented reality (AR) system for dental implant surgery that acts as an automatic information filter, selectively displaying only relevant information. The purpose is to reduce information overflow and offer intuitive image guidance. The system was evaluated in a pig cadaver experiment. Information filtering is implemented via rule-based situation interpretation with description logics. The interpretation is based on intraoperative distances measurement between anatomical structures and the dental drill with optical tracking. For AR, a head-mounted display is used, which was calibrated with a novel method based on SPAAM. To adapt to surgeon specific preferences, we offer two alternative display formats: one with static and another with contact analog AR. The system made the surgery easier and showed ergonomical benefits, as assessed by a questionnaire. All relevant phases were recognized reliably. The new calibration showed significant improvements, while the deviation of the realized implants was <2.5 mm. The system allowed the surgeon to fully concentrate on the surgery itself. It offered greater flexibility since the surgeon received all relevant information, but was free to deviate from it. Accuracy of the realized implants remains an open issue and part of future work.

  20. An Augmented γ-Spray System to Visualize Biological Effects for Human Body

    Directory of Open Access Journals (Sweden)

    Manabe Seiya

    2017-01-01

    Full Text Available The purpose of this study was to develop a new educational system with an easy-to-use interface in order to support comprehension of the biological effects of radiation on the human body within a short period of time. A paint spray-gun was used as a gamma rays source mock-up for the system. The application screen shows the figure of a human body for radiation deposition using the γ-Sprayer, a virtual radiation source, as well as equivalent dosage and a panel for setting the irradiation conditions. While the learner stands in front of the PC monitor, the virtual radiation source is used to deposit radiation on the graphic of the human body that is displayed. Tissue damage is calculated using an interpolation method from the data calculated by the PHITS simulation code in advance while the learner is pulling the trigger with respect to the irradiation time, incident position, and distance from the screen. It was confirmed that the damage was well represented by the interpolation method. The augmented ?-Spray system was assessed by questionnaire. Pre-post questionnaire was taken for our 41 students in National Institute of Technology, Kagawa College. It was also confirmed that the system has a capability of teaching the basic radiation protection concept, quantitative feeling of the radiation dose, and the biological effects

  1. Implementation of a mobile peer assessment system with augmented reality in a fundamental design course

    Directory of Open Access Journals (Sweden)

    Kuo-Hung Chao

    2014-06-01

    Full Text Available This study proposes a framework that incorporates mobile peer assessment and augmented reality (AR technology to enhance interaction and learning effectiveness. According to the framework, a mobile AR peer assessment system has been developed to facilitate students to improve work interpretation, frequently interact with peers, represent their thinking and reflect upon their own works anytime anywhere. Moreover, the mobile AR technology provides personalized and location-based adaptive contents that enable individual students to interact with the mixed reality environment and observe how works are possibly applied to the real world in the future. In a fundamental design course, students used the system to acquire sufficient information in indoor and outdoor situations and mark peers’ work accurately based on appropriate assessment criteria. The experimental results showed that the system really assisted students in acquiring useful information, proposing their viewpoints, and further fostering critical thinking skills and reflection. During the process of interviews, most students made positive responses and provided meaningful suggestions. The system allows students to concentrate on observing and understanding the relative explanation and representation of works within a combined real–virtual environment and apply appropriate assessment criteria that produce sufficient assessment results to mark peers’ works. Rich feedback can encourage students to reflect upon their own works and improve the quality of their works.

  2. FEATURE RECOGNITION BERBASIS CORNER DETECTION DENGAN METODE FAST, SURF DAN FLANN TREE UNTUK IDENTIFIKASI LOGO PADA AUGMENTED REALITY MOBILE SYSTEM

    OpenAIRE

    Rastri Prathivi

    2014-01-01

    Logo is a graphical symbol that is the identity of an organization, institution, or company. Logo is generally used to introduce to the public the existence of an organization, institution, or company. Through the existence of an agency logo can be seen by the public. Feature recognition is one of the processes that exist within an augmented reality system. One of uses augmented reality is able to recognize the identity of the logo through a camera.The first step to make a process of feature ...

  3. Feasibility of an Autism-Focused Augmented Reality Smartglasses System for Social Communication and Behavioral Coaching.

    Science.gov (United States)

    Liu, Runpeng; Salisbury, Joseph P; Vahabzadeh, Arshya; Sahin, Ned T

    2017-01-01

    Autism spectrum disorder (ASD) is a childhood-onset neurodevelopmental disorder with a rapidly rising prevalence, currently affecting 1 in 68 children, and over 3.5 million people in the United States. Current ASD interventions are primarily based on in-person behavioral therapies that are both costly and difficult to access. These interventions aim to address some of the fundamental deficits that clinically characterize ASD, including deficits in social communication, and the presence of stereotypies, and other autism-related behaviors. Current diagnostic and therapeutic approaches seldom rely on quantitative data measures of symptomatology, severity, or condition trajectory. Given the current situation, we report on the Brain Power System (BPS), a digital behavioral aid with quantitative data gathering and reporting features. The BPS includes customized smartglasses, providing targeted personalized coaching experiences through a family of gamified augmented-reality applications utilizing artificial intelligence. These applications provide children and adults with coaching for emotion recognition, face directed gaze, eye contact, and behavioral self-regulation. This preliminary case report, part of a larger set of upcoming research reports, explores the feasibility of the BPS to provide coaching in two boys with clinically diagnosed ASD, aged 8 and 9 years. The coaching intervention was found to be well tolerated and rated as being both engaging and fun. Both males could easily use the system, and no technical problems were noted. During the intervention, caregivers reported improved non-verbal communication, eye contact, and social engagement during the intervention. Both boys demonstrated decreased symptoms of ASD, as measured by the aberrant behavior checklist at 24-h post-intervention. Specifically, both cases demonstrated improvements in irritability, lethargy, stereotypy, hyperactivity/non-compliance, and inappropriate speech. Smartglasses using augmented

  4. Feasibility of an Autism-Focused Augmented Reality Smartglasses System for Social Communication and Behavioral Coaching

    Directory of Open Access Journals (Sweden)

    Runpeng Liu

    2017-06-01

    Full Text Available BackgroundAutism spectrum disorder (ASD is a childhood-onset neurodevelopmental disorder with a rapidly rising prevalence, currently affecting 1 in 68 children, and over 3.5 million people in the United States. Current ASD interventions are primarily based on in-person behavioral therapies that are both costly and difficult to access. These interventions aim to address some of the fundamental deficits that clinically characterize ASD, including deficits in social communication, and the presence of stereotypies, and other autism-related behaviors. Current diagnostic and therapeutic approaches seldom rely on quantitative data measures of symptomatology, severity, or condition trajectory.MethodsGiven the current situation, we report on the Brain Power System (BPS, a digital behavioral aid with quantitative data gathering and reporting features. The BPS includes customized smartglasses, providing targeted personalized coaching experiences through a family of gamified augmented-reality applications utilizing artificial intelligence. These applications provide children and adults with coaching for emotion recognition, face directed gaze, eye contact, and behavioral self-regulation. This preliminary case report, part of a larger set of upcoming research reports, explores the feasibility of the BPS to provide coaching in two boys with clinically diagnosed ASD, aged 8 and 9 years.ResultsThe coaching intervention was found to be well tolerated and rated as being both engaging and fun. Both males could easily use the system, and no technical problems were noted. During the intervention, caregivers reported improved non-verbal communication, eye contact, and social engagement during the intervention. Both boys demonstrated decreased symptoms of ASD, as measured by the aberrant behavior checklist at 24-h post-intervention. Specifically, both cases demonstrated improvements in irritability, lethargy, stereotypy, hyperactivity/non-compliance, and

  5. Weather Observers: A Manipulative Augmented Reality System for Weather Simulations at Home, in the Classroom, and at a Museum

    Science.gov (United States)

    Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chien-Yu; Wang, Yau-Zng

    2016-01-01

    This study focused on how to enhance the interactivity and usefulness of augmented reality (AR) by integrating manipulative interactive tools with a real-world environment. A manipulative AR (MAR) system, which included 3D interactive models and manipulative aids, was designed and developed to teach the unit "Understanding Weather" in a…

  6. An Augmented Reality-Based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities

    Science.gov (United States)

    Chiang, Tosti H. C.; Yang, Stephen J. H.; Hwang, Gwo-Jen

    2014-01-01

    In this study, an augmented reality-based mobile learning system is proposed for conducting inquiry-based learning activities. An experiment has been conducted to examine the effectiveness of the proposed approach in terms of learning achievements and motivations. The subjects were 57 fourth graders from two classes taught by the same teacher in…

  7. Augmented Reality for Art, Design and Cultural Heritage—System Design and Evaluation

    Directory of Open Access Journals (Sweden)

    Joachim Rotteveel

    2009-01-01

    Full Text Available This paper describes the design of an optical see-through head-mounted display (HMD system for Augmented Reality (AR. Our goals were to make virtual objects “perfectly” indistinguishable from real objects, wherever the user roams, and to find out to which extent imperfections are hindering applications in art and design. For AR, fast and accurate measuring of head motions is crucial. We made a head-pose tracker for the HMD that uses error-state Kalman filters to fuse data from an inertia tracker with data from a camera that tracks visual markers. This makes on-line head-pose based rendering of dynamic virtual content possible. We measured our system, and found that with an A4-sized marker viewed from >20∘ at 5 m distance with an SXGA camera (FOV 108∘, the RMS error in the tracker angle was <0.5∘ when moving the head slowly. Our Kalman filters suppressed the pose error due to camera delay, which is proportional to the angular and linear velocities, and the dynamic misalignment was comparable to the static misalignment. Applications of artists and designers lead to observations on the profitable use of our AR system. Their exhibitions at world-class museums showed that AR is a powerful tool for disclosing cultural heritage.

  8. Augmented Reality for Art, Design and Cultural Heritage—System Design and Evaluation

    Directory of Open Access Journals (Sweden)

    Rotteveel Joachim

    2009-01-01

    Full Text Available This paper describes the design of an optical see-through head-mounted display (HMD system for Augmented Reality (AR. Our goals were to make virtual objects "perfectly" indistinguishable from real objects, wherever the user roams, and to find out to which extent imperfections are hindering applications in art and design. For AR, fast and accurate measuring of head motions is crucial. We made a head-pose tracker for the HMD that uses error-state Kalman filters to fuse data from an inertia tracker with data from a camera that tracks visual markers. This makes on-line head-pose based rendering of dynamic virtual content possible. We measured our system, and found that with an A4-sized marker viewed from at 5 m distance with an SXGA camera (FOV , the RMS error in the tracker angle was when moving the head slowly. Our Kalman filters suppressed the pose error due to camera delay, which is proportional to the angular and linear velocities, and the dynamic misalignment was comparable to the static misalignment. Applications of artists and designers lead to observations on the profitable use of our AR system. Their exhibitions at world-class museums showed that AR is a powerful tool for disclosing cultural heritage.

  9. A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.

    Science.gov (United States)

    Zhang, Xinran; Chen, Guowen; Liao, Hongen

    2015-01-01

    Image guided surgery has been used in clinic to improve the surgery safety and accuracy. Augmented reality (AR) technique, which can provide intuitive image guidance, has been greatly evolved these years. As one promising approach of surgical AR systems, integral videography (IV) autostereoscopic image overlay has achieved accurate fusion of full parallax guidance into surgical scene. This paper describes an image enhanced high-accuracy IV overlay system. A flexible optical image enhancement system (IES) is designed to increase the resolution and quality of IV image. Furthermore, we introduce a novel IV rendering algorithm to promote the spatial accuracy with the consideration of distortion introduced by micro lens array. Preliminary experiments validated that the image accuracy and resolution are improved with the proposed methods. The resolution of the IV image could be promoted to 1 mm for a micro lens array with pitch of 2.32 mm and IES magnification value of 0.5. The relative deviation of accuracy in depth and lateral directions are -4.68 ± 0.83% and -9.01 ± 0.42%.

  10. An augmented reality system for patient-specific guidance of cardiac catheter ablation procedures.

    Science.gov (United States)

    De Buck, Stijn; Maes, Frederik; Ector, Joris; Bogaert, Jan; Dymarkowski, Steven; Heidbüchel, Hein; Suetens, Paul

    2005-11-01

    We present a system to assist in the treatment of cardiac arrhythmias by catheter ablation. A patient-specific three-dimensional (3-D) anatomical model, constructed from magnetic resonance images, is merged with fluoroscopic images in an augmented reality environment that enables the transfer of electrocardiography (ECG) measurements and cardiac activation times onto the model. Accurate mapping is realized through the combination of: a new calibration technique, adapted to catheter guided treatments; a visual matching registration technique, allowing the electrophysiologist to align the model with contrast-enhanced images; and the use of virtual catheters, which enable the annotation of multiple ECG measurements on the model. These annotations can be visualized by color coding on the patient model. We provide an accuracy analysis of each of these components independently. Based on simulation and experiments, we determined a segmentation error of 0.6 mm, a calibration error in the order of 1 mm and a target registration error of 1.04 +/- 0.45 mm. The system provides a 3-D visualization of the cardiac activation pattern which may facilitate and improve diagnosis and treatment of the arrhytmia. Because of its low cost and similar advantages we believe our approach can compete with existing commercial solutions, which rely on dedicated hardware and costly catheters. We provide qualitative results of the first clinical use of the system in 11 ablation procedures.

  11. A Real-Time Augmented Reality System for Industrial Tele-Training

    Science.gov (United States)

    Boulanger, Pierre; Georganas, Nicolas D.; Zhong, Xiaowei; Liu, Peiran

    2003-01-01

    Augmented Reality (AR) is a departure from standard virtual reality in a sense that it allows users to see computer generated virtual objects superimposed over the real world through the use of see-through head-mounted display. Users of such system can interact in the real/virtual world using additional information, such as 3D virtual models and instructions on how to perform these tasks in the form of video clips, annotations, speech instructions, and images. In this paper, we describe two prototypes of a collaborative industrial Tele-training system. The distributed aspect of this system will enables users on remote sites to collaborate on training tasks by sharing the view of the local user equipped with a wearable computer. The users can interactively manipulate virtual objects that substitute real objects allowing the trainee to try out and discuss the various tasks that needs to be performed. A new technique for identifying real world objects and estimating their coordinates in 3D space is introduced. The method is based on a computer vision technique capable of identifying and locating Binary Square Markers identifying each information stations. Experimental results are presented.

  12. An Human-Computer Interactive Augmented Reality System for Coronary Artery Diagnosis Planning and Training.

    Science.gov (United States)

    Li, Qiming; Huang, Chen; Lv, Shengqing; Li, Zeyu; Chen, Yimin; Ma, Lizhuang

    2017-09-02

    In order to let the doctor carry on the coronary artery diagnosis and preoperative planning in a more intuitive and more natural way, and to improve the training effect for interns, an augmented reality system for coronary artery diagnosis planning and training (ARS-CADPT) is designed and realized in this paper. At first, a 3D reconstruction algorithm based on computed tomographic (CT) images is proposed to model the coronary artery vessels (CAV). Secondly, the algorithms of static gesture recognition and dynamic gesture spotting and recognition are presented to realize the real-time and friendly human-computer interaction (HCI), which is the characteristic of ARS-CADPT. Thirdly, a Sort-First parallel rendering and splicing display subsystem is developed, which greatly expands the capacity of student users. The experimental results show that, with the use of ARS-CADPT, the reconstruction accuracy of CAV model is high, the HCI is natural and fluent, and the visual effect is good. In a word, the system fully meets the application requirement.

  13. Research Networking Systems: The State of Adoption at Institutions Aiming to Augment Translational Research Infrastructure

    Science.gov (United States)

    Obeid, Jihad S; Johnson, Layne M; Stallings, Sarah; Eichmann, David

    2015-01-01

    Fostering collaborations across multiple disciplines within and across institutional boundaries is becoming increasingly important with the growing emphasis on translational research. As a result, Research Networking Systems that facilitate discovery of potential collaborators have received significant attention by institutions aiming to augment their research infrastructure. We have conducted a survey to assess the state of adoption of these new tools at the Clinical and Translational Science Award (CTSA) funded institutions. Survey results demonstrate that most CTSA funded institutions have either already adopted or were planning to adopt one of several available research networking systems. Moreover a good number of these institutions have exposed or plan to expose the data on research expertise using linked open data, an established approach to semantic web services. Preliminary exploration of these publically-available data shows promising utility in assessing cross-institutional collaborations. Further adoption of these technologies and analysis of the data are needed, however, before their impact on cross-institutional collaboration in research can be appreciated and measured. PMID:26491707

  14. Information system technologies' role in augmenting dermatologists' knowledge of prescription medication costs.

    Science.gov (United States)

    DeMarco, Sebastian S; Paul, Ravi; Kilpatrick, Russell J

    2015-12-01

    Despite the recent rising costs of once affordable dermatologic prescription medications, a survey measuring dermatologists' attitudes, beliefs, and knowledge of the cost of drugs they commonly prescribe has not been conducted. Awareness of drug costs is hindered by a lack of access to data about the prices of medicines. No surveys of physicians have addressed this issue by proposing new information system technologies that augment prescription medication price transparency and measuring how receptive physicians are to using these novel solutions in their daily clinical practice. Our research aims to investigate these topics with a survey of physicians in dermatology. Members of the North Carolina Dermatology Association were contacted through their electronic mailing list and asked to take an online survey. The survey asked several questions about dermatologists' attitudes and beliefs about drug costs. To measure their knowledge of prescription medications, the National Average Drug Acquisition Cost was used as an authoritative price that was compared to the survey takers' price estimates of drugs commonly used in dermatology. Physicians' willingness to use four distinct information system technologies that increase drug price transparency was also assessed. Dermatologists believe drug costs are an important factor in patient care and believe access to price information would allow them to provide a higher quality of care. Dermatologists' knowledge of the costs of medicines they commonly prescribe is poor, but they want to utilize information system technologies that increase access to drug pricing information. There is an unmet demand for information system technologies which increase price transparency of medications in dermatology. Physicians and IT professionals have the opportunity to create novel information systems that can be utilized to help guide cost conscious clinical decision making. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. PME Augmentation to Isotopic Investigations Relevant to Origins of Solar Systems

    Science.gov (United States)

    Yin, Qing-zhu

    We propose to acquire a state-of-the-art, next generation, ultra high precision and high sensitivity thermal ionization mass spectrometer (TIMS) at the University of California, Davis (UC Davis) for isotope cosmochemistry research that is highly relevant to NASA's Origins of Solar Systems program. UC Davis will contribute 10% of the total budget (87,791) from the PI's start-up fund to share the cost of the proposed equipment. We request partial funding (790,118) from the Planetary Major Equipment program to cover the remaining cost of the instrument, as an augmentation to the existing science research award from the Origins of Solar Systems (OSS) program (NNX09AC93G) to the PI (Qing-Zhu Yin). The proposed instrument acquisition is vital to accomplish the research objectives outlined in the original OSS award (NNX09AC93G) and Cosmochemistry award (NNX08AG57G) to the PI. To ensure investigator access to and further development of new techniques that expand our research goals, the PI needs a TIMS as an Investigator Instrument (using NASA terminology). The University of California, Davis is fully committed to supporting isotope geochemistry and cosmochemistry research, as manifested through the promotion of the PI as a tenured faculty member effective July 1, 2008, providing the matching funds for cost sharing of the proposed instrument purchase, and a class-100 clean lab space (640 square feet) for sample handling in the new Earth and Physical Sciences building. The proposed acquisition is highly relevant to the scope of NASA's Origins of Solar Systems program: i.e., to conduct scientific investigations related to understanding the formation and early evolution of planetary systems in the area of analysis of primitive materials, solar nebular processes, star formation and its relationship to planetary system formations. The acquisition will help to generate new data and contribute to the development of new techniques that closely support NASA's activities for future

  16. Augmented Reality System for Ultrasound Guidance of Transcatheter Aortic Valve Implantation.

    Science.gov (United States)

    Currie, Maria E; McLeod, A Jonathan; Moore, John T; Chu, Michael W A; Patel, Rajni; Kiaii, Bob; Peters, Terry M

    2016-01-01

    Transcatheter aortic valve implantation (TAVI) relies on fluoroscopy and nephrotoxic contrast medium for valve deployment. We propose an alternative guidance system using augmented reality (AR) and transesophageal echocardiography (TEE) to guide TAVI deployment. The goals of this study were to determine how consistently the aortic valve annulus is defined from TEE using different aortic valve landmarks and to compare AR guidance with fluoroscopic guidance of TAVI deployment in an aortic root model. Magnetic tracking sensors were integrated into the TAVI catheter and TEE probe, allowing these tools to be displayed in an AR environment. Variability in identifying aortic valve commissures and cuspal nadirs was assessed using TEE aortic root images. To compare AR guidance of TAVI deployment with fluoroscopic guidance, a TAVI stent was deployed 10 times in the aortic root model using each of the two guidance systems. Commissures and nadirs were both investigated as features for defining the valve annulus in the AR guidance system. The commissures were identified more consistently than the nadirs, with intraobserver variability of 2.2 and 3.8 mm, respectively, and interobserver variability of 3.3 and 4.7 mm, respectively. The precision of TAVI deployment using fluoroscopic guidance was 3.4 mm, whereas the precision of AR guidance was 2.9 mm, and its overall accuracy was 3.4 mm. This indicates that both have similar performance. Aortic valve commissures can be identified more reliably than cuspal nadirs from TEE. The AR guidance system achieved similar deployment accuracy to that of fluoroscopy while eliminating the use and consequences of nephrotoxic contrast and radiation.

  17. Performance analysis of IMU-augmented GNSS tracking systems for space launch vehicles

    Science.gov (United States)

    Braun, Benjamin; Markgraf, Markus; Montenbruck, Oliver

    2016-06-01

    European space launch operators consider the potential of GNSS (global navigation satellite system) as a promising novel means of localization for the purpose of range safety of launch vehicles like Ariane and Vega, since it is expected that recurring costs are lower and accuracy is higher than currently existing systems like radar tracking. Range safety requires continuous information about the position and velocity of the launch vehicle to quickly detect the occurrence of catastrophic events. However, GNSS outages due, for example, to high jerks at fairing and stage jettisons or other external interferences like (un-)intentional jamming cannot be precluded. The OCAM-G experiment on Ariane 5 flight VA219 has provided evidence that GNSS is capable of providing a highly accurate position and velocity solution during most of the flight, but that outages of several seconds do occur. To increase the continuity of a GNSS-based localization system, it is proposed that the GNSS receiver is augmented by an inertial measurement unit (IMU), which is able to output a position and velocity solution even during GNSS outages. Since these outages are expected to be short, a tactical- or even consumer-grade IMU is expected to be sufficient. In this paper, the minimum IMU performance that is required to bridge outages of up to 10 s, and thereby meeting the accuracy requirements of range safety, is determined by means of a thorough simulation study. The focus of the analysis is on current generation microelectromechanical system (MEMS)-based IMU, which is lightweight, low-cost, available commercially and has reached acceptable maturity in the last decade.

  18. Augmentative And Alternative Communication Systems For Post-Stroke Patients With Severe Communication And Motor Impairment

    Directory of Open Access Journals (Sweden)

    Talieh Zarifian

    2017-02-01

    Full Text Available Background and aims: Adults with acquired neurological disorders (stroke, Traumatic Brain Injury ... develop their verbal communication and literacy capabilities as typical speakers and writers. They use these skills to participate academically, vocationally, recreationally, and socially. Depending upon their neurological condition, they gradually or suddenly lose their speech or language capabilities and are required to rely on Augmentative and Alternative Communication (AAC systems to meet their communication needs. In addition to the loss of their spoken communication, the impact of their neurological condition on their participation patterns is potentially profound with reduced ability to care for themselves, a reduction or loss of employment, and usually a sudden or gradual restriction of their social networks. AAC is an umbrella term that encompasses the communication methods used to supplement or replace speech or writing for those with impairments in the production or comprehension of spoken or written language. During the past five decades, AAC technologies have been developed to compensate for these natural communication losses.      Stroke is one of the main causes of disability in the world. About 20% of stroke patients experience aphasia, with 20-30% of these individuals exhibiting severe communication deficits for at least a portion of their recovery period. Augmentative and Alternative Communication (AAC encompasses the communication methods used to supplement or replace speech or writing for those with impairments in the production of spoken or written language.  Specifically designed Human Computer Interfaces (HCI, as an assistive technology, provides new channels of communication for patients with aphasia, dysarthria, and dyspraxia, when accompanied by movement impairments.       In this workshop after stating a science review of the following types of issues: AAC acceptance (individually, culturally; AAC availability

  19. LINX(™) Reflux Management System: magnetic sphincter augmentation in the treatment of gastroesophageal reflux disease.

    Science.gov (United States)

    Bonavina, Luigi; DeMeester, Tom R; Ganz, Robert A

    2012-12-01

    Gastroesophageal reflux disease (GERD), commonly manifested by heartburn or regurgitation, is a chronic, progressive condition in which failed sphincter function allows the contents of the stomach to reflux into the esophagus, the airways and the mouth. Chronic GERD affects 10% of Western society. The majority of patients receive adequate relief from proton pump inhibitors, but up to 40% have incomplete relief of symptoms that cannot be addressed by increasing the dose of medications. The laparoscopic Nissen fundoplication is the surgical gold standard; however, the level of technical difficulty and its side effects have limited its use to less than 1% of the GERD population. These factors have contributed to the propensity of patients to persist with medical therapy, even when inadequate to control symptoms and complications of the disease. Consequently, a significant gap in the treatment continuum for GERD remains evident in current clinical practice. The LINX(™) Reflux Management System (Torax Medical) is designed to provide a permanent solution to GERD by augmenting the physiologic function of the sphincter barrier with a simple and reproducible laparoscopic procedure that does not alter gastric anatomy and can be easily reversed if necessary.

  20. Parallel Implementation of the Projector Augmented Plane Wave Method for Charged Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bylaska, Eric J.; Valiev, Marat; Kawai, Ryochi; Weare, John H.

    2002-03-01

    The parallel implementation of the projector augmented plane wave (PAW) method with the applications to several transition metal complexes is presented. A unique aspect of our PAW code is that it can treat both charged and neutral cluster systems. We discuss how this can be achieved via accurate numerical treatment of the Coulomb Greens function with free space boundary conditions. The strategy for parallelizing of the PAW code is based on distributing the plane wave basis across processors. This is a most versatile approach and is easily implemented using a parallel three-dimensional Fast Fourier Trasformation (FFT). We report parallel performance analysis of our program as well as three-dimensional FFT's and discuss large-scale parallelization issues of the PAW code. Using a series of transition metal monoxides and dioxides, as well as two iron aqueous complexes, it is shown that a free space PAW code can give structural parameters and energies in good agreement with more traditional Gaussian based methods. PACS-1996 number(s): 71.15.a, 71.15.H, 71.15.p, 41.20.C

  1. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.

    Science.gov (United States)

    Maisto, Maurizio; Pacchierotti, Claudio; Chinello, Francesco; Salvietti, Gionata; De Luca, Alessandro; Prattichizzo, Domenico

    2017-01-01

    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games "Pokémon GO" and "Ingress" or the Google Translate real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects without constraining the motion or the workspace of the user. In this paper, we present the experimental evaluation of two wearable haptic interfaces for the fingers in three AR scenarios, enrolling 38 participants. In the first experiment, subjects were requested to write on a virtual board using a real chalk. The haptic devices provided the interaction forces between the chalk and the board. In the second experiment, subjects were asked to pick and place virtual and real objects. The haptic devices provided the interaction forces due to the weight of the virtual objects. In the third experiment, subjects were asked to balance a virtual sphere on a real cardboard. The haptic devices provided the interaction forces due to the weight of the virtual sphere rolling on the cardboard. Providing haptic feedback through the considered wearable device significantly improved the performance of all the considered tasks. Moreover, subjects significantly preferred conditions providing wearable haptic feedback.

  2. AUGMENTED REALITY

    DEFF Research Database (Denmark)

    Skov, Kirsten; Bahn, Anne Louise

    2017-01-01

    Projektets grundlæggende idé er udvikling af visuel, æstetisk læring med Augmented Reality, hvor intentionen er at bidrage med konkrete undersøgelser og udforskning af begrebet Augmented Reality – herunder koblingen mellem det analoge og digitale i forhold til læring, multimodalitet og it...

  3. Augmented Reality

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Kjeldsen, Lars Peter Bech; Rahn, Annette

    2015-01-01

    This chapter describes the use of iPad-facilitated application of augmented reality in the teaching of highly complex anatomical and physiological subjects in the training of nurses at undergraduate level. The general aim of the project is to investigate the potentials of this application in terms...... of augmented reality are discussed....

  4. Socket augmentation

    OpenAIRE

    Shalu Chandna; Kimpreet Kaur; Navkiran Kaur; Anish Manocha

    2015-01-01

    Introduction of dental implants have come to the forefront of modern odontology. A successful osseointegration demands an ideal quantity and quality of alveolar bone. Socket augmentation techniques are effective in minimizing postextraction alveolar ridge resorption. The aim of this paper is to review the available literature on socket augmentation with special focus on its relation with implant.

  5. Socket augmentation

    Directory of Open Access Journals (Sweden)

    Shalu Chandna

    2015-01-01

    Full Text Available Introduction of dental implants have come to the forefront of modern odontology. A successful osseointegration demands an ideal quantity and quality of alveolar bone. Socket augmentation techniques are effective in minimizing postextraction alveolar ridge resorption. The aim of this paper is to review the available literature on socket augmentation with special focus on its relation with implant.

  6. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    Science.gov (United States)

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2017-06-01

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  7. An optoacoustic guide with augmented reality system towards precision breast conserving surgery (Conference Presentation)

    Science.gov (United States)

    Lan, Lu; Liu, Kaiming; Xia, Yan; Wu, Jiayingzi; Li, Rui; Wang, Pu; Han, Linda K.; Cheng, Ji-Xin

    2017-02-01

    Breast-conserving surgery is a well-accepted breast cancer treatment. However, it is still challenging for the surgeon to accurately localize the tumor during the surgery. Also, the guidance provided by current methods is 1 dimensional distance information, which is indirect and not intuitive. Therefore, it creates problems on a large re-excision rate, and a prolonged surgical time. To solve these problems, we have developed a fiber-delivered optoacoustic guide (OG), which mimics the traditional localization guide wire and is preoperatively placed into tumor mass, and an augmented reality (AR) system to provide real-time visualization on the location of the tumor with sub-millimeter variance. By a nano-composite light diffusion sphere and light absorbing layer formed on the tip of an optical fiber, the OG creates an omnidirectional acoustic source inside tumor mass under pulsed laser excitation. The optoacoustic signal generated has a high dynamic range ( 58dB) and spreads in a large apex angle of 320 degrees. Then, an acoustic radar with three ultrasound transducers is attached to the breast skin, and triangulates the location of the OG tip. With an AR system to sense the location of the acoustic radar, the relative position of the OG tip inside the tumor to the AR display is calculated and rendered. This provides direct visual feedback of the tumor location to surgeons, which will greatly ease the surgical planning during the operation and save surgical time. A proof-of-concept experiment using a tablet and a stereo-vision camera is demonstrated and 0.25 mm tracking variance is achieved.

  8. An optimized video system for augmented reality in endodontics: a feasibility study.

    Science.gov (United States)

    Bruellmann, D D; Tjaden, H; Schwanecke, U; Barth, P

    2013-03-01

    We propose an augmented reality system for the reliable detection of root canals in video sequences based on a k-nearest neighbor color classification and introduce a simple geometric criterion for teeth. The new software was implemented using C++, Qt, and the image processing library OpenCV. Teeth are detected in video images to restrict the segmentation of the root canal orifices by using a k-nearest neighbor algorithm. The location of the root canal orifices were determined using Euclidean distance-based image segmentation. A set of 126 human teeth with known and verified locations of the root canal orifices was used for evaluation. The software detects root canals orifices for automatic classification of the teeth in video images and stores location and size of the found structures. Overall 287 of 305 root canals were correctly detected. The overall sensitivity was about 94 %. Classification accuracy for molars ranged from 65.0 to 81.2 % and from 85.7 to 96.7 % for premolars. The realized software shows that observations made in anatomical studies can be exploited to automate real-time detection of root canal orifices and tooth classification with a software system. Automatic storage of location, size, and orientation of the found structures with this software can be used for future anatomical studies. Thus, statistical tables with canal locations will be derived, which can improve anatomical knowledge of the teeth to alleviate root canal detection in the future. For this purpose the software is freely available at: http://www.dental-imaging.zahnmedizin.uni-mainz.de/.

  9. Cognitive models applied to human effectiveness in national security environments (ergonomics of augmented cognition system design and application).

    Energy Technology Data Exchange (ETDEWEB)

    Ntuen, Celestine (North Carolina Agricultural and Technical State University, Greensboro, NC); Winchester, Woodrow III (North Carolina Agricultural and Technical State University, Greensboro, NC)

    2004-06-01

    In complex simulation systems where humans interact with computer-generated agents, information display and the interplay of virtual agents have become dominant media and modalities of interface design. This design strategy is reflected in augmented reality (AR), an environment where humans interact with computer-generated agents in real-time. AR systems can generate large amount of information, multiple solutions in less time, and perform far better in time-constrained problem solving. The capabilities of AR have been leveraged to augment cognition in human information processing. In this sort of augmented cognition (AC) work system, while technology has become the main source for information acquisition from the environment, the human sensory and memory capacities have failed to cope with the magnitude and scale of information they encounter. This situation generates opportunity for excessive cognitive workloads, a major factor in degraded human performance. From the human effectiveness point of view, research is needed to develop, model, and validate simulation tools that can measure the effectiveness of an AR technology used to support the amplification of human cognition. These tools will allow us to predict human performance for tasks executed under an AC tool construct. This paper presents an exploration of ergonomics issues relevant to AR and AC systems design. Additionally, proposed research to investigate those ergonomic issues is discussed.

