WorldWideScience

Sample records for augmented t-cell immunity

  1. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  2. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

    Directory of Open Access Journals (Sweden)

    Biliang Hu

    2017-09-01

    Full Text Available The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.

  3. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    NARCIS (Netherlands)

    Dolen, Y.; Kreutz, M.; Gileadi, U.; Tel, J.; Vasaturo, A.; Dinther, E.A.W. van; Hout-Kuijer, M.A. van; Cerundolo, V.; Figdor, C.G.

    2016-01-01

    Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here,

  4. Radiation-induced augmentation of the immune response

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  5. Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade.

    Science.gov (United States)

    Huffaker, Thomas B; Lee, Soh-Hyun; Tang, William W; Wallace, Jared A; Alexander, Margaret; Runtsch, Marah C; Larsen, Dane K; Thompson, Jacob; Ramstead, Andrew G; Voth, Warren P; Hu, Ruozhen; Round, June L; Williams, Matthew A; O'Connell, Ryan M

    2017-11-10

    MicroRNA-155 (miR-155) regulates antitumor immune responses. However, its specific functions within distinct immune cell types have not been delineated in conditional KO mouse models. In this study, we investigated the role of miR-155 specifically within T cells during the immune response to syngeneic tumors. We found that miR-155 expression within T cells is required to limit syngeneic tumor growth and promote IFNγ production by T cells within the tumor microenvironment. Consequently, we found that miR-155 expression by T cells is necessary for proper tumor-associated macrophage expression of IFNγ-inducible genes. We also found that immune checkpoint-blocking (ICB) antibodies against programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) restored antitumor immunity in miR-155 T cell-conditional KO mice. We noted that these ICB antibodies rescued the levels of IFNγ-expressing T cells, expression of multiple activation and effector genes expressed by tumor-infiltrating CD8 + and CD4 + T cells, and tumor-associated macrophage activation. Moreover, the ICB approach partially restored expression of several derepressed miR-155 targets in tumor-infiltrating, miR-155-deficient CD8 + T cells, suggesting that miR-155 and ICB regulate overlapping pathways to promote antitumor immunity. Taken together, our findings highlight the multifaceted role of miR-155 in T cells, in which it promotes antitumor immunity. These results suggest that the augmentation of miR-155 expression could be used to improve anticancer immunotherapies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. IL-15 augments TCR-induced CD4+ T cell expansion in vitro by inhibiting the suppressive function of CD25 High CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tom L Van Belle

    Full Text Available Due to its critical role in NK cell differentiation and CD8(+ T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4(+ T cells. The increased levels of IL-15 found in several CD4(+ T cell-driven (auto- immune diseases prompted us to examine how IL-15 influences murine CD4(+ T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4(+ and CD8(+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4(+ T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15Rα was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15Rβ, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4(+ T cell suppression by a gradually expanding CD25(HighCD4(+ T cell subset that expresses Foxp3 and originates from CD4(+CD25(+ Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology.

  7. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model.

    Science.gov (United States)

    Wada, Satoshi; Yoshimura, Kiyoshi; Hipkiss, Edward L; Harris, Tim J; Yen, Hung-Rong; Goldberg, Monica V; Grosso, Joseph F; Getnet, Derese; Demarzo, Angelo M; Netto, George J; Anders, Robert; Pardoll, Drew M; Drake, Charles G

    2009-05-15

    To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.

  8. Contribution of T cell-mediated immunity to the resistance to staphlococcal infection

    International Nuclear Information System (INIS)

    Tsuda, S.; Sasai, Y.; Minami, K.; Nomoto, K.

    1978-01-01

    Abscess formation in nude mice after subcutaneous inoculation of Staphylococcus aureus (S. aureus) was more extensive and prolonged as compared with that in phenotypically normal littermates. Abscess formation in nude mice was augmented markedly by whole-body irradiation. Not only T cell-mediated immunity but also radiosensitive, nonimmune phagocytosis appear to contribute to the resistance against staphylococcal infection

  9. Antigen-specific T8+ human clone of cells with a nonspecific augmenting function on the T4 cell-B cell helper interaction

    International Nuclear Information System (INIS)

    Brines, R.D.; Sia, D.Y.; Lehner, T.

    1987-01-01

    The authors isolated a T8 + T3 + Ia + clone of cells from the peripheral blood mononuclear cells of a healthy subject. The clone was expanded and maintained with autologous feed cells, interleukin 2, and a streptococcal antigen. The T8 + clone of cells responded specifically to the streptococcal antigen, in the absence of accessory cells,and released a soluble factor. Both the cloned cells and the corresponding soluble factor expressed augmenting helper but not suppressor activity. The augmenting helper activity for B cell antibody synthesis was demonstrable only in the presence of autologous T 4 cells. Radioimmunoassay was used to measure antibodies. Although stimulation of the T8 + cloned cells was antigen-specific, the resulting soluble factor elicited nonspecific antibody synthesis in the presence of T4 and B cells. The T8 + cloned cell-derived factor was adsorbed by B cells but not by T4 cells. Preliminary studies suggest that the factor has the properties of a B cell growth factor. They suggest that the T8 + population consists of functionally heterogeneous cell subsets, some that have suppressor function and others that augment the T4 + helper-inducer activity in B cell antibody synthesis

  10. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    -linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...

  11. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    Science.gov (United States)

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  12. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity

    Directory of Open Access Journals (Sweden)

    Karen A.O. Martins

    2016-01-01

    Full Text Available Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol, MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  13. CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors

    Directory of Open Access Journals (Sweden)

    Markus Chmielewski

    2017-12-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells has achieved remarkable efficacy in the treatment of hematopoietic malignancies. However, eradicating large solid tumors in advanced stages of the disease remains challenging. We explored augmentation of the anti-tumor immune reaction by establishing an acute inflammatory reaction. Systematic screening indicates that IL-18 polarizes CAR T cells toward T-bethigh FoxO1low effectors with an acute inflammatory response. CAR T cells engineered with inducible IL-18 release exhibited superior activity against large pancreatic and lung tumors that were refractory to CAR T cells without cytokines. IL-18 CAR T cell treatment was accompanied by an overall change in the immune cell landscape associated with the tumor. More specifically, CD206− M1 macrophages and NKG2D+ NK cells increased in number, whereas Tregs, suppressive CD103+ DCs, and M2 macrophages decreased, suggesting that “iIL18 TRUCKs” can be used to sensitize large solid tumor lesions for successful immune destruction.

  14. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  15. Androgen Ablation Augments Prostate Cancer Vaccine Immunogenicity Only When Applied After Immunization

    Science.gov (United States)

    Koh, Yi T.; Gray, Andrew; Higgins, Sean A.; Hubby, Bolyn; Kast, W. Martin

    2009-01-01

    Background Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. Methods Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. Results Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. Conclusion Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization. PMID:19143030

  16. The Progress of T Cell Immunity Related to Prognosis in Gastric Cancer.

    Science.gov (United States)

    Wei, Ming; Shen, Duo; Mulmi Shrestha, Sachin; Liu, Juan; Zhang, Junyi; Yin, Ying

    2018-01-01

    Gastric cancer is the fifth most common malignancy all over the world, and the factors that can affect progress and prognosis of the gastric cancer patients are various, such as TNM stages, invasive depth, and lymph node metastasis ratio. T cell immunity is important component of human immunity system and immunity responding to tumor and dysfunction or imbalance of T cell immunity will lead to serious outcomes for body. T cell immunity includes many different types of cells, CD4+ T cell, CD8+ T cell, memory cell, and so on, and each of them has special function on antitumor response or tumor immune escape which is revealed in lung cancer, colorectal cancer, breast cancer, ovarian cancer, and so on. But its correlation with gastric cancer is not clear. Our review was preformed to explore the relationship between the progress and prognosis of gastric cancer (GC) and T cell immunity. According to recent researches, T cell immunity may have an important role in the progress and prognosis of GCs, but its function is affected by location, category, related molecule, and interaction between the cells, and some effects still are controversial. More researches are needed to clarify this correlation.

  17. Peptide pool immunization and CD8+ T cell reactivity

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Harndahl, Mikkel N; Buus, Anette Stryhn

    2013-01-01

    Mice were immunized twice with a pool of five peptides selected among twenty 8-9-mer peptides for their ability to form stable complexes at 37°C with recombinant H-2K(b) (half-lives 10-15h). Vaccine-induced immunity of splenic CD8(+) T cells was studied in a 24h IFNγ Elispot assay. Surprisingly...... peptides induced normal peptide immunity i.e. the specific T cell reactivity in the Elispot culture was strictly dependent on exposure to the immunizing peptide ex vivo. However, immunization with two of the peptides, a VSV- and a Mycobacterium-derived peptide, resulted in IFNγ spot formation without...... peptide in the Elispot culture. Immunization with a mixture of the VSV-peptide and a "normal" peptide also resulted in IFNγ spot formation without addition of peptide to the assay culture. Peptide-tetramer staining of CD8(+) T cells from mice immunized with a mixture of VSV-peptide and "normal" peptide...

  18. Immune Privilege and Eye-Derived T-Regulatory Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Keino

    2018-01-01

    Full Text Available Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs, which are generated by the anterior chamber-associated immune deviation (ACAID, and ocular resident cells including corneal endothelial (CE cells, ocular pigment epithelial (PE cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF-β, cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2α, and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  19. Immune Privilege and Eye-Derived T-Regulatory Cells.

    Science.gov (United States)

    Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao

    2018-01-01

    Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  20. The Progress of T Cell Immunity Related to Prognosis in Gastric Cancer

    OpenAIRE

    Ming Wei; Duo Shen; Sachin Mulmi Shrestha; Juan Liu; Junyi Zhang; Ying Yin

    2018-01-01

    Gastric cancer is the fifth most common malignancy all over the world, and the factors that can affect progress and prognosis of the gastric cancer patients are various, such as TNM stages, invasive depth, and lymph node metastasis ratio. T cell immunity is important component of human immunity system and immunity responding to tumor and dysfunction or imbalance of T cell immunity will lead to serious outcomes for body. T cell immunity includes many different types of cells, CD4+ T cell, CD8+...

  1. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  2. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  3. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  4. Heterosybtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines

    Directory of Open Access Journals (Sweden)

    Saranya eSridhar

    2016-05-01

    Full Text Available Influenza A virus (IAV remains a significant global health issue causing annual epidemics, pandemics and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the 21st century underlined the urgent need to develop new vaccines capable of protection against a broad range of influenza strains. Such universal influenza vaccines are based on the idea of heterosubtypic immunity wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognising conserved antigens are a key contributor to reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.

  5. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    Science.gov (United States)

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  6. A single exercise bout augments adenovirus-specific T-cell mobilization and function.

    Science.gov (United States)

    Kunz, Hawley E; Spielmann, Guillaume; Agha, Nadia H; O'Connor, Daniel P; Bollard, Catherine M; Simpson, Richard J

    2018-04-30

    Adoptive transfer of virus-specific T-cells (VSTs) effectively treats viral infections following allogeneic hematopoietic stem cell transplantation (alloHSCT), but logistical difficulties have limited widespread availability of VSTs as a post-transplant therapeutic. A single exercise bout mobilizes VSTs specific for latent herpesviruses (i.e. CMV and EBV) to peripheral blood and augments their ex vivo expansion. We investigated whether exercise exerts similar effects on T-cells specific for a NON-latent virus such as adenovirus, which is a major contributor to infection-related morbidity and mortality after alloHSCT. Thirty minutes of cycling exercise increased circulating adenovirus-specific T-cells 2.0-fold and augmented their ex vivo expansion by ~33% compared to rest without altering antigen and MHC-specific autologous target cell killing capabilities. We conclude that exercise is a simple and economical adjuvant to boost the isolation and manufacture of therapeutic VSTs specific to latent and non-latent viruses from healthy donors. Copyright © 2018. Published by Elsevier Inc.

  7. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus

    Science.gov (United States)

    Behar, Samuel M.; Carpenter, Stephen M.; Booty, Matthew G.; Barber, Daniel L.; Jayaraman, Pushpa

    2014-01-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease – the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. PMID:25311810

  8. Epigenetic programming of T cells impacts immune reconstitution in hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Hardy, Kristine; Smith, Corey; Tu, Wen Juan; McCuaig, Robert; Panikkar, Archana; Dasari, Vijayendra; Wu, Fan; Tey, Siok-Keen; Hill, Geoffrey R; Khanna, Rajiv; Rao, Sudha

    2018-03-27

    Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8 + T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving PI3KCG , STAT5B , NFAT , RBPJ , and lower HDAC6 , increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes. By contrast, the transcriptional and epigenomic signatures of CMV-specific T cells from HSCT recipients with unstable immune reconstitution showed commonalities with T-cell responses in other nonresolving chronic infections. These signatures included higher levels of EGR and KLF factors that, along with lower JARID2 expression, maintained higher accessibility at promoter and CpG-rich regions of genes associated with apoptosis. Furthermore, epigenetic targeting via inhibition of HDAC6 or JARID2 enhanced the transcription of genes associated with differential responses, suggesting that drugs targeting epigenomic modifiers may have therapeutic potential for enhancing immune reconstitution in HSCT recipients. Taken together, these analyses demonstrate that transcription factors and chromatin modulators create different chromatin accessibility landscapes in T cells of HSCT recipients that not only affect immediate gene expression but also differentially prime cells for responses to additional signals. Epigenetic therapy may be a promising strategy to promote immune reconstitution in HSCT recipients. © 2018 by The American Society of Hematology.

  9. Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections.

    Directory of Open Access Journals (Sweden)

    Jerod A Skyberg

    Full Text Available γδ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human γδ T cells expand in the blood of brucellosis patients and are active against Brucella in vitro. However, the role of γδ T cells in vivo during experimental brucellosis has not been studied. Here we report TCRδ(-/- mice are more susceptible to B. abortus infection than C57BL/6 mice at one week post-infection as measured by splenic colonization and splenomegaly. An increase in TCRγδ cells was observed in the spleens of B. abortus-infected C57BL/6 mice, which peaked at two weeks post-infection and occurred concomitantly with diminished brucellae. γδ T cells were the major source of IL-17 following infection and also produced IFN-γ. Depletion of γδ T cells from C57BL/6, IL-17Rα(-/-, and GMCSF(-/- mice enhanced susceptibility to B. abortus infection although this susceptibility was unaltered in the mutant mice; however, when γδ T cells were depleted from IFN-γ(-/- mice, enhanced susceptibility was observed. Neutralization of γδ T cells in the absence of TNF-α did not further impair immunity. In the absence of TNF-α or γδ T cells, B. abortus-infected mice showed enhanced IFN-γ, suggesting that they augmented production to compensate for the loss of γδ T cells and/or TNF-α. While the protective role of γδ T cells was TNF-α-dependent, γδ T cells were not the major source of TNF-α and activation of γδ T cells following B. abortus infection was TNF-α-independent. Additionally, bovine TCRγδ cells were found to respond rapidly to B. abortus infection upon co-culture with autologous macrophages and could impair the intramacrophage replication of B. abortus via IFN-γ. Collectively, these results demonstrate γδ T cells are important for early protection to B. abortus infections.

  10. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  11. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  12. Tumor cells and memory T cells converge at glycolysis: Therapeutic implications

    OpenAIRE

    Karthikeyan, Swathi; Geschwind, Jean-Francois; Ganapathy-Kanniappan, Shanmugasundaram

    2014-01-01

    In the immune system, activation of naïve T (Tn) cells into effector T cells (Teff) involves a metabolic switch to glycolysis to promote rapid proliferation and differentiation. In the October issue of The Journal of Clinical Investigation, Sukumar et al. have demonstrated that in CD8+ memory T (Tems) cells glycolytic phenotype contributes to the shortened lifespan of Tems. Conversely, inhibition of glycolysis in Tems not only extended their viability but also augmented desirable properties. ...

  13. Regulatory T cells and immunity to pathogens.

    Science.gov (United States)

    Rouse, Barry T; Suvas, Susmit

    2007-09-01

    Immune responses to pathogens are modulated by one or more types of cells that perform a regulatory function. Some cells with this function, such as CD4+ Foxp3+ natural regulatory T cells (nTreg), pre-exist prior to infections whereas others may be induced as a consequence of infection (adaptive Treg). With pathogens that have a complex pathogenesis, multiple types of regulatory cells could influence the outcome. One major property of Treg is to help minimize collateral tissue damage that can occur during immune reactions to a chronic infection. The consequence is less damage to the host but in such situations the pathogen is likely to establish persistence. In some cases, a fine balance is established between Treg responses, effector components of immunity and the pathogen. Treg responses to pathogens may also act to hamper the efficacy of immune control. This review discusses these issues as well as the likely mechanisms by which various pathogens can signal the participation of Treg during infection.

  14. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  15. Tumor cells and memory T cells converge at glycolysis

    Science.gov (United States)

    Karthikeyan, Swathi; Geschwind, Jean-Francois; Ganapathy-Kanniappan, Shanmugasundaram

    2014-01-01

    In the immune system, activation of naïve T (Tn) cells into effector T cells (Teff) involves a metabolic switch to glycolysis to promote rapid proliferation and differentiation. In the October issue of The Journal of Clinical Investigation, Sukumar et al. have demonstrated that in CD8+ memory T (Tems) cells glycolytic phenotype contributes to the shortened lifespan of Tems. Conversely, inhibition of glycolysis in Tems not only extended their viability but also augmented desirable properties. Notably, they also demonstrate that glycolytic inhibition during the ex vivo clonal expansion of tumor-specific Tems enhanced their antitumor function. Overall, the data suggest that an antiglycolytic strategy targeting the Tems could enhance antitumor immune response. On the other hand, cancer cells have long been known to exhibit metabolic reprogramming which involves a shift toward glycolysis (the conversion of glucose into lactate) to facilitate uninterrupted growth. Interestingly, antiglycolytic treatment of cancer cells has been known to trigger antitumor immune response as well. Taken together, it is probable that a strategy involving concurrent inhibition of glycolysis in tumor cells and Tems could promote a dual attack on cancer by inducing an effective antitumor immune response and an immunogenic chemotherapy. PMID:24556820

  16. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  18. LOCAL IMMUNITY BY TISSUE-RESIDENT CD8+ MEMORY T CELLS

    Directory of Open Access Journals (Sweden)

    Thomas eGebhardt

    2012-11-01

    Full Text Available Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.

  19. Follicular helper T cell in immunity and autoimmunity

    Directory of Open Access Journals (Sweden)

    D. Mesquita Jr

    2016-01-01

    Full Text Available The traditional concept that effector T helper (Th responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17 and the follicular helper T cells (Tfh. These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R, the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  20. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    Directory of Open Access Journals (Sweden)

    Gomez Bianca P

    2012-10-01

    Full Text Available Abstract Background Merkel cell carcinoma (MCC is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV. The MCPyV-encoded large T (LT antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT, as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the

  1. Adaptive Immunity to Leukemia Is Inhibited by Cross-Reactive Induced Regulatory T Cells.

    Science.gov (United States)

    Manlove, Luke S; Berquam-Vrieze, Katherine E; Pauken, Kristen E; Williams, Richard T; Jenkins, Marc K; Farrar, Michael A

    2015-10-15

    BCR-ABL(+) acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific Ag that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL(+) leukemia progression although ultimately this immune response fails. To address how BCR-ABL(+) leukemia escapes immune surveillance, we developed a peptide: MHC class II tetramer that labels endogenous BCR-ABL-specific CD4(+) T cells. Naive mice harbored a small population of BCR-ABL-specific T cells that proliferated modestly upon immunization. The small number of naive BCR-ABL-specific T cells was due to negative selection in the thymus, which depleted BCR-ABL-specific T cells. Consistent with this observation, we saw that BCR-ABL-specific T cells were cross-reactive with an endogenous peptide derived from ABL. Despite this cross-reactivity, the remaining population of BCR-ABL reactive T cells proliferated upon immunization with the BCR-ABL fusion peptide and adjuvant. In response to BCR-ABL(+) leukemia, BCR-ABL-specific T cells proliferated and converted into regulatory T (Treg) cells, a process that was dependent on cross-reactivity with self-antigen, TGF-β1, and MHC class II Ag presentation by leukemic cells. Treg cells were critical for leukemia progression in C57BL/6 mice, as transient Treg cell ablation led to extended survival of leukemic mice. Thus, BCR-ABL(+) leukemia actively suppresses antileukemia immune responses by converting cross-reactive leukemia-specific T cells into Treg cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  3. Transfer of immunity by transfer of bone marrow cells: T-cell dependency

    International Nuclear Information System (INIS)

    Marusic, M.

    1978-01-01

    Thymectomized, lethally irradiated mice reconstituted with normal bone marrow cells succumbed when challenged ip with rat Yoshida ascites sarcoma (YAS) cells 40 days after irradiation and reconstitution. In contrast, thymectomized irradiated mice reconstituted with bone marrow cells from YAS-immune donors rejected the subsequent tumor challenge. Pretreatment of the bone marrow cells from immune donors with anti-Thy 1.2 antiserum and complement completely abolished the transfer of anti-YAS resistance. Bone marrow cells from donors thymectomized 2 months before immunization enabled almost all recipients to reject YAS, but bone marrow cells from donors thymectomized 8 months before immunization protected only 50 percent of the recipients. Further analysis showed that mice thymectomized 8 months before immunization failed to generate anti-YAS antibody response, whereas the antibody response of mice thymectomized 2 months before immunization did not differ from that of non-thymectomized age-matched control mice. The data suggest that the immune reaction of mice against xenogeneic YAS requires long-lived T 2 lymphocytes

  4. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Jianyun Liu

    2018-01-01

    Full Text Available Neurofibromin 1 (NF1 is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

  5. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity.

    Science.gov (United States)

    Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A

    2013-03-28

    Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Signatures of T cells as correlates of immunity to Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Kjell Eneslätt

    Full Text Available Tularemia or vaccination with the live vaccine strain (LVS of Francisella tularensis confers long-lived cell-mediated immunity. We hypothesized that this immunity depends on polyfunctional memory T cells, i.e., CD4(+ and/or CD8(+ T cells with the capability to simultaneously express several functional markers. Multiparametric flow cytometry, measurement of secreted cytokines, and analysis of lymphocyte proliferation were used to characterize in vitro recall responses of peripheral blood mononuclear cells (PBMC to killed F. tularensis antigens from the LVS or Schu S4 strains. PBMC responses were compared between individuals who had contracted tularemia, had been vaccinated, or had not been exposed to F. tularensis (naïve. Significant differences were detected between either of the immune donor groups and naïve individuals for secreted levels of IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, MCP-1, and MIP-1β. Expression of IFN-γ, MIP-1β, and CD107a by CD4(+CD45RO(+ or CD8(+CD45RO(+ T cells correlated to antigen concentrations. In particular, IFN-γ and MIP-1β strongly discriminated between immune and naïve individuals. Only one cytokine, IL-6, discriminated between the two groups of immune individuals. Notably, IL-2- or TNF-α-secretion was low. Our results identify functional signatures of T cells that may serve as correlates of immunity and protection against F. tularensis.

  7. Regulatory T cells: immune suppression and beyond

    OpenAIRE

    Wan, Yisong Y

    2010-01-01

    Foxp3-expressing regulatory T cells (Tregs) were originally identified as critical in maintaining self-tolerance and immune homeostasis. The immunosuppressive functions of Tregs are widely acknowledged and have been extensively studied. Recent studies have revealed many diverse roles of Tregs in shaping the immune system and the inflammatory response. This review will discuss our efforts as well as the efforts of others towards understanding the multifaceted function of Treg...

  8. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  9. Augmentation of cellular and humoral immune responses to HPV16 and HPV18 E6 and E7 antigens by VGX-3100

    Directory of Open Access Journals (Sweden)

    Matthew P Morrow

    2016-01-01

    Full Text Available We have previously demonstrated the immunogenicity of VGX-3100, a multicomponent DNA immunotherapy for the treatment of Human Papillomavirus (HPV16/18-positive CIN2/3 in a phase 1 clinical trial. Here, we report on the ability to boost immune responses with an additional dose of VGX-3100. Patients completing our initial phase 1 trial were offered enrollment into a follow on trial consisting of a single boost dose of VGX-3100. Data show both cellular and humoral immune responses could be augmented above pre-boost levels, including the induction of interferon (IFNγ production, tumor necrosis factor (TNFα production, CD8+ T cell activation and the synthesis of lytic proteins. Moreover, observation of antigen-specific regulation of immune-related gene transcripts suggests the induction of a proinflammatory response following the boost. Analysis of T cell receptor (TCR sequencing suggests the localization of putative HPV-specific T cell clones to the cervical mucosa, which underscores the putative mechanism of action of lesion regression and HPV16/18 elimination noted in our double-blind placebo-controlled phase 2B trial. Taken together, these data indicate that VGX-3100 drives the induction of robust cellular and humoral immune responses that can be augmented by a fourth “booster” dose. These data could be important in the scope of increasing the clinical efficacy rate of VGX-3100.

  10. Tumor cells and memory T cells converge at glycolysis: therapeutic implications.

    Science.gov (United States)

    Karthikeyan, Swathi; Geschwind, Jean-Francois; Ganapathy-Kanniappan, Shanmugasundaram

    2014-05-01

    In the immune system, activation of naïve T (Tn) cells into effector T cells (Teff) involves a metabolic switch to glycolysis to promote rapid proliferation and differentiation. In the October issue of The Journal of Clinical Investigation, Sukumar et al. have demonstrated that in CD8(+) memory T (Tems) cells glycolytic phenotype contributes to the shortened lifespan of Tems. Conversely, inhibition of glycolysis in Tems not only extended their viability but also augmented desirable properties. Notably, they also demonstrate that glycolytic inhibition during the ex vivo clonal expansion of tumor-specific Tems enhanced their antitumor function. Overall, the data suggest that an antiglycolytic strategy targeting the Tems could enhance antitumor immune response. On the other hand, cancer cells have long been known to exhibit metabolic reprogramming which involves a shift toward glycolysis (the conversion of glucose into lactate) to facilitate uninterrupted growth. Interestingly, antiglycolytic treatment of cancer cells has been known to trigger antitumor immune response as well. Taken together, it is probable that a strategy involving concurrent inhibition of glycolysis in tumor cells and Tems could promote a dual attack on cancer by inducing an effective antitumor immune response and an immunogenic chemotherapy.

  11. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  12. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    Science.gov (United States)

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  13. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeremy A Sullivan

    2012-02-01

    Full Text Available CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory. Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-deficient mice with Lymphocytic Choriomeningitis Virus (LCMV. We found that FOXO3 deficiency induced a marked increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically, the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance vaccine-induced protective immunity against intracellular pathogens.

  14. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  15. T cell-derived Lymphotoxin is Essential for anti-HSV-1 Humoral Immune Response.

    Science.gov (United States)

    Yang, Kaiting; Liang, Yong; Sun, Zhichen; Xue, Diyuan; Xu, Hairong; Zhu, Mingzhao; Fu, Yang-Xin; Peng, Hua

    2018-05-09

    B cell-derived lymphotoxin (LT) is required for the development of follicular dendritic cell clusters for the formation of primary and secondary lymphoid follicles, but the role of T cell-derived LT in antibody response has not been well demonstrated. We observed that lymphotoxin-β-receptor (LTβR) signaling is essential for optimal humoral immune response and protection against an acute HSV-1 infection. Blocking the LTβR pathway caused poor maintenance of germinal center B (GC-B) cells and follicular helper T (Tfh) cells. Using bone marrow chimeric mice and adoptive transplantation, we determined that T cell-derived LT played an indispensable role in the humoral immune response to HSV-1. Up-regulation of IFNγ by the LTβR-Ig blockade impairs the sustainability of Tfh-like cells, thus leading to an impaired humoral immune response. Our findings have identified a novel role of T cell-derived LT in the humoral immune response against HSV-1 infection. IMPORTANCE Immunocompromised people are susceptible for HSV-1 infection and lethal recurrence, which could be inhibited by anti-HSV-1 humoral immune response in the host. This study sought to explore the role of T cell-derived LT in the anti-HSV-1 humoral immune response using LT-LTβR signaling deficient mice and the LTβR-Ig blockade. The data indicate that the T cell-derived LT may play an essential role in sustaining Tfh-like cells and ensure Tfh-like cells' migration into primary or secondary follicles for further maturation. This study provides insights for vaccine development against infectious diseases. Copyright © 2018 American Society for Microbiology.

  16. Comparative immune phenotypic analysis of cutaneous Squamous Cell Carcinoma and Intraepidermal Carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ Regulatory T-cells is associated with disease stage.

    Directory of Open Access Journals (Sweden)

    Andrew Freeman

    Full Text Available Squamous Cell Carcinoma (SCC is a type of non-melanoma skin cancer prevalent in immune-suppressed transplant recipients and older individuals with a history of chronic sun-exposure. SCC itself is believed to be a late-stage manifestation that can develop from premalignant lesions including Intraepidermal Carcinoma (IEC. Notably, while SCC regression is rare, IEC typically regresses in response to immune modifying topical treatments, however the underlying immunological reasons for these differential responses remain unclear. This study aimed to define whether IEC and SCC are associated with distinct immune profiles. We investigated the immune cell infiltrate of photo-damaged skin, IEC, and SCC tissue using 10-colour flow cytometry following fresh lesion digest. We found that IEC lesions contain higher percentages of CD3+ T-cells than photo-damaged skin, however, the abundance of CD3-CD56+ Natural Killer (NK cells, CD11c+HLA-DR+ conventional Dendritic Cells (cDC, BDCA-2+HLA-DR+ plasmacytoid DC (pDC, FoxP3+ Regulatory T-cells (T-reg, Vα24+Vβ11+ invariant NKT-cells, and γδ Tcells did not alter with disease stage. Within the total T-cell population, high percentages of CD4+ T-cells were associated with SCC, yet CD8+ T-cells were less abundant in SCC compared with IEC. Our study demonstrates that while IEC lesions contain a higher proportion of T-cells than SCC lesions in general, SCC lesions specifically display a lower abundance of CD8+ T-cells than IEC. We propose that differences in CD8+ T-cell abundance contribute critically to the different capacity of SCC and IEC to regress in response to immune modifying topical treatments. Our study also suggests that a high ratio of CD4+ T-cells to CD8+ T-cells may be a immunological diagnostic indicator of late-stage SCC development in immune-competent patients.

  17. Delineation of canine parvovirus T cell epitopes with peripheral blood mononuclear cells and T cell clones from immunized dogs.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); M.C.M. Poelen (Martien); R.H. Meloen; J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree synthetic peptides derived from the amino acid sequence of VP2 of canine parvovirus (CPV) which were recently shown to represent three distinct T cell epitopes for BALB/c mice could prime BALB/c mice for a CPV-specific proliferative T cell response upon immunization. Proliferative

  18. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  19. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P

    2009-01-01

    It has recently been demonstrated that a recombinant replication-deficient human adenovirus 5 (Ad5) vector expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) fused to the p31 invariant (Ii) chain confers broad, long-lasting T-cell immunity that completely protects C57BL/6 mice...... with the unlinked construct. In contrast, substantial protection against peripheral challenge was not observed. Additional experiments with T-cell subset-depleted or perforin-deficient mice revealed that virus control in vaccinated mice depends critically on cytotoxic CD8(+) T cells. Finally, priming with the naked...

  20. Memory CD8+ T Cells: Orchestrators and Key Players of Innate Immunity?

    Directory of Open Access Journals (Sweden)

    Grégoire Lauvau

    2016-09-01

    Full Text Available Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the "innate nature" of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the "unconventional" and the "conventional" memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses.

  1. alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.

    Science.gov (United States)

    Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B

    2000-12-01

    Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.

  2. T-cell involvement in adoptive transfer of line 10 tumor immunity in strain 2 guinea pigs

    International Nuclear Information System (INIS)

    de Jong, W.H.; Steerenberg, P.A.; van de Plas, M.M.; Kruizinga, W.; Ruitenberg, J.

    1985-01-01

    Several aspects of adoptive transfer of tumor immunity were studied in the line 10 hepatocarcinoma in the syngeneic Sewall-Wright strain 2 guinea pig. In particular, the need for cooperation between donor and recipient T-cells was investigated. Donor immune spleen cells remained immunologically capable of inducing tumor rejection for at least 160 days after adoptive transfer. Irradiated (1,000 rad) or mitomycin-treated immune spleen cells lacked tumor-rejection activity, which is indicative of the necessity for in vivo proliferation after adoptive transfer of immunity. Furthermore, adoptive transfer of tumor immunity was abrogated after treatment of the line 10 immune spleen cells with rabbit anti-guinea pig-thymocyte serum (ATS) plus complement. The role of recipient T-cells was investigated in strain 2 guinea pigs which were T-cell depleted by thymectomy, irradiation, and bone marrow reconstitution (T-XBM animals). Severe suppression of T-cell activity was present at 2 and 6 weeks after irradiation and bone marrow reconstitution. At 10 weeks nonspecific T-cell activity was partially restored. The induction of antigen-specific responses, measured by delayed-type hypersensitivity skin testing in vivo and antigenic stimulation in vitro, was suppressed at 2 weeks after irradiation and bone marrow reconstitution. Additional in vivo treatment of T-XBM animals with a rabbit ATS improved the T-cell depletion only moderately. Tumor growth and tumor rejection after adoptive transfer of immunity were equal in normal and T-cell-deprived recipient animals, thus indicating that recipient T-cells are not needed for tumor rejection after adoptive transfer of line 10 tumor immunity

  3. CD27 instructs CD4+ T cells to provide help for the memory CD8+ T cell response after protein immunization

    NARCIS (Netherlands)

    Xiao, Yanling; Peperzak, Victor; Keller, Anna M.; Borst, Jannie

    2008-01-01

    For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell

  4. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  5. Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity

    Science.gov (United States)

    Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E.; Steel, Jason C.; Morris, John C.; Berzofsky, Jay A.

    2014-01-01

    The structured lymphoid tissues are considered the only inductive sites where primary T cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen -bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite lack of structured lymphoid tissues, can act as an inductive site during primary CD8+ T cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8+ T cells and the local expansion of antigen-specific CD8+ T cells, thereby demonstrating a different paradigm for primary mucosal T cell immune induction. PMID:25600442

  6. Ets transcription factor GABP controls T cell homeostasis and immunity.

    Science.gov (United States)

    Luo, Chong T; Osmanbeyoglu, Hatice U; Do, Mytrang H; Bivona, Michael R; Toure, Ahmed; Kang, Davina; Xie, Yuchen; Leslie, Christina S; Li, Ming O

    2017-10-20

    Peripheral T cells are maintained in the absence of vigorous stimuli, and respond to antigenic stimulation by initiating cell cycle progression and functional differentiation. Here we show that depletion of the Ets family transcription factor GA-binding protein (GABP) in T cells impairs T-cell homeostasis. In addition, GABP is critically required for antigen-stimulated T-cell responses in vitro and in vivo. Transcriptome and genome-wide GABP-binding site analyses identify GABP direct targets encoding proteins involved in cellular redox balance and DNA replication, including the Mcm replicative helicases. These findings show that GABP has a nonredundant role in the control of T-cell homeostasis and immunity.

  7. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML).

    Science.gov (United States)

    Goodyear, Oliver C; Dennis, Mike; Jilani, Nadira Y; Loke, Justin; Siddique, Shamyla; Ryan, Gordon; Nunnick, Jane; Khanum, Rahela; Raghavan, Manoj; Cook, Mark; Snowden, John A; Griffiths, Mike; Russell, Nigel; Yin, John; Crawley, Charles; Cook, Gordon; Vyas, Paresh; Moss, Paul; Malladi, Ram; Craddock, Charles F

    2012-04-05

    Strategies that augment a GVL effect without increasing the risk of GVHD are required to improve the outcome after allogeneic stem cell transplantation (SCT). Azacitidine (AZA) up-regulates the expression of tumor Ags on leukemic blasts in vitro and expands the numbers of immunomodulatory T regulatory cells (Tregs) in animal models. Reasoning that AZA might selectively augment a GVL effect, we studied the immunologic sequelae of AZA administration after allogeneic SCT. Twenty-seven patients who had undergone a reduced intensity allogeneic transplantation for acute myeloid leukemia were treated with monthly courses of AZA, and CD8(+) T-cell responses to candidate tumor Ags and circulating Tregs were measured. AZA after transplantation was well tolerated, and its administration was associated with a low incidence of GVHD. Administration of AZA increased the number of Tregs within the first 3 months after transplantation compared with a control population (P = .0127). AZA administration also induced a cytotoxic CD8(+) T-cell response to several tumor Ags, including melanoma-associated Ag 1, B melanoma antigen 1, and Wilm tumor Ag 1. These data support the further examination of AZA after transplantation as a mechanism of augmenting a GVL effect without a concomitant increase in GVHD.

  8. A novel differentiation pathway from CD4⁺ T cells to CD4⁻ T cells for maintaining immune system homeostasis.

    Science.gov (United States)

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-04-14

    CD4(+) T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4(+) T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4(-)CD8(-)NK1.1(-) double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4(+) rather than CD8(+) T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4(+) T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases.

  9. Role of innate T cells in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    Yifang eGao

    2015-06-01

    Full Text Available Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 hours upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely Invariant NKT cells (iNKT; Mucosal associated invariant T cells (MAIT and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1 and CD1a.They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review we focus on the functional properties of these 3 innate T cell populations and how they are purposed for antimicrobial defense. Furthermore we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly we speculate on future roles of these cell types in therapeutic settings such as vaccination.

  10. Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    International Nuclear Information System (INIS)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim

    2013-01-01

    Highlights: •CD8 + 25 + regulatory T cells secrete tolerogenic exosomes. •CD8 + 25 + regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8 + 25 + regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4 + 25 + and CD8 + 25 + regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8 + 25 + Tr cells from C57BL/6 mouse naive CD8 + T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO Tr ) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO Tr had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC OVA ) plus Tr cells or EXO Tr , and then assessed OVA-specific CD8 + T cell responses using PE-H-2K b /OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10 OVA melanoma cells. We demonstrated that DC OVA -stimulated CD8 + T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p OVA (p Tr , respectively. Our results indicate that natural CD8 + 25 + Tr cell-released EXOs, alike CD8 + 25 + Tr cells, can inhibit CD8 + T cell responses and antitumor immunity. Therefore, EXOs derived from natural CD4 + 25 + and CD8 + 25 + Tr cells may become an alternative for immunotherapy of autoimmune diseases

  11. Complement modulation of T cell immune responses during homeostasis and disease.

    Science.gov (United States)

    Clarke, Elizabeth V; Tenner, Andrea J

    2014-11-01

    The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders. © 2014 Society for Leukocyte Biology.

  12. Regulatory T cells in skin.

    Science.gov (United States)

    Ali, Niwa; Rosenblum, Michael D

    2017-11-01

    Foxp3 + CD4 + regulatory T (Treg) cells are a subset of immune cells that function to regulate tissue inflammation. Skin is one of the largest organs and is home to a large proportion of the body's Treg cells. However, relative to other tissues (such as the spleen and gastrointestinal tract) the function of Treg cells in skin is less well defined. Here, we review our understanding of how Treg cells migrate to skin and the cellular and molecular pathways required for their maintenance in this tissue. In addition, we outline what is known about the specialized functions of Treg cells in skin. Namely, the orchestration of stem cell-mediated hair follicle regeneration, augmentation of wound healing, and promoting adaptive immune tolerance to skin commensal microbes. A comprehensive understanding of the biology of skin Treg cells may lead to novel therapeutic approaches that preferentially target these cells to treat cutaneous autoimmunity, skin cancers and disorders of skin regeneration. © 2017 John Wiley & Sons Ltd.

  13. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  14. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses

    Czech Academy of Sciences Publication Activity Database

    Beck, Inken; Ruckert, R.; Brandt, K.; Mueller, M.S.; Sadowski, T.; Brauer, R.; Schirmacher, P.; Mentlein, R.; Sedláček, Radislav

    2008-01-01

    Roč. 3, č. 6 (2008), e2343-e2343 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : matrix metalloproteinase * T cell * immune response Subject RIV: EB - Genetics ; Molecular Biology

  15. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.

    Science.gov (United States)

    Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub; Kim, Chong Jai

    2018-01-24

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  16. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts: Combination or Built-In CAR-T

    Directory of Open Access Journals (Sweden)

    Dok Hyun Yoon

    2018-01-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  17. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  18. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    Science.gov (United States)

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    Directory of Open Access Journals (Sweden)

    Enrique Montalvillo

    2014-05-01

    Full Text Available The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity. Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  20. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    Science.gov (United States)

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  1. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis.

    Science.gov (United States)

    Rachidi, Saleh; Metelli, Alessandra; Riesenberg, Brian; Wu, Bill X; Nelson, Michelle H; Wallace, Caroline; Paulos, Chrystal M; Rubinstein, Mark P; Garrett-Mayer, Elizabeth; Hennig, Mirko; Bearden, Daniel W; Yang, Yi; Liu, Bei; Li, Zihai

    2017-05-05

    Cancer-associated thrombocytosis has long been linked to poor clinical outcome, but the underlying mechanism is enigmatic. We hypothesized that platelets promote malignancy and resistance to therapy by dampening host immunity. We show that genetic targeting of platelets enhances adoptive T cell therapy of cancer. An unbiased biochemical and structural biology approach established transforming growth factor β (TGFβ) and lactate as major platelet-derived soluble factors to obliterate CD4 + and CD8 + T cell functions. Moreover, we found that platelets are the dominant source of functional TGFβ systemically as well as in the tumor microenvironment through constitutive expression of the TGFβ-docking receptor glycoprotein A repetitions predominant (GARP) rather than secretion of TGFβ per se. Platelet-specific deletion of the GARP-encoding gene Lrrc32 blunted TGFβ activity at the tumor site and potentiated protective immunity against both melanoma and colon cancer. Last, this study shows that T cell therapy of cancer can be substantially improved by concurrent treatment with readily available antiplatelet agents. We conclude that platelets constrain T cell immunity through a GARP-TGFβ axis and suggest a combination of immunotherapy and platelet inhibitors as a therapeutic strategy against cancer. Copyright © 2017, American Association for the Advancement of Science.

  2. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  3. [Exosomes and Immune Cells].

    Science.gov (United States)

    Seo, Naohiro

    2017-05-01

    In addition to the cytokines and cytotoxic granules, exosomes have been known as the intercellular communicator and cytotoxic missile of immune cells for the past decade. It has been well known that mature dendritic cell(DC)-derived exosomes participate in the T cell and natural killer(NK)cell activation, while immature DCs secrete tolerogenic exosomes for regulatory T(Treg)cell generation. Treg cell-derived EVs act as a suppressor against pathogenic type-1 T helper(Th1)cell responses. CD8+ T cells produce tumoricidal exosomes for preventing tumor invasion and metastasis transiently after T cell receptor(TCR)-mediated stimulation. Thus, immune cells produce functional exosomes in the activation state- and/or differentiation stage-dependent manner. In this review, the role of immune cell-derived exosomes will be introduced, focusing mainly on immune reaction against tumor.

  4. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Science.gov (United States)

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90α and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  5. Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-β1 blockade and IL-12p70 production.

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    Full Text Available The therapeutic efficacy of fusion cell (FC-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF-β1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT on the cell surface and released immunostimulatory factors such as heat shock protein (HSP90α and high-mobility group box 1 (HMGB1. A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist led human monocyte-derived DCs to produce HSP90α and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs inhibited the production of multiple immune-suppressive soluble factors including TGF-β1 and up-regulated the production of IL-12p70 and HSP90α. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-γ, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy.

  6. Ag85-focused T-cell immune response controls Mycobacterium avium chronic infection.

    Directory of Open Access Journals (Sweden)

    Bruno Cerqueira-Rodrigues

    Full Text Available CD4+ T cells are essential players for the control of mycobacterial infections. Several mycobacterial antigens have been identified for eliciting a relevant CD4+ T cell mediated-immune response, and numerous studies explored this issue in the context of Mycobacterium tuberculosis infection. Antigen 85 (Ag85, a highly conserved protein across Mycobacterium species, is secreted at the early phase of M. tuberculosis infection leading to the proliferation of Ag85-specific CD4+ T cells. However, in the context of Mycobacterium avium infection, little is known about the expression of this antigen and the elicited immune response. In the current work, we investigated if a T cell receptor (TCR repertoire mostly, but not exclusively, directed at Ag85 is sufficient to mount a protective immune response against M. avium. We show that P25 mice, whose majority of T cells express a transgenic TCR specific for Ag85, control M. avium infection at the same level as wild type (WT mice up to 20 weeks post-infection (wpi. During M. avium infection, Ag85 antigen is easily detected in the liver of 20 wpi mice by immunohistochemistry. In spite of the propensity of P25 CD4+ T cells to produce higher amounts of interferon-gamma (IFNγ upon ex vivo stimulation, no differences in serum IFNγ levels are detected in P25 compared to WT mice, nor enhanced immunopathology is detected in P25 mice. These results indicate that a T cell response dominated by Ag85-specific T cells is appropriate to control M. avium infection with no signs of immunopathology.

  7. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  8. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search

    Science.gov (United States)

    Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.

    2016-01-01

    Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103

  9. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    Science.gov (United States)

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor.

    Science.gov (United States)

    Adachi, Keishi; Kano, Yosuke; Nagai, Tomohiko; Okuyama, Namiko; Sakoda, Yukimi; Tamada, Koji

    2018-04-01

    Infiltration, accumulation, and survival of chimeric antigen receptor T (CAR-T) cells in solid tumors is crucial for tumor clearance. We engineered CAR-T cells to express interleukin (IL)-7 and CCL19 (7 × 19 CAR-T cells), as these factors are essential for the maintenance of T-cell zones in lymphoid organs. In mice, 7 × 19 CAR-T cells achieved complete regression of pre-established solid tumors and prolonged mouse survival, with superior anti-tumor activity compared to conventional CAR-T cells. Histopathological analyses showed increased infiltration of dendritic cells (DC) and T cells into tumor tissues following 7 × 19 CAR-T cell therapy. Depletion of recipient T cells before 7 × 19 CAR-T cell administration dampened the therapeutic effects of 7 × 19 CAR-T cell treatment, suggesting that CAR-T cells and recipient immune cells collaborated to exert anti-tumor activity. Following treatment of mice with 7 × 19 CAR-T cells, both recipient conventional T cells and administered CAR-T cells generated memory responses against tumors.

  11. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity.

    Science.gov (United States)

    Xiao, Yichuan; Zou, Qiang; Xie, Xiaoping; Liu, Ting; Li, Haiyan S; Jie, Zuliang; Jin, Jin; Hu, Hongbo; Manyam, Ganiraju; Zhang, Li; Cheng, Xuhong; Wang, Hui; Marie, Isabelle; Levy, David E; Watowich, Stephanie S; Sun, Shao-Cong

    2017-05-01

    Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance. © 2017 Xiao et al.

  12. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    Science.gov (United States)

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  13. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Botros B. Shenoda

    2016-01-01

    Full Text Available Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

  14. Production of interferon-gamma by in vivo tumor-sensitized T cells: Association with active antitumor immunity

    International Nuclear Information System (INIS)

    Bursuker, I.; Pearce, M.T.

    1990-01-01

    The state of active immunity to Meth A fibrosarcoma in mice immunized with an admixture of Meth A cells and Propionibacterium acnes is associated with possession by the host of spleen cells capable of producing interferon-gamma (IFN-gamma) upon in vitro restimulation with irradiated tumor cells. The ability of spleen cells from immunized mice to produce IFN-gamma in response to irradiated Meth A cells decays as active antitumor immunity is replaced by a state of immunological memory. The IFN-producing cells are L3T4+Ly2+, cyclophosphamide-sensitive and radiosensitive T cells, as determined by their sensitivity to corresponding monoclonal antibodies and complement. The induction of IFN-gamma production by in vivo tumor-sensitized T cells is tumor specific, in that spleen cells from mice immunized against Meth A fibrosarcoma can produce IFN in response to irradiated Meth A cells but not in response to another syngeneic tumor M109 lung carcinoma

  15. Lenalidomide-based maintenance therapy reduces TNF receptor 2 on CD4 T cells and enhances immune effector function in acute myeloid leukemia patients.

    Science.gov (United States)

    Govindaraj, Chindu; Madondo, Mutsa; Kong, Ying Ying; Tan, Peter; Wei, Andrew; Plebanski, Magdalena

    2014-08-01

    A major limitation to improved outcomes in acute myelogenous leukemia (AML) is relapse resulting from leukemic cells that persist at clinical remission. Regulatory T cells (Tregs), which are increased in AML patients, can contribute to immune evasion by residual leukemic cells. Tumor necrosis factor (TNF), a pro-inflammatory cytokine present at high levels within patients, can induce TNF receptor-2 (TNFR2) expression on Tregs. We hypothesized that since TNFR2 is required for Treg stabilization and TNFR2+ Tregs are potent suppressors, targeting TNFR2+ Tregs may restore the effectiveness of immune-surveillance mechanisms. In this pilot study, we report AML patients in clinical remission have substantially increased levels of TNFR2+ T cells, including TNFR2+ Tregs and impaired effector CD4 T cell function with reduced IL-2 and IFNγ production. The immunomodulatory drug, lenalidomide, and the demethylating agent, azacitidine have been moderately successful in treating AML patients, but their combined effects on TNFR2+ T cells, including Tregs are currently unknown. Our data indicates that although treatment with lenalidomide and azacitidine increased cytokine production by effector T cells in all patients, durable clinical remissions may be observed in patients with a concomitant reduction in TNFR2+ T cells and TNFR2+ Tregs. In vitro studies further demonstrated that lenalidomide can reduce TNFR2 expression and can augment effector cytokine production by T cells, which can be further enhanced by azacitidine. These results indicate that reduction of TNFR2+ T cells in AML postremission phase may result from combined azacitidine/lenalidomide therapy and may contribute to an improved clinical outcome. © 2014 Wiley Periodicals, Inc.

  16. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  17. IL-22-producing CD4(+) T cells: Middle-men between the immune system and its environment

    NARCIS (Netherlands)

    Trifari, Sara; Spits, Hergen

    2010-01-01

    CD4(+) Th cell populations such as Th1, Th2, Th17 and regulatory T cells regulate immune responses by inducing (or inhibiting) proliferation, differentiation and activation of other immune cells. Recent findings have expanded the universe of CD4(+) T-cell subsets by identifying a cell population

  18. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy

    Directory of Open Access Journals (Sweden)

    Mark J Dobrzanski

    2013-03-01

    Full Text Available The importance of CD4 T cells in orchestrating the immune system and their role in inducing effective T cell-mediated therapies for the treatment of patients with select established malignancies are undisputable. Through a complex and balanced array of direct and indirect mechanisms of cellular activation and regulation, this functionally diverse family of lymphocytes can potentially promote tumor eradication, long-term tumor immunity and aid in establishing and/or rebalancing immune cell homeostasis through interaction with other immune cell populations within the highly dynamic tumor environment. However, recent studies have uncovered additional functions and roles for CD4 T cells, some of which are independent of other lymphocytes, that can not only influence and contribute to tumor immunity but paradoxically promote tumor growth and progression. Here, we review the recent advances in our understanding of the various CD4 T cell lineages and their signature cytokines in disease progression and/or regression. We discuss their direct and indirect mechanistic interplay among themselves and with other responding cells of the antitumor response, their potential roles and abilities for "plasticity" and memory cell generation within the hostile tumor environment and their potentials in cancer treatment and adoptive immunotherapies.

  19. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers.

    Science.gov (United States)

    Palma, Marzia; Gentilcore, Giusy; Heimersson, Kia; Mozaffari, Fariba; Näsman-Glaser, Barbro; Young, Emma; Rosenquist, Richard; Hansson, Lotta; Österborg, Anders; Mellstedt, Håkan

    2017-03-01

    Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3 + cells and the CD8 + subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4 + and CD8 + cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients ( P =0.0003 and P =0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4 + and CD8 + subsets, with a significantly higher PD-1 expression. Higher numbers of CD4 + and CD8 + cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67 + ) and activated (CD69 + ) CD4 + and CD8 + cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls ( P leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways. Copyright© Ferrata Storti Foundation.

  20. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  1. Daratumumab depletes CD38sup>+> immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma

    DEFF Research Database (Denmark)

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S

    2016-01-01

    target non-plasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from two daratumumab monotherapy studies were analyzed before and during therapy......Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with cross-linking. These mechanisms may also...... and at relapse. Regulatory B cells (Bregs) and myeloid-derived suppressor cells (MDSCs), previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified...

  2. Roles of IFN-γ and γδ T cells in protective immunity against blood-stage malaria

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eInoue

    2013-08-01

    Full Text Available Malaria is caused by infection with Plasmodium parasites. Various studies with knockout mice have indicated that IFN-γ plays essential roles in protective immunity against blood-stage Plasmodium infection. However, after Plasmodium infection, increased IFN-γ production by various types of cells is involved not only in protective immunity, but also in immunopathology. Recent reports have shown that IFN-γ acts as a pro-inflammatory cytokine to induce not only the activation of macrophages, but also the generation of uncommon myelolymphoid progenitor cells after Plasmodium infection. However, the effects of IFN-γ on hematopoietic stem cells and progenitor cells are unclear. Therefore, the regulation of hematopoiesis by IFN-γ during Plasmodium infection remains to be clarified. Although there are conflicting reports concerning the significance of γδ T cells in protective immunity against Plasmodium infection, γδ T cells may respond to infection and produce IFN-γ as innate immune cells in the early phase of blood-stage malaria. Our recent studies have shown that γδ T cells express CD40 ligand and produce IFN-γ after Plasmodium infection, resulting in the enhancement of dendritic cell activation as part of the immune response to eliminate Plasmodium parasites. These data suggest that the function of γδ T cells is similar to that of NK cells. Although several reports suggest that γδ T cells have the potential to act as memory cells for various infections, it remains to be determined whether memory γδ T cells are generated by Plasmodium infection and whether memory γδ T cells can contribute to the host defense against re-infection with Plasmodium. Here, we summarize and discuss the effects of IFN-γ and the various functions of γδ T cells in blood-stage Plasmodium infection.

  3. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    Science.gov (United States)

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Directory of Open Access Journals (Sweden)

    Kathie Béland

    Full Text Available The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C in presence or absence of activated liver-specific autoreactive CD8(+ T cells. Regardless of autoreactive CD8(+ T cells, mice injected with CpG and Poly(I:C showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C and autoreactive CD8(+T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+ T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+ T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  5. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Science.gov (United States)

    Béland, Kathie; Lapierre, Pascal; Djilali-Saiah, Idriss; Alvarez, Fernando

    2012-01-01

    The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  6. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.

    Science.gov (United States)

    Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko

    2013-10-17

    Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Antigen localization controls T cell-mediated tumor immunity.

    Science.gov (United States)

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  8. Role of immune activation in CD4+ T-cell depletion in HIV-1 infected Indian patients.

    Science.gov (United States)

    Vajpayee, M; Kaushik, S; Sreenivas, V; Mojumdar, K; Mendiratta, S; Chauhan, N K

    2009-01-01

    The correlation of immune activation with CD4(+) depletion and HIV-1 disease progression has been evidenced by several studies involving mainly clade B virus. However, this needs to be investigated in developing countries such as India predominately infected with clade C virus. In a cross-sectional study of 68 antiretroviral treatment naïve, HIV-1 infected Indian patients, we studied the association between CD4(+) T cells, plasma HIV-1 RNA levels, and immune activation markers using unadjusted and adjusted correlative analyses. Significant negative correlations of higher magnitude were observed between the CD4(+) T cell percentages and plasma HIV-1 RNA levels in the study population when adjusted for the effects of immune activation markers. However, the negative association of CD4(+) T cells with immune activation markers remained unaffected when controlled for the effects of plasma HIV-1 RNA levels. Our results support the important role of immune activation in CD4(+) T cell depletion and disease progression during untreated HIV-1 infection.

  9. CD8+ T cells provide immune protection against murine disseminated endotheliotropic Orientia tsutsugamushi infection.

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2017-07-01

    Full Text Available Scrub typhus, caused by a Gram-negative obligately intracellular coccobacillus, Orientia tsutsugamushi, is a long neglected but important tropical disease. Orientia tsutsugamushi causes illness in one million people each year, and 1 billion people are at risk. Without appropriate diagnosis and treatment, the disease can cause severe multiorgan failure with a case fatality rate of 7-15%. The current gaps in knowledge of immunity include the unknown mechanisms of host immunity to O. tsutsugamushi. Using an intravenous (i.v. disseminated infection mouse model, we observed that more CD8+ T cells than CD4+ T cells were present in the spleen of infected mice at 12 dpi. We also determined that Treg cells and the proportion of T cells producing IL-10 were significantly increased from 6 dpi, which correlated with the onset of illness, body weight loss, and increased bacterial loads. We further studied CD8-/-, MHC I-/- and wild type control (WT C57BL/6J mice to determine the importance of CD8+ T cells and MHC I molecules. After infection with an ordinarily sub-lethal dose of O. tsutsugamushi, all CD8-/- and MHC I-/- mice were moribund between 12 and 15 dpi, whereas all WT mice survived. Bacterial loads in the lung, kidney, liver and spleen of CD8-/- and MHC I-/- mice were significantly greater than those in WT mice. Interferon-γ (IFN-γ and granzyme B mRNA levels in the liver of CD8-/- and MHC I-/- mice were significantly greater than in WT mice. In addition, more severe histopathologic lesions were observed in CD8-/- mice. Finally, adoptive transfer confirmed a major role of immune CD8+ T cells as well as a less effective contribution by immune CD8 T cell-depleted splenocytes in protection against O. tsutsugamushi infection. These studies demonstrated the critical importance of CD8+ T cells in the host immune response during O. tsutsugamushi infection.

  10. Natural CD8{sup +}25{sup +} regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim, E-mail: jim.xiang@saskcancer.ca

    2013-08-16

    Highlights: •CD8{sup +}25{sup +} regulatory T cells secrete tolerogenic exosomes. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4{sup +}25{sup +} and CD8{sup +}25{sup +} regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8{sup +}25{sup +} Tr cells from C57BL/6 mouse naive CD8{sup +} T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO{sub Tr}) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO{sub Tr} had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC{sub OVA}) plus Tr cells or EXO{sub Tr}, and then assessed OVA-specific CD8{sup +} T cell responses using PE-H-2K{sup b}/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10{sub OVA} melanoma cells. We demonstrated that DC{sub OVA}-stimulated CD8{sup +} T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p < 0.05), and from 8/8 to 2/8 and 5/8 mice DC{sub OVA} (p < 0.05) in immunized mice with co-injection of Tr cells and EXO{sub Tr}, respectively. Our results indicate that natural CD8{sup +}25{sup +} Tr cell-released EXOs, alike CD8{sup +}25{sup +} Tr cells, can inhibit CD8{sup +} T cell responses and antitumor immunity. Therefore, EXOs derived from

  11. It takes two T to shape immunity: emerging role for T-type calcium channels in immune cells

    Czech Academy of Sciences Publication Activity Database

    Lacinová, L.; Weiss, Norbert

    2016-01-01

    Roč. 35, č. 4 (2016), s. 393-396 ISSN 0231-5882 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channel * T-type channel * Ca(v)3.1 * immune cells Subject RIV: CE - Biochemistry Impact factor: 1.170, year: 2016

  12. The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies

    International Nuclear Information System (INIS)

    Dosani, T; Carlsten, M; Maric, I; Landgren, O

    2015-01-01

    As vast strides are being made in the management and treatment of multiple myeloma (MM), recent interests are increasingly focusing on understanding the development of the disease. The knowledge that MM develops exclusively from a protracted phase of monoclonal gammopathy of undetermined significance provides an opportunity to study tumor evolution in this process. Although the immune system has been implicated in the development of MM, the scientific literature on the role and status of various immune components in this process is broad and sometimes contradictory. Accordingly, we present a review of cellular immune subsets in myelomagenesis. We summarize the current literature on the quantitative and functional profiles of natural killer cells and T-cells, including conventional T-cells, natural killer T-cells, γδ T-cells and regulatory T-cells, in myelomagenesis. Our goal is to provide an overview of the status and function of these immune cells in both the peripheral blood and the bone marrow during myelomagenesis. This provides a better understanding of the nature of the immune system in tumor evolution, the knowledge of which is especially significant considering that immunotherapies are increasingly being explored in the treatment of both MM and its precursor conditions

  13. The type of adjuvant strongly influences the T-cell response during nanoparticle-based immunization

    Science.gov (United States)

    Knuschke, Torben; Epple, Matthias; Westendorf, Astrid M

    2014-01-01

    Potent vaccines require the ability to effectively induce immune responses. Especially for the control of infectious diseases with intracellular pathogens, like viruses or bacteria, potent T-cell responses are indispensable. Several delivery systems such as nanoparticles have been considered to boost the immunogenicity of pathogen derived peptides or subunits for the induction of potent T-cell responses. Since they can be further functionalized with immunostimulants, like Toll-like receptor (TLR) agonists, they improve the response by enhanced activation of the innate immune system. Currently, TLR agonists like unmethylated CpG oligonucleotides and the synthetic dsRNA derivate polyriboinosinic acid-polyribocytidylic acid (poly[I:C]) are widely used as vaccine adjuvants. CpG and poly(I:C) trigger different TLRs and therefore show differential signal transduction. Recently, we established biodegradable calcium phosphate (CaP) nanoparticles as potent T cell inducing vaccination vehicles. In this commentary we discuss the role of CpG and poly(I:C) for the effective induction of virus-specific T cells during immunization with CaP nanoparticles. The presented results underline the importance of the right formulation of vaccines for specific immunization purpose. PMID:23982325

  14. Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo.

    Science.gov (United States)

    Fukaya, Tomohiro; Murakami, Ryuichi; Takagi, Hideaki; Sato, Kaori; Sato, Yumiko; Otsuka, Haruna; Ohno, Michiko; Hijikata, Atsushi; Ohara, Osamu; Hikida, Masaki; Malissen, Bernard; Sato, Katsuaki

    2012-07-10

    Dendritic cells (DCs) are composed of multiple subsets that play a dual role in inducing immunity and tolerance. However, it is unclear how CD205(+) conventional DCs (cDCs) control immune responses in vivo. Here we generated knock-in mice with the selective conditional ablation of CD205(+) cDCs. CD205(+) cDCs contributed to antigen-specific priming of CD4(+) T cells under steady-state conditions, whereas they were dispensable for antigen-specific CD4(+) T-cell responses under inflammatory conditions. In contrast, CD205(+) cDCs were required for antigen-specific priming of CD8(+) T cells to generate cytotoxic T lymphocytes (CTLs) mediated through cross-presentation. Although CD205(+) cDCs were involved in the thymic generation of CD4(+) regulatory T cells (Tregs), they maintained the homeostasis of CD4(+) Tregs and CD4(+) effector T cells in peripheral and mucosal tissues. On the other hand, CD205(+) cDCs were involved in the inflammation triggered by Toll-like receptor ligand as well as bacterial and viral infections. Upon microbial infections, CD205(+) cDCs contributed to the cross-priming of CD8(+) T cells for generating antimicrobial CTLs to efficiently eliminate pathogens, whereas they suppressed antimicrobial CD4(+) T-cell responses. Thus, these findings reveal a critical role for CD205(+) cDCs in the regulation of T-cell immunity and homeostasis in vivo.

  15. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax

    International Nuclear Information System (INIS)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo

  16. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax.

    Science.gov (United States)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-12-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion-induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells......Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...

  18. Enhanced responses to tumor immunization following total body irradiation are time-dependent.

    Directory of Open Access Journals (Sweden)

    Adi Diab

    Full Text Available The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8(+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8(+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference

  19. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system......The immune system is a tightly regulated and complex system. An important part of this immune regulation is the assurance of tolerance toward self-antigens to maintain immune homeostasis. However, in recent years, antigen-specific cellular immune responses toward several normal self....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still...

  20. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    Science.gov (United States)

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  1. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort

    Directory of Open Access Journals (Sweden)

    Colebunders Robert

    2011-02-01

    Full Text Available Abstract Background Antiretroviral therapy (ART partially corrects immune dysfunction associated with HIV infection. The levels of T-cell immune activation and exhaustion after long-term, suppressive ART and their correlation with CD4 T-cell count reconstitution among ART-treated patients in African cohorts have not been extensively evaluated. Methods T-cell activation (CD38+HLA-DR+ and immune exhaustion (PD-1+ were measured in a prospective cohort of patients initiated on ART; 128 patient samples were evaluated and subcategorized by CD4 reconstitution after long-term suppressive treatment: Suboptimal [median CD4 count increase 129 (-43-199 cells/μl], N = 34 ], optimal [282 (200-415 cells/μl, N = 64] and super-optimal [528 (416-878 cells/μl, N = 30]. Results Both CD4+ and CD8 T-cell activation was significantly higher among suboptimal CD4 T-cell responders compared to super-optimal responders. In a multivariate model, CD4+CD38+HLADR+ T-cells were associated with suboptimal CD4 reconstitution [AOR, 5.7 (95% CI, 1.4-23, P = 0.014]. T-cell exhaustion (CD4+PD1+ and CD8+PD1+ was higher among suboptimal relative to optimal (P P = 0.022]. Conclusion T-cell activation and exhaustion persist among HIV-infected patients despite long-term, sustained HIV-RNA viral suppression. These immune abnormalities were associated with suboptimal CD4 reconstitution and their regulation may modify immune recovery among suboptimal responders to ART.

  2. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    Science.gov (United States)

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  3. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    Science.gov (United States)

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions.

  4. To investigate the necessity of STRA6 upregulation in T cells during T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Rafik Terra

    Full Text Available Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6 was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6. Our results demonstrate that 1 in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2 STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3 STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency.

  5. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R

    2016-01-01

    nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local......The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  6. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    Science.gov (United States)

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  8. Defective B cell response to T-dependent immunization in lupus-prone mice

    Science.gov (United States)

    Niu, Haitao; Sobel, Eric S.; Morel, Laurence

    2009-01-01

    Lupus anti-nuclear Abs show the characteristics of Ag-driven T cell-dependent (TD) humoral responses. If autoAgs elicit the same response as exogenous Ags, lupus should enhance humoral responses to immunization. Blunted responses to various immunizations have, however, been reported in a significant portion of lupus patients. In this study, we show that lupus-prone B6.Sle1.Sle2.Sle3 (B6.TC) mice produce significantly less Ab in response to TD immunization than congenic controls, while producing significantly more total Ig. This blunted Ab response to TD Ag could be reconstituted with B6.TC B and CD4+ T cells. Multiple defects were found in the B6.TC response to NP-KLH as compared to total Ig, including a smaller percentage of B cells participating to the NP-response, a reduced entry into germinal centers, and highly defective production of NP-specific long-lived plasma cells in the bone marrow. B6.TC plasma cells expressed reduced levels of FcγRIIb, which suggests that reduced apoptosis in resident plasma cells prevents the establishment of newly-formed NP-specific plasma cells in bone marrow niches. Overall, these results show that lupus-prone mice responded differently to auto- and exogenous antigens and suggest that low FcγRIIb, hypergammaglobulinemia and high autoantibody production would be predictive of a poor response to immunization in lupus patients. PMID:18924209

  9. Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity.

    Science.gov (United States)

    Zhong, Ming-Chao; Veillette, André

    2013-03-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.

  10. Protective immunization with B16 melanoma induces antibody response and not cytotoxic T cell response

    International Nuclear Information System (INIS)

    Sarzotti, M.; Sriyuktasuth, P.; Klimpel, G.R.; Cerny, J.

    1986-01-01

    C57BL/6 mice immunized with three intraperitoneal injections of syngeneic, irradiated B16 melanoma cells, became resistant to B16 tumor challenge. Immunized mice had high levels of serum antibody against a membrane antigen of B16 cells. The B16 antigen recognized by the anti-B16 sera formed a major band of 90 KD in gel electrophoresis. The anti-B16 antibody was partially protective when mixed with B16 cells and injected into normal recipient mice. Surprisingly, B16 resistance mice were incapable of generating cytotoxic T cells (CTL) specific for the B16 tumor. Both spleen and lymph node cell populations from immunized mice did not generate B16-specific CTL. Allogeneic mice (DBA/2 or C3H) were also unable to generate B16-specific CTL: however, alloreactive CTL produced in these strains of mice by immunization with C57BL/6 lymphocytes, did kill B16 target cells. Interestingly, spleen cells from syngeneic mice immunized with B16 tumor produced 6-fold more interleukin-2 (IL-2) than normal spleen cells, in vitro. These data suggest that immunization with B16 tumor activates a helper subset of T cells (for antibody and IL-2 production) but not the effector CTL response

  11. JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells.

    Science.gov (United States)

    Keohane, Clodagh; Kordasti, Shahram; Seidl, Thomas; Perez Abellan, Pilar; Thomas, Nicholas S B; Harrison, Claire N; McLornan, Donal P; Mufti, Ghulam J

    2015-10-01

    CD4(+) T cells maintain cancer surveillance and immune tolerance. Chronic inflammation has been proposed as a driver of clonal evolution in myeloproliferative neoplasms (MPN), suggesting that T cells play an important role in their pathogenesis. Treatment with JAK inhibitors (JAKi) results in improvements in MPN-associated constitutional symptoms as well as reductions in splenomegaly. However, effects of JAKi on T cells in MPN are not well established and the baseline immune signature remains unclear. We investigated the frequency and function of CD4(+) T cell subsets in 50 MPN patients at baseline as well as during treatment with either ruxolitinib or fedratinib in a subset. We show that CD4(+)  CD127(low)  CD25(high)  FOXP3(+) T regulatory cells are reduced in MPN patients compared to healthy controls and that this decrease is even more pronounced following JAKi therapy. Moreover, we show that after 6 months of treatment the number of T helper (Th)-17 cells increased. We also describe a functional 'silencing' of T helper cells both in vivo and in vitro and a blockade of pro-inflammatory cytokines from these cells. This profound effect of JAKi on T cell function may underlay augmented rates of atypical infections that have been reported with use of these drugs. © 2015 John Wiley & Sons Ltd.

  12. Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells.

    Science.gov (United States)

    Lee, Hye-Yeon; Kim, Juri; Ryu, Jae-Sook; Park, Soon-Jung

    2017-08-01

    Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.

  13. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Yang

    2017-11-01

    Full Text Available Interleukin-4 (IL-4 has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs. Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-β-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.

  14. Role of the Ca2+-Calcineurin-Nuclear Factor of Activated T cell Pathway in Mitofusin-2-Mediated Immune Function of Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Xiu-Ping Xu

    2018-01-01

    Conclusions: Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway. MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.

  15. Immune Cell-Mediated Protection against Vaginal Candidiasis: Evidence for a Major Role of Vaginal CD4+ T Cells and Possible Participation of Other Local Lymphocyte Effectors

    Science.gov (United States)

    Santoni, Giorgio; Boccanera, Maria; Adriani, Daniela; Lucciarini, Roberta; Amantini, Consuelo; Morrone, Stefania; Cassone, Antonio; De Bernardis, Flavia

    2002-01-01

    The protective roles of different lymphocyte subsets were investigated in a rat vaginal candidiasis model by adoptive transfer of vaginal lymphocytes (VL) or sorted, purified CD3+ T cells, CD4+ or CD8+ T cells, or CD3− CD5+ B cells from the vaginas of naïve or immune rats following three rounds of Candida albicans infection. The adoptive transfer of total VL from nonimmune animals did not alter the course of vaginal candidiasis of the recipient rats. In contrast, the animals receiving total VL or CD3+ T cells from immune rats showed a highly significant acceleration of fungus clearance compared with animals which received nonimmune VL. The animals with vaginal CD3− CD5+ B cells transferred from immune rats also had fewer Candida CFU than the controls, but fungal clearance was significantly retarded with respect to the animals administered immune T cells. Sorted, purified CD4+ and CD8+ vaginal T cells from immune rats were also adoptively transferred to naïve animals. Although both populations were seen to accelerate the clearance of the fungus from the vagina, CD4+ T cells were much more effective than CD8+ T cells. Overall, there was no difference between the antifungal effects of immune vaginal CD4+ T cells and those achievable with the transfer of whole, immune VL. Histological observations of the vaginal tissues of rats with adoptively transferred immune T cells demonstrated a remarkable accumulation of lymphocytes in the subepithelial lamina propria and also infiltrating the mucosal epithelium. These results strongly suggest that distinct vaginal lymphocyte subsets participate in the adaptive anti-Candida immunity at the vaginal level, with the vaginal CD4+ T cells probably playing a major role. PMID:12183521

  16. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging

    Directory of Open Access Journals (Sweden)

    Claire E. Gustafson

    2017-06-01

    Full Text Available Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs CD8 T cells, which increase with age, in cytomegalovirus (CMV infection and in males. CD85j+ CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j+ and CD85j− compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57 but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of “senescent,” but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.

  17. Pro- and anti-apoptotic CD95 signaling in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2011-04-01

    Full Text Available Abstract The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6 is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.

  18. Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation.

    Directory of Open Access Journals (Sweden)

    Xinghui Li

    Full Text Available Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6, and number of IFN-γ (+ CD4(+ and IFN-γ (+ CD8(+ T cells in the spleen and liver. In contrast, CD4(+CD25(+Foxp3(+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.

  19. PD-1 Blockade Can Restore Functions of T-Cells in Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma In Vitro.

    Directory of Open Access Journals (Sweden)

    Lina Quan

    Full Text Available Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV+DLBCL is an aggressive malignancy that is largely resistant to current therapeutic regimens, and is an attractive target for immune-based therapies. Anti-programmed death-1 (PD-1 antibodies showed encouraging anti-tumor effects in both preclinical models and advanced solid and hematological malignancies, but its efficacy against EBV+DLBCL is unknown. Herein, we performed experiments using co-culture system with T cells and lymphoma cell lines including EBV+DLBCL and EBV-DLBCL [including germinal center B-cell like (GCB-DLBCL and non-GCB-DLBCL] in vitro. We show that lymphoma cells augmented the expression of PD-1 on T cells, decreased the proliferation of T cells, and altered the secretion of multiple cytokines. However, through PD-1 blockade, these functions could be largely restored. Notbaly, the effect of PD-1 blockade on antitumor immunity was more effective in EBV+DLBCL than that in EBV-DLBCL in vitro. These results suggest that T-cell exhaustion and immune escape in microenvironment is one of the mechanisms underlying DLBCL; and PD-1 blockade could present as a efficacious immunotherapeutic treatment for EBV+DLBCL.

  20. Genetic adjuvantation of recombinant MVA with CD40L potentiates CD8 T cell mediated immunity

    Directory of Open Access Journals (Sweden)

    Henning eLauterbach

    2013-08-01

    Full Text Available Modified vaccinia Ankara (MVA is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor (TNF superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70 early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated CTLs also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.

  1. Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines

    Directory of Open Access Journals (Sweden)

    Chang Wei-Ting

    2011-06-01

    Full Text Available Abstract Background Damage-associated molecular patterns (DAMPs are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs. Specific microtubule-depolymerizing agents (MDAs such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs. Methods In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine. Results The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT. DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs. Conclusions Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.

  2. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Diniz, Marcio A; Gwin, William R; Hartman, Zachary; Wei, Junping; Guo, Hongtao; Yang, Xiao-Yi; Liu, Cong-Xiao; Kaneko, Kensuke; Broadwater, Gloria; Lyerly, H Kim

    2017-01-01

    Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8 + T cells and regulatory CD4 + T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8 + T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.

  3. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization.

    Science.gov (United States)

    Seavey, Matthew M; Mosmann, Tim R

    2009-04-14

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8(+) T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APCs) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8(+) T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8(+) T cell priming after insemination or vaginal vaccination.

  4. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8+ T cell priming in response to intravaginal immunization

    Science.gov (United States)

    Seavey, Matthew M.; Mosmann, Tim R.

    2010-01-01

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8+ T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APC) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8+ T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8+ T cell priming after insemination or vaginal vaccination. PMID:19428849

  5. B cell, CD8 + T cell and gamma delta T cell infiltration alters alveolar immune cell homeostasis in HIV-infected Malawian adults [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Andrew Mwale

    2017-12-01

    Full Text Available Background: HIV infection is associated with increased risk to lower respiratory tract infections (LRTI. However, the impact of HIV infection on immune cell populations in the lung is not well defined. We sought to comprehensively characterise the impact of HIV infection on immune cell populations in the lung. Methods: Twenty HIV-uninfected controls and 17 HIV-1 infected ART-naïve adults were recruited from Queen Elizabeth Central Hospital, Malawi. Immunophenotyping of lymphocyte and myeloid cell populations was done on bronchoalveolar lavage fluid and peripheral blood cells. Results: We found that the numbers of CD8 + T cells, B cells and gamma delta T cells were higher in BAL fluid of HIV-infected adults compared to HIV-uninfected controls (all p<0.05. In contrast, there was no difference in the numbers of alveolar CD4 + T cells in HIV-infected adults compared to HIV-uninfected controls (p=0.7065. Intermediate monocytes were the predominant monocyte subset in BAL fluid (HIV-, 63%; HIV+ 81%, while the numbers of classical monocytes was lower in HIV-infected individuals compared to HIV-uninfected adults (1 × 10 5 vs. 2.8 × 10 5 cells/100ml of BAL fluid, p=0.0001. The proportions of alveolar macrophages and myeloid dendritic cells was lower in HIV-infected adults compared to HIV-uninfected controls (all p<0.05. Conclusions: Chronic HIV infection is associated with broad alteration of immune cell populations in the lung, but does not lead to massive depletion of alveolar CD4 + T cells. Disruption of alveolar immune cell homeostasis likely explains in part the susceptibility for LRTIs in HIV-infected adults.

  6. GITR ligand-costimulation activates effector and regulatory functions of CD4+ T cells

    International Nuclear Information System (INIS)

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-01-01

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25 - CD4 + effector (Teff) and CD25 + CD4 + regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4 + T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4 + T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists

  7. Immune Thrombocytopenia in a Child with T Cell Lymphoblastic Lymphoma

    Directory of Open Access Journals (Sweden)

    Kayo Tokeji

    2016-01-01

    Full Text Available We describe the case of a 13-year-old boy who presented with persistent thrombocytopenia during maintenance chemotherapy with mercaptopurine and methotrexate for T cell lymphoblastic lymphoma. He was diagnosed with immune thrombocytopenia (ITP after thorough investigations for the relapse of lymphoma and was successfully treated with immunoglobulin and steroids. ITP is known to be associated with chronic lymphocytic leukemia, Hodgkin lymphoma, and various types of non-Hodgkin lymphoma but rarely with T cell non-Hodgkin lymphoma or in children. Diagnosis of ITP with lymphoma is challenging due to the many factors affecting platelet counts, and ITP often complicates the diagnosis or treatment course of lymphoma. The underlying mechanism of ITP with NHL is still unclear. Drug-induced immunomodulation with a reduction of regulatory T cells might have contributed to the development of ITP in our case.

  8. The interplay of sequence conservation and T cell immune recognition

    DEFF Research Database (Denmark)

    Bresciani, Anne Gøther; Sette, Alessandro; Greenbaum, Jason

    2014-01-01

    examined the hypothesis that conservation of a peptide in bacteria that are part of the healthy human microbiome leads to a reduced level of immunogenicity due to tolerization of T cells to the commensal bacteria. This was done by comparing experimentally characterized T cell epitope recognition data from...... the Immune Epitope Database with their conservation in the human microbiome. Indeed, we did see a lower immunogenicity for conserved peptides conserved. While many aspects how this conservation comparison is done require further optimization, this is a first step towards a better understanding T cell...... recognition of peptides in bacterial pathogens is influenced by their conservation in commensal bacteria. If the further work proves that this approach is successful, the degree of overlap of a peptide with the human proteome or microbiome could be added to the arsenal of tools available to assess peptide...

  9. Clipboard: Putting T cells to sleep: a new paradigm for immune ...

    Indian Academy of Sciences (India)

    2006-11-13

    Nov 13, 2006 ... Home; Journals; Journal of Biosciences; Volume 31; Issue 5. Clipboard: Putting T cells to sleep: a new paradigm for immune evasion by persistent viruses. Shweta Dubey Shahid Jameel. Volume 31 Issue 5 December 2006 pp 497-501 ...

  10. Innate-like CD4 T cells selected by thymocytes suppress adaptive immune responses against bacterial infections

    OpenAIRE

    Qiao, Yu; Gray, Brian M.; Sofi, Mohammed H.; Bauler, Laura D.; Eaton, Kathryn A.; O'Riordan, Mary X. D.; Chang, Cheong-Hee

    2011-01-01

    We have reported a new innate-like CD4 T cell population that expresses cell surface makers of effector/memory cells and produce Th1 and Th2 cytokines immediately upon activation. Unlike conventional CD4 T cells that are selected by thymic epithelial cells, these CD4 T cells, named T-CD4 T cells, are selected by MHC class II expressing thymocytes. Previously, we showed that the presence of T-CD4 T cells protected mice from airway inflammation suggesting an immune regulatory role of T-CD4 T ce...

  11. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  12. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major.

    Science.gov (United States)

    Mou, Zhirong; Liu, Dong; Okwor, Ifeoma; Jia, Ping; Orihara, Kanami; Uzonna, Jude Ezeh

    2014-09-01

    Although it is generally believed that CD4(+) T cells play important roles in anti-Leishmania immunity, some studies suggest that they may be dispensable, and that MHC II-restricted CD3(+)CD4(-)CD8(-) (double negative, DN) T cells may be more important in regulating primary anti-Leishmania immunity. In addition, while there are reports of increased numbers of DN T cells in Leishmania-infected patients, dogs and mice, concrete evidence implicating these cells in secondary anti-Leishmania immunity has not yet been documented. Here, we report that DN T cells extensively proliferate and produce effector cytokines (IFN-γ, TNF and IL-17) and granzyme B (GrzB) in the draining lymph nodes and spleens of mice following primary and secondary L. major infections. DN T cells from healed mice display functional characteristics of protective anti-Leishmania memory-like cells: rapid and extensive proliferation and effector cytokines production following L. major challenge in vitro and in vivo. DN T cells express predominantly (> 95%) alpha-beta T cell receptor (αβ TCR), are Leishmania-specific, restricted mostly by MHC class II molecules and display transcriptional profile of innate-like genes. Using in vivo depletion and adoptive transfer studies, we show that DN T cells contribute to optimal primary and secondary anti-Leishmania immunity in mice. These results directly identify DN T cells as important players in effective and protective primary and secondary anti-L. major immunity in experimental cutaneous leishmaniasis.

  13. B cell and T cell immunity in the female genital tract: potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells.

    Science.gov (United States)

    Anjuère, F; Bekri, S; Bihl, F; Braud, V M; Cuburu, N; Czerkinsky, C; Hervouet, C; Luci, C

    2012-10-01

    The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens represent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local memory cells. Mucosal immunization constitutes an attractive way to generate systemic and genital B-cell and T-cell immune responses that can control early infection by sexually transmitted pathogens. Nevertheless, no mucosal vaccines against sexually transmitted infections are approved for human use. The mucosa-associated immune system is highly compartmentalized and the selection of any particular route or combinations of routes of immunization is critical when defining vaccine strategies against genital infections. Furthermore, mucosal surfaces are complex immunocompetent tissues that comprise antigen-presenting cells and also innate immune effectors and non-immune cells that can act as 'natural adjuvants' or negative immune modulators. The functions of these cells have to be taken into account when designing tissue-specific antigen-delivery systems and adjuvants. Here, we will discuss data that compare different mucosal routes of immunization to generate B-cell and T-cell responses in the genital tract, with a special emphasis on the newly described sublingual route of immunization. We will also summarize data on the understanding of the effector and induction mechanisms of genital immunity that may influence the development of vaccine strategies against genital infections. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  14. Systemic BCG immunization induces persistent lung mucosal multifunctional CD4 T(EM cells which expand following virulent mycobacterial challenge.