  10. Augmented reality

    National Research Council Canada - National Science Library

    Patrik Pucer

    2011-01-01

    .... In such a mixed reality, real and virtual objects coexist in the same environment. The reality, where users watch and use the real environment upgraded with virtual objects is called augmented reality...

  11. Breast Augmentation

    Science.gov (United States)

    ... augmentation About Doctors & Departments Care at Mayo Clinic Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  12. An Augmented Lecture Feedback System to Support Learner and Teacher Communication

    Science.gov (United States)

    Zarraonandia, Telmo; Aedo, Ignacio; Diaz, Paloma; Montero, Alvaro

    2013-01-01

    In this paper, it is advocated that the feedback loop between learners and teachers could be improved by making use of augmented reality (AR) techniques. The bidirectional communication between teacher and learners is sometimes hampered by students' fear of showing themselves up in front of their classmates. In order to overcome this problem, a…

  13. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    Science.gov (United States)

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  14. Adaptive Augmented Reality: Plasticity of Augmentations

    OpenAIRE

    Ghouaiel, Nehla; Cieutat, Jean-Marc; JESSEL, Jean-Pierre

    2014-01-01

    International audience; An augmented reality system is used to complete the real world with virtual objects (computer generated) so they seem to coexist in the same space as the real world. The concept of plasticity [4][5] was first introduced for Human Computer Interaction (HCI). It denotes the ability of an HCI interface to fit the context of use defined by the user, the environment and the platform. We believe that plasticity is a very important notion in the domain of augmented reality. T...

  15. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  16. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  17. High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications

    National Research Council Canada - National Science Library

    Bae, Hyojoon; Golparvar-Fard, Mani; White, Jules

    2013-01-01

    ... devices.This paper presents a new vision-based mobile augmented reality system that allows field personnel to query and access 3D cyber-information on-site by using photographs taken from standard mobile devices...

  18. Augmented Reality on a C-Arm System: A Preclinical Assessment for Percutaneous Needle Localization.

    Science.gov (United States)

    Racadio, John M; Nachabe, Rami; Homan, Robert; Schierling, Ross; Racadio, Judy M; Babić, Draženko

    2016-10-01

    Purpose To compare the navigational accuracy and radiation dose during needle localization of targets for augmented reality (AR) with and without motion compensation (MC) versus those for cone-beam computed tomography (CT) with real-time fluoroscopy navigation in a pig model. Materials and Methods This study was approved by the Institutional Animal Care and Use Committee. Three operators each localized 15 targets (bone fragments) approximately 7 cm deep in the paraspinal muscles of nine Yorkshire pigs by using each of the three modalities (AR with and without MC and cone-beam CT with fluoroscopy). Target depth, accuracy (distance between needle tip and target), and radiation dose (dose-area product [DAP]) were recorded for each procedure. Correlation between accuracy and depth of target was assessed by using the Pearson correlation coefficient. Two-way analysis of variance was used for differentiating accuracy and DAPs across navigation techniques and operator backgrounds. Results There was no correlation between depth of target and accuracy. There was no significant difference in accuracy between modalities (mean distance, 3.0 mm ± 1.9 [standard deviation] for cone-beam CT with fluoroscopy, 2.5 mm ± 2.0 for AR, and 3.2 mm ± 2.7 for AR with MC [P = .33]). There was, however, a significant difference in fluoroscopy radiation dose (10.4 Gy · cm(2) ± 10.6 for cone-beam CT fluoroscopy, 2.3 Gy · cm(2) ± 2.4 for AR, and 3.3 Gy · cm(2) ± 4.6 for AR with MC [P < .05]) and therefore in total procedural radiation dose (20.5 Gy · cm(2) ± 13.4 for cone-beam CT fluoroscopy, 12.6 Gy · cm(2) ± 5.3 for AR, 13.6 Gy · cm(2) ± 7.4 for AR with MC [P < .05]). Conclusion Use of an AR C-arm system reduces radiation dose while maintaining navigational accuracy compared with cone-beam CT fluoroscopy during image-guided percutaneous needle placement in a pig model. (©) RSNA, 2016 Online supplemental material is available for this article.

  19. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  20. An Innovative Direct-Interaction-Enabled Augmented-Reality 3D System

    Directory of Open Access Journals (Sweden)

    Sheng-Hsiung Chang

    2013-01-01

    Full Text Available Previous augmented-reality (AR applications have required users to observe the integration of real and virtual images on a display. This study proposes a novel concept regarding AR applications. By integrating AR techniques with marker identification, virtual-image output, imaging, and image-interaction processes, this study rendered virtual images that can interact with predefined markers in a real three-dimensional (3D environment.

  1. Augmented reality

    Directory of Open Access Journals (Sweden)

    Patrik Pucer

    2011-08-01

    Full Text Available Today we can obtain in a simple and rapid way most of the information that we need. Devices, such as personal computers and mobile phones, enable access to information in different formats (written, pictorial, audio or video whenever and wherever. Daily we use and encounter information that can be seen as virtual objects or objects that are part of the virtual world of computers. Everyone, at least once, wanted to bring these virtual objects from the virtual world of computers into real environments and thus mix virtual and real worlds. In such a mixed reality, real and virtual objects coexist in the same environment. The reality, where users watch and use the real environment upgraded with virtual objects is called augmented reality. In this article we describe the main properties of augmented reality. In addition to the basic properties that define a reality as augmented reality, we present the various building elements (possible hardware and software that provide an insight into such a reality and practical applications of augmented reality. The applications are divided into three groups depending on the information and functions that augmented reality offers, such as help, guide and simulator.

  2. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    Science.gov (United States)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by

  3. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  4. Alternative and augmentative communication systems (AACS as an instrument for decreasing challenging behaviour to students with ASD: a case study

    Directory of Open Access Journals (Sweden)

    Rosa Mira Pastor

    2017-06-01

    Full Text Available An intervention based on the Benson Schaeffer’s Speak Signal Program, to provide an eight years old girl with Autism Spectrum Disorder (ASD with the Alternative and Augmentative Communication System (AACS is described. The intervention aims at promoting the use of signs to express her needs and through this achieve a decrease in challenging behaviors, mostly produced when trying to communicate. A qualitative single case study by objective methodology was used. The program was developed in the communication and language classroom of a public school for children in nursery and primary education in Valencia. Eight signs worked functionally in different contexts. Likewise, reduction of challenging behavior was evident.

  5. Control of uncertain systems by feedback linearization with neural networks augmentation. Part II. Controller validation by numerical simulation

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2010-09-01

    Full Text Available The paper was conceived in two parts. Part I, previously published in this journal, highlighted the main steps of adaptive output feedback control for non-affine uncertain systems, having a known relative degree. The main paradigm of this approach was the feedback linearization (dynamic inversion with neural network augmentation. Meanwhile, based on new contributions of the authors, a new paradigm, that of robust servomechanism problem solution, has been added to the controller architecture. The current Part II of the paper presents the validation of the controller hereby obtained by using the longitudinal channel of a hovering VTOL-type aircraft as mathematical model.

  6. Augmented Reality

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Radmer, Ole

    2017-01-01

    Artiklen præsenterer resultater fra pilotafprøvning i 7.-klasses fysik/kemi og biologi af to Augmented Reality (AR)-apps til naturfagsundervisning. Muligheder og udfordringer ved lærerens stilladsering af elevernes undersøgende samtale og modelleringskompetence er undersøgt med interview...

  7. Acceptable distortion and magnification of images on reflective surfaces in an augmented reality system

    Science.gov (United States)

    Yamamoto, Shoji; Hosokawa, Natsumi; Yokoya, Mayu; Tsumura, Norimichi

    2016-12-01

    In this paper, we investigated the consistency of visual perception for the change of reflection images in an augmented reality setting. Reflection images with distortion and magnification were generated by changing the capture position of the environment map. Observers evaluated the distortion and magnification in reflection images where the reflected objects were arranged symmetrically or asymmetrically. Our results confirmed that the observers' visual perception was more sensitive to changes in distortion than in magnification in the reflection images. Moreover, the asymmetrical arrangement of reflected objects effectively expands the acceptable range of distortion compared with the symmetrical arrangement.

  8. Method, apparatus, and system for utilizing augmented reality to improve surgery

    KAUST Repository

    Cali, Corrado

    2016-10-13

    A method, apparatus, and computer readable medium are provided for utilizing augmented reality visualization to assist surgery. An example method includes generating a three dimensional reconstruction of an image stack representing a target area of a patient, and superimposing, by a head-mounted display, a projection of the three dimensional reconstruction onto a field of view of a user. The method further includes maintaining alignment between the projection and the user\\'s actual view of the target area using a plurality of fiducial markers associated with the target area. In some embodiments, the method further includes scanning the target area to generate the image stack.

  9. Shifting the paradigm of music instruction: Implications of embodiment stemming from an augmented reality guitar learning system

    Directory of Open Access Journals (Sweden)

    Joseph Roland Keebler

    2014-05-01

    Full Text Available Musical instruction often includes materials that can act as a barrier to learning. New technologies using augmented reality may aid in reducing the initial difficulties involved in learning music by lowering these barriers characteristic of traditional instructional materials. Therefore, this set of studies examined a novel augmented reality guitar learning system (i.e., the Fretlight® guitar in regards to current theories of embodied music cognition. Specifically, we examined the effects of using this system in comparison to a standard instructional material (i.e. diagrams. First, we review major theories related to musical embodiment and specify a niche within this research space we call embodied music technology for learning. Following, we explicate two parallel experiments that were conducted to address the learning effects of this system. Experiment 1 examined short-term learning effects within one experimental session, while Experiment 2 examined both short-term and long-term effects across two sessions spaced at a two-week interval. Analyses demonstrated that, for many of our dependent variables, all participants increased in performance across time. Further, the Fretlight® condition consistently led to significantly better outcomes via interactive effects, including significantly better long term retention for the learned information across a two week time interval. These results are discussed in the context of embodied cognition theory as it relates to music. Potential limitations and avenues for future research are described.

  10. A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom.

    Science.gov (United States)

    Cutolo, Fabrizio; Meola, Antonio; Carbone, Marina; Sinceri, Sara; Cagnazzo, Federico; Denaro, Ennio; Esposito, Nicola; Ferrari, Mauro; Ferrari, Vincenzo

    2017-12-01

    Benefits of minimally invasive neurosurgery mandate the development of ergonomic paradigms for neuronavigation. Augmented Reality (AR) systems can overcome the shortcomings of commercial neuronavigators. The aim of this work is to apply a novel AR system, based on a head-mounted stereoscopic video see-through display, as an aid in complex neurological lesion targeting. Effectiveness was investigated on a newly designed patient-specific head mannequin featuring an anatomically realistic brain phantom with embedded synthetically created tumors and eloquent areas. A two-phase evaluation process was adopted in a simulated small tumor resection adjacent to Broca's area. Phase I involved nine subjects without neurosurgical training in performing spatial judgment tasks. In Phase II, three surgeons were involved in assessing the effectiveness of the AR-neuronavigator in performing brain tumor targeting on a patient-specific head phantom. Phase I revealed the ability of the AR scene to evoke depth perception under different visualization modalities. Phase II confirmed the potentialities of the AR-neuronavigator in aiding the determination of the optimal surgical access to the surgical target. The AR-neuronavigator is intuitive, easy-to-use, and provides three-dimensional augmented information in a perceptually-correct way. The system proved to be effective in guiding skin incision, craniotomy, and lesion targeting. The preliminary results encourage a structured study to prove clinical effectiveness. Moreover, our testing platform might be used to facilitate training in brain tumour resection procedures.

  11. Shifting the paradigm of music instruction: implications of embodiment stemming from an augmented reality guitar learning system.

    Science.gov (United States)

    Keebler, Joseph R; Wiltshire, Travis J; Smith, Dustin C; Fiore, Stephen M; Bedwell, Jeffrey S

    2014-01-01

    Musical instruction often includes materials that can act as a barrier to learning. New technologies using augmented reality may aid in reducing the initial difficulties involved in learning music by lowering these barriers characteristic of traditional instructional materials. Therefore, this set of studies examined a novel augmented reality guitar learning system (i.e., the Fretlight® guitar) in regards to current theories of embodied music cognition. Specifically, we examined the effects of using this system in comparison to a standard instructional material (i.e., diagrams). First, we review major theories related to musical embodiment and specify a niche within this research space we call embodied music technology for learning. Following, we explicate two parallel experiments that were conducted to address the learning effects of this system. Experiment 1 examined short-term learning effects within one experimental session, while Experiment 2 examined both short-term and long-term effects across two sessions spaced at a 2-week interval. Analyses demonstrated that, for many of our dependent variables, all participants increased in performance across time. Further, the Fretlight® condition consistently led to significantly better outcomes via interactive effects, including significantly better long term retention for the learned information across a 2 week time interval. These results are discussed in the context of embodied cognition theory as it relates to music. Potential limitations and avenues for future research are described.

  12. Development of a Real-Time Detection System for Augmented Reality Driving

    Directory of Open Access Journals (Sweden)

    Kuei-Shu Hsu

    2015-01-01

    Full Text Available Augmented reality technology is applied so that driving tests may be performed in various environments using a virtual reality scenario with the ultimate goal of improving visual and interactive effects of simulated drivers. Environmental conditions simulating a real scenario are created using an augmented reality structure, which guarantees the test taker’s security since they are not subject to real-life elements and dangers. Furthermore, the accuracy of tests conducted through virtual reality is not influenced by either environmental or human factors. Driver posture is captured in real time using Kinect’s depth perception function and then applied to driving simulation effects that are emulated by Unity3D’s gaming technology. Subsequently, different driving models may be collected through different drivers. In this research, nearly true and realistic street environments are simulated to evaluate driver behavior. A variety of different visual effects are easily available to effectively reduce error rates, thereby significantly improving test security as well as the reliability and reality of this project. Different situation designs are simulated and evaluated to increase development efficiency and build more security verification test platforms using such technology in conjunction with driving tests, vehicle fittings, environmental factors, and so forth.

  13. Mental Workload and Situational Awareness Evaluation of APR1400 Engineered Safety Features- Component Control Activation Systems using Augmented Reality

    Energy Technology Data Exchange (ETDEWEB)

    Murungi, Mwongeera; Jung, JaeCheon [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    In the study, an Augmented Reality procedure guidance support system concept was designed and used as a tool for the measurement of mental workload and Situational awareness of an SRO (Senior Reactor Operator). The EOP was chosen as the scenario for testing because it is the one of the critical plant conditions that requires human intervention and it represents (one of the more) conservative approaches to the test scenarios that are possible. The system is expected to realize an improvement in the level of Situational Awareness and mental workload which have been demonstrated by previous studies to be directly linked with the system response to an emergency situation in the MCR. The planning and design of the project adhered to a Systems Engineering approach in order to provide an optimized framework for ensuring the successful implementation of the system design. Previous study and research into this topic has emphasized the importance of situational awareness in determining the human factor performance issues in the nuclear power plant Control Room operations. This paper broadly defined a technique that successfully used the operator’s mental workload (using NASATLX) and Situational Awareness (using SART) as quantifying measures to evaluate the performance of specific ESF-CCS functions based on human factors. These results show that an improvement of the SA/workload could lead to an improvement of the level of certainty that the emergency situation can be brought under control. It is expected that future development work in this area will yield an actualized Augmented Reality system that could incorporate MCR team control and possibly be implemented in the system validation of other I and C systems.

  14. Performance IEEE 802.14.5 and zigbee protocol on realtime monitoring augmented reality based wireless sensor network system

    Directory of Open Access Journals (Sweden)

    Arda Surya Editya

    2017-07-01

    Full Text Available The internet of Thing (IoTtechnology has much development in this era. It has various wireless media transmission systems such as ESP and XBEE. Some IoT device can monitor website or application. On the other hand, Augmented Reality (AR is a technology that used more on the entertainment sector. Here, we try to use AR to monitor the xbee based IoT device. As a result, there is the different result between Zigbee Protocol and IEEE 802.14.5 real time monitoring system. The optimum estimation of realtime time tolerance of those monitoring systems is >1500 ms (IEEE 804.14.5 and > 50 ms (Zigbee protocol.

  15. Augmented Reality Binoculars.

    Science.gov (United States)

    Oskiper, Taragay; Sizintsev, Mikhail; Branzoi, Vlad; Samarasekera, Supun; Kumar, Rakesh

    2015-05-01

    In this paper we present an augmented reality binocular system to allow long range high precision augmentation of live telescopic imagery with aerial and terrain based synthetic objects, vehicles, people and effects. The inserted objects must appear stable in the display and must not jitter and drift as the user pans around and examines the scene with the binoculars. The design of the system is based on using two different cameras with wide field of view and narrow field of view lenses enclosed in a binocular shaped shell. Using the wide field of view gives us context and enables us to recover the 3D location and orientation of the binoculars much more robustly, whereas the narrow field of view is used for the actual augmentation as well as to increase precision in tracking. We present our navigation algorithm that uses the two cameras in combination with an inertial measurement unit and global positioning system in an extended Kalman filter and provides jitter free, robust and real-time pose estimation for precise augmentation. We have demonstrated successful use of our system as part of information sharing example as well as a live simulated training system for observer training, in which fixed and rotary wing aircrafts, ground vehicles, and weapon effects are combined with real world scenes.

  16. FEATURE RECOGNITION BERBASIS CORNER DETECTION DENGAN METODE FAST, SURF DAN FLANN TREE UNTUK IDENTIFIKASI LOGO PADA AUGMENTED REALITY MOBILE SYSTEM

    Directory of Open Access Journals (Sweden)

    Rastri Prathivi

    2014-01-01

    Full Text Available Logo is a graphical symbol that is the identity of an organization, institution, or company. Logo is generally used to introduce to the public the existence of an organization, institution, or company. Through the existence of an agency logo can be seen by the public. Feature recognition is one of the processes that exist within an augmented reality system. One of uses augmented reality is able to recognize the identity of the logo through a camera.The first step to make a process of feature recognition is through the corner detection. Incorporation of several method such as FAST, SURF, and FLANN TREE for the feature detection process based corner detection feature matching up process, will have the better ability to detect the presence of a logo. Additionally when running the feature extraction process there are several issues that arise as scale invariant feature and rotation invariant feature. In this study the research object in the form of logo to the priority to make the process of feature recognition. FAST, SURF, and FLANN TREE method will detection logo with scale invariant feature and rotation invariant feature conditions. Obtained from this study will demonstration the accuracy from FAST, SURF, and FLANN TREE methods to solve the scale invariant and rotation invariant feature problems.

  17. Augmented Reality Comes to Physics

    Science.gov (United States)

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  18. Augmented Reality for Multi-disciplinary Collaboration

    OpenAIRE

    Wang, Xiangyu; Rui,

    2010-01-01

    This chapter presents a framework for multi-disciplinary collaboration. Tangible Augmented Reality has been raised as one of suitable systems for design collaboration. Furthermore, it emphasizes the advantages of Tangible Augmented Reality to illustrate the needs for integrating the Tangible User Interfaces and Augmented Reality Systems.

  19. Collaboration in Augmented Reality

    NARCIS (Netherlands)

    Lukosch, S.; Billinghurst, M.; Alem, L.; Kiyokawa, K.

    2015-01-01

    Augmented Reality (AR) is a technology that allows users to view and interact in real time with virtual images seamlessly superimposed over the real world. AR systems can be used to create unique collaborative experiences. For example, co-located users can see shared 3D virtual objects that they

  20. Augmented Reality og kulturarv

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Kirkedahl Lysholm

    2013-01-01

    Museerne står overfor at skulle omfavne den digitale kultur i håndteringen af den store mængde viden, institutionerne repræsenterer. Augmented Reality-systemer forbinder ved hjælp af moderne teknologi det virtuelle med det virkelige, og kan derfor synes som en oplagt anvendelsesmulighed i...

  1. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    Science.gov (United States)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  2. Modeling and Optimization of Recycled Water Systems to Augment Urban Groundwater Recharge through Underutilized Stormwater Spreading Basins.

    Science.gov (United States)

    Bradshaw, Jonathan L; Luthy, Richard G

    2017-10-17

    Infrastructure systems that use stormwater and recycled water to augment groundwater recharge through spreading basins represent cost-effective opportunities to diversify urban water supplies. However, technical questions remain about how these types of managed aquifer recharge systems should be designed; furthermore, existing planning tools are insufficient for performing robust design comparisons. Addressing this need, we present a model for identifying the best-case design and operation schedule for systems that deliver recycled water to underutilized stormwater spreading basins. Resulting systems are optimal with respect to life cycle costs and water deliveries. Through a case study of Los Angeles, California, we illustrate how delivering recycled water to spreading basins could be optimally implemented. Results illustrate trade-offs between centralized and decentralized configurations. For example, while a centralized Hyperion system could deliver more recycled water to the Hansen Spreading Grounds, this system incurs approximately twice the conveyance cost of a decentralized Tillman system (mean of 44% vs 22% of unit life cycle costs). Compared to existing methods, our model allows for more comprehensive and precise analyses of cost, water volume, and energy trade-offs among different design scenarios. This model can inform decisions about spreading basin operation policies and the development of new water supplies.

  3. An assistive navigation system based on augmented reality and context awareness for people with mild cognitive impairments.

    Science.gov (United States)

    Hervás, Ramón; Bravo, José; Fontecha, Jesús

    2014-01-01

    This paper presents a system for supplying spatial orientation and support to cognitively impaired people in their daily activities. The system is a technological solution based on external aid at a practical level (substitution-based rehabilitation). In particular, we propose a model focused on points of interest or well-known places, in which user-friendly routes to a destination are generated based on the user context rather than the conventional street names and quantitative distances. Moreover, the system offers augmented reality views that include contextual information. This philosophy of navigation more closely matches the needs of the user than do conventional navigation systems; the proposal is especially useful for users who are not accustomed to using new technologies (e.g., elderly people), people experiencing disorientation and, more generally, individuals with a slight cognitive deficit. The system also includes an application that allows the relatives of the user to establish tasks that must be performed at a specific location and to monitor the activities of the user to detect potentially risky situations.

  4. Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Suliang Ma

    2016-11-01

    Full Text Available Photovoltaic (PV systems have non-linear characteristics that generate maximum power at one particular operating point. Environmental factors such as irradiance and temperature variations greatly affect the maximum power point (MPP. Diverse offline and online techniques have been introduced for tracking the MPP. Here, to track the MPP, an augmented-state feedback linearized (AFL non-linear controller combined with an artificial neural network (ANN is proposed. This approach linearizes the non-linear characteristics in PV systems and DC/DC converters, for tracking and optimizing the PV system operation. It also reduces the dependency of the designed controller on linearized models, to provide global stability. A complete model of the PV system is simulated. The existing maximum power-point tracking (MPPT and DC/DC boost-converter controller techniques are compared with the proposed ANN method. Two case studies, which simulate realistic circumstances, are presented to demonstrate the effectiveness and superiority of the proposed method. The AFL with ANN controller can provide good dynamic operation, faster convergence speed, and fewer operating-point oscillations around the MPP. It also tracks the global maxima under different conditions, especially irradiance-mutating situations, more effectively than the conventional methods. Detailed mathematical models and a control approach for a three-phase grid-connected intelligent hybrid system are proposed using MATLAB/Simulink.

  5. Use of Augmented Reality in Education

    OpenAIRE

    Jeřábek, Tomáš

    2014-01-01

    This thesis deals with phenomena of augmented reality in context of didactics. The thesis aims to define augmented reality in conceptual and content area and focuses on augmented reality in the structure of educational tools and identification of its functions and use from the didactical standpoint. The thesis characterizes augmented reality as a specific technological-perceptual concept and establishes a system of perceptual, technological and resulting aspects that reflect important paramet...

  6. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.

    Science.gov (United States)

    Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan

    2015-06-01

    The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A real-time 3D end-to-end augmented reality system (and its representation transformations)

    Science.gov (United States)

    Tytgat, Donny; Aerts, Maarten; De Busser, Jeroen; Lievens, Sammy; Rondao Alface, Patrice; Macq, Jean-Francois

    2016-09-01

    The new generation of HMDs coming to the market is expected to enable many new applications that allow free viewpoint experiences with captured video objects. Current applications usually rely on 3D content that is manually created or captured in an offline manner. In contrast, this paper focuses on augmented reality applications that use live captured 3D objects while maintaining free viewpoint interaction. We present a system that allows live dynamic 3D objects (e.g. a person who is talking) to be captured in real-time. Real-time performance is achieved by traversing a number of representation formats and exploiting their specific benefits. For instance, depth images are maintained for fast neighborhood retrieval and occlusion determination, while implicit surfaces are used to facilitate multi-source aggregation for both geometry and texture. The result is a 3D reconstruction system that outputs multi-textured triangle meshes at real-time rates. An end-to-end system is presented that captures and reconstructs live 3D data and allows for this data to be used on a networked (AR) device. For allocating the different functional blocks onto the available physical devices, a number of alternatives are proposed considering the available computational power and bandwidth for each of the components. As we will show, the representation format can play an important role in this functional allocation and allows for a flexible system that can support a highly heterogeneous infrastructure.

  8. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nazareth, D; Malhotra, H; French, S [Roswell Park Cancer Institute, Buffalo, NY (United States); Hoffmann, K [Neurosurgery at SUNY at Buffalo, Buffalo, NY (United States); Merrow, C [Bassett Healthcare, Oneonta, NY (United States)

    2014-06-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could

  9. Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study.

    Science.gov (United States)

    Suenaga, Hideyuki; Tran, Huy Hoang; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Takato, Tsuyoshi

    2015-11-02

    This study evaluated the use of an augmented reality navigation system that provides a markerless registration system using stereo vision in oral and maxillofacial surgery. A feasibility study was performed on a subject, wherein a stereo camera was used for tracking and markerless registration. The computed tomography data obtained from the volunteer was used to create an integral videography image and a 3-dimensional rapid prototype model of the jaw. The overlay of the subject's anatomic site and its 3D-IV image were displayed in real space using a 3D-AR display. Extraction of characteristic points and teeth matching were done using parallax images from two stereo cameras for patient-image registration. Accurate registration of the volunteer's anatomy with IV stereoscopic images via image matching was done using the fully automated markerless system, which recognized the incisal edges of the teeth and captured information pertaining to their position with an average target registration error of stereo vision, which, combined with AR, could have significant clinical applications.

  10. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  11. Bioreactors to Influence Stem Cell Fate: Augmentation of Mesenchymal Stem Cell Signaling Pathways via Dynamic Culture Systems

    Science.gov (United States)

    Yeatts, Andrew B.; Choquette, Daniel T.; Fisher, John P.

    2012-01-01

    Background Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. Scope of Review This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. Major Conclusions The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. General Significance Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. PMID:22705676

  12. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems.

    Science.gov (United States)

    Yeatts, Andrew B; Choquette, Daniel T; Fisher, John P

    2013-02-01

    Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Eurofix : Test Results of a Cost-Effective DGNSS Augmentation System

    NARCIS (Netherlands)

    Offermans, G.W.A.; Helwig, A.W.S.; Van Willigen, D.

    1997-01-01

    Eurofix is an integrated navigation system, which combines Differential GNSS and Loran-C. The Loran-C system is used to provide differential corrections for the GNSS pseudo-range measurements and integrity information by additionally modulating the transmitted signals. This modulation, however, is

  14. Using a Recommender System and Hyperwave Attributes To Augment an Electronic Resource Library.

    Science.gov (United States)

    Fenn, B.; Lennon, J.

    There has been increasing interest over the past few years in systems that help users exchange recommendations about World Wide Web documents. Programs have ranged from those that rely totally on user pre-selection, to others that are based on artificial intelligence. This paper proposes a system that falls between these two extremes, providing…

  15. Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    NARCIS (Netherlands)

    Jones, Valerie M.; Rensink, Arend; Brinksma, Hendrik

    2005-01-01

    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing

  16. A decision support system and rule-based algorithm to augment the human interpretation of the 12-lead electrocardiogram.

    Science.gov (United States)

    Cairns, Andrew W; Bond, Raymond R; Finlay, Dewar D; Guldenring, Daniel; Badilini, Fabio; Libretti, Guido; Peace, Aaron J; Leslie, Stephen J

    The 12-lead Electrocardiogram (ECG) has been used to detect cardiac abnormalities in the same format for more than 70years. However, due to the complex nature of 12-lead ECG interpretation, there is a significant cognitive workload required from the interpreter. This complexity in ECG interpretation often leads to errors in diagnosis and subsequent treatment. We have previously reported on the development of an ECG interpretation support system designed to augment the human interpretation process. This computerised decision support system has been named 'Interactive Progressive based Interpretation' (IPI). In this study, a decision support algorithm was built into the IPI system to suggest potential diagnoses based on the interpreter's annotations of the 12-lead ECG. We hypothesise semi-automatic interpretation using a digital assistant can be an optimal man-machine model for ECG interpretation. To improve interpretation accuracy and reduce missed co-abnormalities. The Differential Diagnoses Algorithm (DDA) was developed using web technologies where diagnostic ECG criteria are defined in an open storage format, Javascript Object Notation (JSON), which is queried using a rule-based reasoning algorithm to suggest diagnoses. To test our hypothesis, a counterbalanced trial was designed where subjects interpreted ECGs using the conventional approach and using the IPI+DDA approach. A total of 375 interpretations were collected. The IPI+DDA approach was shown to improve diagnostic accuracy by 8.7% (although not statistically significant, p-value=0.1852), the IPI+DDA suggested the correct interpretation more often than the human interpreter in 7/10 cases (varying statistical significance). Human interpretation accuracy increased to 70% when seven suggestions were generated. Although results were not found to be statistically significant, we found; 1) our decision support tool increased the number of correct interpretations, 2) the DDA algorithm suggested the correct

  17. User-Augmented Visualizations for Targeted Evaluation of Systems and Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The operation of Unmanned Aerial Vehicles (UAVs) in the National Airspace System (NAS) is a growing area of research for NASA, but the need for substantial amounts...

  18. A Survey of Mobile and Wireless Technologies for Augmented Reality Systems (Preprint)

    Science.gov (United States)

    2008-02-01

    site of ancient Olympia, Greece in order to visualize the non-existing ancient temple edifices (Vlahakis et al [36]), and in Pompeii , Italy to...Reference source not found. illustrate examples of a mobile AR system in ancient Pompeii . 3.3 Navigation & Path Finding Mobile AR systems have...Thalmann, A. Stoddart, D. Thalmann, “Mixing Virtual and Real scenes in the site of ancient Pompeii ”, Computer Animation and Virtual Worlds, p 11-24

  19. Least cost pathways to a low carbon electricity system for Australia: impacts of transmission augmentation and extension

    Science.gov (United States)

    Dargaville, R. J.

    2016-12-01

    Designing the pathway to a low carbon energy system is complex, requiring consideration of the variable nature of renewables at the hourly timescale, emission intensity and ramp rate constraints of dispatchable technologies (both fossil and renewable) and transmission and distribution network limitations. In this work, an optimization framework taking into account these considerations has been applied to find the lowest cost ways to reduce carbon emissions by either 80% or 100% in 2050 while keeping the system operating reliably along the way. Technologies included are existing and advanced coal and gas technologies (with and without carbon capture and storage), rooftop PV, utility scale PV, concentrating solar thermal, hydro with and without pumped storage, bioenergy, and nuclear. In this study we also also the optimisation to increase transmission capacity along existing lines, and to extend key trunk lines into currently unserved areas. These augementations and extensions come at a cost. The otpimisation chooses these options when the benefits of accessing high quality renewable energy resources outweights the costs. Results show that for the 80% emission reduction case, there is limited need for transmission capacity increase, and that the existing grid copes well with the increased flows due to conversion to distrubuted renewable energy resources. However, in the 100% case the increased reliance on renewables means that signficant transmission augmentation is beneficial to the overall cost. This strongly suggests that it is important to understand the long term emission target early so that infrastructure investments can be optimised.

  20. A comprehensive assessment of ionospheric gradients observed in Ecuador during 2013 and 2014 for ground based augmentation systems

    Science.gov (United States)

    Sánchez-Naranjo, S.; Rincón, W.; Ramos-Pollán, R.; González, F. A.; Soley, S.

    2017-04-01

    Ground Based Augmentation Systems GBAS provide differential corrections to approaching and landing aircrafts in the vicinities of an airport. The ionosphere can introduce an error not accountable by those differential corrections, and a threat model for the Conterminous United States region CONUS was developed in order to consider the highest gradients measured. This study presents the first extensive analysis of ionospheric gradients for Ecuador, from data fully covering 2013 and 2014 collected by their national Global Navigation Satellite System GNSS monitoring network (REGME). In this work it is applied an automated methodology adapted for low latitudes for processing data from dual frequency receivers networks, by considering data from all available days in the date range of the study regardless the geomagnetic indices values. The events found above the CONUS threat model occurred during days of nominal geomagnetic indices, confirming: (1) the higher bounds required for an ionospheric threat model for Ecuador, and (2) that geomagnetic indices are not enough to indicate relevant ionospheric anomalies in low latitude regions, reinforcing the necessity of a continuous monitoring of ionosphere. As additional contribution, the events database is published online, making it available to other researchers.

  1. UMineAR: Mobile-Tablet-Based Abandoned Mine Hazard Site Investigation Support System Using Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jangwon Suh

    2017-10-01

    Full Text Available Conventional mine site investigation has difficulties in fostering location awareness and understanding the subsurface environment; moreover, it produces a large amount of hardcopy data. To overcome these limitations, the UMineAR mobile tablet application was developed. It enables users to rapidly identify underground mine objects (drifts, entrances, boreholes, hazards and intuitively visualize them in 3D using a mobile augmented reality (AR technique. To design UMineAR, South Korean georeferenced standard-mine geographic information system (GIS databases were employed. A web database system was designed to access via a tablet groundwater-level data measured every hour by sensors installed in boreholes. UMineAR consists of search, AR, map, and database modules. The search module provides data retrieval and visualization options/functions. The AR module provides 3D interactive visualization of mine GIS data and camera imagery on the tablet screen. The map module shows the locations of corresponding borehole data on a 2D map. The database module provides mine GIS database management functions. A case study showed that the proposed application is suitable for onsite visualization of high-volume mine GIS data based on geolocations; no specialized equipment or skills are required to understand the underground mine environment. UMineAR can be used to support abandoned-mine hazard site investigations.

  2. Augmented reality system using lidar point cloud data for displaying dimensional information of objects on mobile phones

    Science.gov (United States)

    Gupta, S.; Lohani, B.

    2014-05-01

    Mobile augmented reality system is the next generation technology to visualise 3D real world intelligently. The technology is expanding at a fast pace to upgrade the status of a smart phone to an intelligent device. The research problem identified and presented in the current work is to view actual dimensions of various objects that are captured by a smart phone in real time. The methodology proposed first establishes correspondence between LiDAR point cloud, that are stored in a server, and the image t hat is captured by a mobile. This correspondence is established using the exterior and interior orientation parameters of the mobile camera and the coordinates of LiDAR data points which lie in the viewshed of the mobile camera. A pseudo intensity image is generated using LiDAR points and their intensity. Mobile image and pseudo intensity image are then registered using image registration method SIFT thereby generating a pipeline to locate a point in point cloud corresponding to a point (pixel) on the mobile image. The second part of the method uses point cloud data for computing dimensional information corresponding to the pairs of points selected on mobile image and fetch the dimensions on top of the image. This paper describes all steps of the proposed method. The paper uses an experimental setup to mimic the mobile phone and server system and presents some initial but encouraging results

  3. Augmented Reality Comes to Physics

    Science.gov (United States)

    Buesing, Mark; Cook, Michael

    2013-04-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.

  4. Internet virtual studio: low-cost augmented reality system for WebTV

    Science.gov (United States)

    Sitnik, Robert; Pasko, Slawomir; Karaszewski, Maciej; Witkowski, Marcin

    2008-02-01

    In this paper a concept of a Internet Virtual Studio as a modern system for production of news, entertainment, educational and training material is proposed. This system is based on virtual studio technology and integrated with multimedia data base. Its was developed for web television content production. In successive subentries the general system architecture, as well as the architecture of modules one by one is discussed. The authors describe each module by presentation of a brief information about work principles and technical limitations. The presentation of modules is strictly connected with a presentation of their capabilities. Results produced by each of them are shown in the form of exemplary images. Finally, exemplary short production is presented and discussed.

  5. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  6. Social engineering attacks: an augmentation of the socio-technical systems framework

    CSIR Research Space (South Africa)

    Shozi, A

    2015-03-01

    Full Text Available or organisation’s information. We analyse social engineering attacks as a Socio-technical System because it recognises the interaction between people and technology in a work environment. In the case of social engineering attacks, the social subsystem would...

  7. High-Quality See-Through Surgical Guidance System Using Enhanced 3-D Autostereoscopic Augmented Reality.

    Science.gov (United States)

    Zhang, Xinran; Chen, Guowen; Liao, Hongen

    2017-08-01

    Precise minimally invasive surgery (MIS) has significant advantages over traditional open surgery in clinic. Although pre-/intraoperative diagnosis images can provide necessary guidance for therapy, hand-eye discoordination occurs when guidance information is displayed away from the surgical area. In this study, we introduce a real three-dimensional (3-D) see-through guidance system for precision surgery. To address the resolution and viewing angle limitation as well as the accuracy degradation problems of autostereoscopic 3-D display, we design a high quality and high accuracy 3-D integral videography (IV) medical image display method. Furthermore, a novel see-through microscopic device is proposed to assist surgeons with the superimposition of real 3-D guidance onto the surgical target is magnified by an optical visual magnifier module. Spatial resolutions of 3-D IV image in different depths have been increased 50%∼70%, viewing angles of different image sizes have been increased 9%∼19% compared with conventional IV display methods. Average accuracy of real 3-D guidance superimposed on surgical target was 0.93 mm ± 0.41 mm. Preclinical studies demonstrated that our system could provide real 3-D perception of anatomic structures inside the patient's body. The system showed potential clinical feasibility to provide intuitive and accurate in situ see-through guidance for microsurgery without restriction on observers' viewing position. Our system can effectively improve the precision and reliability of surgical guidance. It will have wider applicability in surgical planning, microscopy, and other fields.

  8. Improving Literacy Skills in Students with Complex Communication Needs Who Use Augmentative/Alternative Communication Systems

    Science.gov (United States)

    Bailey, Rita L.; Angell, Maureen E.; Stoner, Julia B.

    2011-01-01

    A structured intervention package including direct, scaffolded, instructional lessons was implemented using an error correction learning system and a picture book-based phonological and phonemic awareness activity for four participants with complex communication needs, ranging from 12 to 15 years, in a junior high school setting. Although…

  9. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs...... with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...

  10. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional

  11. Study on a High-frequency Multi-GNSS Real-time Precise Clock Estimation Algorithm and Application in GNSS Augment System

    Directory of Open Access Journals (Sweden)

    CHEN Liang

    2017-05-01

    Full Text Available GNSS satellite-based differential augment system is based on real-time orbit and clock augment message. The multi-GNSS real-time precise clock error estimation model is studied, and then the parameters estimated in traditional un-difference model are optimized and a high-efficient real-time clock simplified model is proposed and realized. The real-time orbit data processing based on PANDA is also analyzed. The results indicate that the real-time orbit radial accuracy of GPS, BeiDou MEO and Galileo is 1~5 cm, and the radial accuracy of the BeiDou GEO/IGSO satellite is about 10 cm. It is found that the optimized real-time clock simplified model is more efficient in one epoch than un-difference model and can be applied to high-frequency (such as 1 Hz updating of real-time clock augment message. The results show that the real-time clock error obtained by this model is absolute value and there is no constant bias. Based on the real-time orbit, the GPS real-time clock precision of the simplified model is about 0.24 ns, BeiDou GEO is about 0.50 ns, IGSO/MEO is about 0.22 ns and Galileo is about 0.32 ns. Using the multi-GNSS real-time data stream in GFZ, a multi-GNSS real-time augment prototype system is built and the real-time augment message is being broadcasted on the Internet. The real-time PPP centimeter-level service and meter-level navigation service based on pseudorange are realized based on this prototype system.

  12. Augmented Feedback System to Support Physical Therapy of Non-specific Low Back Pain

    Science.gov (United States)

    Brodbeck, Dominique; Degen, Markus; Stanimirov, Michael; Kool, Jan; Scheermesser, Mandy; Oesch, Peter; Neuhaus, Cornelia

    Low back pain is an important problem in industrialized countries. Two key factors limit the effectiveness of physiotherapy: low compliance of patients with repetitive movement exercises, and inadequate awareness of patients of their own posture. The Backtrainer system addresses these problems by real-time monitoring of the spine position, by providing a framework for most common physiotherapy exercises for the low back, and by providing feedback to patients in a motivating way. A minimal sensor configuration was identified as two inertial sensors that measure the orientation of the lower back at two points with three degrees of freedom. The software was designed as a flexible platform to experiment with different hardware, and with various feedback modalities. Basic exercises for two types of movements are provided: mobilizing and stabilizing. We developed visual feedback - abstract as well as in the form of a virtual reality game - and complemented the on-screen graphics with an ambient feedback device. The system was evaluated during five weeks in a rehabilitation clinic with 26 patients and 15 physiotherapists. Subjective satisfaction of subjects was good, and we interpret the results as encouraging indication for the adoption of such a therapy support system by both patients and therapists.

  13. Wind or water turbine power augmentation using the system of guiding surfaces

    Science.gov (United States)

    Bashurin, V. P.; Budnikov, I. N.; Hatunkin, V. Yu; Klevtsov, V. A.; Ktitorov, L. V.; Lazareva, A. S.; Meshkov, E. E.; Novikova, I. A.; Pletenev, F. A.; Yanbaev, G. M.

    2016-04-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines.

  14. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  15. Comparisons of intervention components within augmentative and alternative communication systems for individuals with developmental disabilities: a review of the literature.

    Science.gov (United States)

    Gevarter, Cindy; O'Reilly, Mark F; Rojeski, Laura; Sammarco, Nicolette; Lang, Russell; Lancioni, Giulio E; Sigafoos, Jeff

    2013-12-01

    Decisions regarding augmentative and alternative communication (AAC) for individuals with developmental disabilities (e.g. what AAC to use and how to teach a person to use a specific AAC modality) should involve consideration of different intervention component options. In an effort to elucidate such decisions and options, this review synthesized 14 studies, published between 2004 and 2012, comparing different AAC intervention components including different symbol sets, instructional strategies, or speech output within aided AAC systems, and different verbal operants within unaided AAC. Evidence supported the following: (a) different instructional strategies such as building motivation, using errorless learning, or adding video models to picture exchange interventions may improve the acquisition or rate of acquisition of picture exchange mands, (b) limited data supports training mimetic (imitated) or mand signs over tacts and (c) differences in symbol sets and speech output levels appeared to have little effect on AAC-based mand acquisition, but listener-based differences should be considered. These findings have implications for future research and clinical practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Molten Boron Phase-Change Thermal Energy Storage to Augment Solar Thermal Propulsion Systems

    Science.gov (United States)

    2011-07-13

    Thermodynamic Properties of Transition Metal Borides . I. The Molybdenum -boron system and Elemental Boron," Journal of Physical Chemistry, Vol. 81... Molybdenum -Boron and Some Properties of The Molybdenum - Borides ," Journal of Metals, September 1952, pp. 983-988. 40Stout, N. D., Mar, R. W., and Boo, W. O...BeO 3010 2.43 1.458 3,410 Molybdenum 2890 0.255 0.153 391 Silicon Carbide 2818 1.47 0.882 --- B4C 2673 2.51 1.506 1,900 Boron 2570 2.93 4,650

  17. Humectants To Augment Current From Metallized Zinc Cathodic Protection Systems on Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R.; Covino Jr., Bernard S.; Cramer, Stephen D.; Russell, James H. Russell; Bullard, Sophie J.; Collins, W. Keith; Bennett, Jack E. (J.E. Bennett Consulting, Inc.); Soltesz, Steven M. (ODOT); Laylor, H. Martin (ODOT)

    2002-12-01

    Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Research was conducted to investigate the effect of hydrophilic chemical additives, humectants, on the electrical performance and service life of zinc anodes. Lithium bromide and lithium nitrate were identified as feasible humectants with lithium bromide performing better under galvanic CP and lithium nitrate performing better under impressed current CP. Both humectants improved the electrical operating characteristics of the anode and increased the service life by up to three years.

  18. Military Applications of Augmented Reality

    Science.gov (United States)

    2011-01-01

    interest in AR technology has a long history. The Ultrasound Augmented Reality project [State et al(1996)] is one note- worthy example of a project...Many military bases have “towns” for training that consist of concrete block buildings with multiple levels and architec- tural configurations. AR...Livingston MA, Hirota G, Garrett WF, Whitton MC, Pisano ED, Fuchs H (1996) Technologies for augmented reality systems: Realizing ultrasound -guided

  19. Tactile stimulations and wheel-rotation responses: Toward augmented lane departure warning systems

    Directory of Open Access Journals (Sweden)

    Christophe eTandonnet

    2014-10-01

    Full Text Available When an on-board system detects a drift of a vehicle to the left or to the right, in what way should the information be delivered to the driver? Car manufacturers have so far neglected relevant results from Experimental Psychology and Cognitive Neuroscience. Here we show that this situation possibly led to the sub-optimal design of a lane departure warning system (AFIL, PSA Peugeot Citroën implemented in commercially available automobile vehicles. Twenty participants performed a two-choice reaction time task in which they were to respond by clockwise or counter-clockwise wheel-rotations to tactile stimulations of their left or right wrist. They performed poorer when responding counter-clockwise to the right vibration and clockwise to the left vibration (incompatible mapping than when responding according to the reverse (compatible mapping. This suggests that AFIL implements the worse (incompatible mapping for the operators. This effect depended on initial practice with the interface. The present research illustrates how basic approaches in Cognitive Science may benefit to Human Factors Engineering and ultimately improve man-machine interfaces and show how initial learning can affect interference effects.

  20. Lumbar Spinal Stenosis Minimally Invasive Treatment with Bilateral Transpedicular Facet Augmentation System

    Energy Technology Data Exchange (ETDEWEB)

    Masala, Salvatore, E-mail: salva.masala@tiscali.it [Interventional Radiology and Radiotherapy, University of Rome ' Tor Vergata' , Department of Diagnostic and Molecular Imaging (Italy); Tarantino, Umberto [University of Rome ' Tor Vergata' , Department of Orthopaedics and Traumatology (Italy); Nano, Giovanni, E-mail: gionano@gmail.com [Interventional Radiology and Radiotherapy, University of Rome ' Tor Vergata' , Department of Diagnostic and Molecular Imaging (Italy); Iundusi, Riccardo [University of Rome ' Tor Vergata' , Department of Orthopaedics and Traumatology (Italy); Fiori, Roberto, E-mail: fiori.r@libero.it; Da Ros, Valerio, E-mail: valeriodaros@hotmail.com; Simonetti, Giovanni [Interventional Radiology and Radiotherapy, University of Rome ' Tor Vergata' , Department of Diagnostic and Molecular Imaging (Italy)

    2013-06-15

    Purpose. The purpose of this study was to evaluate the effectiveness of a new pedicle screw-based posterior dynamic stabilization device PDS Percudyn System Trade-Mark-Sign Anchor and Stabilizer (Interventional Spine Inc., Irvine, CA) as alternative minimally invasive treatment for patients with lumbar spine stenosis. Methods. Twenty-four consecutive patients (8 women, 16 men; mean age 61.8 yr) with lumbar spinal stenosis underwent implantation of the minimally invasive pedicle screw-based device for posterior dynamic stabilization. Inclusion criteria were lumbar stenosis without signs of instability, resistant to conservative treatment, and eligible to traditional surgical posterior decompression. Results. Twenty patients (83 %) progressively improved during the 1-year follow-up. Four (17 %) patients did not show any improvement and opted for surgical posterior decompression. For both responder and nonresponder patients, no device-related complications were reported. Conclusions. Minimally invasive PDS Percudyn System Trade-Mark-Sign has effectively improved the clinical setting of 83 % of highly selected patients treated, delaying the need for traditional surgical therapy.

  1. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    Science.gov (United States)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  2. Augmenting an operational forecasting system for the North and Baltic Seas by in situ T and S data assimilation

    Science.gov (United States)

    Losa, Svetlana; Danilov, Sergey; Schröter, Jens; Nerger, Lars; Maßmann, Silvia; Janssen, Frank

    2014-05-01

    In order to improve the hydrography forecast of the North and Baltic Seas, the operational circulation model of the German Federal Maritime and Hydrographic Agency (BSH) has been augmented by a data assimilation (DA) system. The DA system has been developed based on the Singular Evolution Interpolated Kalman (SEIK) filter algorithm (Pham, 1998) coded within the Parallel Data Assimilation Framework (Nerger et al., 2004, Nerger and Hiller, 2012). Previously the only data assimilated were sea surface temperature (SST) measurements obtained with the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA's polar orbiting satellites. While the quality of the forecast has been significantly improved by assimilating the satellite data (Losa et al., 2012, Losa et al., 2014), assimilation of in situ observational temperature (T) and salinity (S) profiles has allowed for further improvement. Assimilating MARNET time series and CTD and Scanfish measurements, however, required a careful calibration of the DA system with respect to local analysis. The study addresses the problem of the local SEIK analysis accounting for the data within a certain radius. The localisation radius is considered spatially variable and dependent on the system local dynamics. As such, we define the radius of the data influence based on the energy ratio of the baroclinic and barotropic flows. D. T. Pham, J. Verron, L. Gourdeau, 1998. Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci. Paris, Earth and Planetary Sciences, 326, 255-260. L. Nerger, W. Hiller, J. Schröter, 2004. PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, In: Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of high performance computing in meteorology: proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. Singapore: World Scientific, Reading, UK, 63-83. L. Nerger, W. Hiller, 2012. Software for Ensemble-based Data

  3. A Synthesis of Relevant Literature on the Development of Emotional Competence: Implications for Design of Augmentative and Alternative Communication Systems.

    Science.gov (United States)

    Na, Ji Young; Wilkinson, Krista; Karny, Meredith; Blackstone, Sarah; Stifter, Cynthia

    2016-08-01

    Emotional competence refers to the ability to identify, respond to, and manage one's own and others' emotions. Emotional competence is critical to many functional outcomes, including making and maintaining friends, academic success, and community integration. There appears to be a link between the development of language and the development of emotional competence in children who use speech. Little information is available about these issues in children who rely on augmentative and alternative communication (AAC). In this article, we consider how AAC systems can be designed to support communication about emotions and the development of emotional competence. Because limited research exists on communication about emotions in a context of aided AAC, theory and research from other fields (e.g., psychology, linguistics, child development) is reviewed to identify key features of emotional competence and their possible implications for AAC design and intervention. The reviewed literature indicated that the research and clinical attention to emotional competence in children with disabilities is encouraging. However, the ideas have not been considered specifically in the context of aided AAC. On the basis of the reviewed literature, we offer practical suggestions for system design and AAC use for communication about emotions with children who have significant disabilities. Three key elements of discussing emotions (i.e., emotion name, reason, and solution) are suggested for inclusion in order to provide these children with opportunities for a full range of discussion about emotions. We argue that supporting communication about emotions is as important for children who use AAC as it is for children who are learning speech. This article offers a means to integrate information from other fields for the purpose of enriching AAC supports.

  4. Interactive Assembly Guide using Augmented Reality

    DEFF Research Database (Denmark)

    Andersen, Martin; Andersen, Rasmus Skovgaard; Larsen, Christian Lindequist

    2009-01-01

    This paper presents an Augmented Reality system for aiding a pump assembling process at Grundfos, one of the leading pump producers. Stable pose estimation of the pump is required in order to augment the graphics correctly. This is achieved by matching image edges with synthesized edges from CAD...... norm. A dynamic visualization of the augmented graphics provides the user with guidance. Usability tests show that the accuracy of the system is sufficient for assembling the pump....

  5. Controlling Virtual Clouds and Making it Rain Particle Systems in Real Spaces Using Situated Augmented Simulation and Portable Virtual Environments

    Science.gov (United States)

    Hedley, N.; Lonergan, C. D.

    2012-07-01

    The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences - new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  6. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  7. The behavioral approach system and augmenting/reducing in auditory event-related potentials during emotional visual stimulation.

    Science.gov (United States)

    De Pascalis, Vilfredo; Fracasso, Francesca; Corr, Philip J

    2017-02-01

    In the recent Reinforcement Sensitivity Theory Personality Questionnaire (RST-PQ, Corr and Cooper, 2016) the behavioral approach system (BAS) has been conceptualized as multidimensional in which facets of reward interest and reactivity, and goal-drive persistence, are separate from impulsivity. Aim of the present work was to highlight the predictive power of BAS and its facets in differentiating electrocortical responses by using an auditory augmenting/reducing event-related potential (ERP) paradigm during emotional visual stimulation. ERPs were recorded for 5 levels of intensity in 39 women. The RST-PQ was used to measure the total BAS (T-BAS) and its four facets of Goal-Drive Persistence (GDP), Reward Interest (RI), Reward Reactivity (RR), and Impulsivity (IMP). T-BAS and RI, and to a less extent GDP and RR, were significantly associated with higher N1/P2 amplitudes at central sites (C3, Cz, C4) across neutral, positive and negative slides. Similar, but less pronounced relations were found for GDP and RR, but this relation was lacking for Imp facet. In addition, N1/P2 slope at central sites was positively correlated with T-BAS, GDP, RI, RR, but not Imp. Indeed, T-BAS facets failed to maintain a significant correlation with N1/P2 slope, after controlling for T-BAS residual scores, indicating that T-BAS drives these significant correlations. LORETA analysis at 219ms (P2 wave) from tone onset revealed a significant activation of the right inferior parietal lobule (IPL, BA40) and left anterior cingulate gyrus (BA32) in high T-BAS compared to low T-BAS participants. Results are discussed within a revised RST framework differentiating reward components from impulsivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. New particle-dependent parameterizations of heterogeneous freezing processes: sensitivity studies of convective clouds with an air parcel model

    OpenAIRE

    K. Diehl; Mitra, S. K.

    2015-01-01

    Based on the outcome of laboratory results, new particle-dependent parameterizations of heterogeneous freezing were derived and used to improve and extend a two-dimensional spectral microphysics scheme. They include (1) a particle-type dependent parameterization of immersion freezing using the numbers of active sites per mass, (2) a particle-type and size-resolved parameterization of contact freezing, and (3) a particle-type dependent description of depositi...

  9. New particle-dependent parameterizations of heterogeneous freezing processes: sensitivity studies of convective clouds with an air parcel model

    OpenAIRE

    K. Diehl; Mitra, S. K.

    2015-01-01

    Based on the outcome of laboratory results, new particle-dependent parameterizations of heterogeneous freezing were derived and used to improve and extend a two-dimensional spectral microphysics scheme. They include (1) a particle-type-dependent parameterization of immersion freezing using the numbers of active sites per mass, (2) a particle-type and size-resolved parameterization of contact freezing, and (3) a particle-type-dependent description of deposition freezing. The ...

  10. Developing an Interactive Augmented Reality System as a Complement to Plant Education and Comparing Its Effectiveness with Video Learning

    Science.gov (United States)

    Chang, Rong-Chi; Chung, Liang-Yi; Huang, Yong-Ming

    2016-01-01

    The learning of plants has garnered considerable attention in recent years, but students often lack the motivation to learn about the process of plant growth. Also, students are not able to apply what they have learned in class in the form of observation, since plant growth takes a long time. In this study, we use augmented reality (AR) technology…

  11. Initial clinical experience with a novel vertebral augmentation system for treatment of symptomatic vertebral compression fractures: A case series of 26 consecutive patients

    Directory of Open Access Journals (Sweden)

    Miller Larry E

    2011-09-01

    Full Text Available Abstract Background Minimally invasive vertebral augmentation procedures are widely used to treat vertebral compression fractures although procedural polymethylmethacrylate cement leakage remains common. We report herein our initial experience with a novel vertebral augmentation technique designed to treat symptomatic vertebral osteoporotic fractures and osteolytic metastases with minimal cement extravasation. Methods Forty-two vertebral fractures were identified in 26 consecutive patients (mean age 74 ± 9 years. All patients were treated with a novel percutaneous vertebral augmentation device (Kiva® VCF Treatment System, Benvenue Medical, Santa Clara, CA, USA. Indications for surgery included recent (≤ 3 months symptomatic osteoporotic vertebral fracture (n = 34 and pathologic vertebral fractures (e.g. metabolic bone disease, myeloma, metastasis (n = 8 located between T10 and S1. Patient outcomes were evaluated pre-treatment and at 2- and 6-month follow-up visits. Postoperative cement extravasation was assessed with computed tomography. Patient-reported back pain was quantified using an 11-point numeric scale. Back-specific functional disability was self-reported with the Oswestry Disability Index on a 0 to 100% scale. Results No cases of intraoperative hypotension, respiratory disturbance, neurological deterioration, infection, or death were observed. There were 2 (4.8% levels where anterior cement leakage was visible radiographically in patients with osteolyses. No intracanal leakage was observed. Back pain scores improved 71% (p Conclusions The initial clinical experience with the Kiva® System demonstrated significant improvements in back pain and function with minimal and clinically insignificant procedural cement leakage.

  12. Augmentation of VAMP-catalytic activity of botulinum neurotoxin serotype B does not result in increased potency in physiological systems.

    Science.gov (United States)

    Elliott, Mark; Maignel, Jacquie; Liu, Sai Man; Favre-Guilmard, Christine; Mir, Imran; Farrow, Paul; Hornby, Fraser; Marlin, Sandra; Palan, Shilpa; Beard, Matthew; Krupp, Johannes

    2017-01-01

    Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain

  13. From Augmentation Media to Meme Media.

    Science.gov (United States)

    Tanaka, Yuzuru

    Computers as meta media are now evolving from augmentation media vehicles to meme media vehicles. While an augmentation media system provides a seamlessly integrated environment of various tools and documents, meme media system provides further functions to edit and distribute tools and documents. Documents and tools on meme media can easily…

  14. AMI: Augmented Michelson Interferometer

    Science.gov (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel

    2015-10-01

    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  15. Augmented reality for anatomical education.

    Science.gov (United States)

    Thomas, Rhys Gethin; John, Nigel William; Delieu, John Michael

    2010-03-01

    The use of Virtual Environments has been widely reported as a method of teaching anatomy. Generally such environments only convey the shape of the anatomy to the student. We present the Bangor Augmented Reality Education Tool for Anatomy (BARETA), a system that combines Augmented Reality (AR) technology with models produced using Rapid Prototyping (RP) technology, to provide the student with stimulation for touch as well as sight. The principal aims of this work were to provide an interface more intuitive than a mouse and keyboard, and to evaluate such a system as a viable supplement to traditional cadaver based education.

  16. Simulator investigations of side-stick controller/stability and control augmentation systems for night nap-of-earth flight

    Science.gov (United States)

    Landis, K. H.; Aiken, E. W.

    1984-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions. Previously announced in STAR as N82-23216

  17. Technical Basis for the Use of Alarming Personal Criticality Detectors to Augment Permanent Nuclear Incident Monitor (NIM) Systems in Areas Not Normally Occupied

    CERN Document Server

    Yates, K R

    2003-01-01

    The technical basis for the use of alarming personal criticality detectors (APCDs) to augment permanent Nuclear Incident Monitor (NIM) Systems in areas not normally occupied is evaluated. All applicable DOE O 420.1A and ANSI/ANS-8.3-1997 criticality alarm system requirements and recommendations are evaluated for applicability to APCDs. Based on this evaluation, design criteria and administrative requirements are presented for APCDs. Siemens EPD/Mk-2 and EPD-N devices are shown to meet the design criteria. A definition of not normally occupied is also presented.

  18. A study on volunteer augmentation navigation technology

    Science.gov (United States)

    Wu, HaiTao; Lu, XiaoChun; Zou, DeCai; Han, Tao

    2011-06-01

    Navigation augmentation technology is one of the most common methods to increase the continuity, reliability and integrity of the global satellite navigation system. The concept of volunteer augmentation navigation (VNA) is proposed and the elements and topological structure of VNA are also analyzed in this paper. The study focuses on the neural network model that volunteers and ordinary users use modern communication information network to exchange self-organizing information. The neural cell model of Volunteer Augmentation Navigation using shared information is built. Thus interactive general relative positioning is realized. Then basic theories and methods of volunteer augmentation navigation are formed on the basis of the above-mentioned study. This study of realization mechanism of volunteer augmentation technology helps to form a relatively integral architecture of volunteer augmentation navigation. A user self-service satellite navigation augmentation which combines information exchange and navigation services may strengthen the continuity, reliability and integrity of the navigation system. The volunteer augmentation navigation theory proposed in this paper improves the traditional satellite navigation application model and expands the connotation and denotation of satellite navigation augmentation methods.

  19. Augmented reality for breast imaging.

    Science.gov (United States)

    Rancati, Alberto; Angrigiani, Claudio; Nava, Maurizio B; Catanuto, Giuseppe; Rocco, Nicola; Ventrice, Fernando; Dorr, Julio

    2018-02-21

    Augmented reality (AR) enables the superimposition of virtual reality reconstructions onto clinical images of a real patient, in real time. This allows visualization of internal structures through overlying tissues, thereby providing a virtual transparency vision of surgical anatomy. AR has been applied to neurosurgery, which utilizes a relatively fixed space, frames, and bony references; the application of AR facilitates the relationship between virtual and real data. Augmented Breast imaging (ABI) is described. Breast MRI studies for breast implant patients with seroma were performed using a Siemens 3T system with a body coil and a four-channel bilateral phased-array breast coil as the transmitter and receiver, respectively. The contrast agent used was (CA) gadolinium (Gd) injection (0.1 mmol/kg at 2 ml/s) by a programmable power injector. Dicom formated images data from 10 MRI cases of breast implant seroma and 10 MRI cases with T1-2 N0 M0 breast cancer, were imported and transformed into Augmented reality images. Augmented breast imaging (ABI) demonstrated stereoscopic depth perception, focal point convergence, 3D cursor use, and joystick fly-through. Augmented breast imaging (ABI) to the breast can improve clinical outcomes, giving an enhanced view of the structures to work on. It should be further studied to determine its utility in clinical practice.

  20. Augmented Reality Interfaces for Additive Manufacturing

    DEFF Research Database (Denmark)

    Eiríksson, Eyþór Rúnar; Pedersen, David Bue; Frisvad, Jeppe Revall

    2017-01-01

    This paper explores potential use cases for using augmented reality (AR) as a tool to operate industrial machines. As a baseline we use an additive manufacturing system, more commonly known as a 3D printer. We implement novel augmented interfaces and controls using readily available open source...

  1. On the ionospheric impact of recent storm events on satellite-based augmentation systems in middle and low-latitude sectors

    Science.gov (United States)

    Komjathy, Attila; Sparks, Lawrence; Mannucci, Anthony J.; Pi, Xiaoqing

    2003-01-01

    The Ionospheric correction algorithms have been characterized extensively for the mid-latitude region of the ionosphere where benign conditions usually exist. The United States Federal Aviation Administration's (FAA) Wide Area Augmentation System (WAAS) for civil aircraft navigation is focused primarily on the Conterminous United States (CONUS). Other Satellite-based Augmentation Systems (SBAS) include the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Global Navigation Satellite System (MSAS). Researchers are facing a more serious challenge in addressing the ionospheric impact on navigation using SBAS in other parts of the world such as the South American region on India. At equatorial latitudes, geophysical conditions lead to the so-called Appleton-Hartree (equatorial) anomaly phenomenon, which results in significantly larger ionospheric range delays and range delay spatial gradients than is observed in the CONUS or European sectors. In this paper, we use GPS measurements of geomagnetic storm days to perform a quantitative assessment of WAAS-type ionospheric correction algorithms in other parts of the world such as the low-latitude Brazil and mid-latitude Europe. For the study, we access a world-wide network of 400+ dual frequency GPS receivers.

  2. Confronting an augmented reality

    OpenAIRE

    John Hedberg; Robert Fitzgerald; James Steele; Anna Wilson; Matt Bacon; Danny Munnerley

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial...

  3. Augmentation-related brain plasticity

    Science.gov (United States)

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  4. AUGMENTATION-RELATED BRAIN PLASTICITY

    Directory of Open Access Journals (Sweden)

    Giovanni eDi Pino

    2014-06-01

    Full Text Available Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyzes the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain.Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools.Augmentation modifies function and structure of a number of areas, i.e. primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the

  5. [Augmented spontaneous breathing].

    Science.gov (United States)

    Hachenberg, T

    1996-09-01

    Impaired pulmonary gas exchange can result from lung parenchymal failure inducing oxygenation deficiency and fatigue of the respiratory muscles, which is characterized by hypercapnia or a combination of both mechanisms. Contractility of and coordination between the diaphragm and the thoracoabdominal respiratory muscles predominantly determine the efficiency of spontaneous breathing. Sepsis, cardiac failure, malnutrition or acute changes of the load conditions may induce fatigue of the respiratory muscles. Augmentation of spontaneous breathing is not only achieved by the application of different technical principles or devices; it also has to improve perfusion, metabolism, load conditions and contractility of the respiratory muscles. Intermittent mandatory ventilation (IMV) allows spontaneous breathing of the patient and augments alveolar ventilation by periodically applying positive airway pressure tidal volumes, which are generated by the respirator. Potential advantages include lower mean airway pressure (PAW), as compared with controlled mechanical ventilation, and improved haemodynamics. Suboptimal IMV systems may impose increased work and oxygen cost of breathing, fatigue of the respiratory muscles and CO2 retention. During pressure support ventilation (PSV), inspiratory alterations of PAW or gas flow (trigger) are detected by the respirator, which delivers a gas flow to maintain PAW at a fixed value (usually 5-20 cm H2O) during inspiration. PSV may be combined with other modalities of respiratory therapy such as IMV or CPAP. Claimed advantages of PSV include decreased effort of breathing, reduced systemic and respiratory muscle consumption of oxygen, prophylaxis of diaphragmatic fatigue and an improved extubation rate after prolonged periods of mechanical ventilation. Minimum alveolar ventilation is not guaranteed during PSV; thus, close observation of the patient is mandatory to avoid serious respiratory complications. Continuous positive airway pressure

  6. Augmented nonlinear differentiator design

    Science.gov (United States)

    Shao, Xingling; Liu, Jun; Yang, Wei; Tang, Jun; Li, Jie

    2017-06-01

    This paper presents a sigmoid function based augmented nonlinear differentiator (AND) for calculating the noise-less time derivative from a noisy measurement. The prominent advantages of the present differentiation technique are: (i) compared to the existing tracking differentiators, better noise suppression ability can be achieved without appreciable delay; (ii) the enhanced noise-filtering mechanism not only can be applied to the designed differentiator, but also can be extended for improving noise-tolerance capability of the available differentiators. In addition, the convergence property and robustness performance against noises are investigated via singular perturbation theory and describing function method, respectively. Also, comparison with several classical differentiators is given to illustrate the superiority of AND in noise suppression. Finally, applications on autopilot design and displacement following for nonlinear mass spring mechanical system are given to demonstrate the effectiveness and applicability of the proposed AND technique.