    Directory of Open Access Journals (Sweden)

    Daryan A Kaveh

    Full Text Available To more closely understand the mechanisms of how BCG vaccination confers immunity would help to rationally design improved tuberculosis vaccines that are urgently required. Given the established central role of CD4 T cells in BCG induced immunity, we sought to characterise the generation of memory CD4 T cell responses to BCG vaccination and M. bovis infection in a murine challenge model. We demonstrate that a single systemic BCG vaccination induces distinct systemic and mucosal populations of T effector memory (T(EM cells in vaccinated mice. These CD4+CD44(hiCD62L(loCD27⁻ T cells concomitantly produce IFN-γ and TNF-α, or IFN-γ, IL-2 and TNF-α and have a higher cytokine median fluorescence intensity MFI or 'quality of response' than single cytokine producing cells. These cells are maintained for long periods (>16 months in BCG protected mice, maintaining a vaccine-specific functionality. Following virulent mycobacterial challenge, these cells underwent significant expansion in the lungs and are, therefore, strongly associated with protection against M. bovis challenge. Our data demonstrate that a persistent mucosal population of T(EM cells can be induced by parenteral immunization, a feature only previously associated with mucosal immunization routes; and that these multifunctional T(EM cells are strongly associated with protection. We propose that these cells mediate protective immunity, and that vaccines designed to increase the number of relevant antigen-specific T(EM in the lung may represent a new generation of TB vaccines.

  15. Regulation of T cell immunity in atopic dermatitis by microbes: The Yin and Yang of cutaneous inflammation

    Directory of Open Access Journals (Sweden)

    Tilo eBiedermann

    2015-07-01

    Full Text Available Atopic dermatitis (AD is a chronic inflammatory skin disease predominantly mediated by T helper cells. While numerous adaptive immune mechanisms in AD pathophysiology have been elucidated in detail, deciphering the impact of innate immunity in AD pathogenesis has made substantial progress in recent years and is currently a fast evolving field. As innate and adaptive immunity are intimately linked cross-talks between these two branches of the immune system are critically influencing the resulting immune response and disease. Innate immune recognition of the cutaneous microbiota was identified to substantially contribute to immune homeostasis and shaping of protective adaptive immunity in the absence of inflammation. Disturbances in the composition of the skin microbiome with reduced microbial diversity and overabundance of Staphylococcus spp. have been shown to be associated with AD inflammation. Distinct S. aureus associated microbial associated molecular patterns (MAMPs binding to TLR2 heterodimers could be identified to initiate long lasting cutaneous inflammation driven by T helper cells and consecutively local immune suppression by induction of myeloid derived suppressor cells (MDSC further favoring secondary skin infections as often seen in AD patients. Moreover dissecting cellular and molecular mechanisms in cutaneous innate immune sensing in AD pathogenesis paved the way for exploiting regulatory and anti-inflammatory pathways to attenuate skin inflammation. Activation of the innate immune system by MAMPs of non-pathogenic bacteria on AD skin alleviated cutaneous inflammation. The induction of tolerogenic dendritic cells, Interleukin-10 expression and regulatory Tr1 cells were shown to mediate this beneficial effect. Thus, activation of innate immunity by MAMPs of non-pathogenic bacteria for induction of regulatory T cell phenotypes seems to be a promising strategy for treatment of inflammatory skin disorders as atopic dermatitis. These

  16. Effect of glucocorticoids on melatonin receptor expression under T-cell activated immune response

    International Nuclear Information System (INIS)

    Tauschanova, P.; Georgiev, G.; Manchev, S.; Konakchieva, R.

    2007-01-01

    The present study was aimed to explore the stress response in rats under conditions of T-cell antigen-activated immune function and to investigate the specific melatonin (MEL) receptor binding in primary and secondary immune tissue of rats employing 2-( 125 I)-iodo melatonin autoradiography and in vitro ligand binding assay. The study revealed that melatonin receptor binding was specifically expressed in discrete areas of the lymphoid sheath of the spleen and in a network of interdigitating cells of the experimental rats. Demonstration of the modulation of MEL receptor binding in the course of a primary immune response under hypercorticalemic conditions indicate that the pineal hormone might interfere in the processes of glucocorticoid-dependent immune competency. (authors)

  17. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

    DEFF Research Database (Denmark)

    Kloverpris, Henrik N; Karlsson, Ingrid; Thorn, Mette

    2009-01-01

    Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response......, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA......-gamma)-producing CD8(+) T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode...

  18. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis

    Directory of Open Access Journals (Sweden)

    Bidesh Mahata

    2014-05-01

    Full Text Available T helper 2 (Th2 cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis.

  19. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflamma......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS......) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  20. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?

    Science.gov (United States)

    Paiola, Matthieu; Knigge, Thomas; Duflot, Aurélie; Pinto, Patricia I S; Farcy, Emilie; Monsinjon, Tiphaine

    2018-07-01

    In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Improved Insulin Sensitivity despite Increased Visceral Adiposity in Mice Deficient for the Immune Cell Transcription Factor T-bet

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A.; Wargent, Edward T.; Powell, Nick; Canavan, James B.; Lord, Graham M.; Howard, Jane K.

    2013-01-01

    Summary Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet−/− mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet−/− mice also lacking adaptive immunity (T-bet−/−xRag2−/−), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4+ T cells to Rag2−/− mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. PMID:23562076

  2. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Effector Regulatory T Cells Reflect the Equilibrium between Antitumor Immunity and Autoimmunity in Adult T-cell Leukemia.

    Science.gov (United States)

    Ureshino, Hiroshi; Shindo, Takero; Nishikawa, Hiroyoshi; Watanabe, Nobukazu; Watanabe, Eri; Satoh, Natsuko; Kitaura, Kazutaka; Kitamura, Hiroaki; Doi, Kazuko; Nagase, Kotaro; Kimura, Hiromi; Samukawa, Makoto; Kusunoki, Susumu; Miyahara, Masaharu; Shin-I, Tadasu; Suzuki, Ryuji; Sakaguchi, Shimon; Kimura, Shinya

    2016-08-01

    The regulatory T cells (Treg) with the most potent immunosuppressive activity are the effector Tregs (eTreg) with a CD45RA(-)Foxp3(++)CCR4(+) phenotype. Adult T-cell leukemia (ATL) cells often share the Treg phenotype and also express CCR4. Although mogamulizumab, a monoclonal antibody to CCR4, shows marked antitumor effects against ATL and peripheral T-cell lymphoma, concerns have been raised that it may induce severe autoimmune immunopathology by depleting eTregs. Here, we present case reports for two patients with ATL who responded to mogamulizumab but developed a severe skin rash and autoimmune brainstem encephalitis. Deep sequencing of the T-cell receptor revealed that ATL cells and naturally occurring Tregs within the cell population with a Treg phenotype can be clearly distinguished according to CADM1 expression. The onset of skin rash and brainstem encephalitis was coincident with eTreg depletion from the peripheral blood, whereas ATL relapses were coincident with eTreg recovery. These results imply that eTreg numbers in the peripheral blood sensitively reflect the equilibrium between antitumor immunity and autoimmunity, and that mogamulizumab might suppress ATL until the eTreg population recovers. Close monitoring of eTreg numbers is crucial if we are to provide immunomodulatory treatments that target malignancy without severe adverse events. Cancer Immunol Res; 4(8); 644-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity.

    Science.gov (United States)

    Hua, Jing; Liang, Shuwen; Ma, Xiong; Webb, Tonya J; Potter, James P; Li, Zhiping

    2011-01-01

    Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity.

  5. Clinical dosing regimen of selinexor maintains normal immune homeostasis and T cell effector function in mice: implications for combination with immunotherapy

    Science.gov (United States)

    Tyler, Paul M.; Servos, Mariah M.; de Vries, Romy C.; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K.

    2017-01-01

    Selinexor (KPT-330) is a first in class nuclear transport inhibitor currently in clinical trials as an anti-cancer agent. To determine how selinexor might impact anti-tumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T cell development, a progressive loss of CD8 T cells and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T cell development and function. We determined the minimum concentration of selinexor required to block T cell activation, and showed that T cell inhibitory effects of selinexor occur at levels above 100nM, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 5 day drug holiday led to intratumoral IFNγ+, granzyme B+ cytotoxic CD8 T cells that were comparable to vehicle treated mice. Overall, selinexor treatment leads to transient inhibition of T cell activation but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T cell functioning and development of anti-tumor immunity. PMID:28148714

  6. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells

    OpenAIRE

    Swaims, Alison Y.; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I.; Devadas, Satish; Shi, Yufang; Rabson, Arnold B.

    2010-01-01

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulate...

  7. Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence for poor immune cell infiltration into devil facial tumors.

    Science.gov (United States)

    Howson, Lauren J; Morris, Katrina M; Kobayashi, Takumi; Tovar, Cesar; Kreiss, Alexandre; Papenfuss, Anthony T; Corcoran, Lynn; Belov, Katherine; Woods, Gregory M

    2014-05-01

    The Tasmanian devil is under threat of extinction due to the transmissible devil facial tumor disease (DFTD). This fatal tumor is an allograft that does not induce an immune response, raising questions about the activity of Tasmanian devil immune cells. T and B cell analysis has been limited by a lack of antibodies, hence the need to produce such reagents. Amino acid sequence analysis revealed that CD4, CD8, IgM, and IgG were closely related to other marsupials. Monoclonal antibodies were produced against CD4, CD8, IgM, and IgG by generating bacterial fusion proteins. These, and commercial antibodies against CD1a and CD83, identified T cells, B cells and dendritic cells by immunohistochemistry. CD4(+) and CD8(+) T cells were identified in pouch young thymus, adult lymph nodes, spleen, bronchus- and gut-associated lymphoid tissue. Their anatomical distribution was characteristic of mammalian lymphoid tissues with more CD4(+) than CD8(+) cells in lymph nodes and splenic white pulp. IgM(+) and IgG(+) B cells were identified in adult lymph nodes, spleen, bronchus-associated lymphoid tissue and gut-associated lymphoid tissue, with more IgM(+) than IgG(+) cells. Dendritic cells were identified in lymph node, spleen and skin. This distribution is consistent with eutherian mammals and other marsupials, indicating they have the immune cell subsets for an anti-tumor immunity. Devil facial tumor disease tumors contained more CD8(+) than CD4(+) cells, but in low numbers. There were also low numbers of CD1a(+) and MHC class II(+) cells, but no CD83(+) IgM(+) or IgG(+) B cells, consistent with poor immune cell infiltration. © 2014 The Authors. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc.

  8. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity.

    Science.gov (United States)

    Aparicio-Domingo, Patricia; Cupedo, Tom

    2011-01-01

    Innate lymphoid cells (ILC) combine innate and adaptive immune functions and are part of the first line of defense against mucosal infections. ILC are set apart from adaptive lymphocytes by their independence on RAG genes and the resulting absence of specific antigen receptors. In this review, we will discuss the biology and function of intestinal ILC that express the nuclear hormone receptor Rorγt (encoded by the Rorc gene) and highlight their role in intestinal homeostasis and immunity. Copyright © 2011 S. Karger AG, Basel.

  9. Potential Role of Vδ2+ γδ T Cells in Regulation of Immune Activation in Primary HIV Infection

    Directory of Open Access Journals (Sweden)

    Nupur Bhatnagar

    2017-09-01

    Full Text Available Although conventional regulatory T cells (Tregs are sufficient in controlling low residual T-cell activation in ART-treated patients, they are not efficient in controlling exaggerated immune activation associated with high levels of HIV replication in primary HIV infection (PHI. Our previous data suggested that double negative (DN T cells including mainly γδ DN T cells play a role in the control of immune activation in PHI. Since γδ T cells are capable of exerting regulatory functions, we investigated their implication as Tregs in PHI as well as chronic HIV infection (CHI. In a cross-sectional study of 58 HIV-infected patients, in the primary and the chronic phase either ART-treated or untreated (UT, we analyzed phenotype and cytokine production of γδ T cells using flow cytometry. Cytokine production was assessed following in vitro stimulation with isopentenyl pyrophosphate or plate-bound anti-CD3/anti-CD28 monoclonal antibodies. We found that the proportion of γδ T cells negatively correlated with CD8 T-cell activation in PHI patients. Furthermore, we found that in these patients, the Vδ2 receptor bearing (Vδ2+ γδ T cells were strongly activated, exhibited low terminal differentiation, and produced the anti-inflammatory cytokine, TGF-β. In contrast, in UT-CHI, we observed a remarkable expansion of γδ T cells, where the Vδ2+ γδ T cells comprised of an elevated proportion of terminally differentiated cells producing high levels of IFN-γ but very low levels of TGF-β. We also found that this loss of regulatory feature of γδ T cells in CHI was a lasting impairment as we did not find recovery of TGF-β production even in ART-CHI patients successfully treated for more than 5 years. Our data therefore suggest that during the primary HIV infection, Vδ2+ γδ T cells may act as Tregs controlling immune activation through production of TGF-β. However, in CHI, γδ T cells transform from an anti-inflammatory into pro

  10. Role for Lyt-2+ T cells in resistance to cutaneous leishmaniasis in immunized mice

    International Nuclear Information System (INIS)

    Farrell, J.P.; Muller, I.; Louis, J.A.

    1989-01-01

    The role of Lyt-2+ T cells in immunologic resistance to cutaneous leishmaniasis was analyzed by comparing infection patterns in resistant C57BL/6 mice and susceptible BALB/c mice induced to heal their infections after sub-lethal irradiation or i.v. immunization, with similar mice treated in vivo with anti-Lyt-2 antibodies. Administration of anti-Lyt-2 mAb resulted in a dramatic reduction in the number of lymphoid cells expressing the Lyt-2+ phenotype. Such treatment led to enhanced disease in both resistant C57BL/6 and irradiated BALB/c mice, as assessed by lesion size, but did not affect the capacity of these mice to ultimately resolve their infections. In contrast, anti-Lyt-2 treatment totally blocked the induction of resistance in i.v. immunized mice. These results suggest, that Lyt-2+ T cells may play a role in immunity to a Leishmania major infection and that their relative importance to resistance may depend on how resistance is induced

  11. Antibody response against Betaferon® in immune tolerant mice: involvement of marginal zone B-cells and CD4+ T-cells and apparent lack of immunological memory.

    Science.gov (United States)

    Sauerborn, Melody; van Beers, Miranda M C; Jiskoot, Wim; Kijanka, Grzegorz M; Boon, Louis; Schellekens, Huub; Brinks, Vera

    2013-01-01

    The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested. Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®. Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice. The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).

  12. Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells

    OpenAIRE

    Manlove, Luke S.; Berquam-Vrieze, Katherine E.; Pauken, Kristen E.; Williams, Richard T.; Jenkins, Marc K.; Farrar, Michael A.

    2015-01-01

    BCR-ABL+ acute lymphoblastic leukemia patients have transient responses to current therapies. However, the fusion of BCR to ABL generates a potential leukemia-specific antigen that could be a target for immunotherapy. We demonstrate that the immune system can limit BCR-ABL+ leukemia progression although ultimately this immune response fails. To address how BCR-ABL+ leukemia escapes immune surveillance, we developed a peptide: MHC-II tetramer that labels endogenous BCR-ABL-specific CD4+ T cell...

  13. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy.

    Science.gov (United States)

    Tyler, Paul M; Servos, Mariah M; de Vries, Romy C; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K

    2017-03-01

    Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T-cell development and function. We determined the minimum concentration of selinexor required to block T-cell activation and showed that T-cell-inhibitory effects of selinexor occur at levels above 100 nmol/L, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 4-day drug holiday led to intratumoral IFNγ + , granzyme B + cytotoxic CD8 T cells that were comparable with vehicle-treated mice. Overall, selinexor treatment leads to transient inhibition of T-cell activation, but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T-cell functioning and development of antitumor immunity. Mol Cancer Ther; 16(3); 428-39. ©2017 AACR See related article by Farren et al., p. 417 . ©2017 American Association for Cancer Research.

  14. In vitro senescence of immune cells.

    Science.gov (United States)

    Effros, Rita B; Dagarag, Mirabelle; Valenzuela, Hector F

    2003-01-01

    Immune cells are eminently suitable model systems in which to address the possible role of replicative senescence during in vivo aging. Since there are more than 10(8) unique antigen specificities present within the total T lymphocyte population of each individual, the immune response to any single antigen requires massive clonal expansion of the small proportion of T cells whose receptors recognize that antigen. The Hayflick Limit may, therefore, constitute a barrier to effective immune function, at least for those T cells that encounter their specific antigen more than once over the life course. Application of the fibroblast replicative senescence model to the so-called cytotoxic or CD8 T cell, the class of T cells that controls viral infection and cancer, has revealed certain features in common with other cell types as well as several characteristics that are unique to T cells. One senescence-associated change that is T cell-specific is the complete loss of expression of the activation signaling surface molecule, CD28, an alteration that enabled the documentation of high proportions of senescent T cells in vivo. The T cell model has also provided the unique opportunity to analyze telomere dynamics in a cell type that has the ability to upregulate telomerase yet nevertheless undergoes senescence. The intimate involvement of the immune system in the control of pathogens and cancer as well as in modulation of bone homeostasis suggests that more extensive analysis of the full range of characteristics of senescent T cells may help elucidate a broad spectrum of age-associated physiological changes.

  15. T helper cell 2 immune skewing in pregnancy/early life

    DEFF Research Database (Denmark)

    McFadden, J P; Thyssen, J P; Basketter, D A

    2015-01-01

    During the last 50 years there has been a significant increase in Western societies of atopic disease and associated allergy. The balance between functional subpopulations of T helper cells (Th) determines the quality of the immune response provoked by antigen. One such subpopulation - Th2 cells...... that in Westernized societies reduced exposure during early childhood to pathogenic microorganisms favours the development of atopic allergy. Pregnancy is normally associated with Th2 skewing, which persists for some months in the neonate before Th1/Th2 realignment occurs. In this review, we consider...... the immunophysiology of Th2 immune skewing during pregnancy. In particular, we explore the possibility that altered and increased patterns of exposure to certain chemicals have served to accentuate this normal Th2 skewing and therefore further promote the persistence of a Th2 bias in neonates. Furthermore, we propose...

  16. Cognate CD4 T-cell licensing of dendritic cells heralds anti-CMV CD8 T-cell immunity after human allogeneic umbilical cord blood transplantation

    NARCIS (Netherlands)

    Flinsenberg, T W H; Spel, Lotte; Jansen, M; Koning, D; de Haar, C; Plantinga, M; Scholman, R; van Loenen, M M; Nierkens, S; Boon, L; van Baarle, D; Heemskerk, M H M; Boelens, J J; Boes, M

    2014-01-01

    Reactivation of human cytomegalovirus (CMV) is hazardous to patients undergoing allogeneic cord-blood transplantation (CBT), lowering survival rates by approximately 25%. While antiviral treatment ameliorates viremia, complete viral control requires CD8(+) T-cell-driven immunity. Mouse studies

  17. CD4 T cells mediate both positive and negative regulation of the immune response to HIV infection: complex role of T follicular helper cells and Regulatory T cells in pathogenesis

    Directory of Open Access Journals (Sweden)

    Chansavath ePhetsouphanh

    2015-01-01

    Full Text Available HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B cells and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely regulatory T cells (Tregs and T follicular helper cells (Tfh. These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B cell hyperplasia and increased germinal centre activity. Antiretroviral therapy (ART may reduce the lymphocyte activation, but not completely, and therefore there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B cell or Treg dysfunction.

  18. Regulatory T Cells in Post-stroke Immune Homeostasis.

    Science.gov (United States)

    Liesz, Arthur; Kleinschnitz, Christoph

    2016-08-01

    The secondary neuroinflammatory response has come into focus of experimental stroke research. Immunological mechanisms after acute stroke are being investigated in the hope to identify novel and druggable pathways that contribute to secondary infarct growth after stroke. Among a variety of neuroimmunological events after acute brain ischemia, including microglial activation, brain leukocyte invasion, and secretion of pro-inflammatory factors, lymphocytes have been identified as the key leukocyte subpopulation driving the neuroinflammatory response and contributing to stroke outcome. Several studies have shown that pro-inflammatory lymphocyte subpopulations worsen stroke outcome and that inhibiting their invasion to the injured brain is neuroprotective. In contrast to the effector functions of pro-inflammatory lymphocytes, regulatory T cells (Treg) are critically involved in maintaining immune homeostasis and have been characterized as disease-limiting protective cells in several inflammatory conditions, particularly in primary inflammatory diseases of the central nervous system (CNS). However, due to the complex function of regulatory cells in immune homeostasis and disease, divergent findings have been described for the role of Treg in stroke models. Emerging evidence suggests that this discrepancy arises from potentially differing functions of Treg depending on the predominant site of action within the neurovascular unit and the surrounding inflammatory milieu. This article will provide a comprehensive review of current findings on Treg in brain ischemia models and discuss potential reasons for the observed discrepancies.

  19. Lactobacillus rhamnosus CRL1505 nasal administration improves recovery of T-cell mediated immunity against pneumococcal infection in malnourished mice.

    Science.gov (United States)

    Barbieri, N; Herrera, M; Salva, S; Villena, J; Alvarez, S

    2017-05-30

    Immunobiotic lactic acid bacteria have become an interesting alternative for the prevention of respiratory infections. Previously, we demonstrated that the nasal administration of Lactobacillus rhamnosus CRL1505, during repletion of malnourished mice, resulted in diminished susceptibility to the challenge with the respiratory pathogen Streptococcus pneumoniae. Considering the known alterations induced by malnutrition on T lymphocytes and the importance of this cell population on the protection against respiratory pathogens, we aimed to study the effect of L. rhamnosus CRL1505 nasal administration on the recovery of T cell-mediated defences against pneumococcal infection in malnourished mice under nutritional recovery. Malnourished mice received a balanced conventional diet (BCD) for seven days or BCD for seven days with nasal L. rhamnosus CRL1505 supplementation during last two days of the treatment. After the treatments mice were infected with S. pneumoniae. Flow cytometry studies were carried out in bone marrow, thymus, spleen and lung to study T cells, and Th 1 /Th 2 cytokine profiles were determined in broncho-alveolar lavages and serum. The administration of CRL1505 strain to malnourished mice under recovery reduced quantitative and qualitative alterations of CD4 + T cells in the bone marrow, thymus, spleen and lung induced by malnutrition. In addition, CRL1505 treatment augmented Th 2 -cytokines (interleukin 10 and 4) in respiratory and systemic compartments after pneumococcal infection. These results show that modulation of CD4 + T lymphocytes induced by L. rhamnosus CRL1505 has an important role in the beneficial effect induced by this strain on the recovery of malnourished mice. These data also indicate that nasally administered L. rhamnosus CRL1505 may represent a non-invasive alternative to modulate and improve the T cell-mediated immunity against respiratory pathogens in immunocompromised malnourished hosts.

  20. Regulatory T-cells and immune tolerance in pregnancy : a new target for infertility treatment?

    NARCIS (Netherlands)

    Guerin, Leigh R.; Prins, Jelmer R.; Robertson, Sarah A.

    2009-01-01

    Adaptation of the maternal immune response to accommodate the semi-allogeneic fetus is necessary for pregnancy success, and disturbances in maternal tolerance are implicated in infertility and reproductive pathologies. T regulatory (Treg) cells are a recently discovered subset of T-lymphocytes with

  1. Human prealbumin fraction: effects on cell-mediated immunity and tumor rejection

    International Nuclear Information System (INIS)

    Leung, K.H.; Ehrke, M.J.; Bercsenyi, K.; Mihich, E.

    1982-01-01

    The effect of human prealbumin fraction as allogeneic cell-mediated immunity in primary sensitization cultures of murine spleen cells was studied by 3H-thymidine uptake and specific 51Cr release assays. Prealbumin caused a dose-dependent augmentation of these responses. Human serum albumin, bovine serum albumin, and calf-thymosin fraction 5 had little effect. Prealbumin was active when added on day 0 or 1 but not thereafter. Prealbumin added to effector cells from immunized mice did not change their lytic activity. Prealbumin, but not human serum albumin or thymosin fraction 5, augmented secondary cell-mediated immunity in culture after primary immunization in mice. A slow growing mammary tumor line, which originated as a spontaneous mammary tumor in a DBA/2 HaDD breeder mouse, initially grows in 100% of DBA/2J mice but is then rejected in 10 to 20% of them. When prealbumin (59 microgram/day) was given subcutaneously for 2 weeks to DBA/2J mice and the tumor implanted 2 weeks later. 78% of the mice rejected the tumor and were then resistant to a rechallenge

  2. CD8 T cell memory to a viral pathogen requires trans cosignaling between HVEM and BTLA.

    Directory of Open Access Journals (Sweden)

    Rachel Flynn

    Full Text Available Defining the molecular interactions required to program activated CD8 T cells to survive and become memory cells may allow us to understand how to augment anti-viral immunity. HVEM (herpes virus entry mediator is a member of the tumor necrosis factor receptor (TNFR family that interacts with ligands in the TNF family, LIGHT and Lymphotoxin-α, and in the Ig family, B and T lymphocyte attenuator (BTLA and CD160. The Ig family members initiate inhibitory signaling when engaged with HVEM, but may also activate survival gene expression. Using a model of vaccinia virus infection, we made the unexpected finding that deficiency in HVEM or BTLA profoundly impaired effector CD8 T cell survival and development of protective immune memory. Mixed adoptive transfer experiments indicated that BTLA expressed in CD8α+ dendritic cells functions as a trans-activating ligand that delivers positive co-signals through HVEM expressed in T cells. Our data demonstrate a critical role of HVEM-BTLA bidirectional cosignaling system in antiviral defenses by driving the differentiation of memory CD8 T cells.

  3. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  4. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Aurélie Durgeau

    2018-01-01

    Full Text Available Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA-4 and programmed cell death (PD-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI. Cytotoxic T lymphocytes (CTL eliminate malignant cells through recognition by the T-cell receptor (TCR of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer

  5. Supernatural T cells: genetic modification of T cells for cancer therapy.

    Science.gov (United States)

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  6. The chromatin accessibility signature of human immune aging stems from CD8+ T cells.

    Science.gov (United States)

    Ucar, Duygu; Márquez, Eladio J; Chung, Cheng-Han; Marches, Radu; Rossi, Robert J; Uyar, Asli; Wu, Te-Chia; George, Joshy; Stitzel, Michael L; Palucka, A Karolina; Kuchel, George A; Banchereau, Jacques

    2017-10-02

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8 + T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. © 2017 Ucar et al.

  7. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Fernando dos Santos Virgilio

    2014-01-01

    Full Text Available MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  8. Endogenous T-Cell Therapy: Clinical Experience.

    Science.gov (United States)

    Yee, Cassian; Lizee, Greg; Schueneman, Aaron J

    2015-01-01

    Adoptive cellular therapy represents a robust means of augmenting the tumor-reactive effector population in patients with cancer by adoptive transfer of ex vivo expanded T cells. Three approaches have been developed to achieve this goal: the use of tumor-infiltrating lymphocytes or tumor-infiltrating lymphocytess extracted from patient biopsy material; the redirected engineering of lymphocytes using vectors expressing a chimeric antigen receptor and T-cell receptor; and third, the isolation and expansion of often low-frequency endogenous T cells (ETCs) reactive to tumor antigens from the peripheral blood of patients. This last form of adoptive transfer of T cells, known as ETC therapy, requires specialized methods to isolate and expand from peripheral blood the very low-frequency tumor-reactive T cells, methods that have been developed over the last 2 decades, to the point where such an approach may be broadly applicable not only for the treatment of melanoma but also for that of other solid tumor malignancies. One compelling feature of ETC is the ability to rapidly deploy clinical trials following identification of a tumor-associated target epitope, a feature that may be exploited to develop personalized antigen-specific T-cell therapy for patients with almost any solid tumor. With a well-validated antigen discovery pipeline in place, clinical studies combining ETC with agents that modulate the immune microenvironment can be developed that will transform ETC into a feasible treatment modality.

  9. The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-01-01

    We recently described the induction of an efficient CD8+ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8+ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8+ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8+ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches. PMID:27834857

  10. Changing T cell specificity by retroviral T cell receptor display

    NARCIS (Netherlands)

    Kessels, H. W.; van den Boom, M. D.; Spits, H.; Hooijberg, E.; Schumacher, T. N.

    2000-01-01

    The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T

  11. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria.

    Directory of Open Access Journals (Sweden)

    Damián Pérez-Mazliah

    2015-03-01

    Full Text Available Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses.

  12. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  13. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients.

    Science.gov (United States)

    Clark, Rachael A; Watanabe, Rei; Teague, Jessica E; Schlapbach, Christoph; Tawa, Marianne C; Adams, Natalie; Dorosario, Andrew A; Chaney, Keri S; Cutler, Corey S; Leboeuf, Nicole R; Carter, Joi B; Fisher, David C; Kupper, Thomas S

    2012-01-18

    Cutaneous T cell lymphoma (CTCL) is a cancer of skin-homing T cells with variants that include leukemic CTCL (L-CTCL), a malignancy of central memory T cells (T(CM)), and mycosis fungoides (MF), a malignancy of skin resident effector memory T cells (T(EM)). We report that low-dose alemtuzumab (αCD52) effectively treated patients with refractory L-CTCL but not MF. Alemtuzumab depleted all T cells in blood and depleted both benign and malignant T(CM) from skin, but a diverse population of skin resident T(EM) remained in skin after therapy. T cell depletion with alemtuzumab required the presence of neutrophils, a cell type frequent in blood but rare in normal skin. These data suggest that T(CM) were depleted because they recirculate between the blood and the skin, whereas skin resident T(EM) were spared because they are sessile and non-recirculating. After alemtuzumab treatment, skin T cells produced lower amounts of interleukin-4 and higher amounts of interferon-γ. Moreover, there was a marked lack of infections in alemtuzumab-treated L-CTCL patients despite the complete absence of T cells in the blood, suggesting that skin resident T(EM) can protect the skin from pathogens even in the absence of T cell recruitment from the circulation. Together, these data suggest that alemtuzumab may treat refractory L-CTCL without severely compromising the immune response to infection by depleting circulating T(CM) but sparing the skin resident T(EM) that provide local immune protection of the skin.

  14. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bingfen Yang

    Full Text Available CD244 (2B4 is a member of the signaling lymphocyte activation molecule (SLAM family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+ T cells, CD244/2B4-bright CD4(+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4(+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+ T cell function.

  15. Delicate balance among three types of T cells in concurrent regulation of tumor immunity.

    Science.gov (United States)

    Izhak, Liat; Ambrosino, Elena; Kato, Shingo; Parish, Stanley T; O'Konek, Jessica J; Weber, Hannah; Xia, Zheng; Venzon, David; Berzofsky, Jay A; Terabe, Masaki

    2013-03-01

    The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here, we addressed this question for regulatory T cells (Treg) and type II natural killer T (NKT) cells in syngeneic models of colorectal and renal cancer. In mice with both type I and II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Tregs as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked. We confirmed this hypothesis in 3 ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we showed that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As patients with cancer often have deficient type I NKT cell function, managing this delicate balance among 3 T-cell subsets may be critical for the success of immunotherapy for human cancer. ©2012 AACR.

  16. An initial examination of the potential role of T-cell immunity in protection against feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Aranyos, Alek M; Roff, Shannon R; Pu, Ruiyu; Owen, Jennifer L; Coleman, James K; Yamamoto, Janet K

    2016-03-14

    The importance of vaccine-induced T-cell immunity in conferring protection with prototype and commercial FIV vaccines is still unclear. Current studies performed adoptive transfer of T cells from prototype FIV-vaccinated cats to partial-to-complete feline leukocyte antigen (FLA)-matched cats a day before either homologous FIVPet or heterologous-subtype pathogenic FIVFC1 challenge. Adoptive-transfer (A-T) conferred a protection rate of 87% (13 of 15, p 13 × 10(6) cells were required for A-T protection against FIVFC1 strain, reported to be a highly pathogenic virus resistant to vaccine-induced neutralizing-antibodies. The addition of FLA-matched B cells alone was not protective. The poor quality of the anti-FIV T-cell immunity induced by the vaccine likely contributed to the lack of protection in an FLA-matched recipient against FIVFC1. The quality of the immune response was determined by the presence of high mRNA levels of cytolysin (perforin) and cytotoxins (granzymes A, B, and H) and T helper-1 cytokines (interferon-γ [IFNγ] and IL2). Increased cytokine, cytolysin and cytotoxin production was detected in the donors which conferred protection in A-T studies. In addition, the CD4(+) and CD8(+) T-cell proliferation and/or IFNγ responses to FIV p24 and reverse transcriptase increased with each year in cats receiving 1X-3X vaccine boosts over 4 years. These studies demonstrate that anti-FIV T-cell immunity induced by vaccination with a dual-subtype FIV vaccine is essential for prophylactic protection against AIDS lentiviruses such as FIV and potentially HIV-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  18. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    International Nuclear Information System (INIS)

    Shu, S.; Fonseca, L.S.; Hunter, J.T.; Rapp, H.J.

    1983-01-01

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity

  19. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity.

    Science.gov (United States)

    Bowen, David G; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W; Bertolino, Patrick

    2004-09-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.

  20. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    Science.gov (United States)

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  1. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes

    2012-01-01

    directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated...... that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD......8 T-cell memory even in individuals with pre-existing vector immunity....

  2. Transcutaneous immunization with a novel imiquimod nanoemulsion induces superior T cell responses and virus protection.

    Science.gov (United States)

    Lopez, Pamela Aranda; Denny, Mark; Hartmann, Ann-Kathrin; Alflen, Astrid; Probst, Hans Christian; von Stebut, Esther; Tenzer, Stefan; Schild, Hansjörg; Stassen, Michael; Langguth, Peter; Radsak, Markus P

    2017-09-01

    Transcutaneous immunization (TCI) is a novel vaccination strategy utilizing the skin associated lymphatic tissue to induce immune responses. TCI using a cytotoxic T lymphocyte (CTL) epitope and the Toll-like receptor 7 (TLR7) agonist imiquimod mounts strong CTL responses by activation and maturation of skin-derived dendritic cells (DCs) and their migration to lymph nodes. However, TCI based on the commercial formulation Aldara only induces transient CTL responses that needs further improvement for the induction of durable therapeutic immune responses. Therefore we aimed to develop a novel imiquimod solid nanoemulsion (IMI-Sol) for TCI with superior vaccination properties suited to induce high quality T cell responses for enhanced protection against infections. TCI was performed by applying a MHC class I or II restricted epitope along with IMI-Sol or Aldara (each containing 5% Imiquimod) on the shaved dorsum of C57BL/6, IL-1R, Myd88, Tlr7 or Ccr7 deficient mice. T cell responses as well as DC migration upon TCI were subsequently analyzed by flow cytometry. To determine in vivo efficacy of TCI induced immune responses, CTL responses and frequency of peptide specific T cells were evaluated on day 8 or 35 post vaccination and protection in a lymphocytic choriomeningitis virus (LCMV) infection model was assessed. TCI with the imiquimod formulation IMI-Sol displayed equal skin penetration of imiquimod compared to Aldara, but elicited superior CD8 + as well as CD4 + T cell responses. The induction of T-cell responses induced by IMI-Sol TCI was dependent on the TLR7/MyD88 pathway and independent of IL-1R. IMI-Sol TCI activated skin-derived DCs in skin-draining lymph nodes more efficiently compared to Aldara leading to enhanced protection in a LCMV infection model. Our data demonstrate that IMI-Sol TCI can overcome current limitations of previous imiquimod based TCI approaches opening new perspectives for transcutaneous vaccination strategies and allowing the use of this

  3. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  4. Pulmonary CCR2+CD4+ T cells are immune regulatory and attenuate lung fibrosis development.

    Science.gov (United States)

    Milger, Katrin; Yu, Yingyan; Brudy, Eva; Irmler, Martin; Skapenko, Alla; Mayinger, Michael; Lehmann, Mareike; Beckers, Johannes; Reichenberger, Frank; Behr, Jürgen; Eickelberg, Oliver; Königshoff, Melanie; Krauss-Etschmann, Susanne

    2017-11-01

    Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2 + CD4 + T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2 + cell populations might either increase or decrease disease pathogenesis depending on their subtype. To investigate the role of CCR2 + CD4 + T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. Pulmonary CCR2 + CD4 + T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. Frequencies of CCR2 + CD4 + T cells were increased in experimental fibrosis-specifically the CD62L - CD44 + effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2 + CD4 + T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2 + CD4 + T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3 + CD25 + cells within bronchoalveolar lavage fluid CCR2 + CD4 + T cells as compared with CCR2 - CD4 + T cells. Pulmonary CCR2 + CD4 + T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights

  5. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    Science.gov (United States)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  6. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  7. CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Lei Shong Lau

    2014-05-01

    Full Text Available To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.

  8. Induction of novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with subdominant cytotoxic T-lymphocyte epitopes

    DEFF Research Database (Denmark)

    Kloverpris, Henrik; Karlsson, Ingrid; Bonde, Jesper

    2009-01-01

    OBJECTIVE:: To investigate the potential to induce additional cytotoxic T-lymphocyte (CTL) immunity during chronic HIV-1 infection. DESIGN:: We selected infrequently targeted or subdominant but conserved HLA-A*0201-binding epitopes in Gag, Pol, Env, Vpu and Vif. These relatively immune silent...... epitopes were modified as anchor-optimized peptides to improve immunogenicity and delivered on autologous monocyte-derived dendritic cells (MDDCs). METHODS:: Twelve treatment-naïve HLA-A*0201 HIV-1-infected Danish individuals received 1 x 10 MDDCs subcutaneously (s.c.) (weeks 0, 2, 4 and 8), pulsed......-cell counts was observed. CONCLUSION:: These data show that it is possible to generate new T-cell responses in treatment-naive HIV-1-infected individuals despite high viral loads, and thereby redirect immunity to target new multiple and rationally selected subdominant CTL epitopes. Further optimization could...

  9. Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro.

    Science.gov (United States)

    Vucevic, Dragana; Melliou, Eleni; Vasilijic, Sasa; Gasic, Sonja; Ivanovski, Petar; Chinou, Ioanna; Colic, Miodrag

    2007-09-01

    Royal jelly (RJ), especially its protein components, has been shown to possess immunomodulatory activity. However, almost nothing is known about the influence of RJ fatty acids on the immune system. In this work we studied the effect of 10-hydroxy-2-decanoic acid (10-HDA) and 3,10-dihydroxy-decanoic acid (3,10-DDA), isolated from RJ, on the immune response using a model of rat dendritic cell (DC)-T-cell cocultures. Both fatty acids, at higher concentrations, inhibited the proliferation of allogeneic T cells. The effect of 10-HDA was stronger and was followed by a decrease in interleukin-2 (IL-2) production and down-regulation of IL-2 receptor expression. Spleen DC, cultivated with 10 microg/ml of fatty acids down-regulated the expression of CD86 and the production of IL-12, but up-regulated the production of IL-10. In contrast, DC, pretreated with 100 microg/ml of 3,10-DDA, up-regulated the expression of CD86 and augmented the proliferation of allogeneic T cells. The highest dose (200 microg/ml) of both fatty acids which was non-apoptotic for both T cells and DC, down-regulated the expression of MHC class II and CD86, decreased the production of IL-12 and made these DC less allostimulatory. The immunosuppressive activity of 3,10-DDA was also confirmed in vivo, using a model of Keyhole lymphet hemocyanine immunization of rats. In conclusion, our results showed the immunomodulatory activity of RJ fatty acids and suggest that DC are a significant target of their action.

  10. Induction of Regulatory T Cells by Intravenous Immunoglobulin: A Bridge between Adaptive and Innate Immunity.

    Science.gov (United States)

    Kaufman, Gabriel N; Massoud, Amir H; Dembele, Marieme; Yona, Madelaine; Piccirillo, Ciriaco A; Mazer, Bruce D

    2015-01-01

    Intravenous immunoglobulin (IVIg) is a polyclonal immunoglobulin G preparation with potent immunomodulatory properties. The mode of action of IVIg has been investigated in multiple disease states, with various mechanisms described to account for its benefits. Recent data indicate that IVIg increases both the number and the suppressive capacity of regulatory T cells, a subpopulation of T cells that are essential for immune homeostasis. IVIg alters dendritic cell function, cytokine and chemokine networks, and T lymphocytes, leading to development of regulatory T cells. The ability of IVIg to influence Treg induction has been shown both in animal models and in human diseases. In this review, we discuss data on the potential mechanisms contributing to the interaction between IVIg and the regulatory T-cell compartment.

  11. Pregnancy immunology: decidual immune cells.

    Science.gov (United States)

    Sanguansermsri, Donruedee; Pongcharoen, Sutatip

    2008-01-01

    Human pregnancy is a complex process. Placental development depends on the function of secretory molecules produced by placental trophoblast cells as well as by maternal uterine immune cells within the decidua. These decidual immune cells are T cells, natural killer cells, macrophages and dendritic cells. The interactions between the trophoblast cells and the maternal immune cells have an impact on the outcome of the pregnancy. Knowledge about the phenotypes and functions of the maternal immune cells in normal and pathological pregnancies including recurrent spontaneous abortions, preeclampsia and hydatidiform moles may improve our understanding of the immunobiology of the normal pregnancy as a whole and may provide approaches for improving the treatment of pathological pregnancies.