  7. Design Guidelines for the Development of Virtual Reality and Augmented Reality Training Systems for Maintenance and Assembly Tasks

    Directory of Open Access Journals (Sweden)

    Tecchia Franco

    2011-12-01

    Full Text Available The current work describes design guidelines for the development of Virtual Reality (VR and Augmented Reality (AR platforms to train technicians on maintenance and assembly tasks of industrial machineries. The main skill involved in this kind of tasks is the procedural skill. Based on past literature and studies conducted within the SKILLS project, several main design guidelines were formulated. First, observational learning integrated properly within the training protocol increases training efficiency. Second, training protocols combining physical and cognitive fidelity enhances procedural skills acquisition. Third, guidance aids should be provided in a proper and controlled way. And last, enriched information about the task helps trainees to develop a useful mental model of the task. These recommendations were implemented in both VR and AR training platforms.

  8. Initial Model of Social Acceptability for Human Augmentation Technologies

    NARCIS (Netherlands)

    Eghtebas, Chloe; Pay, Yun Suen; Väänänen, Kaisa; Pfeiffer, Ties; Meyer, Joachim; Lukosch, S.G.

    2017-01-01

    Academia and industry engage in major efforts to develop technologies for augmenting human senses and activities. Many of these technologies, such as augmented reality (AR) and virtual reality (VR) head mounted displays (HMD), haptic augmentation systems, and exoskeletons can be applied in numerous

  9. Confronting an Augmented Reality

    Science.gov (United States)

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  10. CCL19 and CCL28 augment mucosal and systemic immune responses to HIV-1 gp140 by mobilizing responsive immunocytes into secondary lymph nodes and mucosal tissue.

    Science.gov (United States)

    Hu, Kai; Luo, Sukun; Tong, Lina; Huang, Xin; Jin, Wei; Huang, Wenjie; Du, Tao; Yan, Yan; He, Siyi; Griffin, George E; Shattock, Robin J; Hu, Qinxue

    2013-08-15

    Induction of broad and potent neutralizing Abs at the mucosal portals of entry remains a primary goal for most vaccines against mucosally acquired viral infections. Selection of appropriate adjuvants capable of promoting both systemic and mucosal responses will be crucial for the development of effective immunization strategies. In this study, we investigated whether plasmid codelivery of cytokines APRIL, CCL19, or CCL28 can enhance Ag-induced immune responses to HIV-1 gp140. Our results demonstrated that pCCL19 and pCCL28, but not pAPRIL, significantly enhanced Ag-specific systemic and mucosal Ab responses. gp140-specific Abs in serum enhanced by pCCL19 or pCCL28 were broadly distributed across all four IgG subclasses, of which IgG1 was predominant. The enhanced systemic and mucosal Abs showed increased neutralizing activity against both homologous and heterologous HIV-1, and potency correlated with gp140-specific serum IgG and vaginal IgA levels. Measurement of gp140-specific cytokines produced by splenocytes demonstrated that pCCL19 and pCCL28 augmented balanced Th1/Th2 responses. pCCL19 and pCCL28 also increased IgA(+) cells in colorectal mucosal tissue. pCCL19 codelivery resulted in an increase of CCR7(+) CD11c(+) cells in mesenteric lymph nodes and both CCR7(+) CD11c(+) cells and CCR7(+) CD3e(+) cells in spleen, whereas pCCL28 codelivery resulted in an augment of CCR10(+) CD19(+) cells in both spleen and mesenteric lymph nodes. Together, our data indicate that pCCL19 and pCCL28 can enhance HIV-1 envelope-specific systemic and mucosal Ab responses, as well as T cell responses. Such enhancements appear to be associated with mobilization of responsive immunocytes into secondary lymphoid organs and mucosal tissues through interactions with corresponding receptors.

  11. A Survey of Augmented Reality Navigation

    OpenAIRE

    Bhorkar, Gaurav

    2017-01-01

    Navigation has been a popular area of research in both academia and industry. Combined with maps, and different localization technologies, navigation systems have become robust and more usable. By combining navigation with augmented reality, it can be improved further to become realistic and user friendly. This paper surveys existing researches carried out in this area, describes existing techniques for building augmented reality navigation systems, and the problems faced.

  12. Visual Analysis and Filtering to Augment Cognition

    OpenAIRE

    Kölsch, Mathias; Wachs, Juan; Sadagic, Amela

    2013-01-01

    We built and demonstrated a system that augments instructors’ sensing abilities and augments their cognition through analysis and filtering of visual information. Called BASE-IT, our system helps US Marine instructors provide excellent training despite the challenging environment, hundreds of trainees and high trainee-to-instructor ratios, non-stop action, and diverse training objectives. To accomplish these objectives, BASE-IT widens the sensory input in multiple dimensions...

  13. Augmented reality building operations tool

    Science.gov (United States)

    Brackney, Larry J.

    2014-09-09

    A method (700) for providing an augmented reality operations tool to a mobile client (642) positioned in a building (604). The method (700) includes, with a server (660), receiving (720) from the client (642) an augmented reality request for building system equipment (612) managed by an energy management system (EMS) (620). The method (700) includes transmitting (740) a data request for the equipment (612) to the EMS (620) and receiving (750) building management data (634) for the equipment (612). The method (700) includes generating (760) an overlay (656) with an object created based on the building management data (634), which may be sensor data, diagnostic procedures, or the like. The overlay (656) is configured for concurrent display on a display screen (652) of the client (642) with a real-time image of the building equipment (612). The method (700) includes transmitting (770) the overlay (656) to the client (642).

  14. Augmented reality: a review.

    Science.gov (United States)

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  15. Real-time augmented face

    OpenAIRE

    Lepetit, V.; Vacchetti, L; Thalmann, D; Fua, P.

    2003-01-01

    This real-time augmented reality demonstration relies on our tracking algorithm described in V. Lepetit et al (2003). This algorithm considers natural feature points, and then does not require engineering of the environment. It merges the information from preceding frames in traditional recursive tracking fashion with that provided by a very limited number of reference frames. This combination results in a system that does not suffer from jitter and drift, and can deal with drastic changes. T...

  16. [Revenue and losses with vertebral augmentation under the G-DRG system 2012 - a comparison of supply costs in the context of vertebroplasty and kyphoplasty].

    Science.gov (United States)

    Krüger, A; Wollny, M; Oberkircher, L; Bornemann, R; Pflugmacher, R

    2012-10-01

    If clearly indicated and implemented, augmentations of vertebral bodies with cement are standardized, safe and low-risk procedures. However, the multiplicity of providers and systems are today more varied than ever. At present, the systems differ starkly from one another not only in specifications, possible applications and extensions of indications, but they are also extremely variable in price. Publications have shown that in times of medical-economic change, vertebral augmentations make sense not only medically, but also in terms of economics and the national economy. Our analysis targets the question of how insurance costs with vertebroplasty and kyphoplasty affect profit margins per G-DRG (German Diagnosis Related Groups) in consideration of the different system approaches of the providers. After reviewing the literature, extremely varied, minimally invasive augmentation methods and techniques for treating vertebral body fractures were identified and classified. These were grouped based also [sic: on] OPS and possibly further subdivisions. Material costs were gathered based on average price quotations of different providers and techniques and aligned with those from the literature. The inpatient costs per day were estimated as a lump sum according to published information, since our analysis was interested in less detailed process costs as these are difficult to transfer to other clinics due to parameters being unique to each facility. The G-DRGs concerned were likewise determined according to the case-based lump sum catalogue from 2012. Based on this, the material costs as well as the daily costs per day of inpatient stay according to the average length of stay per G-DRG were subtracted. Vertebral augmentation methods are classified into vertebroplasty and kyphoplasty according to OPS. In addition, according to current literature, a further subdivision of kyphoplasty into substance-conserving or direct cement injection techniques and substance-destroying or

  17. Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice.

    Science.gov (United States)

    Adebayo, Joseph O; Adewole, Kayode E; Krettli, Antoniana U

    2017-07-31

    Cysteine-stabilised peptides (CSP) are majorly explored for their bioactivities with applications in medicine and agriculture. Morinda lucida leaf is used indigenously for the treatment of malaria; it also contains CSP but the role of CSP in the antimalarial activity of the leaf has not been evaluated. This study was therefore performed to evaluate the antimalarial activity of partially purified cysteine-stabilised peptide extract (PPCPE) of Morinda lucida leaf and its possible augmentation of the antioxidant systems of liver and erythrocytes in murine malaria. PPCPE was prepared from Morinda lucida leaf. The activity of PPCPE was evaluated in vitro against Plasmodium falciparum W2 and its cytotoxicity against a BGM kidney cell line. PPCPE was also evaluated for its antimalarial activity and its effects on selected liver and erythrocyte antioxidant parameters in P. berghei NK65-infected mice. PPCPE was not active against P. falciparum W2 (IC50: >50µg/ml) neither was it cytotoxic (MLD50: >1000µg/ml). However, PPCPE was active against P. berghei NK65 in vivo, causing 51.52% reduction in parasitaemia at 31.25mg/Kg body weight on day 4 post-inoculation. PPCPE significantly reduced (P < 0.05) malondialdehyde concentrations in the liver and erythrocyte at higher doses compared to untreated controls. PPCPE increased glutathione concentration and activities of glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase in a dose-dependent manner, which was significant (P < 0.05) at higher doses compared to the untreated controls. The results suggest that PPCPE may require bioactivation in vivo in order to exert its antimalarial effect and that PPCPE may augment the antioxidant defense system to alleviate the reactive oxygen species-mediated complications of malaria. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration

    Science.gov (United States)

    Mukherjee, D.; Wong, J.; Griffin, B.; Ellis, S. G.; Porter, T.; Sen, S.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: In this study, the feasibility of delivering and enhancing the uptake of vascular endothelial growth factor (VEGF) into the intact endothelium by using ultrasound (US) facilitation was determined. BACKGROUND: A limitation of tissue-targeted drug delivery is the need for direct arterial cannulation. We postulate a mechanism by which agents injected intravenously may be targeted to a tissue using US and ultrasonic contrast agents. METHODS: We used a rat model to test the ability of US and an ultrasonic contrast agent perflurocarbon exposed sonicated dextrose albumin (PESDA) to increase uptake of VEGF in the myocardium. Continuous wave Doppler US (0.6 W/cm2 at 1 MHz for 15 min) was applied to the chest wall overlying the myocardium during intravenous injection with either VEGF (100 microg/kg) alone or a combination of VEGF and PESDA (0.1%). Control rats had VEGF infused without US or PESDA. The VEGF uptake was measured quantitatively in the heart, lung, liver and kidneys by enzyme-linked immunosorbent assay (ng/g of tissue) and morphologically by fluorescence microscopy. RESULTS: There was an eight-fold increase in VEGF uptake in the heart by US alone (16.86 +/- 1.56 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) and a 13-fold increase with US + PESDA (26.78 +/- 2.88 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) compared with control rats. Fluorescence microscopy revealed deposition of VEGF in the endothelium of small intramyocardial arterioles. CONCLUSIONS: These results show a marked increase in endothelial VEGF uptake with US and US + PESDA. Thus, US may be used to augment endothelial VEGF uptake 10-fold to 13-fold.

  19. Augmenting the access grid using augmented reality

    Science.gov (United States)

    Li, Ying

    2012-01-01

    The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.

  20. Interactive augmented reality

    OpenAIRE

    Moret Gabarró, Roger

    2010-01-01

    Projecte final de carrera realitzat en col.laboració amb el Royal Institute of Technology Augmented reality can provide a new experience to users by adding virtual objects where they are relevant in the real world. The new generation of mobile phones offers a platform to develop augmented reality application for industry as well as for the general public. Although some applications are reaching commercial viability, the technology is still limited. The main problem designers have to face w...

  1. Confronting an augmented reality

    Directory of Open Access Journals (Sweden)

    John Hedberg

    2012-08-01

    Full Text Available How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial augmentation of reality links to existing theories of education and learning, focusing on ideas of cognitive dissonance and the confrontation of new realities implied by exposure to new and varied perspectives. We also discuss connections with broader debates brought on by the social and cultural changes wrought by the increased digitalisation of our lives, especially the concept of the extended mind. Rather than offer a prescription for augmentation, our intention is to throw open debate and to provoke deep thinking about what interacting with and creating an augmented reality might mean for both teacher and learner.

  2. Multi-use geothermal-energy system with augmentation for enhanced utilization: a non-electric application of geothermal energy in Susanville, California. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.K.; Benner-Drury, D.L.; Cunnington, G.R.

    1979-02-01

    A site specific engineering and economic study of multi-use, augmented geothermal space/water heating and cooling systems was completed. The overall benefits to the City of Susanville, in both the public and private sectors, of using low temperature (150/sup 0/F to 240/sup 0/F) geothermal resources are explored. Options considered, alone and in combination, include heat pumps, fossil-fuel peaking, user load balancing, and cascading from the geothermal system serving the public buildings into a private Park of Commerce development. A range of well temperatures, depths, flow rates, and drilling costs are considered to provide system cost sensitivities and to make the study more widely useful to other sites. A planned development is emphasized for ease of financing of expansion. A preliminary design of Phase A of a Susanville Public Building Energy System and a conceptual design of an integrated Park of Commerce, Phase I, are included. This system was designed for a 150/sup 0/F resource and can be used as a model for other communities with similar resource temperatures.

  3. Augmented Reality Interfaces for Additive Manufacturing

    OpenAIRE

    Eiríksson, Eyþór Rúnar; Pedersen, David Bue; Frisvad, Jeppe Revall; Skovmand, Linda; Heun, Valentin; Maes, Pattie; Aanæs, Henrik

    2017-01-01

    This paper explores potential use cases for using augmented reality (AR) as a tool to operate industrial machines. As a baseline we use an additive manufacturing system, more commonly known as a 3D printer. We implement novel augmented interfaces and controls using readily available open source frameworks and low cost hardware. Our results show that the technology enables richer and more intuitive printer control and performance monitoring than currently available on the market. Therefore, th...

  4. A gait retraining system using augmented-reality to modify footprint parameters: Effects on lower-limb sagittal-plane kinematics.

    Science.gov (United States)

    Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien

    2018-01-03

    Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    Science.gov (United States)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  6. Applied Augmented Reality for High Precision Maintenance

    Science.gov (United States)

    Dever, Clark

    Augmented Reality had a major consumer breakthrough this year with Pokemon Go. The underlying technologies that made that app a success with gamers can be applied to improve the efficiency and efficacy of workers. This session will explore some of the use cases for augmented reality in an industrial environment. In doing so, the environmental impacts and human factors that must be considered will be explored. Additionally, the sensors, algorithms, and visualization techniques used to realize augmented reality will be discussed. The benefits of augmented reality solutions in industrial environments include automated data recording, improved quality assurance, reduction in training costs and improved mean-time-to-resolution. As technology continues to follow Moore's law, more applications will become feasible as performance-per-dollar increases across all system components.

  7. A meta-analysis of single case research studies on aided augmentative and alternative communication systems with individuals with autism spectrum disorders.

    Science.gov (United States)

    Ganz, Jennifer B; Earles-Vollrath, Theresa L; Heath, Amy K; Parker, Richard I; Rispoli, Mandy J; Duran, Jaime B

    2012-01-01

    Many individuals with autism cannot speak or cannot speak intelligibly. A variety of aided augmentative and alternative communication (AAC) approaches have been investigated. Most of the research on these approaches has been single-case research, with small numbers of participants. The purpose of this investigation was to meta-analyze the single case research on the use of aided AAC with individuals with autism spectrum disorders (ASD). Twenty-four single-case studies were analyzed via an effect size measure, the Improvement Rate Difference (IRD). Three research questions were investigated concerning the overall impact of AAC interventions on targeted behavioral outcomes, effects of AAC interventions on individual targeted behavioral outcomes, and effects of three types of AAC interventions. Results indicated that, overall, aided AAC interventions had large effects on targeted behavioral outcomes in individuals with ASD. AAC interventions had positive effects on all of the targeted behavioral outcome; however, effects were greater for communication skills than other categories of skills. Effects of the Picture Exchange Communication System and speech-generating devices were larger than those for other picture-based systems, though picture-based systems did have small effects.

  8. Everything Augmented: On the Real in Augmented Reality

    Directory of Open Access Journals (Sweden)

    Hanna Schraffenberger

    2014-12-01

    Full Text Available What is augmented in Augmented Reality (AR? In this paper, we review existing opinions and show how little consensus exists on this matter. Subsequently, we approach the question from a theoretical and technology-independent perspective. We identify spatial and content-based relationships between the virtual and the real as being decisive for AR and come to the conclusion that virtual content augments that to which it relates. Subsequently, we categorize different forms of AR based on what is augmented. We distinguish between augmented environments, augmented objects, augmented humans and augmented content and consider the possibility of augmented perception. The categories are illustrated with AR (art works and conceptual differences between them are pointed out. Moreover, we discuss what the real contributes to AR and how it can shape (future AR experiences. A summary of our findings and suggestions for future research and practice, such as research into multimodal and crossmodal AR, conclude the paper.

  9. Media-Augmented Exercise Machines

    Science.gov (United States)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  10. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  11. The Augmented Book

    OpenAIRE

    Miller, D

    2015-01-01

    The Augmented Book: Sherwood Rise 30 January 2015 at 14:48 From 2012-13 I carried out practice-based research for the UNESCO future of the book project. The aim was to consider the future of the book using new media technology, particularly Augmented Reality (AR) on mobile phones. My research question was: How could digital media and physical books work together and interact to make a coherent story? I set about making an interactive story where participatory interaction with digital media vi...

  12. Towards a first implementation of the WLIMES approach in living system studies advancing the diagnostics and therapy in augmented personalized medicine.

    Science.gov (United States)

    Simeonov, Plamen L

    2017-12-01

    The goal of this paper is to advance an extensible theory of living systems using an approach to biomathematics and biocomputation that suitably addresses self-organized, self-referential and anticipatory systems with multi-temporal multi-agents. Our first step is to provide foundations for modelling of emergent and evolving dynamic multi-level organic complexes and their sustentative processes in artificial and natural life systems. Main applications are in life sciences, medicine, ecology and astrobiology, as well as robotics, industrial automation, man-machine interface and creative design. Since 2011 over 100 scientists from a number of disciplines have been exploring a substantial set of theoretical frameworks for a comprehensive theory of life known as Integral Biomathics. That effort identified the need for a robust core model of organisms as dynamic wholes, using advanced and adequately computable mathematics. The work described here for that core combines the advantages of a situation and context aware multivalent computational logic for active self-organizing networks, Wandering Logic Intelligence (WLI), and a multi-scale dynamic category theory, Memory Evolutive Systems (MES), hence WLIMES. This is presented to the modeller via a formal augmented reality language as a first step towards practical modelling and simulation of multi-level living systems. Initial work focuses on the design and implementation of this visual language and calculus (VLC) and its graphical user interface. The results will be integrated within the current methodology and practices of theoretical biology and (personalized) medicine to deepen and to enhance the holistic understanding of life. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Augmentative and Alternative Communication in Autism: A Comparison of the Picture Exchange Communication System and Speech-Output Technology

    Science.gov (United States)

    Boesch, Miriam Chacon

    2011-01-01

    The purpose of this comparative efficacy study was to investigate the Picture Exchange Communication System (PECS) and a speech-generating device (SGD) in developing requesting skills, social-communicative behavior, and speech for three elementary-age children with severe autism and little to no functional speech. Requesting was selected as the…

  14. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  15. Augmented Reality i naturfagsundervisningen

    DEFF Research Database (Denmark)

    Radmer, Ole; Surland, Mogens; Nielsen, Birgitte Lund

    Augmented Reality (AR) giver ny mulighed for, at elever kan lave undersøgelser i naturfag med enkel teknologi, hvor animationer og simulationer kobles med det virkelige fænomen. I workshoppen kan I afprøve AR eksempler, udviklet i et internationalt EU projekt. Der vil være noget, der direkte kan...

  16. Mobile-health approach: A critical look on its capacity to augment health system of developing countries

    Directory of Open Access Journals (Sweden)

    Sanjeev Davey

    2014-01-01

    Full Text Available Background: The mobile-health approach is currently knocking the doors of public health to make use of this rapidly advancing technology in developing countries; therefore, it needs a critical look on its capacity in improving health system of developing countries. Materials and Methods: A systematic review of studies in literature published till 31 st October 2013 of last 10 years on key search word: "Capacity of mobile-health in improving health system of developing countries" was done from medical search engines abstracting databases such as Pub-med, WHO, Cochrane database, Google scholar, and Bio-med Central. Both types of studies elucidating utility and no benefit of mobile-health in developing countries were included as main criteria for deciding the capacity of mobile-health approach in health system of developing countries. M-health studies on areas of impact, effectiveness, and evaluation and previous reviews, conferences data, and exploratory studies were the main study designs incorporated. Studies on m-health in developed world, Indian studies as well data from thesis or dissertation were excluded in this review. Discussion: Multi-faceted mobile-health applications, strategies, and approaches currently lack proper regulation and standardization from health care authorities, and currently their results also vary from good to no beneficial effects as found in this review. Conclusion: Umbrella of mobile-health approaches must be used intelligently, keeping in mind the fact that, it can provide a greater access and quality health care to larger segments of a rural population and its potential to improve the capacity of health system in developing countries.

  17. Mobile-health approach: a critical look on its capacity to augment health system of developing countries.

    Science.gov (United States)

    Davey, Sanjeev; Davey, Anuradha; Singh, Jai Vir

    2014-07-01

    The mobile-health approach is currently knocking the doors of public health to make use of this rapidly advancing technology in developing countries; therefore, it needs a critical look on its capacity in improving health system of developing countries. A systematic review of studies in literature published till 31(st) October 2013 of last 10 years on key search word: Capacity of mobile-health in improving health system of developing countries was done from medical search engines abstracting databases such as Pub-med, WHO, Cochrane database, Google scholar, and Bio-med Central. Both types of studies elucidating utility and no benefit of mobile-health in developing countries were included as main criteria for deciding the capacity of mobile-health approach in health system of developing countries. M-health studies on areas of impact, effectiveness, and evaluation and previous reviews, conferences data, and exploratory studies were the main study designs incorporated. Studies on m-health in developed world, Indian studies as well data from thesis or dissertation were excluded in this review. Multi-faceted mobile-health applications, strategies, and approaches currently lack proper regulation and standardization from health care authorities, and currently their results also vary from good to no beneficial effects as found in this review. Umbrella of mobile-health approaches must be used intelligently, keeping in mind the fact that, it can provide a greater access and quality health care to larger segments of a rural population and its potential to improve the capacity of health system in developing countries.

  18. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  19. Webizing mobile augmented reality content

    Science.gov (United States)

    Ahn, Sangchul; Ko, Heedong; Yoo, Byounghyun

    2014-01-01

    This paper presents a content structure for building mobile augmented reality (AR) applications in HTML5 to achieve a clean separation of the mobile AR content and the application logic for scaling as on the Web. We propose that the content structure contains the physical world as well as virtual assets for mobile AR applications as document object model (DOM) elements and that their behaviour and user interactions are controlled through DOM events by representing objects and places with a uniform resource identifier. Our content structure enables mobile AR applications to be seamlessly developed as normal HTML documents under the current Web eco-system.

  20. Components of a Rice-Oilseed Rape Production System Augmented with Trichoderma sp. Tri-1 Control Sclerotinia sclerotiorum on Oilseed Rape.

    Science.gov (United States)

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Yinbo; Qin, Lu; Liao, Xing

    2015-10-01

    Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. A multicomponent treatment that consisted of the residual rice straw remaining after rice harvest and Trichoderma sp. Tri-1 (Tri-1) formulated with the oilseed rape seedcake fertilizer was used in field soil infested with S. sclerotiorum. This treatment resulted in oilseed rape seed yield that was significantly greater than the nontreated control or when the fungicide carbendizem was used in the presence of this pathogen in field trials. Yield data suggested that the rice straw, oilseed rape seedcake, and Tri-1 components of this treatment all contributed incrementally. Similar treatment results were obtained regarding reduction in disease incidence. Slight improvements in yield and disease incidence were detected when this multicomponent treatment was combined with a fungicide spray. Inhibition of sclerotial germination by this multicomponent treatment trended greater than the nontreated control at 90, 120, and 150 days in field studies but was not significantly different from this control. This multicomponent treatment resulted in increased yield relative to the nontreated control in the absence of pathogen in a greenhouse pot study, while the straw alone and the straw plus oilseed rape seedcake treatments did not; suggesting that Tri-1 was capable of promoting growth. Experiments reported here indicate that a treatment containing components of a rice-oilseed rape production system augmented with Tri-1 can control S. sclerotiorum on oilseed rape, be used in integrated strategies containing fungicide sprays for control of this pathogen, and promote plant growth.

  1. Widening horizons through alternative and augmentative communication systems for managing children with special health care needs in a pediatric dental setup.

    Science.gov (United States)

    Grewal, Navneet; Sethi, Tanvi; Grewal, Sukrit

    2015-01-01

    This study compared and evaluated the efficacy of conventional low-tech and improvised high-tech alternative and augmentative communication (AAC) software in behavior management in the dental environment and oral hygiene activities performance of children with special health care needs as well as improving their communication skills with the dentist and caretakers. A total of 60 institutionalized children with special health care needs were divided into two groups of 30 each to be exposed to low-tech AAC and high-tech AAC systems (special smiles for special children material). Assessment of knowledge as well as behavior modification achieved before and after training was carried out on the basis of pretested proformas formatted through various peer reviewed articles. Rapid and enhanced assimilation of knowledge was observed in group 2 exposed to high-tech AAC improvised software after intergroup comparison of total scores at baseline, first, second, third, sixth, and ninth month of training. Oral hygiene performance was compared using PHP (Patient Hygiene Performance) index and after training results revealed highly significant change in both groups. The subjects benefitted immensely from the programme as group 1 and group 2 children demonstrated good behavior after training compared to none at baseline. On the whole, this programme had a positive motivational impact. © 2014 Special Care Dentistry Association and Wiley Periodicals, Inc.

  2. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2011-06-01

    Full Text Available Abstract Background The process of HIV-1 genomic RNA (gRNA encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ. Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site from the 5' untranslated region (UTR. Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ. Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons; however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into

  3. Integrated Biophysical and Biochemical Signals Augment Megakaryopoiesis and Thrombopoiesis in a Three-Dimensional Rotary Culture System

    Science.gov (United States)

    Yang, Yiqing; Liu, CuiCui; Lei, Xiaohua; Wang, Hongtao; Su, Pei; Ru, Yongxin; Ruan, Xinhua; Duan, Enkui; Feng, Sizhou; Han, Mingzhe; Xu, Yuanfu; Shi, Lihong

    2016-01-01

    Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of the platelet supply limits the care of patients. Although derivation of clinical-scale platelets in vitro could provide a new source for transfusion, the devices and procedures for deriving scalable platelets for clinical applications have not been established. In the present study, we found that a rotary cell culture system (RCCS) can potentiate megakaryopoiesis and significantly improve the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the RCCS improved platelet generation efficiency by as much as ∼3.7-fold compared with static conditions. Shear force, simulated microgravity, and better diffusion of nutrients and oxygen from the RCCS, altogether, might account for the improved efficient platelet generation. The cost-effective and highly controllable strategy and methodology represent an important step toward large-scale platelet production for future biomedical and clinical applications. Significance Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of platelet supply limits the care of patients. Thus, derivation of clinical-scale platelets in vitro would provide a new source for transfusion. The present study evaluated a rotary suspension cell culture system that was able to potentiate megakaryopoiesis and significantly improved the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the three-dimensional system improved platelet generation efficiency compared with the static condition. The three-dimensional device and the strategy developed in the present study should markedly improve the generation of large-scale platelets for use in future biomedical and clinical settings. PMID:26702125

  4. Impaired parasympathetic augmentation under relaxation in patients with depression as assessed by a novel non-contact microwave radar system.

    Science.gov (United States)

    Matsui, Takemi; Kakisaka, Kota; Shinba, Toshikazu

    2016-01-01

    In order to conduct objective screening of major depressive disorder (MDD), a chair-based system was developed which measures alteration of parasympathetic activation induced by relaxing audio-visual exposure in a non-contact way using dual compact-radars attached to a chair back. The system determines autonomic activation by calculating low (LF) and high frequency (HF) components of heart rate variability (HRV) before and after relaxation. Forty-one subjects (28 normal subjects, 13 MDD subjects) were exposed to relaxing natural sounds and images for 10 min. In order to determine the possibility of MDD from autonomic alteration induced by relaxing, linear discriminant analysis was conducted using LF and HF before and after relaxation. F-test revealed the significance of derived linear discriminant function (p < 0.001). The Mahalanobis distance and U value were 3.2 and 0.89, respectively. The derived linear discriminant function achieved 85% sensitivity (11 out of 13 MDD patients) and 89% specificity (25 out of 28 normal subjects).

  5. Altered lipoproteins in patients with systemic lupus erythematosus are associated with augmented oxidative stress: a potential role in atherosclerosis.

    Science.gov (United States)

    Park, Jin Kyun; Kim, Jae-Yong; Moon, Jin Young; Ahn, Eun Young; Lee, Eun Young; Lee, Eun Bong; Cho, Kyung-Hyun; Song, Yeong Wook

    2016-12-30

    To examine the structural and oxidative properties of lipoproteins from patients with systemic lupus erythematosus (SLE). The lipid profiles of 35 SLE patients and 15 healthy controls (HCs) were compared. Oxidation status, susceptibility to oxidation, and structural integrity of low-density lipoprotein (LDL) were determined by measuring malondialdehyde (MDA), de novo formation of conjugated dienes in the presence of CuSO4, and mobility on gel electrophoresis, respectively. In vitro foam cell formation and the oxidative potential in zebrafish embryos were examined. LDL levels in SLE patients and HCs were similar (p = 0.277). LDL from SLE patients was more fragmented than that from HCs. In addition, LDL from SLE patients was more oxidized than LDL from HCs (p Lipoproteins from SLE patients exhibited greater oxidative potential, which might contribute to accelerated atherosclerosis in SLE.

  6. Virtual and augmented reality in education and training: an interactive, multimedia training and information system for use in an exhibition

    Science.gov (United States)

    Gausemeier, Juergen; Brueseke, Ute; Wortmann, Raphael

    2003-04-01

    This article describes a training and information system being developed within the framework of a project for the Heinz Nixdorf MuseumsForum, the well known computer museum. The project in question involves the development of an interactive multimedia VR/AR exhibit. Visitors to this exhibit are provided with an eventful insight into the operation of a computer and the Internet. The exhibit consists of different modules covering various topic areas that visitors can work through in sequence. Depending on their respective interests, visitors can then find out more about the overall topic area. This article describes the individual modules (zones) and their subject matter. The project being described within this article is still in progress. The development phase is scheduled to be completed by the end of 2002, at which time the exhibit will be opened to visitors to the museum.

  7. AR DOC: Augmented reality documentaries

    DEFF Research Database (Denmark)

    Vistisen, Peter

    2014-01-01

    Augmented Reality Documentaries (AR DOC) er et ’lille’ Shareplay projekt (ansøgte midler augmented reality cross media løsninger, til at skabe engagerende publikumsformidling...... indenfor oplevelsesindustrien. Projektet har genereret ny viden omkring, hvordan fysisk og digital formidling kan understøttes via Augmented Reality som formidlingsformat....

  8. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  9. Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males.

    Science.gov (United States)

    Smits, Mark M; Muskiet, Marcel H A; Tonneijck, Lennart; Hoekstra, Trynke; Kramer, Mark H H; Diamant, Michaela; van Raalte, Daniël H

    2016-04-01

    Clinical use of glucagon-like peptide-1 receptor agonists (GLP-1RA) is consistently associated with heart rate (HR) acceleration in type 2 diabetes patients. We explored the mechanisms underlying this potential safety concern. Ten healthy overweight males (aged 20-27 years) were examined in an open label, crossover study. Automated oscillometric blood pressure measurements and finger photoplethysmography were performed throughout intravenous administration of placebo (saline 0.9%), exenatide (targeting therapeutic concentrations) and a combination of exenatide and the nitric oxide synthase inhibitor L-N(G) -monomethyl arginine (L-NMMA). Sympathetic nervous system (SNS) activity was measured by heart rate variability and rate-pressure product. Exenatide increased HR by a mean maximum of 6.8 (95% CI 1.7, 11.9) beats min(-1) (P < 0.05), systolic blood pressure (SBP) by 9.8 (95% CI 3.5, 16.1) mmHg (P < 0.01) and markers of SNS activity (P < 0.05). No changes in total peripheral resistance were observed. Increases in HR, SBP and sympathetic activity were preserved during concomitant L-NMMA infusion. Our data argue against exenatide-induced reflex tachycardia as a response to vasodilation and rather suggest the involvement of SNS activation in humans. © 2015 The British Pharmacological Society.