  12. Suppressive versus augmenting effect of the same pretreatment regimen in two murine tumor systems with distinct effector mechanisms

    International Nuclear Information System (INIS)

    Fujiwara, Hiromi; Hamaoka, Toshiyuki; Kitagawa, Masayasu

    1978-01-01

    The effect of presensitization with x-irradiated tumor cells on the development of host's immune resistance against the tumor-associated transplantation antigens (TATA) was investigated in two syngeneic tumor systems with distinct effector mechanisms. When X5563 plasmacytoma, to which immune resistance was mediated exclusively by killer T lymphocytes, was intravenously inoculated into syngeneic C3H/He mice with lower number after 7000 R x-irradiation, the mice failed to exhibit any protective immunity against the subsequent challenge with viable tumor cells. Moreover, these mice lost their capability to develop any immune resistance even after an appropriate immunization procedure. The immunodepression induced by such a pretreatment regimen was specific for X5563 tumor. While no suppressor cell activity was detected in the above pretreated mice, serum factor(s) from these mice was virtually responsible for this suppression. When the serum factor mediating this tumor-specific suppression was fractionated on the Sephadex G-200 column, the suppressive activity was found in albumin-corresponding fraction, free of any immunoglobulin component. In contrast, in MM102 mammary tumor system, in which immune resistance is solely mediated by tumor-specific antibody, the pretreatment with x-irradiated MM102 cells augmented the induction of anti-tumor immunity. These results indicate that while tumor antigens given in the form of x-irradiated tumor cells suppress the induction of killer T cell-mediated immunity in one system, the same presensitization regimen of tumor antigens augments the antibody-mediated immunity in another system, thus giving a divergent effect on the distinct effector mechanisms of syngeneic tumor immunity. (author)

  13. Elsevier Trophoblast Research Award Lecture: Unique properties of decidual T cells and their role in immune regulation during human pregnancy.

    Science.gov (United States)

    Tilburgs, T; Claas, F H J; Scherjon, S A

    2010-03-01

    Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    Science.gov (United States)

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  15. Unexpected Modulation of Recall B and T Cell Responses after Immunization with Rotavirus-like Particles in the Presence of LT-R192G

    Directory of Open Access Journals (Sweden)

    Christelle Basset

    2010-08-01

    Full Text Available LT-R192G, a mutant of the thermolabile enterotoxin of E. coli, is a potent adjuvant of immunization. Immune responses are generally analyzed at the end of protocols including at least 2 administrations, but rarely after a prime. To investigate this point, we compared B and T cell responses in mice after one and two intrarectal immunizations with 2/6 rotavirus-like particles (2/6-VLP and LT-R192G. After a boost, we found, an unexpected lower B cell expansion measured by flow cytometry, despite a secondary antibody response. We then analyzed CD4+CD25+Foxp3+ regulatory T cells (Tregs and CD4+CD25+Foxp3− helper T cells after in vitro (restimulation of mesenteric lymph node cells with the antigen (2/6-VLP, the adjuvant (LT-R192G or both. 2/6-VLP did not activate CD4+CD25+Foxp3− nor Foxp3+ T cells from non-immunized and 2/6-VLP immunized mice, whereas they did activate both subsets from mice immunized with 2/6-VLP in the presence of adjuvant. LT-R192G dramatically decreased CD4+CD25+Foxp3+ T cells from non-immunized and 2/6-VLP immunized mice but not from mice immunized with 2/6-VLP and adjuvant. Moreover, in this case, LT-R192G increased Foxp3 expression on CD4+CD25+Foxp3+ cells, suggesting specific Treg activation during the recall. Finally, when both 2/6-VLP and LT-R192G were used for restimulation, LT-R192G clearly suppressed both 2/6-VLP-specific CD4+CD25+Foxp3− and Foxp3+ T cells. All together, these results suggest that LT-R192G exerts different effects on CD4+CD25+Foxp3+ T cells, depending on a first or a second contact. The unexpected immunomodulation observed during the recall should be considered in designing vaccination protocols.

  16. Sporothrix schenckii Immunization, but Not Infection, Induces Protective Th17 Responses Mediated by Circulating Memory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Alberto García-Lozano

    2018-06-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis caused by the Sporothrix schenckii species complex and it is considered an emerging opportunistic infection in countries with tropical and subtropical climates. The host’s immune response has a main role in the development of this disease. However, it is unknown the features of the memory cellular immune response that could protect against the infection. Our results show that i.d. immunization in the ears of mice with inactivated S. schenckii conidia (iC combined with the cholera toxin (CT induces a cellular immune response mediated by circulating memory CD4+ T cells, which mainly produce interleukin 17 (IL-17. These cells mediate a strong delayed-type hypersensitivity (DTH reaction. Systemic and local protection against S. schenckii was mediated by circulating CD4+ T cells. In contrast, the infection induces a potent immune response in the skin mediated by CD4+ T cells, which have an effector phenotype that preferentially produce interferon gamma (IFN-γ and mediate a transitory DTH reaction. Our findings prove the potential value of the CT as a potent skin adjuvant when combined with fungal antigens, and they also have important implications for our better understanding of the differences between the memory immune response induced by the skin immunization and those induced by the infection; this knowledge enhances our understanding of how a protective immune response against a S. schenckii infection is developed.

  17. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  18. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNγ responses of hepatic CD8+ memory T cells.

    Science.gov (United States)

    Nganou-Makamdop, Krystelle; van Gemert, Geert-Jan; Arens, Theo; Hermsen, Cornelus C; Sauerwein, Robert W

    2012-01-01

    Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM)) CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected naïve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM) cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2) = 0.60, pmemory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.

  19. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNγ responses of hepatic CD8+ memory T cells.

    Directory of Open Access Journals (Sweden)

    Krystelle Nganou-Makamdop

    Full Text Available Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS, resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected naïve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2 = 0.60, p<0.0001. The reducing IFNγ response by hepatic memory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.

  20. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth

    Science.gov (United States)

    Yin, Yuan; Cai, Xing; Chen, Xi; Liang, Hongwei; Zhang, Yujing; Li, Jing; Wang, Zuoyun; Chen, Xiulan; Zhang, Wen; Yokoyama, Seiji; Wang, Cheng; Li, Liang; Li, Limin; Hou, Dongxia; Dong, Lei; Xu, Tao; Hiroi, Takachika; Yang, Fuquan; Ji, Hongbin; Zhang, Junfeng; Zen, Ke; Zhang, Chen-Yu

    2014-01-01

    An increased population of CD4+CD25highFoxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4+ T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion. PMID:25223704

  1. The cytotoxic T lymphocyte immune synapse at a glance.

    Science.gov (United States)

    Dieckmann, Nele M G; Frazer, Gordon L; Asano, Yukako; Stinchcombe, Jane C; Griffiths, Gillian M

    2016-08-01

    The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers. © 2016. Published by The Company of Biologists Ltd.

  2. An immune-modulating diet increases the regulatory T cells and reduces T helper 1 inflammatory response in Leishmaniosis affected dogs treated with standard therapy.

    Science.gov (United States)

    Cortese, Laura; Annunziatella, Mariangela; Palatucci, Anna Teresa; Lanzilli, Sarah; Rubino, Valentina; Di Cerbo, Alessandro; Centenaro, Sara; Guidetti, Gianandrea; Canello, Sergio; Terrazzano, Giuseppe

    2015-12-03

    Clinical appearance and evolution of Canine Leishmaniosis (CL) are the consequence of complex interactions between the parasite and the genetic and immunological backgrounds. We investigated the effect of an immune-modulating diet in CL. Dogs were treated with anti- Leishmania pharmacological therapy combined with standard diet (SD Group) or with the immune-modulating diet (IMMD Group). CD3+ CD4+ Foxp3+ Regulatory T cells (Treg) and CD3+ CD4+ IFN-γ + T helper 1 (Th1) were analyzed by flow cytometry. All sick dogs showed low platelet number at diagnosis (T0). A platelet increase was observed after six months (T6) SD Group, with still remaining in the normal range at twelve months (T12). IMMD Group showed an increase in platelet number becoming similar to healthy dogs at T6 and T12. An increase of CD4/CD8 ratio was revealed in SD Group after three months (T3), while at T6 and at T12 the values resembled to T0. The increase in CD4/CD8 ratio at T3 was maintained at T6 and T12 in IMMD Group. A reduction in the percentage of Treg of all sick dogs was observed at T0. A recovery of Treg percentage was observed only at T3 in SD Group, while this effect disappeared at T6 and T12. In contrast, Treg percentage became similar to healthy animals in IMDD Group at T3, T6 and T12. Sick dogs showed an increase of Th1 cells at T0 as compared with healthy dogs. We observed the occurrence of a decrease of Th1 cells from T3 to T12 in SD Group, although a trend of increase was observed at T6 and T12. At variance, IMMD Group dogs showed a progressive decrease of Th1 cells, whose levels became similar to healthy controls at T6 and T12. The immune-modulating diet appears to regulate the immune response in CL during the standard pharmacological treatment. The presence of nutraceuticals in the diet correlates with the decrease of Th1 cells and with the increase of Treg in sick dogs. Therefore, the administration of the specific dietary supplement improved the clinical response to the

  3. Mucosal immunization in macaques upregulates the innate APOBEC 3G anti-viral factor in CD4(+) memory T cells.

    Science.gov (United States)

    Wang, Yufei; Bergmeier, Lesley A; Stebbings, Richard; Seidl, Thomas; Whittall, Trevor; Singh, Mahavir; Berry, Neil; Almond, Neil; Lehner, Thomas

    2009-02-05

    APOBEC3G is an innate intracellular anti-viral factor which deaminates retroviral cytidine to uridine. In vivo studies of APOBEC3G (A3G) were carried out in rhesus macaques, following mucosal immunization with SIV antigens and CCR5 peptides, linked to the 70kDa heat shock protein. A progressive increase in A3G mRNA was elicited in PBMC after each immunization (p<0.0002 to p< or =0.02), which was maintained for at least 17 weeks. Analysis of memory T cells showed a significant increase in A3G mRNA and protein in CD4(+)CCR5(+) memory T cells in circulating (p=0.0001), splenic (p=0.0001), iliac lymph nodes (p=0.002) and rectal (p=0.01) cells of the immunized compared with unimmunized macaques. Mucosal challenge with SIVmac 251 showed a significant increase in A3G mRNA in the CD4(+)CCR5(+) circulating cells (p<0.01) and the draining iliac lymph node cells (p<0.05) in the immunized uninfected macaques, consistent with a protective effect exerted by A3G. The results suggest that mucosal immunization in a non-human primate can induce features of a memory response to an innate anti-viral factor in CCR5(+)CD4(+) memory and CD4(+)CD95(+)CCR7(-) effector memory T cells.

  4. T cell-B cell interactions in primary immunodeficiencies.

    Science.gov (United States)

    Tangye, Stuart G; Deenick, Elissa K; Palendira, Umaimainthan; Ma, Cindy S

    2012-02-01

    Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes. © 2012 New York Academy of Sciences.

  5. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  6. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells

    NARCIS (Netherlands)

    Lamers, C.H.; Willemsen, R.; Elzakker, P. van; Steenbergen-Langeveld, S. van; Broertjes, M.; Oosterwijk-Wakka, J.C.; Oosterwijk, E.; Sleijfer, S.; Debets, R.; Gratama, J.W.

    2011-01-01

    Adoptive transfer of immune effector cells that are gene modified by retroviral transduction to express tumor-specific receptors constitutes an attractive approach to treat cancer. In patients with metastatic renal cell carcinoma, we performed a study with autologous T cells genetically retargeted

  7. Interaction between the immune system and acute myeloid leukemia: A model incorporating promotion of regulatory T cell expansion by leukemic cells.

    Science.gov (United States)

    Nishiyama, Yoshiaki; Saikawa, Yutaka; Nishiyama, Nobuaki

    2018-03-01

    Population dynamics of regulatory T cells (Treg) are crucial for the underlying interplay between leukemic and immune cells in progression of acute myeloid leukemia (AML). The goal of this work is to elucidate the dynamics of a model that includes Treg, which can be qualitatively assessed by accumulating clinical findings on the impact of activated immune cell infusion after selective Treg depletion. We constructed an ordinary differential equation model to describe the dynamics of three components in AML: leukemic blast cells, mature regulatory T cells (Treg), and mature effective T cells (Teff), including cytotoxic T lymphocytes. The model includes promotion of Treg expansion by leukemic blast cells, leukemic stem cell and progenitor cell targeting by Teff, and Treg-mediated Teff suppression, and exhibits two coexisting, stable steady states, corresponding to high leukemic cell load at diagnosis or relapse, and to long-term complete remission. Our model is capable of explaining the clinical findings that the survival of patients with AML after allogeneic stem cell transplantation is influenced by the duration of complete remission, and that cut-off minimal residual disease thresholds associated with a 100% relapse rate are identified in AML. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Natural and adoptive T-cell immunity against herpes family viruses after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Thomas, Simone; Herr, Wolfgang

    2011-06-01

    Reactivated infections with herpes family-related cytomegalovirus, Epstein-Barr virus and varicella zoster virus are serious and sometimes life-threatening complications for patients undergoing allogeneic hematopoietic stem cell transplantation. The pathogenesis of these infections critically involves the slow and inefficient recovery of antiviral T-cell immunity after transplantation. Although efficient drugs to decrease viral load during this vulnerable period have been developed, long-term control of herpes viruses and protection from associated diseases require the sufficient reconstitution of virus-specific memory T cells. To heal the deficiency by immunotherapeutic means, numerous research groups have developed antiviral vaccines and strategies based on the adoptive transfer of virus-specific T cells. This article summarizes the substantial progress made in this field during the past two decades and gives future perspectives about challenges that need to be addressed before antigen-specific immunotherapy against herpes family viruses can be implemented in general clinical practice.

  9. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction.

    Science.gov (United States)

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, Elizabeth M; da Cunha, Andre Pires; Flak, Magdalena B; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, Janelle C; Dery, Ken J; Nagaishi, Takashi; Beauchemin, Nicole; Holmes, Kathryn V; Ho, Joshua W K; Shively, John E; Jobin, Christian; Onderdonk, Andrew B; Bry, Lynn; Weiner, Howard L; Higgins, Darren E; Blumberg, Richard S

    2012-11-16

    Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues, which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with the generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    Science.gov (United States)

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  11. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells

    OpenAIRE

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L.; Liao, Gongxian; Hoffman, Brad E.; Leong, Kam W.; Terhorst, Cox; Daniell, Henry; Herzog, Roland W.

    2015-01-01

    Coadministering FIX orally and systemically induces tolerance via complex immune regulation, involving tolerogenic dendritic and T-cell subsets.Induced CD4+CD25−LAP+ regulatory T cells with increased IL-10 and TGF-β expression and CD4+CD25+ regulatory T cells suppress antibody formation against FIX.

  12. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    Directory of Open Access Journals (Sweden)

    Federico Garrido

    2017-02-01

    Full Text Available Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL.

  13. Increasing Stem Cell Dose Promotes Posttransplant Immune Reconstitution.

    Science.gov (United States)

    Xu, Ning; Shen, Sylvie; Dolnikov, Alla

    2017-04-01

    Umbilical cord blood (UCB) transplantation can provide a successful therapeutic option for patients that have no suitable related donor. UCB transplantation is often limited by the relatively small hematopoietic stem cell (HSC) numbers in UCB especially for adult recipients. Early neutrophil and platelet engraftment correlates with the stem cell numbers in UCB transplant. Compared to other HSC sources, immune reconstitution following UCB transplant is slower and complicated by increased frequency of opportunistic infections. The effect of HSC numbers in UCB transplant on immune reconstitution was not thoroughly examined. Using immunocompromised mice transplanted with purified UCB CD34+ stem cells, we have demonstrated that increasing the numbers of CD34+ cells in the transplant promotes hematopoietic and immune reconstitution. At early stages posttransplant, high stem cell dose generated relatively more B cells, while lower dose generated more myeloid and T cells. Thus, the size of the stem cell graft appears to modulate the differentiation potential of infused stem cells. In addition, increasing stem cell dose in the transplant improved CD8+ T cell development and delayed late memory T cell skewing in expense of naive T cells highlighting the importance of HSC dose to maintain the pool of naive T cells able to develop strong immune responses. Transplantation of ex vivo expanded CD34+ cells did not promote, but rather delayed immune reconstitution suggesting the loss of primitive lymphoid precursor cells during ex vivo expansion.

  14. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Directory of Open Access Journals (Sweden)

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  15. Two types of T helper cells in mice: Differences in cellular immune functions and cytokine secretion - selective reduction of one type after total lymphoid irradiation

    International Nuclear Information System (INIS)

    Bass, H.Z.

    1989-01-01

    As observed from a large panel of mouse T helper clones, there are at least two subsets of CD4 + T cells that both differ in function and demonstrate distinct patterns of cytokine secretion after antigen or mitogen stimulation. Th1 cells synthesize IL-2, INF-γ and lymphotoxin. They produce a DTH reaction in the footpads of naive mice. In addition, Th1 cells are required for the generation of CTL, and they appear to augment IgG2a antibody production. In contrast, by secreting IL-4, IL-5, and IL-6, Th2 cells play an essential role in humoral immunity. TLI consists of high dose, fractionated irradiation delivered selectively to the major lymphoid tissues. Four to six weeks after TLI, the CD4 + cells of the treated mice (counted as a percentage of the total spleen lymphocytes) recover to the similar levels as those in normal BALB/c mice. These CD4 + cells can help normal syngeneic B cells to produce a vigorous antibody response to TNP-KLH in adoptive cell transfer experiments, but the same cells are inactive in the MLR, and they fail to transfer DTH in TNP-KLH primed syngeneic BALB/c mice

  16. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury.

    Science.gov (United States)

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury.

  17. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury☆

    Science.gov (United States)

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury

  18. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution.

    Science.gov (United States)

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C; Beilman, Greg J; Chipman, Jeffrey G; Schacker, Timothy W; Silvestri, Guido; Haase, Ashley T

    2012-08-30

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1-infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.

  19. Multifunctional Analysis of CD4+ T-Cell Response as Immune-Based Model for Tuberculosis Detection

    Directory of Open Access Journals (Sweden)

    Miriam Lichtner

    2015-01-01

    Full Text Available Mono- and multifunctional specific CD4+ and CD8+ T-cell responses were evaluated to improve the immune-based detection of active tuberculosis (TB and latent infection (LTBI. We applied flow cytometry to investigate cytokines profile (IFN-γ, TNF-α, and IL-2 of T cells after stimulation with TB antigens in 28 TB-infected subjects (18 active TB and 10 LTBI and 10 uninfected controls. Cytokines production by CD4+ T cells at single-cell levels was higher in TB-infected subjects than uninfected controls P0.45%, it was possible to differentiate TB-infected (>0.45% by uninfected subjects (0.182%. The magnitude of CD8+ T-cell responses showed no differences between active TB and LTBI. Multifunctional CD4+ T-cell responses could have the potential to identify at single time point subjects without TB infection and patients having active or latent TB.

  20. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  1. Forkhead-Box-P3 Gene Transfer in Human CD4+ T Conventional Cells for the Generation of Stable and Efficient Regulatory T Cells, Suitable for Immune Modulatory Therapy

    Directory of Open Access Journals (Sweden)

    Laura Passerini

    2017-10-01

    Full Text Available The development of novel approaches to control immune responses to self- and allogenic tissues/organs represents an ambitious goal for the management of autoimmune diseases and in transplantation. Regulatory T cells (Tregs are recognized as key players in the maintenance of peripheral tolerance in physiological and pathological conditions, and Treg-based cell therapies to restore tolerance in T cell-mediated disorders have been designed. However, several hurdles, including insufficient number of Tregs, their stability, and their antigen specificity, have challenged Tregs clinical applicability. In the past decade, the ability to engineer T cells has proven a powerful tool to redirect specificity and function of different cell types for specific therapeutic purposes. By using lentivirus-mediated gene transfer of the thymic-derived Treg transcription factor forkhead-box-P3 (FOXP3 in conventional CD4+ T cells, we converted effector T cells into Treg-like cells, endowed with potent in vitro and in vivo suppressive activity. The resulting CD4FOXP3 T-cell population displays stable phenotype and suppressive function. We showed that this strategy restores Treg function in T lymphocytes from patients carrying mutations in FOXP3 [immune-dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX], in whom CD4FOXP3 T cell could be used as therapeutics to control autoimmunity. Here, we will discuss the potential advantages of using CD4FOXP3 T cells for in vivo application in inflammatory diseases, where tissue inflammation may undermine the function of natural Tregs. These findings pave the way for the use of engineered Tregs not only in IPEX syndrome but also in autoimmune disorders of different origin and in the context of stem cell and organ transplantation.

  2. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    Science.gov (United States)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  3. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  4. Immune Control of Burkholderia pseudomallei––Common, High-Frequency T-Cell Responses to a Broad Repertoire of Immunoprevalent Epitopes

    Directory of Open Access Journals (Sweden)

    Arnone Nithichanon

    2018-03-01

    Full Text Available Burkholderia pseudomallei (Bp is an environmental bacterial pathogen that causes potentially lethal sepsis in susceptible individuals and is considered a Category B, Tier-1 biothreat agent. As such, it is crucial to gain an improved understanding of protective immunity and potential vaccine candidates. The nature of immune correlates dictating why most exposed individuals in endemic regions undergo asymptomatic seroconversion while others succumb to life-threatening sepsis is largely uncharted. Bp seroreactive, immunogenic proteins have previously been identified by antigen microarray. We here set out to conduct an analysis of T-cell recognition of the Bp immunome using serodominant antigens represented in the original antigen microarray, examining immune correlates of disease in healthy seropositive individuals and those with acute disease or in convalescence. By screening a library of 739 overlapping peptides representing the sequences of 20 different Bp antigens, we aimed to define immune correlates of protection at the level of immunoprevalent T-cell epitopes. Responses to a large number of epitopes were common in healthy seropositive individuals: we found remarkably broad responsiveness to Bp epitopes, with 235 of 739 peptides recognized by ≥80% of all tested donors. The cumulative response to Bp epitopes in healthy, seropositive, donors from this endemic region were of the order of thousands of spot forming cells per million cells, making Bp recognition a significant component of the T-cell repertoire. Noteworthy among our findings, analysis revealed 10 highly immunoprevalent T-cell epitopes, able to induce Bp-specific IFNγ responses that were high in responding T-cell frequency within the repertoire, and also common across individuals with different human leukocyte antigen types. Acute melioidosis patients showed poor T-cell responses to the immunoprevalent epitopes, but acquired responsiveness following recovery from infection. Our

  5. Acyclovir Therapy Reduces the CD4+ T Cell Response against the Immunodominant pp65 Protein from Cytomegalovirus in Immune Competent Individuals.

    Directory of Open Access Journals (Sweden)

    Annette Pachnio

    Full Text Available Cytomegalovirus (CMV infects the majority of the global population and leads to the development of a strong virus-specific immune response. The CMV-specific CD4+ and CD8+ T cell immune response can comprise between 10 and 50% of the T cell pool within peripheral blood and there is concern that this may impair immunity to other pathogens. Elderly individuals with the highest magnitude of CMV-specific immune response have been demonstrated to be at increased risk of mortality and there is increasing interest in interventions that may serve to moderate this. Acyclovir is an anti-viral drug with activity against a range of herpes viruses and is used as long term treatment to suppress reactivation of herpes simplex virus. We studied the immune response to CMV in patients who were taking acyclovir to assess if therapy could be used to suppress the CMV-specific immune response. The T cell reactivity against the immunodominant late viral protein pp65 was reduced by 53% in people who were taking acyclovir. This effect was seen within one year of therapy and was observed primarily within the CD4+ response. Acyclovir treatment only modestly influenced the immune response to the IE-1 target protein. These data show that low dose acyclovir treatment has the potential to modulate components of the T cell response to CMV antigen proteins and indicate that anti-viral drugs should be further investigated as a means to reduce the magnitude of CMV-specific immune response and potentially improve overall immune function.

  6. T cell immunity to influenza in older adults: A pathophysiological framework for development of more effective vaccines

    Directory of Open Access Journals (Sweden)

    Janet E McElhaney

    2016-02-01

    Full Text Available One of the most profound public health consequences of immune senescence is reflected in an increased susceptibility to influenza and other acute respiratory illnesses, as well as a loss of influenza vaccine effectiveness in older people. Common medical conditions and mental and psychosocial health issues as well as degree of frailty and functional dependence accelerate changes associated with immune senescence. All contribute to the increased risk for complications of influenza infection including pneumonias, heart diseases and strokes that lead to hospitalization, disability and death in the over 65 population. Changes in mucosal barrier mechanisms and both innate and adaptive immune functions converge in the reduced response to influenza infection, and lead to a loss of antibody-mediated protection against influenza with age. The interactions of immune senescence and reduced adaptive immune responses, persistent cytomegalovirus infection, inflammaging (chronic elevation of inflammatory cytokines, and dysregulated cytokine production, pose major challenges to the development of vaccines designed to improve T-cell mediated immunity. In older adults, the goal of vaccination is more realistically targeted to providing clinical protection against disease rather than to inducing sterilizing immunity to infection. Standard assays of antibody titres correlate with protection against influenza illness but do not detect important changes in cellular immune mechanisms that correlate with vaccine-mediated protection against influenza in older people. This article will discuss: i the burden of influenza in older adults and how this relates to changes in T cell function, ii age-related changes in different T cell subsets and immunologic targets for improved influenza vaccine efficacy in older, and iii the development of correlates of clinical protection against influenza disease to expedite the process of new vaccine development for the 65 and older

  7. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  8. Role of very late antigen-1 in T-cell-mediated immunity to systemic viral infection

    DEFF Research Database (Denmark)

    Ørding Kauffmann, Susanne; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard

    2006-01-01

    or their distribution between lymphoid and nonlymphoid organs. Regarding a functional role of VLA-1, we found that intracerebral infection of both VLA-1(-/-) and wild-type (wt) mice resulted in lethal T-cell-mediated meningitis, and quantitative and qualitative analyses of the cellular exudate did not reveal any...... significant differences between the two strains. Expression of VLA-1 was also found to be redundant regarding the ability of effector T cells to eliminate virus from internal organs of i.v. infected mice. Using delayed-type hypersensitivity (DTH) assays to evaluate subdermal CD8(+) T......, the current findings indicate that the expression of VLA-1 is not pivotal for T-cell-mediated antiviral immunity to a systemic infection....

  9. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.

    Science.gov (United States)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  10. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    International Nuclear Information System (INIS)

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  11. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany); Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Leipzig (Germany); Paape, Daniel; Hildebrandt, Guido, E-mail: guido.hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock (Germany)

    2012-08-24

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  12. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  13. Functional disorders of T-cell immunity at persons engaged in the Chernobyl emergency operations in a 10 years after the accident

    International Nuclear Information System (INIS)

    Potapnev, M.P.; Kuz'menok, O.I.; Potapova, S.M.; Smol'nikova, V.V.; Myslitskj, V.F.; Rzheutskij, V.A.; Vaslevskaya, T.A.; Vasyukhina, L.V.

    1998-01-01

    Functional disorders of T-cell immunity in persons engaged in Chernobyl emergency operations - 10 years after the accident. The results evaluating T-cell immunity of 148 liquidators of Chernobyl accident are presented. It was estimated that 10 years after the accident immuno phenotyping of peripheral blood lymphocytes did not reveal marked disturbance in lymphocyte subpopulation content in exposed group as compared with healthy control. Determination of cell proliferation in vitro indicated the decrease in DNA synthesis of T-lymphocytes stimulated with optimal and particularly suboptimal concentrations of polyclonal T-cell activators. Based on individual deviation of the results of T-lymphocyte proliferation the groups with high and low level of response were sorted out for future examination

  14. The CD8⁺ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant.

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-11-09

    We recently described the induction of an efficient CD8⁺ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8⁺ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8⁺ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIX TM adjuvant, i.e., an adjuvant composed of purified ISCOPREP TM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIX TM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8⁺ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches.

  15. The cryo-thermal therapy eradicated melanoma in mice by eliciting CD4+ T-cell-mediated antitumor memory immune response.

    Science.gov (United States)

    He, Kun; Liu, Ping; Xu, Lisa X

    2017-03-23

    Tumor metastasis is a major concern in tumor therapy. In our previous studies, a novel tumor therapeutic modality of the cryo-thermal therapy has been presented, highlighting its effect on the suppression of distal metastasis and leading to long-term survival in 4T1 murine mammary carcinoma model. To demonstrate the therapeutic efficacy in other aggressive tumor models and further investigate the mechanism of long-term survival induced, in this study, spontaneous metastatic murine B16F10 melanoma model was used. The cryo-thermal therapy induced regression of implanted melanoma and prolonged long-term survival while inhibiting lung metastasis. It also promoted the activation of CD4 + CD25 - conventional T cells, while reduced the percentage of CD4 + CD25 + regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the spleen, lung and blood. Furthermore, the cryo-thermal therapy enhanced the cytolytic function of CD8 + T cells and induced differentiation of CD8 + T cells into memory stem T cell (T SCM ), and differentiation of CD4 + T cells into dominant CD4-CTL, Th1 and Tfh subsets in the spleen for 90 days after the treatment. It was found that good therapeutic effect was mainly dependent on CD4 + T cells providing a durable memory antitumor immune response. At the same time, significant increase of serum IFN-γ was also observed to provide an ideal microenvironment of antitumor immunity. Further study showed that the rejection of re-challenge of B16F10 but not GL261 tumor in the treated mice in 45 or 60 days after the treatment, implied a strong systemic and melanoma-specific memory antitumor immunity induced by the treatment. Thus the cryo-thermal therapy would be considered as a new therapeutic strategy to prevent tumor recurrence and metastasis with potential clinical applications in the near future.

  16. Prophylactic immunization against experimental leishmaniasis. III. Protection against fatal Leishmania tropica infection induced by irradiated promastigotes involves Lyt-1+2- T cells that do not mediate cutaneous DTH

    International Nuclear Information System (INIS)

    Liew, F.Y.; Howard, J.G.; Hale, C.

    1984-01-01

    Protective immunity against fatal L. tropica infection in genetically vulnerable BALB/c mice can be induced by prophylactic immunization with irradiated promastigotes even when heat-killed. Such immunity is adoptively transferable transiently into intact or durably into sub-lethally irradiated (200 or 550 rad) syngeneic recipients by splenic T but not B cells. The effector T cells are of the Lyt-1 + 2 - phenotype, devoid of demonstrable cytotoxic activity. The immune splenic T cell population expresses specific helper activity for antibody synthesis. A causal role for helper T cells in this capacity, however, seems unlikely, because it was shown that antibody does not determine the protective immunity against L. tropica. The immunized donors show no detectable cutaneous DTH or its early memory recall in response to live or killed promastigotes or a soluble L. tropica antigen preparation. Spleen, lymph node, and peritoneal exudate cells from protectively immunized donors similarly fail to transfer DTH locally or systemically. These cells also lack demonstrable suppressive activity against the expression or induction of DTH to L. tropica. Thus, protection against L. tropica induced by prophylactic i.v. immunization with irradiated promastigotes appears to be conferred by Lyt-1 + 2 - T cells that are distinguishable from T cells mediating either both DTH and T help, or cytotoxicity

  17. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  18. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Baixin Ye

    2017-01-01

    Full Text Available A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR T-cell therapy and engineered T-cell receptor (TCR T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1 provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2 provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3 evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

  19. Human immunodeficiencies related to APC/T cell interaction

    Directory of Open Access Journals (Sweden)

    Marinos eKallikourdis

    2015-08-01

    Full Text Available The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APC in the T cell area of secondary lymphoid organs and the formation of highly organized inter-cellular junctions referred to as the immune synapses. In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. Here we will discuss in details the mechanisms of defective APC-T cell communications in Wiskott-Aldrich syndrome (WAS and in warts, hypogammaglobulinemia, infections, myelokathexis syndrome (WHIM. In addition, we will summarize the evidences pointing to a compromised conjugate formation in WIP deficiency, DOCK8 deficiency and X-linked lymphoproliferative syndrome.

  20. Effect of low-dose irradiation upon T cell subsets involved in the response of primed A/J mice to SaI cells

    International Nuclear Information System (INIS)

    Anderson, R.E.; Williams, W.L.; Tokuda, Sei

    1988-01-01

    A/Jax (A/J) mice primed to Sarcoma I (SaI) exhibit an augmented response in association with low-dose (0.15 Gy) irradiation. This phenomenon is best demonstrated in tumour neutralization (Winn assay) or cell transfer experiments utilizing mice depleted of thymus-derived (T) cells. It is particularly dependent upon the duration of priming and the growth characteristics of the tumour in the primary host. The importance of these two variables appears to relate to their influence upon the cell types responsible for the host response, and includes both an effector and a suppressor component. Radiation-induced inhibition of the suppressor component appears responsible for low-dose augmentation and results in injury to a T cell of the Lyt-1 - 2 + phenotype. In Winn assays employing equal numbers of immune spleen cells and SaI cells, the smallest tumours are associated with Lyt-1-positive (Lyt-1 + 2 - and Lyt-1 + 2 + ) cells and exposure to 0.15 Gy markedly inhibits their anti-SaI activity. Thus, even though the effect is in the opposite direction, both the effector and suppressor components of the anti-SaI response in A/J mice are exceedingly radiosensitive. (author)

  1. Plasmodium chabaudi in mice. Adoptive transfer of immunity with enriched populations of spleen T and B lymphocytes

    International Nuclear Information System (INIS)

    McDonald, V.; Phillips, R.S.

    1978-01-01

    Thymectomized NIH and C57BL mice were more susceptible to Plasmodium chabaudi than controls, indicating a role for T cells in acquired immunity to the parasite. Enriched populations of T and B cells were prepared from the spleens of immune mice using nylon-wool columns, and were adoptively transferred to syngeneic non-irradiated mice or mice irradiated with 600 or 800 rad. Some immunity could usually be transferred with immune T, B and glass-wool (g.w.) filtered spleen cell populations. In the heavily irradiated mice g.w. filtered immune spleen cells gave the best protection and the immune T cells the least. Preliminary attempts to show synergistic activity between immune T and B cells in irradiated mice were not successful. (author)

  2. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity

    Directory of Open Access Journals (Sweden)

    Christopher Vincent Carman

    2015-11-01

    Full Text Available Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g. transmigratory cups and invadosome-like protrusions, IPLs that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these ‘sentinel’ roles is the ability of the endothelium to act as a non-hematopoietic ‘semi-professional’ antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.

  3. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients.

    Directory of Open Access Journals (Sweden)

    Atar Lev

    Full Text Available The kinetics of T and B cell immune recovery after bone marrow transplantation (BMT is affected by many pre- and post-transplant factors. Because of the profoundly depleted baseline T and B cell immunity in recombination activating gene 2 (RAG-2-deficient severe combined immunodeficiency (SCID patients, some of these factors are eliminated, and the immune recovery after BMT can then be clearly assessed. This process was followed in ten SCID patients in parallel to their associated transplant-related complications. Early peripheral presence of T and B cells was observed in 8 and 4 patients, respectively. The latter correlated with pre-transplant conditioning therapy. Cells from these patients carried mainly signal joint DNA episomes, indicative of newly derived B and T cells. They were present before the normalization of the T cell receptor (TCR and the B cell receptor (BCR repertoire. Early presentation of the ordered TCR gene rearrangements after BMT occurred simultaneously, but this pattern was heterogeneous over time, suggesting different and individual thymic recovery processes. Our findings early after transplant could suggest the long-term patients' clinical outcome. Early peripheral presence of newly produced B and T lymphocytes from their production and maturation sites after BMT suggests donor stem cell origin rather than peripheral expansion, and is indicative of successful outcome. Peripheral detection of TCR excision circles and kappa-deleting recombination excision circles in RAG-2-deficient SCID post-BMT are early markers of T and B cell reconstitution, and can be used to monitor outcome and tailor specific therapy for patients undergoing BMT.

  4. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  5. Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus: whole proteome-wide immunoinformatics analyses.

    Directory of Open Access Journals (Sweden)

    Venkata R Duvvuri

    Full Text Available In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2. The CD4+ T-cell epitopes that are commonly conserved (∼ 556 were further screened against the Immune Epitope Database (IEDB to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556 epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥ 90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62% when compared with other ethnicities (57.77% to 94.84%. In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs.

  6. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    Science.gov (United States)

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    2009-11-01

    Full Text Available Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides.For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility.In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  8. Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies.

    Science.gov (United States)

    Wiendl, Heinz; Mitsdoerffer, Meike; Schneider, Dagmar; Chen, Lieping; Lochmüller, Hanns; Melms, Arthur; Weller, Michael

    2003-10-01

    B7-H1 is a novel B7 family protein attributed to costimulatory and immune regulatory functions. Here we report that human myoblasts cultured from control subjects and patients with inflammatory myopathies as well as TE671 muscle rhabdomyosarcoma cells express high levels of B7-H1 after stimulation with the inflammatory cytokine IFN-gamma. Coculture experiments of MHC class I/II-positive myoblasts with CD4 and CD8 T cells in the presence of antigen demonstrated the functional consequences of muscle-related B7-H1 expression: production of inflammatory cytokines, IFN-gamma and IL-2, by CD4 as well CD8 T cells was markedly enhanced in the presence of a neutralizing anti-B7-H1 antibody. This observation was paralleled by an augmented expression of the T cell activation markers CD25, ICOS, and CD69, thus showing B7-H1-mediated inhibition of T cell activation. Further, we investigated 23 muscle biopsy specimens from patients with polymyositis (PM), inclusion body myositis (IBM), dermatomyositis (DM), and nonmyopathic controls for B7-H1 expression by immunohistochemistry: B7-H1 was expressed in PM, IBM, and DM specimens but not in noninflammatory and nonmyopathic controls. Staining was predominantly localized to areas of strong inflammation and to muscle cells as well as mononuclear cells. These data highlight the immune regulatory properties of muscle cells and suggest that B7-H1 expression represents an inhibitory mechanism induced upon inflammatory stimuli and aimed at protecting muscle fibers from immune aggression.

  9. Asymmetric T lymphocyte division in the initiation of adaptive immune responses.

    Science.gov (United States)

    Chang, John T; Palanivel, Vikram R; Kinjyo, Ichiko; Schambach, Felix; Intlekofer, Andrew M; Banerjee, Arnob; Longworth, Sarah A; Vinup, Kristine E; Mrass, Paul; Oliaro, Jane; Killeen, Nigel; Orange, Jordan S; Russell, Sarah M; Weninger, Wolfgang; Reiner, Steven L

    2007-03-23

    A hallmark of mammalian immunity is the heterogeneity of cell fate that exists among pathogen-experienced lymphocytes. We show that a dividing T lymphocyte initially responding to a microbe exhibits unequal partitioning of proteins that mediate signaling, cell fate specification, and asymmetric cell division. Asymmetric segregation of determinants appears to be coordinated by prolonged interaction between the T cell and its antigen-presenting cell before division. Additionally, the first two daughter T cells displayed phenotypic and functional indicators of being differentially fated toward effector and memory lineages. These results suggest a mechanism by which a single lymphocyte can apportion diverse cell fates necessary for adaptive immunity.

  10. Emerging roles for IL-15 in the activation and function of T-cells during immune stimulation

    Directory of Open Access Journals (Sweden)

    Anthony SM

    2015-02-01

    Full Text Available Scott M Anthony, Kimberly S Schluns Immunology Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: Interleukin (IL-15 is a cytokine that promotes the development and homeostasis of a group of lymphocytes; however, IL-15 is also significantly upregulated in response to pathogen infections and in autoimmune diseases. With its ability to promote T-cell proliferation and survival and influence migration and effector functions, elevated IL-15 can impact T-cell responses in numerous ways. Nonetheless, the importance of IL-15 during early infection and autoimmunity is unclear. Furthermore, the mechanisms regulating IL-15 responses in both inflammatory situations and during the steady state are still being elucidated. The mechanisms by which IL-15 mediate responses are unique among cytokines. IL-15 associates with IL-15Rα within cells where it can either be transpresented to neighboring cells or cleaved into a soluble cytokine/receptor complex. Increased production of soluble (sIL-15Rα/IL-15 complexes is seen upon different types of immune stimulation, suggesting that these are circumstance when sIL-15 complexes are most likely to act. How common this response is remains unclear, as the production of sIL-15 complexes has only been recently appreciated. This review sets out to emphasize how IL-15 is frequently increased in response to pathogen infections and during autoimmunity and inflammatory conditions. Since pathogen infections and inflammatory diseases share signaling pathways that induce sIL-15 complexes, including pattern recognition receptors and type I interferon, sIL-15 complexes may be generated in more situations than realized. While there are multiple cellular targets of IL-15, this review primarily focuses on how T-cells are likely affected by IL-15 during immune activation and describes evidence

  11. Human immune cell targeting of protein nanoparticles - caveospheres

    Science.gov (United States)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  12. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  13. A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity.

    Science.gov (United States)

    Pino-Lagos, Karina; Guo, Yanxia; Brown, Chrysothemis; Alexander, Matthew P; Elgueta, Raúl; Bennett, Kathryn A; De Vries, Victor; Nowak, Elizabeth; Blomhoff, Rune; Sockanathan, Shanthini; Chandraratna, Roshantha A; Dmitrovsky, Ethan; Noelle, Randolph J

    2011-08-29

    It is known that vitamin A and its metabolite, retinoic acid (RA), are essential for host defense. However, the mechanisms for how RA controls inflammation are incompletely understood. The findings presented in this study show that RA signaling occurs concurrent with the development of inflammation. In models of vaccination and allogeneic graft rejection, whole body imaging reveals that RA signaling is temporally and spatially restricted to the site of inflammation. Conditional ablation of RA signaling in T cells significantly interferes with CD4(+) T cell effector function, migration, and polarity. These findings provide a new perspective of the role of RA as a mediator directly controlling CD4(+) T cell differentiation and immunity. © 2011 Pino-Lagos et al.

  14. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model

    DEFF Research Database (Denmark)

    Jespersen, Henrik; Lindberg, Mattias F; Donia, Marco

    2017-01-01

    Immune checkpoint inhibitors and adoptive cell transfer (ACT) of autologous tumor-infiltrating T cells have shown durable responses in patients with melanoma. To study ACT and immunotherapies in a humanized model, we have developed PDXv2.0 - a melanoma PDX model where tumor cells and tumor...