  10. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Singh, Rajnish Prakash; Jha, Prabhat Nath

    2016-01-01

    The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from 'Capparis decidua' plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150-200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using PGPR

  11. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Rajnish Prakash Singh

    Full Text Available The present study demonstrates the plant growth promoting (PGP potential of a bacterial isolate CDP-13 isolated from 'Capparis decidua' plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150-200 mM. It significantly reduced inhibition of plant growth (15 to 85% caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75% of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to

  12. Augmenting Clozapine With Sertindole

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Emborg, Charlotte; Gydesen, Susanne

    2012-01-01

    . The study design was a 12-week, double-blind, randomized, placebo-controlled study including patients with International Statistical Classification of Diseases, 10th Revision schizophrenia (F20.0-F20.3) and treated with clozapine for at least 6 months who had not achieved sufficient response. Patients were...... Inventory, fasting glucose, lipids, and electrocardiogram. Clozapine augmentation with sertindole was not superior to placebo regarding total score or subscale score of the Positive and Negative Syndrome Scale, Clinical Global Impression, World Health Organization Quality of Life Brief, or Drug Attitude...... Inventory. No increased adverse effects compared with placebo were found. Four patients randomized to sertindole experienced a significant worsening of psychosis, and 2 of them required psychiatric admission. Metabolic parameters were unchanged during the study, but augmentation of clozapine with sertindole...

  13. Transaxillary Endoscopic Breast Augmentation

    Directory of Open Access Journals (Sweden)

    Hyung-Bo Sim

    2014-09-01

    Full Text Available The axillary technique is the most popular approach to breast augmentation among Korean women. Transaxillary breast augmentation is now conducted with sharp electrocautery dissection under direct endoscopic vision throughout the entire process. The aims of this method are clear: both a bloodless pocket and a sharp non-traumatic dissection. Round textured or anatomical cohesive gel implants have been used to make predictable well-defined inframammary creases because textured surface implants demonstrated a better stability attributable to tissue adherence compared with smooth surface implants. The axillary endoscopic technique has greatly evolved, and now the surgical results are comparable to those with the inframammary approach. The author feels that this technique is an excellent choice for young patients with an indistinct or absent inframammary fold, who do not want a scar in the aesthetic unit of their chest.

  14. Augmented reality for improved safety

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    Sometimes, CERN experts have to operate in low visibility conditions or in the presence of possible hazards. Minimising the duration of the operation and reducing the risk of errors is therefore crucial to ensuring the safety of personnel. The EDUSAFE project integrates different technologies to create a wearable personnel safety system based on augmented reality.    The EDUSAFE integrated safety system uses a camera mounted on the helmet to monitor the working area.  In its everyday operation of machines and facilities, CERN adopts a whole set of measures and safety equipment to ensure the safety of its personnel, including personal wearable safety devices and access control systems. However, sometimes, scheduled and emergency maintenance work needs to be done in zones with potential cryogenic hazards, in the presence of radioactive equipment or simply in demanding conditions where visibility is low and moving around is difficult. The EDUSAFE Marie Curie Innovative&...

  15. Augmented reality services

    Directory of Open Access Journals (Sweden)

    Tomáš Koubek

    2013-01-01

    Full Text Available We assume that one of the key reasons is in the difference between a standalone application and a web service. Both architectures have some advantages and disadvantages. The Standalone application (e.g. Nokia/OVI Maps provides the required functionality. From the user point of view, main asset of this “offline” approach is network connectivity independence. However, this kind of applications must be upgraded manually. Moreover, it is hard to get any data about the application usage because it requires additional actions from the user – data are usually acquired through conventional ways, such as email or web forms.The online service such as Google Maps (including its mobile application can offer the same functionality as the offline application. Nevertheless, a permanent connection to provider servers is necessary. This can be taken as a drawback. On the other hand, usage data collection is easier and can be done without the user intervention. The data collection provides a valuable analysis basis of the user habits and needs. This analysis is necessary for design of a complex “user” based solutions such as Google Now.Augmented reality applications are usually based on the first mentioned approach. In this article, we describe our model of augmented reality as a service and compare its features with standalone solutions. Further, other important key aspects for large emergence of augmented reality services in a mainstream market are discussed.

  16. An assessment of various side-stick controller/stability and control augmentation systems for night nap-of-Earth flight using piloted simulation

    Science.gov (United States)

    Landis, K. H.; Aiken, E. W.

    1982-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.

  17. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice.

    Science.gov (United States)

    Rajapakse, Niwanthi W; Karim, Florian; Evans, Roger G; Kaye, David M; Head, Geoffrey A

    2015-01-01

    Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P obese and lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.

  18. Fraxetin and ethyl acetate extract from Lawsonia inermis L. ameliorate oxidative stress in P. berghei infected mice by augmenting antioxidant defence system.

    Science.gov (United States)

    Singh, Dhananjay Kumar; Cheema, Harveer Singh; Saxena, Archana; Jyotshana; Singh, Shilpi; Darokar, Mahendra P; Bawankule, Dnyaneshwar U; Shanker, Karuna; Luqman, Suaib

    2017-12-01

    Lawsonia inermis L. is a well-documented plant for cosmetic as well as medicinal properties. It is used by local communities in India and Nigeria for the treatment of many parasitic diseases, including malaria. Earlier studies on the plant's antiplasmodial activity were not assigned to any phytochemical with no quality assurance data. In this report, a recent chemically characterized extract and it's major constituent were investigated for in vitro antiplasmodial activity on chloroquine sensitive NF-54 strain. Furtherly, the potent extract and this constituent were assessed in vivo in Plasmodium berghei infected mice. The bioactive phytochemical and enriched extract were also monitored against various oxidative stress parameters. The extract characterization was done by the quantitative analysis of eight phytochemicals using gradient reverse phase HPLC method. In vitro antiplasmodial activity was evaluated on chloroquine sensitive NF-54 strain by the determination of pfLDH activity. In vivo activity of the most potent extract and constituent were evaluated in P. berghei infected mice upon oral administration. The estimation of oxidative stress was done by monitoring various enzymatic and non-enzymatic parameters. The ethyl acetate extract of leaves (IC 50 9.00 ± 0.68 µg/ml) and fraxetin (IC 50 19.21 ± 1.04 µM) were the most effective in in vitro assays therefore selected for in vivo tests. The administration of the ethyl acetate extract of leaves and fraxetin to the infected mice resulted in significant (p ethyl acetate extract of L. inermis and fraxetin were able to suppress the oxidative damage by augmenting endogenous antioxidant system and thus ameliorated the plasmodium infection in mice. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Personalized augmented reality for anatomy education.

    Science.gov (United States)

    Ma, Meng; Fallavollita, Pascal; Seelbach, Ina; Von Der Heide, Anna Maria; Euler, Ekkehard; Waschke, Jens; Navab, Nassir

    2016-05-01

    Anatomy education is a challenging but vital element in forming future medical professionals. In this work, a personalized and interactive augmented reality system is developed to facilitate education. This system behaves as a "magic mirror" which allows personalized in-situ visualization of anatomy on the user's body. Real-time volume visualization of a CT dataset creates the illusion that the user can look inside their body. The system comprises a RGB-D sensor as a real-time tracking device to detect the user moving in front of a display. In addition, the magic mirror system shows text information, medical images, and 3D models of organs that the user can interact with. Through the participation of 7 clinicians and 72 students, two user studies were designed to respectively assess the precision and acceptability of the magic mirror system for education. The results of the first study demonstrated that the average precision of the augmented reality overlay on the user body was 0.96 cm, while the results of the second study indicate 86.1% approval for the educational value of the magic mirror, and 91.7% approval for the augmented reality capability of displaying organs in three dimensions. The usefulness of this unique type of personalized augmented reality technology has been demonstrated in this paper. © 2015 Wiley Periodicals, Inc.

  20. Low Altitude Navigation Augmentation System.

    Science.gov (United States)

    1981-12-01

    t# ths s~hwtW include tim. locations &An an indication of -the tipo of messurmott 401oyed (*.I. sta’-trecker, lanmrk, bearing mssrment etc.).- TMe...0 x 0304 [0 0 01] L to o- 0 0O This completes the description of all of the &A r*6 is uts aftries. It is to be noted that the variables used in

  1. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  2. Augmentative biological control of arthropods in Latin America

    NARCIS (Netherlands)

    Lenteren, van J.C.; Bueno, V.H.P.

    2003-01-01

    Augmentative forms of biological control, where natural enemies are periodically introduced, are applied over large areas in various cropping systems in Latin America. About 25% of the world area under augmentative control is situated in this region. Well-known examples are the use of species of the

  3. Pose estimation for mobile devices and augmented reality

    NARCIS (Netherlands)

    Caarls, J.

    2009-01-01

    In this thesis we introduce the reader to the field of Augmented Reality (AR) and describe aspects of an AR system. We show the current uses in treatment of phobias, games, sports and industry. We present the challenges for Optical See-Through Augmented Reality in which the real world is perceived

  4. Pose estimation for mobile devices and augmented reality

    NARCIS (Netherlands)

    Van Vliet, L.J.; Jonker, P.P.; Caarls, J.

    In this thesis we introduce the reader to the field of Augmented Reality (AR) and describe aspects of an AR system. We show the current uses in treatment of phobias, games, sports and industry. We present the challenges for Optical See-Through Augmented Reality in which the real world is perceived

  5. Augmented Reality at the Tactical and Operational Levels of War

    Science.gov (United States)

    2015-10-24

    currently available AR smart -glasses and AR contact lenses . Microsoft – HoloLens. Microsoft has dedicated over a thousand employees and a billion dollars...Augmented Reality Visors, Glasses, and Contact Lenses .................................................................... 20 How Augmented Reality... contact lenses . As such, they provide continuous access to AR content. With their arrival, AR systems will fundamentally change how users interact

  6. Augmenting cognition: Reviewing the symbiotic relation between man and machine

    NARCIS (Netherlands)

    Greef, T.E. de; Dongen, C.J.G. van; Grootjen, M.; Lindenberg, J.

    2007-01-01

    One of the goals of augmented cognition is creation of adaptive human-machine collaboration that continually optimizes performance of the human-machine system. Augmented Cognition aims to compensate for temporal limitations in human information processing, for instance in the case of overload,

  7. Therapeutics: Alpha-1 Antitrypsin Augmentation Therapy.

    Science.gov (United States)

    Campos, Michael; Lascano, Jorge

    2017-01-01

    Subjects with alpha-1 antitrypsin deficiency who develop pulmonary disease are managed following general treatment guidelines, including disease management interventions. In addition, administration of intravenous infusions of alpha-1 proteinase inhibitor (augmentation therapy) at regular schedules is a specific therapy for individuals with AATD with pulmonary involvement.This chapter summarizes the manufacturing differences of commercially available formulations and the available evidence of the effects of augmentation therapy. Biologically, there is clear evidence of in vivo local antiprotease effects in the lung and systemic immunomodulatory effects. Clinically, there is cumulative evidence of slowing lung function decline and emphysema progression. The optimal dose of augmentation therapy is being revised as well as more individualized assessment of who needs this therapy.

  8. Augmented reality-assisted skull base surgery.

    Science.gov (United States)

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Augmented Reality and Mobile Art

    Science.gov (United States)

    Gwilt, Ian

    The combined notions of augmented-reality (AR) and mobile art are based on the amalgamation of a number of enabling technologies including computer imaging, emergent display and tracking systems and the increased computing-power in hand-held devices such as Tablet PCs, smart phones, or personal digital assistants (PDAs) which have been utilized in the making of works of art. There is much published research on the technical aspects of AR and the ongoing work being undertaken in the development of faster more efficient AR systems [1] [2]. In this text I intend to concentrate on how AR and its associated typologies can be applied in the context of new media art practices, with particular reference to its application on hand-held or mobile devices.

  10. Performance of the Straumann Bone Level Implant system for anterior single-tooth replacements in augmented and nonaugmented sites : A prospective cohort study with 60 consecutive patients

    NARCIS (Netherlands)

    Santing, Hendrik J.; Raghoebar, Gerry M.; Vissink, Arjan; den Hartog, Laurens; Meijer, Henny J. A.

    Aim The purpose of this prospective study was to evaluate radiographic, clinical and aesthetic outcomes and patient satisfaction of cases treated with platform-switched single implant restorations in the aesthetic region of the maxilla. Furthermore, the influence of an augmentation procedure 3months

  11. A Meta-Analysis of Single Case Research Studies on Aided Augmentative and Alternative Communication Systems with Individuals with Autism Spectrum Disorders

    Science.gov (United States)

    Ganz, Jennifer B.; Earles-Vollrath, Theresa L.; Heath, Amy K.; Parker, Richard I.; Rispoli, Mandy J.; Duran, Jaime B.

    2012-01-01

    Many individuals with autism cannot speak or cannot speak intelligibly. A variety of aided augmentative and alternative communication (AAC) approaches have been investigated. Most of the research on these approaches has been single-case research, with small numbers of participants. The purpose of this investigation was to meta-analyze the single…

  12. Intelligent Augmented Reality Training for Motherboard Assembly

    Science.gov (United States)

    Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark

    2015-01-01

    We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…

  13. Accurate overlaying for mobile augmented reality

    NARCIS (Netherlands)

    Pasman, W; van der Schaaf, A; Lagendijk, RL; Jansen, F.W.

    1999-01-01

    Mobile augmented reality requires accurate alignment of virtual information with objects visible in the real world. We describe a system for mobile communications to be developed to meet these strict alignment criteria using a combination of computer vision. inertial tracking and low-latency

  14. Radiative Augmented Combustion.

    Science.gov (United States)

    1985-08-12

    86-0085 In 00I to RADIATIVE AUGMENTED COMBUSTION MOSHE LAVID M.L. ENERGIA , INC. P.O. BOX 1468 1 PRINCETON, NEW JERSEY 08542 AUGUST 1985 *.. plo...Combustion conducted at M.L. ENERGIA . It is funded by the Air Force Office of Scientific Research under Contract No. F49620-83-C-0133, with Dr. J.M...reported. It covers the second year of the contract, from July 15, 1984 through July 14, 1985. The work was performed at ENERGIA , Princeton, New Jersey

  15. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  16. Augmented reality in medical education?

    National Research Council Canada - National Science Library

    Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor

    2014-01-01

    .... Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer...

  17. Augmented reality aiding collimator exchange at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Héctor, E-mail: hector.martinez@sensetrix.com [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Fabry, Thomas [European Organization for Nuclear Research, CERN, CH-1211 Genève 23 (Switzerland); Laukkanen, Seppo [SenseTrix, PL 20 FI-00101 Helsinki (Finland); Mattila, Jouni [Tampere University of Technology, PO Box 527, FI-33101 Tampere (Finland); Tabourot, Laurent [SYMME, Université de Savoie, Polytech Annecy-Chambéry, 5 chemin de Bellevue, 74944 Annecy le Vieux (France)

    2014-11-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities.

  18. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    Directory of Open Access Journals (Sweden)

    Abd-Ellatef GF

    2017-02-01

    cytokines tumor necrosis factor-α and nitric oxide were significantly ameliorated in DMBA-administered rats treated with ulvan polysaccharides as compared to DMBA-administered control. Conclusion: In conclusion, ulvan polysaccharides at the level of initiation and promotion might have potential chemopreventive effects against breast carcinogenesis. These preventive effects may be mediated through the augmentation of apoptosis, suppression of oxidative stress and inflammation, and enhancement of antioxidant defense system. Keywords: breast carcinogenesis, cancer initiation, cancer promotion, Ulva lactuca polysaccharides, DMBA, oxidative stress, apoptosis

  19. A piloted simulator investigation of side-stick controller/stability and control augmentation system requirements for helicopter visual flight tasks

    Science.gov (United States)

    Landis, K. H.; Dunford, P. J.; Aiken, E. W.; Hilbert, K. B.

    1984-01-01

    A piloted simulator experiment was conducted to assess the effects of side-stick controller characteristics and level of stability and control augmentation on handling qualities for several low-altitude control tasks. Visual flight tasks were simulated using four-window computer-generated imagery depicting either a nap-of-the-earth course or a runway with obstacles positioned to provide a slalom course. Both low speed and forward flight control laws were implemented, and a method for automatically switching control modes was developed. Variations in force-deflection characteristics and the number of axes controlled through an integrated side-stick were investigated. With high levels of stability and control augmentation, a four-axis controller with small-deflection in all four axes achieved satisfactory handling qualities for low-speed tasks.

  20. A Piloted Simulator Investigation of Side-Stick Controller/Stability and Control Augmentation System Requirements for Helicopter Visual Flight Tasks,

    Science.gov (United States)

    1983-05-01

    Simulation Program: Vol- flight handling qualities without pilot selection, ume I-Mathematical Model", NASA the contril laws required automatic phasing...acteristics and level of stability and control The Phase 2 simulation experiment, the subject augmentation on handling qualities for several of this paper...handling qualities under VMC and empha- speed and forward flight control laws were im- sized tasks which represented elements of the plemented, and a

  1. Digital Augmented Reality Audio Headset

    Directory of Open Access Journals (Sweden)

    Jussi Rämö

    2012-01-01

    Full Text Available Augmented reality audio (ARA combines virtual sound sources with the real sonic environment of the user. An ARA system can be realized with a headset containing binaural microphones. Ideally, the ARA headset should be acoustically transparent, that is, it should not cause audible modification to the surrounding sound. A practical implementation of an ARA mixer requires a low-latency headphone reproduction system with additional equalization to compensate for the attenuation and the modified ear canal resonances caused by the headphones. This paper proposes digital IIR filters to realize the required equalization and evaluates a real-time prototype ARA system. Measurements show that the throughput latency of the digital prototype ARA system can be less than 1.4 ms, which is sufficiently small in practice. When the direct and processed sounds are combined in the ear, a comb filtering effect is brought about and appears as notches in the frequency response. The comb filter effect in speech and music signals was studied in a listening test and it was found to be inaudible when the attenuation is 20 dB. Insert ARA headphones have a sufficient attenuation at frequencies above about 1 kHz. The proposed digital ARA system enables several immersive audio applications, such as a virtual audio tourist guide and audio teleconferencing.

  2. Augmented Virtual Reality Laboratory

    Science.gov (United States)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  3. Today in breast augmentation

    Directory of Open Access Journals (Sweden)

    Juan Manuel Calderón

    2016-02-01

    Full Text Available Breast augmentation is one of the most commonly performed procedures worldwide among aesthetic reconstructive surgeries. Among the indications for performing the procedure are primary and secondary alterations related to breasts shape and volume. During the initial assessment, emphasis should be placed in the anamnesis and physical examination, allowing to define target sizing and realistic expectations to prospectively determine the possible postoperative satisfaction rates. There are several methods used to select the appropriate implants that have become more accurate with time and with the use of technology. Although there are multiple materials developed, to this moment silicone implants continue to be the ones most used worldwide with low complication rates depending on each patient and on the technique used. It is considered as one of the aesthetic reconstructive surgeries with the highest degree of acceptance among the general population who undergo this type of procedures.

  4. Maxillary sinus augmentation

    Directory of Open Access Journals (Sweden)

    A B Tarun Kumar

    2015-01-01

    Full Text Available Placing dental implants in the maxillary posterior region can be both challenging and un-nerving for a regular implant dentist who is not well versed with advanced surgical procedures. It is vital for a general dentist to understand the fundamentals of bone grafting the maxillary sinus if he/she is really committed to providing the best health care for their patients. The dental practice is seeing an increasing group of patients who are living longer, and this group of older baby boomers often has an edentulous posterior maxilla either unilateral or bilateral. When edentulous, the posterior maxilla more likely has diminished bone height, which does not allow for the placement of dental implants without creating additional bone. Through grafting the maxillary sinus, bone of ideal quality can be created (allowing for placement of dental implants, which offer many advantages over other tooth replacement modalities. The sinus graft offers the dental patient a predictable procedure of regenerating lost osseous structure in the posterior maxilla. This offers the patient many advantages for long-term success. If dentists understand these concepts, they can better educate their patients and guide them to have the procedure performed. This article outlines bone grafting of the maxillary sinus for the purpose of placing dental implants. This review will help the readers to understand the intricacies of sinus augmentation. They can relate their patient's condition with the available literature and chalk out the best treatment plan for the patient, especially by using indirect sinus augmentation procedures which are less invasive and highly successful if done using prescribed technique.

  5. PARAMETERS OF AUGMENTED REALITY AND ITS USE IN EDUCATION

    Directory of Open Access Journals (Sweden)

    JEŘÁBEK, Tomáš

    2013-12-01

    Full Text Available This article examines the issue of augmented reality and possibilities of its application in education. It briefly reports on selected results of a broader survey focused on technological, psychological, physiological and didactical aspects of the issue. It presumes that augmented reality has its unique place in technical teaching tools since it is a technological-perception concept, which in certain didactical situations creates more suitable perceptual environment than real environment itself on one hand, or virtual environment on the other. It focuses on identification of the technological-functional properties and specifics of augmented reality systems and on verification of model examples of augmented reality applications in school practice. It characterizes the course and results of empirical research project based on a descriptive case study exploring the cases of implementing selected application solutions of augmented reality into learning experience in accordance with the model of pro-active action research.

  6. Augmented Reality in Tourism - Research and Applications Overview

    Directory of Open Access Journals (Sweden)

    Anabel L. Kečkeš

    2017-06-01

    Full Text Available Augmented reality is a complex interdisciplinary field utilizing information technologies in diverse areas such as medicine, education, architecture, industry, tourism and others, augmenting the real-time, real-world view with additional superimposed information in chosen format(s. The aim of this paper is to present an overview of both research and application aspects of using augmented reality technologies in tourism domain. While most research, and especially applications, are dealing with and developing visual-based augmented reality systems, there is a relevant amount of research discussing the utilization of other human senses such as tactioception and audioception, both being discussed within this work. A comprehensive literature analysis within this paper resulted with the identification, compilation and categorization of the key factors having the most relevant impact on the success of utilization of augmented technology in tourism domain.

  7. The Augmented REality Sandtable (ARES)

    Science.gov (United States)

    2015-10-01

    Augmented Reality Interface Tactical map with browser and manipulators / tangible markers Yes Yes Unknown No Kalphat (2009) Tactical......Augmented REality Sandtable (ARES) by Charles R Amburn, Nathan L Vey, and MAJ Jerry R Mize Human Research and Engineering Directorate, ARL Michael

  8. AUGMENTED REALITY - STATE OF KNOWLEDGE, USE AND EXPERIMENTATION

    Directory of Open Access Journals (Sweden)

    Mihaela Filofteia TUTUNEA

    2013-12-01

    Full Text Available Technologies for augmenting reality have been consolidated during the last decades, extending their applicability to more and more socio-economic areas. The rapid evolution of mobile technologies and virtualization of the digital environment have created auspicious conditions for massive extension and implementation of solutions for augmenting reality at global level. Experience has already shown that augmented reality, alongside virtual reality can offer very important support solutions in modeling the real world with the aim of extending the human capabilities of perception, allowing the opening of a new phase in the world’s socio-economic development. Starting from the evident tendencies that have manifested at global level in the development and implementation of augmented reality technologies, the paper begins with the presentation of the most important aspects related to augmented reality technologies, highlighting their main areas of application, and presents the study realized for identifying the level of knowledge, use and effective experimentation of augmented reality applications by mobile device users. The results of this study could be very useful to the socio-economic environment, starting with the field of research, continuing with developers and providers of augmented reality solutions, manufacturers and providers of hardware infrastructure support for augmented reality solutions and systems, final users of these solutions, both individuals and businesses, and experimenting digital communities.

  9. Augmented Reality in Sports: Today and Tomorrow

    Directory of Open Access Journals (Sweden)

    Zafer BOZYER

    2015-08-01

    Full Text Available The rapid change experienced in the field of Information Technologies makes the informati cs more tangible in daily life. Today, it became possible to encounter with the informatics applications almost all the disciplines. As a matter of course, many informatics applications are put into the practice regarding the sports discipline. Because of the condition that the power of information processing has increased and the studies on wearable technol ogies in addition to the expert system design, augmented reality (AR has become a topic which gains imp ortance in the field of sports. There are many studies that are conducted with the aim of increasing the efficiency of physical activities done in many sports branches, ensuring a more fair management of competitions and providing the opportunity for spectators to watch the competitions in a more comfortable and efficient way. In this study; the information about the current augmented reality practices th at are used in various sports branches has been given and the mobile and interactive augmented reality practices which are possible to be seen in future have been mentioned. In addition, there is an augmented reality practice which is designed with the aim of ensuring that the shoots of sports people who are interested in archery, are more stable and of ensuring that the trainings and exercises are more efficient by stating to the sports people whether he or she is in the right position for shoot which is c alled as T shape seen at the time of releasing the arrow.

  10. Survey on Urban Warfare Augmented Reality

    Directory of Open Access Journals (Sweden)

    Xiong You

    2018-01-01

    Full Text Available Urban warfare has become one of the main forms of modern combat in the twenty-first century. The main reason why urban warfare results in hundreds of casualties is that the situational information of the combatant is insufficient. Accessing information via an Augmented Reality system can elevate combatants’ situational awareness to effectively improve the efficiency of decision-making and reduce the injuries. This paper begins with the concept of Urban Warfare Augmented Reality (UWAR and illuminates the objectives of developing UWAR, i.e., transparent battlefield, intuitional perception and natural interaction. Real-time outdoor registration, information presentation and natural interaction are presented as key technologies of a practical UWAR system. Then, the history and current research state of these technologies are summarized and their future developments are highlighted from three perspectives, i.e., (1 Better integration with Geographic Information System and Virtual Geographic Environment; (2 More intelligent software; (3 More powerful hardware.

  11. Augmented Reality a Review on Technology and Applications

    Science.gov (United States)

    Petruse, Radu Emanuil; Bondrea, Ioan

    2014-11-01

    We present in this paper an overview of the concepts and potential industrial Augmented Reality applications that can be very efficient. We also present the basic technological requirements for an AR system

  12. Mobile Augmented Reality enhances indoor navigation for wheelchair users

    National Research Council Canada - National Science Library

    Oliveira, Luciene Chagas de; Soares, Alcimar Barbosa; Cardoso, Alexandre; Andrade, Adriano de Oliveira; Lamounier Júnior, Edgard Afonso

    2016-01-01

    ...). The main objective of this work is to propose an architecture based on Mobile Augmented Reality to support the development of indoor navigation systems dedicated to wheelchair users, that is also...

  13. Augmented Reality as a Telemedicine Platform for Remote Procedural Training

    National Research Council Canada - National Science Library

    Shiyao Wang; Michael Parsons; Jordan Stone-McLean; Peter Rogers; Sarah Boyd; Kristopher Hoover; Oscar Meruvia-Pastor; Minglun Gong; Andrew Smith

    2017-01-01

    .... In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training...

  14. Hands in space: gesture interaction with augmented-reality interfaces.

    Science.gov (United States)

    Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai

    2014-01-01

    Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.

  15. Integrative Augmentation with the New ISO 10000 Standards1

    Directory of Open Access Journals (Sweden)

    Karapetrovic Stanislav

    2014-11-01

    Full Text Available Application and integration of the systems based on ISO 10001: 2007 and other new augmentative standards are discussed. Particular attention is paid to the quality management standards forming the front end of the ISO 10000 series, namely ISO 10001, ISO 10002 and ISO 10003, as well as ISO 19011, the standard which stems from the original augmentative ISO 10000 guideline, specifically ISO 10011 on quality auditing. The ability of these and other similar standards to augment the performance of quality management systems in organizations and to foster integration of the respective augmentative systems themselves or within the overarching management systems is addressed and further illustrated through an example of their use in engineering education.

  16. The Augmented Performer and the Performative Augmentation

    DEFF Research Database (Denmark)

    Kallionpaa, Maria; Gasselseder, Hans-Peter

    2016-01-01

    of interactive music systems have been widely recognised in the context of modern computer games. The concept of procedural music challenges the idea of a composition as a fixed formula. Similar to a computer game, a music score based on such techniques can take a plethora of unpredictable turns depending...... help to widen the horizons of classical music. Developing new innovative tools and methodologies would also benefit game designers and music educators....

  17. Reduction of Adipose Tissue Formation by the Controlled Release of BMP-2 Using a Hydroxyapatite-Coated Collagen Carrier System for Sinus-Augmentation/Extraction-Socket Grafting

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee

    2015-11-01

    Full Text Available The effects of hydroxyapatite (HA-coating onto collagen carriers for application of recombinant human bone morphogenetic protein 2 (rhBMP-2 on cell differentiation in vitro, and on in vivo healing patterns after sinus-augmentation and alveolar socket-grafting were evaluated. In vitro induction of osteogenic/adipogenic differentiation was compared between the culture media with rhBMP-2 solution and with the released rhBMP-2 from the control collagen and from the HA-coated collagen. Demineralized bovine bone and collagen/HA-coated collagen were grafted with/without rhBMP-2 in sinus-augmentation and tooth-extraction-socket models. Adipogenic induction by rhBMP-2 released from HA-coated collagen was significantly reduced compared to collagen. In the sinus-augmentation model, sites that received rhBMP-2 exhibited large amounts of vascular tissue formation at two weeks and increased adipose tissue formation at eight weeks; this could be significantly reduced by using HA-coated collagen as a carrier for rhBMP-2. In extraction-socket grafting, dimensional reduction of alveolar ridge was significantly decreased at sites received rhBMP-2 compared to control sites, but adipose tissue was increased within the regenerated socket area. In conclusion, HA-coated collagen carrier for Escherichia coli-derived rhBMP-2 (ErhBMP-2 may reduce in vitro induction of adipogenic differentiation and in vivo adipose bone marrow tissue formation in bone tissue engineering by ErhBMP-2.

  18. Classifying handheld Augmented Reality: Three categories linked by spatial mappings

    OpenAIRE

    Vincent, Thomas; Nigay, Laurence; Kurata, Takeshi

    2012-01-01

    Session 1: Research papers; International audience; Handheld Augmented Reality (AR) relies on a spatial coupling of the on-screen content with the physical surrounding. To help the design of such systems and to classify existing AR systems, we present a framework made of three categories and two spatial relationships. Our framework highlights spatial relationships between the physical world, the representation of the physical world on screen and the augmentation on screen. Within this framewo...

  19. Increasing the reliability and capacity of Ukrainian gas transit system; Augmentation de la capacite et de la fiabilite du systeme Ukrainien de transport du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Rozgonyk, V.; Osinchuk, Z. [Naftogaz of Ukraine (Ukraine)

    2000-07-01

    Ukrainian gas transmission system plays a key role in the transit deliveries of Russian natural gas to European countries. Therefore special attention is paid to reliability and efficiency of the existing gas pipelines. The in-line inspections of pipelines as well as update methods of corrosion pipeline protection control and developed vibration diagnostic system for gas compressor units are used on a large scale. The program for gas transmission pipeline reconstruction and upgrading of 50 compressor stations of main lines is being under realization. Modernization of compressor stations will allow to increase turbine drivers' efficiency up to 34-36 per cent to save about 1-10{sup 9} cubic meters of fuel gas annually. The reliability of gas transit deliveries is supported by powerful underground gas storage facilities, situated mostly in the Western Ukraine. The expansion of gas pipe lines system is carried out that will increase transit capacity of Ukrainian gas trunk lines up to 160 -10{sup 9} cubic meters a year. (authors)

  20. Augmented reality visualization for thoracoscopic spine surgery

    Science.gov (United States)

    Sauer, Frank; Vogt, Sebastian; Khamene, Ali; Heining, Sandro; Euler, Ekkehard; Schneberger, Marc; Zuerl, Konrad; Mutschler, Wolf

    2006-03-01

    We are developing an augmented reality (AR) image guidance system in which information derived from medical images is overlaid onto a video view of the patient. The centerpiece of the system is a head-mounted display custom fitted with two miniature color video cameras that capture the stereo view of the scene. Medical graphics is overlaid onto the video view and appears firmly anchored in the scene, without perceivable time lag or jitter. We have been testing the system for different clinical applications. In this paper we discuss minimally invasive thoracoscopic spine surgery as a promising new orthopedic application. In the standard approach, the thoracoscope - a rigid endoscope - provides visual feedback for the minimally invasive procedure of removing a damaged disc and fusing the two neighboring vertebrae. The navigation challenges are twofold. From a global perspective, the correct vertebrae on the spine have to be located with the inserted instruments. From a local perspective, the actual spine procedure has to be performed precisely. Visual feedback from the thoracoscope provides only limited support for both of these tasks. In the augmented reality approach, we give the surgeon additional anatomical context for the navigation. Before the surgery, we derive a model of the patient's anatomy from a CT scan, and during surgery we track the location of the surgical instruments in relation to patient and model. With this information, we can help the surgeon in both the global and local navigation, providing a global map and 3D information beyond the local 2D view of the thoracoscope. Augmented reality visualization is a particularly intuitive method of displaying this information to the surgeon. To adapt our augmented reality system to this application, we had to add an external optical tracking system, which works now in combination with our head-mounted tracking camera. The surgeon's feedback to the initial phantom experiments is very positive.

  1. Understanding augmented reality concepts and applications

    CERN Document Server

    Craig, Alan B

    2013-01-01

    Augmented reality is not a technology. Augmented reality is a medium. Likewise, a book on augmented reality that only addresses the technology that is required to support the medium of augmented reality falls far short of providing the background that is needed to produce, or critically consume augmented reality applications. One reads a book. One watches a movie. One experiences augmented reality. Understanding Augmented Reality addresses the elements that are required to create compelling augmented reality experiences. The technology that supports

  2. The effects of augmented reality on learning.

    Science.gov (United States)

    Hsiao, Kuei-Fang

    2010-01-01

    In this study, a new approach to the implementation of Augmented Reality (AR) in the educational environment was taken by creating a Chemistry Augmented Reality Learning System (CARLS), using the existing teaching curriculum, together with physical activity. This system combined learning with three types of physical activity: aerobic fitness, muscle strength and flexibility fitness. This study reveals that the students using all three types of physical activity together with CARLS result in significantly higher academic performance compared to the traditional Keyboard-Mouse CAI (KMCAI). This improvement is most evident for the non-memorized knowledge component of Science. Moreover, the students in the AR group with 'muscle strength' physical activity had significantly more positive learning attitude change toward Science than those in the KMCAI group. A great additional benefit of our approach is that, students also obtained more physical fitness while learning.

  3. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    2015-01-01

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student i...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  4. Augmented reality som wearable technology

    DEFF Research Database (Denmark)

    Rahn, Annette

    the potential of Augmented reality increasing students level of understanding, interaction and engagement with the object. I will demonstrate the technology and show you the human lungs in your body and the future perspectives of the technology. Organization: developed in collaboration with Mie Buhl, Professor......“How Augmented reality can facilitate learning in visualizing human anatomy “ At this station I demonstrate how Augmented reality can be used to visualize the human lungs in situ and as a wearable technology which establish connection between body, image and technology in education. I will show...

  5. Interleukin 1 receptor antagonist inhibits the augmentation of metastasis induced by interleukin 1 or lipopolysaccharide in a human melanoma/nude mouse system.

    Science.gov (United States)

    Chirivi, R G; Garofalo, A; Padura, I M; Mantovani, A; Giavazzi, R

    1993-10-15

    This study examined the ability of the recombinant human interleukin 1 receptor antagonist (IL-1ra) to block interleukin 1 (IL-1)-mediated experimental metastases from the A375M human melanoma. In vivo, IL-1ra administrated at concentrations > or = 200 times IL-1 significantly inhibited the increase in lung colonies induced by IL-1 in nude mice. The response to IL-1 was significantly inhibited when IL-1ra was administered simultaneously with or 1 to 3 h before IL-1. In vitro, the incubation of IL-1-activated endothelial cells with IL-1ra prevented the increase in adhesion of A375M melanoma cells. At the same experimental conditions, IL-1ra inhibited the augmented expression of the intracellular and vascular cell adhesion molecules 1 and E-selectin induced by IL-1 on endothelial cells. Lipopolysaccharide, an IL-1 inducer, increased the number of lung colonies in nude mice. IL-1ra injected with or 1 h after lipopolysaccharide inhibited this augmentation, suggesting a role for host-produced IL-1 in metastasis formation.

  6. Multiple Kernel Learning with Data Augmentation

    Science.gov (United States)

    2016-11-22

    Intelligence and Artificial Neural Networks Symposium (TAINN 96. Citeseer, 1996. Erling D Andersen and Knud D Andersen. The mosek interior point optimizer...Zien, and Sören Sonnen- burg. Efficient and accurate lp-norm multiple kernel learning . In Advances in neural information processing systems, pages 997...JMLR: Workshop and Conference Proceedings 63:49–64, 2016 ACML 2016 Multiple Kernel Learning with Data Augmentation Khanh Nguyen nkhanh@deakin.edu.au

  7. Augmentation Mammaplasty Using Implants: A Review

    Directory of Open Access Journals (Sweden)

    Susumu Takayanagi

    2012-09-01

    Full Text Available One of the techniques for augmentation mammaplasty is the procedure using implants. Eventhough this technique has been used for many years, there are still several controversial issuesto be discussed and overcome for patient safety. In this review article, capsular contracture,leak or rupture of the implants, possible systemic disease, relation with breast cancer, andrecent problems with Poly Implant Prothese implants are described and discussed.

  8. Augmented reality for mining teleoperation

    Science.gov (United States)

    Park, Andrew J.; Kazman, Rick N.

    1995-12-01

    Automated mining has been proposed as a solution to reducing mining costs associated with labor and development. Quite simply, no-one will need to work underground. A series of special-purpose mining vehicles is currently being designed for both semi-autonomous operation and teleoperation. A preliminary implementation at INCO's North Mine complex in Copper Cliff, Ontario, Canada, has met with great success. Improvements are required, however, in the presentation and integration of feedback from the remotely operated vehicle due to the poor video image quality. Depth cues in particular have been found to be deficient. Work currently underway at the University of Waterloo involves the development of a graphics engine responsible for the integration and rendering of data from various sources including: live video (analog and/or digital), range-finding data, an intelligent vision system, CAD mine models, and supervisory control and data acquisition systems. Graphical overlays on a live video feed are being examined as a means of enhancing and augmenting the human operator's visual input. We are investigating a tool-set which addresses the requirements of teleoperation in the context of a mining environment. This includes the integration of data from a number of different sources for the purpose of interactive mine planning and operation.

  9. FEATURES OF USING AUGMENTED REALITY TECHNOLOGY TO SUPPORT EDUCATIONAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Yury A. Kravchenko

    2014-01-01

    Full Text Available The paper discusses the concept and technology of augmented reality, the rationale given the relevance and timeliness of its use to support educational processes. Paper is a survey and study of the possibility of using augmented reality technology in education. Architecture is proposed and constructed algorithms of the software system management QR-codes media objects. An overview of the features and uses of augmented reality technology to support educational processes is displayed, as an option of a new form of visual demonstration of complex objects, models and processes. 

  10. Physical hypermedia: augmenting physical material with hypermedia structures

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Ørbæk, Peter; Kristensen, Jannie Friis

    2003-01-01

    augmented reality and hypermedia to support organization of mixtures of digital and physical materials. Our prototype of a physical hypermedia system is running on an augmented architect's desk and digital walls utilizing Radio Frequency Identifier (RFID) tags as well as visual tags tracked by cameras...... and linking of physical material. In addition, we utilize visual ARToolKit tags for linking and navigating 3D models on a physical desk. Our primary application domain is architecture and design, and so we discuss the use of augmented collectional artifacts primarily for this domain....

  11. Adaptive information design for outdoor augmented reality.

    Science.gov (United States)

    Neuhöfer, Jan A; Govaers, Felix; El Mokni, Hichem; Alexander, Thomas

    2012-01-01

    Augmented Reality focuses on the enrichment of the user's natural field of view by consistent integration of text, symbols and interactive three-dimensional objects in real time. Placing virtual objects directly into the user's view in a natural context empowers highly dynamic applications. On the other hand, this necessitates deliberate choice of information design and density, in particular for deployment in hazardous environments like military combat scenarios. As the amount of information needed is not foreseeable and strongly depends on the individual mission, an appropriate system must offer adequate adaptation capabilities. The paper presents a prototypical, vehicle-mountable Augmented Reality vision system, designed for enhancing situation awareness in stressful urban warfare scenarios. Tracking, as one of the most crucial challenges for outdoor Augmented Reality, is accomplished by means of a Differential-GPS approach while the type of display to attach can be modified, ranging from ocular displays to standard LCD mini-screens. The overall concept also includes envisioning of own troops (blue forces), for which a multi-sensor tracking approach has been chosen. As a main feature, the system allows switching between different information categories, focusing on friendly, hostile, unidentified or neutral data. Results of an empirical study on the superiority of an in-view navigation cue approach conclude the paper.

  12. Crime Scenes as Augmented Reality

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2010-01-01

    , physical damage: they are all readable and interpretable signs. As augmented reality the crime scene carries a narrative which at first is hidden and must be revealed. Due to the process of investigation and the detective's ability to reason and deduce, the crime scene as place is reconstructed as virtual......Using the concept of augmented reality, this article will investigate how places in various ways have become augmented by means of different mediatization strategies. Augmentation of reality implies an enhancement of the places' emotional character: a certain mood, atmosphere or narrative surplus...... of meaning has been implemented. This may take place at different levels, which will be presented and investigated in this article and exemplified by some cases from the fields of tourism and computer games.                       The article suggests that we may use the forensic term crime scene in order...

  13. Recent Development of Augmented Reality in Surgery: A Review

    Directory of Open Access Journals (Sweden)

    P. Vávra

    2017-01-01

    Full Text Available Introduction. The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods. We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions. The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.

  14. Adaptive multimodal interaction in mobile augmented reality: A conceptual framework

    Science.gov (United States)

    Abidin, Rimaniza Zainal; Arshad, Haslina; Shukri, Saidatul A'isyah Ahmad

    2017-10-01

    Recently, Augmented Reality (AR) is an emerging technology in many mobile applications. Mobile AR was defined as a medium for displaying information merged with the real world environment mapped with augmented reality surrounding in a single view. There are four main types of mobile augmented reality interfaces and one of them are multimodal interfaces. Multimodal interface processes two or more combined user input modes (such as speech, pen, touch, manual gesture, gaze, and head and body movements) in a coordinated manner with multimedia system output. In multimodal interface, many frameworks have been proposed to guide the designer to develop a multimodal applications including in augmented reality environment but there has been little work reviewing the framework of adaptive multimodal interface in mobile augmented reality. The main goal of this study is to propose a conceptual framework to illustrate the adaptive multimodal interface in mobile augmented reality. We reviewed several frameworks that have been proposed in the field of multimodal interfaces, adaptive interface and augmented reality. We analyzed the components in the previous frameworks and measure which can be applied in mobile devices. Our framework can be used as a guide for designers and developer to develop a mobile AR application with an adaptive multimodal interfaces.

  15. Recent Development of Augmented Reality in Surgery: A Review

    Science.gov (United States)

    Vávra, P.; Zonča, P.; Ihnát, P.; El-Gendi, A.

    2017-01-01

    Introduction The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.

  16. Recent Development of Augmented Reality in Surgery: A Review.

    Science.gov (United States)

    Vávra, P; Roman, J; Zonča, P; Ihnát, P; Němec, M; Kumar, J; Habib, N; El-Gendi, A

    2017-01-01

    The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms "augmented reality" and "surgery." Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.

  17. An investigation of side-stick-controller/stability and control-augmentation system requirements for helicopter terrain flight under reduced visibility conditions

    Science.gov (United States)

    Landis, K. H.; Glusman, S. I.; Aiken, E. W.; Hilbert, K. B.

    1984-01-01

    Simulation of the reduced visibility tasks is effected by providing the pilot with a visually coupled, helmet-mounted display of flight-control symbols superimposed upon terrain-board imagery. Forward-flight, low-speed, and precision-hover control modes are implemented, and a method is developed for the blending of control laws between each control mode. An investigation is made of the variations in the level of integration of primary control functions on a single side-stick controller. For most of the flight tasks investigated, separated controller configurations are preferred to a single, fully integrated side-stick device. Satisfactory handling qualities over all controller configurations are attained only for a precision-hover task conducted with a high level of stability and control augmentation. For most tasks flown with the helmet-mounted display significant degradation in handling qualities occurs relative to the identical tasks flown under visual flight conditions.

  18. Is it stress? The role of stress related systems in chronic food restriction-induced augmentation of heroin seeking in the rat

    Directory of Open Access Journals (Sweden)

    Firas eSedki

    2013-06-01

    Full Text Available Drug addiction is a chronic disease characterized by recurring episodes of abstinence and relapse. The precise mechanisms underlying this pattern are yet to be elucidated, but stress is thought to be a major factor in relapse. Recently, we reported that rats under withdrawal and exposed to a mild chronic stressor, prolonged food restriction, show increased heroin seeking compared to sated controls. Previous studies demonstrated a critical role for corticotropin-releasing factor (CRF and corticosterone, hormones involved in the stress response, in acute food deprivation-induced reinstatement of extinguished drug seeking. However, the role of CRF and corticosterone in chronic food restriction-induced augmentation of drug seeking remains unknown. Here, male Long-Evans rats were trained to self-administer heroin for 10 days in operant conditioning chambers. Rats were then removed from the training chambers, and subjected to 14 days of unrestricted (sated rats or a mildly restricted (FDR rats access to food, which maintained their body weight at 90% of their baseline weight. On day 14, different groups of rats were administered a selective CRF1 receptor antagonist (R121919; 0.0, 20.0 mg/kg; s.c., a non-selective CRF receptor antagonist (α-helical CRF; 0.0, 10.0, 25.0 μg/μl; i.c.v. or a glucocorticoid receptor antagonist (RU486; 0.0, 30.0 mg/kg; i.p., and underwent a 1 h drug seeking test under extinction conditions. An additional group of rats was tested following adrenalectomy. All FDR rats showed a statistically significant increase in heroin seeking compared to the sated rats. No statistically significant effects for treatment with α-helical CRF, R121919, RU486 or adrenalectomy were observed. These findings suggest that stress may not be a critical factor in the augmentation of heroin seeking in food-restricted rats.

  19. Adaptive augmented reality for cultural heritage: ARtSENSE project

    OpenAIRE

    Damala, A.; Stojanovic, N.; Schuchert, Tobias; Moragues, J.; Cabrera, A.; Gilleade, K

    2012-01-01

    The paper presents the new concept of Adaptive Augmented Reality (A2R), employed within the context of the creation of an AR guide for the museum visit, that is being developed in the context of an EU research project. The main objective of the project is to provide a prototype that enables a personalized experience for every individual visitor by adapting to the psychological state of the visitor the content presented through an augmented reality museum guidance system.

  20. Augmented reality for personalized nanomedicines.

    Science.gov (United States)

    Lee, Yugyung; Lee, Chi H

    As our understanding of onset and progress of diseases at the genetic and molecular level rapidly progresses, the potential of advanced technologies, such as 3D-printing, Socially-Assistive Robots (SARs) or augmented reality (AR), that are applied to personalized nanomedicines (PNMs) to alleviate pathological conditions, has become more prominent. Among advanced technologies, AR in particular has the greatest potential to address those challenges and facilitate the translation of PNMs into formidable clinical application of personalized therapy. As AR is about to adapt additional new methods, such as speech, voice recognition, eye tracing and motion tracking, to enable interaction with host response or biological systems in 3-D space, a combination of multiple approaches to accommodate varying environmental conditions, such as public noise and atmosphere brightness, will be explored to improve its therapeutic outcomes in clinical applications. For instance, AR glasses still being developed by Facebook or Microsoft will serve as new platform that can provide people with the health information they are interested in or various measures through which they can interact with medical services. This review has addressed the current progress and impact of AR on PNMs and its application to the biomedical field. Special emphasis is placed on the application of AR based PNMs to the treatment strategies against senior care, drug addiction and medication adherence. Published by Elsevier Inc.

  1. 可觸式擴增實境輔助博物館導覽效益之研究 A Study of Using Tangible Augmented Reality System to Enhance the Learning Effects on Museum Artifacts

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lin

    2012-11-01

    Full Text Available 本研究嘗試以擴增實境科技融入博物館文物展示,以改善所展文物互動性不足與無法任意細察之現象,探究其所提供之效益。據此目的,本研究分兩階段進行,第一階段在探索其應用於文物展的互動機制與因素,主要透過WiiRemote設計的擴增實境操作介面以了解參觀者的使用經驗與感受。第二階段則據此結果,設計可觸式擴增實境操作介面以提升導覽的效益。經兩年研究發現:(1)導覽設計須特別注意使用者年齡、性別及經驗。(2)導覽系統宜特別注意易用性與互動性。(3)導覽系統中的易使用性會影響學習功能性及學習者的專注度。(4)使用者對此類介面持正向態度。因此本研究建議未來進行博物館文物導覽系統設計時,可考量將此類介面融入其中以提升整體效益。The purpose of this study was based on our WiiRemote system study results to improve the human-machine interface and to develop the tangible augmented reality system for the learning effects on museum artifacts. The system prototype of tangible augmented reality system for butterfly’s specimens was examined in National Museum of Natural Science. Through the research method of questionnaire, interview and observation, we gathered the different aspects of the data and the information from visitors of National Museum of Natural Science. Based on the analysis of research data, the important conclusions are as follows: 1. All visitors highly satisfied with the tangible augmented reality system and met their needs of use: high interaction, easy to use and enjoyment. 2. The system usability impacted the system utility. Furthermore both of system usability and system utility affected the users’ attention in tangible augmented reality system.

  2. Cosmetic tourism for breast augmentation: a systematic review.

    Science.gov (United States)

    Brightman, Louise; Ng, Sze; Ahern, Susannah; Cooter, Rodney; Hopper, Ingrid

    2017-12-03

    The medical tourism industry, and in particular cosmetic tourism for breast augmentation, is becoming an increasingly popular global phenomenon. The objective of this study is to determine the extent of medical literature and the patient risk profiles associated with cosmetic tourism for breast augmentation both locally and abroad. OVID MEDLINE, OVID Embase, Cochrane Central and Proquest electronic databases. The search was conducted through to April 2017. Studies pertaining entirely or partly to cosmetic tourism for breast augmentation were considered for inclusion. Exclusion criteria included non-English articles, studies relating to non-cosmetic or non-implant breast augmentation, and studies that did not separately report on findings associated with breast augmentation abroad. We identified 17 observational studies. Common destinations included Europe, South America and South East Asia. Infectious complications were common. Wound dehiscence and aesthetic dissatisfaction also featured. Catastrophic outcomes such as sepsis, intubation and ventilation, radical bilateral mastectomy, irreversible hypoxic brain injury and death were also reported. There were expectations that home country health systems would treat complications and provide non-medically indicated revision procedures. The burden on home country health systems was evident from a public health perspective. Determining the extent of cosmetic tourism for breast augmentation, including outcomes and complications, will help to inform Australian patients who this seek procedure abroad. Furthermore, it will aid in better understanding the health system implications and may help to guide future research and public health interventions both locally and internationally. © 2017 Royal Australasian College of Surgeons.

  3. Rhinoplasty and the nasal SMAS augmentation graft: advantages and indications.

    Science.gov (United States)

    Davis, Richard E; Wayne, Ivan

    2004-01-01

    We evaluated the nasal superficial musculoaponeurotic system (SMAS) as an autologous augmentation graft material in the thick-skinned patient undergoing cosmetic rhinoplasty using a retrospective review. Representative case reports demonstrated preliminary long-term results after augmentation with the nasal SMAS graft in an academic rhinoplasty practice. En bloc excision of the nasal SMAS in thick-skinned patients produced uniformly favorable improvements in nasal tip definition without adverse sequelae. Moreover, in 10 patients, the harvested material was also used for volume augmentation at various adjacent nasal sites, including the radix, nasal sidewall, and nasal dorsum. Long-term follow-up ranging from 1 to 3 years suggests stable volume augmentation in this initial patient series. No donor morbidity was observed in properly selected patients, and enhancements in nasal tip definition were uniformly favorable. Additional studies are needed to more accurately characterize long-term nasal SMAS graft survival in all patients.

  4. Bayesian Alternation During Tactile Augmentation

    Directory of Open Access Journals (Sweden)

    Caspar Mathias Goeke

    2016-10-01

    Full Text Available A large number of studies suggest that the integration of multisensory signals by humans is well described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition, rotation only (native condition, and both augmented and native information (bimodal condition. Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants’ responses with a probit model and calculated the just notable difference (JND. Then we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67 than the Bayesian integration model (χred2= 4.34. Slightly higher accuracy showed a non-Bayesian winner takes all model (χred2= 1.64, which either used only native or only augmented values per subject for prediction. However the performance of the Bayesian alternation model could be substantially improved (χred2= 1.09 utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in

  5. Comprehensible visualization for augmented reality.

    Science.gov (United States)

    Kalkofen, Denis; Mendez, Erick; Schmalstieg, Dieter

    2009-01-01

    This article presents interactive visualizations to support the comprehension of spatial relationships between virtual and real world objects for Augmented Reality (AR) applications. To enhance the clarity of such relationships we discuss visualization techniques and their suitability for AR. We apply them on different AR applications with different goals, e.g. in X-Ray vision or in applications which draw a user's attention to an object of interest. We demonstrate how Focus and Context (F+C) visualizations are used to affect the user's perception of hidden or nearby objects by presenting contextual information in the area of augmentation. We discuss the organization and the possible sources of data for visualizations in Augmented Reality and present cascaded and multi level F+C visualizations to address complex, cluttered scenes that are inevitable in real environments. This article also shows filters and tools to interactively control the amount of augmentation. It compares the impact of real world context preserving to a pure virtual and uniform enhancement of these structures for augmentations of real world imagery. Finally this paper discusses the stylization of sparse object representations for AR to improve X-Ray vision.

  6. Augmented reality for breast tumors visualization.

    Science.gov (United States)

    Ghaderi, Mohammad Ali; Heydarzadeh, Mehrdad; Nourani, Mehrdad; Gupta, Gopal; Tamil, Lakshman

    2016-08-01

    3D visualization of breast tumors are shown to be effective by previous studies. In this paper, we introduce a new augmented reality application that can help doctors and surgeons to have a more accurate visualization of breast tumors; this system uses a marker-based image-processing technique to render a 3D model of the tumors on the body. The model can be created using a combination of breast 3D mammography by experts. We have tested the system using an Android smartphone and a head-mounted device. This proof of concept can be useful for oncologists to have a more effective screening, and surgeons to plan the surgery.

  7. Augmented Reality Tower Technology Assessment

    Science.gov (United States)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  8. Augmented reality som wearable technology

    DEFF Research Database (Denmark)

    Rahn, Annette

    2016-01-01

    “How Augmented reality can facilitate learning in visualizing human anatomy “ At this station I demonstrate how Augmented reality can be used to visualize the human lungs in situ and as a wearable technology which establish connection between body, image and technology in education. I will show...... the potential of Augmented reality increasing students level of understanding, interaction and engagement with the object. I will demonstrate the technology and show you the human lungs in your body and the future perspectives of the technology. Organization: developed in collaboration with Mie Buhl, Professor...... MSO, Aalborg University, Copenhagen. Annette Rahn, MSc, senior lecturer and teacher in anatomy and physiology at the School of Nursing, VIA Health- and Welfare Technology, VIA University College....

  9. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swenson, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...

  10. Robust Augmented Reality

    NARCIS (Netherlands)

    Akman, O.

    2012-01-01

    The field of Computer Vision is concerned with problems that involve interfacing computers with their surrounding environment through cameras. Consequently artificial vision systems can replace human perception in many tasks. Recent advances in technology, such as increase in computational power,

  11. Breast augmentation - slideshow

    Science.gov (United States)

    ... a system of glands and ducts that produce milk. Fat makes up the majority of the breast tissue. Behind the ... in cosmetic and reconstructive plastic surgery, Palm Beach Gardens, FL. Review provided by ...

  12. Yeast Augmented Network Analysis (YANA: a new systems approach to identify therapeutic targets for human genetic diseases [v1; ref status: indexed, http://f1000r.es/3gk

    Directory of Open Access Journals (Sweden)

    David J. Wiley

    2014-06-01

    Full Text Available Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA approach and test it with the X-linked spinal muscular atrophy (SMA disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.

  13. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student i...

  14. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...

  15. SPRINT spray intercooling augments LM6000 output

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David

    1998-09-01

    By injecting water between the low pressure and high pressure compressors of an aeroderivative gas turbine, GE-IAD engineers have demonstrated that a 9 per cent increase in output accompanied by reduced life cycle costs can be achieved. Designated the SPRINT system, uprated LM 6000 units with augmented efficiency have been introduced to the market. The first two production units, both supplied to Southern Electric Power Generation in England for mid-merit independent power generation plants at Chickerell in Dorset and Burghfield in Berkshire, have each clocked in excess of 500 operating hours since start-up in early April 1998. MPS visited the Chickerell installation in late July 1998. (UK)

  16. Cerebellum Augmented Rover Development

    Science.gov (United States)

    King, Matthew

    2005-01-01

    Bio-Inspired Technologies and Systems (BITS) are a very natural result of thinking about Nature's way of solving problems. Knowledge of animal behaviors an be used in developing robotic behaviors intended for planetary exploration. This is the expertise of the JFL BITS Group and has served as a philosophical model for NMSU RioRobolab. Navigation is a vital function for any autonomous system. Systems must have the ability to determine a safe path between their current location and some target location. The MER mission, as well as other JPL rover missions, uses a method known as dead-reckoning to determine position information. Dead-reckoning uses wheel encoders to sense the wheel's rotation. In a sandy environment such as Mars, this method is highly inaccurate because the wheels will slip in the sand. Improving positioning error will allow the speed of an autonomous navigating rover to be greatly increased. Therefore, local navigation based upon landmark tracking is desirable in planetary exploration. The BITS Group is developing navigation technology based upon landmark tracking. Integration of the current rover architecture with a cerebellar neural network tracking algorithm will demonstrate that this approach to navigation is feasible and should be implemented in future rover and spacecraft missions.

  17. [Display technologies for augmented reality in medical applications].

    Science.gov (United States)

    Eck, Ulrich; Winkler, Alexander

    2018-02-20

    One of the main challenges for modern surgery is the effective use of the many available imaging modalities and diagnostic methods. Augmented reality systems can be used in the future to blend patient and planning information into the view of surgeons, which can improve the efficiency and safety of interventions. In this article we present five visualization methods to integrate augmented reality displays into medical procedures and the advantages and disadvantages are explained. Based on an extensive literature review the various existing approaches for integration of augmented reality displays into medical procedures are divided into five categories and the most important research results for each approach are presented. A large number of mixed and augmented reality solutions for medical interventions have been developed as research prototypes; however, only very few systems have been tested on patients. In order to integrate mixed and augmented reality displays into medical practice, highly specialized solutions need to be developed. Such systems must comply with the requirements with respect to accuracy, fidelity, ergonomics and seamless integration into the surgical workflow.

  18. Augmenting digital displays with computation

    Science.gov (United States)

    Liu, Jing

    As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion

  19. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders

    OpenAIRE

    Irene Alice Chicchi Giglioli; Federica Pallavicini; Elisa Pedroli; Silvia Serino; Giuseppe Riva

    2015-01-01

    Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cogn...

  20. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  1. An application of augmented MDA for the extended healthcare enterprise

    NARCIS (Netherlands)

    Jones, Valerie M.; van Halteren, Aart; Konstantas, D.; Widya, I.A.; Bults, Richard G.A.

    2007-01-01

    Mobile health systems extend the Enterprise Computing System (ECS) of the healthcare provider by bringing services to the patient any time and anywhere. We propose a methodology for the development of such extended ECSs which applies a model-driven design and development approach augmented with

  2. Augmented assessment as a means to augmented reality.

    Science.gov (United States)

    Bergeron, Bryan

    2006-01-01

    Rigorous scientific assessment of educational technologies typically lags behind the availability of the technologies by years because of the lack of validated instruments and benchmarks. Even when the appropriate assessment instruments are available, they may not be applied because of time and monetary constraints. Work in augmented reality, instrumented mannequins, serious gaming, and similar promising educational technologies that haven't undergone timely, rigorous evaluation, highlights the need for assessment methodologies that address the limitations of traditional approaches. The most promising augmented assessment solutions incorporate elements of rapid prototyping used in the software industry, simulation-based assessment techniques modeled after methods used in bioinformatics, and object-oriented analysis methods borrowed from object oriented programming.

  3. Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation

    Science.gov (United States)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.

  4. Current progress on augmented reality visualization in endoscopic surgery.

    Science.gov (United States)

    Nakamoto, Masahiko; Ukimura, Osamu; Faber, Kenneth; Gill, Inderbir S

    2012-03-01

    Advancements in surgery are progressing at a rapid rate; however, there are still limitations, including the ability to accurately visualize the target organ, in particular during laparoscopic surgery. Augmented reality visualization is a novel technique that has been developed to allow the fusion of three-dimensional medical images, such as those from transrectal ultrasound or computed tomography/MRI, with live camera images in real-time. In this review, we describe the current advancements and future directions of augmented reality and its application to laparoscopic surgery. Geometrically-correct superimposed images can be generated by tracking of the laparoscope and registration of the target organ. The fused image between the live laparoscopic images and the reconstructed three-dimensional organ model aides the surgeon in his or her understanding of anatomical structures. Laparoscopic and robot-assisted surgeries in both general surgery and urology have been performed with technical success to date. The primary limitation of the current augmented reality systems is its infancy in dynamic tracking of organ motion or deformation. Recently, augmented reality systems with organ tracking based on real-time image analysis were developed. Further improvement and/or development of such new technologies would resolve these issues. Augmented reality visualization is a significant advancement, improving the precision of laparoscopic/endoscopic surgery. New technologies to improve the dynamic tracking of organ motion or deformation are currently under investigation.

  5. A Foreign Language Learning Application using Mobile Augmented Reality

    Directory of Open Access Journals (Sweden)

    Florentin-Alexandru DITA

    2016-01-01

    Full Text Available In this paper is described a foreign language learning application using mobile augmented reality based on gamification method and text recognition. The mobile augmented reality is a technology that extends the real world elements with 2D or 3D computer generated objects and lets the users interact with them. A Gamification system is based on different mechanisms that increase the motivation of students, due to the impact that videogames have in their emotional, cognitive and social areas. The proposed solution applies Optical Character Recognition technique, using the camera of the mobile device, in order to identify the text written on a card. The implementation combines the features of gamification system and mobile augmented reality in order to make the learning process more easy and fun. This paper aims to present the results after testing the foreign language learning application in different scenarios.

  6. Calibration, registration, and synchronization for high precision augmented reality haptics.

    Science.gov (United States)

    Harders, Matthias; Bianchi, Gérald; Knoerlein, Benjamin; Székely, Gábor

    2009-01-01

    In our current research we examine the application of visuo-haptic augmented reality setups in medical training. To this end, highly accurate calibration, system stability, and low latency are indispensable prerequisites. These are necessary to maintain user immersion and avoid breaks in presence which potentially diminish the training outcome. In this paper we describe the developed calibration methods for visuo-haptic integration, the hybrid tracking technique for stable alignment of the augmentation, and the distributed framework ensuring low latency and component synchronization. Finally, we outline an early prototype system based on the multimodal augmented reality framework. The latter allows colocated visuo-haptic interaction with real and virtual scene components in a simplified open surgery setting.

  7. Ridge augmentation in implant dentistry

    Directory of Open Access Journals (Sweden)

    Manoj Goyal

    2015-01-01

    Full Text Available Dimensional changes in the alveolar ridge after extraction often compromises on achieving optimal implant stability and placement of implants in the right prosthodontic positions. These situations demand augmentation of the residual ridge to achieve successful implant placement and long-term survival. Although the available literature speaks of an overabundance of techniques and agents for ridge augmentation, there is a relative paucity of quality evidence to guide the selection of suitable techniques and material. Henceforth, this paper is an endeavor to develop and describe an evidence-based decision pathway for the selection of suitable techniques for various clinical situations. Additionally, a descriptive overview of various techniques and materials is presented.

  8. Sistemas suplementares e alternativos de comunicação nas habilidades expressivas de um aluno com paralisia cerebral Augmentative and alternative systems in the expressive abilities of a cerebral palsy student

    Directory of Open Access Journals (Sweden)

    Débora Deliberato

    2011-08-01

    Full Text Available O objetivo desta pesquisa foi descrever o uso do sistema de comunicação suplementar e alternativo de um aluno com paralisia cerebral submetido à intervenção. Participou desta investigação um aluno com paralisia cerebral de 10 anos de idade, gênero masculino, que frequentava classe especial para deficientes físicos em uma escola estadual de uma cidade do interior de São Paulo. As atividades programadas foram realizadas duas vezes por semana, durante dois anos, em um Laboratório de Educação Especial de uma Universidade pública. Todas as fitas gravadas descrevendo as atividades desenvolvidas nos atendimentos efetivados durante o processo de avaliação e implementação do recurso de comunicação suplementar e alternativo foram assistidas e descritas, em um protocolo especifico. Com base nas informações dos protocolos, foram selecionadas as sessões com intervalo maior que 20 dias e que continham atividades envolvendo o tabuleiro de comunicação, com o tempo igual ou superior a 20 minutos, durante o primeiro ano da intervenção. As sessões escolhidas foram transcritas na íntegra e, após análise do texto obtido, foram estabelecidas as seguintes categorias: o sistema gráfico auxiliou o aluno, na emissão de estrutura vertical (56%, associado à modalidade oral (14% e à modalidade não oral verbal e não verbal (30%, enquanto o uso do sistema gráfico, em conjunto com outras modalidades, colaborou na ampliação dos enunciados e na possibilidade de o aluno ser compreendido na sua intenção. O emprego de sistemas de comunicação suplementar e alternativo proporcionou ao aluno a ampliação de situações dialógicas efetivas, durante as atividades realizadas na intervenção fonoaudiológica.The objective of this research was to describe the use of an augmentative and alternative system for a student with cerebral palsy during intervention. A 10-year-old male student with cerebral palsy participated in this investigation. He

  9. Digital Illumination for Augmented Studios

    OpenAIRE

    Bimber, Oliver; Grundhöfer, Anselm; Zollmann, Stefanie; Kolster, Daniel

    2006-01-01

    Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance a...