  15. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B

    International Nuclear Information System (INIS)

    Stoop, Jeroen N.; Molen, Renate G. van der; Kuipers, Ernst J.; Kusters, Johannes G.; Janssen, Harry L.A.

    2007-01-01

    Regulatory T cells (Treg) play a key role in the impaired immune response that is typical for a chronic Hepatitis B virus (HBV) infection. To gain more insight in the mechanism that is responsible for this impaired immune response, the effect of viral load reduction resulting from treatment with the nucleotide analogue adefovir dipivoxil on the percentages of Treg and HBV-specific T-cell responses was analyzed. Peripheral blood mononuclear cells (PBMC) of 12 patients were collected at baseline and during treatment. In parallel to the decline in viral load, we found a decline in circulating Treg, combined with an increase in HBV core antigen-specific IFN-γ production and proliferation. The production of IL10 did not decrease during therapy. In conclusion, adefovir induced viral load reduction results in a decline of circulating Treg together with a partial recovery of the immune response

  16. Immune cells in term and preterm labor

    Science.gov (United States)

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-01-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  17. Role of Polyamines in Immune Cell Functions

    Directory of Open Access Journals (Sweden)

    Rebecca S. Hesterberg

    2018-03-01

    Full Text Available The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.

  18. The Effects of Tacrolimus on T-Cell Proliferation Are Short-Lived: A Pilot Analysis of Immune Function Testing

    Directory of Open Access Journals (Sweden)

    Benjamin L. Laskin, MD, MS

    2017-08-01

    Conclusions. T-cell proliferation is currently not suitable to measure immunosuppression because sample processing diminishes observable effects. Future immune function testing should focus on fresh samples with minimal washing steps. Our results also emphasize the importance of adherence to immunosuppressive treatment, because T-cell proliferation recovered substantially after even brief discontinuation of tacrolimus.

  19. T-cell-independent immune responses do not require CXC ligand 13-mediated B1 cell migration.

    Science.gov (United States)

    Colombo, Matthew J; Sun, Guizhi; Alugupalli, Kishore R

    2010-09-01

    The dynamic movement of B cells increases the probability of encountering specific antigen and facilitates cell-cell interactions required for mounting a rapid antibody response. B1a and B1b cells are enriched in the coelomic cavity, contribute to T-cell-independent (TI) antibody responses, and increase in number upon antigen exposure. B1 cell movement is largely governed by Cxc ligand 13 (Cxcl13), and mice deficient in this chemokine have a severe reduction in peritoneal B1 cells. In this study, we examined the role of Cxcl13-dependent B cell migration using Borrelia hermsii infection or intraperitoneal immunization with pneumococcal polysaccharide or 4-hydroxy-3-nitrophenyl-acetyl (NP)-Ficoll, all of which induce robust antibody responses from B1b cells. Surprisingly, we found that antibody responses to B. hermsii or to FhbA, an antigenic target of B1b cells, and the resolution of bacteremia were indistinguishable between wild-type and Cxcl13-/- mice. Importantly, we did not observe an expansion of peritoneal B1b cell numbers in Cxcl13-/- mice. Nonetheless, mice that had resolved infection were resistant to reinfection, indicating that the peritoneal B1b cell reservoir is not required for controlling B. hermsii. Furthermore, despite a reduced peritoneal B1b compartment, immunization with pneumococcal polysaccharide vaccine yielded comparable antigen-specific antibody responses in wild-type and Cxcl13-/- mice and conferred protection against Streptococcus pneumoniae. Likewise, immunization with NP-Ficoll elicited similar antibody responses in wild-type and Cxcl13-/- mice. These data demonstrate that homing of B1 cells into the coelomic cavity is not a requirement for generating protective TI antibody responses, even when antigen is initially localized to this anatomical compartment.

  20. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes.

    Science.gov (United States)

    Calvo, Víctor; Izquierdo, Manuel

    2018-01-01

    Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.

  1. A robust and scalable TCR-based reporter cell assay to measure HIV-1 Nef-mediated T cell immune evasion.

    Science.gov (United States)

    Anmole, Gursev; Kuang, Xiaomei T; Toyoda, Mako; Martin, Eric; Shahid, Aniqa; Le, Anh Q; Markle, Tristan; Baraki, Bemuluyigza; Jones, R Brad; Ostrowski, Mario A; Ueno, Takamasa; Brumme, Zabrina L; Brockman, Mark A

    2015-11-01

    HIV-1 evades cytotoxic T cell responses through Nef-mediated downregulation of HLA class I molecules from the infected cell surface. Methods to quantify the impact of Nef on T cell recognition typically employ patient-derived T cell clones; however, these assays are limited by the cost and effort required to isolate and maintain primary cell lines. The variable activity of different T cell clones and the limited number of cells generated by re-stimulation can also hinder assay reproducibility and scalability. Here, we describe a heterologous T cell receptor reporter assay and use it to study immune evasion by Nef. Induction of NFAT-driven luciferase following co-culture with peptide-pulsed or virus-infected target cells serves as a rapid, quantitative and antigen-specific measure of T cell recognition of its cognate peptide/HLA complex. We demonstrate that Nef-mediated downregulation of HLA on target cells correlates inversely with T cell receptor-dependent luminescent signal generated by effector cells. This method provides a robust, flexible and scalable platform that is suitable for studies to measure Nef function in the context of different viral peptide/HLA antigens, to assess the function of patient-derived Nef alleles, or to screen small molecule libraries to identify novel Nef inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The role of cytokines in T-cell memory in health and disease.

    Science.gov (United States)

    Raeber, Miro E; Zurbuchen, Yves; Impellizzieri, Daniela; Boyman, Onur

    2018-05-01

    Upon stimulation with their cognate antigen, naive T cells undergo proliferation and differentiation into effector cells, followed by apoptosis or survival as precursors of long-lived memory cells. These phases of a T-cell response and the ensuing maintenance of memory T cells are shaped by cytokines, most notably interleukin-2 (IL-2), IL-7, and IL-15 that share the common γ chain (γ c ) cytokine receptor. Steady-state production of IL-7 and IL-15 is necessary for background proliferation and homeostatic survival of CD4 + and CD8 + memory T cells. During immune responses, augmented levels of IL-2, IL-15, IL-21, IL-12, IL-18, and type-I interferons determine the memory potential of antigen-specific effector CD8 + cells, while increased IL-2 and IL-15 cause bystander proliferation of heterologous CD4 + and CD8 + memory T cells. Limiting availability of γ c cytokines, reduction in regulatory T cells or IL-10, and persistence of inflammation or cognate antigen can result in memory T cells, which fail to become cytokine-dependent long-lived cells. Conversely, increased IL-7 and IL-15 can expand memory T cells, including pathogenic tissue-resident memory T cells, as seen in lymphopenia and certain chronic-inflammatory disorders and malignancies. These abovementioned factors impact immunotherapy and vaccines directed at memory T cells in cancer and chronic infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Low antigen dose formulated in CAF09 adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen minipigs

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Jakobsen, Jeanne Toft

    2017-01-01

    in order to generate a certain type of immune response. To investigate this area further, we used Göttingen minipigs asan animal model especially due to the similar body size and high degree of immunome similarity between humans and pigs. In this study, we show that both a humoral and a cell......-dose immunization. Independent of antigen dose, intraperitoneal administration of antigen increased the amount of TT-specific cytotoxic CD8β+ T cells within the cytokine-producing T-cell pool when compared to the non-cytokine producing T-cell compartment. Taken together, these results demonstrate that a full...... protein formulated in the CAF09 adjuvant and administered to pigs via the intraperitoneal route effectively generates a cytotoxic T-cell response. Moreover, we confirm the inverse relationship between the antigen dose and the induction of polyfunctional T cells in a large animal model. These finding can...

  4. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Directory of Open Access Journals (Sweden)

    Catherine Q Nie

    2009-04-01

    Full Text Available Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  5. Immunosuppression after Sepsis: Systemic Inflammation and Sepsis Induce a Loss of Naïve T-Cells but No Enduring Cell-Autonomous Defects in T-Cell Function

    Science.gov (United States)

    Markwart, Robby; Condotta, Stephanie A.; Requardt, Robert P.; Borken, Farina; Schubert, Katja; Weigel, Cynthia; Bauer, Michael; Griffith, Thomas S.; Förster, Martin; Brunkhorst, Frank M.; Badovinac, Vladimir P.; Rubio, Ignacio

    2014-01-01

    Sepsis describes the life-threatening systemic inflammatory response (SIRS) of an organism to an infection and is the leading cause of mortality on intensive care units (ICU) worldwide. An acute episode of sepsis is characterized by the extensive release of cytokines and other mediators resulting in a dysregulated immune response leading to organ damage and/or death. This initial pro-inflammatory burst often transits into a state of immune suppression characterised by loss of immune cells and T-cell dysfunction at later disease stages in sepsis survivors. However, despite these appreciations, the precise nature of the evoked defect in T-cell immunity in post-acute phases of SIRS remains unknown. Here we present an in-depth functional analysis of T-cell function in post-acute SIRS/sepsis. We document that T-cell function is not compromised on a per cell basis in experimental rodent models of infection-free SIRS (LPS or CpG) or septic peritonitis. Transgenic antigen-specific T-cells feature an unaltered cytokine response if challenged in vivo and ex vivo with cognate antigens. Isolated CD4+/CD8+ T-cells from post-acute septic animals do not exhibit defects in T-cell receptor-mediated activation at the the level of receptor-proximal signalling, activation marker upregulation or expansion. However, SIRS/sepsis induced transient lymphopenia and gave rise to an environment of immune attenuation at post acute disease stages. Thus, systemic inflammation has an acute impact on T-cell numbers and adaptive immunity, but does not cause major cell-autonomous enduring functional defects in T-cells. PMID:25541945

  6. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers.

    Science.gov (United States)

    Saito, Takuro; Nishikawa, Hiroyoshi; Wada, Hisashi; Nagano, Yuji; Sugiyama, Daisuke; Atarashi, Koji; Maeda, Yuka; Hamaguchi, Masahide; Ohkura, Naganari; Sato, Eiichi; Nagase, Hirotsugu; Nishimura, Junichi; Yamamoto, Hirofumi; Takiguchi, Shuji; Tanoue, Takeshi; Suda, Wataru; Morita, Hidetoshi; Hattori, Masahira; Honda, Kenya; Mori, Masaki; Doki, Yuichiro; Sakaguchi, Shimon

    2016-06-01

    CD4(+) T cells that express the forkhead box P3 (FOXP3) transcription factor function as regulatory T (Treg) cells and hinder effective immune responses against cancer cells. Abundant Treg cell infiltration into tumors is associated with poor clinical outcomes in various types of cancers. However, the role of Treg cells is controversial in colorectal cancers (CRCs), in which FOXP3(+) T cell infiltration indicated better prognosis in some studies. Here we show that CRCs, which are commonly infiltrated by suppression-competent FOXP3(hi) Treg cells, can be classified into two types by the degree of additional infiltration of FOXP3(lo) nonsuppressive T cells. The latter, which are distinguished from FOXP3(+) Treg cells by non-expression of the naive T cell marker CD45RA and instability of FOXP3, secreted inflammatory cytokines. Indeed, CRCs with abundant infiltration of FOXP3(lo) T cells showed significantly better prognosis than those with predominantly FOXP3(hi) Treg cell infiltration. Development of such inflammatory FOXP3(lo) non-Treg cells may depend on secretion of interleukin (IL)-12 and transforming growth factor (TGF)-β by tissues and their presence was correlated with tumor invasion by intestinal bacteria, especially Fusobacterium nucleatum. Thus, functionally distinct subpopulations of tumor-infiltrating FOXP3(+) T cells contribute in opposing ways to determining CRC prognosis. Depletion of FOXP3(hi) Treg cells from tumor tissues, which would augment antitumor immunity, could thus be used as an effective treatment strategy for CRCs and other cancers, whereas strategies that locally increase the population of FOXP3(lo) non-Treg cells could be used to suppress or prevent tumor formation.

  7. Immune regulation in T1D and T2D: prospective role of Foxp3+ Treg cells in disease pathogenesis and treatment

    Directory of Open Access Journals (Sweden)

    Mara eKornete

    2013-06-01

    Full Text Available There is increasing evidence that dysregulated immune responses play key roles in the pathogenesis and complications of type 1 but also type 2 diabetes. Indeed, chronic inflammation and autoimmunity, which are salient features of type 1 diabetes, are now believed to actively contribute to the pathogenesis of type 2 diabetes. The accumulation of activated innate and adaptive immune cells in various metabolic tissues results in the release of inflammatory mediators, which promote insulin resistance and β-cell damage. Moreover, these dysregulated immune responses can also mutually influence the prevalence of both type 1 and 2 diabetes. In this review article, we discuss the central role of immune responses in the patho-physiology and complications of type 1 and 2 diabetes, and provide evidence that regulation of these responses, particularly through the action of regulatory T cells, may be a possible therapeutic avenue for the treatment of these disease and their respective complications.

  8. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    Science.gov (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis.

    Science.gov (United States)

    Ozden, Simona; Cochet, Madeleine; Mikol, Jacqueline; Teixeira, Antonio; Gessain, Antoine; Pique, Claudine

    2004-10-01

    Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.

  10. Implication of chemo-resistant memory T cells for immune surveillance in patients with sarcoma receiving chemotherapy.

    Science.gov (United States)

    Shibayama, Yuji; Tsukahara, Tomohide; Emori, Makoto; Murata, Kenji; Mizushima, Emi; Hirohashi, Yoshihiko; Kanaseki, Takayuki; Nakatsugawa, Munehide; Kubo, Terufumi; Yamashita, Toshihiko; Sato, Noriyuki; Torigoe, Toshihiko

    2017-09-01

    Chemotherapy has improved the prognosis of patients with sarcomas. However, it may suppress anti-tumor immunity. Recently, we reported a novel CD8 + memory T cell population with a chemo-resistance property, "young memory" T (T YM ) cells. In this study, we investigated the proportion and function of T YM cells in peripheral blood of healthy donors and sarcoma patients who received chemotherapy and those who did not. The proportion of T YM cells was significantly decreased in patients compared with that in healthy donors. In healthy donors, anti-EBV CTLs were induced using mixed lymphocyte peptide culture, from not only T YM cells but also T CM and T EM cells. No CTLs directed to tumor-associated antigens were induced. In sarcoma patients who did not receive chemotherapy, in addition to anti-EBV CTLs, CTLs directed to the tumor-associated antigen PBF were induced from T YM , T CM and T EM cells. In sarcoma patients who received chemotherapy, EBV-specific CTLs were induced from T YM cells but were hardly induced from T EM cells. Interestingly, CTLs directed to the anti-tumor-associated antigen PBF were induced from T YM cells but not from the T CM and T EM cells in sarcoma patients who received chemotherapy. The findings suggest that T YM cells are resistant to chemotherapy and can firstly recover from the nadir. T YM cells might be important for immunological memory, especially in sarcoma patients receiving chemotherapy. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4(+) T cells

    DEFF Research Database (Denmark)

    Munir, Shamaila; Andersen, Gitte Holmen; Svane, Inge Marie

    2013-01-01

    Programmed cell death 1 ligand 1 (PD-L1) is an important regulator of T-cell responses and may consequently limit anticancer immunity. We have recently identified PD-L1-specific, cytotoxic CD8(+) T cells. In the present study, we develop these findings and report that CD4(+) helper T cells...... spontaneously recognize PD-L1. We examined the locality of a previously identified HLA-A*0201-restricted PD-L1-epitope for the presence of possible CD4(+) T-cell epitopes. Thus, we identified naturally occurring PD-L1-specific CD4(+) T cells among the peripheral blood lymphocytes of cancer patients...... and - to lesser extents - healthy donors, by means of ELISPOT assays. PD-L1-specific CD4(+) T cells appeared to be TH17 cells exhibiting an effector T-cell cytokine profile. Hence, PD-L1-specific CD4(+) T cells released interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-17 (IL-17) in response...

  12. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity.

    Directory of Open Access Journals (Sweden)

    Brian J Laidlaw

    2013-03-01

    Full Text Available Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential "universal" vaccine.

  13. Special regulatory T-cell review: T-cell dependent suppression revisited.

    Science.gov (United States)

    Basten, Antony; Fazekas de St Groth, Barbara

    2008-01-01

    The concept of T-cell dependent regulation of immune responses has been a central tenet of immunological thinking since the delineation of the two cell system in the 1960s. Indeed T-cell dependent suppression was discovered before MHC restriction. When reviewing the data from the original wave of suppression, it is intriguing to reflect not just on the decline and fall of suppressor T cells in the 1980s, but on their equally dramatic return to respectability over the past decade. Hopefully their resurgence will be supported by solid mechanistic data that will underpin their central place in our current and future understanding of the immune system. Cannon to right of them, Cannon to left of them, Cannon in front of them Volley'd and thunder'd Storm'd at with shot and shell, Boldly they rode and well, Into the jaws of Death, Into the mouth of Hell, Rode the six hundred (suppressionists). (Adapted from The Charge of the Light Brigade, Alfred, Lord Tennyson)

  14. Intestinal immunity in hypopituitary dwarf mice: effects of age.

    Science.gov (United States)

    Wang, Xin; Darcy, Justin; Cai, Chuan; Jin, Junfei; Bartke, Andrzej; Cao, Deliang

    2018-03-02

    Hypopituitary dwarf mice demonstrate advantages of longevity, but little is known of their colon development and intestinal immunity. Herein we found that Ames dwarf mice have shorter colon and colonic crypts, but larger ratio of mesenteric lymph nodes (MLNs) over body weight than age-matched wild type (WT) mice. In the colonic lamina propria (cLP) of juvenile Ames mice, more inflammatory neutrophils (Ā: 0.15% vs. 0.03% in WT mice) and monocytes (Ā: 7.97% vs. 5.15%) infiltrated, and antigen presenting cells CD11c+ dendritic cells (Ā: 1.39% vs. 0.87%), CD11b+ macrophages (Ā: 3.22% vs. 0.81%) and gamma delta T (γδ T) cells (Ā: 5.56% vs. 1.35%) were increased. In adult Ames dwarf mice, adaptive immune cells, such as IL-17 producing CD4+ T helper (Th17) cells (Ā: 8.3% vs. 4.7%) were augmented. In the MLNs of Ames dwarf mice, the antigen presenting and adaptive immune cells also altered when compared to WT mice, such as a decrease of T-regulatory (Treg) cells in juvenile Ames mice (Ā: 7.7% vs.10.5%), but an increase of Th17 cells (Ā: 0.627% vs.0.093%). Taken together, these data suggest that somatotropic signaling deficiency influences colon development and intestinal immunity.

  15. Targeting CD28, CTLA-4 and PD-L1 costimulation differentially controls immune synapses and function of human regulatory and conventional T-cells.

    Directory of Open Access Journals (Sweden)

    Nahzli Dilek

    Full Text Available CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs. What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff but inhibition of suppression by regulatory T cells (Tregs, while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.

  16. Immune-mediated neuropathy with Epstein-Barr virus-positive T-cell lymphoproliferative disease.

    Science.gov (United States)

    Hattori, Takaaki; Arai, Ayako; Yokota, Takanori; Imadome, Ken-Ichi; Tomimitsu, Hiroyuki; Miura, Osamu; Mizusawa, Hidehiro

    2015-01-01

    A 47-year-old man with Epstein-Barr virus (EBV)-positive T/NK- cell lymphoproliferative disease (EBV-T/NK-LPD) developed acute-onset weakness. A nerve conduction study showed a conduction block in both the proximal and most distal segments. Although the patient's neuropathy transiently responded to intravenous immunoglobulin, it was progressive for at least 25 days until the start of prednisolone (PSL) administration, after which it remarkably improved. The neuropathy further improved after allogeneic bone marrow transplantation (BMT). The present patient's clinical course is not consistent with that of typical Guillain-Barré syndrome. This case suggests that EBV-T/NK-LPD can cause progressive immune-mediated neuropathy as a result of chronic EBV antigen presentation and can be treated with PSL and BMT.

  17. Atorvastatin reduces T-cell activation and exhaustion among HIV-infected cART-treated suboptimal immune responders in Uganda: a randomised crossover placebo-controlled trial.

    Science.gov (United States)

    Nakanjako, Damalie; Ssinabulya, Isaac; Nabatanzi, Rose; Bayigga, Lois; Kiragga, Agnes; Joloba, Moses; Kaleebu, Pontiano; Kambugu, Andrew D; Kamya, Moses R; Sekaly, Rafick; Elliott, Alison; Mayanja-Kizza, Harriet

    2015-03-01

    T-cell activation independently predicts mortality, poor immune recovery and non-AIDS illnesses during combination antiretroviral therapy (cART). Atorvastatin showed anti-immune activation effects among HIV-infected cART-naïve individuals. We investigated whether adjunct atorvastatin therapy reduces T-cell activation among cART-treated adults with suboptimal immune recovery. A randomised double-blind placebo-controlled crossover trial, of atorvastatin 80 mg daily vs. placebo for 12 weeks, was conducted among individuals with CD4 increase <295 cells/μl after seven years of suppressive cART. Change in T-cell activation (CD3 + CD4 + /CD8 + CD38 + HLADR+) and in T-cell exhaustion (CD3 + CD4 + /CD8 + PD1 + ) was measured using flow cytometry. Thirty patients were randomised, 15 to each arm. Atorvastatin resulted in a 28% greater reduction in CD4 T-cell activation (60% reduction) than placebo (32% reduction); P = 0.001. Atorvastatin also resulted in a 35% greater reduction in CD8-T-cell activation than placebo (49% vs. 14%, P = 0.0009), CD4 T-cell exhaustion (27% vs. 17% in placebo), P = 0.001 and CD8 T-cell exhaustion (27% vs. 16%), P = 0.004. There was no carry-over/period effect. Expected adverse events were comparable in both groups, and no serious adverse events were reported. Atorvastatin reduced T-cell immune activation and exhaustion among cART-treated adults in a Ugandan cohort. Atorvastatin adjunct therapy should be explored as a strategy to improve HIV treatment outcomes among people living with HIV in sub-Saharan Africa. © 2014 John Wiley & Sons Ltd.

  18. Sensitivity and specificity of tritiated thymidine incorporation and ELISPOT assays in identifying antigen specific T cell immune responses

    Directory of Open Access Journals (Sweden)

    MacLeod Beth

    2007-09-01

    Full Text Available Abstract Background Standardization of cell-based immunologic monitoring is becoming increasingly important as methods for measuring cellular immunity become more complex. We assessed the ability of two commonly used cell-based assays, tritiated thymidine incorporation (proliferation and IFN-gamma ELISPOT, to predict T cell responses to HER-2/neu, tetanus toxoid (tt, and cytomegalovirus (CMV antigens. These antigens were determined to be low (HER-2/neu, moderate (tt, and robustly (CMV immunogenic proteins. Samples from 27 Stage II, III, and IV HER-2/neu positive breast cancer patients, vaccinated against the HER-2/neu protein and tt, were analyzed by tritiated thymidine incorporation and IFN-gamma ELISPOT for T cell response. Results Linear regression analysis indicates that both stimulation index (SI (p = 0.011 and IFN-gamma secreting precursor frequency (p Conclusion These data underscore the importance of taking into consideration the performance characteristics of assays used to measure T cell immunity. This consideration is particularly necessary when determining which method to utilize for assessing responses to immunotherapeutic manipulations in cancer patients.

  19. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  20. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation.

    Directory of Open Access Journals (Sweden)

    Sujit V Janardhan

    Full Text Available Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.

  1. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients.

    Science.gov (United States)

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-06-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.

  2. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  3. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  4. Cytomegalovirus-specific T-cells are associated with immune senescence, but not with systemic inflammation, in people living with HIV

    DEFF Research Database (Denmark)

    Ballegaard, Vibe; Brændstrup, Peter; Pedersen, Karin Kaereby

    2018-01-01

    In people living with HIV (PLWHIV), coinfection with cytomegalovirus (CMV) has been associated with inflammation, immunological ageing, and increased risk of severe non-AIDS related comorbidity. The effect of CMV-specific immune responses on systemic inflammation, immune activation and T-cell sen...

  5. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    Science.gov (United States)

    Issazadeh-Navikas, Shohreh

    2012-04-01

    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune systems, have evolved for quick, non-specific immune responses to pathogens and more efficient, long-lasting ones upon specific recognition of recurrent pathogens. Specialized cells have arisen as the sentinels of these functions, including macrophages, natural killer (NK), and T and B-lymphocytes. Interestingly, a population of immune cells that can exert both of these complex functions, NKT cells, not only share common functions but also exhibit shared cell surface markers of cells of both arms of the immune system. These features, in combination with sophisticated maintenance of immune homeostasis, will be discussed. The recent finding of self-peptide reactivity of NKT cells in the context of CD1d, with capacity to regulate multiple autoimmune and inflammatory conditions, motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells. Their parallel selection through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.

  6. Regulatory T cells (Treg and Their Roles in Immune System with Respect to Immunopathological Disorders

    Directory of Open Access Journals (Sweden)

    Kateřina Kondělková

    2010-01-01

    Full Text Available Regulatory T cells (Tregs are a specialized subpopulation of T cells that act to suppress immune response, thereby maintaining homeostasis and self-tolerance. It has been shown that Tregs are able to inhibit T cell proliferation and cytokine production and play a critical role in preventing autoimmunity. Different subsets with various functions of Treg cells exist. Tregs can be usually identified by flow cytometry. The most specific marker for these cells is FoxP3, which is localized intracellulary. Selected surface markers such as CD25high (high molecular density and CD127low (low molecular density could serve as surrogate markers to detect Tregs in a routine clinical practice. Dysregulation in Treg cell frequency or functions may lead to the development of autoimmune disease. Therapeutical Treg modulation is considered to be a promising therapeutical approach to treat some selected disorders, such as allergies, and to prevent allograft rejection.

  7. CD8 apoptosis may be a predictor of T cell number normalization after immune reconstitution in HIV

    Directory of Open Access Journals (Sweden)

    Martinez Maria L

    2007-01-01

    Full Text Available Abstract Background As part of the Houston Vanguard study, a subset of 10 patients randomized to receive IL-2 therapy were compared to 4 patients randomized to not receive IL-2, for markers of T cell activation and death during the first three cycles of IL-2. All patients were treated with combination antiretroviral therapy (ART and were virally suppressed. The purpose of the study was to examine the role of CD8+ T cell death in responses to ART and IL-2 therapy. Methods Lymphocytes were examined at Day 0, 5 and 30 days during three cycles of IL-2 therapy. CD25, CD38, HLA-DR expression and annexin (cell death were examined on CD4 and CD8 subpopulations. Follow up studies examined CD4 levels and CD4:CD8 reconstitution after 6 years using both univariant and multivariate analyses. Results Human lymphocytes responded to IL-2 therapy by upregulation of CD25 on CD4+ T cells, leading to an increase in CD4 cell counts. CD8+ T cells did not increase CD25 expression, but upregulated activation antigens (CD38 and DR and had increased death. At baseline, 7 of the 14 patients had high CD8+ T cell apoptosis (mean 17.0% ± 6.0. We did an exploratory analysis of immune status after six years, and found that baseline CD8+ T cell apoptosis was correlated with CD4 cell count gain beginning two years post enrollment. Patients with low levels of CD8+ T cell apoptosis at baseline (mean 2.2% ± 2.1 had significantly higher CD4 cell counts and more normalized CD4:CD8 ratios than patients with high CD8+ T cell apoptosis (mean CD4 cell counts 1,209 ± 164 vs 754 ± 320 cells/mm3; CD4:CD8 ratios 1.55 vs. 0.70, respectively. Conclusion We postulate that CD8+ T cell apoptosis may reflect inherent activation status, which continues in some patients even though viral replication is suppressed which influences the ability of CD4+ T cells to rebound. Levels of CD8+ T cell apoptosis may therefore be an independent predictor of immune status, which should be shown in a

  8. CD8 apoptosis may be a predictor of T cell number normalization after immune reconstitution in HIV

    Science.gov (United States)

    Lewis, Dorothy E; Gross, Kimber L; Diez, Martine M; Martinez, Maria L; Lukefahr, Helen N; Kozinetz, Claudia A; Arduino, Roberto C

    2007-01-01

    Background As part of the Houston Vanguard study, a subset of 10 patients randomized to receive IL-2 therapy were compared to 4 patients randomized to not receive IL-2, for markers of T cell activation and death during the first three cycles of IL-2. All patients were treated with combination antiretroviral therapy (ART) and were virally suppressed. The purpose of the study was to examine the role of CD8+ T cell death in responses to ART and IL-2 therapy. Methods Lymphocytes were examined at Day 0, 5 and 30 days during three cycles of IL-2 therapy. CD25, CD38, HLA-DR expression and annexin (cell death) were examined on CD4 and CD8 subpopulations. Follow up studies examined CD4 levels and CD4:CD8 reconstitution after 6 years using both univariant and multivariate analyses. Results Human lymphocytes responded to IL-2 therapy by upregulation of CD25 on CD4+ T cells, leading to an increase in CD4 cell counts. CD8+ T cells did not increase CD25 expression, but upregulated activation antigens (CD38 and DR) and had increased death. At baseline, 7 of the 14 patients had high CD8+ T cell apoptosis (mean 17.0% ± 6.0). We did an exploratory analysis of immune status after six years, and found that baseline CD8+ T cell apoptosis was correlated with CD4 cell count gain beginning two years post enrollment. Patients with low levels of CD8+ T cell apoptosis at baseline (mean 2.2% ± 2.1) had significantly higher CD4 cell counts and more normalized CD4:CD8 ratios than patients with high CD8+ T cell apoptosis (mean CD4 cell counts 1,209 ± 164 vs 754 ± 320 cells/mm3; CD4:CD8 ratios 1.55 vs. 0.70, respectively). Conclusion We postulate that CD8+ T cell apoptosis may reflect inherent activation status, which continues in some patients even though viral replication is suppressed which influences the ability of CD4+ T cells to rebound. Levels of CD8+ T cell apoptosis may therefore be an independent predictor of immune status, which should be shown in a prospective study. PMID:17263884

  9. Selective T-cell depletion targeting CD45RA reduces viremia and enhances early T-cell recovery compared with CD3-targeted T-cell depletion.

    Science.gov (United States)

    Triplett, Brandon M; Muller, Brad; Kang, Guolian; Li, Ying; Cross, Shane J; Moen, Joseph; Cunningham, Lea; Janssen, William; Mamcarz, Ewelina; Shook, David R; Srinivasan, Ashok; Choi, John; Hayden, Randall T; Leung, Wing

    2018-02-01

    T-cell depletion (TCD) effectively reduces severe graft-versus-host disease in recipients of HLA-mismatched allografts. However, TCD is associated with delayed immune recovery and increased infections. We hypothesized that specific depletion of CD45RA+ naive T cells, rather than broad depletion of CD3+ T cells, can preserve memory-immunity in the allografts and confer protection against important viral infections in the early post-transplant period. Sixty-seven patients who received TCD haploidentical donor transplantation for hematologic malignancy on 3 consecutive trials were analyzed. Patients receiving CD45RA-depleted donor grafts had 2000-fold more donor T cells infused, significantly higher T-cell counts at Day +30 post transplant (550/μL vs 10/μL; P depleted grafts were more likely to experience adenovirus viremia (27% vs 4%, P = .02). CD45RA-depletion provided a large number of donor memory T cells to the recipients and was associated with enhanced early T-cell recovery and protection against viremia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Regulatory T-cells and autoimmunity.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    Approximately 20% of the population is affected by autoimmune or inflammatory diseases mediated by an abnormal immune response. A characteristic feature of autoimmune disease is the selective targeting of a single cell type, organ or tissue by certain populations of autoreactive T-cells. Examples of such diseases include rheumatoid arthritis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus (SLE), all of which are characterized by chronic inflammation, tissue destruction and target organ malfunction. Although strong evidence links most autoimmune diseases to specific genes, considerable controversy prevails regarding the role of regulatory T-cell populations in the disease process. These cells are now also believed to play a key role in mediating transplantation tolerance and inhibiting the induction of tumor immunity. Though the concept of therapeutic immune regulation aimed at treating autoimmune pathology has been validated in many animal models, the development of strategies for the treatment of human autoimmune disorders remains in its infancy. The main obstacles to this include the conflicting findings of different model systems, as well as the contrasting functions of regulatory T-cells and cytokines involved in the development of such disorders. This review examines the role of regulatory T-cells in the pathogenesis of autoimmunity and describes the therapeutic potential of these cells for the prevention of immune-mediated pathologies in the future. Although much remains to be learned about such pathologies, a clearer understanding of the mechanisms by which regulatory T-cells function will undoubtedly lead to exciting new possibilities for immunotherapeutics.

  11. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Minnema-Luiting, Jorien; Vroman, Heleen; Aerts, Joachim; Cornelissen, Robin

    2018-03-30

    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.

  12. Efficacy of genital T cell responses to herpes simplex virus type 2 resulting from immunization of the nasal mucosa

    International Nuclear Information System (INIS)

    Milligan, Gregg N.; Dudley-McClain, Kristen L.; Chu Chinfun; Young, Christal G.

    2004-01-01

    Intravaginal (ivag) or intranasal (i.n.) immunization of C57BL/6J (B6) mice with a thymidine kinase-deficient strain (tk-) of herpes simplex virus type 2 (HSV-2) resulted in comparable protection of the genital epithelium and sensory ganglia against HSV-2 challenge. In contrast, protection of these sites was much reduced in i.n.-immunized compared to ivag-immunized B cell-deficient μMT mice. Fewer HSV-specific T cells were detected in the genital epithelium of i.n.-immunized compared to ivag-immunized μMT mice after HSV-2 challenge. Passive transfer of HSV-specific serum to immune μMT mice restored protection of these sites against HSV-2 challenge. These results suggest that protection of genital and neuronal sites may be conferred by i.n. immunization but may be more dependent on antibody-dependent mechanisms than the protection resulting from genital immunization. These results have implications for immunization strategies to elicit high levels of cell-mediated protection of the genital tract and sensory ganglia

  13. Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors.

    Science.gov (United States)

    Mishra, Ameet K; Kadoishi, Tanya; Wang, Xiaoguang; Driver, Emily; Chen, Zhangguo; Wang, Xiao-Jing; Wang, Jing H

    2016-12-06

    Squamous cell carcinoma (SCC) is the second commonest type of skin cancer. Moreover, about 90% of head and neck cancers are SCCs. SCCs develop at a significantly higher rate under chronic immunosuppressive conditions, implicating a role of immune surveillance in controlling SCCs. It remains largely unknown how SCCs evade immune recognition. Here, we established a mouse model by injecting tumor cells derived from primary SCCs harboring KrasG12D mutation and Smad4 deletion into wild-type (wt) or CD8-/- recipients. We found comparable tumor growth between wt and CD8-/- recipients, indicating a complete escape of CD8+ T cell-mediated anti-tumor responses by these SCCs. Mechanistically, CD8+ T cells apparently were not defective in infiltrating tumors given their relatively increased percentage among tumor infiltrating lymphocytes (TILs). CD8+ TILs exhibited phenotypes of chronic activation and exhaustion, including overexpression of activation markers, co-expression of programmed cell death 1 (PD-1) and lymphocyte activation gene-3 (LAG-3), as well as TCRβ downregulation. Among CD4+ TILs, T regulatory cells (Tregs) were preferentially expanded. Contradictory to prior findings in melanoma, Treg expansion was independent of CD8+ T cells in our SCC model. Unexpectedly, CD8+ T cells were required for promoting NK cell infiltration within SCCs. Furthermore, we uncovered AKT-dependent lymphocyte-induced PD-L1 upregulation on SCCs, which was contributed greatly by combinatorial effects of CD8+ T and NK cells. Lastly, dual blockade of PD-1 and LAG-3 inhibited the tumor growth of SCCs. Thus, our findings identify novel immune evasion mechanisms of SCCs and suggest that immunosuppressive mechanisms operate in a cancer-type specific and context-dependent manner.

  14. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  15. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model.

    Directory of Open Access Journals (Sweden)

    Yuya Yoshimoto

    Full Text Available PURPOSE: There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL activity. METHODS AND MATERIALS: C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD was defined as the time (in days for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. RESULTS: In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days and prolonged median survival time (MST to 59 days (versus 28 days in the non-irradiated group. CD8(+ cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days. Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days, while anti-FR4 and anti-GITR antibodies did not affect efficacy. CONCLUSIONS: Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4

  16. Radiotherapy-Induced Anti-Tumor Immunity Contributes to the Therapeutic Efficacy of Irradiation and Can Be Augmented by CTLA-4 Blockade in a Mouse Model

    Science.gov (United States)

    Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi

    2014-01-01

    Purpose There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. Methods and Materials C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. Results In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Conclusions Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a

  17. T helper cells in leprosy: An update.

    Science.gov (United States)

    Saini, Chaman; Tarique, Mohd; Rai, Reeta; Siddiqui, Anisuddin; Khanna, Neena; Sharma, Alpana

    2017-04-01

    Leprosy is an ancient disease caused by gram positive, rod shaped bacilli called Mycobacterium leprae. Patients present with varied clinico-pathological disease depending on the host immune response to Mycobacterium leprae. Thus tuberculoid (TT) and lepromatous (LL) patients represent two ends of a spectrum where the former shows limited disease, high T cell mediate immune (CMI) response and low antibody (HI) levels in serum. In contrast the latter has low T cell and high humoral immune response i.e antibody levels. The mechanisms underlying these differences have been investigated intensely; however, there is no consensus on the primary immunological basis. Over three decades, Th1 and Th2 paradigm were thought to underling tuberculoid and lepromatous disease respectively. However many patients were shown to have mixed Th1/Th2 pattern of (IFN-γ/IL-4) cytokines. The present review was undertaken with a view to understand the T cells and cytokine dysregulation in leprosy. In recent years the sub classes of T cells that are Regulatory in nature (Treg) have been implicated in immune diseases where they were shown to suppress T cell functions. Additionally Th17 cells secreting IL-17A, IL17F, were implicated in immune inflammation. Taken together these regulatory cells may play a part in influencing immune responses in leprosy. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. Regulatory T Cells: Potential Target in Anticancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Chi-Mou Juang

    2007-09-01

    Full Text Available The concept of regulatory T cells was first described in the early 1970s, and regulatory T cells were called suppressive T cells at that time. Studies that followed have demonstrated that these suppressive T cells negatively regulated tumor immunity and contributed to tumor growth in mice. Despite the importance of these studies, there was extensive skepticism about the existence of these cells, and the concept of suppressive T cells left the center stage of immunologic research for decades. Interleukin-2 receptor α-chain, CD25, was first demonstrated in 1995 to serve as a phenotypic marker for CD4+ regulatory cells. Henceforth, research of regulatory T cells boomed. Regulatory T cells are involved in the pathogenesis of cancer, autoimmune disease, transplantation immunology, and immune tolerance in pregnancy. Recent evidence has demonstrated that regulatory T cellmediated immunosuppression is one of the crucial tumor immune evasion mechanisms and the main obstacle of successful cancer immunotherapy. The mechanism and the potential clinical application of regulatory T cells in cancer immunotherapy are discussed.

  19. The role of natural killer T cells in dendritic cell licensing, cross-priming and memory CD8+ T cell generation

    Directory of Open Access Journals (Sweden)

    Catherine eGottschalk

    2015-07-01

    Full Text Available New vaccination strategies focus on achieving CD8+ T cell (CTL immunity rather than on induction of protective antibody responses. While the requirement of CD4+ T (Th cell help in dendritic cell (DC activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help independent manner. Natural Killer T cells (NKT cells can substitute for Th cell help and license DC as well. NKT cells produce a broad spectrum of Th1 and Th2 cytokines, thereby inducing a similar set of costimulatory molecules and cytokines in DC. This form of licensing differs from Th cell help by inducing other chemokines: while Th cell licensed DC produce CCR5 ligands, NKT cell-licensed DC produce CCL17 which attracts CCR4+ CD8+ T cells for subsequent activation. It has recently been shown that iNKT cells do not only enhance immune responses against bacterial pathogens or parasites, but also play a role in viral infections. The inclusion of NKT cell ligands in Influenza virus vaccines enhanced memory CTL generation and protective immunity in a mouse model. This review will focus on the role of iNKT cells in the cross-talk with cross-priming DC and memory CD8+ T cell formation.

  20. Proinflammatory T Cell Status Associated with Early Life Adversity.

    Science.gov (United States)

    Elwenspoek, Martha M C; Hengesch, Xenia; Leenen, Fleur A D; Schritz, Anna; Sias, Krystel; Schaan, Violetta K; Mériaux, Sophie B; Schmitz, Stephanie; Bonnemberger, Fanny; Schächinger, Hartmut; Vögele, Claus; Turner, Jonathan D; Muller, Claude P

    2017-12-15

    Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA ( n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69 + CD8 + T cells ( p = 0.022), increased numbers of HLA-DR + CD4 and HLA-DR + CD8 T cells ( p ELA also showed a trend toward higher numbers of CCR4 + CXCR3 - CCR6 + CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Murine neonatal spleen contains natural T and non-T suppressor cells capable of inhibiting adult alloreactive and newborn autoreactive T-cell proliferation.

    Science.gov (United States)

    Hooper, D C; Hoskin, D W; Gronvik, K O; Murgita, R A

    1986-05-01

    The spleen of neonatal mice is known to be a rich source of cells capable of suppressing a variety of immune functions of adult lymphocytes in vitro. From such observations has emerged the concept that the gradual development in ability to express immune functions after birth is due in part to the parallel normal physiological decay of naturally occurring regulatory suppressor cells. There is, however, some confusion in the literature as to the exact nature of the newborn of the newborn inhibitory cell type(s). In contrast to most previous reports which detect only a single type of neonatal suppressor cell, usually a T cell, we show here that newborn spleen harbors both T and non-T inhibitory cells. Both types of suppressor cells could be shown to suppress the proliferative response of adult spleen to alloantigens as well as newborn T cells reacting against self-Ia antigen in the autologous mixed lymphocyte reaction (AMLR). Newborn suppressor T cells were characterized as being non-adherent to Ig-anti-Ig affinity columns, soybean agglutinin receptor negative (SBA-), and susceptible to lysis by anti-T-cell specific antiserum plus complement. Non-T suppressor cells were identified as non-phagocytic, SBA receptor positive (SBA+), and resistant to cytotoxic treatment with anti-T-cell antibodies and complement. The apparent controversy surrounding previous reports as to the T versus non-T nature of newborn suppressor cells can be reconciled by the present observation that both types of inhibitory cells coexist in the spleen. Furthermore, the demonstration that newborn suppressor cells can effectively regulate T-cell proliferative activity mediated by other newborn cells provides more direct support for the contention that such inhibitory cells play a physiological role in controlling immune responsiveness during early ontogeny.

  2. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred

    2013-01-01

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients

  3. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  4. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+ T cells from patients with ALF......BACKGROUND & AIMS: Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86...

  5. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity

    OpenAIRE

    Bowen, David G.; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W.; Bertolino, Patrick

    2004-01-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for prima...

  6. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE.

    Science.gov (United States)

    Hagberg, Niklas; Joelsson, Martin; Leonard, Dag; Reid, Sarah; Eloranta, Maija-Leena; Mo, John; Nilsson, Magnus K; Syvänen, Ann-Christine; Bryceson, Yenan T; Rönnblom, Lars

    2018-02-23

    Genetic variants in the transcription factor STAT4 are associated with increased susceptibility to systemic lupus erythematosus (SLE) and a more severe disease phenotype. This study aimed to clarify how the SLE-associated intronic STAT4 risk allele rs7574865[T] affects the function of immune cells in SLE. Peripheral blood mononuclear cells (PBMCs) were isolated from 52 genotyped patients with SLE. Phosphorylation of STAT4 (pSTAT4) and STAT1 (pSTAT1) in response to interferon (IFN)-α, IFN-γ or interleukin (IL)-12, total levels of STAT4, STAT1 and T-bet, and frequency of IFN-γ + cells on IL-12 stimulation were determined by flow cytometry in subsets of immune cells before and after preactivation of cells with phytohaemagglutinin (PHA) and IL-2. Cellular responses and phenotypes were correlated to STAT4 risk allele carriership. Janus kinase inhibitors (JAKi) selective for TYK2 (TYK2i) or JAK2 (JAK2i) were evaluated for inhibition of IL-12 or IFN-γ-induced activation of SLE PBMCs. In resting PBMCs, the STAT4 risk allele was neither associated with total levels of STAT4 or STAT1, nor cytokine-induced pSTAT4 or pSTAT1. Following PHA/IL-2 activation, CD8 + T cells from STAT4 risk allele carriers displayed increased levels of STAT4 resulting in increased pSTAT4 in response to IL-12 and IFN-α, and an augmented IL-12-induced IFN-γ production in CD8 + and CD4 + T cells. The TYK2i and the JAK2i efficiently blocked IL-12 and IFN-γ-induced activation of PBMCs from STAT4 risk patients, respectively. T cells from patients with SLE carrying the STAT4 risk allele rs7574865[T] display an augmented response to IL-12 and IFN-α. This subset of patients may benefit from JAKi treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response

    Science.gov (United States)

    Di Bonito, Paola; Ridolfi, Barbara; Columba-Cabezas, Sandra; Giovannelli, Andrea; Chiozzini, Chiara; Manfredi, Francesco; Anticoli, Simona; Arenaccio, Claudia; Federico, Maurizio

    2015-01-01

    We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity. PMID:25760140

  8. HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response

    Directory of Open Access Journals (Sweden)

    Paola Di Bonito

    2015-03-01

    Full Text Available We developed an innovative strategy to induce a cytotoxic T cell (CTL immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut, which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV-E7 with that of lentiviral virus-like particles (VLPs incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.

  9. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

    Science.gov (United States)

    Milush, Jeffrey M.; Mir, Kiran D.; Sundaravaradan, Vasudha; Gordon, Shari N.; Engram, Jessica; Cano, Christopher A.; Reeves, Jacqueline D.; Anton, Elizabeth; O’Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S.; Brenchley, Jason M.; Else, James G.; Silvestri, Guido; Sodora, Donald L.

    2011-01-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4+ T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3+CD4–CD8– T cells (double-negative T cells) partially compensates for CD4+ T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4+ T cells to SIV-negative animals resulted in rapid loss of CD4+ T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4+ T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4+ T cell–like helper functions upon SIV-induced CD4+ T cell depletion in this species. PMID:21317533

  10. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour

    International Nuclear Information System (INIS)

    Herd, Karen A.; Harvey, Tracey; Khromykh, Alexander A.; Tindle, Robert W.

    2004-01-01

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses

  11. NKT Cell Networks in the Regulation of Tumor Immunity

    Science.gov (United States)

    Robertson, Faith C.; Berzofsky, Jay A.; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting. PMID:25389427

  12. NKT cell networks in the regulation of tumor immunity.

    Science.gov (United States)

    Robertson, Faith C; Berzofsky, Jay A; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8(+) and CD4(+) T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host's ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  13. NKT cell networks in the regulation of tumor immunity

    Directory of Open Access Journals (Sweden)

    Faith C Robertson

    2014-10-01

    Full Text Available CD1d-restricted natural killer T (NKT cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  14. Delicate balance among three types of T cells in concurrent regulation of tumor immunity

    Science.gov (United States)

    Izhak, Liat; Ambrosino, Elena; Kato, Shingo; Parish, Stanley T.; O’Konek, Jessica J.; Weber, Hannah; Xia, Zheng; Venzon, David; Berzofsky, Jay A.; Terabe, Masaki

    2013-01-01

    The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here we addressed this question for Tregs and type II NKT cells in syngeneic models of colorectal and renal cancer. In mice with both type I and type II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Treg cells as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked. We confirmed this hypothesis in three ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we demonstrated that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As cancer patients often have deficient type I NKT cell function, managing this delicate balance among three T cell subsets may be critical for the success of immunotherapy of human cancer. PMID:23319803

  15. Chronic Inflammation and  T Cells

    Directory of Open Access Journals (Sweden)

    Nathan S Fay

    2016-05-01

    Full Text Available The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programmed to mobilize the host innate and adaptive immune responses. Included among these immune cells are  T cells that are unique in their TCR usage, location, and functions in the body. Stress reception by  T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces  T cell activation. Once activated,  T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon  T cell activation. Pathogenesis of many chronic inflammatory diseases involve  T cells; some of which are exacerbated by their presence, while others are improved.  T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial  T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts  T cell function. Future studies will be important to understand how this balance is achieved.

  16. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Science.gov (United States)

    Watson, Alan M; Lam, L K Metthew; Klimstra, William B; Ryman, Kate D

    2016-07-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  17. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.

    Science.gov (United States)

    Goswami, Meghali; Prince, Gabrielle; Biancotto, Angelique; Moir, Susan; Kardava, Lela; Santich, Brian H; Cheung, Foo; Kotliarov, Yuri; Chen, Jinguo; Shi, Rongye; Zhou, Huizhi; Golding, Hana; Manischewitz, Jody; King, Lisa; Kunz, Lauren M; Noonan, Kimberly; Borrello, Ivan M; Smith, B Douglas; Hourigan, Christopher S

    2017-07-10

    Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.

  18. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    Science.gov (United States)

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  19. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine.

    Science.gov (United States)

    Chirkova, T V; Naykhin, A N; Petukhova, G D; Korenkov, D A; Donina, S A; Mironov, A N; Rudenko, L G

    2011-10-01

    Cellular immune responses of both CD4 and CD8 memory/effector T cells were evaluated in healthy young adults who received two doses of live attenuated influenza A (H5N2) vaccine. The vaccine was developed by reassortment of nonpathogenic avian A/Duck/Potsdam/1402-6/68 (H5N2) and cold-adapted A/Leningrad/134/17/57 (H2N2) viruses. T-cell responses were measured by standard methods of intracellular cytokine staining of gamma interferon (IFN-γ)-producing cells and a novel T-cell recognition of antigen-presenting cells by protein capture (TRAP) assay based on the trogocytosis phenomenon, namely, plasma membrane exchange between interacting immune cells. TRAP enables the detection of activated trogocytosis-positive T cells after virus stimulation. We showed that two doses of live attenuated influenza A (H5N2) vaccine promoted both CD4 and CD8 T-memory-cell responses in peripheral blood of healthy young subjects in the clinical study. Significant differences in geometric mean titers (GMTs) of influenza A (H5N2)-specific IFN-γ(+) cells were observed at day 42 following the second vaccination, while peak levels of trogocytosis(+) T cells were detected earlier, on the 21st day after the second vaccination. The inverse correlation of baseline levels compared to postvaccine fold changes in GMTs of influenza-specific CD4 and CD8 T cells demonstrated that baseline levels of these specific cells could be considered a predictive factor of vaccine immunogenicity.

  20. CD4+ T Cells Mediate Aspergillosis Vaccine Protection.

    Science.gov (United States)

    Diaz-Arevalo, Diana; Kalkum, Markus

    2017-01-01

    Adaptive effector CD4 + T cells play essential roles in the defense against fungal infections, especially against invasive aspergillosis (IA). Such protective CD4 + T cells can be generated through immunization with specialized antifungal vaccines, as has been demonstrated for pulmonary Aspergillus fumigatus infections in mouse experiments. Adaptive transfer of fungal antigen-specific CD4 + T cells conferred protection onto non-immunized naive mice, an experimental approach that could potentially become a future treatment option for immunosuppressed IA patients, focusing on the ultimate goal to improve their otherwise dim chances for survival. Here, we describe the different techniques to analyze CD4 + T cell immune responses after immunization with a recombinant fungal protein. We present three major methods that are used to analyze the role of CD4 + T cells in protection against A. fumigatus challenge. They include (1) transplantation of CD4 + T cells from vaccinated mice into immunosuppressed naive mice, observing increasing protection of the cell recipients, (2) depletion of CD4 + T cells from vaccinated mice, which abolishes vaccine protection, and (3) T cell proliferation studies following stimulation with overlapping synthetic peptides or an intact protein vaccine. The latter can be used to validate immunization status and to identify protective T cell epitopes in vaccine antigens. In the methods detailed here, we used versions of the well-studied Asp f3 protein expressed in a bacterial host, either as the intact full length protein or its N-terminally truncated version, comprised of residues 15-168. However, these methods are generally applicable and can well be adapted to study other protein-based subunit vaccines.

  1. Down regulation of the TCR complex CD3 ζ-chain on CD3+ T cells: a potential mechanism for helminth mediated immune modulation

    Directory of Open Access Journals (Sweden)

    Laura Jane Appleby

    2015-02-01

    Full Text Available The CD3ζ forms part of the T cell receptor (TCR where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study focused on investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p<0.05, consistent with down-regulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p<0.05 after allowing for confounding variables (host age, sex, infection level. CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection.

  2. Whole blood assay to access T cell-immune responses to Mycobacterium tuberculosis antigens in healthy Brazilian individuals

    Directory of Open Access Journals (Sweden)

    Paulo RZ Antas

    2004-02-01

    Full Text Available The production of interferon gamma (IFNgamma guarantees effective T cell-mediated immunity against Mycobacterium tuberculosis infection. In the present study, we simply compare the in vitro immune responses to Mycobacterium antigens in terms of IFNg production in a total of 10 healthy Brazilian volunteers. Whole blood and mononuclear cells were cultivated in parallel with PPD, Ag85B, and M. bovis hsp65, and five-days supernatants were harvested for cytokine detection by ELISA. The inter-assay result was that the overall profile of agreement in response to antigens was highly correlated (r² = 0.9266; p = 0.0102. Potential analysis is in current progress to dictate the usefulness of this method to access the immune responses also in tuberculosis patients and its contacts.

  3. Immune Cells Link Obesity-associated Type 2 Diabetes and Periodontitis

    Science.gov (United States)

    Zhu, M.; Nikolajczyk, B.S.

    2014-01-01

    The clinical association between obesity-associated type 2 diabetes (T2D) and periodontitis, coupled with the increasing prevalence of these diseases, justifies studies to identify mechanisms responsible for the vicious feed-forward loop between systemic and oral disease. Changes in the immune system are critical for both obesity-associated T2D and periodontitis and therefore may link these diseases. Recent studies at the intersection of immunology and metabolism have greatly advanced our understanding of the role the immune system plays in the transition between obesity and obesity-associated T2D and have shown that immune cells exhibit similar functional changes in obesity/T2D and periodontitis. Furthermore, myeloid and lymphoid cells likely synergize to promote obesity/T2D-associated periodontitis despite complexities introduced by disease interaction. Thus the groundwork is being laid for researchers to exploit existing models to understand immune cell dysfunction and break the devastating relationship between obesity-associated T2D and oral disease. PMID:24393706

  4. Cell-Intrinsic Roles for Autophagy in Modulating CD4 T Cell Functions

    Directory of Open Access Journals (Sweden)

    Elise Jacquin

    2018-05-01

    Full Text Available The catabolic process of autophagy plays important functions in inflammatory and immune responses by modulating innate immunity and adaptive immunity. Over the last decade, a cell-intrinsic role for autophagy in modulating CD4 T cell functions and differentiation was revealed. After the initial observation of autophagosomes in effector CD4 T cells, further work has shown that not only autophagy levels are modulated in CD4 T cells in response to environmental signals but also that autophagy critically affects the biology of these cells. Mouse models of autophagy deletion in CD4 T cells have indeed shown that autophagy is essential for CD4 T cell survival and homeostasis in peripheral lymphoid organs. Furthermore, autophagy is required for CD4 T cell proliferation and cytokine production in response to T cell receptor activation. Recent developments have uncovered that autophagy controls CD4 T cell differentiation and functions. While autophagy is required for the maintenance of immunosuppressive functions of regulatory T cells, it restrains the differentiation of TH9 effector cells, thus limiting their antitumor and pro-inflammatory properties. We will here discuss these findings that collectively suggest that therapeutic strategies targeting autophagy could be exploited for the treatment of cancer and inflammatory diseases.

  5. Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy Utilizing Biocompatible Magnetic Fluids

    Science.gov (United States)

    2008-08-01

    SUBJECT TERMS Cancer therapy by localized immune response, Magneto -rehological Fluids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Metastasized Breast Cancer by Localized Therapy utilizing Biocompatible Magnetic Fluids PRINCIPAL INVESTIGATOR: Cahit Evrensel...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy utilizing

  6. Distinctive in vitro effects of T-cell growth cytokines on cytomegalovirus-stimulated T-cell responses of HIV-infected HAART recipients

    International Nuclear Information System (INIS)

    Patterson, Julie; Jesser, Renee; Weinberg, Adriana

    2008-01-01

    Functional immune reconstitution is limited after HAART, maintaining the interest in adjunctive immune-modulators. We compared in vitro the effects of the γ-chain T-cell growth cytokines IL-2, IL-4, IL-7 and IL-15 on cytomegalovirus-stimulated cell-mediated immunity. IL-2 and IL-15 increased cytomegalovirus-specific lymphocyte proliferation in HAART recipients, whereas IL-4 and IL-7 did not. The boosting effect of IL-2 and IL-15 on proliferation correlated with their ability to prevent late apoptosis. However, IL-2 increased the frequency of cells in early apoptosis, whereas IL-15 increased the frequency of fully viable cells. Both IL-2 and IL-15 increased cytomegalovirus-induced CD4 + and CD8 + T-cell proliferation and the synthesis of Th1 and pro-inflammatory cytokines and chemokines. However, only IL-2 increased the frequency of regulatory T cells and Th2 cytokine production, both of which have the potential to attenuate antiviral immune responses. Overall, compared to other γ-chain cytokines, IL-15 had the most favorable profile for boosting antiviral cell-mediated immunity

  7. Intratumoral delivery of IL-18 naked DNA induces T-cell activation and Th1 response in a mouse hepatic cancer model

    International Nuclear Information System (INIS)

    Chang, Chi-Young; Lee, Jienny; Kim, Eun-Young; Park, Hae-Jung; Kwon, Choon-Hyuck; Joh, Jae-Won; Kim, Sung-Joo

    2007-01-01

    The novel cytokine, interleukin (IL)-18, is a strong interferon-γ inducer and costimulatory factor in Th1 cell activation. IL-18 triggers IFN-γ production and enhances cytolytic activity in both T and NK cells. However, the exact mechanism of antitumor action of IL-18 remains to be clarified. To determine the effects of IL-18 plasmid DNA on hepatic cancer in mice, CT26 murine colon adenocarcinoma cells were established in mouse liver. Plasmid vectors encoding IL-18 were transferred directly into the liver 7 days after tumor injection to restrict IL-18 expression within the tumor site. The IL-18 protein level was increased in the liver 4 days after plasmid injection, and a marked antitumoral effect was observed at day 7. Antitumor effects were evaluated by measuring tumor regression, immune cell population, and IFN-γ production. The IL-18 plasmid controlled the growth of hepatic tumors and proliferation of splenic immune cells. Moreover, treatment of CT26 tumors with the IL-18 plasmid significantly enhanced the population of the effector T and NK cells in the spleen and peripheral blood. In spleen, the population of CD4 + CD62 Low cells was augmented in response to IL-18 on day 7. These results are consistent with the increase in CD4 + T cells secreting IFN-γ, but not CD8 + T cells. The marked reduction of tumor growth in tumor-bearing mice was associated with the maintenance of IFN-γ production in spleen in response to IL-18. These antitumoral effects were maintained until 14 days after plasmid injection. Our results suggest that direct plasmid DNA transfer of IL-18 with no accompanying reagents to augment transfection efficiency may be useful in tumor immunotherapy

  8. Bone marrow function. I. Peripheral T cells are responsible for the increased auto-antiidiotype response of older mice

    International Nuclear Information System (INIS)

    Kim, Y.T.; Goidl, E.A.; Samarut, C.; Weksler, M.E.; Thorbecke, G.J.; Siskind, G.W.

    1985-01-01

    After immunization with trinitrophenyl (TNP)-Ficoll, mice produced both anti-TNP antibodies and auto-anti-idiotype (auto-anti-Id) antibodies specific for the anti-TNP antibody. Older animals produced more auto-anti-Id than did young animals. When mice were exposed to a normally lethal dose of irradiation while their bone marrow (BM) was partially shielded, they survived and slowly (6 wk) regained immune function, as indicated by the number of nucleated cells in their spleen and the in vitro primary plaque-forming cell (PFC) response of their spleen cells to TNP-treated aminoethylated polyacrylamide beads. Recovery is presumably the result of repopulation of the peripheral lymphoid system by cells originating in the BM. By enzyme-linked immunosorbent assay (ELISA), and by hapten-augmentable PFC assay, the authors show that, after recovery from irradiation with their BM shielded, old animals produce low auto-anti-Id responses, like those of young animals. The transfer of splenic T cells into mice irradiated with their BM shielded provided evidence that the magnitude of the auto-anti-Id response is controlled by the peripheral T cells. Thus, mice that received splenic T cells from aged donors produced high levels of auto-anti-Id while those that received splenic T cells from young donors produce low levels of auto-anti-Id

  9. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  10. Cross-talk between cd1d-restricted nkt cells and γδ cells in t regulatory cell response

    Directory of Open Access Journals (Sweden)

    Huber Sally A

    2011-01-01

    Full Text Available Abstract CD1d is a non-classical major histocompatibility class 1-like molecule which primarily presents either microbial or endogenous glycolipid antigens to T cells involved in innate immunity. Natural killer T (NKT cells and a subpopulation of γδ T cells expressing the Vγ4 T cell receptor (TCR recognize CD1d. NKT and Vγ4 T cells function in the innate immune response via rapid activation subsequent to infection and secrete large quantities of cytokines that both help control infection and modulate the developing adaptive immune response. T regulatory cells represent one cell population impacted by both NKT and Vγ4 T cells. This review discusses the evidence that NKT cells promote T regulatory cell activation both through direct interaction of NKT cell and dendritic cells and through NKT cell secretion of large amounts of TGFβ, IL-10 and IL-2. Recent studies have shown that CD1d-restricted Vγ4 T cells, in contrast to NKT cells, selectively kill T regulatory cells through a caspase-dependent mechanism. Vγ4 T cell elimination of the T regulatory cell population allows activation of autoimmune CD8+ effector cells leading to severe cardiac injury in a coxsackievirus B3 (CVB3 myocarditis model in mice. CD1d-restricted immunity can therefore lead to either immunosuppression or autoimmunity depending upon the type of innate effector dominating during the infection.

  11. In vivo T cell depletion regulates resistance and morbidity in murine schistosomiasis

    International Nuclear Information System (INIS)

    Phillips, S.M.; Linette, G.P.; Doughty, B.L.; Byram, J.E.; Von Lichtenberg, F.

    1987-01-01

    These studies assessed the roles of subpopulations of T lymphocytes in inducing and modulating resistance to schistosomiasis and thereby influencing subsequent morbidity. C57BL/6 mice were depleted in vivo of Lyt-1+, Lyt-2+, and L3T4+ cells by the daily administration of monoclonal antibodies. The development of protective immunity, induced by exposure to irradiated Schistosoma mansoni cercariae as expressed in depleted animals, was compared to that demonstrated in undepleted, normal, and congenitally athymic C57BL/6 mice. The development of morbidity was determined by spleen weight, portal pressure and reticuloendothelial system activity. The results indicated that depletion of specific subpopulations of T lymphocytes minimally affected the primary development of parasites; however, depletion strongly influenced the development of resistance to the parasite and subsequent morbidity due to infection. Depletion of T lymphocytes by anti-Lyt-1+ or anti-L3T4+ antibody decreased the development of resistance, antibody and delayed-type hypersensitivity directed against schistosome antigens. Morbidity due to disease was increased. Depletion of Lyt-2+ cells produced opposite changes with augmented resistance and reduced morbidity. Congenitally athymic mice developed minimal resistance and morbidity. Moreover, resistance was inversely related to the morbidity shown by a given animal. These studies indicate that the development of protective immunity to S. mansoni cercariae is regulated by discrete subpopulations of T lymphocytes. The feasibility of decreasing morbidity by increasing specific immunologically mediated resistance is suggested

  12. In Vivo Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers.

    Science.gov (United States)

    Zeng, Qin; Gammon, Joshua M; Tostanoski, Lisa H; Chiu, Yu-Chieh; Jewell, Christopher M

    2017-02-13

    Microneedles (MNs) are micron-scale polymeric or metallic structures that offer distinct advantages for vaccines by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. These advantages, along with recent studies showing therapeutic benefits achieved using traditional intradermal injections in human cancer patients, suggest MN delivery might enhance cancer vaccines and immunotherapies. We recently developed a new class of polyelectrolyte multilayers based on the self-assembly of model peptide antigens and molecular toll-like receptor agonists (TLRa) into ultrathin, conformal coatings. Here, we reasoned that these immune polyelectrolyte multilayers (iPEMs) might be a useful platform for assembling cancer vaccine components on MN arrays for intradermal delivery from these substrates. Using conserved human melanoma antigens and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be assembled on MNs in an automated fashion. These films, prepared with up to 128 layers, are approximately 200 nm thick but provide cancer vaccine cargo loading >225 μg/cm 2 . In cell culture, iPEM cargo released from MNs is internalized by primary dendritic cells, promotes activation of these cells, and expands T cells during coculture. In mice, application of iPEM-coated MNs results in the codelivery of tumor antigen and CpG through the skin, expanding tumor-specific T cells during initial MN applications and resulting in larger memory recall responses during a subsequent booster MN application. This study support MNs coated with PEMs built from tumor vaccine components as a well-defined, modular system for generating tumor-specific immune responses, enabling new approaches that can be explored in combination with checkpoint blockade or other combination cancer therapies.

  13. Interleukin 2 secretion by lectin-activated human blood lymphocytes is markedly augmented by vascular endothelial cells

    International Nuclear Information System (INIS)

    Guinan, E.C.; Pober, J.S.

    1986-01-01

    Since the initial interaction (and possible activation) of a blood borne T lymphocyte involves contact with the endothelial lining of the vasculature at the site of an immune response, the authors have examined the effect of cultured human endothelial cells (HEC) upon polyclonal T cell activation. Addition of 10 4 HEC to 10 4 -10 5 peripheral blood lymphocytes (PBL) stimulated with phytohemagglutinin (PHA, 0.3-10 μg/ml) leads to marked augmentation of interleukin 2 (IL-2) production. The relative increase in IL-2 (mean of 3 expts. +/- SEM) is present at 24 h (5.8 fold +/- 1.5) and become more marked at 48 h (12.6 fold +/- 3.5) and 72 h (18.5 fold +/- 3.7). This relative enhancement is greater for HEC added to 10 4 than 10 5 PBL and is also greater when 10 4 rather than 2 x 10 3 HEC are added to a given number of PBL. This increased IL-2 concentration has two biological consequences. First, at suboptimal PHA doses or at low PBL number, PBL proliferation as measured by 3 H-thymidine incorporation is increased up to two fold. Second, the phenotype of the proliferating cells appears altered, including a decrease in mean density of IL-2 receptor. The authors hypothesize that such modulation of the concentration of locally produced IL-2 may play a key role in the nature of an immune response, influencing both its magnitude and the functional profile of the activated and amplified effector cells

  14. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    2016-07-01

    Full Text Available A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  15. T-cell mediated immunity in Wegener's granulomatosis

    NARCIS (Netherlands)

    Abdulahad, Wayel Habib

    2008-01-01

    Although the pathogenetic mechanisms involved in Wegener’s granulomatosis (WG) are not completely understood, considerable evidence support the concepts that activated T-cells play an important role in disease expression. It is, however, not clear which subsets of T-cells are involved in the

  16. A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations

    Science.gov (United States)

    Murphy, Sean C.; Kas, Arnold; Stone, Brad C.; Bevan, Michael J.

    2013-01-01

    Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins. PMID:23530242

  17. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  18. The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    Parameters of the virus-specific T-cell response were analysed in order to dissect the contribution of CD4+ and CD8+ T cells to cell-mediated immunity to lymphocytic choriomeningitis virus. In MHC class II deficient mice, initial T-cell responsiveness was not impaired, but virus clearance...... was delayed, and virus-specific Td activity declined more rapidly. Furthermore, class I restricted Tc memory appeared to be impaired in these mice. To directly evaluate the role of CD4+ cells in virus clearance and T-cell mediated inflammation, MHC class I deficient mice were also studied. No virus...... exudate. This low-grade response was associated with some degree of virus control as organ titres were lower in these animals than in matched T-cell deficient nu/nu mice or class I deficient mice treated with anti-CD4 monoclonal antibody. This confirms that CD4+ cells are not needed to induce a virus...

  19. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Libregts, Sten F.W.M.; Nolte, Martijn A., E-mail: m.nolte@sanquin.nl

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  20. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    International Nuclear Information System (INIS)

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-01-01

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function

  1. CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Frederick Allen

    2017-10-01

    Full Text Available Lymph node (LN plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2. Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5. In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs of a CCL3-secreting CT26 colon tumor (L3TU as compared to wild-type tumor (WTTU during the priming phase of an antitumor response (≤10 days. In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3 secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs, and CD49b+ natural killer (NK cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.

  2. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  3. T cell ignorance is bliss: T cells are not tolerized by Langerhans cells presenting human papillomavirus antigens in the absence of costimulation

    Directory of Open Access Journals (Sweden)

    Andrew W. Woodham

    2016-12-01

    Full Text Available Human papillomavirus type 16 (HPV16 infections are intra-epithelial, and thus, HPV16 is known to interact with Langerhans cells (LCs, the resident epithelial antigen-presenting cells (APCs. The current paradigm for APC-mediated induction of T cell anergy is through delivery of T cell receptor signals via peptides on MHC molecules (signal 1, but without costimulation (signal 2. We previously demonstrated that LCs exposed to HPV16 in vitro present HPV antigens to T cells without costimulation, but it remained uncertain if such T cells would remain ignorant, become anergic, or in the case of CD4+ T cells, differentiate into Tregs. Here we demonstrate that Tregs were not induced by LCs presenting only signal 1, and through a series of in vitro immunizations show that CD8+ T cells receiving signal 1+2 from LCs weeks after consistently receiving signal 1 are capable of robust effector functions. Importantly, this indicates that T cells are not tolerized but instead remain ignorant to HPV, and are activated given the proper signals. Keywords: T cell anergy, T cell ignorance, Immune tolerance, Human papillomavirus, HPV16, Langerhans cells

  4. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion.

    Directory of Open Access Journals (Sweden)

    Marie Lundholm

    Full Text Available Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.

  5. B and T lymphocyte attenuator restricts the protective immune response against experimental malaria.

    Science.gov (United States)

    Adler, Guido; Steeg, Christiane; Pfeffer, Klaus; Murphy, Theresa L; Murphy, Kenneth M; Langhorne, Jean; Jacobs, Thomas

    2011-11-15

    The immune response against the blood stage of malaria has to be tightly regulated to allow for vigorous antiplasmodial activity while restraining potentially lethal immunopathologic damage to the host like cerebral malaria. Coinhibitory cell surface receptors are important modulators of immune activation. B and T lymphocyte attenuator (BTLA) (CD272) is a coinhibitory receptor expressed by most leukocytes, with the highest expression levels on T and B cells, and is involved in the maintenance of peripheral tolerance by dampening the activation of lymphocytes. The function of BTLA is described in several models of inflammatory disorders and autoimmunity, but its function in infectious diseases is less well characterized. Also, little is known about the influence of BTLA on non-T cells. In this study, we analyzed the function of BTLA during blood-stage malaria infection with the nonlethal Plasmodium yoelii strain 17NL. We show that BTLA knockout mice exhibit strongly reduced parasitemia and clear the infection earlier compared with wild-type mice. This increased resistance was seen before the onset of adaptive immune mechanisms and even in the absence of T and B cells but was more pronounced at later time points when activation of T and B cells was observed. We demonstrate that BTLA regulates production of proinflammatory cytokines in a T cell-intrinsic way and B cell intrinsically regulates the production of P. yoelii 17NL-specific Abs. These results indicate that the coinhibitory receptor BTLA plays a critical role during experimental malaria and attenuates the innate as well as the subsequent adaptive immune response.

  6. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT.

    Directory of Open Access Journals (Sweden)

    Keiko Yasuma

    2016-01-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL in some infected individuals. The HTLV-1 bZIP factor (HBZ gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT, in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT's ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1.

  7. Low-level radiation effects on immune cells

    International Nuclear Information System (INIS)

    Makinodan, T.

    1995-01-01

    The purpose of this study was to characterize the effects of chronic low-dose ionizing radiation (LDR) on murine immune cells. Previously, it had been reported that LDR enhances the proliferative activity of T cells in vitro and delays the growth of transplantable immunogenic tumors in vivo. This suggests that LDR eliminates immune suppressor cells, which downregulates immune response and/or adoptively upregulates the responsiveness of immune effector cells. It had also been reported that human lymphocytes become refractive to high dose radiation-induced chromosomal aberrations by pretreating mitotically active lymphocytes in vitro with very low doses of ionizing radiation, and the adaptive effect can be abrogated by cycloheximide. This suggests that protein synthesis is required for lymphocytes to respond adoptively to LDR

  8. Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Yuki Ito

    Full Text Available Approximately 10-15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer, while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT, which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18(-/- or wild-type mice, bacterial recovery significantly increased in Jα18(-/- compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18(-/- compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.

  9. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.

    Science.gov (United States)

    Curti, Antonio; Trabanelli, Sara; Onofri, Chiara; Aluigi, Michela; Salvestrini, Valentina; Ocadlikova, Darina; Evangelisti, Cecilia; Rutella, Sergio; De Cristofaro, Raimondo; Ottaviani, Emanuela; Baccarani, Michele; Lemoli, Roberto M

    2010-12-01

    The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia. Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels. We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4(+)CD25(+) Foxp3(+) T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4(+)CD25(+) T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms' tumor protein. These data identify

  10. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    Science.gov (United States)

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  11. B-Cell and T-Cell Immune Responses to Experimental Helicobacter pylori Infection in Humans

    Science.gov (United States)

    Nurgalieva, Zhannat Z.; Conner, Margaret E.; Opekun, Antone R.; Zheng, Carl Q.; Elliott, Susan N.; Ernst, Peter B.; Osato, Michael; Estes, Mary K.; Graham, David Y.

    2005-01-01

    The acute antibody and T-cell immune response to Helicobacter pylori infection in humans has not been studied systematically. Serum from H. pylori-naive volunteers challenged with H. pylori and cured after 4 or 12 weeks was tested by enzyme-linked immunosorbent assays for anti-H. pylori-specific immunoglobulin M (IgM) and IgA established using bacterial lysates from homologous (the infecting strain) and heterologous H. pylori. Proteins recognized by IgM antibody were identified by mass spectrometry of immunoreactive bands separated by two-dimensional gel electrophoresis. Mucosal T-cell subsets (CD4, CD8, CD3, and CD30 cells) were assessed by immunohistochemistry. All 18 infected volunteers developed H. pylori-specific IgM responses to both homologous or heterologous H. pylori antigens. H. pylori antigens reacted with IgM antibody at 4 weeks postinfection. IgM Western blotting showed immunoreactivity of postinfection serum samples to multiple H. pylori proteins with molecular weights ranging between 9,000 (9K) to 150K with homologous strains but only a 70K band using heterologous antigens. Two-dimensional electrophoresis demonstrated that production of H. pylori-specific IgM antibodies was elicited by H. pylori flagellins A and B, urease B, ABC transporter binding protein, heat shock protein 70 (DnaK), and alkyl hydroperoxide reductase. Mucosal CD3, CD4, and CD8 T-cell numbers increased following infection. IgM antibody responses were detected to a range of homologous H. pylori antigens 2 to 4 weeks postchallenge. The majority of H. pylori proteins were those involved in motility and colonization and may represent targets for vaccine development. PMID:15845507

  12. T Lymphocyte Immunity in Host Defence against Chlamydia trachomatis and Its Implication for Vaccine Development

    Directory of Open Access Journals (Sweden)

    X Yang

    1998-01-01

    Full Text Available Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes several significant human infectious diseases, including trachoma, urethritis, cervicitis and salpingitis, and is an important cofactor for transmission of human immunodeficiency virus. Until very recently, over three decades of research effort aimed at developing a C trachomatis vaccine had failed, due mainly to the lack of a precise understanding of the mechanisms for protective immunity. Although most studies concerning protective immunity to C trachomatis have focused on humoral immune responses, recent studies have clearly shown that T helper-1 (Th1-like CD4 T cell-mediated immune responses play the dominant role in protective immunity. These studies suggest a paradigm for chlamydial immunity and pathology based on the concept of heterogeneity (Th1/Th2 in CD4 T cell immune responses. This concept for chlamydial immunity offers a rational template on which to base renewed efforts for development of a chlamydial vaccine that targets the induction of cell-mediated Th1 immune responses.

  13. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mansonella perstans microfilaremic individuals are characterized by enhanced type 2 helper T and regulatory T and B cell subsets and dampened systemic innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Manuel Ritter

    2018-01-01

    Full Text Available The filarial nematode Mansonella perstans is endemic throughout Africa, northern South America and the Caribbean. Interestingly, M. perstans-infected individuals present no distinct clinical picture associated with certain pathology. Due to its relatively silent nature, research on this tropical disease has been neglected, especially M. perstans-driven immune responses. A hindrance in obtaining data on M. perstans-specific responses has been the inability to obtain adult worms since their habitats in serous cavities are difficult to access. Thus, in this study, for the first time, we used Mansonella perstans worm antigen extract as stimulant to obtain filarial-specific recall and immunoglobulin responses from M. perstans microfilaremic individuals (Mp MF+ from Cameroon. Moreover, systemic immune profiles in sera and immune cell composition in peripheral blood from Mp MF+ and amicrofilaremic individuals (Mp MF- were obtained. Our data reveal that Mp MF+ individuals showed significantly reduced cytokine (IL-4, IL-6 and IL-12p70 and chemokine levels (IL-8 and RANTES, but significantly higher MIP-1β as well as increased M. perstans-specific IgG4 levels compared to Mp MF- individuals. In contrast, upon re-stimulation with worm antigen extract, IFN-γ, IL-13, IL-10 and IL-17A secretion was enhanced in cell cultures from Mp MF+ individuals when compared to those from cultures of healthy European individuals. Moreover, analysis of immune cell composition in peripheral blood from Mp MF+ individuals revealed increased type 2 helper T (Th2, natural killer (NK, regulatory B and T cell (Breg and Treg subsets but decreased type 1 regulatory T (Tr1 cells. In summary, this study deciphers for the first time, M. perstans-specific immune responses using worm antigen extract and shows that patent M. perstans infections have distinct Th2, Breg and Treg subsets accompanied with reduced systemic innate and adaptive immune responses and dominant filarial-specific Ig

  15. Substantial gaps in knowledge of Bordetella pertussis antibody and T cell epitopes relevant for natural immunity and vaccine efficacy

    Science.gov (United States)

    Vaughan, Kerrie; Seymour, Emily; Peters, Bjoern; Sette, Alessandro

    2016-01-01

    The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level. PMID:24530743

  16. Roles of the adenosine receptor and CD73 in the regulatory effect of γδ T cells.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available The adenosine A2A receptor (A2AR, the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses.

  17. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. New approaches to design HIV-1 T-cell vaccines.

    Science.gov (United States)

    Perrin, Hélène; Canderan, Glenda; Sékaly, Rafick-Pierre; Trautmann, Lydie

    2010-09-01

    Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.

  19. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    DEFF Research Database (Denmark)

    Navikas, Shohreh

    2011-01-01

    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune system, have evolved...... through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.......Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune system, have evolved....... The recent finding of self-peptide reactivity of NKT cells in the context of CD1d, with capacity to regulate multiple autoimmune and inflammatory conditions, motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells. Their parallel selection...

  20. Cytotoxic human CD4(+) T cells

    NARCIS (Netherlands)

    van de Berg, Pablo J.; van Leeuwen, Ester M.; ten Berge, Ineke J.; van Lier, Rene

    2008-01-01

    The induction of adaptive immune responses critically depends on helper signals provided by CD4(+) T cells. These signals not only license antigen presenting cells (APC) to activate naïve CD8(+) T cells leading to the formation of vast numbers of cytotoxic T lymphocytes but also support the

  1. Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination.

    Science.gov (United States)

    Bagri, Puja; Anipindi, Varun C; Nguyen, Philip V; Vitali, Danielle; Stämpfli, Martin R; Kaushic, Charu

    2017-12-01

    It is well established that interferon gamma (IFN-γ) production by CD4 + T cells is critical for antiviral immunity against herpes simplex virus 2 (HSV-2) genital infection. However, the role of interleukin-17A (IL-17A) production by CD4 + T cells in HSV-2 antiviral immunity is yet to be elucidated. Here we demonstrate that IL-17A plays an important role in enhancing antiviral T helper type 1 (T h 1) responses in the female genital tract (FGT) and is essential for effective protection conferred by HSV-2 vaccination. While IL-17A did not play a critical role during primary genital HSV-2 infection, seen by lack of differences in susceptibility between IL-17A-deficient ( IL-17A -/- ) and wild-type (WT) C57BL/6 mice, it was critical for mediating antiviral responses after challenge/reexposure. Compared to WT mice, IL-17A -/- mice (i) infected intravaginally and reexposed or (ii) vaccinated intranasally and challenged intravaginally demonstrated poor outcomes. Following intravaginal HSV-2 reexposure or challenge, vaccinated IL-17A -/- mice had significantly higher mortality, greater disease severity, higher viral shedding, and higher levels of proinflammatory cytokines and chemokines in vaginal secretions. Furthermore, IL-17A -/- mice had impaired T h 1 cell responses after challenge/reexposure, with significantly lower proportions of vaginal IFN-γ + CD4 + T cells. The impaired T h 1 cell responses in IL-17A -/- mice coincided with smaller populations of IFN-γ + CD4 + tissue resident memory T (T RM ) cells in the genital tract postimmunization. Taken together, these findings describe a novel role for IL-17A in regulating antiviral IFN-γ + T h 1 cell immunity in the vaginal tract. This strategy could be exploited to enhance antiviral immunity following HSV-2 vaccination. IMPORTANCE T helper type 1 (T h 1) immunity, specifically interferon gamma (IFN-γ) production by CD4 + T cells, is critical for protection against genital herpesvirus (HSV-2) infection, and

  2. Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33

    Science.gov (United States)

    Mays, Lauren E.; Wang, Lili; Tenney, Rebeca; Bell, Peter; Nam, Hyun-Joo; Lin, Jianping; Gurda, Brittney; Van Vliet, Kim; Mikals, Kyle; Agbandje-McKenna, Mavis

    2013-01-01

    Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33. PMID:23720715

  3. Transplantational and specific antitumor immunity in retrospective view: new models based on transgenesis of individual chains of T-cell receptor

    Directory of Open Access Journals (Sweden)

    D. B. Kazanskiy

    2016-01-01

    Full Text Available Findings in experimental oncology in beginning of last century and subsequent achievements of genetics of tissue compatibility resulted in divergence of transplantational immunology and oncoimmunology. However, central achievements of both scientific fields are based on unified phenomenon of interaction between T-cell receptor (TCR and histocompatibility molecules. In this review we describe the history of ideas, achievements and unique experience of the team of the Laboratory of Regulatory Mechanisms in Immunity at Scientific Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center for all time of existence. This experience shows that efficiency of immunological defense including immunological surveillance are critically influenced by T-cell receptor repertoire. Transgenesis of individual chains of TCR is one of possible means to manage T-cell repertoire. Functional outcomes of transgenesis may be different due to diverse extent of dependence of α- and β-chains expression on the rules of allelic exclusion. Expression of transgenic β-chains results in the expansion of TCR repertoire diversity. Expression of β-chains is under strong control by allelic exclusion, resulting in formation of repertoire bearing mainly invariant transgenic β-chain pared with different α-chains and overall narrowing of repertoire. Earlier, we cloned genes encoding α- and β-chains of TCR of CD8+ memory cells specific to histocompatibility molecule H-2Kb . After introduction them in zigotes we have obtained transgenic mouse strains, which could be used for modeling of interactions between tumor cells and immune system of recipient. Normally, B10. D2 (R101 mice reject lymphoma EL4 cells in 12–14 days after transplantation, in spite of the fact, that allogeneic difference between B10. D2 (R101 (Kd Id Db mice and lymphoma EL4 (H-2b cells is only in one product of MHC, the H-2Kb molecule. Transgenics carrying β-chains of TCR displayed

  4. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P

    1989-01-01

    Flow cytometric analysis of the peripheral blood mononuclear cells in a six year old girl with a primary cellular immune deficiency showed a normal fraction of CD3 positive T cells. Most (70%) of the CD3 positive cells, however, expressed the gamma delta and not the alpha beta T cell receptor....... Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...... deficiency associated with a high proportion of T cells expressing the gamma delta T cell receptor has been described in nude mice, and it is suggested that the immune deficiency of this patient may represent a human analogue....