  10. Image-guided transorbital procedures with endoscopic video augmentation.

    Science.gov (United States)

    DeLisi, Michael P; Mawn, Louise A; Galloway, Robert L

    2014-09-01

    Surgical interventions to the orbital space behind the eyeball are limited to highly invasive procedures due to the confined nature of the region along with the presence of several intricate soft tissue structures. A minimally invasive approach to orbital surgery would enable several therapeutic options, particularly new treatment protocols for optic neuropathies such as glaucoma. The authors have developed an image-guided system for the purpose of navigating a thin flexible endoscope to a specified target region behind the eyeball. Navigation within the orbit is particularly challenging despite its small volume, as the presence of fat tissue occludes the endoscopic visual field while the surgeon must constantly be aware of optic nerve position. This research investigates the impact of endoscopic video augmentation to targeted image-guided navigation in a series of anthropomorphic phantom experiments. A group of 16 surgeons performed a target identification task within the orbits of four skull phantoms. The task consisted of identifying the correct target, indicated by the augmented video and the preoperative imaging frames, out of four possibilities. For each skull, one orbital intervention was performed with video augmentation, while the other was done with the standard image guidance technique, in random order. The authors measured a target identification accuracy of 95.3% and 85.9% for the augmented and standard cases, respectively, with statistically significant improvement in procedure time (Z=-2.044, p=0.041) and intraoperator mean procedure time (Z=2.456, p=0.014) when augmentation was used. Improvements in both target identification accuracy and interventional procedure time suggest that endoscopic video augmentation provides valuable additional orientation and trajectory information in an image-guided procedure. Utilization of video augmentation in transorbital interventions could further minimize complication risk and enhance surgeon comfort and

  11. Hard tissue augmentation for alveolar defects before implant placement

    Directory of Open Access Journals (Sweden)

    Mutia Rochmawati

    2017-08-01

    Full Text Available Background. Often when planning implant therapy, there is a need to augment or  replace  bone  that  has  been  lost. The alveolar defects may occur as a result of tooth loss due to extraction, advanced periodontal diseases or trauma, long term use of removable appliances, dehiscence and fenestration defects, developmental defects/clefts, congenitally missing teeth and odontogenic cysts and tumors. Insufficient bone volume can be brought about by hard tissue augmentation. This techniques have led to increased predictability in reconstruction of alveolar ridge defects and functional implant placement. Purpose. To describe the methods of hard tissue augmentation which can be done with block grafts (autografts and allografts, particulate grafts (cortical and cancellous, xenografts, or synthetic materials. Review. The reconstruction of a normal alveolar housing, in height and width, is imperative to achieve a harmonious balance between biology, function, and aesthetics. Depending on the size and morphology of the defect, horizontal or vertical, various augmentation procedures can be used. Soft tissue management is a critical aspect of hard tissue augmentation procedures. Incisions, reflection, and manipulation should be designed to optimize blood supply and wound closure. The design and management of mucoperiosteal flaps must consider the increased dimensions of the ridge after augmentation as well as esthetics and approximation of the wound margins. The surgical procedure needs to be executed with utmost care to preserve the maximum vascularity to the flap and minimize tissue injury. Conclusion. Alveolar ridge defects can be classified by using Seibert’s classification or HVC System. The treatment of alveolar ridge defect before implant placement can be done with hard tissue augmentation.

  12. Vertical bone augmentation procedures: basics and techniques in dental implantology.

    Science.gov (United States)

    Draenert, F G; Huetzen, D; Neff, A; Mueller, W E G

    2014-05-01

    An appropriate bony situation is essential for dental implant placement and bony support of soft tissues (pink esthetic). Loss of teeth often results in complex horizontal and vertical alveolar ridge defects. They demand advanced bone augmentation techniques for reconstruction. We present the different techniques and materials used in complex bone augmentation. Clinical cases show the application of the methods in the clinical setting. We present current techniques and materials used in complex bone augmentations. Clinical cases show the application of the methods in the clinical setting. Applied techniques include stabilized-guided bone regeneration (GBR), autologous local block augmentation, modified techniques such as Gellrich shell technique including piezosurgery, pelvic bone blocks, complex materials such as graft-derived bone blocks and their unique handling problems. Successful basic principles are reduction of cortical bone healing due to long remodeling time and possible late loss; extended application of materials with interconnecting porous system and particulate material resulting in fast healing analogous to cancellous bone; mechanical stabilization of the augmentation to allow bony healing in vertical defect situations. GBR and autologous bone blocks with minimal cortical thickness and a high volume of particulated material are most favorable techniques. Copyright © 2013 Wiley Periodicals, Inc.

  13. Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector

    Science.gov (United States)

    Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.

  14. Augmented reality in a tumor resection model.

    Science.gov (United States)

    Chauvet, Pauline; Collins, Toby; Debize, Clement; Novais-Gameiro, Lorraine; Pereira, Bruno; Bartoli, Adrien; Canis, Michel; Bourdel, Nicolas

    2018-03-01

    Augmented Reality (AR) guidance is a technology that allows a surgeon to see sub-surface structures, by overlaying pre-operative imaging data on a live laparoscopic video. Our objectives were to evaluate a state-of-the-art AR guidance system in a tumor surgical resection model, comparing the accuracy of the resection with and without the system. Our system has three phases. Phase 1: using the MRI images, the kidney's and pseudotumor's surfaces are segmented to construct a 3D model. Phase 2: the intra-operative 3D model of the kidney is computed. Phase 3: the pre-operative and intra-operative models are registered, and the laparoscopic view is augmented with the pre-operative data. We performed a prospective experimental study on ex vivo porcine kidneys. Alginate was injected into the parenchyma to create pseudotumors measuring 4-10 mm. The kidneys were then analyzed by MRI. Next, the kidneys were placed into pelvictrainers, and the pseudotumors were laparoscopically resected. The AR guidance system allows the surgeon to see tumors and margins using classical laparoscopic instruments, and a classical screen. The resection margins were measured microscopically to evaluate the accuracy of resection. Ninety tumors were segmented: 28 were used to optimize the AR software, and 62 were used to randomly compare surgical resection: 29 tumors were resected using AR and 33 without AR. The analysis of our pathological results showed 4 failures (tumor with positive margins) (13.8%) in the AR group, and 10 (30.3%) in the Non-AR group. There was no complete miss in the AR group, while there were 4 complete misses in the non-AR group. In total, 14 (42.4%) tumors were completely missed or had a positive margin in the non-AR group. Our AR system enhances the accuracy of surgical resection, particularly for small tumors. Crucial information such as resection margins and vascularization could also be displayed.

  15. Augmented reality in bone tumour resection

    Science.gov (United States)

    Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.

    2017-01-01

    Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117

  16. Prospects for optogenetic augmentation of brain function

    Directory of Open Access Journals (Sweden)

    Sarah eJarvis

    2015-11-01

    Full Text Available The ability to optically control neural activity opens up possibilities for the restoration of normal function following neurological disorders. The temporal precision, spatial resolution and neuronal specificity that optogenetics offers is unequalled by other available methods, so will it be suitable for not only restoring but also extending brain function? As the first demonstrations of optically ``implanted'' novel memories emerge, we examine the suitability of optogenetics as a technique for extending neural function. While optogenetics is an effective tool for altering neural activity, the largest impediment for optogenetics in neural augmentation is our systems level understanding of brain function. Furthermore, a number of clinical limitations currently remain as substantial hurdles for the applications proposed. While neurotechnologies for treating brain disorders and interfacing with prosthetics have advanced rapidly in the past few years, partially addressing some of these critical problems, optogenetics is not yet suitable for use in humans. Instead we conclude that for the immediate future, optogenetics is the neurological equivalent of the 3D printer: its flexibility providing an ideal tool for testing and prototyping solutions for treating brain disorders and augmenting brain function.

  17. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?

    DEFF Research Database (Denmark)

    Lundby, C; Robach, P; Boushel, R

    2008-01-01

    before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery....

  18. Augmented reality three-dimensional display with light field fusion.

    Science.gov (United States)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chengyu

    2016-05-30

    A video see-through augmented reality three-dimensional display method is presented. The system that is used for dense viewpoint augmented reality presentation fuses the light fields of the real scene and the virtual model naturally. Inherently benefiting from the rich information of the light field, depth sense and occlusion can be handled under no priori depth information of the real scene. A series of processes are proposed to optimize the augmented reality performance. Experimental results show that the reconstructed fused 3D light field on the autostereoscopic display is well presented. The virtual model is naturally integrated into the real scene with a consistence between binocular parallax and monocular depth cues.

  19. Picture Exchange Communication System and Pals: A Peer-Mediated Augmentative and Alternative Communication Intervention for Minimally Verbal Preschoolers with Autism

    Science.gov (United States)

    Thiemann-Bourque, Kathy; Brady, Nancy; McGuff, Sara; Strump, Keenan; Naylor, Amy

    2016-01-01

    Purpose: This study was conducted to investigate the effectiveness of a social intervention that integrates peer-mediated approaches and the Picture Exchange Communication System (PECS). Method: Effects were evaluated using a series of A-B designs replicated across 4 children with severe autism and limited verbal skills. Seven peers without…

  20. The Design of Immersive English Learning Environment Using Augmented Reality

    Science.gov (United States)

    Li, Kuo-Chen; Chen, Cheng-Ting; Cheng, Shein-Yung; Tsai, Chung-Wei

    2016-01-01

    The study uses augmented reality (AR) technology to integrate virtual objects into the real learning environment for language learning. The English AR classroom is constructed using the system prototyping method and evaluated by semi-structured in-depth interviews. According to the flow theory by Csikszenmihalyi in 1975 along with the immersive…

  1. The Cogs Are Coming: The Cognitive Augmentation Revolution

    Science.gov (United States)

    Fulbright, Ron

    2016-01-01

    We are at the beginning of a new era in human history--the cognitive augmentation era. Until now, humans have had to do all of the thinking. The future will make it possible for humans to partner with cognitive systems doing some of the thinking themselves and in many ways thinking that is superior to humans. Together, humans and "cogs"…

  2. Role of computer vision in augmented virtual reality

    Science.gov (United States)

    Sharma, Rajeev; Molineros, Jose

    1995-03-01

    An important issue in augmented virtual reality is making the virtual world sensitive to the current state of the surrounding real world as the user interacts with it--changing gaze, manipulating an object, etc. For providing the right virtual stimulus at the right position and time, the system needs some sensor to interpret the surrounding scene. Computer vision holds great potential in providing the necessary interpretation of the scene. We present the preliminary design of a computer vision-based augmented reality system for helping a human in assembling an industrial part from its components. The context of assembly helps in keeping the computer vision task simple by exploiting the geometric model of the assembly components for recognition and pose estimation. The augmentation stimuli include labeling of objects in the scene, helping with sequencing using an assembly planner, visualization of assembly at different stages, handling errors by the human operator, etc. Such a system would have potential applications in assembling complex parts, maintenance, and education. We will present an overview of the design of the system and discuss some of the issues involved in computer vision-based augmented reality.

  3. Sensor fusion in head pose tracking for augmented reality

    NARCIS (Netherlands)

    Young, I.T.; Lagendijk, R.L.; Jonker, P.P.; Persa, S.F.

    The focus of this thesis is on studying diverse techniques, methods and sensors for position and orientation determination with application to augmented reality applications. In Chapter 2 we reviewed a variety of existing techniques and systems for position determination. From a practical point of

  4. Sensor fusion in head pose tracking for augmented reality

    NARCIS (Netherlands)

    Persa, S.F.

    2006-01-01

    The focus of this thesis is on studying diverse techniques, methods and sensors for position and orientation determination with application to augmented reality applications. In Chapter 2 we reviewed a variety of existing techniques and systems for position determination. From a practical point of

  5. Migration and lymphatic spread of calcified paraffinomas after breast augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, G.C.; Peh, W.C.G.; Ip, M. [Hong Kong Univ. (Hong Kong)

    1996-11-01

    A 62 year old Chinese woman presented 25 years after having both breasts augmented with paraffin injections. Development of paraffinomas and multiple episodes of paraffin-related mastitis eventually resulted in bilateral mastectomies. The unusual distribution of migrated calcified paraffinomas in the thoracic wall and its lymphatic system is documented on computed tomography. 12 refs., 2 figs.

  6. Using Augmented Reality Tools to Enhance Children's Library Services

    Science.gov (United States)

    Meredith, Tamara R.

    2015-01-01

    Augmented reality (AR) has been used and documented for a variety of commercial and educational purposes, and the proliferation of mobile devices has increased the average person's access to AR systems and tools. However, little research has been done in the area of using AR to supplement traditional library services, specifically for patrons aged…

  7. Robotic assisted laparoscopic augmentation ileocystoplasty

    Directory of Open Access Journals (Sweden)

    Peter A. Caputo

    Full Text Available ABSTRACT Introduction: Augmentation ileocystoplasty is a common treatment in adults with low capacity bladders due to neurogenic bladder dysfunction. We describe here our technique for robotic assisted laparoscopic augmentation ileocystoplasty in an adult with a low capacity bladder due to neurogenic bladder dysfunction. Materials and Methods: The patient is a 35 years-old man with neurogenic bladder due to a C6 spinal cord injury in 2004. Cystometrogram shows a maximum capacity of 96cc and Pdet at maximum capacity of 97cmH2O. He manages his bladder with intermittent catheterization and experiences multiple episodes of incontinence between catheterizations. He experiences severe autonomic dysreflexia symptoms with indwelling urethral catheter. He has previously failed non operative management options of his bladder dysfunction. Our surgical technique utilizes 6 trocars, of note a 12mm assistant trocar is placed 1cm superior to the pubic symphysis, and this trocar is solely used to pass a laparoscopic stapler to facilitate the excision of the ileal segment and the enteric anastomosis. Surgical steps include: development of the space of Retzius/dropping the bladder; opening the bladder from the anterior to posterior bladder neck; excision of a segment of ileum; enteric anastomosis; detubularizing the ileal segment; suturing the ileal segment to the incised bladder edge. Results: The surgery had no intraoperative complications. Operative time was 286 minutes (4.8 hours. Estimated blood loss was 50cc. Length of hospital stay was 8 days. He did experience a postoperative complication on hospital day 3 of hematemesis, which did not require blood transfusion. Cystometrogram at 22 days post operatively showed a maximum bladder capacity of 165cc with a Pdet at maximum capacity of 10cmH2O. Conclusions: As surgeon comfort and experience with robotic assisted surgery grows, robotic surgery can successfully be applied to less frequently performed procedures

  8. An augmented reality haptic training simulator for spinal needle procedures.

    Science.gov (United States)

    Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin

    2013-11-01

    This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.

  9. Augmented reality in intraventricular neuroendoscopy.

    Science.gov (United States)

    Finger, T; Schaumann, A; Schulz, M; Thomale, Ulrich-W

    2017-06-01

    Individual planning of the entry point and the use of navigation has become more relevant in intraventricular neuroendoscopy. Navigated neuroendoscopic solutions are continuously improving. We describe experimentally measured accuracy and our first experience with augmented reality-enhanced navigated neuroendoscopy for intraventricular pathologies. Augmented reality-enhanced navigated endoscopy was tested for accuracy in an experimental setting. Therefore, a 3D-printed head model with a right parietal lesion was scanned with a thin-sliced computer tomography. Segmentation of the tumor lesion was performed using Scopis NovaPlan navigation software. An optical reference matrix is used to register the neuroendoscope's geometry and its field of view. The pre-planned ROI and trajectory are superimposed in the endoscopic image. The accuracy of the superimposed contour fitting on endoscopically visualized lesion was acquired by measuring the deviation of both midpoints to one another. The technique was subsequently used in 29 cases with CSF circulation pathologies. Navigation planning included defining the entry points, regions of interests and trajectories, superimposed as augmented reality on the endoscopic video screen during intervention. Patients were evaluated for postoperative imaging, reoperations, and possible complications. The experimental setup revealed a deviation of the ROI's midpoint from the real target by 1.2 ± 0.4 mm. The clinical study included 18 cyst fenestrations, ten biopsies, seven endoscopic third ventriculostomies, six stent placements, and two shunt implantations, being eventually combined in some patients. In cases of cyst fenestrations postoperatively, the cyst volume was significantly reduced in all patients by mean of 47%. In biopsies, the diagnostic yield was 100%. Reoperations during a follow-up period of 11.4 ± 10.2 months were necessary in two cases. Complications included one postoperative hygroma and one insufficient

  10. Augmented reality in neurosurgery: a systematic review.

    Science.gov (United States)

    Meola, Antonio; Cutolo, Fabrizio; Carbone, Marina; Cagnazzo, Federico; Ferrari, Mauro; Ferrari, Vincenzo

    2017-10-01

    Neuronavigation has become an essential neurosurgical tool in pursuing minimal invasiveness and maximal safety, even though it has several technical limitations. Augmented reality (AR) neuronavigation is a significant advance, providing a real-time updated 3D virtual model of anatomical details, overlaid on the real surgical field. Currently, only a few AR systems have been tested in a clinical setting. The aim is to review such devices. We performed a PubMed search of reports restricted to human studies of in vivo applications of AR in any neurosurgical procedure using the search terms "Augmented reality" and "Neurosurgery." Eligibility assessment was performed independently by two reviewers in an unblinded standardized manner. The systems were qualitatively evaluated on the basis of the following: neurosurgical subspecialty of application, pathology of treated lesions and lesion locations, real data source, virtual data source, tracking modality, registration technique, visualization processing, display type, and perception location. Eighteen studies were included during the period 1996 to September 30, 2015. The AR systems were grouped by the real data source: microscope (8), hand- or head-held cameras (4), direct patient view (2), endoscope (1), and X-ray fluoroscopy (1) head-mounted display (1). A total of 195 lesions were treated: 75 (38.46 %) were neoplastic, 77 (39.48 %) neurovascular, and 1 (0.51 %) hydrocephalus, and 42 (21.53 %) were undetermined. Current literature confirms that AR is a reliable and versatile tool when performing minimally invasive approaches in a wide range of neurosurgical diseases, although prospective randomized studies are not yet available and technical improvements are needed.

  11. Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council

    Science.gov (United States)

    1986-01-01

    In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

  12. Augmented reality in medical education?

    Science.gov (United States)

    Kamphuis, Carolien; Barsom, Esther; Schijven, Marlies; Christoph, Noor

    2014-09-01

    Learning in the medical domain is to a large extent workplace learning and involves mastery of complex skills that require performance up to professional standards in the work environment. Since training in this real-life context is not always possible for reasons of safety, costs, or didactics, alternative ways are needed to achieve clinical excellence. Educational technology and more specifically augmented reality (AR) has the potential to offer a highly realistic situated learning experience supportive of complex medical learning and transfer. AR is a technology that adds virtual content to the physical real world, thereby augmenting the perception of reality. Three examples of dedicated AR learning environments for the medical domain are described. Five types of research questions are identified that may guide empirical research into the effects of these learning environments. Up to now, empirical research mainly appears to focus on the development, usability and initial implementation of AR for learning. Limited review results reflect the motivational value of AR, its potential for training psychomotor skills and the capacity to visualize the invisible, possibly leading to enhanced conceptual understanding of complex causality.

  13. Aspects of User Experience in Augmented Reality

    OpenAIRE

    Madsen, Jacob Boesen

    2016-01-01

    In Augmented Reality applications, the real environment is annotated or enhanced with computer-generated graphics.This is a topic that has been researched in the recent decades, but for many people this is a brand new and never heard of topic.The main focus of this thesis is investigations in human factors related to Augmented Reality. This is investigated partly as how Augmented Reality applications are used in unsupervised settings, and partly in specific evaluations related to user perform...

  14. AB027. Penile augmentation: informed text briefing

    OpenAIRE

    Park, Nam Cheol

    2016-01-01

    The men?s desire to have larger and longer penis have created endless medical demands throughout human history. Until up to date, various medical skills for penile augmentation have developed in aspect of experimental and clinical outcome. Recently with throwing away socially unacceptable ideas, the need for penile augmentation is considered as equivalent level with mammoplasty for breast augmentation in women for cosmetic and psychological reason. Concurrently advanced technologies in medica...

  15. Enhancing tourism with augmented and virtual reality

    OpenAIRE

    Jenny, Sandra

    2017-01-01

    Augmented and virtual reality are on the advance. In the last twelve months, several interesting devices have entered the market. Since tourism is one of the fastest growing economic sectors in the world and has become one of the major players in international commerce, the aim of this thesis was to examine how tourism could be enhanced with augmented and virtual reality. The differences and functional principles of augmented and virtual reality were investigated, general uses were described ...

  16. Augmented reality in dentistry: a current perspective.

    Science.gov (United States)

    Kwon, Ho-Beom; Park, Young-Seok; Han, Jung-Suk

    2018-02-21

    Augmentation reality technology offers virtual information in addition to that of the real environment and thus opens new possibilities in various fields. The medical applications of augmentation reality are generally concentrated on surgery types, including neurosurgery, laparoscopic surgery and plastic surgery. Augmentation reality technology is also widely used in medical education and training. In dentistry, oral and maxillofacial surgery is the primary area of use, where dental implant placement and orthognathic surgery are the most frequent applications. Recent technological advancements are enabling new applications of restorative dentistry, orthodontics and endodontics. This review briefly summarizes the history, definitions, features, and components of augmented reality technology and discusses its applications and future perspectives in dentistry.

  17. Augmented reality approach for metabolic pathways teaching

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vega Garzón

    2014-12-01

    Full Text Available A glycolysis paper puzzle has been used as strategy to teach metabolic pathways, but this kind of game demands a higher number of instructors and limits the follow up of the students’ difficulties. A technology called Augmented Reality (AR was applied to enable the puzzle usage in large audiences, and to provid feedback to students and instructors. Drafted as flashcards readable by an app installed in tablets, it conveys information as molecules 3D-structure, clues for correct assembling of the metabolic pathway and results of student progression in the activity. Such technological improvement brought more autonomy to students for solving proposed exercises and an embedded performance data collection system helpful to understand,and after to unravel students’ difficulties.

  18. Temporal Coherence Strategies for Augmented Reality Labeling.

    Science.gov (United States)

    Madsen, Jacob Boesen; Tatzqern, Markus; Madsen, Claus B; Schmalstieg, Dieter; Kalkofen, Denis

    2016-04-01

    Temporal coherence of annotations is an important factor in augmented reality user interfaces and for information visualization. In this paper, we empirically evaluate four different techniques for annotation. Based on these findings, we follow up with subjective evaluations in a second experiment. Results show that presenting annotations in object space or image space leads to a significant difference in task performance. Furthermore, there is a significant interaction between rendering space and update frequency of annotations. Participants improve significantly in locating annotations, when annotations are presented in object space, and view management update rate is limited. In a follow-up experiment, participants appear to be more satisfied with limited update rate in comparison to a continuous update rate of the view management system.

  19. Sensory augmentation for the blind

    Directory of Open Access Journals (Sweden)

    Silke Manuela Kärcher

    2012-03-01

    Full Text Available Enacted theories of consciousness conjecture that perception and cognition arise from an active experience of the regular relations that are tying together the sensory stimulation of different modalities and associated motor actions. Previous experiments investigated this concept by employing the technique of sensory substitution. Building on these studies, here we test a set of hypotheses derived from this framework and investigate the utility of sensory augmentation in handicapped people. We provide a late blind subject with a new set of sensorimotor laws: A vibro-tactile belt continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. This experimental approach demonstrates the potential of sensory augmentation devices for the help of

  20. Tangible Interaction in Learning Astronomy through Augmented Reality Book-Based Educational Tool

    Science.gov (United States)

    Sin, Aw Kien; Badioze Zaman, Halimah

    Live Solar System (LSS) is an Augmented Reality book-based educational tool. Augmented Reality (AR) has its own potential in the education field, because it can provide a seamless interaction between real and virtual objects. LSS applied the Tangible Augmented Reality approach in designing its user interface and interaction. Tangible Augmented Reality is an interface which combines the Tangible User Interface and Augmented Reality Interface. They are naturally complement each other. This paper highlights the tangible interaction in LSS. LSS adopts the 'cube' as the common physical object input device. Thus, LSS does not use the traditional computer input devices such as the mouse or keyboard. To give users a better exploration experience, Visual Information Seeking Mantra principle was applied in the design of LSS. Hence, LSS gives users an effective interactive-intuitive horizontal surface learning environment.

  1. Use of engineered bone for sinus augmentation.

    Science.gov (United States)

    Beaumont, Christian; Schmidt, Roswitha J; Tatakis, Dimitris N; Zafiropoulos, Gregory-George

    2008-03-01

    Tissue-engineered bone grafts represent an appealing alternative for maxillary sinus augmentation because they eliminate the significant drawbacks associated with extra- and intraoral bone-harvesting procedures. In the present case series, we document the outcomes of sinus augmentation surgery using tissue-engineered bone grafts. Three patients requiring bilateral sinus augmentation received tissue-engineered bone grafts combined with xenograft prior to implant placement. Implants were placed and loaded 6 and 12 months postaugmentation, respectively. Radiographs were taken and clinical examinations were performed preoperatively and at 4, 6, 12, and 18 months postaugmentation. Biopsies were obtained at 4 and 6 months postaugmentation. Standardized orthopantomograms were used to measure the posterior maxilla bone height. None of the patients experienced untoward complications during or following the therapeutic procedures. Ten implants were inserted into the augmented sinuses and loaded. Biopsies revealed a lack of inflammation or pathology; newly formed fibrous bone with osteoblastic activity and xenograft particles was evident. Compared to 4 months postaugmentation, augmented tissue was more mature at 6 months. The postoperative (18 months) bone height in augmented areas was significantly greater than the preoperative height (P bone height. Sinus augmentation using tissue-engineered bone grafts was successful in all three cases, permitting the subsequent insertion and loading of dental implants. The present cases demonstrated the feasibility of using engineered bone for sinus augmentation. Controlled clinical trials will be required to evaluate this new and evolving treatment modality.

  2. Enhancing Education through Mobile Augmented Reality

    Science.gov (United States)

    Joan, D. R. Robert

    2015-01-01

    In this article, the author has discussed about the Mobile Augmented Reality and enhancing education through it. The aim of the present study was to give some general information about mobile augmented reality which helps to boost education. Purpose of the current study reveals the mobile networks which are used in the institution campus as well…

  3. Experimental investigation of thrust augmentation by ejectors on a pulse detonation engine

    Directory of Open Access Journals (Sweden)

    Huang Xi-Qiao

    2015-01-01

    Full Text Available Utilizing gasoline as the fuel, air as oxidizer, a series of multi-cycle detonation experiments was conducted to study thrust augmentation by PDE-driven ejectors. The straight cylindrical ejectors with different inner diameter, length and inlet geometry were designed. The effects of the axial location of the ejectors relative to the end of the detonation tube, ejector length-to-diameter ratio on thrust augmentation were investigated, with the operating frequency of 25 Hz. A peak thrust augmentation level of 80.5% was achieved by adding an ejector to the exit of the detonation tube. Performance measurements of the PDE-ejector system showed that thrust augmentation is a strong function of the ejector axial position. The result indicated that there exists a maximum thrust augmentation with ejector upstream of the detonation tube exit at least. The exact location at which the maximum thrust augmentation was obtained varies with the ejector-to-PDE diameter ratio and the ejector inlet geometry. With the increase of the length-to-diameter ratio, thrust augmentation was noticeably enhanced and finally tended to a constant. There exists an optimum ejector length. In the present study, the optimum length-to-diameter ratio of ejector was 4.58. Furthermore, the effect of operating frequency on ejector thrust augmentation also investigated. The operating frequency was varied from 15 Hz to 35 Hz.

  4. Effect of bladder augmentation on VP shunt failure rates in spina bifida.

    Science.gov (United States)

    Gonzalez, Dani O; Cooper, Jennifer N; McLeod, Daryl J

    2017-12-11

    Most patients with spina bifida require ventriculoperitoneal (VP) shunt placement. Some also require bladder augmentation, which may increase the risk of VP shunt malfunction and/or failure. The aim of this study was to assess whether bladder augmentation affects the rate of VP shunt failure in this population. Using the Pediatric Health Information System, we studied patients with spina bifida born between 1992 and 2014 who underwent VP shunt placement. Using conditional logistic regression, we compared age- and hospital-matched patients who did and did not undergo a bladder augmentation to determine their difference in rates of VP shunt failure. There were 4192 patients with spina bifida who underwent both surgical closure and VP shunt placement. Of these, 203 patients with bladder augmentation could be matched to 593 patients without bladder augmentation. VP shunt failure occurred within 2 years in 7.7% of patients, the majority of whom were in the group who underwent bladder augmentation (87%). After adjusting for confounders, undergoing bladder augmentation was independently associated with VP shunt failure (HR: 33.5, 95% CI: 13.15-85.44, p< 0.001). Bladder augmentation appears to be associated with VP shunt failure. Additional studies are necessary to better define this relationship and identify risk-reduction techniques.

  5. Implementation and Analysis of the Chromakey Augmented Virtual Environment (ChrAVE) Version 3.0 and Virtual Environment Helicopter (VEHELO) Version 2.0 in Simulated Helicopter Training

    National Research Council Canada - National Science Library

    Hahn, M. E

    2005-01-01

    The Chromakey Augmented Virtual Environment (ChrAVE) 3.0 System is a training system created to augment initial, refresher, and proficiency training in helicopter aviation using accurate simulation...

  6. Cybersecurity systems for human cognition augmentation

    CERN Document Server

    Pino, Robinson E; Shevenell, Michael

    2014-01-01

    This book explores cybersecurity research and development efforts, including ideas that deal with the growing challenge of how computing engineering can merge with neuroscience. The contributing authors, who are renowned leaders in this field, thoroughly examine new technologies that will automate security procedures and perform autonomous functions with decision making capabilities. To maximize reader insight into the range of professions dealing with increased cybersecurity issues, this book presents work performed by government, industry, and academic research institutions working at the fr

  7. Third-generation percutaneous vertebral augmentation systems

    OpenAIRE

    Vanni, Daniele; Galzio, Renato; Kazakova, Anna; Pantalone, Andrea; Grillea, Giovanni; Bartolo, Marcello; Salini, Vincenzo; Magliani, Vincenzo

    2016-01-01

    Currently, there is no general consensus about the management of osteoporotic vertebral fractures (OVF). In the past, conservative treatment for at least one month was deemed appropriate for the majority of vertebral fractures. When pain persisted after conservative treatment, it was necessary to consider surgical interventions including: vertebroplasty for vertebral fractures with less than 30% loss of height of the affected vertebral body and kyphoplasty for vertebral fractures with greater...

  8. Aspects of User Experience in Augmented Reality

    DEFF Research Database (Denmark)

    Madsen, Jacob Boesen

    In Augmented Reality applications, the real environment is annotated or enhanced with computer-generated graphics. This is a topic that has been researched in the recent decades, but for many people this is a brand new and never heard of topic. The main focus of this thesis is investigations...... in human factors related to Augmented Reality. This is investigated partly as how Augmented Reality applications are used in unsupervised settings, and partly in specific evaluations related to user performance in supervised settings. The thesis starts by introducing Augmented Reality to the reader......, followed by a presentation of the technical areas related to the field, and different human factor areas. As a contribution to the research area, this thesis presents five separate, but sequential, papers within the area of Augmented Reality....

  9. Pediatric applications of augmentation cystoplasty: the Johns Hopkins experience.

    Science.gov (United States)

    Gearhart, J P; Albertsen, P C; Marshall, F F; Jeffs, R D

    1986-08-01

    Since 1976, 23 children with bladder or cloacal exstrophy, meningomyelocele, sacral agenesis, the prune belly syndrome and noncompliant bladders associated with urethral valves or prior diversion underwent augmentation cystoplasty. Of these procedures 7 were combined with some type of urinary undiversion. Bowel segments used for augmentation included ileum alone in 10 patients, ileocecal segments in 4, a sigmoid patch in 8 and a hindgut patch in 1. An artificial urinary sphincter was placed at the time of bladder augmentation in 3 patients. There were no urinary fistulas or cases of urinary rediversion. Two patients required oral alkalizing agents as a result of persistent systemic acidosis. One patient required reoperation twice for ureteral obstruction, 1 had removal of the sphincter device secondary to erosion, 1 required reinforcement of the ileocecal valve owing to persistent reflux and 1 required reoperation for small bowel obstruction. Other complications included a superficial wound infection and 5 urinary tract infections, all of which were managed easily. Three patients were voiding and continent, 18 were dry with intermittent self-catheterization, 1 had giggle incontinence and 1 remained incontinent after sphincter removal. Augmentation cystoplasty appears to offer a reliable alternative to urinary diversion in the reconstructive management of children with small capacity bladders.

  10. An Efficiency Analysis of Augmented Reality Marker Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Kurpytė Dovilė

    2014-05-01

    Full Text Available The article reports on the investigation of augmented reality system which is designed for identification and augmentation of 100 different square markers. Marker recognition efficiency was investigated by rotating markers along x and y axis directions in range from −90° to 90°. Virtual simulations of four environments were developed: a an intense source of light, b an intense source of light falling from the left side, c the non-intensive light source falling from the left side, d equally falling shadows. The graphics were created using the OpenGL graphics computer hardware interface; image processing was programmed in C++ language using OpenCV, while augmented reality was developed in Java programming language using NyARToolKit. The obtained results demonstrate that augmented reality marker recognition algorithm is accurate and reliable in the case of changing lighting conditions and rotational angles - only 4 % markers were unidentified. Assessment of marker recognition efficiency let to propose marker classification strategy in order to use it for grouping various markers into distinct markers’ groups possessing similar recognition properties.

  11. Augmented Shared Reality Tools for Collaborative Science on a Planetary Exploration Analogue Mission

    Science.gov (United States)

    Binsted, K. A.

    2010-04-01

    An astronaut with field-geology tasks must collaborate with Earth-bound scientists, via an augmented reality system. We are investigating this scenario via an analogue mission in Hawaii, and will present the results.

  12. Mobile Platform Augmented Reality for Enhanced Operations on the International Space Station Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To develop an Augmented Reality system that runs on a small portable device to aid crew in routine maintenance activities by providing enhanced information and...

  13. Robust and Accurate Algorithm for Wearable Stereoscopic Augmented Reality with Three Indistinguishable Markers

    National Research Council Canada - National Science Library

    Cutolo, Fabrizio; Freschi, Cinzia; Mascioli, Stefano; Parchi, Paolo; Ferrari, Mauro; Ferrari, Vincenzo

    2016-01-01

    In the context of surgical navigation systems based on augmented reality (AR), the key challenge is to ensure the highest degree of realism in merging computer-generated elements with live views of the surgical scene...

  14. Augmentation Quotients for Real Representation Rings of Cyclic ...

    Indian Academy of Sciences (India)

    29

    Augmentation Quotients for Real Representation Rings of Cyclic Groups. Article Type: Reseach Article. Keywords: cyclic group; real representation; augmentation ideal; augmentation quotient. Corresponding Author: Hang Liu, Ph.D. Shaanxi Normal University. Xi'an, Shaanxi CHINA. Corresponding Author Secondary.