  5. FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia.

    Science.gov (United States)

    Toulza, Frederic; Nosaka, Kisato; Takiguchi, Masafumi; Pagliuca, Tony; Mitsuya, Hiroaki; Tanaka, Yuetsu; Taylor, Graham P; Bangham, Charles R M

    2009-11-15

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATLL). It has been postulated that ATLL cells might act as regulatory T cells (T(regs)) which, in common with ATLL cells, express both CD25 and FoxP3, and so contribute to the severe immune suppression typical of ATLL. We report here that the frequency of CD25(+) cells varied independently of the frequency of FoxP3(+) cells in both a cross-sectional study and in a longitudinal study of 2 patients with chronic ATLL. Furthermore, the capacity of ATLL cells to suppress proliferation of heterologous CD4(+)CD25(-) cells correlated with the frequency of CD4(+) FoxP3(+) cells but was independent of CD25 expression. Finally, the frequency of CD4(+)FoxP3(+) cells was inversely correlated with the lytic activity of HTLV-1-specific CTLs in patients with ATLL. We conclude that ATLL is not a tumor of FoxP3(+) regulatory T cells, and that a population of FoxP3(+) cells distinct from ATLL cells has regulatory functions and may impair the cell-mediated immune response to HTLV-1 in patients with ATLL.

  6. Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour

    Science.gov (United States)

    Kazantseva, Jekaterina; Ivanov, Roman; Gasik, Michael; Neuman, Toomas; Hussainova, Irina

    2016-07-01

    Three-dimensional (3D) customized scaffolds capable to mimic a native extracellular matrix open new frontiers in cells manipulation and advanced therapy. The major challenge is in a proper substrate for in vitro models on engineered scaffolds, capable to modulate cells differentiation. Here for the first time we demonstrate novel design and functionality of the 3D porous scaffolds of aligned, self-assembled ceramic nanofibers of ultra-high anisotropy ratio (~107), augmented into graphene shells. This unique hybrid nano-network allows an exceptional combination of selective guidance stimuli of stem cells differentiation, immune reactions variations, and local immobilization of cancer cells, which was not available before. The scaffolds were shown to be able to direct human mesenchymal stem cells (important for stimulation of neuronal and muscle cells) preferential orientation, to suppress major inflammatory factors, and to localize cancer cells; all without additions of specific culture media. The selective downregulation of specific cytokines is anticipated as a new tool for understanding of human immune system and ways of treatment of associated diseases. The effects observed are self-regulated by cells only, without side effects, usually arising from use of external factors. New scaffolds may open new horizons for stem cells fate control such as towards axons and neurites regeneration (Alzheimer’s disease) as well as cancer therapy development.

  7. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells.

    Science.gov (United States)

    Sumi, Daigo; Asao, Masashi; Okada, Hideta; Yogi, Kuniko; Miyataka, Hideki; Himeno, Seiichiro

    2016-06-01

    Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity.

  8. In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis

    Science.gov (United States)

    2018-01-01

    player in the activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is...for RA (IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell ...Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA

  9. In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis

    Science.gov (United States)

    2018-01-01

    activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is regarded a...Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA Jane Buckner...IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in

  10. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells.

    Science.gov (United States)

    Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I

    2017-11-01

    T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.

  11. Potential use of [gammadelta] T cell-based vaccines in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Mohd Wajid A. Khan

    2014-10-01

    Full Text Available Immunotherapy is a fast advancing methodology involving one of two approaches: 1 compounds targeting immune checkpoints, and 2 cellular immunomodulators. The latter approach is still largely experimental and features in vitro generated, live immune effector cells or antigen-presenting cells (APC. [gammadelta] T cells are known for their efficient in vitro tumor killing activities. Consequently, many laboratories worldwide are currently testing the tumor killing function of [gammadelta] T cells in clinical trials. Reported benefits are modest; however, these studies have demonstrated that large [gammadelta] T cell infusions were well tolerated. Here, we discuss the potential of using human [gammadelta] T cells not as effector cells but as a novel cellular vaccine for treatment of cancer patients. Antigen-presenting [gammadelta] T cells do not require to home to tumor tissues but, instead, need to interact with endogenous, tumor-specific [alphabeta] T cells in secondary lymphoid tissues. Newly mobilised effector [alphabeta] T cells are then thought to overcome the immune blockade by creating proinflammatory conditions fit for effector T cell homing to and killing of tumor cells. Immunotherapy may include tumor antigen-loaded [gammadelta] T cells alone or in combination with immune checkpoint inhibitors.

  12. Dendritic cell-mediated T cell polarization

    NARCIS (Netherlands)

    de Jong, Esther C.; Smits, Hermelijn H.; Kapsenberg, Martien L.

    2005-01-01

    Effective defense against diverse types of micro-organisms that invade our body requires specialized classes of antigen-specific immune responses initiated and maintained by distinct subsets of effector CD4(+) T helper (Th) cells. Excessive or detrimental (e.g., autoimmune) responses by effector T

  13. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    Rossana Domenis

    Full Text Available A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression, proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs. Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  14. T cell suppression by naturally occurring HLA-G-expressing regulatory CD4+ T cells is IL-10-dependent and reversible.

    Science.gov (United States)

    Huang, Yu-Hwa; Zozulya, Alla L; Weidenfeller, Christian; Schwab, Nicholas; Wiendl, Heinz

    2009-08-01

    CD4(+) T cells constitutively expressing the immune-tolerogenic HLA-G have been described recently as a new type of nT(reg) (HLA-G(pos) T(reg)) in humans. HLA-G(pos) T(reg) accumulate at sites of inflammation and are potent suppressors of T cell proliferation in vitro, suggesting their role in immune regulation. We here characterize the mechanism of how CD4(+) HLA-G(pos) T(reg) influence autologous HLA-G(neg) T(resp) function. Using a suppression system free of APC, we demonstrate a T-T cell interaction, resulting in suppression of HLA-G(neg) T(resp), which is facilitated by TCR engagement on HLA-G(pos) T(reg). Suppression is independent of cell-cell contact and is reversible, as the removal of HLA-G(pos) T(reg) from the established coculture restored the proliferative capability of responder cells. Further, HLA-G(pos) T(reg)-mediated suppression critically depends on the secretion of IL-10 but not TGF-beta.

  15. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  16. Super-enhancers: Asset management in immune cell genomes.

    Science.gov (United States)

    Witte, Steven; O'Shea, John J; Vahedi, Golnaz

    2015-09-01

    Super-enhancers (SEs) are regions of the genome consisting of clusters of regulatory elements bound with very high amounts of transcription factors, and this architecture appears to be the hallmark of genes and noncoding RNAs linked with cell identity. Recent studies have identified SEs in CD4(+) T cells and have further linked these regions to single nucleotide polymorphisms (SNPs) associated with immune-mediated disorders, pointing to an important role for these structures in the T cell differentiation and function. Here we review the features that define SEs, and discuss their function within the broader understanding of the mechanisms that define immune cell identity and function. We propose that SEs present crucial regulatory hubs, coordinating intrinsic and extrinsic differentiation signals, and argue that delineating these regions will provide important insight into the factors and mechanisms that define immune cell identity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Memory T follicular helper CD4 T cells

    Directory of Open Access Journals (Sweden)

    J. Scott eHale

    2015-02-01

    Full Text Available T follicular helper (Tfh cells are the subset of CD4 T helper cells that are required for generation and maintenance of germinal center reactions and the generation of long-lived humoral immunity. This specialized T helper subset provides help to cognate B cells via their expression of CD40 ligand, IL-21, IL-4, and other molecules. Tfh cells are characterized by their expression of the chemokine receptor CXCR5, expression of the transcriptional repressor Bcl6, and their capacity to migrate to the follicle and promote germinal center B cell responses. Until recently, it remained unclear whether Tfh cells differentiated into memory cells and whether they maintain their Tfh commitment at the memory phase. This review will highlight several recent studies that support the idea of Tfh-committed CD4 T cells at the memory stage of the immune response. The implication of these findings is that memory Tfh cells retain their capacity to recall their Tfh-specific effector functions upon reactivation to provide help for B cell responses and play an important role in prime and boost vaccination or during recall responses to infection. The markers that are useful for distinguishing Tfh effector and memory cells, as well as the limitations of using these markers will be discussed. Tfh effector and memory generation, lineage maintenance, and plasticity relative to other T helper lineages (Th1, Th2, Th17, etc will also be discussed. Ongoing discoveries regarding the maintenance and lineage stability versus plasticity of memory Tfh cells will improve strategies that utilize CD4 T cell memory to modulate antibody responses during prime and boost vaccination.

  18. Cell-mediated immunity during syphilis. A review

    Science.gov (United States)

    Pavia, Charles S.; Folds, James D.; Baseman, Joel B.

    1978-01-01

    Evidence is presented which reinforces the complexity of the host-parasite interaction during the course of syphilis. Infection with Treponema pallidum evokes a complicated antibody response and an assortment of cell-mediated immune reactions in the host. It appears that humoral immunity plays a minor role towards the complete elimination of syphilitic infection while the cellular limb of the immune response may be an important host defence mechanism. Information now available indicates that a state of anergy, or immunosuppression, exists in the early stages of human and experimental rabbit syphilis based upon negative skin reactions to T. pallidum antigen(s), the abnormal histological appearance of lymphoid organs, and impaired in vitro lymphocyte reactivity. It is also evident that in the later stages of the disease cellular immunity becomes activated as delayed type skin reactions can normally be elicited in tertiary syphilitics and lymphocyte behaviour in cell culture appears normal. Several mechanisms have been invoked to explain the delay in an effective immune response against syphilitic infection and the duration of the disease: (1) a capsule-like substance on the outer surface of virulant T. pallidum may act as a barrier against treponemicidal antibody; (2) this material and other biological properties of virulent treponemes could enable spirochaetes to escape being engulfed by macrophages and other phagocytic cells; (3) antigenic competition among different treponemal antigens causing partial tolerance; (4) T. pallidum infection may bring about the elaboration of immunosuppressive substances of host or treponemal origin which inhibit the proper function of lymphocytes, macrophages, and other cell types. PMID:350348

  19. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation.

    Directory of Open Access Journals (Sweden)

    Adele M Mount

    2008-02-01

    Full Text Available Dendritic cells (DC are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+ and CD8(+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+ and CD4(+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+ T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.

  20. A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Kaneko, Izumi; Zhang, Min; Iwanaga, Shiroh; Yuda, Masao; Tsuji, Moriya

    2017-01-01

    A CD1d-binding invariant natural killer T (iNKT)-cell stimulatory glycolipid, namely 7DW8-5, is shown to enhance the efficacy of radiation-attenuated sporozoites (RAS)-based malaria vaccine in mice. In the current study, we aim to determine whether 7DW8-5 can display a potent adjuvant effect in human immune system (HIS) mice. HIS-A2/hCD1d mice, which possess both functional human iNKT cells and CD8+ T cells, were generated by the transduction of NSG mice with adeno-associated virus serotype 9 expressing genes that encode human CD1d molecules and HLA-A*0201, followed by the engraftment of human hematopoietic stem cells. The magnitudes of human iNKT-cell response against 7DW8-5 and HLA-A*0201-restricted human CD8+ T-cell response against a human malaria antigen in HIS-A2/hCD1d mice were determined by using human CD1d tetramer and human HLA-A*0201 tetramer, respectively. We found that 7DW8-5 stimulates human iNKT cells in HIS-A2/hCD1d mice, as well as those derived from HIS-A2/hCD1d mice in vitro. We also found that 7DW8-5 significantly increases the level of a human malarial antigen-specific HLA-A*0201-restricted human CD8+ T-cell response in HIS-A2/hCD1d mice. Our study indicates that 7DW8-5 can display a potent adjuvant effect on RAS vaccine-induced anti-malarial immunity by augmenting malaria-specific human CD8+ T-cell response.

  1. Studies on the transfer of protective immunity with lymphoid cells from mice immune to malaria sporozoites

    International Nuclear Information System (INIS)

    Verhave, J.P.; Strickland, G.T.; Jaffe, H.A.; Ahmed, A.

    1978-01-01

    In an effort to understand the mechanisms involved in the protective immunity to malarial sporozoites, an A/J mouse/Plasmodium berghei model was studied. Protective immunity could consistently be adoptively transferred only by using sublethal irradiation of recipients (500 R); a spleen equivalent (100 x 10 6 ) of donor cells from immune syngeneic mice; and a small booster immunization (1 x 10 4 ) of recipients with irradiation-attenuated sporozoites. Recipient animals treated in this manner were protected from lethal challenge with 1 x 10 4 nonattenuated sporozoites. Immune and nonimmune serum and spleen cells from nonimmune animals did not protect recipient mice. Fewer immune spleen cells (50 x 10 6 ) protected some recipients. In vitro treatment of immune spleen cells with anti-theta sera and complement abolished their ability to transfer protection. This preliminary study suggests that protective sporozoite immunity can be transferred with cells, and that it is T cell dependent

  2. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy.

    Science.gov (United States)

    Sackstein, Robert; Schatton, Tobias; Barthel, Steven R

    2017-06-01

    immune checkpoint blockers on T eff cell homing. Finally, we speculate on innovative therapeutic opportunities for augmenting T eff cell homing capabilities to improve immunotherapy-based tumor eradication in cancer patients, with special focus on malignant melanoma.

  3. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  4. Natural Killer T Cells in Cancer Immunotherapy

    Science.gov (United States)

    Nair, Shiny; Dhodapkar, Madhav V.

    2017-01-01

    Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy. PMID:29018445

  5. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kostas Patas

    2018-02-01

    Full Text Available While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20, who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20. T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.

  6. The percentage of iNKT cells among other immune cells at various clinical stages of laryngeal cancer

    Directory of Open Access Journals (Sweden)

    Janusz Klatka

    2016-04-01

    Full Text Available Introduction: Invariant natural killer T (iNKT cells constitute a small population of immune cells that share functional and phenotypic characteristics of T lymphocytes and NK cells. Due to their involvement in specific and non-specific immune responses, iNKT cells may represent an important component of antitumor and anti-infectious immunity. Material and methods: Using flow cytometry, we analyzed the percentages of iNKT cells as well as T and B lymphocytes in peripheral blood of 50 laryngeal cancer patients at various clinical stages in comparison to healthy controls (n=15. Moreover, we determined the expression of CD25, CD69 and CD95 antigens on T lymphocytes.Results: The percentage of CD4+/CD3+ T lymphocytes in the controls was higher than in laryngeal cancer patients, both with early and late stages of the disease. The percentage of CD8+/CD3+ T lymphocytes in healthy controls was lower than in patients with early and late clinical stages of laryngeal cancer. Patients with advanced laryngeal cancer showed a lower percentage of iNKT cells and higher frequencies of T regulatory cells (Tregs than the controls. Advanced clinical stages of laryngeal cancer are associated with impaired activation of lymphocytes.Conclusions: Our study confirmed that laryngeal cancer cells exert a strong suppressor effect on the immune system of the host. This is reflected by a decrease in the percentage of iNKT cells that are capable of cancer cell elimination, and a concomitant increase in the percentage of Tregs. However, further studies are needed in order to explain the underlying mechanisms of immunosuppression and understand interactions between immune and cancer cells.

  7. Cellular interactions of synovial fluid γδ T cells in juvenile idiopathic arthritis.

    Science.gov (United States)

    Bendersky, Anna; Marcu-Malina, Victoria; Berkun, Yackov; Gerstein, Maya; Nagar, Meital; Goldstein, Itamar; Padeh, Shai; Bank, Ilan

    2012-05-01

    The pathogenesis of juvenile idiopathic arthritis (JIA) is thought to involve multiple components of the cellular immune system, including subsets of γδ T cells. In this study, we conducted experiments to define the functional roles of one of the major synovial fluid (SF) T cell subsets, Vγ9(+)Vδ2(+) (Vγ9(+)) T cells, in JIA. We found that as opposed to CD4(+) T cells, equally high percentages (∼35%) of Vγ9(+) T cells in SF and peripheral blood (PB) produced TNF-α and IFN-γ. Furthermore, stimulation with isopentenyl pyrophosphate (IPP), a metabolite in the mevalonate pathway, which is a specific potent Ag for Vγ9Jγ1.2(+) T cells, similarly amplified cytokine secretion by SF and PB Vγ9(+) T cells. Significantly, the SF subset expressed higher levels of CD69 in situ, suggesting their recent activation. Furthermore, 24-h coculturing with SF-derived fibroblasts enhanced CD69 on the SF > PB Vγ9(+) T cells, a phenomenon strongly augmented by zoledronate, a farnesyl pyrophosphate synthase inhibitor that increases endogenous intracellular IPP. Importantly, although Vγ9(+) T cell proliferation in response to IPP was significantly lower in SF than PBMC cultures, it could be enhanced by depleting SF CD4(+)CD25(+)FOXP3(+) cells (regulatory T cells). Furthermore, coculture with the Vγ9(+) T cells in medium containing zoledronate or IPP strongly increased SF-derived fibroblasts' apoptosis. The findings that IPP-responsive proinflammatory synovial Vγ9(+) T cells for which proliferation is partly controlled by regulatory T cells can recognize and become activated by SF fibroblasts and then induce their apoptosis suggest their crucial role in the pathogenesis and control of synovial inflammation.

  8. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease

    Science.gov (United States)

    McLane, Laura M.; Steblyanko, Maria; Anikeeva, Nadia; Ablanedo-Terrazas, Yuria; Demers, Korey; Eller, Michael A.; Streeck, Hendrik; Jansson, Marianne; Sönnerborg, Anders; Canaday, David H.; Naji, Ali; Wherry, E. John; Robb, Merlin L.; Reyes-Teran, Gustavo; Sykulev, Yuri; Betts, Michael R.

    2018-01-01

    CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. PMID:29652923

  9. Immune Response to Sipuleucel-T in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    David I. Quinn

    2012-04-01

    Full Text Available Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients’ own antigen presenting cells (APCs to prostatic acid phosphatase (PAP fused with granulocyte-macrophage colony stimulating factor (GM-CSF and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The

  10. Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

    Science.gov (United States)

    Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A

    2018-03-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγ pos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Antifibrotic Therapy in Simian Immunodeficiency Virus Infection Preserves CD4+ T-Cell Populations and Improves Immune Reconstitution With Antiretroviral Therapy

    Science.gov (United States)

    Estes, Jacob D.; Reilly, Cavan; Trubey, Charles M.; Fletcher, Courtney V.; Cory, Theodore J.; Piatak, Michael; Russ, Samuel; Anderson, Jodi; Reimann, Thomas G.; Star, Robert; Smith, Anthony; Tracy, Russell P.; Berglund, Anna; Schmidt, Thomas; Coalter, Vicky; Chertova, Elena; Smedley, Jeremy; Haase, Ashley T.; Lifson, Jeffrey D.; Schacker, Timothy W.

    2015-01-01

    Even with prolonged antiretroviral therapy (ART), many human immunodeficiency virus-infected individuals have <500 CD4+ T cells/µL, and CD4+ T cells in lymphoid tissues remain severely depleted, due in part to fibrosis of the paracortical T-cell zone (TZ) that impairs homeostatic mechanisms required for T-cell survival. We therefore used antifibrotic therapy in simian immunodeficiency virus-infected rhesus macaques to determine whether decreased TZ fibrosis would improve reconstitution of peripheral and lymphoid CD4+ T cells. Treatment with the antifibrotic drug pirfenidone preserved TZ architecture and was associated with significantly larger populations of CD4+ T cells in peripheral blood and lymphoid tissues. Combining pirfenidone with an ART regimen was associated with greater preservation of CD4+ T cells than ART alone and was also associated with higher pirfenidone concentrations. These data support a potential role for antifibrotic drug treatment as adjunctive therapy with ART to improve immune reconstitution. PMID:25246534

  12. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.

    Science.gov (United States)

    Momtazi-Borojeni, Amir Abbas; Haftcheshmeh, Saeed Mohammadian; Esmaeili, Seyed-Alireza; Johnston, Thomas P; Abdollahi, Elham; Sahebkar, Amirhossein

    2018-02-01

    Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  14. Systemic Immune-Inflammation Index and Circulating T-Cell Immune Index Predict Outcomes in High-Risk Acral Melanoma Patients Treated with High-Dose Interferon

    Directory of Open Access Journals (Sweden)

    Jiayi Yu

    2017-10-01

    Full Text Available High-dose interferon alfa-2b (IFN-α-2b improves the survival of patients with high-risk melanoma. We aimed to identify baseline peripheral blood biomarkers to predict the outcome of acral melanoma patients treated with IFN-α-2b. Pretreatment baseline parameters and clinical data were assessed in 226 patients with acral melanoma. Relapse-free survival (RFS and overall survival (OS were assessed using the Kaplan-Meier method, and multivariate Cox regression analyses were applied after adjusting for stage, lactate dehydrogenase (LDH, and ulceration. Univariate analysis showed that neutrophil-to-lymphocyte ratio ≥2.35, platelet-to-lymphocyte ratio ≥129, systemic immune-inflammation index (SII ≥615 × 109/l, and elevated LDH were significantly associated with poor RFS and OS. The SII is calculated as follows: platelet count × neutrophil count/lymphocyte count. On multivariate analysis, the SII was associated with RFS [hazard ratio (HR=1.661, 95% confidence interval (CI: 1.066-2.586, P=.025] and OS (HR=2.071, 95% CI: 1.204-3.564, P=.009. Additionally, we developed a novel circulating T-cell immune index (CTII calculated as follows: cytotoxic T lymphocytes/(CD4+ regulatory T cells × CD8+ regulatory T cells. On univariate analysis, the CTII was associated with OS (HR=1.73, 95% CI: 1.01-2.94, P=.044. The SII and CTII might serve as prognostic indicators in acral melanoma patients treated with IFN-α-2b. The indexes are easily obtainable via routine tests in clinical practice.

  15. HPV-E7 delivered by engineered exosomes elicits a protective CD8⁺ T cell-mediated immune response.

    Science.gov (United States)

    Di Bonito, Paola; Ridolfi, Barbara; Columba-Cabezas, Sandra; Giovannelli, Andrea; Chiozzini, Chiara; Manfredi, Francesco; Anticoli, Simona; Arenaccio, Claudia; Federico, Maurizio

    2015-03-09

    We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.

  16. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma.

    Science.gov (United States)

    Schadendorf, Dirk; Nghiem, Paul; Bhatia, Shailender; Hauschild, Axel; Saiag, Philippe; Mahnke, Lisa; Hariharan, Subramanian; Kaufman, Howard L

    2017-01-01

    Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.

  17. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses

    DEFF Research Database (Denmark)

    Schaeffer, E B; Sette, A; Johnson, D L

    1989-01-01

    -cell responses. Ia binding and Ia-restricted T-cell immunogenicity could be determined for a total of 54 peptide-MHC combinations. Only 30% of the 54 instances examined involved detectable Ia binding, but they represented almost all (12 of 13) of the immune responses found. However, binding to Ia......Using BALB/c and CBA/J mice, the I-region associated (Ia) binding capacity and T-cell immunogenicity of a panel of 14 overlapping peptides that span the entire sequence of the protein staphylococcal nuclease (Nase) was examined to evaluate major histocompatibility gene complex (MHC) control of T...... was not sufficient to ensure T-cell immunogenicity, since only 70% of the binding events were productive--i.e., were associated with an immune response. Thus, Ia molecules have the expected characteristics of a highly permissive capacity for antigen interaction that allows them to function as restriction elements...

  18. Production of Autoantibodies in Chronic Hepatitis B Virus Infection Is Associated with the Augmented Function of Blood CXCR5+CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Lei

    Full Text Available T follicular helper cells (Tfh provide help to B cells to support their activation, expansion and differentiation. However, the role of Tfh cells in chronic HBV infection is poorly defined. The aim of this research was to examine the function of Tfh cells and whether they are involved in HBV related disease. Blood CXCR5+CD4+T cells and B cells in 85 patients with chronic HBV infection (HBV patients and health controls (HC were examined by flow cytometry. The molecule expression in blood CXCR5+CD4+ T cells was detected by real-time PCR. Blood CXCR5+CD4+ T cells and B cells were co-cultured and the production of Ig and cytokines was detected by ELISA. Autoantibodies were detected by indirect immunofluorescence and immunospot assay. We found that blood CXCR5+CD4+ T cells in patients with chronic HBV infection (HBV patients expressed higher level of activation related molecules and cytokines than that from health controls (HC.In HBV patients, the frequency of blood CXCR5+CD4+ T cells was significantly correlated with serum ALT and AST. We also found that blood CXCR5+CD4+ T cells from HBV patients could induce B cells to secret higher level of immunoglobulin than that from HC. Several autoantibodies, including ANA, ss-A, ss-B, Scl-70, Jo-1, ect, were indeed positive in 65% HBV patients. Among HBV patients, expression of function related molecules was significantly higher in blood CXCR5+CD4+ T cells from patients with autoantibodies than that without autoantibodies. Our research indicated that blood CXCR5+CD4+ T cells from HBV patients were over activated and show augmented capacity to help B cells for antibody secreting, which might correlated with liver inflammation and the production of autoantibodies in extrahepatic manifestations.

  19. Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors.

    Science.gov (United States)

    Gay, Francesca; D'Agostino, Mattia; Giaccone, Luisa; Genuardi, Mariella; Festuccia, Moreno; Boccadoro, Mario; Bruno, Benedetto

    2017-08-01

    Advances in understanding myeloma biology have shown that disease progression is not only the consequence of intrinsic tumor changes but also of interactions between the tumor and the microenvironment in which the cancer grows. The immune system is an important component of the tumor microenvironment in myeloma, and acting on the immune system is an appealing new treatment strategy. There are 2 ways to act toward immune cells and boost antitumor immunity: (1) to increase antitumor activity (acting on T and NK cytotoxic cells), and (2) to reduce immunosuppression (acting on myeloid-derived stem cells and T regulatory cells). Checkpoint inhibitors and adoptive cell therapy (ACT) are 2 of the main actors, together with monoclonal antibodies and immunomodulatory agents, in the immune-oncologic approach. The aim of checkpoint inhibitors is to release the brakes that block the action of the immune system against the tumor. Anti-programmed death-1 (PD-1) and PD-1-Ligand, as well as anti-CTLA4 and KIR are currently under evaluation, as single agents or in combination, with the best results achieved so far with combination of anti-PD-1 and immunomodulatory agents. The aim of ACT is to create an immune effector specific against the tumor. Preliminary results on chimeric antigen receptor (CAR) T cells, first against CD19, and more recently against B-cell maturation antigen, have shown to induce durable responses in heavily pretreated patients. This review focuses on the most recent clinical results available on the use of checkpoint inhibitors and CAR-T cells in myeloma, in the context of the new immune-oncologic approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  1. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis

    Science.gov (United States)

    McNally, Alice; Hill, Geoffrey R.; Sparwasser, Tim; Thomas, Ranjeny; Steptoe, Raymond J.

    2011-01-01

    CD4+CD25+ regulatory T cells (Treg) play a crucial role in the regulation of immune responses. Although many mechanisms of Treg suppression in vitro have been described, the mechanisms by which Treg modulate CD8+ T cell differentiation and effector function in vivo are more poorly defined. It has been proposed, in many instances, that modulation of cytokine homeostasis could be an important mechanism by which Treg regulate adaptive immunity; however, direct experimental evidence is sparse. Here we demonstrate that CD4+CD25+ Treg, by critically regulating IL-2 homeostasis, modulate CD8+ T-cell effector differentiation. Expansion and effector differentiation of CD8+ T cells is promoted by autocrine IL-2 but, by competing for IL-2, Treg limit CD8+ effector differentiation. Furthermore, a regulatory loop exists between Treg and CD8+ effector T cells, where IL-2 produced during CD8+ T-cell effector differentiation promotes Treg expansion. PMID:21502514

  2. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency.

    Science.gov (United States)

    Umeshappa, Channakeshava S; Nanjundappa, Roopa H; Xie, Yufeng; Freywald, Andrew; Xu, Qingyong; Xiang, Jim

    2013-04-01

    Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions. © 2012 Blackwell Publishing Ltd.

  3. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  4. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2010-10-01

    Full Text Available Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune response in an Ag-nonspecific manner, interacting with other T cells. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity but also influence the immune response to allergens as well as against tumor cells and pathogens. In this experiment we showed that active compound from Andrographis paniculata namely andrographolide can induce active regulatory T cell that has an efficacy to cure rheumatoid arthritis mice model.

  5. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease.

    Science.gov (United States)

    Dunne, Margaret R; Elliott, Louise; Hussey, Seamus; Mahmud, Nasir; Kelly, Jacinta; Doherty, Derek G; Feighery, Conleth F

    2013-01-01

    Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56(+) T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.

  6. Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease.

    Directory of Open Access Journals (Sweden)

    Margaret R Dunne

    Full Text Available Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets, natural killer cells, CD56(+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.

  7. T-Cell Warriors—Equipped to Kill Cancer Cells | Center for Cancer Research

    Science.gov (United States)

    When the body recognizes tumor cells as foreign, a natural immune response arises to attack them. Unfortunately, tumors have ways to evade immune surveillance systems and antitumor responses are often too weak to defeat the disease. Rather than relying on the body’s natural response, scientists can now manipulate a patient’s own immune cells so that they latch on to tumor cells by recognizing specific proteins on their surface. A type of immune cell that has been explored for this purpose is the killer (cytotoxic) T cell, which eliminates cells infected by viruses, damaged cells, and tumor cells.

  8. Challenges and future perspectives of T cell immunotherapy in cancer

    Science.gov (United States)

    de Aquino, Maria Teresa P; Malhotra, Anshu; Mishra, Manoj K; Shanker, Anil

    2015-01-01

    Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signaling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer. PMID:26096822

  9. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells.

    Science.gov (United States)

    Ramachandran, Mohanraj; Dimberg, Anna; Essand, Magnus

    2017-08-01

    Cell therapy is an advanced form of cancer immunotherapy that has had remarkable clinical progress in the past decade in the search for cure of cancer. Most success has been achieved for chimeric antigen receptor (CAR) T-cells where CAR T-cells targeting CD19 show very high complete response rates for patients with refractory acute B-cell acute lymphoblastic leukemia (ALL) and are close to approval for this indication. CD19 CAR T-cells are also effective against B-cell chronic lymphoblastic leukemia (CLL) and B-cell lymphomas. Although encouraging, CAR T-cells have not yet proven clinically effective for solid tumors. This is mainly due to the lack of specific and homogenously expressed targets to direct the T-cells against and a hostile immunosuppressive tumor microenvironment in solid tumors. Cancer vaccines based on dendritic cells (DC) are also making progress although clinical efficacy is still lacking. The likelihood of success is however increasing now when individual tumors can be sequences and patient-specific neoepitopes identified. Neoepitopes and/or neoantigens can then be included in patient-based DC vaccines. This review discusses recent advancements of DC vaccines and CAR T-cells with emphasis on the cancer-immunity cycle, and current efforts to design novel cell therapies. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. The Role of Lymphatic Niches in T Cell Differentiation

    Science.gov (United States)

    Capece, Tara; Kim, Minsoo

    2016-01-01

    Long-term immunity to many viral and bacterial pathogens requires CD8+ memory T cell development, and the induction of long-lasting CD8+ memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8+ T cell compartment is highly dependent on the early activation cues received by naïve CD8+ T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs. PMID:27306645

  11. Oct2 and Obf1 as facilitators of B:T cell collaboration during a humoral immune response

    Directory of Open Access Journals (Sweden)

    Lynn M Corcoran

    2014-03-01

    Full Text Available The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig in B lineage cells. This prediction flowed from the earlier observation that an 8 bp sequence, the octamer motif, was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f 1 gene, was characterised and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1, encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1 on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterisation of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signalling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signalling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.

  12. Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1 virus infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Miloje Savic

    Full Text Available Maternal influenza infection during pregnancy is associated with increased risk of morbidity and mortality. However, the link between the anti-influenza immune responses and health-related risks during infection is not well understood. We have analyzed memory T and NK cell mediated immunity (CMI responses in pandemic influenza A(H1N1pdm09 (pdm09 virus infected non-vaccinated pregnant women participating in the Norwegian Influenza Pregnancy Cohort (NorFlu. The cohort includes information on immunization, self-reported health and disease status, and biological samples (plasma and PBMC. Infected cases (N = 75 were defined by having a serum hemagglutination inhibition (HI titer > = 20 to influenza pdm09 virus at the time of delivery, while controls (N = 75 were randomly selected among non-infected pregnant women (HI titer <10. In ELISpot assays cases had higher frequencies of IFNγ+ CD8+ T cells responding to pdm09 virus or conserved CD8 T cell-restricted influenza A virus epitopes, compared to controls. Within this T cell population, frequencies of CD95+ late effector (CD45RA+CCR7- and naive (CD45RA+CCR7+ CD8+ memory T cells correlated inversely with self-reported influenza illness (ILI symptoms. ILI symptoms in infected women were also associated with lower numbers of poly-functional (IFNγ+TNFα+, IL2+IFNγ+, IL2+IFNγ+TNFα+ CD4+ T cells and increased frequencies of IFNγ+CD3-CD7+ NK cells compared to asymptomatic cases, or controls, after stimulation with the pdm09 virus. Taken together, virus specific and functionally distinct T and NK cell populations may serve as cellular immune correlates of clinical outcomes of pandemic influenza disease in pregnant women. Our results may provide information important for future universal influenza vaccine design.

  13. Distinct T and NK cell populations may serve as immune correlates of protection against symptomatic pandemic influenza A(H1N1) virus infection during pregnancy.

    Science.gov (United States)

    Savic, Miloje; Dembinski, Jennifer L; Laake, Ida; Hungnes, Olav; Cox, Rebecca; Oftung, Fredrik; Trogstad, Lill; Mjaaland, Siri

    2017-01-01

    Maternal influenza infection during pregnancy is associated with increased risk of morbidity and mortality. However, the link between the anti-influenza immune responses and health-related risks during infection is not well understood. We have analyzed memory T and NK cell mediated immunity (CMI) responses in pandemic influenza A(H1N1)pdm09 (pdm09) virus infected non-vaccinated pregnant women participating in the Norwegian Influenza Pregnancy Cohort (NorFlu). The cohort includes information on immunization, self-reported health and disease status, and biological samples (plasma and PBMC). Infected cases (N = 75) were defined by having a serum hemagglutination inhibition (HI) titer > = 20 to influenza pdm09 virus at the time of delivery, while controls (N = 75) were randomly selected among non-infected pregnant women (HI titer <10). In ELISpot assays cases had higher frequencies of IFNγ+ CD8+ T cells responding to pdm09 virus or conserved CD8 T cell-restricted influenza A virus epitopes, compared to controls. Within this T cell population, frequencies of CD95+ late effector (CD45RA+CCR7-) and naive (CD45RA+CCR7+) CD8+ memory T cells correlated inversely with self-reported influenza illness (ILI) symptoms. ILI symptoms in infected women were also associated with lower numbers of poly-functional (IFNγ+TNFα+, IL2+IFNγ+, IL2+IFNγ+TNFα+) CD4+ T cells and increased frequencies of IFNγ+CD3-CD7+ NK cells compared to asymptomatic cases, or controls, after stimulation with the pdm09 virus. Taken together, virus specific and functionally distinct T and NK cell populations may serve as cellular immune correlates of clinical outcomes of pandemic influenza disease in pregnant women. Our results may provide information important for future universal influenza vaccine design.

  14. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Katherine Devitt

    2014-01-01

    Full Text Available Hemophagocytic lymphohistiocytosis (HLH is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  15. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma.

    Science.gov (United States)

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A; Chen, Benjamin J

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  16. IL-1R and MyD88 signalling in CD4+ T cells promote Th17 immunity and atherosclerosis.

    Science.gov (United States)

    Engelbertsen, Daniel; Rattik, Sara; Wigren, Maria; Vallejo, Jenifer; Marinkovic, Goran; Schiopu, Alexandru; Björkbacka, Harry; Nilsson, Jan; Bengtsson, Eva

    2018-01-01

    The role of CD4+ T cells in atherosclerosis has been shown to be dependent on cytokine cues that regulate lineage commitment into mature T helper sub-sets. In this study, we tested the roles of IL-1R1 and MyD88 signalling in CD4+ T cells in atherosclerosis. We transferred apoe-/-myd88+/+ or apoe-/-myd88-/- CD4+ T cells to T- and B-cell-deficient rag1-/-apoe-/- mice fed high fat diet. Mice given apoe-/-myd88-/- CD4+ T cells exhibited reduced atherosclerosis compared with mice given apoe-/-myd88+/+ CD4+ T cells. CD4+ T cells from apoe-/-myd88-/- produced less IL-17 but similar levels of IFN-γ. Treatment of human CD4+ T cells with a MyD88 inhibitor inhibited IL-17 secretion in vitro. Transfer of il1r1-/- CD4+ T cells recapitulated the phenotype seen by transfer of myd88-/- CD4+ T cells with reduced lesion development and a reduction in Th17 and IL-17 production compared with wild type CD4+ T cell recipients. Relative collagen content of lesions was reduced in mice receiving il1r1-/- CD4+ T cells. We demonstrate that both IL1R and MyD88 signalling in CD4+ T cells promote Th17 immunity, plaque growth and may regulate plaque collagen levels. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  17. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Adam L. Burrack

    2017-12-01

    Full Text Available Type 1 diabetes (T1D results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.

  18. Novel understanding of self-reactive T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2016-01-01

    In a recent issue of Immunity, Mark Davis and colleagues describe that thymic selection does not eliminate but prunes self-reactive T cell clones. Self-reactive T cells are a natural part of the T-cell repertoire and may be important in the fight against pathogens in addition to being important...

  19. Restimulation-induced T-cell death through NTB-A/SAP signaling pathway is impaired in tuberculosis patients with depressed immune responses.

    Science.gov (United States)

    Hernández Del Pino, Rodrigo E; Pellegrini, Joaquín M; Rovetta, Ana I; Peña, Delfina; Álvarez, Guadalupe I; Rolandelli, Agustín; Musella, Rosa M; Palmero, Domingo J; Malbran, Alejandro; Pasquinelli, Virginia; García, Verónica E

    2017-09-01

    Production of IFN-γ contributes to host defense against Mycobacterium tuberculosis (Mtb) infection. We previously demonstrated that Signaling lymphocytic activation molecule-associated protein (SAP) expression on cells from tuberculosis (TB) patients was inversely correlated with IFN-γ production. Here we first investigated the role of NK, T- and B-cell antigen (NTB-A)/SAP pathway in the regulation of Th1 response against Mtb. Upon antigen stimulation, NTB-A phosphorylation rapidly increases and afterwards modulates IFN-γ and IL-17 secretion. To sustain a healthy immune system, controlled expansion and contraction of lymphocytes, both during and after an adaptive immune response, is essential. Besides, restimulation-induced cell death (RICD) results in an essential homeostatic mechanism for precluding excess T-cell accumulation and associated immunopathology during the course of certain infections. Accordingly, we found that the NTB-A/SAP pathway was required for RICD during active tuberculosis. In low responder (LR) TB patients, impaired RICD was associated with diminished FASL levels, IL-2 production and CD25 high expression after cell-restimulation. Interestingly, we next observed that SAP mediated the recruitment of the Src-related kinase FYNT, only in T cells from LR TB patients that were resistant to RICD. Together, we showed that the NTB-A/SAP pathway regulates T-cell activation and RICD during human TB. Moreover, the NTB-A/SAP/FYNT axis promotes polarization to an unfavorable Th2-phenotype.

  20. Double control systems for human T-cell leukemia virus type 1 by innate and acquired immunity.

    Science.gov (United States)

    Kannagi, Mari; Hasegawa, Atsuhiko; Kinpara, Shuichi; Shimizu, Yukiko; Takamori, Ayako; Utsunomiya, Atae

    2011-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1-specific T-cell responses elicit antitumor and antiviral effects in experimental models, and are considered to be one of the most important determinants of the disease manifestation, since they are activated in HAM/TSP but not in ATL patients. The combination of low T-cell responses and elevated HTLV-1 proviral loads are features of ATL, and are also observed in a subpopulation of HTLV-1 carriers at the asymptomatic stage, suggesting that these features may be underlying risk factors. These risks may potentially be reduced by vaccination to activate HTLV-1-specific T-cell responses. HAM/TSP and ATL patients also differ in their levels of HTLV-1 mRNA expression, which are generally low in vivo but slightly higher in HAM/TSP patients. Our recent study indicated that viral expression in HTLV-1-infected T-cells is suppressed by stromal cells in culture through type-I IFNs. The suppression was reversible after isolation from the stromal cells, mimicking a long-standing puzzling phenomenon in HTLV-1 infection where the viral expression is very low in vivo and rapidly induced in vitro. Collectively, HTLV-1 is controlled by both acquired and innate immunity in vivo: HTLV-1-specific T-cells survey infected cells, and IFNs suppress viral expression. Both effects would contribute to a reduction in viral pathogenesis, although they may potentially influence or conflict with one another. The presence of double control systems for HTLV-1 infection provides a new concept for understanding the pathogenesis of HTLV-1-mediated malignant and inflammatory diseases. © 2011 Japanese Cancer Association.

  1. [Change of CD4(+) CD25(+) regulatory T cells and NK Cells in peripheral blood of children with acute leukemia and its possible significance in tumor immunity].

    Science.gov (United States)

    Wu, Ze-Lin; Hu, Guan-Yu; Chen, Fu-Xiong; Lu, Hui-Min; Wu, Zi-Liang; Li, Hua-Mei; Wei, Feng-Gui; Guan, Jing-Ming; Wu, Li-Ping

    2010-06-01

    This study was purposed to investigate the changes of CD4(+) CD25(+) regulatory T cells and NK cells in peripheral blood of acute leukemia children at different stages, the function of immune system and the possible roles of the CD4(+) CD25(+) regulatory T cells as well as NK cells in leukemia immunity. The number and proportion of CD4(+) CD25(+) regulatory T cells and NK cells were detected by flow cytometry in the peripheral blood of 53 acute leukemia children, including 25 patients in new diagnosis and 28 patients in continuous complete remission (CCR), and were compared with that of 20 normal children. The results indicated that the mean proportion of CD4(+) CD25(+) CD127(+) in CD4(+) T cells of peripheral blood in newly diagnosed patients, patients with CCR and normal children were (9.55 +/- 2.41)%, (8.54 +/- 2.51)% and (6.25 +/- 0.85)% respectively, the mean proportions of CD4(+)CD25(+)CD127(+) in newly diagnosed patients and patients with CCR were higher than that in normal children, the mean proportion of CD4(+)CD25(+)CD127(+) in newly diagnosed patients were higher than that in patients with CCR (p cell count in patients with acute leukaemia decreased as compared with normal control, while after achieving CCR, the NK cell count in patients were also less than that in normal control (4.11 +/- 3.87% and 10.41 +/- 7.20% vs 14.06 +/- 5.95%, p regulatory T cells is a simple, reproductive and accurate method, and the CD4(+) CD25(+) CD127(+) T cells can better reflect the proportion of CD4(+)CD25(+) regulatory T cells. The increase of regulatory T cells and decrease of NK cells in pediatric patients with acute leukemia indicate that the function of NK cells may be depressed. Treg T cells play a role in occurrence and development of leukemia, and are involved in down-regulating NK cell function.

  2. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    Science.gov (United States)

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity.

    Science.gov (United States)

    Smaill, Fiona; Jeyanathan, Mangalakumari; Smieja, Marek; Medina, Maria Fe; Thanthrige-Don, Niroshan; Zganiacz, Anna; Yin, Cindy; Heriazon, Armando; Damjanovic, Daniela; Puri, Laura; Hamid, Jemila; Xie, Feng; Foley, Ronan; Bramson, Jonathan; Gauldie, Jack; Xing, Zhou

    2013-10-02

    There is an urgent need to develop new tuberculosis (TB) vaccines to safely and effectively boost Bacille Calmette-Guérin (BCG)-triggered T cell immunity in humans. AdHu5Ag85A is a recombinant human type 5 adenovirus (AdHu5)-based TB vaccine with demonstrated efficacy in a number of animal species, yet it remains to be translated to human applications. In this phase 1 study, we evaluated the safety and immunogenicity of AdHu5Ag85A in both BCG-naïve and previously BCG-immunized healthy adults. Intramuscular immunization of AdHu5Ag85A was safe and well tolerated in both trial volunteer groups. Moreover, although AdHu5Ag85A was immunogenic in both trial volunteer groups, it much more potently boosted polyfunctional CD4(+) and CD8(+) T cell immunity in previously BCG-vaccinated volunteers. Furthermore, despite prevalent preexisting anti-AdHu5 humoral immunity in most of the trial volunteers, we found little evidence that such preexisting anti-AdHu5 immunity significantly dampened the potency of AdHu5Ag85A vaccine. This study supports further clinical investigations of the AdHu5Ag85A vaccine for human applications. It also suggests that the widely perceived negative effect of preexisting anti-AdHu5 immunity may not be universally applied to all AdHu5-based vaccines against different types of human pathogens.

  4. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Tianming [College of Pharmacy, South-Central University for Nationalities, Wuhan (China); Wang, Chaoyuan [College of Life Science, South-Central University for Nationalities, Wuhan (China); Su, Hanwen, E-mail: suhanwen-1@163.com [Renmin Hospital of Wuhan University, Wuhan (China); Xiang, Meixian, E-mail: xiangmeixian99@163.com [College of Pharmacy, South-Central University for Nationalities, Wuhan (China)

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.

  5. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan; Su, Hanwen; Xiang, Meixian

    2013-01-01

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells

  6. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  7. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  8. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    Science.gov (United States)

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  9. Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones.

    Directory of Open Access Journals (Sweden)

    Ramon Tiu

    2007-03-01

    Full Text Available The unique structure of the T cell receptor (TCR enables molecular identification of individual T cell clones and provides an unique opportunity for the design of molecular diagnostic tests based on the structure of the rearranged TCR chain e.g., using the TCR CDR3 region. Initially, clonal T cell malignancies, including T cell large granular lymphocyte leukemia (T-LGL, mucosis fungoides and peripheral T cell lymphoma were targets for the TCR-based analytic assays such as detection of clonality by T-gamma rearrangement using y-chain-specific PCR or Southern Blotting. Study of these disorders facilitated further analytic concepts and application of rational methods of TCR analysis to investigations of polyclonal T cell-mediated diseases. In hematology, such conditions include graft versus host disease (GvHD and immune-mediated bone marrow failure syndromes. In aplastic anemia (AA, myelodysplastic syndrome (MDS or paroxysmal nocturnal hemoglobinuria (PNH, cytotoxic T cell responses may be directed against certain antigens located on stem or more lineage-restricted progenitor cells in single lineage cytopenias. The nature of the antigenic targets driving polyclonal CTL responses remains unclear. Novel methods of TCR repertoire analysis, include VB flow cytometry, peptide-specific tetramer staining, in vitro stimulation assays and TCR CDR3-specific PCR. Such PCR assay can be either VB family-specific or multiplexed for all VB families. Amplified products can be characterized and quantitated to facilitate detection of the most immunodominant clonotypes. Such clonotypes may serve as markers for the global polyclonal T cell response. Identification of these clonotypes can be performed in blood and tissue biopsy material by various methods. Once immunodominant clonotypes corresponding to pathogenic CTL clones are identified they can serve as surrogate markers for the activity of the pathophysiologic process or even indicate the presence of specific

  10. Antigen-Experienced CD4lo T Cells Are Linked to Deficient Contraction of the Immune Response in Autoimmune Diabetes

    Directory of Open Access Journals (Sweden)

    Sean Linkes

    2010-01-01

    Full Text Available Following proper activation, naïve “CD4lo” T cells differentiate into effector T cells with enhanced expression of CD4 -“CD4hi” effectors. Autoimmune diabetes-prone NOD mice display a unique set of antigen-experienced “CD4lo” T cells that persist after primary stimulation. Here, we report that a population of such cells remained after secondary and tertiary TCR stimulation and produced cytokines upon antigenic challenge. However, when NOD blasts were induced in the presence of rIL-15, the number of antigen-experienced “CD4lo” T cells was significantly reduced. Clonal contraction, mediated in part by CD95-dependent activation-induced cell death (AICD, normally regulates the accumulation of “CD4hi” effectors. Interestingly, CD95 expression was dramatically reduced on the AICD-resistant NOD “CD4lo” T cells. Thus, while autoimmune disease has often been attributed to the engagement of robust autoimmunity, we suggest that the inability to effectively contract the immune response distinguishes benign autoimmunity from progressive autoimmune diseases that are characterized by chronic T cell-mediated inflammation.

  11. Human influenza viruses and CD8(+) T cell responses.

    Science.gov (United States)

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    Science.gov (United States)

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  13. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  14. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  15. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  16. Cross–dressers turn on T cells

    OpenAIRE

    YEWDELL, JONATHAN W.; DOLAN, BRIAN P.

    2011-01-01

    Memory T cells remember viruses from previous infections, providing immunity by facilitating the killing of infected cells. For this, they exploit cross-dressing, the transfer of antigens between antigen-presenting cells.

  17. The vitamin D receptor and T cell function

    Directory of Open Access Journals (Sweden)

    Martin eKongsbak

    2013-06-01

    Full Text Available The vitamin D receptor (VDR is a nuclear, ligand-dependent transcription factor that in complex with hormonally active vitamin D, 1,25(OH2D3, regulates the expression of more than 900 genes involved in a wide array of physiological functions. The impact of 1,25(OH2D3-VDR signaling on immune function has been the focus of many recent studies as a link between 1,25(OH2D3 and sus-ceptibility to various infections and to development of a variety of inflammatory diseases has been suggested. It is also becoming increasingly clear that microbes slow down immune reactivity by dysregulating the VDR ultimately to increase their chance of survival. Immune modulatory therapies that enhance VDR expression and activity are therefore considered in the clinic today to a greater extent. As T cells are of great importance for both protective immunity and development of inflammatory diseases a variety of studies have been engaged investigating the impact of VDR ex-pression in T cells and found that VDR expression and activity plays an important role in both T cell development, differentiation and effector function. In this review we will analyze current know-ledge of VDR regulation and function in T cells and discuss its importance for immune activity.

  18. Dual Role of miR-21 in CD4+T-Cells : Activation-Induced miR-21 Supports Survival of Memory T-Cells and Regulates CCR7 Expression in Naive T-Cells

    NARCIS (Netherlands)

    Smigielska-Czepiel, Katarzyna; van den Berg, Anke; Jellema, Pytrick; Slezak-Prochazka, Izabella; Maat, Henny; van den Bos, Hilda; van der Lei, Roelof Jan; Kluiver, Joost; Brouwer, Elisabeth; Boots, Anne Mieke H.; Kroesen, Bart-Jan

    2013-01-01

    Immune cell-type specific miRNA expression patterns have been described but the detailed role of single miRNAs in the function of T-cells remains largely unknown. We investigated the role of miR-21 in the function of primary human CD4+ T-cells. MiR-21 is substantially expressed in T-cells with a

  19. Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function.

    Directory of Open Access Journals (Sweden)

    Cheryl Hemingway

    Full Text Available The WHO estimates around a million children contract tuberculosis (TB annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM. Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB, and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68% of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16 and PTB patients (r2 = 0.71 p = 2x10-16 when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11 and T-cell receptor signalling (p = 6.56E-07. Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003. Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.

  20. Homing of immune cells: role in homeostasis and intestinal inflammation.

    Science.gov (United States)

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  1. Simultaneous Infiltration of Polyfunctional Effector and Suppressor T Cells into Renal Cell Carcinomas

    NARCIS (Netherlands)

    Attig, Sebastian; Hennenlotter, Jörg; Pawelec, Graham; Klein, Gerd; Koch, Sven D.; Pircher, Hanspeter; Feyerabend, Susan; Wernet, Dorothee; Stenzl, Arnulf; Rammensee, Hans-Georg; Gouttefangeas, Cécile

    2009-01-01

    Renal cell carcinoma is frequently infiltrated by cells of the immune system. This makes it important to understand interactions between cancer cells and immune cells so they can be manipulated to bring clinical benefit. Here, we analyze subsets and functions of T lymphocytes infiltrating renal cell

  2. Immune selection of tumor cells in TCR β-chain transgenic mice.

    Science.gov (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B

    2014-10-01

    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  3. Temporal anomaly detection: an artificial immune approach based on T cell activation, clonal size regulation and homeostasis.

    Science.gov (United States)

    Antunes, Mário J; Correia, Manuel E

    2010-01-01

    This paper presents an artificial immune system (AIS) based on Grossman's tunable activation threshold (TAT) for temporal anomaly detection. We describe the generic AIS framework and the TAT model adopted for simulating T Cells behaviour, emphasizing two novel important features: the temporal dynamic adjustment of T Cells clonal size and its associated homeostasis mechanism. We also present some promising results obtained with artificially generated data sets, aiming to test the appropriateness of using TAT in dynamic changing environments, to distinguish new unseen patterns as part of what should be detected as normal or as anomalous. We conclude by discussing results obtained thus far with artificially generated data sets.

  4. T Cell Genesis: In Vitro Veritas Est?

    OpenAIRE

    Brauer, Patrick M.; Singh, Jastaranpreet; Xhiku, Sintia; Zúñiga-Pflücker, Juan Carlos

    2016-01-01

    T cells, as orchestrators of the adaptive immune response, serve important physiological and potentially therapeutic roles, for example in cancer immunotherapy. T cells are readily isolated from patients; however, the yield of antigen-specific T cells is limited, thus making their clinical use challenging. Therefore, the generation of T lymphocytes from hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (PSCs) in vitro provides an attractive method for large-scale pr...

  5. Natural killer T cells in lipoprotein metabolism and atherosclerosis

    OpenAIRE

    Getz, Godfrey S; VanderLaan, Paul A; Reardon, Catherine A

    2011-01-01

    Cells of both the innate and adaptive immune system participate in the development of atherosclerosis, a chronic inflammatory disorder of medium and large arteries. Natural killer T (NKT) cells express surface markers characteristic of natural killer cells and conventional T cells and bridge the innate and adaptive immune systems. The development and activation of NKT cells is dependent upon CD1d, a MHC-class I-type molecule that presents lipids, especially glycolipids to the TCR on NKT cells...

  6. B cells as a target of immune modulation

    Directory of Open Access Journals (Sweden)

    Hawker Kathleen

    2009-01-01

    Full Text Available B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts. MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.

  7. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Takayuki Katsuyama

    2018-05-01

    Full Text Available Systemic lupus erythematosus (SLE is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to “self” leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.

  8. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus

    Science.gov (United States)

    Katsuyama, Takayuki; Tsokos, George C.; Moulton, Vaishali R.

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to “self” leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field. PMID:29868033

  9. Mast-Cell-Derived TNF Amplifies CD8+ Dendritic Cell Functionality and CD8+ T Cell Priming

    Directory of Open Access Journals (Sweden)

    Jan Dudeck

    2015-10-01

    Full Text Available Mast cells are critical promoters of adaptive immunity in the contact hypersensitivity model, but the mechanism of allergen sensitization is poorly understood. Using Mcpt5-CreTNFFL/FL mice, we show here that the absence of TNF exclusively in mast cells impaired the expansion of CD8+ T cells upon sensitization and the T-cell-driven adaptive immune response to elicitation. T cells primed in the absence of mast cell TNF exhibited a diminished efficiency to transfer sensitization to naive recipients. Specifically, mast cell TNF promotes CD8+ dendritic cell (DC maturation and migration to draining lymph nodes. The peripherally released mast cell TNF further critically boosts the CD8+ T-cell-priming efficiency of CD8+ DCs, thereby linking mast cell effects on T cells to DC modulation. Collectively, our findings identify the distinct potential of mast cell TNF to amplify CD8+ DC functionality and CD8+ T-cell-dominated adaptive immunity, which may be of great importance for immunotherapy and vaccination approaches.

  10. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells.

    Science.gov (United States)

    Laranjeira, Paula; Pedrosa, Monia; Pedreiro, Susana; Gomes, Joana; Martinho, Antonio; Antunes, Brigida; Ribeiro, Tania; Santos, Francisco; Trindade, Helder; Paiva, Artur

    2015-01-05

    The different distribution of T cells among activation/differentiation stages in immune disorders may condition the outcome of mesenchymal stromal cell (MSC)-based therapies. Indeed, the effect of MSCs in the different functional compartments of T cells is not completely elucidated. We investigated the effect of human bone marrow MSCs on naturally occurring peripheral blood functional compartments of CD4(+) and CD8(+) T cells: naive, central memory, effector memory, and effector compartments. For that, mononuclear cells (MNCs) stimulated with phorbol myristate acetate (PMA) plus ionomycin were cultured in the absence/presence of MSCs. The percentage of cells expressing tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), and interleukin-2 (IL-2), IL-17, IL-9, and IL-6 and the amount of cytokine produced were assessed by flow cytometry. mRNA levels of IL-4, IL-10, transforming growth factor-beta (TGF-β), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) in purified CD4(+) and CD8(+) T cells, and phenotypic and mRNA expression changes induced by PMA + ionomycin stimulation in MSCs, were also evaluated. MSCs induced the reduction of the percentage of CD4(+) and CD8(+) T cells producing TNF-α, IFNγ, and IL-2 in all functional compartments, except for naive IFNγ(+)CD4(+) T cells. This inhibitory effect differentially affected CD4(+) and CD8(+) T cells as well as the T-cell functional compartments; remarkably, different cytokines showed distinct patterns of inhibition regarding both the percentage of producing cells and the amount of cytokine produced. Likewise, the percentages of IL-17(+), IL-17(+)TNF-α(+), and IL-9(+) within CD4(+) and CD8(+) T cells and of IL-6(+)CD4(+) T cells were decreased in MNC-MSC co-cultures. MSCs decreased IL-10 and increased IL-4 mRNA expression in stimulated CD4(+) and CD8(+) T cells, whereas TGF-β was reduced in CD8(+) and augmented in CD4(+) T cells, with no changes for CTLA4. Finally, PMA

  11. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice.

    Science.gov (United States)

    Seidel, Daniel; Eickmeier, Ira; Kühl, Anja A; Hamann, Alf; Loddenkemper, Christoph; Schott, Eckart

    2014-02-01

    The pathogenesis of primary sclerosing cholangitis (PSC) remains poorly understood. Since PSC predominantly occurs in patients with inflammatory bowel disease, autoimmunity triggered by activated T cells migrating from the gut to the liver is a possible mechanism. We hypothesized that T cells primed in the gut-associated lymphoid tissue (GALT) by a specific antigen migrate to the liver and cause cholangitis when they recognize the same antigen on cholangiocytes. We induced ovalbumin-dependent colitis in mice that express ovalbumin in biliary epithelia (ASBT-OVA mice) and crossed ASBT-OVA mice with mice that express ovalbumin in enterocytes (iFABP-OVA mice). We analyzed T-cell activation in the GALT and crossreactivity to the same antigen in the liver as well as the effects of colitis per se on antigen-presentation and T-cell activation in the liver. Intrarectal application of ovalbumin followed by transfer of CD8 OT-I T cells led to antigen-dependent colitis. CD8 T cells primed in the GALT acquired effector function and the capability to migrate to the liver, where they caused cholangitis in a strictly antigen-dependent manner. Likewise, cholangitis developed in mice expressing ovalbumin simultaneously in biliary epithelia and enterocytes after transfer of OT-I T cells. Dextran sodium sulfate colitis led to increased levels of inflammatory cytokines in the portal venous blood, induced activation of resident liver dendritic cells, and promoted the induction of T-cell-dependent cholangitis. Our data strengthen the notion that immune-mediated cholangitis is caused by T cells primed in the GALT and provide the first link between colitis and cholangitis in an antigen-dependent mouse model. © 2013 by the American Association for the Study of Liver Diseases.

  12. T-cell-mediated immunity to lymphocytic choriomeningitis virus in beta2-integrin (CD18)- and ICAM-1 (CD54)-deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1996-01-01

    The T-cell response to lymphocytic choriomeningitis virus was studied in mice with deficient expression of beta2-integrins or ICAM-1. In such mice, the generation of virus-specific cytotoxic T lymphocytes was only slightly impaired and bystander activation was as extensive as that observed in wild-type...... mice. T-cell-mediated inflammation, assessed as primary footpad swelling and susceptibility to intracerebral infection, was slightly compromised only in beta2-integrin-deficient mice. However, adoptive immunization of mutant mice soon after local infection did reveal a reduced capacity to support...... the inflammatory reaction, indicating that under conditions of more limited immune activation both molecules do play a role in formation of the inflammatory exudate. Finally, virus control was found to be somewhat impaired in both mutant strains. In conclusion, our results indicate that although LFA-1-ICAM-1...

  13. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Joanne M Lumsden

    Full Text Available A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP-specific CD4(+ T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM and/or central memory (T(CM CD4(+ T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM and T(CM cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+ T(E/EM cells and of CD4(+ T(CM cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+ T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+ T(E/EM cells and of CD4(+ T(E/EM cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM and T(CM cells are major producers of IL-2.

  14. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Hyang-Mi Lee

    2015-02-01

    Full Text Available IFNγ signaling drives dendritic cells (DCs to promote type I T cell (Th1 immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.

  16. Immune activation and HIV-specific T cell responses are modulated by a cyclooxygenase-2 inhibitor in untreated HIV-infected individuals: An exploratory clinical trial.

    Directory of Open Access Journals (Sweden)

    Christian Prebensen

    Full Text Available Pathologically elevated immune activation and inflammation contribute to HIV disease progression and immunodeficiency, potentially mediated by elevated levels of prostaglandin E2, which suppress HIV-specific T cell responses. We have previously shown that a high dose of the cyclooxygenase-2 inhibitor celecoxib can reduce HIV-associated immune activation and improve IgG responses to T cell-dependent vaccines. In this follow-up study, we included 56 HIV-infected adults, 28 antiretroviral therapy (ART-naïve and 28 on ART with undetectable plasma viremia but CD4 counts below 500 cells/μL. Patients in each of the two study groups were randomized to receive 90 mg qd of the cyclooxygenase-2 inhibitor etoricoxib for six months, two weeks or to a control arm, respectively. T cell activation status, HIV Gag-specific T cell responses and plasma inflammatory markers, tryptophan metabolism and thrombin generation were analyzed at baseline and after four months. In addition, patients received tetanus toxoid, conjugated pneumococcal and seasonal influenza vaccines, to which IgG responses were determined after four weeks. In ART-naïve patients, etoricoxib reduced the density of the activation marker CD38 in multiple CD8+ T cell subsets, improved Gag-specific T cell responses, and reduced in vitro plasma thrombin generation, while no effects were seen on plasma markers of inflammation or tryptophan metabolism. No significant immunological effects of etoricoxib were observed in ART-treated patients. Patients receiving long-term etoricoxib treatment had poorer tetanus toxoid and conjugated pneumococcal vaccine responses than those receiving short-course etoricoxib. Cyclooxygenase-2 inhibitors may attenuate harmful immune activation in HIV-infected patients without access to ART.

  17. Prophylactic Sublingual Immunization with Mycobacterium tuberculosis Subunit Vaccine Incorporating the Natural Killer T Cell Agonist Alpha-Galactosylceramide Enhances Protective Immunity to Limit Pulmonary and Extra-Pulmonary Bacterial Burden in Mice

    Directory of Open Access Journals (Sweden)

    Arshad Khan

    2017-12-01

    Full Text Available Infection by Mycobacterium tuberculosis (Mtb remains a major global concern and the available Bacillus Calmette-Guerin (BCG vaccine is poorly efficacious in adults. Therefore, alternative vaccines and delivery strategies focusing on Mtb antigens and appropriate immune stimulating adjuvants are needed to induce protective immunity targeted to the lungs, the primary sites of infections and pathology. We present here evidence in support of mucosal vaccination by the sublingual route in mice using the subunit Mtb antigens Ag85B and ESAT-6 adjuvanted with the glycolipid alpha-galactosylceramide (α-GalCer, a potent natural killer T (NKT cell agonist. Vaccinated animals exhibited strong antigen-specific CD4 and CD8 T cells responses in the spleen, cervical lymph nodes and lungs. In general, inclusion of the α-GalCer adjuvant significantly enhanced these responses that persisted over 50 days. Furthermore, aerosolized Mtb infection of vaccinated mice resulted in a significant reduction of bacterial load of the lungs and spleens as compared to levels seen in naïve controls or those vaccinated with subunit proteins, adjuvant , or BCG alone. The protection induced by the Mtb antigens and-GalCer vaccine through sublingual route correlated with a TH1-type immunity mediated by antigen-specific IFN-γ and IL-2 producing T cells.

  18. Age related changes in T cell mediated immune response and effector memory to Respiratory Syncytial Virus (RSV in healthy subjects

    Directory of Open Access Journals (Sweden)

    Campoccia Giuseppe

    2010-10-01

    Full Text Available Abstract Respiratory syncytial virus (RSV is the major pathogen causing respiratory disease in young infants and it is an important cause of serious illness in the elderly since the infection provides limited immune protection against reinfection. In order to explain this phenomenon, we investigated whether healthy adults of different age (20-40; 41-60 and > 60 years, have differences in central and effector memory, RSV-specific CD8+ T cell memory immune response and regulatory T cell expression status. In the peripheral blood of these donors, we were unable to detect any age related difference in term of central (CD45RA-CCR7+ and effector (CD45RA-CCR7- memory T cell frequency. On the contrary, we found a significant increase in immunosuppressive regulatory (CD4+25+FoxP3+ T cells (Treg in the elderly. An immunocytofluorimetric RSV pentamer analysis performed on these donors' peripheral blood mononuclear cells (PBMCs, in vitro sensitized against RSV antigen, revealed a marked decline in long-lasting RSV specific CD8+ memory T cell precursors expressing interleukin 7 receptor α (IL-7Rα, in the elderly. This effect was paralleled by a progressive switch from a Th1 (IFN-γ and TNF-α to a Th2 (IL-10 functional phenotype. On the contrary, an increase in Treg was observed with aging. The finding of Treg over-expression status, a prominent Th2 response and an inefficient RSV-specific effector memory CD8+ T cell expansion in older donors could explain the poor protection against RSV reinfection and the increased risk to develop an RSV-related severe illness in this population. Our finding also lays the basis for new therapeutic perspectives that could limit or prevent severe RSV infection in elderly.

  19. Memory T Cell Migration

    OpenAIRE

    Qianqian eZhang; Qianqian eZhang; Fadi G. Lakkis

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review...

  20. Liver-Primed Memory T Cells Generated under Noninflammatory Conditions Provide Anti-infectious Immunity

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2013-03-01

    Full Text Available Development of CD8+ T cell (CTL immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1+ memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire.

  1. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia.

    Science.gov (United States)

    Li, Peiying; Mao, Leilei; Zhou, Guoqing; Leak, Rehana K; Sun, Bao-Liang; Chen, Jun; Hu, Xiaoming

    2013-12-01

    Cerebral ischemia has been shown to result in peripheral inflammatory responses followed by long-lasting immunosuppression. Our recent study demonstrated that intravenous delivery of regulatory T cells (Tregs) markedly protected against transient cerebral ischemia by suppressing neutrophil-derived matrix metallopeptidase 9 production in the periphery. However, the effect of Tregs on systemic inflammatory responses and immune status has not been fully characterized. Cerebral ischemia was induced by middle cerebral artery occlusion for 60 minutes in mice or 120 minutes in rats. Tregs were isolated from donor animals by CD4 and CD25 double selection and transferred intravenously to ischemic recipients at 2 hours after middle cerebral artery occlusion. Animals were euthanized on different days after reperfusion. The effects of Tregs on systemic inflammation and immune status were evaluated using flow cytometry, ELISAs, and immunohistochemistry. Systemic administration of purified Tregs raises functional Tregs in the blood and peripheral organs, including spleen and lymph nodes. These exogenous Tregs remain in the blood and peripheral organs for ≥12 days. Functionally, Treg adoptive transfer markedly inhibits middle cerebral artery occlusion-induced elevation of inflammatory cytokines (interleukin-6 and tumor necrosis factor α) in the blood. Furthermore, Treg treatment corrects long-term lymphopenia and improves cellular immune functions after ischemic brain injury. As a result, Treg-treated animals exhibit decreased bacterial loads in the blood during recovery from cerebral ischemic attack. Treg treatment did not exacerbate poststroke immunosuppression. On the contrary, Treg-treated animals displayed improved immune status after focal cerebral ischemia.

  2. Tolerogenic dendritic cells for regulatory T cell induction in man

    Directory of Open Access Journals (Sweden)

    Verena eRaker

    2015-11-01

    Full Text Available Dendritic cells are (DC highly specialized professional antigen-presenting cells (APC that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, inhibition of memory T cell responses, T cell anergy and induction of regulatory T cells. These properties have led to the analysis of human tolerogenic DC as a therapeutic strategy for induction or re-establishment of tolerance. In the recent years, numerous protocols for the generation of human tolerogenic DC have been developed and their tolerogenic mechanisms, including induction of regulatory T cells, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DC. Therefore, the scientific rationale for the use of tolerogenic DC therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DC with focus on IL-10-modulated DC as inducers of regulatory T cells and discuss their clinical applications and challenges faced in further developing this form of immunotherapy.

  3. Immune modulation by genetic modification of dendritic cells with lentiviral vectors.

    Science.gov (United States)

    Liechtenstein, Therese; Perez-Janices, Noemi; Bricogne, Christopher; Lanna, Alessio; Dufait, Inès; Goyvaerts, Cleo; Laranga, Roberta; Padella, Antonella; Arce, Frederick; Baratchian, Mehdi; Ramirez, Natalia; Lopez, Natalia; Kochan, Grazyna; Blanco-Luquin, Idoia; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    2013-09-01

    Our work over the past eight years has focused on the use of HIV-1 lentiviral vectors (lentivectors) for the genetic modification of dendritic cells (DCs) to control their functions in immune modulation. DCs are key professional antigen presenting cells which regulate the activity of most effector immune cells, including T, B and NK cells. Their genetic modification provides the means for the development of targeted therapies towards cancer and autoimmune disease. We have been modulating with lentivectors the activity of intracellular signalling pathways and co-stimulation during antigen presentation to T cells, to fine-tune the type and strength of the immune response. In the course of our research, we have found unexpected results such as the surprising immunosuppressive role of anti-viral signalling pathways, and the close link between negative co-stimulation in the immunological synapse and T cell receptor trafficking. Here we review our major findings and put them into context with other published work. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Supervised learning methods in modeling of CD4+ T cell heterogeneity

    OpenAIRE

    Lu, Pinyi; Abedi, Vida; Mei, Yongguo; Hontecillas, Raquel; Hoops, Stefan; Carbo, Adria; Bassaganya-Riera, Josep

    2015-01-01

    Background Modeling of the immune system – a highly non-linear and complex system – requires practical and efficient data analytic approaches. The immune system is composed of heterogeneous cell populations and hundreds of cell types, such as neutrophils, eosinophils, macrophages, dendritic cells, T cells, and B cells. Each cell type is highly diverse and can be further differentiated into subsets with unique and overlapping functions. For example, CD4+ T cells can be differentiated into T...

  5. CD47 expression in Epstein-Barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of CD8+/Foxp3+ T cells.

    Science.gov (United States)

    Abe, Hiroyuki; Saito, Ruri; Ichimura, Takashi; Iwasaki, Akiko; Yamazawa, Sho; Shinozaki-Ushiku, Aya; Morikawa, Teppei; Ushiku, Tetsuo; Yamashita, Hiroharu; Seto, Yasuyuki; Fukayama, Masashi

    2018-04-01

    Epstein-Barr virus-associated gastric carcinoma (EBVaGC) frequently harbors dense lymphocytic infiltration, suggesting a specific microenvironment allowing coexistence with tumor immunity. CD47, which mediates the "do not eat me" signal in innate immunity, is also important in adaptive anti-tumor immunity. We investigated the significance of CD47 in EBVaGC compared with EBV-negative gastric cancer and the correlation with various immune cells. By immunohistochemistry of CD47, high, low, and negative expression was observed in 24, 63, and 12% of EBVaGC (n = 41), while 11, 49, and 39% of EBV-negative gastric cancer (n = 262), respectively, indicating that high expression of CD47 in cancer cells was significantly frequent and increased in EBVaGC (P = 0.043). In contrast to EBV-negative gastric carcinoma in which no significant correlation was observed between CD47 and survival, high expression of CD47 correlated significantly with worse disease-specific survival (P = 0.011) and overall survival (P = 0.013) in EBVaGC. To further clarify the role of CD47 expression in EBVaGC, digital image analysis of immune cell infiltration revealed that high CD47 expression was correlated with a lower ratio of CD8 + /Foxp3 + T cells (P = 0.021), a sensitive indicator of tumor immunity. Thus, CD47 lowers anti-tumor immunity in EBVaGC by finely tuning profile of infiltrating T cells, suggesting that CD47 is an additional target for cancer immunotherapy against this virus-driven gastric cancer.

  6. Effect of metformin combined with clomiphene on insulin resistance, oxidative stress response and T cell immune response in patients with PCOS

    Directory of Open Access Journals (Sweden)

    Xiao-Lian Zhang

    2017-08-01

    Full Text Available Objective: To study the effect of metformin combined with clomiphene on insulin resistance, oxidative stress response and T cell immune response in patients with polycystic ovarian syndrome (PCOS. Methods: A total of 94 patients who were diagnosed with PCOS in Jingzhou Second People’s Hospital between September 2014 and October 2016 were selected and randomly divided into the combined group who received the metformin combined with clomiphene therapy and the control group who received clomiphene therapy. The insulin resistance, oxidative stress response and T cell immune response were evaluated before treatment and 3 menstrual cycles after treatment. Results: 3 menstrual cycles after treatment, HOMA-IR level, serum F-Ins, F-CP, TOS, MDA, AOPP and IL-17 contents as well as peripheral blood RORγt mRNA expression of combined group were significantly lower than those before treatment while HOMA-β level, serum TAS, SOD, GSH-Px, VitC, VitE, IL-10 and TGF-β1 contents as well as peripheral blood Foxp3 mRNA expression were significantly higher than those before treatment; HOMA-IR and HOMA-β levels, serum F-Ins, F-CP, TOS, MDA, AOPP, IL-17, TAS, SOD, GSH-Px, VitC, VitE, IL-10 and TGF-β1 contents as well as peripheral blood Foxp3 and RORγt mRNA expression of control group were not different from those before treatment. Conclusion: Metformin combined with clomiphene can significantly improve the insulin resistance, oxidative stress response and T cell immune response in patients with PCOS.

  7. Immune cells: more than simple carriers for systemic delivery of oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Eisenstein S

    2014-11-01

    Full Text Available Samuel Eisenstein,1 Shu-Hsia Chen,2 Ping-Ying Pan21Department of Surgery, 2Department of Oncological Sciences and Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USAAbstract: Oncolytic virotherapy on its own has numerous drawbacks, including an inability of the virus to actively target tumor cells and systemic toxicities at the high doses necessary to effectively treat tumors. Addition of immune cell-based carriers of oncolytic viruses holds promise as a technique in which oncolytic virus can be delivered directly to tumors in smaller and less toxic doses. Interestingly, the cell carriers themselves have also demonstrated antitumor effects, which can be augmented further by tailoring the appropriate oncolytic virus to the appropriate cell type. This review discusses the multiple factors that go into devising an effective, cell-based delivery system for oncolytic viruses.Keywords: oncolytic virus, cell carrier, immune cells, cancer therapy, myeloid-derived suppressor cells

  8. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  9. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells

    Science.gov (United States)

    Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao

    2017-01-01

    Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC. PMID:29042945

  10. Designing bovine T cell vaccines via reverse immunology

    DEFF Research Database (Denmark)

    Nene, Vishvanath; Svitek, Nicholas; Toye, Philip

    2012-01-01

    T cell responses contribute to immunity against many intracellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymph...

  11. When aging reaches CD4+ T-cells: phenotypic and functional changes

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moro-García

    2013-05-01

    Full Text Available Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28null T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8+T-cell compartment, these mechanisms ultimately fail with age.

  12. Oleanolic acid acetate inhibits rheumatoid arthritis by modulating T cell immune responses and matrix-degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Kyeong [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Kim, Sung-Wan; Kim, Duk-Sil [Department of Thoracic and Cardiovascular Surgery, CHA Gumi Medical Center, CHA University, Gumi 730-040 (Korea, Republic of); Lee, Jong Yeong [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Lee, Soyoung [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Oh, Hyun-Mee [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Ha, Yeong Su; Yoo, Jeongsoo [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Park, Pil-Hoon [College of Pharmacy, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Shin, Tae-Yong [College of Pharmacy, Woosuk University, Jeonju 565-701 (Korea, Republic of); Kwon, Taeg Kyu [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Rho, Mun-Chual, E-mail: rho-m@kribb.re.kr [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2016-01-01

    ABSTRACT: Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a combination of synovium joint inflammation, synovium hyperplasia, and destruction of cartilage and bone. Oleanolic acid acetate (OAA), a compound isolated from Vigna angularis, has been known to possess pharmacological activities, including anti-inflammation and anti-bone destruction. In this study, we investigated the effects of OAA on RA and the underlying mechanisms of action by using a type-II collagen-induced arthritis (CIA) mouse model and tumor necrosis factor (TNF)-α-stimulated RA synovial fibroblasts. Oral administration of OAA decreased the clinical arthritis symptoms, paw thickness, histologic and radiologic changes, and serum total and anti-type II collagen IgG, IgG1, and IgG2a levels. OAA administration reduced Th1/Th17 phenotype CD4{sup +} T lymphocyte expansions and inflammatory cytokine productions in T cell activated draining lymph nodes and spleen. OAA reduced the expression and production of inflammatory mediators, such as cytokines and matrix metalloproteinase (MMP)-1/3, in the ankle joint tissue and RA synovial fibroblasts by down-regulating Akt, mitogen-activated protein kinases, and nuclear factor-κB. Our results clearly support that OAA plays a therapeutic role in RA pathogenesis by modulating helper T cell immune responses and matrix-degrading enzymes. The immunosuppressive effects of OAA were comparable to dexamethasone and ketoprofen. We provide evidences that OAA could be a potential therapeutic candidate for RA. - Highlights: • OAA attenuated chronic CIA symptoms. • OAA had a regulating effect on the T helper cell immune reaction for CIA. • The effect of OAA on the RA was comparable to the dexamethasone or ketoprofen. • OAA might be a candidate for the treatment of arthritic diseases.

  13. TCR-Engineered, Customized, Antitumor T Cells for Cancer Immunotherapy: Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Arvind Chhabra

    2011-01-01

    Full Text Available The clinical outcome of the traditional adoptive cancer immunotherapy approaches involving the administration of donor-derived immune effectors, expanded ex vivo, has not met expectations. This could be attributed, in part, to the lack of sufficient high-avidity antitumor T-cell precursors in most cancer patients, poor immunogenicity of cancer cells, and the technological limitations to generate a sufficiently large number of tumor antigen-specific T cells. In addition, the host immune regulatory mechanisms and immune homeostasis mechanisms, such as activation-induced cell death (AICD, could further limit the clinical efficacy of the adoptively administered antitumor T cells. Since generation of a sufficiently large number of potent antitumor immune effectors for adoptive administration is critical for the clinical success of this approach, recent advances towards generating customized donor-specific antitumor-effector T cells by engrafting human peripheral blood-derived T cells with a tumor-associated antigen-specific transgenic T-cell receptor (TCR are quite interesting. This manuscript provides a brief overview of the TCR engineering-based cancer immunotherapy approach, its advantages, and the current limitations.

  14. TCR-engineered, customized, antitumor T cells for cancer immunotherapy: advantages and limitations.

    Science.gov (United States)

    Chhabra, Arvind

    2011-01-05

    The clinical outcome of the traditional adoptive cancer immunotherapy approaches involving the administration of donor-derived immune effectors, expanded ex vivo, has not met expectations. This could be attributed, in part, to the lack of sufficient high-avidity antitumor T-cell precursors in most cancer patients, poor immunogenicity of cancer cells, and the technological limitations to generate a sufficiently large number of tumor antigen-specific T cells. In addition, the host immune regulatory mechanisms and immune homeostasis mechanisms, such as activation-induced cell death (AICD), could further limit the clinical efficacy of the adoptively administered antitumor T cells. Since generation of a sufficiently large number of potent antitumor immune effectors for adoptive administration is critical for the clinical success of this approach, recent advances towards generating customized donor-specific antitumor-effector T cells by engrafting human peripheral blood-derived T cells with a tumor-associated antigen-specific transgenic T-cell receptor (TCR) are quite interesting. This manuscript provides a brief overview of the TCR engineering-based cancer immunotherapy approach, its advantages, and the current limitations.

  15. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    Science.gov (United States)

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  16. Elimination of self-reactive CD8+, but not CD4+, T cells by a peripheral immune mechanism

    International Nuclear Information System (INIS)

    Rammensee, H.G.; Huegin, D.

    1990-01-01

    Unirradiated (BALB/c X B6)F1 recipients of lymphocytes from either parent or (B6 X DBA/2)F2 recipients of DBA/2 parental lymphocytes specifically remove the function of donor-derived F1-reactive CTL from the spleen, since such cells could not be recovered 1 week after injection. However, donor-derived CTL specific for third-party antigens, as well as donor-derived F1-reactive CD4+ T cells could be recovered. In contrast, CTL in spleens from recipients sublethally irradiated prior to injections consisted predominantly of F1-reactive CTL in all strain combinations tested. Athymic BALB/c nude mice grafted with fetal thymus of B6 develop a T cell compartment tolerant of BALB/c and B6, like (BALB/c X B6)F1 animals. However, unlike the F1 mice, the thymus-grafted nude mice were not able to eliminate B6-reactive lymphocytes after injection of normal BALB/c spleen cells. Our data indicate the existence of a peripheral immune mechanism capable of selectively eliminating self-reactive CD8+ CTL, but not CD4+, T cells. This mechanism requires self antigen expressed on radiosensitive cells. The presence of T cells tolerant to self antigen by thymic negative selection is not sufficient and perhaps not required. Most likely, this mechanism is involved in the relative resistance to lethal GVHR mediated by parental CD8+ T cells in parent-into-F1 situations

  17. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    Science.gov (United States)

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis.

  18. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells

    OpenAIRE

    Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao

    2017-01-01

    Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhance...

  19. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak; Thoh, M. [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India); Patil, Anand [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Degani, M. [Institute of Chemical Technology, Matunga, Mumbai (India); Gota, Vikram [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India)

    2015-12-01

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.

  20. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    Science.gov (United States)

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.