  15. Inflammatory cytokine response to exercise in alpha-1-antitrypsin deficient COPD patients 'on' or 'off' augmentation therapy

    OpenAIRE

    Olfert, IM; Malek, MH; Eagan, TML; Wagner, H; Wagner, PD

    2014-01-01

    Background: There is still limited information on systemic inflammation in alpha-1-antitrypsin-deficient (AATD) COPD patients and what effect alpha-1-antitrypsin augmentation therapy and/or exercise might have on circulating inflammatory cytokines. We hypothesized that AATD COPD patients on augmentation therapy (AATD + AUG) would have lower circulating and skeletal muscle inflammatory cytokines compared to AATD COPD patients not receiving augmentation therapy (AATD-AUG) and/or the typical non...

  16. Telerobotic control with stereoscopic augmented reality

    Science.gov (United States)

    Rastogi, Anu; Milgram, Paul; Drascic, David; Grodski, Julius J.

    1996-04-01

    Teleoperation in unstructured environments is conventionally restricted to direct manual control of the robot. Under such circumstances operator performance can be affected by inadequate visual feedback from the remote site, caused by, for example, limitations in the bandwidth of the communication channel. This paper introduces ARTEMIS (Augmented Reality TEleManipulation Interface System), a new display interface for enabling local teleoperation task simulation. An important feature of the interface is that the display can be generated in the absence of a model of the remote operating site. The display consists of a stereographical model of the robot overlaid on real stereovideo images from the remote site. This stereographical robot is used to simulate manipulation with respect to objects visible in the stereovideo image, following which sequences of robot control instructions can be transmitted to the remote site. In the present system, the update rate of video images can be very low, since continuous feedback is no longer needed for direct manual control of the robot. Several features of the system are presented and its advantages discussed, together with an illustrative example of a pick-and-place task.

  17. Augmented microscopy with near-infrared fluorescence detection

    Science.gov (United States)

    Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek

    2015-03-01

    Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.

  18. Augmented Reality in Tourism - Research and Applications Overview

    National Research Council Canada - National Science Library

    Anabel L. Kečkeš; Igor Tomičić

    2017-01-01

    Augmented reality is a complex interdisciplinary field utilizing information technologies in diverse areas such as medicine, education, architecture, industry, tourism and others, augmenting the real...

  19. Augmented reality: past, present, future

    Science.gov (United States)

    Inzerillo, Laura

    2013-03-01

    A great opportunity has permitted to carry out a cultural, historical, architectural and social research with great impact factor on the international cultural interest. We are talking about the realization of a museum whose the main theme is the visit and the discovery of a monument of great prestige: the monumental building the "Steri" in Palermo. The museum is divided into sub themes including the one above all, that has aroused the international interest so much that it has been presented the instance to include the museum in the cultural heritage of UNESCO. It is the realization of a museum path that regards the cells of the Inquisition, which are located just inside of some buildings of the monumental building. The project, as a whole, is faced, in a total view, between the various competences implicated: historic, chemic, architectonic, topographic, drawing, representation, virtual communication, informatics. The birth of the museum will be a sum of the results of all these disciplines involved. Methodology, implementation, fruition, virtual museum, goals, 2D graphic restitution, effects on the cultural heritage and landscape environmental, augmented reality, Surveying 2D and 3D, hi-touch screen, Photogrammetric survey, Photographic survey, representation, drawing 3D and more than this has been dealt with this research.

  20. Augmented reality in surgical procedures

    Science.gov (United States)

    Samset, E.; Schmalstieg, D.; Vander Sloten, J.; Freudenthal, A.; Declerck, J.; Casciaro, S.; Rideng, Ø.; Gersak, B.

    2008-02-01

    Minimally invasive therapy (MIT) is one of the most important trends in modern medicine. It includes a wide range of therapies in videoscopic surgery and interventional radiology and is performed through small incisions. It reduces hospital stay-time by allowing faster recovery and offers substantially improved cost-effectiveness for the hospital and the society. However, the introduction of MIT has also led to new problems. The manipulation of structures within the body through small incisions reduces dexterity and tactile feedback. It requires a different approach than conventional surgical procedures, since eye-hand co-ordination is not based on direct vision, but more predominantly on image guidance via endoscopes or radiological imaging modalities. ARIS*ER is a multidisciplinary consortium developing a new generation of decision support tools for MIT by augmenting visual and sensorial feedback. We will present tools based on novel concepts in visualization, robotics and haptics providing tailored solutions for a range of clinical applications. Examples from radio-frequency ablation of liver-tumors, laparoscopic liver surgery and minimally invasive cardiac surgery will be presented. Demonstrators were developed with the aim to provide a seamless workflow for the clinical user conducting image-guided therapy.

  1. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders.

    Science.gov (United States)

    Chicchi Giglioli, Irene Alice; Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Riva, Giuseppe

    2015-01-01

    Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology.

  2. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders

    Directory of Open Access Journals (Sweden)

    Irene Alice Chicchi Giglioli

    2015-01-01

    Full Text Available Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user’s sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user’s experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology.

  3. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders

    Science.gov (United States)

    Chicchi Giglioli, Irene Alice; Pedroli, Elisa

    2015-01-01

    Augmented Reality is a new technological system that allows introducing virtual contents in the real world in order to run in the same representation and, in real time, enhancing the user's sensory perception of reality. From another point of view, Augmented Reality can be defined as a set of techniques and tools that add information to the physical reality. To date, Augmented Reality has been used in many fields, such as medicine, entertainment, maintenance, architecture, education, and cognitive and motor rehabilitation but very few studies and applications of AR exist in clinical psychology. In the treatment of psychological disorders, Augmented Reality has given preliminary evidence to be a useful tool due to its adaptability to the patient needs and therapeutic purposes and interactivity. Another relevant factor is the quality of the user's experience in the Augmented Reality system determined from emotional engagement and sense of presence. This experience could increase the AR ecological validity in the treatment of psychological disorders. This paper reviews the recent studies on the use of Augmented Reality in the evaluation and treatment of psychological disorders, focusing on current uses of this technology and on the specific features that delineate Augmented Reality a new technique useful for psychology. PMID:26339283

  4. Determination of student opinions in augmented reality

    Directory of Open Access Journals (Sweden)

    Huseyin Bicen

    2016-11-01

    Full Text Available The rapid development of the new technology has changed classroom teaching methods and tools in a positive way. This study investigated the classroom learning with augmented reality and the impact of student opinions. 97 volunteer undergraduate students took part in this study. Results included data in the form of frequencies, percentages and descriptive statistics. The results show that, with gamification methods, augmented reality content affected students’ opinions in a positive way. When QR codes are used in the classroom, students feel independent from classroom materials and can access various resources. Moreover, students think that, when augmented reality in the classroom is used, education is more enjoyable.

  5. Augmented Reality in Architecture: Rebuilding Archeological Heritage

    Science.gov (United States)

    de la Fuente Prieto, J.; Castaño Perea, E.; Labrador Arroyo, F.

    2017-02-01

    With the development in recent years of augmented reality and the appearance of new mobile terminals and storage bases on-line, we find the possibility of using a powerful tool for transmitting architecture. This paper analyzes the relationship between Augmented Reality and Architecture. Firstly, connects the theoretical framework of both disciplines through the Representation concept. Secondly, describes the milestones and possibilities of Augmented Reality in the particular field of archaeological reconstruction. And lastly, once recognized the technology developed, we face the same analysis from a critical point of view, assessing their suitability to the discipline that concerns us is the architecture and within archeology.

  6. Evidence-Based Medicine: Breast Augmentation.

    Science.gov (United States)

    Schwartz, Michael R

    2017-07-01

    After reading this article, the participant should be able to: 1. Understand the key decisions in patient evaluation for cosmetic breast augmentation. 2. Cite key decisions in preoperative planning. 3. Discuss the risks and complications, and key patient education points in breast augmentation. Breast augmentation remains one of the most popular procedures in plastic surgery. The integral information necessary for proper patient selection, preoperative assessment, and surgical approaches are discussed. Current data regarding long term safety and complications are presented to guide the plastic surgeon to an evidence-based approach to the patient seeking breast enhancement to obtain optimal results.

  7. Exploring Urban Environments Using Virtual and Augmented Reality

    OpenAIRE

    Liarokapis, Fotis; Brujic-Okretic, Vesna; Papakonstantinou, Stelios

    2006-01-01

    In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location ...

  8. Fully Automated and Stable Registration for Augmented Reality Applications

    OpenAIRE

    Lepetit, V.; Vacchetti, L; Thalmann, D; Fua, P.

    2003-01-01

    We present a fully automated approach to camera registration for augmented reality systems. It relies on purely passive vision techniques to solve the initialization and real-time tracking problems, given a rough CAD model of parts of the real scene. It does not require a controlled environment, for example placing markers. It handles arbitrarily complex models, occlusions, large camera displacements and drastic aspect changes. This is made possible by two major contributions: the first one i...

  9. Mobile Augmented Reality enhances indoor navigation for wheelchair users

    Directory of Open Access Journals (Sweden)

    Luciene Chagas de Oliveira

    Full Text Available Introduction: Individuals with mobility impairments associated with lower limb disabilities often face enormous challenges to participate in routine activities and to move around various environments. For many, the use of wheelchairs is paramount to provide mobility and social inclusion. Nevertheless, they still face a number of challenges to properly function in our society. Among the many difficulties, one in particular stands out: navigating in complex internal environments (indoors. The main objective of this work is to propose an architecture based on Mobile Augmented Reality to support the development of indoor navigation systems dedicated to wheelchair users, that is also capable of recording CAD drawings of the buildings and dealing with accessibility issues for that population. Methods Overall, five main functional requirements are proposed: the ability to allow for indoor navigation by means of Mobile Augmented Reality techniques; the capacity to register and configure building CAD drawings and the position of fiducial markers, points of interest and obstacles to be avoided by the wheelchair user; the capacity to find the best route for wheelchair indoor navigation, taking stairs and other obstacles into account; allow for the visualization of virtual directional arrows in the smartphone displays; and incorporate touch or voice commands to interact with the application. The architecture is proposed as a combination of four layers: User interface; Control; Service; and Infrastructure. A proof-of-concept application was developed and tests were performed with disable volunteers operating manual and electric wheelchairs. Results The application was implemented in Java for the Android operational system. A local database was used to store the test building CAD drawings and the position of fiducial markers and points of interest. The Android Augmented Reality library was used to implement Augmented Reality and the Blender open source

  10. Towards immersive and adaptive augmented reality exposure treatment.

    Science.gov (United States)

    Dünser, Andreas; Grasset, Raphaël; Farrant, Hamish

    2011-01-01

    In this paper we introduce a novel augmented reality based exposure therapy system for phobia treatment. This allows patients to see virtual fear stimuli overlaid onto the real world and to fully interact with them in real time. Extending on previous work, we focus on creating a controllable and interactive system (through gesture recognition and physiological sensors) with a visually realistic context. Our goal is a very life-like system that allows full parameterization over stimulus intensity and other factors necessary for an effective exposure therapy system.

  11. Context-aware Augmented Reality in laparoscopic surgery.

    Science.gov (United States)

    Katić, Darko; Wekerle, Anna-Laura; Görtler, Jochen; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Suwelack, Stefan; Kenngott, Hannes Götz; Wagner, Martin; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2013-03-01

    Augmented Reality is a promising paradigm for intraoperative assistance. Yet, apart from technical issues, a major obstacle to its clinical application is the man-machine interaction. Visualization of unnecessary, obsolete or redundant information may cause confusion and distraction, reducing usefulness and acceptance of the assistance system. We propose a system capable of automatically filtering available information based on recognized phases in the operating room. Our system offers a specific selection of available visualizations which suit the surgeon's needs best. The system was implemented for use in laparoscopic liver and gallbladder surgery and evaluated in phantom experiments in conjunction with expert interviews. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Augmenting painted architectures for communicating cultural heritage

    Directory of Open Access Journals (Sweden)

    Alberto Sdegno

    2015-07-01

    Full Text Available The paper presents a research under development at the University of Trieste to analyze a painted architecture by Paolo Veronese and to present the results using AR systems (Augmented Reality Systems. The canvas was painted in 1573 and it is now at the Gallerie dell’Accademia Museum in Venice. The aim of the research was to transform a two-dimensional work of art in a three dimensional one, allowing all the visitors of a museum to enter the space of the representation and perceive it in a more direct way. After the geometrical analysis of the picture, we started the digital restitution of the perspective references and proceed to model the virtual scene using Boolean primitives and applying all the textures to render the scene in a very realistic way. The further step was to convert the model into a dynamic form with AR algorithms and associate it with spatial references to allow users to do a virtual experience of it.

  13. WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates.

    Science.gov (United States)

    Katoh, Masuko; Katoh, Masaru

    2007-01-01

    augmentation of a WNT negative regulation system in primates.

  14. Augmented reality systems for weed economic thresholds applications Tecnologia de realidade ampliada para utilização com os níveis de dano econômico de plantas daninhas

    Directory of Open Access Journals (Sweden)

    N.R. Vidal

    2010-06-01

    Full Text Available The augmented reality (AR technology has applications in many fields as diverse as aeronautics, tourism, medicine, and education. In this review are summarized the current status of AR and it is proposed a new application of it in weed science. The basic algorithmic elements for AR implementation are already available to develop applications in the area of weed economic thresholds. These include algorithms for image recognition to identify and quantify weeds by species and software for herbicide selection based on weed density. Likewise, all hardware necessary for AR implementation in weed science are available at an affordable price for the user. Thus, the authors propose weed science can take a leading role integrating AR systems into weed economic thresholds software, thus, providing better opportunities for science and computer-based weed control decisions.A tecnologia de realidade aumentada (AR tem aplicações em vários e diversos campos, como aeronáutica, turismo, medicina e educação. Nesta revisão, é resumido o estado atual da AR e propõe-se uma nova aplicação dela na ciência das plantas daninhas. Os elementos básicos para a implementação de algoritmos de AR já estão disponíveis para desenvolvimento de aplicações na área de níveis de dano econômico de plantas daninhas. Estes incluem algoritmos de reconhecimento de imagem, para identificar e quantificar as infestantes por espécie; e software, para a seleção de herbicidas com base na densidade de plantas daninhas. Da mesma forma, todo o hardware necessário para aplicação da AR nessa área da ciência das plantas daninhas está disponível a um preço acessível ao usuário. Assim, sugere-se que a ciência das plantas daninhas possa assumir um papel preponderante na integração dos sistemas de AR aos softwares de níveis de dano econômico de plantas daninhas nas culturas. Com isso, seria possível proporcionar melhor utilização da informática para apoio nas

  15. Alveolar ridge augmentation by osteoinduction in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Bang, G; Haanaes, H R

    1990-01-01

    The purpose of this study was to evaluate bone substitutes for alveolar ridge augmentation by osteoinduction. Allogenic, demineralized, and lyophilized dentin and bone was tested for osteoinductive properties in order to establish an experimental model for further studies. Implantations were...

  16. ARC Code TI: ROC Curve Code Augmentation

    Data.gov (United States)

    National Aeronautics and Space Administration — ROC (Receiver Operating Characteristic) curve Code Augmentation was written by Rodney Martin and John Stutz at NASA Ames Research Center and is a modification of ROC...

  17. Augmented Reality Simulations on Handheld Computers

    Science.gov (United States)

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  18. Affordances in Mobile Augmented Reality Applications

    Directory of Open Access Journals (Sweden)

    Tor Gjøsæter

    2014-10-01

    Full Text Available This paper explores the affordances of augmented reality content in a mobile augmented reality application. A user study was conducted by performing a multi-camera video recording of seven think aloud sessions. The think aloud sessions consisted of individual users performing tasks, exploring and experiencing a mobile augmented reality (MAR application we developed for the iOS platform named ARad. We discuss the instrumental affordances we observed when users interacted with augmented reality content, as well as more complex affordances rising from conventions from media content, AR and the traditional WIMP paradigm. We find that remediation of traditional newspaper content through the MAR medium can provide engaging, pleasing and exciting user experiences. However, the some of the content still suffers from being shoveled onto the MAR platform without adapting it properly. Finally, we discuss what content was most successfully mediated to the user and how the content impacts the user experience.

  19. Improved diffuser for augmenting a wind turbine

    Science.gov (United States)

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  20. Determination of student opinions in augmented reality

    OpenAIRE

    Huseyin Bicen; Erkan Bal

    2016-01-01

    The rapid development of the new technology has changed classroom teaching methods and tools in a positive way. This study investigated the classroom learning with augmented reality and the impact of student opinions. 97 volunteer undergraduate students took part in this study. Results included data in the form of frequencies, percentages and descriptive statistics. The results show that, with gamification methods, augmented reality content affected students’ opinions in a positive way. When ...

  1. Augmented monomials in terms of power sums.

    Science.gov (United States)

    Merca, Mircea

    2015-01-01

    The problem of base changes for the classical symmetric functions has been solved a long time ago and has been incorporated into most computer software packages for symmetric functions. In this paper, we develop a simple recursive formula for the expansion of the augmented monomial symmetric functions into power sum symmetric functions. As corollaries, we present two algorithms that can be used to expressing the augmented monomial symmetric functions in terms of the power sum symmetric functions.

  2. Augmented sport : exploring collective user experience

    OpenAIRE

    Pallot, Marc; EYNARD, Rémy; POUSSARD, Benjamin; CHRISTMANN, Olivier; Richir, Simon

    2013-01-01

    This paper explores existing theories, frameworks and models for handling collective user experience in the context of Distributed Interactive Multimedia Environments (DIME) and more specifically Augmented Sport applications. Besides discussing previous experimental work in the domain of Augmented Sport, we introduce Future Media Internet (FMI) technologies in relation with Mixed Reality (MR) platforms, user experience (UX), quality of Service (QoS) and quality of Experience (QoE) within 3D T...

  3. Augmenting a guitar with its digital footprint

    OpenAIRE

    Benford, Steve; Hazzard, Adrian; Chamberlain, Alan; Xu, Liming

    2015-01-01

    We explore how to digitally augment musical instruments by connecting them to their social histories. We describe the use of Internet of Things technologies to connect an acoustic guitar to its digital footprint – a record of how it was designed, built and played. We introduce the approach of crafting interactive decorative inlay into the body of an instrument that can then be scanned using mobile devices to reveal its digital footprint. We describe the design and construction of an augmented...

  4. Augmenting the Web through Open Hypermedia

    DEFF Research Database (Denmark)

    Bouvin, N.O.

    2003-01-01

    Based on an overview of Web augmentation and detailing the three basic approaches to extend the hypermedia functionality of the Web, the author presents a general open hypermedia framework (the Arakne framework) to augment the Web. The aim is to provide users with the ability to link, annotate......, and otherwise structure Web pages, as they see fit. The paper further discusses the possibilities of the concept through the description of various experiments performed with an implementation of the framework, the Arakne Environment...

  5. Thrust augmentation for a small turbojet engine

    OpenAIRE

    Hackaday, Gary L.

    1999-01-01

    Approved for public release; distribution is unlimited A Sophia J450 (nine pounds of thrust) gas turbine engine was used first to examine the thrust augmentation generated using an ejector shroud. Experimental results obtained with and without the ejector were compared with performance predicted using an engine code and a one-dimensional ejector analysis. The engine code was revised to incorporate a radial turbine and the correct compressor map. Thrust augmentation of 3-10% was measured an...

  6. Augmented Reality for Maintenance and Repair (ARMAR)

    Science.gov (United States)

    2007-08-01

    of tracking and display technologies, and computer graphics hardware and software, and has a long tradition of research in AR theory and practice ... practice , a user can learn to negotiate the nearby augmented controls while keeping their eyes focused on the repair area. Second, because the...2005, pp. 47-54. [8] A. C. Boud, D. J. Haniff, C. Baber , and S. J. Steiner, "Virtual Reality and Augmented Reality as a Training Tool for

  7. Effects of the hippocampus on the motor expression of augmented breaths.

    Directory of Open Access Journals (Sweden)

    Itopa E Ajayi

    Full Text Available Augmented breaths, also known as sighs, constitute the normal repertoire of breathing in freely behaving humans and animals. The breaths are believed to be generated by neurones in the preBötzinger complex but under modulatory influence from higher brain centres, particularly in the limbic system due to the strong correlations between the expression of emotional behaviours such as anxiety and the occurrence of augmented breaths. The current study examines the role of the hippocampus in the motor expression of augmented breaths, and also examines the characteristics of eupneic breaths surrounding a sigh before and after stimulating the hippocampus in urethane anaesthetised Sprague-Dawley rats. Neurochemical microstimulation using the excitatory amino acid, D,L-Homocysteic acid, was used to locate areas in the hippocampus with the potential to modulated the motor expression of augmented breaths. The CA1 neurone cluster of the ventral hippocampus was found to completely suppress the expression of augmented breaths without affecting the intrinsic properties of the breaths. A similar neurone cluster, but in the dorsal field of the hippocampus, was also investigated and found to have no effects over the expression of augmented breaths. The data supports the hypothesis that there is a structural or functional relationship between neurones of the ventral hippocampus and brainstem nuclei that control augmented breaths. The implications of these findings in the context of behaviours are discussed but with due consideration of experimental conditions.

  8. Augmented reality implementation methods in mainstream applications

    Directory of Open Access Journals (Sweden)

    David Procházka

    2011-01-01

    Full Text Available Augmented reality has became an useful tool in many areas from space exploration to military applications. Although used theoretical principles are well known for almost a decade, the augmented reality is almost exclusively used in high budget solutions with a special hardware. However, in last few years we could see rising popularity of many projects focused on deployment of the augmented reality on dif­ferent mobile devices. Our article is aimed on developers who consider development of an augmented reality application for the mainstream market. Such developers will be forced to keep the application price, therefore also the development price, at reasonable level. Usage of existing image processing software library could bring a significant cut-down of the development costs. In the theoretical part of the article is presented an overview of the augmented reality application structure. Further, an approach for selection appropriate library as well as the review of the existing software libraries focused in this area is described. The last part of the article out­lines our implementation of key parts of the augmented reality application using the OpenCV library.

  9. Augmentation techniques for rotator cuff repair.

    Science.gov (United States)

    Papalia, Rocco; Franceschi, Francesco; Zampogna, Biagio; D'Adamio, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2013-01-01

    There is a high rate of recurrence of tear and failed healing after rotator cuff repair. Several strategies have proposed to augment rotator cuff repairs to improve postoperative outcome and shoulder performance. We systematically review the literature on clinical outcome following rotator cuff augmentation. We performed a comprehensive search of Medline, CINAHL, Embase and the Cochrane Central Registry of Controlled Trials, from inception of the database to 20 June 2012, using various combinations of keywords. The reference lists of the previously selected articles were then examined by hand. Only studies focusing on clinical outcomes of human patients who had undergone augmented rotator cuff repair were selected. We then evaluated the methodological quality of each article using the Coleman methodology score (CMS), a 10 criteria scoring list assessing the methodological quality of the selected studies (CMS). Thirty-two articles were included in the present review. Two were retrospective studies, and 30 were prospective. Biologic, synthetic and cellular devices were used in 24, 7 and 1 studies, respectively. The mean modified Coleman methodology score was 64.0. Heterogeneity of the clinical outcome scores makes it difficult to compare different studies. None of the augmentation devices available is without problems, and each one presents intrinsic weaknesses. There is no dramatic increase in clinical and functional assessment after augmented procedures, especially if compared with control groups. More and better scientific evidence is necessary to use augmentation of rotator cuff repairs in routine clinical practice.

  10. Horizontal bone augmentation: the decision tree.

    Science.gov (United States)

    Fu, Jia-Hui; Wang, Hom-Lay

    2011-01-01

    The emergence of implant dentistry has led to the need for bone augmentation procedures. With the removal of a tooth, there is an inevitable three-dimensional (3D) loss of alveolar bone. More often than not, horizontal bone loss occurs at a faster rate and to a greater extent compared to vertical bone loss. This led to the development of several horizontal bone augmentation techniques, such as guided bone regeneration, ridge expansion, distraction osteogenesis, and block grafts. These proposed augmentation techniques aim to place the implant in an ideal 3D position for successful restorative therapy. The literature has shown that horizontal bone augmentation is fairly predictable if certain criteria are fulfilled. However, with numerous techniques and materials currently available, it is difficult to choose the most suitable treatment modality. A search of the literature available was conducted to validate the decision-making process when planning for a horizontal ridge augmentation procedure. The decision tree proposed in this paper stems from the 3D buccolingual bone width available at the site of implant placement (⋝ 3.5 mm, factors such as the tissue thickness, the arch position, and the availability of autogenous bone. The decision tree provides insight on how clinicians can choose the most appropriate and predictable horizontal ridge augmentation procedure to minimize unnecessary complications.

  11. Empirical evaluation of augmented prototyping effectiveness

    Directory of Open Access Journals (Sweden)

    Tomáš Koubek

    2012-01-01

    Full Text Available Augmented reality is a scientific field well known for more than twenty years. Although there is a huge number of projects that present promising results, the real usage of augmented reality applications for fulfilling common tasks is almost negligible. We believe that one of the principal reasons is insufficient usability of these applications. The situation is analogous to the desktop, mobile or cloud application development or even to the web pages design. The first phase of a technology adoption is the exploration of its potential. As soon as the technical problems are overcome and the technology is widely accepted, the usability is a principal issue. The usability is utmost important also from the business point of view. The cost of augmented reality implementation into the production process is substantial, therefore, the usability that is directly responsible for the implemented solution effectiveness must be appropriately tested. Consequently, the benefit of the implemented solution can be measured.This article briefly outlines common techniques used for usability evaluation. Discussed techniques were designed especially for evaluation of desktop applications, mobile solutions and web pages. In spite of this drawback, their application on augmented reality products is usually possible. Further, a review of existing augmented reality project evaluations is presented.Based on this review, a usability evaluation method for our augmented prototyping application is proposed. This method must overcome the fact that the design is a creative process. Therefore, it is not possible to take into account common criteria such as time consumption.

  12. Interframe coding of feature descriptors for mobile augmented reality.

    Science.gov (United States)

    Makar, Mina; Chandrasekhar, Vijay; Tsai, Sam S; Chen, David; Girod, Bernd

    2014-08-01

    Streaming mobile augmented reality applications require both real-time recognition and tracking of objects of interest in a video sequence. Typically, local features are calculated from the gradients of a canonical patch around a keypoint in individual video frames. In this paper, we propose a temporally coherent keypoint detector and design efficient interframe predictive coding techniques for canonical patches, feature descriptors, and keypoint locations. In the proposed system, we strive to transmit each patch or its equivalent feature descriptor with as few bits as possible by modifying a previously transmitted patch or descriptor. Our solution enables server-based mobile augmented reality where a continuous stream of salient information, sufficient for image-based retrieval, and object localization, is sent at a bit-rate that is practical for today's wireless links and less than one-tenth of the bit-rate needed to stream the compressed video to the server.

  13. ARZombie: A Mobile Augmented Reality Game with Multimodal Interaction

    Directory of Open Access Journals (Sweden)

    Diogo Cordeiro

    2015-11-01

    Full Text Available Augmented reality games have the power to extend virtual gaming into real world scenarios with real people, while enhancing the senses of the user. This paper describes the AR- Zombie game developed with the aim of studying and developing mobile augmented reality applications, specifically for tablets, using face recognition interaction techniques. The goal of the ARZombie player is to kill zombies that are detected through the display of the device. Instead of using markers as a mean of tracking the zombies, this game incorporates a facial recognition system, which will enhance the user experience by improving the interaction of players with the real world. As the player moves around the environment, the game will display virtual zombies on the screen if the detected faces are recognized as belonging to the class of the zombies. ARZombie was tested with users to evaluate the interaction proposals and its components were evaluated regarding the performance in order to ensure a better gaming experience.

  14. An augmented reality simulator for ultrasound guided needle placement training.

    Science.gov (United States)

    Magee, D; Zhu, Y; Ratnalingam, R; Gardner, P; Kessel, D

    2007-10-01

    Details are presented of a low cost augmented-reality system for the simulation of ultrasound guided needle insertion procedures (tissue biopsy, abscess drainage, nephrostomy etc.) for interventional radiology education and training. The system comprises physical elements; a mannequin, a mock ultrasound probe and a needle, and software elements; generating virtual ultrasound anatomy and allowing data collection. These two elements are linked by a pair of magnetic 3D position sensors. Virtual anatomic images are generated based on anatomic data derived from full body CT scans of live humans. Details of the novel aspects of this system are presented including; image generation, registration and calibration.

  15. Spatial user interfaces for large-scale projector-based augmented reality.

    Science.gov (United States)

    Marner, Michael R; Smith, Ross T; Walsh, James A; Thomas, Bruce H

    2014-01-01

    Spatial augmented reality applies the concepts of spatial user interfaces to large-scale, projector-based augmented reality. Such virtual environments have interesting characteristics. They deal with large physical objects, the projection surfaces are nonplanar, the physical objects provide natural passive haptic feedback, and the systems naturally support collaboration between users. The article describes how these features affect the design of spatial user interfaces for these environments and explores promising research directions and application domains.

  16. Augmented Reality as a Method for Expanded Presentation of Objects of Digitized Heritage

    OpenAIRE

    Kolev, Alexander; Dimov, Dimo

    2014-01-01

    Augmented reality is the latest among information technologies in modern electronics industry. The essence is in the addition of advanced computer graphics in real and/or digitized images. This paper gives a brief analysis of the concept and the approaches to implementing augmented reality for an expanded presentation of a digitized object of national cultural and/or scientific heritage. ACM Computing Classification System (1998): H.5.1, H.5.3, I.3.7.

  17. Escape route simulator utilizing augmented reality

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Karen Salazar Ribeiro de; Mó, Antônio Carlos de A.; Santo, André Cotelli do E.; Silva, Marcio Henrique, E-mail: karensalazar.1190@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Centro Universitário Carioca (UniCarioca), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Due to increasing demand and interest in the interaction of technology platforms and integration of different types of systems and technologies, some tools are already providing practical ways to develop integrated applications. The tools explored by this article are Unity, a platform for game development, and Vuforia, an SDK, software development kit, for augmented reality creation. The coalition proposal of these resources is to create an intuitive escape route that can be used for the evacuation of buildings or open spaces in view of imminent danger, such as radiation leakage, and that can be accessed from a target available at the institution. It has also the intention of simulating situations that involve training of personnel in order to obtain methods that allow to save financial resources, and even to avoid that those who are involved are exposed to risks unnecessarily. The simulator is expected to help design, test, and improve ways to maintain the physical integrity of the facility and provide end users with a better sense of immersion and attractiveness. (author)

  18. A review of psychological outcomes and suicide in aesthetic breast augmentation.

    Science.gov (United States)

    Rohrich, Rod J; Adams, William P; Potter, Jason K

    2007-01-01

    Aesthetic surgery is an essential component of plastic surgery and has become increasingly popular in American society. In 2002, 1.8 million surgical cosmetic procedures were performed in the United States, representing a 294 percent increase from 1992. The 1992 U.S. Food and Drug Administration moratorium on silicone breast implants arose in response to numerous reports of connective tissue disease associated with silicone gel breast augmentation and has led to a decade-long battle over the safety of silicone breast implants that continues today. Numerous scientific and epidemiologic studies of the past decade have established that there is no association between silicone breast prostheses and systemic disease. Recently, a new front has opened in the conflict regarding the safety of breast augmentation: the psychological impact of breast augmentation. Quality studies assessing the psychological characteristics of breast augmentation patients and the psychological impact of breast augmentation surgery are few and most studies are flawed in their methods. Recent reports have provided corroborating evidence to support the psychological benefits of cosmetic surgery and breast augmentation. New reports citing an increased risk for suicide among women with breast implants have brought renewed concerns but are unable to demonstrate a cause-and-effect relationship between breast implants and suicide. The present challenge is to determine whether the increased risk reported in epidemiologic studies is falsely associated with breast implants or whether it represents underlying risk factors or psychopathology in women undergoing breast augmentation that puts them at increased risk for suicide. The purpose of this article is to review the literature regarding the psychological impact of breast augmentation and assesses current scientific findings, with emphasis on the validity of suicide risk in breast augmentation patients.

  19. AI-augmented time stretch microscopy

    Science.gov (United States)

    Mahjoubfar, Ata; Chen, Claire L.; Lin, Jiahao; Jalali, Bahram

    2017-02-01

    Cell reagents used in biomedical analysis often change behavior of the cells that they are attached to, inhibiting their native signaling. On the other hand, label-free cell analysis techniques have long been viewed as challenging either due to insufficient accuracy by limited features, or because of low throughput as a sacrifice of improved precision. We present a recently developed artificial-intelligence augmented microscope, which builds upon high-throughput time stretch quantitative phase imaging (TS-QPI) and deep learning to perform label-free cell classification with record high-accuracy. Our system captures quantitative optical phase and intensity images simultaneously by frequency multiplexing, extracts multiple biophysical features of the individual cells from these images fused, and feeds these features into a supervised machine learning model for classification. The enhanced performance of our system compared to other label-free assays is demonstrated by classification of white blood T-cells versus colon cancer cells and lipid accumulating algal strains for biofuel production, which is as much as five-fold reduction in inaccuracy. This system obtains the accuracy required in practical applications such as personalized drug development, while the cells remain intact and the throughput is not sacrificed. Here, we introduce a data acquisition scheme based on quadrature phase demodulation that enables interruptionless storage of TS-QPI cell images. Our proof of principle demonstration is capable of saving 40 TB of cell images in about four hours, i.e. pictures of every single cell in 10 mL of a sample.

  20. Transparent 3D display for augmented reality

    Science.gov (United States)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.